
1. Introduction
The rapid warming in the Arctic at a rate more than double that of the global average has contributed to remark-
able decreases in Arctic sea ice during recent decades (Cohen et al., 2014; Notz & SIMIP Community, 2020). 
According to the National Snow and Ice Data Center (NSIDC) Sea Ice Index version 3 (Fetterer et al., 2017), the 
September mean Arctic sea-ice extent (SIE; defined as the area covered by sea ice with a concentration of at least 
15%) reached a record low of 3.57 million km 2 in 2012, and the second-lowest value at 4.00 million km 2 in 2020. 
State-of-the-art climate models have projected that the Arctic sea ice is very likely to continue to decline over 
the coming decades (IPCC, 2021; Notz & SIMIP Community, 2020; Song, 2016). Therefore, the timing of when 
an ice-free Arctic summer will eventually occur, which will have substantial impacts on the Arctic environment, 
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regional rivalry scenario, but is still inevitable this century.
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marine ecosystems and even the global climate (Cohen et al., 2020; Francis & Vavrus, 2012; Wang et al., 2021), 
has become a prominent societal and scientific concern.

It is widely agreed that an ice-free Arctic summer, defined as when the Arctic SIE drops below 1 × 10 6 km 2 
(Jahn,  2018; Liu et  al.,  2013; Wang & Overland,  2009,  2012), is likely to occur before the end of the 21st 
century (Boé et al., 2009; Jahn, 2018; Sigmond et al., 2018). Many recent studies have indicated that the Arctic 
will likely become ice free in summer around the middle of this century (Laliberté et al., 2016; Liu et al., 2013; 
Notz & SIMIP Community, 2020) or even earlier—in the 2030s, for instance (Bonan, Schneider, et al., 2021; 
DeRepentigny et al., 2020; Diebold & Rudebusch, 2021; Wang et al., 2021; Wang & Overland, 2009). The latest 
Intergovernmental Panel for Climate Change (IPCC) Assessment Report (AR6) has stated, based on an equally 
weighted multi-model mean, that “The Arctic is likely to be practically sea ice free in September at least once 
before 2050 under the five illustrative scenarios considered in this report, with more frequent occurrences for 
higher warming levels.”

However, the projected timing of an ice-free Arctic still carries large uncertainties (Jahn, 2018; Jahn et al., 2016; 
Laliberté et al., 2016; Liu et al., 2013; Wang et al., 2021). The uncertainty arises primarily from internal varia-
bility and the different structures of current global climate models (GCMs) (Årthun et al., 2021; Bonan, Lehner, 
& Holland,  2021; DeRepentigny et  al.,  2020; Notz & SIMIP Community,  2020). In terms of the projected 
timing of an ice-free Arctic summer, internal variability alone can lead to uncertainty of about two decades 
(Jahn et al., 2016). Additionally, scenario uncertainty can add at least five more years (Jahn et al., 2016). Taken 
together, this already clearly indicates that such an uncertainty may strongly affect the level of confidence in 
projections. To reduce this uncertainty, scientists have tried using a sub-selection of well-performing models 
(Docquier & Koenigk, 2021; Laliberté et al., 2016; Liu et al., 2013; Notz & SIMIP Community, 2020; Thackeray 
& Hall, 2019). For instance, by omitting models with poor skill in simulating a variety of sea-ice related diag-
nostics (e.g., seasonal sea-ice albedo feedback, sea-ice thickness), Thackeray and Hall (2019) showed that the 
spread in the timing of an ice-free Arctic in September could be narrowed to a 20-year window spanning from the 
2040s to the 2060s. The above studies imply that the estimated timing of an ice-free Arctic summer may depend 
on the method used, indicating the need to utilize advanced approaches to provide more convincing projections.

Emergent constraints, which rely on the linear relationship between the observable aspects of the current climate 
system and the future climate change across GCMs, have been previously used to constrain the uncertainty of 
Arctic sea-ice projections (Bonan, Schneider, et al., 2021; Liu et al., 2013; Wang et al., 2021). For example, 
using a statistical framework that relates future sea-ice area (SIA; quantified as the grid-cell area multiplied by 
the sea-ice concentration) to present-day SIA and to the local sea-ice sensitivity, together with the application 
of emergent constraints, Bonan, Schneider, et al. (2021) indicated that the first year of an ice-free Arctic under a 
high-emissions scenario is likely to occur between 2036 and 2056, which is an advancement of about 10–35 years 
relative to the projection without uncertainty constraint. In addition, a recent study using emergent constraints 
pointed out that the chance of an ice-free Arctic summer to occur with approximately 1.9°C warming above the 
pre-industrial level can reach up to 80% (Wang et al., 2021).

It is noteworthy that the approach used in studies that have constrained the projection uncertainty by selecting 
well-performing models involved each selected model being equally weighted, regardless of the level of interde-
pendence with other models, which may have led to overfitting in the projections generated. Additionally, in stud-
ies that have constrained the projection uncertainty through the application of emergent constraints to all available 
simulations, there may have been overconfidence in the projection results if all the simulations had structurally 
similar problems (Knutti et al., 2017). Considering the above limitations, Knutti et al. (2017) proposed an alterna-
tive approach in which both the skill and independence of climate models are weighted to reduce the uncertainty 
in projected Arctic sea-ice variability. Through applying such a weighting scheme to all available simulations 
from the third and fifth phases of the Coupled Model Intercomparison Project (CMIP3/CMIP5), many previ-
ous studies have proven that this method is able to efficiently constrain model biases and narrow the spread of 
projection by different climate models (Knutti et al., 2017; Lorenz et al., 2018; Merrifield et al., 2019; Tong 
et al., 2020). One of the main advantages of the weighting scheme is that it takes into account the interdependence 
of models. It is well known that the current state-of-the-art climate models are largely interdependent (Knutti 
et al., 2013; Masson & Knutti, 2013; Sanderson et al., 2015b, 2017). Models developed by the same community 
with different resolutions (e.g., MPI-ESM-HR and MPI-ESM-LR), for instance, have many similarities. Also, it 
was suggested by Knutti et al. (2017) that model interdependence will become more prevalent in future phases of 
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CMIP since the total number of models from all communities as well as individual models from the same institute 
will both increase. Taking CMIP6, for example, the National Center for Atmospheric Research has provided four 
versions of the Community Earth System Model (CESM)—namely, CESM2, CESM2-FV2, CESM2-WACCM, 
and CESM2-WACCM-FV2. In addition, climate models share a large amount of code. For example, there is a 
lot of common code between TaiESM1 and CESM1.2.2 owing to the limited manpower and expertise in climate 
research in Taiwan (Lee et al., 2020). This interdependence of models can potentially lead to poor estimation of 
the uncertainty in climate projections (Brunner et al., 2020; Herger et al., 2018; Zhao et al., 2022), which has 
been commonly overlooked by previous studies, including the IPCC assessment reports. Knutti et al.  (2017), 
one of the pioneering groups to apply a weighting scheme to Arctic sea-ice projections, argued that (a) weighted 
projections indicate a more rapid sea-ice decline than unweighted projections, and (b) the weighting scheme is 
more crucial for reducing the uncertainty in climate projections than a model democracy in which each model is 
equally weighted.

The present study was inspired by this pioneering work of Knutti et al. (2017) carried out on the basis of the 
CMIP3 and CMIP5 archives. More specifically, there were three major motivations behind us conducting this 
follow-up research. First, Knutti et  al.  (2017) did not estimate the timing of an ice-free Arctic. Rather, they 
investigated the variation in September SIE under a medium-emissions scenario (Representative Concentration 
Pathway [RCP]) 4.5) and stated that “The weighted projection points to near ice-free September conditions by 
2100 for RCP4.5.” However, recent studies have indicated that ice-free conditions in September are likely to 
occur much earlier than expected under scenarios representing equal or higher emission levels (Bonan, Schneider, 
et al., 2021; Wang et al., 2021). Second, the unweighted mean of the CMIP3/CMIP5 outputs underestimate the 
observed rates of decline in September Arctic sea ice (see black curve in Figure 1c of Knutti et al. (2017)). This 
may potentially lead to an overestimation of the remaining SIE in future, and hence lead to a conservative esti-
mate of the timing of an ice-free Arctic. Third, the weighted mean of the CMIP3/CMIP5 outputs still notably 
underestimates the observed rates of September Arctic sea-ice loss (see red curve in their Figure 1c), showing a 
limited constraint of present-day simulation biases by the weighting scheme. This is likely to result from the poor 
skill of the CMIP3/CMIP5 models in reproducing the observed Arctic sea-ice variability, which implies a need to 
apply the weighting scheme to the latest state-of-the-art climate models.

The CMIP6 archive represents nearly a decade of development relative to its predecessors. It has been shown that 
the ensemble mean of CMIP6 simulations can successfully capture the observed rate of decline in September 
Arctic SIA, as well as its response to external forcing (Notz & SIMIP Community, 2020). Considering the notable 
improvement but increased interdependence of CMIP6 models, in this paper we report findings from applying a 
weighting scheme to the latest CMIP6 archives to constrain the uncertainty in the projected timing of an ice-free 
Arctic in September during the 21st century. The hope is that the results of this study will help to address societal 
and scientific concerns associated with when the summertime Arctic will become ice free for the first time.

2. Data and Methods
2.1. CMIP6 Archive

Our analysis is based on all currently available CMIP6 models (Eyring et al., 2016; O'Neill et al., 2016) that have 
published monthly sea ice concentration (SIC), surface air temperature (SAT), sea surface temperature (SST) 
and sea level pressure (SLP) in both historical simulations during 1850–2014 and future projections under the 
Shared Socioeconomic Pathways (SSPs) of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 during 2015–2100. In 
total, 29 different models are used in this study (Table 1) and only one ensemble member of each model is used. 
It is noteworthy that including more members of each model will not change the conclusions of this study, since 
internal variability has a negligible impact on the effect of our weighting scheme (see discussion in Section 4.2). 
To improve the comparability between the model outputs and the observations, all model outputs were inter-
polated to a regular grid resolution of 1° longitude by 1° latitude. We used the monthly SIC to calculate the 
monthly Arctic SIE or SIA. To illustrate climate change more clearly, three specific 30-year periods are exam-
ined: 1981–2010 (historical), 2021–2050 (near-term) and 2070–2099 (long-term).
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2.2. CESM2 Large Ensemble

The CESM2 Large Ensemble (CESM2-LE; Rodgers et al., 2021) is used to 
assess the effect of internal variability on the results derived from the weight-
ing scheme. The CESM2-LE consists of 100 ensemble members cover-
ing the period 1850–2100, composed of the CMIP6 historical simulations 
and the projections under the SSP3-7.0 scenario. The first and the second 
50 of  the  100 ensemble members use different forcing fields. The first 50 
members follow the original CMIP6 biomass-burning protocol, which is 
described in the CESM2 overview paper (Danabasoglu et al., 2020). In the 
second 50 members, the original CMIP6 biomass-burning emissions are 
smoothed in time with an 11-year running mean filter. This smoothing has 
been shown to strongly affect the multidecadal trends in Arctic sea ice in the 
CESM2, through reductions in the interannual variability of the prescribed 
CMIP6 biomass-burning emissions (DeRepentigny et  al.,  2022). Only the 
first 50 of the 100 members are used in this study to ensure the compara-
bility between the projections derived from the CESM2-LE and the projec-
tions obtained from the CMIP6 models under the SSP3-7.0 scenario. These 
members only differ from each other in their initial oceanic and atmospheric 
conditions (i.e., phase of the Atlantic meridional overturning circulation, 
atmospheric potential temperature), which ensures that each member has 
a unique time sequence of internal variability. The monthly SIC and SLP 
during 1980–2100 from CESM2-LE are used. The monthly SIC was used to 
calculate the monthly Arctic SIE. All ensemble outputs were interpolated to 
a regular 1° × 1° grid.

2.3. Observations

Monthly SIC data with a regular grid resolution of 1° × 1° were obtained 
from the Met Office's Hadley Centre Sea Ice and Sea Surface Temperature 
data set (HadISST 1.1; Rayner et  al.,  2003). Monthly SLP, SAT and SST 
data were obtained from the European Centre for Medium-Range Weather 
Forecasts (ECMWFs) fifth-generation global atmospheric reanalysis (ERA5) 
with a spatial resolution of 0.25° × 0.25°, which are currently available from 
January 1950 to the present day (Hersbach et al., 2020). All reanalysis data 
used in this study were interpolated to a regular grid resolution of 1° × 1° 
to facilitate the comparison with the model results. Observed monthly time 
series of Arctic SIE and SIA were obtained from the NSIDC Sea Ice Index 
version 3 (Fetterer et al., 2017).

2.4. Definitions of Arctic SIE, SIA and Ice-Free Conditions

To ensure our results are comparable with previous studies, we define the timing of an ice-free Arctic as the first 
year when the September Arctic SIE drops below 1 × 10 6 km 2 (IPCC, 2013; Jahn, 2018; Laliberté et al., 2016; 
Sigmond et al., 2018). The SIE time series was estimated as the total area of all grid cells in the Northern Hemi-
sphere with an SIC of at least 15%. Considering that several recent studies have also used SIA to project the 
timing of an ice-free Arctic summer (IPCC, 2021; Notz & SIMIP Community, 2020; Wang et al., 2021), we also 
present the results relevant to the Arctic SIA in Figures S1–S7 in Supporting Information S1. To calculate the 
time series of the SIA, we multiplied every grid-cell area by its SIC (ranging from 0.0 to 1.0) and summed up all 
the grid values over the Northern Hemisphere.

2.5. Multi-Model Weighting Scheme

The weighting scheme employed in this study was developed by Knutti et  al.  (2017) based on the work of 
Sanderson et  al.  (2015a,  2015b). It has been recommended in recent studies as an alternative to the method 

Model no. Model name Institution/Country

1 ACCESS-CM2 CSIRO-ARCCSS/Australia

2 ACCESS-ESM1-5 CSIRO/Australia

3 BCC-CSM2-MR BCC-CMA/China

4 CAMS-CSM1-0 CAMS-CMA/China

5 CanESM5 CCCMA/Canada

6 CanESM5-CanOE CCCMA/Canada

7 CAS-ESM2-0 CAS/China

8 CESM2 NCAR/USA

9 CESM2-WACCM NCAR/USA

10 CNRM-CM6-1 CNRM-CERFACS/France

11 CNRM-CM6-1-HR CNRM-CERFACS/France

12 CNRM-ESM2-1 CNRM-CERFACS/France

13 EC-Earth3 EC-Earth-Consortium/EU

14 EC-Earth3-Veg EC-Earth-Consortium/EU

15 EC-Earth3-Veg-LR EC-Earth-Consortium/EU

16 FGOALS-f3-L LASG-IAP/China

17 FGOALS-g3 LASG-IAP/China

18 INM-CM4-8 INM/Russia

19 INM-CM5-0 INM/Russia

20 IPSL-CM6A-LR IPSL/France

21 MIROC6 MIROC/Japan

22 MIROC-ES2L MIROC/Japan

23 MPI-ESM1-2-HR MPI-M/Germany

24 MPI-ESM1-2-LR MPI-M/Germany

25 MRI-ESM2-0 MRI/Japan

26 NorESM2-LM NCC/Norway

27 NorESM2-MM NCC/Norway

28 TaiESM1 AS-RCEC/Taiwan

29 UKESM1-0-LL MOHC/UK

Table 1 
Details of the 29 CMIP6 Models Used in This Study
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of model sub-selection or emergent constraints (Brunner et al., 2020; Knutti et al., 2017; Lorenz et al., 2018; 
Merrifield et al., 2019; Sanderson et al., 2017; Tong et al., 2020). The weighting scheme abandons the prevailing 
model democracy in dealing with ensemble simulations (Knutti, 2010). Instead, it weights the multi-model simu-
lations according to their performance and their similarities in simulating a set of diagnostics that are relevant to 
the projected targets. In terms of the SIE projections in this study, the weight of each GCM in the CMIP6 archive 
was derived based on their present-day simulations. This is plausible since the large spread in the projected 
sea-ice decline over the 21st century by individual GCMs mainly originates from biases in their present-day 
simulations (Bonan, Schneider, et al., 2021). Weighting based on present-day simulations could maximize the 
constraint effect on present-day biases and projection uncertainty. Models agreeing well with observations or 
having rare duplicates in the CMIP6 archive will be up-weighted by the weighting scheme, and vice versa. 
The weighted/unweighted ensemble spread, which measures the difference between the ensemble members, was 
calculated as a weighted/unweighted standard deviation. The mean of the weighted/unweighted ensemble can 
provide a relatively representative estimate of the future outcome's temporal evolution for policymakers to refer 
to. For a model i, its weight 𝐴𝐴 𝐴𝐴i is calculated as follows:

𝑤𝑤i =
𝑒𝑒

−

𝐷𝐷
2

i

𝜎𝜎
2

𝐷𝐷

1 +
∑𝑀𝑀

𝑗𝑗≠𝑖𝑖
𝑒𝑒
−

𝑆𝑆
2

ij

𝜎𝜎
2
𝑠𝑠

 (1)

where 𝐴𝐴 𝐴𝐴i is the distance of model i to the observations, 𝐴𝐴 𝐴𝐴ij is the distance of model i to model j, M is the total 
number of models, and 𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are the shape parameters. The root-mean-square error (RMSE) is used to repre-
sent the distance metric of 𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij (Knutti et al., 2017; Lorenz et al., 2018; Merrifield et al., 2019; Sanderson 
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larger value leading to a larger independence weight, and vice versa. Sanderson et al. (2017) weighted the model 
independence according to both model-to-model distance 𝐴𝐴 𝐴𝐴ij and some prior knowledge about known interde-
pendence in multi-model simulations. Different from Sanderson et al. (2017), in this study, we determined the 
model independence metric solely according to 𝐴𝐴 𝐴𝐴ij because weighting based on prior knowledge may be some-
what subjective and may lead to loss of some potentially useful information. Equation 1 indicates that model i's 
weight is computed as the product of its skill weight and its independence weight. To better compare the results 
derived from the weighting scheme with those obtained from the model democracy (i.e., each model having an 
equal weight of 1/M), we normalized all model weights (i.e., the sum of unequal weights is also equal to one).

For this paper, we selected a variety of diagnostics to calculate 𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij , including both the temporal varia-
bility of a variable and the spatial pattern of several basic climate features (e.g., climatology, trend, interannual 
variability; more details on the motivation for diagnostic selection can be found in Section 2.6), such that both 
the temporal and the spatial distances could be calculated. The distances corresponding to different diagnostics 
were averaged to determine the values of 𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij . Since different diagnostics may create different distance 
magnitudes, each diagnostic distance, including both the model-to-model distances and the model-to-observation 
distances, was normalized by the median before it was averaged. 𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij were calculated with reference to the 
baseline period of 1980–2014, which makes observations and historical simulations more comparable.

The two shape parameters [𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 in Equation 1] determine how strongly the model's performance (numerator 
in Equation 1) and the model's similarity [denominator in Equation 1] are weighted, respectively. As suggested by 
Knutti et al. (2017), a large 𝐴𝐴 𝐴𝐴𝐷𝐷 effectively converges to a model democracy that weights models equally, whereas 
a small 𝐴𝐴 𝐴𝐴𝐷𝐷 tends to assign most weights to only a few models so that most models receive a near-zero weight. It is 
inappropriate to choose either a too small or a too large value of 𝐴𝐴 𝐴𝐴𝐷𝐷 (see discussion in Section 2.7). 𝐴𝐴 𝐴𝐴𝑠𝑠 represents 
the distance scale at which two models are considered to be similar. More details of the method can be found in 
Knutti et al. (2017). To estimate the two shape parameters, we utilized the same approach as Knutti et al. (2017) 
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through a perfect model setup, which is explained in detail in Section 2.7. The large interdependence that exists 
in the CMIP6 archive could make the perfect model setup work better (Lorenz et al., 2018). To test the robustness 
of the results derived from the weighting scheme of this study, different diagnostic sets were used to weight the 
models (see discussion in Section 4.1), and in each case, 𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 were chosen separately.

2.6. Motivation for Diagnostic Choices

We used Equation 1 to obtain weighted projections of September Arctic SIE and accordingly derive the first 
year of an ice-free Arctic. The diagnostic variables, which were taken into account in the calculation of the 
model-to-observation distance and the model-to-model distance (𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij , respectively), needed to be deter-
mined based on physical mechanisms (Knutti et al., 2017). In this study, instead of only focusing on the projected 
target (i.e., September Arctic SIE), we comprehensively considered multiple variables relevant to the projected 
target in the calculation of 𝐴𝐴 𝐴𝐴i and 𝐴𝐴 𝐴𝐴ij . Such an approach is consistent with that of Knutti et al. (2017), the moti-
vation for which is the fact that weighting solely based on the projected target may cause overconfidence in the 
results (Lorenz et al., 2018). For example, if one model has poor skill in simulating the overall September Arctic 
sea-ice related climate but it coincidently matches well with the observed September Arctic SIE, this model 
would be unreasonably up-weighted if weighting is solely based on the one target variable (i.e., September 
Arctic SIE). On the other hand, selecting more variables should also be done cautiously because the inclusion of 
certain irrelevant diagnostics will tend to cause models to be weighted randomly (Knutti et al., 2017; Sanderson 
et  al., 2017) and will eventually drive the weighting scheme toward model democracy, unless the number of 
models is small (Weigel et al., 2010).

In this paper, we evaluate both the model skill and independence based on several climate diagnostics (e.g., some 
key variables, climatology, and trend) related to the projected target (Knutti et al., 2017; Lorenz et al., 2018; 
Merrifield et  al.,  2019). To apply the weighting scheme to the projections of September Arctic SIE, Knutti 
et al. (2017) used the climatological mean and the trend of hemispheric September Arctic SIE, the gridded clima-
tological mean, and the interannual variability of SAT of each month as the relevant climate. However, SIC in the 
Arctic, which is directly tied to the SIE (see Section 2.4), was barely taken into account by Knutti et al. (2017). 
Therefore, focusing on the same projected target (September SIE) as Knutti et al. (2017), we considered both SIE 
and SIC to estimate the weights for each model member. Although SAT and SST are closely related to sea-ice 
variability (Alekseev et al., 2021; Screen & Deser, 2019; Senftleben et al., 2020; Wang et al., 2021), the two 
variables are not used in the weighting scheme because of their intense co-variation and their close relation to 
SIC, which may lead to overfitting in the weighting. Given that the dynamics are also crucial to sea-ice variability 
(Lukovich et al., 2021; Park et al., 2018; Ricker et al., 2021), we considered an additional climate variable, the 
summer (June–July–August, JJA) mean SLP, which can drive the variability of September Arctic sea ice (Ding 
et al., 2017, 2019). Our motivation in choosing these diagnostics was based on the above physical links as well as 
the fact that climatology, trend and interannual variability have been commonly regarded as basic climate features 
in GCM assessments (Guo et al., 2021; Knutti et al., 2017; Shiru & Chung, 2021; Yang et al., 2021). Accordingly, 
we chose the following seven diagnostics to represent the climate that is crucial to the projections of September 
Arctic SIE: (a) the temporal variability of September SIE; the spatial patterns of the (b) climatology, (c) trend, 
and (d) interannual variability of Arctic (60°–90°N) September SIC; and the spatial patterns of the (e) clima-
tology, (f) trend, and (h) interannual variability of Arctic JJA SLP. These diagnostics were treated as identically 
important in the weight estimation (see Section 2.5).

2.7. Perfect Model Setup

The two shape parameters (𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 ) were determined based on a perfect model setup (Knutti et al., 2017). This 
setup enabled us to test whether the choice of the distance metrics and the diagnostics led to an overconfident 
weighting (Brunner et al., 2020; Knutti et al., 2017; Tong et al., 2020). Within the setup, we selected every model 
in turn from CMIP6 to represent the “truth”, and then weighted the remaining models to predict this “truth”. 
After the setup had been completed M times (M being the total number of models, with each model having been 
selected to represent the “truth” only once), we calculated the fraction of cases in which the “truth” fell between 
the 10th and the 90th percentiles of the “truth” prediction. Corresponding to each 𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 , we ensured that the 
fraction reached at least 80%—a threshold commonly chosen to avoid overconfidence in the weighting (Brunner 
et al., 2020; Lorenz et al., 2018; Merrifield et al., 2019; Sanderson et al., 2017). We selected eight targets for 
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Figure 1. (a) Fraction of cases when the “truth” falls between the 10th and 90th percentiles of the “truth” prediction in 
the perfect model setup. Arctic sea-ice extent (SIE) changes for the near-term (2021–2050; solid lines) and the long-term 
(2070–2099; dashed lines) under four emission scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) are evaluated. 
The changes are relative to the climatology in 1981–2010 (historical). The vertical dashed line represents the minimum 
value of 𝐴𝐴 𝐴𝐴𝐷𝐷 where the fraction exceeds the required 80%. (b) Dependence of correlation coefficients between the predicted 
and “truth” values of SIE changes on the 𝐴𝐴 𝐴𝐴𝐷𝐷 in the perfect model setup for the near-term (2021–2050; solid lines) and the 
long-term (2070–2099; dashed lines) (c) Ratio of the weights (i.e., unequal) of each model estimated by the weighting scheme 
to an equal-weight; the unequal weights include the skill weight (orange curve), the independence weight (purple curve), and 
the combined skill–independence weight (green curve).
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evaluation in the setup, including SIE changes during 2021–2050 (near-term) and 2070–2099 (long-term) under 
the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. The changes were relative to the clima-
tology of 1981–2010 (historical). Note that there were several pairs of 𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 that could ensure the fraction 
outlined above met the requirement of 80% for all evaluated targets. Since the dependence of the fraction as well 
as the results of the weighted projections on 𝐴𝐴 𝐴𝐴𝑠𝑠 were much weaker than their dependence on 𝐴𝐴 𝐴𝐴𝐷𝐷 (not shown), a 
value of 0.675 was chosen for 𝐴𝐴 𝐴𝐴𝑠𝑠 , which points to a minimum value (and hence the strongest weighting) for 𝐴𝐴 𝐴𝐴𝐷𝐷 of 
about 0.475 (Figure 1a). In this way, 𝐴𝐴 𝐴𝐴𝐷𝐷 could be identified properly. Note that if we simply maximized the corre-
lation between the predicted value and the “truth” of the evaluated targets, there would have been an inclination to 
select a lower 𝐴𝐴 𝐴𝐴𝐷𝐷 than the proper 𝐴𝐴 𝐴𝐴𝐷𝐷 value (Figure 1b). We tried to avoid this because Knutti et al. (2017) revealed 
that values lower than the proper 𝐴𝐴 𝐴𝐴𝐷𝐷 lead to overconfident results and are therefore likely to produce overly narrow 
projections. Selection of a larger 𝐴𝐴 𝐴𝐴𝐷𝐷 than the proper 𝐴𝐴 𝐴𝐴𝐷𝐷 value may also be inappropriate since such a selection 
disposes the weighting toward a model democracy such that the model spread may become larger.

3. Results
3.1. Model Weights

Figure  1c shows the distribution of multiple CMIP6 models in terms of the ratio of models' weights to an 
equal-weight. The independence weight shows an increasing tendency from the best model with the highest skill 
weight to the worst model with the lowest skill weight (purple curve in Figure 1c). Such a contrary trend between 
the skill weight and the independence weight reflects the existence of a trade-off phenomenon in the CMIP6 
models (orange curve vs. purple curve in Figure 1c). This means that models with better agreement with the 
observations also tend to have more duplicates. Since the combined skill–independence weight used for sea-ice 
projections (green curve in Figure 1c) is a product of the skill weight and the independence weight, the above 
trade-off phenomenon implies that the weighting effect of model skill may offset the weighting effect of model 
independence. Such an offset may tend to reduce the differences between the projections based on the weighting 
scheme and those based on a model democracy (Sanderson et al., 2017). The trade-off is relatively strong in 
CMIP6 owing to the coexistence of model improvement and an increase in the number of participating models. 
However, such a trade-off problem is effectively overcome by the weighting scheme, as clearly demonstrated by 
the notable differences in the combined skill–independence weights among individual models (green curve in 
Figure 1c). With the development of GCMs as well as the increasing number of available GCMs, the trade-off 
will likely become stronger in future phases of CMIP. Therefore, the weighting scheme may become more impor-
tant in future research. In addition, high consistency is notable between the distribution of the skill weight and 
that of the combined skill–independence weight (orange curve vs. green curve in Figure 1c). This means that the 
models' weights are mainly determined by their performances, which is consistent with the statement made by 
Knutti et al. (2017) that “the typical distance to observation is large compared to the distance between duplicate 
models, and the results are rather insensitive to how strongly model dependence is weighted.”

3.2. Implementation of the Weighting Scheme

In this section, we evaluate the effect of the weighting scheme on the CMIP6 present-day simulations and the 
projections compared to the unweighted results. In terms of the RMSE of the climatology and trend, the orig-
inal outputs of most models have larger RMSE than the unweighted multi-model mean (i.e., the ratio ranges 
from 1.1 to 4.7; indicated by solid dots in Figures 2a and 2b). This is not the case for the interannual variations 
(Figure 2c) because averaging multiple models can generally reduce the magnitude of each year's variability in 
the multi-model mean. Note that the ratio of the RMSE in the unweighted simulations to that in the weighted 
multi-model mean is even larger (Figures 2a and 2b; indicated by the circles), which demonstrates that the weight-
ing scheme efficiently reduces the bias. The RMSE of the climatology and interannual variability of SAT in the 
weighted multi-model mean is about 0.6 and 0.9 times that in the unweighted multi-model mean (blue crosses 
in the middle column of Figures 2a and 2c). In addition, the pattern correlations of the trend and interannual 
variability of SAT in the weighted multi-model mean are approximately 0.15 and 0.2 higher than those in the 
unweighted multi-model mean (blue vs. black crosses in the middle column of Figures 2e and 2f). The weighting 
scheme also constrains the biases in the simulations of present-day SIC and SST; however, the magnitude of bias 
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reduction is smaller than that of the bias reduction for SAT. This is unsurprising because the original outputs of 
the CMIP6 models capture the present-day Arctic sea-ice variability well (Notz & SIMIP Community, 2020).

To test whether the weighting scheme can constrain the uncertainty in SIE projections, we illustrate in Figure 3a 
the range of multiple models' September SIE in the three specific 30-year periods. The ranges are compared 
between the unweighted (i.e., equal weighting) and weighted (i.e., by the weighting scheme) models. Given that 

Figure 2. Summary of the (a–c) biases and (d–f) spatial patterns of the weighted and unweighted simulations compared with their observational counterparts during 
1980–2014. (a–c) Ratio between each model's root-mean-square error (RMSE) (simulation vs. observation) and the multi-model mean's RMSE for the (a) climatology, 
(b) trend, and (c) interannual variation of September Arctic (60°–90°N) sea ice concentration (SIC), surface air temperature (SAT), and sea surface temperature (SST). 
Each solid dot/circle represents a ratio between the unweighted individual model's RMSE and the unweighted/weighted multi-model mean's RMSE; the blue crosses 
indicate the ratio between the weighted multi-model mean's RMSE and the unweighted multi-model mean's RMSE. The green dashed horizontal lines indicate the value 
of 1.0. (d–f) Pattern correlation of the climatology, trend and interannual variation for the September Arctic SIC, SAT, and SST between simulation and observation. 
Each dot indicates the pattern correlation between the unweighted individual models and the observation, and the blue/black crosses indicate the pattern correlation 
between the weighted/unweighted multi-model mean and the observation. The red, orange and yellow dots or circles indicate the models that get the 1st–4th, 5th–8th, 
and 9th–12th largest weights, respectively; and the gray dots/circles indicate the remaining models.
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the long-term Arctic sea-ice variability simulated by GCMs is linearly related 
to Arctic warming (Bonan, Schneider, et al., 2021; Jahn, 2018; Rosenblum 
& Eisenman,  2017), we also show the range of multiple models' Arctic 
area-averaged SAT based on the two approaches (Figure 3b). It is notable that 
both the SIE and SAT refined by the weighting scheme have smaller spread 
relative to those based on model democracy, which is the case for both histor-
ical simulations and future projections. Additionally, compared to observa-
tions (green star in Figure 3b), the unweighted multi-model mean underesti-
mates the climatology of Arctic SAT by 1.22 K (blue dot in Figure 3b). This 
underestimation may reflect the sensitivity of the climate system in climate 
models to a given amount of anthropogenic CO2 emissions, which implies 
that the unweighted multi-model mean may also underestimate the future 
Arctic warming, especially under high-emissions scenarios (i.e., SSP3-7.0 
and SSP5-8.5). The weighted multi-model mean reduces this bias in the 
historical simulations of climatological Arctic SAT and projects a stronger 
warming under all pathway scenarios (red dots in Figure 3b). As a result, 
despite the fact that the unweighted and weighted multi-model means show a 
similar historical SIE climatology, the weighted multi-model mean projects 
evidently less SIE in the future (red dots in Figure 3a), indicating a faster 
tendency to an ice-free Arctic in September than the one originally projected 
by climate models. At the end of  this century, the weighted multiple models 
project there to be almost no remaining sea ice in the Arctic under the two 
high-emissions scenarios (i.e., SSP3-7.0 and SSP5-8.5) (Figure 3a; red dots). 
This indicates that the first year of an ice-free Arctic will very likely occur 
before 2100 unless emissions of greenhouse gases are largely reduced.

3.3. Projections of the Timing of an Ice-Free Arctic in September

Figure 4 illustrates the projections of September SIE and the first year of an 
ice-free Arctic derived by the model democracy and the weighting scheme. 
Due to considerable improvements in sea-ice simulations in CMIP6 relative 
to previous phases of CMIP, the time series of SIE simulated by the mean of 
the weighted CMIP6 models has much less bias with respect to observations 
when compared to the mean of weighted CMIP3 and CMIP5 models [see red 

curve in Figure 1c of Knutti et al. (2017)]. It is notable that simulations based on the weighted CMIP6 models 
capture the observed decline in September Arctic SIE well, and such a performance provides more confidence 
that the weighting scheme can obtain reliable projections of the timing of an ice-free Arctic. The weighted 
multi-model mean (solid colored curves in Figures 4a–4d) projects a more rapid decrease in Arctic SIE than 
the unweighted multi-model mean (solid black curves in Figures 4a–4d), indicating an earlier occurrence of the 
first year of an ice-free Arctic than the raw projections under the SSP2-4.5, SSP3-3.7, and SSP5-8.5 scenarios. 
In addition, the large spread of projected SIE among the original outputs of the CMIP6 models (gray bands in 
Figures 4a–4d) is efficiently reduced by the weighting scheme (colored bands in Figures 4a–4d). The spread 
among the weighted/unweighted models indicates 2040–2072/2039 to the next century and 2038–2071/2037–
2097 as the period in which the first year of an ice-free Arctic is likely to occur under the SSP3-7.0 and SSP5-8.5 
scenarios, respectively (Figures 4c and 4d). Comparison between the spread among the weighted and unweighted 
models indicates that using the weighting scheme may reduce  the spread of the projected first year of an ice-free 
Arctic by about 29 and 27 years under the SSP3-7.0 and SSP5-8.5  scenarios, respectively. Comparatively, under a 
relatively lower-emissions scenario (i.e., SSP1-2.6), the spread among both the weighted and unweighted models 
remains mostly above the threshold of ice-free conditions, indicating the need to efficiently slow global warming 
to prevent an ice-free Arctic from occurring this century. Figure 4e quantitatively illustrates the effect of the 
weighting scheme on the projections of the first year of an ice-free Arctic. Under higher-emissions scenarios, 
the Arctic is projected to become ice free earlier over the coming decades. Interestingly, without being weighted, 
most models under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios project an ice-free Arctic before 2100, and 
the timing in most models is even earlier (see dots in Figure 4e) than in the multi-model mean (black crosses 

Figure 3. Statistical distribution of September Arctic climate within weighted 
(red) and unweighted (blue) multiple models: (a) climatological Arctic sea-ice 
extent and (b) climatological Arctic area-averaged surface air temperature 
in the historical (1981–2010), near-term (2021–2050) and long-term 
(2070–2099) periods under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios. The whiskers indicate the 10th and 90th percentiles; the box 
indicates the 25th and 75th percentiles; and the line inside the box indicates 
the 50th percentile. Dots indicate the multi-model mean and green stars 
indicate observations.
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in Figure  4e). This is because a few individual models dramatically underestimate the rate of Arctic sea-ice 
decline (see Figures 3b and 3c in Wang et al. (2021)), which can strongly affect the projection of the unweighted 
multi-model mean, thereby further emphasizing the importance of applying the weighting scheme. Under the 
SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, the weighted (unweighted) multi-model mean projects that the 
first year of an ice-free Arctic is likely to occur in 2064, 2062, and 2053 (2091, 2072, and 2066), respectively 
(crosses in Figure 4e). In other words, with the uncertainties constrained, the CMIP6 models project a plausible 
faster decline approaching an ice-free Arctic about 27, 10, and 13 years earlier under the three scenarios, respec-
tively, than that indicated by the unconstrained projections. By comparison, under the sustainable development 
scenario (i.e., SSP1-2.6), both the weighted and unweighted multi-model means project that an ice-free Arctic 

Figure 4. (a–d) Time series of September Arctic sea-ice extent (SIE) in the weighted and unweighted multi-model projections under the SSP1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5 scenarios. The colored curves and bands indicate the weighted multi-model mean and spread, respectively. The black curves and gray bands indicate the 
unweighted multi-model mean and spread, respectively. The purple solid curves represent observations. A value of Arctic SIE of 1 × 10 6 km 2 is defined as the threshold 
for an ice-free condition (horizontal dashed lines). (e) First year of an ice-free Arctic in September under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, in 
which dots indicate the unweighted individual models; the red, orange and yellow dots indicate models that achieve the 1st–4th, 5th–8th, and 9th–12th largest weights, 
respectively; and the gray dots indicate the remaining models. Blue and black crosses represent the weighted and unweighted multi-model means, respectively.
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may not occur in this century. The above results indicate that the first year of an ice-free Arctic is somewhat 
sensitive to the emissions scenario considered, which can be attributed to the evident scenario dependence in 
the long-term future time evolution of Arctic sea ice during the second half of the 21st century (Notz & SIMIP 
Community, 2020). Meanwhile, the results seem to be somewhat different from those reported in DeRepentigny 
et  al.  (2020) derived from two configurations of CESM2, who suggested that the  timing of the first ice-free 
conditions in summer is insensitive to the choice of CMIP6 future emissions scenario. A possible reason is that 
our results are derived from multiple models from CMIP6, whereas DeRepentigny et al. (2020) based their find-
ings on the results of a single model. Actually, several individual CMIP6 models project that an ice-free Arctic 
summer is likely to occur under all the scenarios considered in this study (Figure 4e), which includes the possible 
conclusions drawn from one single model (DeRepentigny et al., 2020).

Given the development and increasing number of state-of-the-art GCMs participating in CMIP6, we further 
investigate the effect of model interdependence on the Arctic sea-ice projections. Figure  5 shows the 

Figure 5. As in Figure 4 but with the weighting scheme only considering the model independence.
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independence-weighted and unweighted CMIP6 projections of September Arctic SIE as well as the first year of 
an ice-free Arctic. It turns out that when CMIP6 models are solely weighted based on their independence, the 
multi-model spread (colored bands in Figures 5a–5d) becomes even larger than the spread among the unweighted 
models (gray band in Figures 5a–5d), leading to increased uncertainty. Such a spread change indicates that there 
is duplicate information in the CMIP6 GCM outputs which may affect the projections. The impacts of these 
duplicate information, however, cannot be taken into account by the prevailing model democracy. In addition, 
the increase in multi-model spread implies that some CMIP6 models that have stronger independence (assigned 
with larger independence weights) may have lower simulation and projection skill, suggesting that both model 
independence and skill should be taken into account. These results are consistent with the conclusions drawn 
by a recent study that redundant information provided by similar models will lead to underestimation of the 
projection uncertainty (Merrifield et al., 2019). Comparison between the weighted and unweighted projections 
shown in Figure 4a–4d and 5a–5d indicates that considering model skill plays a central role in constraining the 
uncertainty of Arctic SIE projections. Figure 5e quantitatively illustrates the effect of model interdependence 
on the projections of the first year of an ice-free Arctic. Consistent with the results shown in Figures 5a–5d, the 
independence-weighted multi-model mean (colored crosses in Figure 5e) projects an even later occurrence of 
an ice-free Arctic than the unweighted multi-model mean (black crosses in Figure 5e). This means that models 
with a lower rate of sea-ice decline are assigned larger independence weights. Overall, solely considering model 
independence is still impractical in seeking to provide more reliable projections of Arctic sea ice.

4. Discussion
4.1. Choice of Diagnostics for Weighted Projections

Previous studies have suggested that the robustness of results derived by a weighting scheme needs to be tested to 
maximize their comparability across studies (Brunner et al., 2020; Knutti et al., 2017; Lorenz et al., 2018). If the 
results are obviously sensitive to the choice of metrics for the weight estimation, the weighting scheme may be 
too aggressive (i.e., overfitting). Here, we tested the robustness of the weighted projections in this study through 
adopting a certain range of choices in the diagnostic variables. Four choices were produced based on the consid-
eration of (a) SIE, (b) SIE + SIC, (c) SIE + SLP, and (d) SIE + SIC + SLP in the weight estimation (more details 
can be found in Section 2.6). The weighted projections of September SIE corresponding to each choice are shown 
in Figure 6. Among different choices of diagnostic variables used for the weight estimation, inclusion of all three 
variables (SIE + SIC + SLP) leads to the minimum spread (light blue band in Figure 6) of multiple models under 
all emission scenarios. In addition, the first year of an ice-free Arctic indicated by the weighted multi-model 
mean based on the inclusion of SIE + SIC/SIE + SLP is a bit later/earlier than that derived from the diagnostics 
of SIE + SIC + SLP (see red and green curves compared to the blue curve in Figure 6). As shown in Figure 7, 
compared to the multi-model mean weighted by SIE (Figure 7a) or SIE + SIC (Figure 7b), the multi-model 
mean weighted by SIE + SLP (Figure 7c), or SIE + SIC + SLP (Figure 7d), projects an earlier occurrence of an 
ice-free Arctic under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. However, despite the abovementioned 
differences, it is notable that the different choices of diagnostic variables lead to robust and obvious reductions in 
the projection uncertainty of Arctic SIE (i.e., the range of the colored bands is much smaller than that of the gray 
band in Figure 6). In terms of the occurrence of an ice-free Arctic, the multi-model mean weighted by different 
diagnostic variables consistently indicates that it is unlikely to occur before the end of the 21st century under 
the sustainable development scenario (i.e., SSP1-2.6). Therefore, despite the abovementioned slight differences 
among the projections constrained by different diagnostic variables, we conclude that the results derived from 
the weighting scheme in this study are reasonably robust and comparable with results shown in previous studies.

4.2. Impact of Internal Variability

Previous studies have indicated that internal climate variability may affect the Arctic sea-ice variability and can 
increase the uncertainty in sea-ice projections (DeRepentigny et al., 2020; Ding et al., 2017, 2019). To inves-
tigate the potential effect of internal variability on the results derived from the weighting scheme in this study, 
we further employed a 50-member single-model initial condition large ensemble (SMILE), the CESM2-LE (see 
Section 2.2). The 50-member ensemble and the 29 CMIP6 models are used in two ways to construct two different 
categories of large ensembles:
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1.  A large ensemble containing 29 CMIP6 models and the first ensemble member of the 50-member CESM2-LE, 
which gave a total amount of 30 members. Such a scheme is used to investigate the model uncertainty.

2.  A large ensemble that included 29 CMIP6 models and all 50 ensemble members of the 50-member CESM2-LE, 
which gave a total amount of 79 members. Such a scheme can be seen as representing the superposition of 
internal variability on model uncertainty.

The weighting scheme was separately applied to the two large ensembles. Note that the weighting based on the 
two ensembles shared the same pair of shape parameters, 𝐴𝐴 𝐴𝐴𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝑠𝑠 , following Merrifield et al. (2019). Their 
values were determined by a perfect model setup. The perfect model setup was implemented using the 29 CMIP6 
models and the first ensemble member from the 50-member CESM2-LE (i.e., the first large-ensemble scheme 
outlined above). That was because the redundant information provided by similar members of CESM2-LE would 
bias the perfect model setup (Merrifield et al., 2019). Weighting based on the second large-ensemble scheme, 
which contained considerably similar members from CESM2-LE, indicated the need to appropriately select a 𝐴𝐴 𝐴𝐴𝑠𝑠 
that was large enough for similar members from CESM2-LE could be considered as redundant members, but not 
so large that most CMIP6 models were considered as redundant. Here, 𝐴𝐴 𝐴𝐴𝑠𝑠 was determined as two standard devi-
ations below the mean CESM2-LE member-to-member distances 𝐴𝐴 𝐴𝐴ij of 0.75, following Merrifield et al. (2019). 
The 𝐴𝐴 𝐴𝐴𝑠𝑠 value pointed to a value for 𝐴𝐴 𝐴𝐴𝐷𝐷 of 0.475 according to the perfect model setup (not shown).

Figure 8 shows the multi-model projections of September SIE derived by weighting the two categories of large 
ensembles (green curves and green bands). For comparison, the unweighted projections based on the two ensem-
bles are also shown (black curves and gray bands in Figure 8). The unweighted multi-model mean of the first large 
ensemble (black curve in Figure 8a) projects a slower decline of SIE relative to that projected by the unweighted 
multi-model mean of the second large ensemble (black curve in Figure 8b). The spread of projected SIE among 
the multiple unweighted members of the first large ensemble (gray band in Figure 8a) is larger than that of the 

Figure 6. Projections of September Arctic sea-ice extent (SIE) under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios constrained by different choices of 
diagnostic variables: SIE (orange); SIE + SIC (red); SIE + SLP (green); SIE + SIC + SLP (blue). The colored curves and bands indicate the weighted multi-model 
mean and spread, respectively. The black curves and gray bands indicate the unweighted multi-model mean and spread, respectively. A value of Arctic SIE of 
1 × 10 6 km 2 is defined as the threshold for an ice-free condition (horizontal dashed lines).
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second large ensemble (gray band in Figure 8b) before 1990 and after 2020. This indicates that adding consider-
ably similar members to large-ensemble models will affect the multi-model mean and may lead to unreasonable 
reductions in projection uncertainty from the original outputs of climate models. This is consistent with the 
conclusion drawn by Merrifield et al. (2019) that redundant information from the SMILE results in an underes-
timation of uncertainty. Different from the unweighted multi-model projections, the weighted multi-model mean 
of the two large ensembles indicates similar trends of SIE in the future (green curves in Figure 8). In addition, 

Figure 7. First year of an ice-free Arctic in September as indicated by the weighted and unweighted multi-model projections 
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios derived from different choices of diagnostic variables: 
(a) sea-ice extent (SIE); (b) SIE + SIC; (c) SIE + SLP; and (d) SIE + SIC + SLP. Dots indicate the unweighted individual 
models (same as in Figures 4e and 5e). Blue/black crosses represent the weighted/unweighted multi-model mean. The red, 
orange and yellow dots indicate the models that achieve the 1st–4th, 5th–8th, and 9th–12th largest weights, respectively; and 
the gray dots indicate the remaining models.
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the spread of projected SIE among the weighted multiple members of the 
two large ensembles is also similar (green bands in Figure 8). In summary, 
despite the fact that internal variability strongly affects the multi-model mean 
and spread of projections from the original outputs of climate models, it has 
a negligible impact on projections derived from the weighting scheme in this 
study.

5. Summary and Conclusions
Numerous studies have indicated that dramatic Arctic sea-ice decline will 
lead to a possible ice-free Arctic in summer by the end of this century (Bonan, 
Schneider, et  al.,  2021; IPCC,  2021; Jahn,  2018; Laliberté et  al.,  2016; 
Sigmond et al., 2018). However, the projection of an ice-free Arctic summer 
based on climate models intrinsically carries large uncertainty arising 
primarily from internal variability and the different structures of climate 
models (Bonan, Lehner, & Holland,  2021). This uncertainty has not been 
well understood so far, and may not be appropriately estimated by simple 
and traditional methods that regard models as equally important despite their 
different performances and considerable interdependence. With the devel-
opment and increase in the number of state-of-the-art climate models, it is 
becoming more necessary to consider both the skill and independence of 
models so as to provide more convincing projections.

In this study, through applying a weighting scheme proposed in Knutti 
et al. (2017), we show that the large uncertainties in CMIP6 projections of the 
timing of an ice-free Arctic summer can be efficiently constrained by weight-
ing both the skill and independence of multi-model simulations. We found that 
biases in the CMIP6 simulations of SIC, SST and especially the SAT around 
the Arctic region, relative to observations, can be efficiently reduced by the 
weighting scheme. The bias-constrained present-day simulations increase 
the level of confidence in the sea-ice projections derived from the weighting 
scheme. The weighted projections indicate a faster tendency to an ice-free 
Arctic in this century than the unweighted projections. The spread among the 
weighted models, which is largely narrowed by the weighting scheme, indi-
cates that the first year of an ice-free Arctic is likely to occur during 2040–2072 

(∼2062 in the weighted multi-model mean) and 2038–2071 (∼2053 in the weighted multi-model mean) under the 
SSP3-7.0 and SSP5-8.5 scenarios, respectively. More specifically, the weighting scheme reduces the spread of the 
projected first year of an ice-free Arctic by about 29 and 27 years under the SSP3-7.0 and SSP5-8.5 scenarios, 
respectively. Under the intermediate emissions scenario (i.e., SSP2-4.5), the weighted multi-model mean projects 
that the first year of an ice-free Arctic is likely to occur a bit later (2064). Notably, after the constraint of uncertainty 
by the weighting scheme, CMIP6 models project that an ice-free Arctic seems to be inevitable this century under the 
SSP2-4.5 scenario, but may not occur before 2100 under the SSP1-2.6 scenario.

Given the dramatic increase in the number of GCMs in CMIP6 compared with previous phases of CMIP, we 
further investigated the sole effect of model interdependence on the CMIP6 projections of September Arctic SIE. 
We found that, when models that have stronger independence are assigned with larger weights by the weighting 
scheme, the spread of the projected Arctic SIE among the multiple models becomes slightly larger than that of the 
original unweighted projections. This indicates that the independent models in the CMIP6 archive show relatively 
poor skill, reflecting the trade-off phenomenon detailed in Sanderson et al. (2017). The trade-off phenomenon 
implies that the weighting effect of model skill may offset the weighting effect of model independence, which 
will reduce the differences between the projections based on the weighting scheme and those based on a model 
democracy. Satisfactorily, it is shown in this study that such a trade-off problem is effectively overcome by the 
weighting scheme. Furthermore, this also emphasizes the importance of considering both model skill and inde-
pendence in the weighting scheme, which, by doing so, can better constrain the uncertainty in climate model 
projections.

Figure 8. Time series of September Arctic sea-ice extent (SIE) from the 
weighted and unweighted multi-model projections under the SSP3-7.0 
scenario based on the (a) first and (b) second large-ensemble category 
(outlined in Section 4.2). The green curves and bands indicate the weighted 
multi-model mean and spread, respectively. The black curves and gray 
bands indicate the unweighted multi-model mean and spread, respectively. 
The purple solid curves represent observations. A value of Arctic SIE of 
1 × 10 6 km 2 is defined as the threshold for an ice-free condition (horizontal 
dashed lines).
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Met Office's Hadley Centre Sea Ice and Sea Surface Temperature data set at https://www.metoffice.gov.uk/
hadobs/hadisst/data/download.html. Users should click on the link named “HadISST_ice.nc.gz” to download 
the compressed nc file. The ERA5 reanalysis data used in this study can be retrieved from the data portal at 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form. 
The monthly Arctic sea-ice extent and sea-ice area are from the NSIDC Sea Ice Index at https://nsidc.org/data/
G02135/versions/3. CMIP6 simulations provided by ESGF can be found via the following open-source link: 
https://esgf-node.llnl.gov/search/cmip6/. Users should select the Variable as siconc, tas, tos and psl, which stand 
for sea-ice concentration, surface air temperature, sea surface temperature, and sea level pressure, respectively. 
Select the Frequency as mon; select the Table ID as Amon, Omon, and Simon; select the Experiment ID as histor-
ical, ssp126, ssp245, ssp370, and ssp585; select the CMIP6 models employed in this study (see Table 1); and 
then download the nc files that appear as the search outputs. The CESM2-LE simulations can be accessed via 
the following open-source link: https://www.cesm.ucar.edu/projects/community-projects/LENS2/data-sets.html. 
Users should select the Monthly simulation data for Atmosphere components and click on the links named “ucar.
cgd.cesm2le.atm.proc.monthly_ave.ICEFRAC” and “ucar.cgd.cesm2le.atm.proc.monthly_ave.PSL” to download 
the nc files for sea-ice concentration and sea level pressure, respectively.
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Erratum
The following errors were discovered in the author affiliations in the supporting information after publication of 
this paper: Affiliation 4 was incorrectly listed as “Southern Marine Science and Engineering Guangdong Labo-
ratory (Zhuhai), Zhuhai, People’s Republic of China”, and affiliation 5 was incorrectly listed as “Nansen Envi-
ronmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway”. The author 
affiliations have been corrected, and this may be considered the authoritative version of record.
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