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Abstract

�is thesis in composed by three articles. In the �rst one, we construct N -soliton solutions for the
fractional Korteweg-de Vries (fKdV) equation

∂tu− ∂x
(
|D|αu− u2

)
= 0,

in the whole sub-critical rangeα ∈ (1
2 , 2). More precisely, ifQc denotes the ground state solution associated

with fKdV evolving with velocity c, then given 0 < c1 < · · · < cN , we prove the existence of a solution U
of (fKdV) satisfying

lim
t→∞
‖U(t, ·)−

N∑
j=1

Qcj (x− ρj(t))‖H α
2

= 0,

where ρ′j(t) ∼ cj as t→ +∞.
�e proof adapts the construction of Martel in the generalized KdV se�ing [Amer. J. Math. 127

(2005), pp. 1103-1140]) to the fractional case. �e main new di�culties are the polynomial decay of the
ground state Qc and the use of local techniques (monotonicity properties for a portion of the mass and
the energy) for a non-local equation. To bypass these di�culties, we use symmetric and non-symmetric
weighted commutator estimates. �e symmetric ones were proved by Kenig, Martel and Robbiano [Annales
de l’IHP Analyse Non Linéaire 28 (2011), pp. 853-887], while the non-symmetric ones seem to be new.

In the second paper, we consider the fractional nonlinear Schrödinger equation in dimension 1:

|D|αu+ u− f(u) = 0,

with α ∈ (0, 2), a prescribed coe�cient p∗(α), and a non-linearity f(u) = |u|p−1u for p ∈ (1, p∗(α)),
or f(u) = up with an integer p ∈ [2; p∗(α)). Asymptotic developments of order 1 of the solutions at
in�nity are given, as well as second order developments for positive solutions, in terms of the coe�cient of
dispersion α and of the non-linearity p. �e main tools are the kernel formulation introduced by Bona and
Li [J. Math. Pures Appl. (9) 76 (1997), no. 5, 377-430], and an accurate description of the kernel by complex
analysis theory.

In the last paper, we study one particular asymptotic behaviour of a solution of the fractional modi�ed
Korteweg-de Vries equation (also known as the dispersion generalised modi�ed Benjamin-Ono equation):

∂tu+ ∂x(−|D|αu+ u3) = 0.

�e dipole solution is a solution behaving in large time as a sum of two strongly interacting solitary waves
with di�erent signs. We prove the existence of a dipole for fmKdV. A novelty of this article is the construc-
tion of accurate pro�les. Moreover, to deal with the non-local operator |D|α, we re�ne some weighted
commutator estimates.



iv Abstract

Sammendrag

Denne avhandlingen er sa� sammen av tre artikler. I den første konstruerer vi N -soliton løsninger
for den fractional Korteweg-de Vries (fKdV) ligningen

∂tu− ∂x
(
|D|αu− u2

)
= 0,

i hele det underkritiske tilfellet α ∈ (1
2 , 2). Mer presist, hvisQc er grunntilstandsløsningen kny�et til fKdV

som beveger seg med hastighet c, da gi� 0 < c1 < · · · < cN , beviser vi eksistensen av en løsning U av
(fKdV) som tilfredstiller

lim
t→∞
‖U(t, ·)−

N∑
j=1

Qcj (x− ρj(t))‖H α
2

= 0,

hvor ρ′j(t) ∼ cj som t→ +∞.
Beviset er basert på konstruksjonen gjort av Martel for den generaliserte KdV-ligningen [Amer. J.

Math. 127 (2005), s. 1103-1140]) for ikke-lokale ligninger. De største utfordringene i de�e arbeidet er
kny�et til egenskapene av grunntilstanden Qc. Mer presist, så avtar funksjonen som et algebraisk poly-
nom. Samt, er det utfordringer kny�et til bruken av lokale teknikker (monotomiegenskaper for en del av
massen og energien) for en ikke-lokal ligning. For å omgådisse vanskelighetene bruker vi symmetriske
og ikke-symmetriske vektede kommutatorestimater. De symmetriske estimatene ble bevist av Kenig, Mar-
tel og Robbiano [Annales de l’IHP Analyze Non Linéaire 28 (2011), s. 853-887], mens de ikke-symmetriske
estimatene ser ut til å være nye.

I den andre artikkelen studerer vi den fraksjonale ikke-lineære Schrödinger-ligningen i dimensjon
en:

|D|αu+ u− f(u) = 0,

med α ∈ (0, 2), en gi� koe�sient p∗(α), og en ikke-linæritet f(u) = |u|p−1u for p ∈ (1, p∗(α)), eller
f(u) = up med et heltall p ∈ [2; p∗(α)). Vi gir asymptotiske utviklinger av løsningen til første orden ved
uendelig. Samt, gir vi andreordens utviklinger for positive løsninger. Disse asymptotiske utviklingene er
avhenger av dispersjonskoe�sienten α og ikke-linæriteten p. Hovedverktøyene er kernelformuleringen
introdusert av Bona og Li [J. Math. Pures Appl. (9) 76 (1997), no. 5, 377-430], og en nøyaktig beskrivelse av
kernelen ved hjelp av kompleks analyse.

I den siste artikkelen studerer vi en spesiell asymptotisk oppførsel av en dipolløsning av den frac-
tional modi�serte Korteweg-de Vries-ligningen:

∂tu+ ∂x(−|D|αu+ u3) = 0.

Dipolløsningen er en løsning som oppfører seg som en sum av to sterkt interaktive solitære bølger med
forskjellige fortegn, når tiden er stor nok. Vi beviser eksistensen av en dipol for fmKdV. Et viktig bidrag i
denne artikkelen er konstruksjonen av nøyaktige pro�ler, og de�e er ny� for fmKdV ligningen. Dessuten,
for å håndtere den ikke-lokale operatoren |D|α, må vi utbedre noen vektede kommutatorestimater.
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Chapter 1

Introduction

1.1 Soliton in shallow water

1.1.1 Discovery of solitons

J. S. Russell

In 1834, John Sco� Russell, a Sco�ish civil engineer, was conducting experiments
to determine the most e�cient design for canal boats. He discovered a phenomenon that
he described as the wave of translation or solitary wave. Nowadays this wave is called
soliton or solitary wave. He observed the motion of a boat pulled by horses along the
Edinburgh and Glasgow Union Canal. Suddenly the horses stopped, and thus, the boat
also stopped, creating a wave in front of the ship. �is wave was very irregular. However,
rapidly, the wave become smooth and started to travel at a constant speed without any
deformation. �en, Russell took his horse and followed the wave along the canal during
some kilo-meters before losing track.

Edinburgh-Glasgow Union Canal

In 1844, he published his discovery in the British Association for the Advancement of
Science [168].

His discovery was not well received by the scientists of his time. In particular, George Biddell Airy
and George Gabriel Stokes each argued that Russell’s wave theory was inaccurate [1], [176]. However, an
equation was found independently by Boussinesq in 1877 [27] and Korteweg and de Vries in 1895 [106] to
model the solitons

∂tu(t, x) + ∂3
xu(t, x) + ∂x(u2)(t, x) = 0, t ∈ R, x ∈ R. (1.1.1)



2 Introduction

�is equation is now called the Korteweg-de Vries equation (KdV) and describes the unidirectional prop-
agation on the shallow water of small amplitude waves. Despite the discovery of the KdV equation, the
solitons have remained understudied for a long time.

In the 1950’s, to get a be�er understanding of the non-linearity in partial di�erential equations,
Enrico Fermi, John Pasta, Mary Tsingou and Stanislaw Ulam performed some numerical simulations [55].
�ey discovered that if we start with a nice ordered initial data, the non-linear e�ect would not necessarily
distort and destroy the shape of the solution. Since the four scientists were working in Los Alamos, this
discovery was not shared until the 1960’s. In 1965, Zabusky-Kruskal published a paper [192] on the Femi-
Pasta-Tsingou-Ulam (FPTU) problem. �ey discovered a relationship between the KdV solitons and the
FPTU problem. In particular, they observed two interesting phenomena. First, if we start with a positive,
localized solution, then this solution would eventually decompose into a sum of solitons and a dispersive
term. Second, if we have two solitons moving to the right with two di�erent constant speeds, the fastest
on the le� side, the fastest soliton would catch up the slowest, collide and a�erward, the two solitons
would return to their original shape, with the slowest soliton on the le�1. �is phenomena is called elastic
collision of solitary waves. By analogy with the interaction of particles, these solitary waves were then
renamed solitons.

�e solitons were discovered in the context of �uid mechanics. However, they are universal physical
objects. �ey appear in many di�erent contexts. Indeed, the (KdV) equation is a model of shallow water
but also used for plasma physic [185], [18]. Moreover, solitons have been obtained in quantum mechanics,
for example, in the propagation of light in non-linear �ber optics described by the non-linear Schrödinger
equation [178]. Nowadays, one of the highlights of the telecommunication systems is to use soliton in �ber
optic to transfer information [77], [76]. More surprising, solitons were recently discovered in biology for
the mass cell movement of non-chemotactic mutants [108], a motion of a biological cell [2], or in a model
describing the invasion of cane toads in Australia [25].

1.1.2 Mathematical approach

�e existence of solitons can be seen as a balance between the dispersive e�ect and the non-linearity
of the equation. Indeed, the linear part of the KdV equation, the Airy equation

∂tu(t, x) + ∂3
xu(t, x) = 0, t ∈ R, x ∈ R, (1.1.2)

is dispersive. One can observe the dispersive e�ect associated to a linear equation in a number of di�erent
ways. One (somewhat informal) way is to analyse plane wave solutions

u(t, x) = Aei(tτ+xξ), A ∈ R, τ ∈ R, ξ ∈ R.

To solve the Airy equation (1.1.2), the parameters must verify τ = ξ3, so that

u(t, x) = Aeiξ(x−(−tξ2)).

�us, we see that for this equation, higher frequency plane waves have a much faster phase velocity than
lower frequency ones, and the velocity is always in a le�ward direction.

�e second part of the KdV equation given by its non-linearity, corresponds to Burger’s equation

∂tu(t, x) + ∂x(u2) = 0, t ∈ R, x ∈ R. (1.1.3)

Burger’s equation is a transport equation with non-constant speed. �e highest values of positive solution
of (1.1.3) will travel faster to the right direction than the lowest values, creating possibly shocks in �nite
time.

�erefore, combining the non-linear and the dispersive e�ects, we can understand the existence of
solitons as a balance between the non-linearity and the dispersive e�ects.

1For more detail on the history of solitons and the KdV equation we refer to [88].
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Now let us give a more precise de�nition of a soliton. A solution u of (1.1.1) is called a soliton if
there exist a speed c > 0 and a positive function Qc vanishing at in�nity such that

u(t, x) = Qc(x− ct). (1.1.4)

Let us suppose that we have a solution of (1.1.1) on the form (1.1.4). �en, by injecting this solution in
(1.1.1), we get an equation for Qc

Q′′c (x)− cQc(x) +Q2
c(x) = 0, x ∈ R.

�is equation admits a unique, up to translation, solution in H1(R) given by

Qc(x) =
3c

2
cosh−2

(√
cx

2

)
.

In this manuscript, we will only focus on the solitons belonging to the energy space. Furthermore, other
types of coherent non-linear structures have been observed like kink, peakon, breathers for some non-linear
dispersive equations.

1.1.3 Complete integrability of the Korteweg-de Vries equation

In 1968 Peter Lax fund a Lax pair for the KdV equation [113]. In other words, if u is a solution of the
KdV equation, then

∂tL+ [L,B] = 0,

with L = −3∂2
x − u, B = −4∂3

x − u∂x − ∂xu and L and B act on a �xed Hilbert space.
�e existence of the Lax pair allows us to get an in�nite number of conserved quantities and then to

use the inverse sca�ering method, which makes it possible to give a rigorous justi�cation of the di�erent
former numerical observations. An equation is completely integrable if there exists an in�nite number of
conserved quantities.

�e inverse sca�ering method has been used by Eckauss and Schuur in [46] to prove the soliton
resolution conjecture: any su�ciently smooth and decaying solution of KdV equation splits into two
parts as t→ +∞

u(t, x) = ud(t, x) + uc(t, x),

with ud is an N -soliton solution and uc(t, x) −→
t→+∞

0 uniformly in x > 0.
A solution u of KdV is called a N -soliton ( also N -soliton like solution or N -solitary waves) if u

behaves at in�nity like a sum of N decoupled solitons.
Moreover, the inverse sca�ering method provides a procedure to get an explicit formula for the N -

soliton solutions and quantitative information about general solutions. For example, for 0 < c1 < c2 two
di�erent speeds, we have the explicit formula for the 2-soliton solutions given by

2(c2 − c1)
(
c1 cosh2

(√
c1
2 ξ1

)
+ c2 cosh2

(√
c1
2 ξ2

))
((√

c2 −
√
c1

)
cosh

(√
c1
2 ξ1 +

√
c2
2 ξ2

)
+
(√
c2 +

√
c1

)
cosh

(√
c1
2 ξ1 −

√
c2
2 ξ2

))2

with ξ1 = x − c1t and ξ2 = x − c2t. Using the former formula, we obtain a be�er description of the
interaction of two solitons.

As explained above, the soliton existence is an equilibrium between the non-linearity and the dis-
persion e�ect of the equation. What happens if one changes the non-linearity or the dispersion?
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1.2 Generalized Korteweg-de Vries equation

�e KdV equation can be naturally extended by increasing its non-linearity. For p ∈ N, with p > 2,
we have the generalized Korteweg-de Vries equation (gKdV) de�ned by

∂tu(t, x) + ∂3
xu(t, x) + ∂x(up)(t, x) = 0, t ∈ R, x ∈ R. (1.2.1)

1.2.1 Special case p = 3, the modi�ed Korteweg-de Vries equation

For p = 3 the equation is called the modi�ed Korteweg-de Vries equation (mKdV) and has many
applications to physics, for example in tra�c congestions [105], phonons in anharmonic la�ices [160],
meandering ocean jets [166], a subclass of hyperbolic surfaces [172] and for ion acoustic solitons [181].

For this equation the soliton is still explicit and it is obtained by direct computations on the equation

Q′′c (x)− cQc(x) +Q3
c(x) = 0, x ∈ R.

�e formula for the soliton Q of mKdV is

Qc(x) =
√

2c cosh−1
(√
cx
)
.

�e mKdV equation has been studied from 1968 by Miura-Gardner and Kruskal. In [143] Miura
found that if v solves mKdV then u = v2 + ∂xv solves KdV. Since there is no formula to get a solution of
the mKdV equation from KdV, it seems di�cult to derive the complete integrability of mKdV from KdV.
However, there exists an in�nite number of conserved quantities for mKdV. �ey have been discovered
simultaneously in 1968 by Miura-Gardner and Kruskal [145].

From the complete integrability, we can derive a formula for the N -soliton solution see [144]. How-
ever, no result has been obtained for the soliton resolution for the mKdV equation.

1.2.2 Solitons of the generalized Korteweg-de Vries equation

Henceforth, we consider p ∈ N with p > 4. For these values of p, the gKdV is not completely
integrable. Even if the equation is not completely integrable, the gKdV equation possesses two conserved
quantities. Let u be a solution of (1.2.1), then the following quantities are formally conserved

M(u)(t) =

∫
R
u2(t, x)dx, E(u)(t) =

∫
R

1

2
(∂xu)2(t, x)− 1

p+ 1
up+1(t, x)dx.

Furthermore, there exists an explicit formula for the solitons Qc of gKdV given by

Qc(x) =

(
(p+ 1)c

2
cosh−2

(√
c
p− 1

2
x

)) 1
p−1

.

where Q solves

Q′′c (x)− cQc(x) +Qpc(x) = 0, x ∈ R.

Note that the solitons for gKdV are, up to some transformations, the ground states of the 1 dimensional
non-linear Schrödinger equation (NLS).
Remark 1.2.1. For the NLS equation it is natural to look at the equation in Rd with d ∈ N+. In the case
d > 1 the question of the existence and the uniqueness of the soliton is non trivial. �e equation of Qc
becomes

∆Qc(x)− cQc(x) +Qpc(x) = 0, x ∈ Rd. (1.2.2)
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�e solitons are in these cases not explicit. �eir existence in H1(Rd) was proved by Weinstein [189] by
using a variational argument. �e uniqueness of the soliton in the energy space is highly non trivial, and
the proof is decomposed in two step.

First, using the moving plane method, we get that the solitons Qc must be radial. �e method of
moving planes went back to Alexandrov [5] and was popularized by Serrin [173], and in particular, by
Gidas-Ni-Nirenberg [63, 64].

�e second step is an argument of shooting method due to Kwong [109]. �e idea is the following.
Since a positive solution Qc of (1.2.2) must be radial by the �rst step, using the polar coordinate, we can
replace (1.2.2) by 

∂2
rQc + n−1

r ∂rQc +Qp−1
c = cQc

Q′c(0) = 0, lim
r→+∞

Qc(r) = 0

Qc > 0,

We replace the condition lim
r→+∞

Qc(r) = 0 by Qc(0) = a with a ∈ R. �e goal is to prove that there exists
a unique a ∈ R such that the solution Qa associated to

∂2
rQa + d−1

r ∂rQa +Qp−1
a = cQa

Q′a(0) = 0, Qa(0) = a

Qa > 0,

veri�es lim
r→+∞

Qa(r) = 0. For more details of the proof, we refer to the lecture notes of Frank [59].

Since the equation is not completely integrable, we cannot anymore use the inverse sca�ering
method to get the existence of N -soliton. A proof has been introduced by Martel [120] in 2005 inspired by
the work of Merle for the blow-up of the non-linear Schrödinger equation [139]. We will come back later
to the construction of N -soliton. First, we discuss the well-posedness of the gKdV equation as well as the
existence and the classi�cation of blow-up solutions.

1.2.3 Well-posedness results

Di�erent results for the well posedness are expected for the di�erent powers of the non-linearity
depending on a scaling property of the solutions. More precisely, let u be a solution of (1.2.1) and λ > 0,
then

uλ(t, x) = λ
1
p−1u(λ

3
2 t,
√
λx)

is also a solution of (1.2.1). Let us look the L2 norm of the solution uλ. By changing the variable we get

‖uλ(t, ·)‖2 = λ
1
p−1
− 1

4 ‖u(t, ·)‖2.

We say the gKdV equation is

• L2-sub-critical if 1
p−1 −

1
4 > 0 ⇐⇒ p < 5,

• L2-critical if 1
p−1 −

1
4 = 0 ⇐⇒ p = 5,

• and L2-super-critical if 1
p−1 −

1
4 < 0 ⇐⇒ p > 5.

It is conjectured that if a partial di�erential equation isL2-sub-critical then the solutions are globally
well-posed in L2(R), and when the equation is L2-critical or L2-super-critical, blow-up in �nite time may
occur.

�e problem of the well-posedness of gKdV equation has been studied by many authors Saut-Teman
in 1976 [169], Kato in 1983 [89], Ginibre-Tsutsumi in 1989 [65], Bourgain in 1993 [26], Kenig-Ponce-Vega
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in 1993 [93] and in 1996 [94], Colliander-Kell-Sta�lani-Takaoka-Tao in 2003 [33], Molinet-Ribaud in 2003
[149], Grünrock in 2005 [69], Guo in 2009 [70], Kishimoto in 2009 [99] and Killip-Kwon-Shao-Visan in
2009 [97]. A fundamental result needed here is due to Kenig-Ponce-Vega [93]. �ey proved that the equation
is locally well-posed in the energy space H1(R) for all p ∈ N∗, and if 2 6 p < 5 then the solutions
are globally well-posed in H1(R) using the energy and mass conservation and the following Gagliardo-
Nirenberg inequality∫

R
up+1(x)dx 6 Cp

(∫
R
u2(x)dx

) p+3
4
(∫

R
(∂xu)2 (x)dx

) p−1
4

, ∀u ∈ H1(R).

1.2.4 Stability of the solitons

Let c > 0. We de�ne two types of stability. First, we have the orbital stability. We say Qc is
orbitally stable in Hs(R) if for all ε > 0, there exists δ > 0 such that if

‖u0 −Qc‖Hs 6 δ,

then for all t ∈ R there exists x(t) such that

‖u(t, x+ x(t))−Qc‖Hs 6 ε.

�e �rst result on the H1(R) orbital stability of a soliton has been proved by Benjamin in 1972 [15], Bona
in 1975 [21] and Weinstein in 1986 [188] for the subcritical case. However, for the critical and super-
critical cases the solitons are not orbitally stable. �e �rst proof of this result has been provided by Bona-
Souganidis-Strauss in 1987. �e case ofN -soliton has been studied by Maddocks-Sachs in 1993 [118]. �ey
obtained the orbital stability of N -soliton in HN (R) only for the KdV equation. �e stability result of N -
soliton has been improved in 2002 by Martel-Merle-Tsai [130]. �ey proved the orbital stability in H1(R)
for the all subcritical range. Moreover, in [130], they proved another type stability of the N -soliton in
H1(R). �e asymptotic stability is de�ned has following:

Let c > 0, x0 ∈ R. We say Qc is asymptotically stable in Hs(R) if there exists ε > 0 such that if

‖u0 −Qc‖Hs 6 ε,

then there exists c+∞ and for all t ∈ R there exists x(t) ∈ R such that

u(t, ·+ x(t)) ⇀ Qc+∞ in Hs(R).

�e asymptotic stability of the solitons has been proved �rst by Pego-Weinstein in 1994 [163] and by Martel-
Merle in 2001 [121] for an initial data in the energy space. Moreover Martel-Merle-Tsai proved in 2002 [130]
the asymptotic stability of the N -soliton in H1(R).

1.2.5 Interactions of solitons

Let us come back to theN -soliton solution. Such solutions behave at in�nity like a sum ofN decou-
pled solitons. �ere are two types of interactions. �e �rst one is when the relative distance between the
di�erent solitons increase linearly. In this case, we say the solitons are weakly interacting. On the other
hand, if the relative distance is sub-linear, like logarithmic or on the form tβ with β < 1, we say the soli-
tons are strongly interacting. In this thesis, we call the weak interaction by N -soliton solution and the
strong interaction by strongly interacting N -soliton solution.

�e �rst proof of the existence ofN -soliton solution not based on the theory of complete integrability
was done in 1998 by Feireisl [53] for non-linear damped wave equations. �e proof is based on the existence
of a Palais-Smale sequence related to some stationary problem.

New techniques have been introduced by Martel in 2005 [120] to construct N -soliton solutions for
the sub-critical and critical case (2 6 p 6 5) of the gKdV equation. �is pioneer result is inspired by a
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fundamental work of Merle [139] for the blow-up of the NLS equation. An outline of this construction
is given in Section 2.1.4. Later, the existence of N -soliton solution for the super-critical case of the gKdV
and NLS equation has been achieved by Cote-Martel-Merle in 2011 [39], see also Combet [35]. Several
constructions of N -soliton solutions for a large variety of equations, like the NLS equation [39, 56, 124],
Klein-Gordon equation [13, 38, 41], water waves equation [142], Zakharov-Kuznetsov equation [182], are
based on this method.

A di�erent method for the construction of the N -soliton solutions, based on a �xed point argument
of Merle in [139], has been introduced by Le Coz, Li and Tsai in [114]. We refer also to Chen for the wave
equation [31] and Van Tin for the derivative NLS [183] for other construction by �xed point.

Few results are known for the strong interaction. �e construction is derived from an argument
developed by Martel-Raphael in 2018 [135] for blow-up for the critical NLS equation. Nguyen in [156]
constructed a 2-soliton solution interacting strongly with logarithmic distance for the gKdV equation, in
[157] for the NLS equation, and Martel-Nguyen in [132] for the cubic NLS equation.

1.2.6 Blow-up in the critical and super-critical cases

�e existence and the classi�cation of blow-up solutions are di�cult questions which have only been
partially solved. Until now, the solitons play an essential role in the blow-up process in the critical case.

First, from the variational characterization of the solitons Q, we get the sharp Gagliardo-Nirenberg
inequality [186]

1

6
‖u‖66 6

1

2‖Q‖22
‖u‖22‖∂xu‖22, ∀u ∈ S(R).

In particular, for the critical case p = 5, we have that if ‖u0‖2 < ‖Q‖L2 , then the solution u, associated to
u0 and solving gKdV equation, is global and uniformly bounded in H1(R).

Secondly, in the case of the gKdV equation the solitons can be seen as the unique universal a�ractor
of the �ow in the singular regime. In other words, if u is a solution of (1.2.1) blows up in �nite or in�nite
time Tmax, then

∀x ∈ R, lim
t→Tmax

λ
1
p−1 (t)u(λ

3
2 (t)t,

√
λ(t)(x− x(t)) = Q(x),

with 0 < λ(t), lim
t→Tmax

λ(t) = 0 and x(t) ∈ R.
Numerical simulations by Bona-Dougalis-Karakashian-McKinney in 1995 [22] have indicated that

blow-ups may occur in �nite time. �e �rst rigorous proofs of existence of blow-up for the critical case
p = 5 were established by Merle in 2001 [140] and Martel-Merle in 2002 [122, 123]. Later a complete
classi�cation around Q was obtained by Martel-Merle-Raphael in 2014 [128] assuming some decay on the
right, and leading in particular to a stable blow-up, in this topology, with a blow-up rate 1

T−t . Note that
exotic blow-up with di�erent rates, 1

(T−t)ν , in the neighbourhood of Q were also constructed by Martel-
Merle-Raphael in 2015 [129] and Martel-Pilod in 2021 [134]

For the supercritical case, p > 5, few results are known. Pioneering numerical studies by Bona-
Dougalis-Karakashian-McKinney in 1995 [22], Dix-McKinney in 1998 [45] and more recent works Klein-
Peter in 2015 [101] exhibited self-similar blow-up for the supercritical equation which was con�rmed rig-
orously by Koch in 2015 [103], Lan in 2017 [110] for p > 5 close to 5.

1.3 Fractional Korteweg-de Vries equation

�e dispersion of the KdV equation is too strong in high frequencies when compared to the full
water waves system. To solve this problem, one idea is to decrease the dispersion of the KdV equation.
One possibility is to replace the dispersion of the KdV equation with the dispersion of the linearized water
waves system. �is idea was introduced by Whitham in [190] to derive the Whitham equation

∂tu+
√
Kmu(D)∂xu+ ε∂x(u2) = 0,
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with F(
√
Kmu(D)u)(ξ) =

tanh(
√
µ|ξ|)

√
µ|ξ|

(1 + βµξ2)F(u)(ξ), 0 < µ, ε � 1 are small parameters related

to the level of dispersion and nonlinearity, and β > 0 is related to the surface tension.
Another generalization of KdV is obtained by replacing the dispersion of KdV, given by ∂3

x =
−(−∂2

x)∂x, by −|D|α∂x, with F(|D|αu)(ξ) = |ξ|αF(u)(ξ). �en, one gets the fractional Korteweg-de
Vries equation (fKdV)

∂tu(t, x)− |D|α∂xu(t, x) + ∂x
(
u2
)

(t, x) = 0, t ∈ R, x ∈ R, (1.3.1)

withα ∈ R. �e fKdV recovers some well-known equation. Whenα = 2, (1.3.1) becomes the KdV equation,
when α = 1, it becomes the Benjamin-Ono equation. For α = 1

2 and α = −1
2 it is somehow reminiscent of

the linear dispersion of the �nite depth water waves equation with and without surface tension. In other
words, the case α = 1

2 and α = −1
2 , for large frequencies, corresponds to the Whitham equations with and

without surface tension.
In this thesis, we will only focus on the fKdV equation.

1.3.1 A particular case: Benjamin-Ono equation

In this subsection, we focus on the Benjamin-Ono equation (BO), corresponding to (1.3.1) with
α = 1

∂tu(t, x)−H∂2
xu(t, x) + ∂x(u2)(t, x) = 0, t ∈ R, x ∈ R,

with H denotes the Hilbert transform. �e well-posedness has been extensively studied, and we cite only
some results. Ionescu-Kenig in 2007 [82] proved the global well-posedness in L2(R) based on a gauge
transformation introduced by Tao in 2004 [180].

Even if this equation is non-local, the BO equation is completely integrable, and admits therefore, an
explicit formula for the soliton Qc

Qc(x) =
4c

1 + c2x2
,

with Qc solves

HQ′ + cQ−Q2 = 0.

An important di�erence with the soliton of KdV, is the decay of the soliton in the non local case. �e soliton
is algebraically decaying at in�nity. �is will play an important role in the construction of the N -soliton
for a general value of α. We will come back on it in the part 1.4.1 Weak interactions.

Moreover, the soliton is unique. �e proof of the uniqueness is based on a harmonic extension
argument. Let Q be a soliton of the BO equation. By taking the convolution of Q with the Poisson kernel
P , we get that U(x, y) = Q ∗x P (x, y) is the harmonic extension of Q on the upper half-plane. We recall
that limy→0 ∂yU(x, y) = |D|1Q = H∂xQ (see Stein chapter III [175]). Using this result we can replace the
equation of Q by the following elliptic problem with Neumann condition

∆U(x, y) = 0, x ∈ R, y > 0,

∂yU(x, 0) = cU(x, 0)− U2(x, 0), x ∈ R,
U(x, 0)→ 0, |x| → +∞.

�e rest of the proof is based on complex analysis. �is proof has been derived by Amick-Toland in 1991 [8]
relying on an idea proposed by Benjamin in 1967 [14].

�e solitons are known, for the BO equation, to be orbitally stable, see Benne�-Brown-Stans�eld-
Stroughair-Bona in 1983 [16] and Weinstein in 1987 [189]. More recently, Kenig-Martel in 2009 [90] proved
the asymptotic stability of the soliton.
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By using the complete integrability of the BO equation, Matsuno in 1979 [136] gave an explicit for-
mula for the N -soliton. Moreover, Kenig-Martel also proved in 2009 [90] that the N -soliton are orbitally
and asymptotic stable. �e two main ingredients for the asymptotic stability are a monotonicity property
and a Liouville type theorem. �e Liouville type theorem was introduced �rst by Martel-Merle in 2001 [121]
for the asymptotic stability of the solitons of KdV in the subcritical case. To obtain the monotonicity prop-
erty, Kenig-Martel studied the evolution of a truncated mass

Mϕ(u)(t) =

∫
R
u2(t, x)ϕ(x)dx,

with u solution of the BO equation and ϕ(x) = π
2 + arctan(x).

Unlike the KdV equation, the BO equation is non local. We cannot use integration by part in order
to get a sign for ∂tM(u). To overcome this di�culty, Kenig-Martel introduced the following weighted
estimates for the Hilbert transform ∫

R
(H∂xu)uϕ′dx 6 C

∫
R
u2ϕ′dx, (1.3.2)∣∣∣∣ ∫

R
(H∂xu) ∂xuϕdx

∣∣∣∣ 6 C

∫
R
u2ϕ′dx. (1.3.3)

�e proof of the estimate (1.3.2) is based on a harmonic extension argument, whereas the estimate (1.3.3)
is obtained by estimating directly the integral in di�erent areas.

1.3.2 Well-posedness results

In this thesis, we focus on the case α ∈ (1
2 , 2]. Except for the case α = 1 and α = 2, the equation

fKdV is not completely integrable. However, there exist two conserved quantities. �e mass

M(u)(t) =

∫
R
u2(t, x)dx,

and the energy

E(u)(t) =

∫
R

(
|D|

α
2 u
)2

(t, x)

2
− u3(t, x)

3
dx.

�e fKdV equation admits a scaling invariance, in other words, if u is a solution of (1.3.1), then

∀x0 ∈ R, c > 0, uc(t, x) = cu
(
c
1+α
α t, c

1
α (x− x0)

)
,

is also a solution. �erefore, the equation is

• L2-sub-critical if α > 1
2 ,

• L2-critical if α = 1
2 ,

• L2-super-critical and H
α
2 -sub-critical if 1

3 < α < 1
2 ,

• H
α
2 -critical if α = 1

3 ,

• and H
α
2 -super-critical if α < 1

3 ,

Relying on numerical simulation by Klein-Saut in 2015 [101], it has been conjectured that in the
sub-critical range 1

2 < α, the Cauchy problem to (1.3.1) is globally well-posed in the energy space H
α
2 (R).

Herr-Ionescu-Kenig-Koch proved this result for α ∈ [1, 2). More recently, Molinet-Pilod-Vento proved the
global well-posedness in the energy space H

α
2 (R) for α > 6

7 . For the rest of the range, for α ∈ (1
2 ,

6
7 ], the

global well-posedness in the energy space is still an open question.
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1.3.3 Existence and properties of solitons

In this subsection, we summarize the properties of the soliton for the fKdV equation. Let c > 0. �e
soliton Qc is a solution of the non-local ODE

|D|αQc + cQc −Q2
c = 0. (1.3.4)

Except for the cases α = 1 and α = 2, no explicit formula for the soliton is known. �e existence of
soliton for (1.3.1) was proved by Weinstein in 1987 [189] and Albert-Bona-Saut in 1997 [4] by minimizing
the functional

Jα(u) =

(∫
||D|

α
2 u|2

) 1
2α
(∫
|u|2
) α−1

2α+1

∫
|u|3

.

A solution Q of the minimising problem is called a ground state. From the decay of the soliton for
the BO equation, algebraic decay of the ground state was expected in the whole range (1

2 , 2). Indeed it was
proved by Frank-Lenzmann-Silvestre in 2016 [61] and Kenig-Martel-Robbiano in 2011 [91] that there exists
C1, C2 > 0

C1

(1 + x2)
1+α
2

6 Q(x) 6
C2

(1 + x2)
1+α
2

, x ∈ R.

However, in this thesis, we will derive a more precise asymptotic development of Q and its deriva-
tives, for α ∈ [1

2 , 2) (see Chapter 3).

1. (First-order expansion) �e function Q veri�es the following decay estimate

Q(j)(x)− (−1)j
(α+ j)!

α!

a1

x1+α+j
= o+∞

(
1

x1+α+j

)
, j ∈ N,

for some Cj > 0, with a1 = k1‖Q‖22 > 0 and k1 ∈ R.

2. (Higher order expansion) �ere exists C > 0 such that

Q(x)−
( a1

xα+1
+

a2

x2α+1

)
= o+∞

(
1

x2α+1

)
,

Q′(x) + (α+ 1)
a1

xα+2
+ (2α+ 1)

a2

x2α+2
= o+∞

(
1

x2α+2

)
,

with a2 = k2‖Q‖22, and k2 ∈ R.

Another important property of the ground state is its uniqueness. Since the uniqueness for the case
α = 2 is based on classical results on an ODE problem, like Sturm-Liouville’s argument, it is not possible
to adapt the proof from the case α = 2 to the general case. Moreover, the uniqueness for α = 1 is based
on a harmonic extension process. Although, an extension problem for the operator |D|α was introduced
in the seminal paper of Cafarelli-Silvestre in 2007 [29], we do not know how to �nd a good Green function
for (1.3.4), which does not allow us to use the same arguments than in the case α = 1.

Recently, Frank-Lenzmann in 2013 [60] proved the uniqueness of the ground state, via the fol-
lowing argument. Let �x α1 ∈ (1

3 , 2]. By using the implicit function theorem, the map Φ(Q,λ, α) :=(
Q− 1

|D|α+λQ
2

‖Q‖44 − c0

)
is C1. In other words, one can follow the ground state continuously depending on the

dispersion’s value α. �e implicit function theorem gives only the existence of Φ on a neighborhood of
α1 ∈ (1

3 , 2]. �e goal is then to extend the function Φ until α = 2. Once the function Φ has been ex-
tended, combining the uniqueness in the implicit function theorem and the uniqueness of the problem in
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the case α = 2, allow to conclude the proof of the uniqueness in the general case. It is worth noticing that
the result of uniqueness is only valid for the ground state. �e uniqueness of the solution of (1.3.4) which
does not minimise the functional Jα is still an open question. Furthermore, as a by-product of their proof,
Frank-Lenzmann in [60] also obtained that the non-degeneracy of the kernel for the following unbounded
operator on L2(R)

Lu = |D|αu+ u− 2Qu.

More precisely, they proved ker(L) = span {Q′}. To describe ker(L) they use the extension process in-
troduced by Ca�arelli-Silvestre [29] to see |D|α as a Dirichlet-Neumann operator for a suitable elliptic
problem on the upper-half plane.

1.4 Main results

1.4.1 Weak interactions

�e �rst result of this thesis is the construction ofN -soliton for the fKdV equation in the sub-critical
range 1

2 < α < 2.

�eorem 1.4.1. We assume α ∈]1
2 , 2[. Let N ∈ N, 0 < c1 < · · · < cN < +∞. �en, there exist some

constants T0 > 0, C0 > 0, N functions ρ1, · · · , ρN ∈ C1([T0,+∞[) and U ∈ C0([T0,+∞[: H
α
2 (R))

solution of (1.3.1) such that, for all t > T0,∥∥∥∥∥U(t, ·)−
N∑
j=1

Qcj (· − ρj(t))

∥∥∥∥∥
H
α
2

6
C0

t
α
2

,

|ρj(t)− cjt| 6 t1−
α
4 and |ρ′j(t)− cj | 6

C0

t
α
2

,

for all j ∈ {1, · · · , N}.

�e proof is given in Chapter 2. Below we explain the key ideas of the proof. �e construction of
the N -solitons for fKdV follows the line of the construction for KdV. We use the techniques introduced by
Merle [139] and Martel [124]. �e novelty of this construction is a deeper understanding of the non-local
commutator estimates. For the construction of the N -solitons, we need to estimate the time evolution of
the localized mass and the localized energy

Mϕ(u)(t) =

∫
R
u2(t, x)ϕ(x)dx, Eϕ(u)(t) =

∫
R

(
u (|D|αu)2 (t, x)

2
− u3(t, x)

3

)
ϕ(x)dx.

To this end, we generalize the estimates∣∣∣∣∫ (|D|αu)u|ϕ′| −
∫ (
|D|

α
2

(
u
√
|ϕ′|
))2

∣∣∣∣ 6 C

∫
u2|ϕ′|, (1.4.1)

and ∣∣∣∣∫ (|D|αu) ∂xuϕ+
α− 1

2

∫ (
|D|

α
2

(
u
√
|ϕ′|
))2

∣∣∣∣ 6 C

∫
u2|ϕ′|, (1.4.2)

introduced by Kenig-Martel-Robbiano in 2011 [91], to a non symmetric form

∣∣∣∣∫ ((|D|αu) v − (|D|αv)u) |ϕ′|
∣∣∣∣ 6

C

∫ (
u2 + v2

)
|ϕ′|, if α ∈]0, 1],

C

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)
|ϕ′|, if α ∈]1, 2[,

(1.4.3)
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and ∣∣∣∣ ∫ ((|D|αu) ∂xv + (|D|αv) ∂xu)ϕ+ (α− 1)

∫
|D|

α
2

(
u
√
|ϕ′|
)
|D|

α
2

(
v
√
|ϕ′|
) ∣∣∣∣

6


C

∫ (
u2 + v2

)
|ϕ′|, if α ∈]0, 1],

C

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)
|ϕ′|, if α ∈]1, 2[,

. (1.4.4)

Note that for the case α = 1, the estimates (1.4.1) and (1.4.2) were proved by Kenig-Martel in 2009 [90].
�e estimate (1.4.1), for α = 1, is proved by using a harmonic extension process, and (1.4.2), for α = 1, is
proved by estimating directly the integral on di�erent areas.

Even with the extension result of Ca�arelli-Silvestre in hand, it is not clear how to adapt the proof
of (1.4.1) and (1.4.2) in the case α = 1 by Kenig-Martel to the general case α ∈ (0, 2) by using similar
arguments. To overcome this di�culty, Kenig-Martel-Robbiano relied on the pseudo-di�erential calculus
to prove estimate (1.4.1) and (1.4.2) in the case α ∈ (1, 2).

Note that, since the multiplier associated with |D|α is singular at zero, this will imply a strong re-
striction on the weight ϕ to localize the mass and the energy. Indeed, to obtain the di�erent estimates, we
look at these quantities in high and low frequency. Note that, a derivative corresponds to a polynomial
weight in high frequency on the Fourier side. When we are looking at the low frequency, it becomes di�-
cult to transfer derivative on the weight of the remainder term on the right-hand side of (1.4.2) and (1.4.4).
�e restriction on the weight is therefore a consequence of the singularity of the operator |D|α.

However, the estimates (1.4.1) and (1.4.2) are not enough to control the localized energy Eϕ. For this
purpose, we extend the result in [91] to a non symmetric one, see (1.4.3) and (1.4.4). More precisely, these
non-symmetric weighted commutator estimates allow us to deal with non-symmetric cross terms involving
the gradient term and the potential term.

�en, the proof of the construction is based on a classical bootstrap argument. However, the re-
striction on the weight makes it di�cult to close the bootstrap argument by a direct integration of the
di�erential inequalities on the di�erent parameters. To bypass this di�culty, we use a topological argu-
ment to adapt carefully the initial data of the geometrical parameters ρj , with j ∈ {1, ..., N}. �erefore, in
�eorem 1.4.1, the N -solitons constructed depend on the N functions ρj , with j ∈ {1, ..., N}, which are
not explicitly given by cjt as in the other constructions . �is is a consequence of the lack of decay of the
weight ϕ. More details for this method of construction are given in Section 2.1.4.

A physical explanation of �eorem 1.4.1 could be that since the solitons are decaying algebraically,
they are interacting too much to get a solution that will behave like

N∑
j=1

Qcj (x− xj − cjt), (xj)
N
j=1 ∈ RN , (cj)Nj=1 ∈ RN+ .

Another possibility is that unlike in cases where the solitons are exponentially decaying, it is not possible
to construct N -solitons without understanding more deeply the interactions between the di�erent soli-
tons. A solution may be to use a pro�le decomposition in order to understand this interaction. �e pro�le
decomposition method is explained in the section of the strong interactions for a cubic non-linearity.

1.4.2 Asymptotic behaviour of the ground states for a general non-linearity

�e second result of this Ph.D. is the asymptotic development of solutions for some generalizations
of the fractional semi-linear elliptic equation (1.3.4). �e set of solutions for the equation (1.3.4) admits
potentially a complex structure. For example, the existence and uniqueness of a solution of (1.3.4) not
minimizing the functional Jα remain open problems. �e existence and uniqueness of the ground state
exposed in the previous section was an important step in the understanding of the elliptic equation (1.3.4).
To continue the study of this fractional elliptic equation, we studied the asymptotic development of some
solutions of (1.3.4) in a joint work with F. Valet.
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�e asymptotic expansion of Q relies on the operator k(x) := (1 + |D|α)−1 = F−1
(

1
1+|ξ|α

)
, with

F−1 denoting the inverse Fourier transform. �e main tool to study the kernel k(x) is a contour integration,
introduced by Pólya in 1923 [165], to get the asymptotic development of k and k′. From the asymptotic of
k and k′, one can derive the development of Q, the asymptotic development of order 1 for the derivatives
of Q, and also higher order expansion for Q. With F. Valet, we proved the following results.

Proposition 1.4.2. Let α ∈ (0, 2), p ∈ (1, p∗(α)) and Q be a weak solution of |D|αQ+Q− |Q|p−1Q = 0,
satisfying:

Q ∈ Lp(R) and ∃l > 0, |x|lQ(x) ∈ L∞(R). (1.4.5)

�en, Q ∈ C0(R) and veri�es:

Q(x)− a1

xα+1
= o+∞

(
1

xα+1

)
,

with a1 ∈ R.
Futhermore, if α > 1, then Q ∈ Cbpc+1(R) with bpc the �oor function of p, and veri�es for j 6 bpc,

that for all x > 1:

Q(j)(x)− (−1)j
(α+ j)!

α!

a1

xα+1+j
= o+∞

(
1

xα+1+j

)
.

Proposition 1.4.3. Let α ∈ (0, 2). Let Q satisfying the assumptions (1.4.5) of Proposition 1.4.2.

• If the coe�cient of the non-linearity p is an integer then Q ∈ H∞(R).

• If Q is positive, then Q ∈ H∞(R), even (up to translation), decaying and veri�es that:

Q(j)(x)− (−1)j
(α+ j)!

α!

a1

xα+1+j
= o+∞

(
1

xα+1+j

)
, ∀j ∈ N,

and the next order asymptotic expansion holds for some a2 ∈ R:

Case p <
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− ap1
xp(α+1)

= o+∞

(
1

xp(α+1)

)
.

Case p =
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− ap1
x2α+1

− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

Case p >
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

Proposition 1.4.4. Let p ∈ N, p > 2, α ∈
(
p−1
1+p , 2

)
, and Q be solution of |D|αQ + Q−Qp = 0 verifying

condition (1.4.5).
�en Q ∈ H∞(R) and veri�es:

Q(j)(x)− (−1)j
(α+ j)!

α!

k1

xα+1+j

∫
Qp = o+∞

(
1

xα+1+j

)
, ∀j ∈ N,

with k1 ∈ R

Proposition 1.4.5 (Higher order expansion). Letα ∈ (1, 2), p = 3, andQ be a solution of |D|αQ+Q−Qp =
0 verifying condition (1.4.5). �en, there exists a constant C = C(α, p) > 0, a3 ∈ R:∣∣∣Q(x)−

( a1

xα+1
+

a2

x2α+1
+

a3

xα+3

)∣∣∣ 6 C

x3α+1
,∣∣∣Q′(x) + (α+ 1)

a1

xα+2
+ (2α+ 1)

a2

x2α+2

∣∣∣ 6 C

x3α+1
, .

�e last proposition will be useful to study the interactions between solitons, and construct a strongly
interacting 2-soliton solution for the fractional modi�ed KdV (fmKdV), as it will be seen in the next
subsection.
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1.4.3 Strong interactions for a cubic non-linearity

�e last result of this PhD is the construction of a strongly interacting 2-soliton solution for the
fractional modi�ed KdV (fmKdV)

∂tu(t, x)− ∂x|D|αu(t, x) + ∂x(u3)(t, x) = 0, t ∈ R, x ∈ R, (1.4.6)

with α ∈ (1, 2). �is construction has been obtained in a joint work with F. Valet. We have proved the
following result.

�eorem 1.4.6. Let α ∈ (1, 2). �ere exist some constants T0 > 0, C > 0 and U ∈ C0([T0,+∞) : H
α
2 (R))

solution of (1.4.6) such that, for all t > T0:∥∥∥U(t, ·) +Q
(
· − t− a

2
t

2
α+3

)
−Q

(
· − t+

a

2
t

2
α+3

)∥∥∥
H
α
2
6 Ct

− α−1
4(α+3) ,

where

a :=

(
α+ 3

2

√
−4b1
α+ 1

) 2
α+3

and b1 := −2
(α+ 1)2

α− 1

sin(π2α)

π

∫ +∞

0
e−

1
rα dr

‖Q‖6L3

‖Q‖2
L2

< 0.

�is construction follows the lines of the proof of the construction of the weakly interacting N -
soliton solution (�eorem 1.4.1). �e main di�erence here is the necessity to understand more deeply the
interactions between the two solitons. �e �rst construction of such solutions has been obtained by Nguyen
in 2017 [156] for the gKdV equation and in 2019 [157] for the NLS equation and Nguyen-Martel [131] for the
cubic NLS equation. �e relative distance between the strongly interacting solitons is connected to the de-
cay of the solitons. Since the solitons of the gKdV equation are exponentially decaying, Nguyen constructed
a solution such that the relative distance is increasing logarithmically. However, in our construction, the
distance between the 2 solitons is given by t

2
α+3 , since the solitons have an algebraic decay.

We explain now how to understand the interactions between two solitons R1 and R2. �e natural
approach would be to look for a solution on the form u = R1+R2+ε as in the case of the weakly interacting
solitons. However, in the case of strongly interacting solitons, the error created by the interaction between
R1 and R2 will be too large to close the bootstrap on ε. For this reason we re�ne the ansatz and look for a
solution on the form u = R1 +R2 + P1 + P2 + bW + ε̃, where bW is localized between the two solitary
waves R1 and R2. Furthermore bW has a plateau between R1 and R2. �is function bW describes the
interactions localized between the two solitary waves. �e functions P1, respectively P2, are constructed
to cancel the remainder terms which are localized close toR1 respectively close toR2. �ese two functions
P1, P2 are called pro�les. To construct P1 and P2, we use the properties of the linearized operator

Lu = |D|αu− u+ 3Q2u,

to �nd a solution f , of some equations on the form

Lf = g + aQ,

where the term g will be given by the interaction between R1 and R2. �e interaction between the 2
solitons can be understood by using the asymptotic development of Q. For example, let take x > t and
R1 = Q

(
· − t− a

2 t
2

α+3

)
and R2 = Q

(
· − t+ a

2 t
2

α+3

)
. �en, we can use the asymptotic development of

Q to get ”R1R
2
2 ∼

(
1

t
2(α+1)
α+3

+ 1

t
2(α+1)
α+3

+ 1

t
2(2α+1)
α+3

)
R2

2”. �e function P1, P2 are constructed to absorb the

term coming from the asymptotic expansion of Q, and to obtain a remainder term small enough to get a
good control on ε̃.

Since the equation is non-local, the proof makes use of the weighted commutator estimates (1.4.1)-
(1.4.4), and some re�nements introduced to track the constants with respect to the di�erent parameters.
More details of the proof are given in Chapter 4.
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1.5 Open problem

In this PhD, we have proved the existence ofN -soliton weakly and strongly interacting in a non-local
context. However, some natural questions remain open. For the weakly interacting N -soliton, one could
ask if it is possible in �eorem 1.4.1 to replace the ρj by cjt. A possibility for that, would be to adapt the
pro�les construction introduced to construct strongly interacting 2-soliton in order to sharpen the estimate
on the error.

�e existence of weakly interacting N -soliton for fKdV equation in the critical and super-critical
range, α ∈ (1

3 ,
1
2 ], remains open. �e main di�erence, compare to the sub-critical case, will be the coer-

civity of the linearized operator L. For example, the coercivity of L is obtained up to two orthogonality
conditions. In the sub-critical case, the orthogonality conditions are given by Q and Q′. �is will give spe-
cial cancellation and some parameters will be controlled by a quadratic term on the error. In the critical
case, the orthogonality conditions can be driven by Q3 and Q′. �e special cancellation does not appear
anymore. Since we are working with algebraic decaying solution, it is not clear whether the loss of this
quadratic bound can be overcome.

�e existence of weakly interacting N -soliton for the fractional non-linear Schrödinger equation is
also an interesting question. �e exponential decay of the soliton is an essential tool for the construction
of theN -soliton for the non-linear Schrödinger. It is not clear in a context of algebraic decay how the proof
could be adapted.

Another natural question is about the uniqueness of the solutions constructed in �eorem 1.4.1 and
�eorem 1.4.6. �e improvement of the understanding of (1.3.4) by the asymptotic development of some
solutions, raises also the question of the uniqueness of this type of solutions.

In [91], Kenig-Martel-Robbiano proved by an argument of perturbation the existence of blow-up
solutions, for the equation

∂tu(t, x)− ∂x|D|αu(t, x) + |u|2α(t, x)∂xu(t, x) = 0, t ∈ R, x ∈ R,

for all α ∈ (α1, 2], for some 1 < α1 < 2 close to 2. �e question to extend this result for all 1 < α < 2
is still open. One strategy would be to adapt the result of Martel-Pilod [133] on the minimal mass blow-up
on the cubic Benjamin-Ono equation, to get the blow-up on the full range α ∈ [1, 2].

A by-product of the paper [91] is the asymptotic stability around the solitons for all α ∈ (α1, 2] with
1 < α1 < 2. �e asymptotic stability around the solitons remains open the full range α ∈

(
1
2 , 2
)

of this
equation and also the fKdV equation.

1.6 Outline of the thesis

�e next chapter of this manuscript is dedicated of the construction ofN -soliton like solutions for the
fractional Korteweg-de Vries equation. In the third chapter we derive an asymptotic of non-linear ground
states for fractional Laplacian, while the last chapter is devoted to the existence of strongly interacting
solitary waves for the fractional modi�ed Korteweg-de Vries equation.
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Chapter 2

Construction of N-soliton like solution
for the fractional Korteweg-de Vries
equation
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2.1 Introduction

2.1.1 �e fractional Korteweg-de Vries equation

We consider the fractional Korteweg-de Vries equation (fKdV), also called the dispersion generalized
Benjamin-Ono equation,

∂tu− |D|α∂xu+ ∂x(u2) = 0, (t, x) ∈ R× R, (2.1.1)

where α ∈ R, |D|α is the Riesz potential of order −α, de�ned by F(|D|αu)(ξ) = |ξ|αF(u)(ξ) and F is
the Fourier transform.

In the cases α = 2, respectively α = 1, this equation corresponds to the well-known Korteweg de
Vries (KdV), respectively Benjamin-Ono (BO) equations, which are completely integrable (see [57, 113]).
In the case α = 0, one recovers the inviscid Burgers’ equation a�er a suitable change of variable, while
the case α = −1 corresponds to the Burgers-Hilbert equation. Finally, the cases α = 1

2 and α = −1
2 are

somehow reminiscent of the linear dispersion of the �nite depth water waves equation with and without
surface tension. In other words, for large frequencies, equation (2.1.1) corresponds in those cases to the
Whitham equations with and without surface tension (see [100] for more details).

From a mathematical point of view, these equations are also useful to understand the “�ght” between
nonlinearity and dispersion. Instead of �xing the dispersion (e.g. that of the KdV equation) and increasing
the nonlinearity (e.g. up∂xu for the generalized KdV equation), one chooses to �x the nonlinearity u∂xu
and lower the dispersion, allowing then fractional dispersion of the form |D|α, α < 2. As pointed out
by Linares, Pilod and Saut in [115], this viewpoint is probably more physical since in many problems
arising from physics or continuum mechanics the nonlinearity is quadratic with terms like (u · ∇)u and
the dispersion is in some sense weak. Here will focus on positive values of α’s. Note however, that the
dynamics for negative α’s is quite di�erent with the formation of shocks (see [81], [170], [159]).

Although equation (2.1.1) is not completely integrable outside of the cases α = 1 and 2, it enjoys a
hamiltonian structure. In particular, the mass

M(u)(t) :=

∫
u2(t, x)dx,

and the energy

E(u)(t) :=
1

2

∫ (
|D|

α
2 u(t, x)

)2
dx− 1

3

∫
u3(t, x)dx.

are formally preserved by the �ow of (2.1.1).
Moreover, we have the scaling-translation invariance of (2.1.1). Let u be a solution of (2.1.1) then

∀x0 ∈ R, c > 0, uc(t, x) = cu(c
1+α
α t, c

1
α (x− x0)),

is also a solution. A straightforward computation shows that ‖uc‖Ḣs = cs+α−
1
2 ‖u‖Ḣs . In particular,

equation (2.1.1) is mass-critical for α = 1
2 and energy-critical for α = 1

3 .
In this paper, we focus on the mass-subcritical case α ∈

(
1
2 , 2
)
. We assume that the initial value

problem associated to (2.1.1) is globally well-posed in the energy space H
α
2 (R) in the whole subcritical

range 1
2 < α < 2, in the sense that for all u0 ∈ H

α
2 (R) and T > 0, there exists a solution u ∈ C([0, T ] :

H
α
2 (R)) of (2.1.1) satisfying u(0, ·) = u0 which is unique in some class XT ⊂ C([0, T ] : H

α
2 (R)), and

that the �ow : u0 ∈ H
α
2 (R) 7→ u ∈ C([0, T ] : H

α
2 (R)) is continuous. Such a result has been proved by

Herr, Ionescu, Kenig and Koch in [78] in the range 1 6 α < 2, extending a previous result of Ionescu and
Kenig for the BO equation [82]. For weaker dispersion, the global well-posedness in the energy space has
been conjectured through numerical simulations by Klein and Saut [101] in the whole range 1

2 < α < 1.
Progress has been made in this direction: recently Molinet, Pilod and Vento proved in [148] global well-
posedness in H

α
2 (R) for 6

7 < α < 1 (see also Linares, Pilod, Saut [115] for former results). Note however,
that the problem is still open in the case 1

2 < α < 6
7 .
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Finally, we mention some other interesting results concerning the fractional KdV equation with pos-
itive dispersion α. In [47], Ehrnström and Wang proved long time existence for small initial data. Fonseca,
Linares and Ponce in [58] proved some persistence results in weighted Sobolev spaces. Kenig, Ponce and
Vega [95], Kenig, Ponce, Pilod and Vega in [92] and Riano in [167] proved some unique continuation re-
sults, while Mendez in [138], [137] proved propagation of regularity results. We also refer to Linares, Pilod
and Saut [115] and Klein and Saut [101] for other results, conjectures and numerical simulations regarding
the fractional KdV equation.

2.1.2 Solitary wave solutions

A fundamental property of this equation is the existence of solitary wave solutions of the form

u(t, x) = Qc(x− ct) with Qc(x) −→
|x|→+∞

0,

for c > 0, where Qc(x) = cQ(c
1
αx) and Q is solution of the non-local ODE

|D|αQ+Q−Q2 = 0. (2.1.2)

In other words, Qc satis�es

|D|αQc + cQc −Q2
c = 0. (2.1.3)

For some particular values of α the solution of (2.1.2) is explicit and unique (up to translations). For α = 2,
QKdV (x) =

3

2
cosh−2

(x
2

)
, while for α = 1, QBO(x) = 4(1 + x2)−1. �e uniqueness result for BO is

non-trivial and was proved by Benjamin [14] and Amick and Toland [8] by combining complex analysis
techniques with properties of the harmonic extension of the Hilbert transform.

For the other values of α, there does not exist, as far as we know, any explicit formulation of Q.
However, the existence of solutions of (2.1.2) minimising the functional

Jα(u) =

(∫
||D|

α
2 u|2

) 1
2α
(∫
|u|2
) α−1

2α+1

∫
|u|3

. (2.1.4)

is well-known since the work of Weinstein in [189] and Albert, Bona and Saut [4]. Such solutions are called
ground states solutions of (2.1.2). �ey decay polynomially at in�nity (see [91]), this property being related
to the singularity at the origin of the symbol |ξ|α. Moreover, their uniqueness is delicate and was proved
by Frank and Lenzmann in [60] relying on the non-degeneracy of the kernel of the linearized operator
associated to Q. Below, we summarize the properties of the ground states of (2.1.2).

�eorem 2.1.1 ( [4, 60, 91, 189]). Let α ∈
(

1
3 , 2
)
. �ere exists Q ∈ H

α
2 (R) ∩ C∞(R) such that

1. (Existence) �e function Q solves (2.1.2) and Q = Q(|x|) > 0 is even, positive and strictly decreasing in
|x|. Moreover, the function Q is a minimizer of Jα in the sense that

Jα(Q) = inf
u∈H

α
2 (R)

Jα(u).

2. (Decay) �e function Q veri�es the following decay estimate

1

C(1 + |x|)k+1+α
6 Q(k)(x) 6

C

(1 + |x|)k+1+α
, k = 0, 1, 2, (2.1.5)

for some C > 0.
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3. (Uniqueness) �e even ground state solution Q = Q(|x|) > 0 of (2.1.2) is unique. Furthermore, every
optimizer v ∈ H

α
2 (R) for the Gagliardo-Nirenberg problem (2.1.4) is of the form v = βQ(γ(· + y))

with some β ∈ C, β 6= 0, γ > 0 and y ∈ R.

4. (Linearized operator) Let L be the unbounded operator de�ned on L2(R) by

Lu = |D|αu+ u− 2Qu.

�en, the continuous spectrum of L is [1,+∞), L has one negative eigenvalue µ0, associated to an even
eigenfunction W0 > 0, and kerL = span {Q′}.

Remark 2.1.2. �e uniqueness problem for the solutions of (2.1.2) which are not ground states is still an
open question when α 6= 1.

�ese solitary waves are orbitally stable under the �ow of (2.1.1) (see Linares, Pilod and Saut [116]
and [9, 10] for other proofs) in the mass sub-critical range α ∈

(
1
2 , 2
)
. �ey were proven to be linearly

unstable in the the mass super-critical range α ∈
(

1
3 ,

1
2

)
(see [9]).

Sometimes, we also call these solutions solitons even though they are not known to have elastic
interactions outside of the integrable case α = 1.

2.1.3 N-soliton solution

An important conjecture for nonlinear dispersive equations is to prove the soliton resolution property,
which states that arbitrary initial data eventually resolve over time into a �nite sum of solitary waves and an
oscillatory remainder of essentially linear type. It has been proved in the KdV case for su�ciently smooth
and decaying initial data by using the complete integrable structure (see [46]). Note however that despite
some recent progress (see [191], [179]), it is still an open problem for the Benjamin-Ono equation on the
line.

For KdV type equations, we are still far from a complete understanding of this phenomenon. In
this direction, an important question is to construct solutions behaving like a superposition of N solitary
waves at in�nity. Indeed, such objects are expected to be universal a�ractors in the region x > 0 for
any smooth and decaying solutions at in�nity. �ese solutions, also called N -soliton solutions by abuse
of language, were �rst constructed by Martel in [120] for the sub-critical and critical gKdV equations by
adapting the construction by Merle in [139] of solutions blowing up at k given points for the critical non-
linear Schrödinger equation to the KdV se�ing, and by relying on the energy methods by Martel, Merle
and Tsai [130]. �is construction was extended to the super-critical gKdV equations by Côte, Martel and
Merle [39] (see also Combet [34]).

For the fractional KdV equations, outside of the case α = 1, no result concerning construction ofN -
solitary wave solutions at in�nity seems to be known. Of course, in the case α = 1, theN -soliton solutions
of the Benjamin-Ono equation are explicit by using inverse sca�ering method [113], [46], [20], [153], [136].
�eseN -solitons were also proved to be orbitally stable by Neves and Lopes [155] and Gustafson, Takaoka
and Tsai [73] and even asymptotically stable by Kenig and Martel [90].

�e main result of this paper states the existence of such N -soliton solutions for any given set of
velocities 0 < c1 < c2 < · · · < cN .

�eorem 2.1.3. We assume α ∈
(

1
2 , 2
)
. Let N ∈ N, 0 < c1 < · · · < cN < +∞. �en, there exist some

constants T0 > 0, C0 > 0, N functions ρ1, · · · , ρN ∈ C1([T0,+∞)) and U ∈ C0([T0,+∞) : H
α
2 (R))

solution of (2.1.1) such that, for all t > T0,∥∥∥∥∥U(t, ·)−
N∑
j=1

Qcj (· − ρj(t))

∥∥∥∥∥
H
α
2

6
C0

t
α
2

, (2.1.6)

|ρj(t)− cjt| 6 t1−
α
4 and |ρ′j(t)− cj | 6

C0

t
α
2

, (2.1.7)

for all j ∈ {1, · · · , N}.
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Remark 2.1.4. Due to the polynomial decay of the error in (2.1.7), we are in the case of strong interactions,
and thus the asymptotic of ρj(t) in (2.1.6) may be more complicated than just cjt. Related to this strong
interactions phenomenon, the uniqueness of these N -soliton solutions is an interesting open problem.

Remark 2.1.5. �e construction in the case α ∈
(

1
2 ,

6
7

]
is conditional to the well-posedness of the equation

in the energy space, which is still an open problem for this range of α’s.

Similar construction of N -soliton-like solutions have already been performed for other nonlinear
dispersive equations. Outside of the gKdV equations commented above, we refer to Martel and Merle
[124] and Côte, Martel and Merle [39] for the non-linear Schrödinger (NLS) equation, and more recently to
Ferriere for the logarithmic-NLS equation [56]. We also refer to the works of Martel and Merle [127] and
Jendrej [86] for the wave equation, to the works of Côte-Muñoz [41], Bellazzini, Ghimenti, Le Coz [13] and
Côte, Martel [38] for the Klein-Gordon equation, to the work Rousset-Tzvetkov [142] for the water-waves
equation, and to the work of Valet [182] for the Zakharov-Kuznetsov equation.

A di�erent method of construction of multi-solitons, based on the �xed point argument of Merle
in [139], has been introduced by Le Coz, Li and Tsai in [114] for the NLS equation. �is strategy has also
been used by Chen for the wave equation [31] and by Van Tin for the derivative NLS [183].

Recently Jendrej, Kowalczyk and Lawrie introduced in [84] a new version of the Liapunov-Schmidt
reduction in the se�ing of dispersive equations to derive a complete classi�cation of all kink-antikink pairs
in the strongly interacting regime for the classical nonlinear scalar �eld models on the real line.

Finally, let us observe that the result of �eorem 2.1.3 would be the �rst step to study the collision
of multi-soliton solutions in the cases α ∈

(
1
2 , 2
)
, α 6= 1. We refer to the works of Martel and Merle [125]

and [126] for the study of the inelastic collision of two solitons of the quartic KdV equation.

2.1.4 Outline of proof of �eorem 2.1.3

�e proof of �eorem 2.1.3 follows the strategy of [139], [120], [130]. A�er �xing a sequence
of time (Sn) ↗ +∞, one considers the sequence (un) of solutions to (2.1.1) evolving from the ini-

tial data
N∑
j=1

Qcj (· − cjSn) at time Sn. As long as the solution remains su�ciently close to the sum

of N solitary waves, one introduces modulated translation parameters (ρj,n(t))Nj=1 allowing to satisfy
suitable orthogonality conditions. �e goal is to obtain backwards uniform estimates for the di�erence

un(t) −
N∑
j=1

Qcj (· − ρj(t)) on some time interval [T0, Sn], for some T0 independent of n. �e N -soliton

is then obtained by le�ing n → +∞ and using a compactness argument. Moreover, it is worth to ob-
serve that the uniform estimate relies on monotonicity properties for suitable portions of the mass and the
energy of the solution.

Compared to the previous constructions, we have to deal here with two major new di�culties. Firstly,
due to the singularity at the origin of the symbol |ξ|α related to the non-local operator |D|α, the solitary
waves have only polynomial decay1 of order (1 + |x|)−(1+α). As a consequence the uniform estimates on
the parameters ρj,n(t) are only polynomial and thus cannot be integrated directly. Relying on a topological
argument introduced in [39], we need then to adapt carefully the initial data of the translation parameters
ρj,n at time Sn to be able to close the bootstrap estimates.

Secondly, observe that the monotonicity techniques introduced by Martel and Merle for gKdV are
local in space, and are therefore tailored for di�erential but not integral (nonlocal) equations. To adapt these
techniques to the fKdV equations, one need to use suitable weighted commutator estimates (see Lemma
2.3.1). �ose estimates were introduced in the symmetric case by Kenig and Martel [90] in the case α = 1
and Kenig, Martel and Robbiano [91] for the general case 0 < α < 2 (see also [133] for an application
to the critical modi�ed Benjamin-Ono equation). Note however that to derive the monotonicity property
of the energy, one needs a non-symmetric version of these estimates (see estimates (2.3.6)-(2.3.7)), whose

1�e decay of the solitary waves of gKdV is always exponential.
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proof is based on pseudo-di�erential calculus and follows the one of Kenig, Martel and Robbiano for the
symmetric case.

�e paper is organised as follows: in Section 2.2, we modulate the geometrical translation parameters
for a solution close to N solitary waves, set up the bootstrap se�ing and close the construction of the N -
soliton solution a�er assuming the main bootstrap estimate. In Section 2.3, we state several weighted
estimates whose proofs are given in the appendices. �ese weighted estimates are useful to derive the
monotonicity properties and to prove the bootstrap estimate in Section 2.4.

2.1.5 Notation

1. From now on, C will denote a positive constant changing from line to line and independent of the
di�erent parameters. We also denote by C∗ a positive constant changing from line to line and de-
pending only on the parameters {c1, · · · , cN}.

2. Unless stated otherwise, all the integrals will be over R with respect to the space variable.

3. For x ∈ RN , we recall the de�nition of the Japanese brackets 〈x〉 :=
√

1 + |x|2.

4. We denote by ‖f‖Lp :=

(∫
|f |p

) 1
p

and ‖f‖Hs := ‖〈·〉
s
2F(f)(·)‖L2 , where F(f) is the Fourier

transform of f . Finally, S(R) denotes the Schwartz space of real-valued functions.

5. We �x 0 < c1 < · · · < cN and we set β = 1
2 min(c1, c2 − c1, · · · , cN − cN−1).

2.2 Construction of the asymptotic N-soliton

Notation 2.2.1. 1. For L > 0 and N ∈ N, we de�ne

RNL = {(yj)Nj=1 ∈ RN : yj − yj−1 > L, ∀j ∈ {2, · · · , N}}. (2.2.1)

2. For Y = (Yj)
N
j=1 ∈ RNL , we denote

RY (x) =
N∑
j=1

RY,j(x) :=
N∑
j=1

Qcj (x− Yj). (2.2.2)

3. Let M = (mi,j)
N
i,j=1 ∈MN (R), be a N ×N matrix.

2.2.1 Modulation of the geometrical parameters

Proposition 2.2.2 (Modulation). �ere exist L1, γ1, T1 > 0 such that the following is true. Assume that u is
a solution of (2.1.1) satisfying that for L > L1, 0 < γ < γ1, S > t∗ > T1,

sup
t∗6t6S

 inf
(Yj)Nj=1∈RNL

∥∥∥∥u(t, ·)−
N∑
j=1

Qcj (· − Yj)
∥∥∥∥
H
α
2

 < γ. (2.2.3)

�en, there exist N unique C1 functions ρj : [t∗, S] −→ R, j ∈ {1, ..., N}, such that

η(t, x) = u(t, x)−R(t, x), (2.2.4)

where

R(t, x) =

N∑
j=1

Rj(t, x) :=

N∑
j=1

Qcj (x− ρj(t)), (2.2.5)
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satis�es the following orthogonality conditions∫
(∂xRj)η = 0, ∀j ∈ {1, ..., N}, ∀t ∈ [t∗, Sn]. (2.2.6)

Moreover, for all t ∈ [t∗, S]

‖η(t, ·)‖
H
α
2
6 Cγ, (2.2.7)

inf
j∈{1,...,N−1}

(ρj+1(t)− ρj(t)) >
L

2
. (2.2.8)

Remark 2.2.3. A solution u satisfying (2.2.3) lives for all time t ∈ [t∗, S] in the tube

Tγ,L :=

{
v ∈ H

α
2 (R) : inf

Yj>Yj−1+L

∥∥∥∥v −RY ∥∥∥∥
H
α
2

< γ

}
. (2.2.9)

�e proof of Proposition 2.2.2 is an application of the implicit function theorem to the functional

Φ : Tγ,L × RNL → RN (2.2.10)

(v, Y ) 7→
(∫

(v −RY )Q′cj (· − Yj)
)N
j=1

.

Note that a direct application of the implicit function theorem at the point (RY , Y ) for Y ∈ RNL would
imply

∀Y ∈ RNL , ∃εY > 0, ∃! (ρj)
N
j=1 ∈ C

1(Tγ,L ∩B(RY , εY )) : R), (2.2.11)

such that Φ(v, (ρj(v))Nj=1) = 0 for v ∈ B(RY , εY ). �is would not be enough to conclude the proof of
(2.2.6) due to the lack of control of εu(t) uniformly in [t∗, S]. Indeed, an application of (2.2.11) to a solu-

tion u satisfying u(S, ·) =
N∑
j=1

Qcj (· − ρin
j,n) for (ρin

j,n) ∈ RNL , and a continuity argument would provide

the existence of ε > 0 such that u(t, ·) ∈ B := B(

N∑
j=1

Qcj (· − ρin
j,n), ε) for all t ∈ (t1, S], where t1 is the

�rst time before S with u(t1, ·) /∈ B. Nevertheless, nothing would guarantee that u(t1, ·) belongs to a ball
B(RY , εY ) for some Y ∈ RNL .

u(t, .) Tγ,L

RY

B(RY , εY )

B(RY ′ , εY ′)

To bypass this di�culty, we will use the following quantitative version of the implicit function theo-
rem (see section 2.2 in [32]). We refer to [37] Lemma 3, [83] Lemme 3.3, [74] Proposition 3 , [141] Proposition
3.1 for applications of this theorem in a similar context.

�eorem 2.2.4. Let X,Y and Z be Banach spaces, x0 ∈ X, y0 ∈ Y , γ, δ > 0 and Φ : B(x0, γ) ×
B(y0, δ) −→ Z be continuous in x, continuously di�erentiable in y, satisfy Φ(x0, y0) = 0, M0 :=
dyΦ(x0, y0) has a bounded inverse in L(Z, Y ). Assume moreover that

‖M0 − dyΦ(x, y)‖L(Y,Z) 6
1

3
‖M−1

0 ‖
−1
L(Z,Y ), ∀x ∈ B(x0, γ), y ∈ B(y0, δ), (2.2.12)
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‖Φ(x, y0)‖Z 6
δ

3
‖M−1

0 ‖
−1
L(Z,Y ), ∀x ∈ B(x0, γ). (2.2.13)

�en there exists y ∈ C1(B(x0, γ) : B(y0, δ)) such that for x ∈ B(x0, γ), y(x) is the unique solution of the
equation Φ(x, y(x)) = 0 in B(x0, γ).

Before giving the proof of Proposition 2.2.2, we need the following lemma.

Lemma 2.2.5. �ere exist C > 0, L2 > 0, such that for all L > L2, and all Y = (Yj)
N
j=1 ∈ RNL we have∣∣∣∣ ∫ (∂xRY,j)(∂xRY,k)

∣∣∣∣ 6 C

1 + L2+α
, j 6= k, (2.2.14)

with RY,j de�ned in (2.2.2) .
Moreover, let (ρj)

N
j=1 ∈ C1([t∗, S] : R) satisfying ρj+1 − ρj > L

2 for all j, k ∈ {1, · · · , N − 1}, with
j 6= k, then ∣∣∣∣ ∫ (∂xRj)(∂xRk)

∣∣∣∣ 6 C

1 + L2+α
, (2.2.15)∣∣∣∣ ∫ Rj(∂

2
xRk)

∣∣∣∣ 6 C

1 + L1+α
, (2.2.16)∣∣∣∣ ∫ RjRk(∂

2
xRl)

∣∣∣∣ 6 C

1 + L1+α
, (2.2.17)

with Rj de�ned in (2.2.5).
Furthermore, if the functions (ρj)

N
j=1 satisfy |ρj+1(t)− ρj(t)| > βt, with β > 0, then∣∣∣∣ ∫ (∂xRj)(∂xRk)

∣∣∣∣ 6 C

(βt)2+α
, (2.2.18)∣∣∣∣ ∫ Rj(∂

2
xRk)

∣∣∣∣ 6 C

(βt)1+α
. (2.2.19)∣∣∣∣ ∫ RjRk(∂

2
xRl)

∣∣∣∣ 6 C

(βt)1+α
. (2.2.20)

Proof of Lemma 2.2.5 . By symmetry, we can suppose j < k. Let Ω := {x ∈ R : x <
Yj+Yk

2 }. By (2.1.5)
and Yk − Yj > L, we deduce that∣∣∣∣ ∫

Ω
(∂xRY,j)(∂xRY,k)

∣∣∣∣ 6 C

1 +
(
Yk −

Yj+Yk
2

)2+α

∫
Ω
|∂xRY,j | 6

C

1 + L2+α
.

On the other hand, by (2.1.5) and Yj − Yk < −L, we get on Ωc∣∣∣∣ ∫
Ωc

(∂xRY,j)(∂xRY,k)

∣∣∣∣ 6 C

1 +
(
Yj+Yk

2 − Yj
)2+α

∫
Ωc
|∂xRY,k| 6

C

1 + L2+α
,

which concludes (2.2.14). To prove the other estimates, we use the same argument on Ω := {x ∈ R : x <
ρj+ρk

2 }with the estimates (2.1.5), ρj+1−ρj > L
2 for (2.2.15), (2.2.16), (2.2.17) and (2.1.5),|ρj+1(t)−ρj(t)| >

βt for (2.2.18), (2.2.19), (2.2.20).

Proof of Proposition 2.2.2. We decompose the proof in two steps. First, by using �eorem 2.2.4, we show
that we can �nd N unique functions ρj continuous on Tγ,L, de�ned in (2.2.9), satisfying (2.2.6) - (2.2.8). To
obtain the regularity of the functions, we use the Cauchy-Lipschitz theorem.
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First step : existence of the functions ρj . We recall the de�nition of RNL and RY given respectively in (2.2.1)
and (2.2.2). First, we check that the functional Φ de�ned in (2.2.10) satis�es the hypotheses of �eorem
2.2.4. It is clear that, for all Y ∈ RNL ,

Φ (RY , Y ) = 0.

Let us de�ne

M0 = M0(RY , Y ) := dY Φ (RY , Y ) = A+B,

where

A :=



∫
(Q′c1)2 0 · · · 0

0
∫

(Q′c2)2 0 · · · 0
... . . . ...
... . . . ...
0 . . . 0

∫
(Q′cN )2

 ,

and

B = B(Y ) :=


0 Q1,2 · · · Q1,N

Q2,1 0 Q2,3 · · · Q2,N
... . . . ...
... . . . ...
QN,1 . . . QN,N−1 0

 ,

with Qj,k :=

∫
∂xRY,j∂xRY,k . �e matrix A is invertible, and by (2.2.14), we get for all L > L2

|Qj,k| 6
C

1 + L2+α
.

�en for L > L3, with L3 big enough, M0 is invertible. Moreover the matrixA is independent of Y ∈ RNL ,
and lim

L→∞
‖B‖∞ → 0. �en, there exists κ independent of L > 1 such that for all Y ∈ RNL

‖M0 (RY , Y )−1 ‖∞ = ‖A−1(Id+B(Y )A−1)−1‖∞ 6 ‖A−1‖∞
∞∑
n=0

[
C
‖A−1‖∞
1 + L2+α

]n
6 κ.

�us, to verify the conditions (2.2.12),(2.2.13), since ‖ · ‖L(Rn,RNL ) 6 ‖ · ‖∞, it su�ces to prove that

‖M0 − dY Φ(v, Z)‖∞ 6
1

3
κ−1, for v ∈ B(RY , γ), Z ∈ B(Y,C1γ), (2.2.21)

‖Φ(v, Y )‖∞ 6
C1γ

3
κ−1, for v ∈ B(RY , γ), (2.2.22)

for a positive constantC1 to be chosen later. First, we show (2.2.22). Let j ∈ {1, ..., N}, by Cauchy-Schwarz
and since v ∈ B(RY , γ)

|Φj(v, Y )| 6
∫
|v −RY ||∂xRY,j | 6 ‖v −RY ‖L2‖∂xRY,j‖L2 6 γ‖∂xQcj‖L2 ,

which implies (2.2.22) by choosing C1 = 3κ sup
j
‖∂xQcj‖L2 . Since the constant C1 does not play any role

in the rest of the paper, we write C instead of C1.
Now, let us verify (2.2.21). First we de�ne

Q∗j,k(Z, Y ) :=

∫
((∂xRZ,j)(∂xRZ,k)− (∂xRY,j)(∂xRY,k)) ,
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with Z = (Zj)
N
j=1, Y = (Yj)

N
j=1 ∈ RNL , and

Pk(v, Z) =

∫
(v(x)−RZ(x)) ∂2

xRY,k.

with Z = (zj) ∈ RNL , v ∈ B(RY , γ). We have

‖M0 − dY Φ(v, Z)‖∞ =

∥∥∥∥∥

P1(v, Z) Q∗2,1(Z, Y ) · · · Q∗N,1(Z, Y )

... . . . ...

... . . . ...
Q∗1,N (Z, Y ) . . . Q∗N−1,N (Z, Y ) PN (v, Z)


∥∥∥∥∥
∞

.

For j ∈ {1, · · · , N}, by Cauchy-Schwarz since v ∈ B(RY , γ)

|Pj(v, Z)| 6
∫
|v −RZ ||∂2

xRY,j | 6 ‖v −RZ‖L2‖∂2
xRY,j‖L2 6 Cγ. (2.2.23)

For j, k ∈ {1, · · · , N}, j 6= k, by (2.2.14)

|Q∗j,k(Z, Y )| 6 C

1 + L2+α
. (2.2.24)

Gathering (2.2.23) and (2.2.24), we get

‖M0 −DY Φ(v, Y )‖∞ 6 Cγ +
C

1 + L2+α
6

1

3
κ−1.

for γ < γ2 small enough and L > L4 big enough.
�en for L > max(L2, L3, L4) and γ < γ2 we deduce from �eorem 2.2.4 the existence and unique-

ness of (ρj)j∈{1,...,N} in C1(B(RY , γ) : B(Y,Cγ)) satisfying (2.2.6). Moreover, since γ can be chosen
independently of Y ∈ RNL , we can extend by uniqueness (ρj)j∈{1,...,N} to the whole tube Tγ,L de�ned in
(2.2.9). Furthermore, for all v ∈ Tγ,L, there exists Y = (Yj) ∈ RNL such that (ρj(v))j∈{1,...,N} ∈ B(Y,Cγ).
�erefore

|ρj+1(v)− ρj(v)| > |Yj+1 − Yj | − |ρj+1(v)− Yj+1| − |ρj(v)− Yj | > L− 2Cγ >
L

2
. (2.2.25)

Now, by abuse of notation, we de�ne ρj(t) := ρj(u(t, ·)). �en it is clear that ρj is C0([t∗, S] : R) since
u(t, ·) ∈ C0([t∗, S] : H

α
2 (R)).

Let us prove the estimate (2.2.7). By construction of (ρj(t))
N
j=1, we have that for all t ∈ [t∗, S], there

exists (Yj(t))
N
j=1 ∈ RNL such that

|ρj(t)− Yj(t)| 6 Cγ,

‖u(t, ·)−RY (t)‖H α
2
6 γ.

By the triangle inequality and mean value theorem, we deduce

‖η(t, ·)‖
H
α
2
6 ‖u(t, ·)−RY (t)‖H α

2
+ ‖RY (t) −R‖H α

2

6 γ +
N∑
j=1

|ρj(t)− Yj(t)|‖∂x〈D〉
α
2Q‖∞

∫
|〈D〉

α
2 (RY (t),j −Rj)|

6 Cγ.

�is �nishes the proof of (2.2.7). Note also that (2.2.8) is a direct consequence of (2.2.25).
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Second step : regularity of the functions ρj . Assume that the N functions ρj are C1([t∗, S] : R). First, we
compute the equation for η using (2.1.1) and (2.2.4)

∂tη = ∂x
(
G(η) + |D|αR−R2

)
+

∑
06k6N

ρ′k∂xRk,

where
G(η) := |D|αη − 2Rη − η2.

Moreover, since
R2 =

∑
16k6N

R2
k + 2

∑
16l<m6N

RlRm,

this implies by using (2.1.3) that

∂tη = ∂x

G(η)−
∑

16k6N

ckRk − 2
∑

16l<m6N

RlRm

+
∑

16k6N

ρ′k∂xRk. (2.2.26)

Furthermore, we obtain di�erentiating in time the relation
∫

(∂xRj) η = 0

0 =
d

dt

∫
(∂xRj) η = −ρ′j

∫ (
∂2
xRj

)
η +

∫
(∂xRj) ∂tη. (2.2.27)

Replacing (2.2.26) in (2.2.27), and integrating by parts, we obtain that

0 = −
∫ (

∂2
xRj

)G(η)−
∑

16k6N

ckRk − 2
∑

16l<m6N

RlRm

+
∑

16k6N

ρ′k

∫
(∂xRk)(∂xRj)

− ρ′j
∫ (

∂2
xRj

)
η. (2.2.28)

Finally, we deduce that, for all j ∈ {1, ..., N},∑
16k6N

ρ′k

∫
(∂xRk)(∂xRj)−ρ′j

∫ (
∂2
xRj

)
η

=

∫ (
∂2
xRj

)G(η)−
∑

16k6N

ckRk − 2
∑

16l<m6N

RlRm

 .

We can rewrite this ODE system in the matrix form

AY ′ = B, (2.2.29)

where Y := (ρj)
N
j=1 and A := A0 +Aη where

Aη :=



−
∫ (

∂2
xR1

)
η

∫
(∂xR1)(∂xR2) . . .

∫
(∂xR1)(∂xRN )∫

(∂xR2)(∂xR1) −
∫ (

∂2
xR2

)
η . . .

∫
(∂xR2)(∂xRN )

...
...∫

(∂xRN )(∂xR1) . . . . . . −
∫ (

∂2
xRN

)
η


,
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A0 :=



∫
(∂xQc1)2 0 . . . 0

0
. . . 0

...
...

0 . . . . . .

∫
(∂xQcN )2


,

B :=

∫ (∂2
xRj

)G(η)−
∑

16k6N

ckRk − 2
∑

16l<m6N

RlRm


16j6N

.

In order to prove thatA is invertible, it su�ces to prove thatA0 is invertible and ‖Aη‖∞ can be taken small
enough. By using the Cauchy-Schwarz inequality and (2.2.7), we have∣∣∣∣ ∫ (∂2

xRj
)
η

∣∣∣∣ 6 Cγ.

By (2.2.15), we obtain ∣∣∣∣ ∫ (∂xRk)(∂xRj)

∣∣∣∣ 6 C

1 + L2+α
, k 6= j.

Taking L > L5 big enough, and γ < γ3 small enough, the matrixA is invertible and we can rewrite (2.2.29)
as

Y ′ = A−1B.

Now, we have to prove that A−1B is globally Lipschitz. Let us begin with the term
∫ (

∂2
xR1

)
η. Let

(ρj)
N
j=1, (ρ̃j)

N
j=1 ∈ RN , by the Plancherel identity and the Cauchy-Schwarz inequality

∣∣∣∣ ∫ ∂2
x (Qc1(x− ρ1))

u(t, x)−
N∑
j=1

Qcj (x− ρj)

− ∂2
x (Qc1(x− ρ̃1))

u(t, x)−
N∑
j=1

Qcj (x− ρ̃j)

 dx

∣∣∣∣
6
∫
|ξ|2|‘Qc1 ||u|∣∣∣∣eiξρ1 − eiξρ̃1∣∣∣∣dξ +

N∑
j=1

∫
|ξ|2|‘Qc1 ||‘Qcj |∣∣∣∣eiξ(ρ1+ρj) − eiξ(ρ̃1+ρ̂j)

∣∣∣∣dξ
6 |ρ1 − ρ̃1|

∫
|ξ|3|‘Qc1 ||û|dξ +

|ρ1 − ρ̃1|+
N∑
j=1

|ρj − ρ̃j |

 N∑
j=1

∫
|ξ|3|‘Qc1 ||‘Qcj |dξ

6 C

N∑
j=1

|ρj − ρ̃j |‖∂3
xQc1‖L2

(
‖u0‖L2 + ‖Qcj‖L2

)
,

where we have used for the last inequality that ‖u(t, ·)‖L2 = ‖u0‖L2 . Using the same argument for the
other term in A and B, we get A−1B is globally Lipschitz. �erefore, we obtain N unique C1 functions
ρ̃j : [t∗, S] −→ R satisfying (2.2.27) with ρ̃j(S) = ρj(S) as initial condition, where (ρj)

N
j=1 is given by the

�rst step. Since (2.2.6) is veri�ed at time S with ρj(S), we deduce that for all t ∈ [t∗, S],∫
(∂xQcj (x− ρ̃j(t)))(u−Qcj (x− ρ̃j(t))) = 0.

By the uniqueness statement of the �rst step, we conclude that the N functions ρj , constructed in the �rst
step, are C1 functions. �is concludes the proof of Proposition 2.2.2 by taking γ < γ1 = min(γ2, γ3) and
L > L1 = max(L2, L3, L4, L5) .
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2.2.2 Bootstrap setting

Let (Sn)+∞
n=0 be a non-decreasing sequence of time going to in�nity, with Sn > T0, for T0 > 1 large

enough to be chosen later. We de�ne by un the solution of (2.1.1) satisfying

un(Sn, ·) =
N∑
j=1

Qcj (· − ρin
j,n),

with

ρin
j,n ∈ Ij,n :=

[
cjSn − S

1−α
4

n , cjSn + S
1−α

4
n

]
, for all j ∈ {1, · · · , N}, (2.2.30)

to be �xed later.
For t 6 Sn, as long as the solution un exists and satis�es (2.2.3) for suitable 0 < γ0 < γ1 and

L0 > L1 (which will also be �xed later), we consider the C1 functions (ρj,n)Nj=1 provided by Proposition
2.2.2 and satisfying (2.2.4)-(2.2.8). At Sn, the decomposition satis�es

η(Sn) = 0, ρj,n(Sn) = ρinj,n, j = 1, · · · , N. (2.2.31)

We introduce the bootstrap estimates at t 6 Sn, assuming that un satis�es (2.2.3):

‖η(t, x)‖
H
α
2
< γ0, (2.2.32)

sup
j∈{1,··· ,N}

|ρj,n(t)− cjt| 6 t1−
α
4 , (2.2.33)

with η de�ned in (2.2.4).
For T0 > 1, to be chosen later, we de�ne

t∗n = inf
{
T0 < t̃ 6 Sn : ∃εn > 0 such that (2.2.32)− (2.2.33) holds for all t ∈ [t̃, Sn + εn]

}
.

Note by (2.2.31) and by continuity that there exists εn > 0 such that (2.2.32) holds on [Sn− εn, Sn +
εn]. Moreover, if ρj,n ∈ I̊j,n for all j ∈ {1, · · · , N}, then by possibly taking εn smaller, (2.2.33) holds also
on [Sn − ε, Sn + ε] so that t∗n is well-de�ned. In the case where ρj0,n ∈ ∂Ij0,n for some j0 ∈ {1, · · · , N},
it follows from the transversality property (see (2.2.40) below) that t∗n = Sn.

�e main result of this section states that there exists at least one choice of (ρinj,n)Nj=1 ∼ (cjSn)Nj=1

such that t∗n = T0. In other words, the bootstrap estimates (2.2.32)-(2.2.33) are valid up to a time T0

independent of n.

Proposition 2.2.6. Let α ∈
(

1
2 , 2
)
. �ere exist T0 > 1, C0 > 1, γ0 > 0 satisfying C0

T
α
2
0

< γ0
2 and L0 :=

βT0
2 > L1 such that the following is true. For all n ∈ N, there exists (ρinj,n)Nj=1 ∈ Ij,n, with Ij,n de�ned in

(2.2.30), satisfying

|ρinj,n − cjSn| 6 S
1−α

4
n , j ∈ {1, · · · , N}, (2.2.34)

and t∗n = T0

Subsections 2.2.3 and 2.2.4 are dedicated to the proof of Proposition 2.2.6. In every step of the proof,
T0 will be taken large enough and γ0 > 0 small enough independently of n.
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2.2.3 Modulation estimates

Proposition 2.2.7. For all t ∈ [t∗n, Sn], and for all ρin
j,n ∈ Ij,n, we have

inf
j∈{1,··· ,N}

|ρj+1,n(t)− ρj,n(t)| > βt, (2.2.35)

|ρ′j,n(t)− cj | 6 C∗

(
1

(βt)α+1 +

(∫
1

(1 + |x− ρj,n(t)|)1+α
η2

) 1
2

+ ‖η‖2L2

)
. (2.2.36)

Proof. By the triangle inequality and (2.2.33), for t large enough, we deduce that

|ρj+1,n(t)− ρj,n(t)| > (cj+1 − cj)t− |ρj+1,n − cj+1t| − |ρj,n − cjt| > 2βt− 2t1−
α
4 > βt.

Now, we prove (2.2.36). We deduce from (2.2.28) that

(
ρ′j,n − cj

) ∫
(∂xRj)

2 =

∫ (
∂2
xRj

)G(η)−
∑

16k 6=j6N
ckRk − 2

∑
16l<m6N

RlRm

 (2.2.37)

−
∑

16k 6=j6N
ρ′k,n

∫
(∂xRk)(∂xRj) + ρ′j,n

∫ (
∂2
xRj

)
η

for all j ∈ {1, ..., N}. By using the fact the operator |D|α is self adjoint and the Cauchy-Schwarz inequality,
we deduce ∣∣∣∣ ∫ (∂2

xRj
)
G(η)

∣∣∣∣+

∣∣∣∣ ∫ (∂2
xRj

)
η

∣∣∣∣ 6 C
(
‖η‖L2 + ‖η‖2L2

)
.

Moreover, by (2.2.18), (2.2.19), (2.2.20), and (2.2.35) we get

∑
k 6=j

(
ck

∣∣∣∣ ∫ (∂2
xRj

)
Rk

∣∣∣∣+ ρ′j

∣∣∣∣ ∫ ∂xRk∂xRj

∣∣∣∣)+ 2
∑

16l<m6N

∣∣∣∣ ∫ (∂2
xRj

)
RlRm

∣∣∣∣ 6 C

(βt)1+α .

Gathering the two former estimates, we deduce that for all j ∈ {1, · · · , N},

|ρ′j,n − cj |
∫

(∂xRj)
2 6C

γ0(1 + |ρ′j,n|) +
∑

16k 6=j6N

1 + |ρ′k,n|
(βT0)1+α

 ,

which implies a�er by summing over j,
N∑
k=1

|ρ′j,n| 6 C∗.

Finally, by reinjecting the former estimate in (2.2.37), we conclude that for all j ∈ {1, · · · , N}

|ρ′j,n(t)− cj | 6 C∗

(
1

(βt)α+1 +

(∫
1

(1 + |x− ρj,n(t)|)1+α
η2

) 1
2

+ ‖η‖2L2

)
,

which yields (2.2.36).
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2.2.4 Proof of Proposition 2.2.6

�e proof of Proposition 2.2.6 relies on the following result which will be proved in Section 3.

Proposition 2.2.8 (Bootstrap estimate). Let α ∈
(

1
2 , 2
)
. �ere exist C0 > 1, 0 < γ2 < γ1 and T2 > T1 such

that for all t ∈ [t∗n, Sn], for all 0 < γ0 < γ2, T0 > T2 and for all ρin
j,n ∈ Ij,n

‖un(t, ·)−
N∑
j=1

Qcj (· − ρj,n(t))‖
H
α
2
6
C0

t
α
2

. (2.2.38)

Proof of Proposition 2.2.6 assuming Proposition 2.2.8. Let 0 < γ0 < γ2 and T0 > T2 such that C0

T
α
2
0

< γ0
2 .

First, we show that un satis�es (2.2.3) with L0 = βT0
2 and that (2.2.32) is strictly improved on [t∗n, Sn].

Indeed, it follows from (2.2.38) that

‖un(t, ·)−
N∑
j=1

Qcj (· − ρj,n(t))‖
H
α
2
6

C0

T
α
2

0

<
γ0

2
.

Moreover, (2.2.35) implies that

inf
j∈{1,··· ,N−1}}

|ρj+1,n(t∗n)− ρj,n(t∗n)| > βT0 = 2L0.

Now, we prove that there exists ρin
n = (ρin

j,n)Nj=1 ∈ RN , satisfying (2.2.34), such that t∗n = T0. Assume
by contradiction that for all choices ρin

n satisfying (2.2.34), the associated maximal time t∗n(ρin
n ) > T0.

First, we remark that ρin
j,n = cjSn + λj,nS

1−α
4

n for a unique λj,n ∈ [−1, 1] and we denote t∗(λn) :=

t∗n(ρin
n ) (which will also be denoted t∗when there is no risk of confusion), withλn = (λj,n)Nj=1. By de�nition

of t∗ and the fact that (2.2.3) and (2.2.32) are strictly improved on [t∗, Sn], we have that

|ρj0,n(t∗)− cj0t∗| = (t∗)1−α
4 , (2.2.39)

for at least one j0 ∈ {1, · · · , N}. �en, we de�ne

Φ : [−1, 1]N → ∂[−1, 1]N

λ 7→
(

(ρj,n(t∗(λ))− cjt∗(λ))(t∗)
α
4
−1(λ)

)N
j=1

.

We set

f : R→ R+

s 7→ sup
j∈{1,··· ,N}

(
(ρj,n(s)− cjs)s

α
4
−1
)2
.

We claim that if for s0 ∈ [T0, Sn], (2.2.39) is veri�ed in s0 for at least one j ∈ {1, · · · , N}, then

f is a decreasing function in a neighborhood of s0, (2.2.40)

and

Φ ∈ C0([−1, 1]N , ∂[−1, 1]N ). (2.2.41)

Let us assume (2.2.40) and (2.2.41) and �nish the proof of Proposition 2.2.6. For any λ ∈ ∂[−1, 1]N , we have
that

|ρin
j0,n − cj0Sn| = S

1−α
4

n , for at least one j0 ∈ {1, · · · , N},
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which implies by (2.2.40) that t∗ = Sn. Hence, we deduce that Φ|∂[−1,1]N = Id. However, it is a well-known
topological result that no such continuous function Φ : [−1, 1]N → ∂[−1, 1]N can exist (see �eorem 1.4,
Chapter 3 in [79]). �is concludes the proof of Proposition 2.2.6.

Now, we prove (2.2.40) and (2.2.41). Let fj(s) =
(

(ρj,n(s)− cjs)s
α
4
−1
)2

for j ∈ {1, · · · , N}. Let
s ∈ R. Note that for all j ∈ {1, · · · , N} the functions fj are continuously derivable. �en, to prove (2.2.40),
it is enough to show that for a time s0 verifying (2.2.39), for all j ∈ {1, · · · , N} such that fj(s0) = f(s0) ,
we have that f ′j(s0) < 0.

By direct computations, we have that

f ′j0(s) =2
(

(ρj0,n(s)− cj0s)s
α
4
−1
)(

(ρ′j0,n(s)− cj0)s
α
4
−1 +

(α
4
− 1
)
s
α
4
−2(ρj0,n(s)− cj0s)

)
=2
(α

4
− 1
)

(ρj0,n(s)− cj0s)2s
α
2
−3 + 2(ρj0,n(s)− cj0s)(ρ′j0,n(s)− cj0)s

α
2
−2.

Moreover, inserting (2.2.38) in (2.2.36), we get for all j ∈ {1, · · · , N}

|ρ′j,n(s)− cj | 6
C∗

s
α
2

, (2.2.42)

which implies, combined with (2.2.39) in s0 that

f ′j0(s0) 6 2
(α

4
− 1
)
s−1

0 + 2s
α
4
−1

0 |ρ′j0,n(s0)− cj0 | 6 2
(α

4
− 1
)
s−1

0 + 2C∗s
−α

4
−1

0 .

Since α < 2, for T0 large enough, we conclude that

f ′j0(s0) < 0.

�e same computations yield
f ′j1(s0) < 0.

�en, we conclude that f ′(s+
0 ) < 0 and f ′(s−0 ) < 0, in other words f is a decreasing function at s0. Note

that for s0 = Sn and λ ∈ ∂[−1, 1]N , we get that f is a decreasing function at Sn.
To show (2.2.41), we prove that the map : λ ∈ [−1, 1]N 7→ t∗(λ) is continuous. �e continuity of

t∗(λ) follows from the transversality property (2.2.40). Indeed, by (2.2.40), for all ε > 0 there exists δ > 0
such that f(t∗(λ)−ε) > f(t∗(λ))+δ = 1+δ and for all t ∈ [t∗(λ)+ε, Sn] (possibly empty), f(t) < 1−δ.

Note that f is depending on the parameter λ since ρj,n(t) = ρj,n(u(t, ·)). Moreover the functions
ρj,n are globally de�ned.

�en, by the continuity of the �ow , there exists η > 0 such that for all |λ − λ̄| < η, with λ̄ ∈
[−1, 1]N , the corresponding f̄ satis�es |f̄(s) − f(s)| < δ

2 for s ∈ [t∗(λ) − ε, Sn]. We deduce that for all
s ∈ [t∗(λ) + ε, Sn]

f̄(s+ ε) < |f̄(s+ ε)− f(s+ ε)|+ f(s+ ε) < 1− δ

2
.

In other words, t∗(λ̄) < t∗(λ) + ε. Furthermore,

f̄(t∗(λ)− ε) > f(t∗(λ)− ε)− |f̄(t∗(λ)− ε)− f(t∗(λ)− ε)| > 1 +
δ

2

�en, t∗(λ)− ε < t∗(λ̄). �is �nishes the proof of (2.2.41).

2.2.5 Proof �eorem 2.1.3 assuming Proposition 2.2.6

First, we state the weak continuity property of the �ow of (2.1.1). Relying on the well-posedness
result in [148], this result is proved in the Appendix 2.5.1 in the case α > 6

7 . It will admi�ed otherwise.
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Lemma 2.2.9 (Weak continuity of �ow). Let α ∈
(

1
2 , 2
)
. Suppose that z0,n ⇀ z0 in H

α
2 (R). We consider

solutions zn of (2.1.1) corresponding to initial data z0,n and satisfying zn ∈ C([0, T ] : H
α
2 (R)) for any T > 0.

�en, zn(t) ⇀ z(t) in H
α
2 (R), for all t > 0.

By Proposition 2.2.6, there exist C∗ > 0, T0 > 0 independent of n, ρ1,n, · · · , ρN,n ∈ C1([T0, Sn])
satisfying (2.2.6), (2.2.33) and (2.2.38) for all T0 6 t 6 Sn. �en, for all t ∈ [T0, Sn],

‖un(t, ·)‖
H
α
2
6 ‖un(t, ·)−

N∑
j=1

Qcj (· − ρj,n(t))‖
H
α
2

+ ‖
N∑
j=1

Qcj (· − ρj,n(t))‖
H
α
2
6 C∗.

�us, up to a subsequence, there exists U0 ∈ H
α
2 (R) such that

un(T0) ⇀ U0 in H
α
2 (R).

Now, we prove the convergence of the modulation parameters. Let t ∈ [T0,+∞) and set T such that
T0 < t < T < +∞. By (2.2.33), we �nd that for all j ∈ {1, · · · , N} and n ∈ N

|ρj,n(t)| 6 T 1−α
4 + cjT.

Moreover from (2.2.42), we see that ρ′j,n is uniformly bounded independently of time. �us, by the Arzela-
Ascoli theorem, there exists rj(t) ∈ C0([T0, T ]) such that, a�er extracting a subsequence if necessary, we
have

ρj,n(t)→ rj(t). (2.2.43)

Let U ∈ C0([T0,+∞) : H
α
2 (R)) be the solution of (2.1.1) satisfying U(T0, ·) = U0. We set R∗ :=

N∑
j=1

Qcj (x− rj(t)) and let t ∈ [T0,∞). By Lemma 2.2.9, we know that

un(t) ⇀ U(t) in H
α
2 (R), (2.2.44)

for all t > T0. We deduce then from (2.2.38) and (2.2.43) that

‖U(t, ·)−R∗(t, ·)‖
H
α
2
6 lim inf

n
‖un(t, ·)−

N∑
j=1

Qcj (· − ρj,n(t))‖
H
α
2

+ lim inf
n

N∑
j=1

‖Qcj (· − ρj,n(t))−Qcj (· − rj(t))‖H α
2
6
C0

t
α
2

.

By Proposition 2.2.6, we have C0
Tα0

6 γ0
2 and βT0 > 2L1. Moreover since |ρj+1,n(t)−ρj,n(t)| > βT0,

then rj+1(t) − rj(t) > βT0 > 2L1. �erefore, U(t, .) ∈ Tγ,2L1 for all t ∈ [T0,∞). By Proposition 2.2.2,
there exist N unique functions ρ1, · · · , ρn ∈ C1([T0,+∞) : R) such that (ρj)

N
j=1 verify (2.2.6). On the

other hand, since the solution un satis�es also (2.2.6) with (ρj,n)Nj=1, we deduce passing to the limit and
using (2.2.43)-(2.2.44) that rj satis�es also (2.2.6). Hence, by the uniqueness statement in Proposition 2.2.2,

we see that rj(t) = ρj(t) for all t ∈ R. �erefore,R∗(t, x) =
N∑
j=1

Qcj (x−ρj(t)), which concludes the proof

of (2.1.6). �e �rst estimate in (2.1.7) follows passing to the limit in (2.2.33), while the second is derived
arguing as Proposition 2.2.7 and using (2.1.6).



34 Construction of N-soliton like solution for the fractional Korteweg-de Vries equation

2.3 Weighted estimates

We de�ne N functions to localize the information around each solitary waves. Let

ϕ(x) = 1− Cϕ
∫ x

−∞

dy

〈y〉1+α
, where Cϕ =

(∫ +∞

−∞

dy

〈y〉1+α

)−1

. (2.3.1)

We have 0 6 ϕ 6 1. Using the function ϕ, we set, for A > 1 to be �xed later,

ϕj,A(t, x) = ϕ

(
x− ρj(t)+ρj+1(t)

2

A

)
= ϕ

(
x−mj(t)

A

)
, for j ∈ {1, · · · , N − 1}, (2.3.2)

and ϕN,A := 1, where the ρj ’s are de�ned in Section 2.2 (in particular, they satisfy (2.2.35)). �e function
ϕj,A follows the �rst j solitary waves. Finally, for j ∈ {1, · · · , N}, the function ψj,A is localised around
the jth solitary wave. Let

ψ1,A = ϕ1,A, ψj,A = ϕj,A − ϕj−1,A, ψN,A = 1− ϕN−1,A. (2.3.3)

In this section, we state some important estimates involving to the weight ϕj,A and its derivative
ϕ′j,A. �ese estimates will be crucial in the proof of the monotonicity of a localised part of the mass and
the energy (see Proposition 2.4.1 in Section 2.4).

2.3.1 Weighted commutator estimates

Lemma 2.3.1. Let α ∈ (0, 2). In the symmetric case, there exists C > 0 such that∣∣∣∣∫ (|D|αu)u|ϕ′j,A| −
∫ (
|D|

α
2

(
u
√
|ϕ′j,A|

))2
∣∣∣∣ 6 C

Aα

∫
u2|ϕ′j,A|,

and ∣∣∣∣∫ (|D|αu) ∂xuϕj,A +
α− 1

2

∫ (
|D|

α
2

(
u
√
|ϕ′j,A|

))2
∣∣∣∣ 6 C

Aα

∫
u2|ϕ′j,A|,

for any u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
In the non-symmetric case, there exists C > 0 such that

∣∣∣∣∫ ((|D|αu) v − (|D|αv)u) |ϕ′j,A|
∣∣∣∣ 6

C

Aα

∫ (
u2 + v2

)
|ϕ′j,A|, if α ∈ (0, 1],

C

A
α
2

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)
|ϕ′j,A|, if α ∈ (1, 2),

(2.3.6)

and ∣∣∣∣ ∫ ((|D|αu) ∂xv + (|D|αv) ∂xu)ϕj,A + (α− 1)

∫
|D|

α
2

(
u
√
|ϕ′j,A|

)
|D|

α
2

(
v
√
|ϕ′j,A|

) ∣∣∣∣
6


C

Aα

∫ (
u2 + v2

)
|ϕ′j,A|, if α ∈ (0, 1],

C

A
α
2

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)
|ϕ′j,A|, if α ∈ (1, 2),

,(2.3.7)

for any u, v ∈ S(R), A > 1 and j ∈ {1, · · · , N}.

Remark 2.3.2. Instead of (2.3.6), we can obtain that for α1 + α2 = α − 1, with 0 6 α1, α2 6 α − 1 and
α ∈ (1, 2), there exists C > 0 such that for all u, v ∈ S(R)∣∣∣∣ ∫ ((|D|αu) v − (|D|αv)u) |ϕ′j,A|

∣∣∣∣ 6 C

A
α
2

∫ (
u2 + v2 + (|D|α1u)2 + (|D|α2v)2

)
|ϕ′j,A|.
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Moreover the estimates (2.3.6) and (2.3.7) are given with |D|
α
2 instead of |D|α−1 . �is is done to

simplify the computations, terms with |D|
α
2 appear naturally in the proof of Proposition 2.4.1.

Let us explain why we choose to force a dissymmetry on the right hand side of (2.3.6) and (2.3.7).
�ese two estimates will be applied with the function v = |D|αu. However, the natural quantities appearing
to prove Proposition 2.4.1 are

∫
u2|ϕ′j,A|,

∫
(|D|

α
2 u)2|ϕ′j,A| and

∫
(|D|αu)2|ϕ′j,A|. �erefore, to control

the remainder terms in (2.3.6) and (2.3.7) we need to impose a dissymmetry to avoid an extra derivative on
the function v.

�e estimates (2.3.4), (2.3.5) are proved in Lemmas 6 and 7 in [91] for α ∈ [1, 2]. Observe however
that their proofs extend easily to the case α ∈ (0, 2). Note also that while only one side of the inequalities
in (2.3.4)-(2.3.5) is stated in Lemmas 6 and 7 in [91] , both sides are actually proved.

While the estimates (2.3.6) and (2.3.7) seem to be new, their proofs follow the lines of the ones of
Lemma 6 and 7 of [91]. For the sake of completeness, we will present them in Appendix 2.5.3.
Lemma 2.3.3. Let α ∈ (0, 2]. �ere exists C > 0 such that∣∣∣∣ ∫ (|D|α (u√|ϕ′j,A|))2

−
∫

(|D|αu)2 |ϕ′j,A|
∣∣∣∣

6


C

Aα

∫ (
u2 + (|D|αu)2

)
|ϕ′j,A|, if α ∈ (0, 1],

C

A
α
2

∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|, if α ∈ (1, 2),

(2.3.8)

for all u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
Lemma 2.3.4. Let α ∈ (0, 2). �ere exists C > 0 such that∣∣∣∣ ∫ |D|α (u√|ϕ′j,A|)((|D|αu)

√
|ϕ′j,A|

) ∣∣∣∣
6
∫

(|D|αu)2 |ϕ′j,A|+
C

A
α
2

(∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|

)
,(2.3.9)

for all u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
�e proofs of Lemmas 2.3.3 and 2.3.4 are also given in Appendix 2.5.3.

2.3.2 Weighted estimates for the solitary waves

Lemma 2.3.5. Let p, q > 0. �en, we have for all j, k ∈ {1, ..., N} with k 6= j,∫
RpjR

q
k 6

C

(βt)(1+α) min(p,q)
, (2.3.10)∫

∂xR
p
j∂xR

q
k 6

C

(βt)(2+α) min(p,q)
,∫

Rpkψ
q
j,A 6

C

(βt)min(p(1+α),qα)
. (2.3.11)

Moreover, we have for all j, k ∈ {1, · · · , N},∫
Rpk|ϕ

′
j,A|q 6

C

(βt)(1+α) min(p,q)
, (2.3.12)∫

∂xR
p
k|ϕ
′
j,A|q 6

C

(βt)min(q(1+α),p(2+α))
, (2.3.13)∫

Rpj (1− (ψj,A)q) 6
C

(βt)min(qα,p(1+α))
, (2.3.14)∫

∂xR
p
j (1− (ψj,A)q) 6

C

(βt)min(αq,p(2+α)
. (2.3.15)
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Lemma 2.3.5 is proven arguing exactly as in the proof of Lemma 2.2.5.

2.3.3 Weighted estimates for the non-linear terms

Lemma 2.3.6. Let α ∈ (0, 2) and let η ∈ H
α
2 (R) be de�ned in (2.2.4) and verify (2.2.3). �en, we have∫

|η|3|ϕ′j,A| 6 Cγ

[∫
u2|ϕ′j,A|+

∫ (
|D|

α
2

(
u
√
|ϕ′j,A|

))2
]

+
C

(βt)1+α , (2.3.16)

and ∫
|η|4|ϕ′j,A| 6 Cγ2

[∫
u2|ϕ′j,A|+

∫ (
|D|

α
2

(
u
√
|ϕ′j,A|

))2
]

+
C

(βt)1+α . (2.3.17)

Lemma 2.3.7. Let α ∈ (0, 2) and let u verify the hypotheses of �eorem 2.2.2. �en there exists C > 0 such
that ∣∣∣∣ ∫ |D|α2 (u√|ϕ′j,A|) |D|α2 (u2

√
|ϕ′j,A|

) ∣∣∣∣
6C

(
γ2 +

1

A
α
2

)(∫ (
u2 +

(
|D|

α
2 u
)2
)
|ϕ′j,A|

)
+

1

8

∫
(|D|αu)2 |ϕ′j,A|+

C

(βt)1+α ,

for all A > 1 and 0 < γ < γ1.

�e proofs of these lemmas are also based on pseudo-di�erential estimates and are given in Appendix
2.5.4.

2.4 Proof of the bootstrap estimate

�e goal of this section is to prove Proposition 2.2.8. We work in the bootstrap se�ing of Section 2.2.2.
In particular, the solutions un admit the decomposition of Proposition 2.2.2 on the time interval [t∗n, Sn].
We also recall the de�nitions of the weight functions ϕj,A and ψj,A in (2.3.2) and (2.3.3).

In every step of the proof, the values of T0 and A will be taken large enough independently of n,
while the value of γ will be chosen small enough independently of n. Moreover, for simplicity of notation,
we drop the index n of the functions un and (ρj,n)Nj=1 and of the time t∗n, and the index A of the weight
functions ϕj,A and ψj,A.

Finally, we de�ne the part of the mass Mj and of the energy Ej localized around the jth solitary
wave Rj by

Mj(t) :=

∫
u(t, x)2ψj(t, x)dx, Ej(t) :=

∫ (
1

2
u|D|αu− 1

3
u3

)
(t, x)ψj(t, x)dx,

so that for all j ∈ {1, · · · , N}

j∑
k=1

Mk(t) =

∫
u(t, x)2ϕj(t, x)dx,

j∑
k=1

Ek(t) =

∫ (
1

2
u|D|αu− 1

3
u3

)
(t, x)ϕj(t, x)dx.

We also de�ne ‹Ek = Ek + σ0Mk. (2.4.1)

with
σ0 := min

j∈{1,··· ,N−1}

(
cj
4
,
cN
4
,

cjcj+1

4 (cj + cj+1)

)
. (2.4.2)
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2.4.1 Monotonicity

Proposition 2.4.1 (Monotonicity). Under the bootstrap assumptions (2.2.32)-(2.2.33), we have

j∑
k=1

(Mk(Sn)−Mk(t0)) > − C

(βt0)α
, (2.4.3)

and
j∑

k=1

(‹Ek(Sn)− ‹Ek(t0)
)
> − C

(βt0)α
, (2.4.4)

for all j ∈ {1, · · · , N}, t0 ∈ [t∗, Sn].

Remark 2.4.2. From Proposition 2.4.1, we see that Mj(Sn) is almost larger than Mj(t0) for t0 < Sn. In
other words, when the time decreases, the portion of the mass on the le� of the (j+1)th solitary wave also
decreases. A similar phenomenon occurs also for the energy. �is can be seen as a manifestation of the
dispersive character of KdV-type equations: if a wave moves to the right, then the dispersion e�ect pushes
some mass to the le�, see Figure 2.1. Moreover, if u is a solution of fKdV then u(−t,−x) is also a solution.
�erefore if a wave move to the le�, then the dispersion e�ect pushes some mass to the right.

ρj
|

ρj+ρj+1

2

|
ρj+1

|

ϕj

t = Sn

ρj
|

ρj+ρj+1

2

|
ρj+1

|

ϕj

t = t0

Monotonicity of the mass

Proof of Proposition 2.4.1. We remark that for j = N the inequalities (2.4.3) and (2.4.4) are easily veri�ed
since M and E are preserved by the �ow of (2.1.1). �en, we can always assume 1 6 j 6 N − 1.

First, we give the proof of (2.4.3). By using (2.1.1), integration by parts and ϕ is non increasing
function, we get

1

2

d

dt

(
j∑

k=1

Mk(t)

)
=

∫ (
|D|αu

(
−∂xuϕj + u|ϕ′j |

)
− u3

3
|ϕ′j |+

m′j
2
u2|ϕ′j |

)
.

�en, we deduce from (2.3.4), (2.3.5) that∫ (
|D|αu

(
−∂xuϕj + u|ϕ′j |

))
> − C

Aα

∫
u2|ϕ′j |+

α+ 1

2

∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2
. (2.4.5)
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Observe from (2.2.36) that m′j >
cj+cj+1

4 . �us,

1

2

d

dt

(
j∑

k=1

Mk(t)

)
> −

∫
u3

3
|ϕ′j |+

cj + cj+1

8

∫
u2|ϕ′j |+

α+ 1

2

∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2
.

Now, we estimate the nonlinear term. With the notation of Proposition 2.2.2, we have

|u|3 6 C

(
N∑
k=1

R3
k + |η|3

)
.

�erefore, by (2.3.12)
N∑
k=1

∫
|R3

k||ϕ′j | 6
C

(βt)α+1 ,

and by (2.3.16) ∫
|η|3|ϕ′j | 6 Cγ

[∫
u2|ϕ′j |+

∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2
]

+
C

(βt)α+1 .

Hence, we can conclude that

d

dt

(
j∑

k=1

Mk(t)

)
> − C

(βt)1+α .

�us, we have by integrating between t0 and Sn

j∑
k=1

Mk(Sn)−
j∑

k=1

Mk(t0) > −
∫ Sn

t0

C

(βt)1+αdt > −
C

(βt0)α
,

which proves (2.4.3).
Let us prove (2.4.4). We di�erentiate Ej with respect to time to �nd that

d

dt

(
j∑

k=1

Ek(t)

)
=

∫ [(
1

2
∂tu|D|αu+

1

2
u|D|α∂tu

)
− ∂tuu2

]
ϕj

+m′j

∫ (
1

2
u|D|αu− 1

3
u3

)
|ϕ′j |

=I1 +m′jI2.

Using (2.1.1), we obtain for I1 that

I1 =
1

2

∫ (
|D|α∂xu− ∂x(u2)

)
(|D|αu)ϕj +

1

2

∫
u|D|α

(
|D|α∂xu− ∂x(u2)

)
ϕj

−
∫ (
|D|α∂xu− ∂x(u2)

)
u2ϕj

=I1,1 + I1,2 + I1,3.

First we compute I1,1 by integrating by parts

I1,1 =
1

4

∫
(|D|αu)2 |ϕ′j | −

1

2

∫
∂x(u2) (|D|αu)ϕj , (2.4.6)
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since the functions ϕj are non increasing. Now we decompose I1,2 as

I1,2 =
1

2

∫
u
(
|D|2α∂xu

)
ϕj −

1

2

∫
u
(
|D|α∂x(u2)

)
ϕj = I1,2,1 + I1,2,2.

First we deal with I1,2,1. By using integration by parts we get

I1,2,1 =− 1

2

∫
∂xu

(
|D|2αu

)
ϕj +

1

2

∫
u
(
|D|2αu

)
|ϕ′j | = I1

1,2,1 + I2
1,2,1.

On the one hand, using the estimate (2.3.7) with v = |D|αu and integration by parts for the last integral,
we get

I1
1,2,1 = −1

2

∫ (
∂xu|D|2αu+ (|D|αu) ∂x|D|αu

)
ϕj +

1

2

∫
(∂x|D|αu) (|D|αu)ϕj

− α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
(|D|αu)

√
|ϕ′j |

)
+
α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
(|D|αu)

√
|ϕ′j |

)
>

1

4

∫
(|D|αu)2 |ϕ′j |dx+

α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
(|D|αu)

√
|ϕ′j |

)
− C

A
α
2

∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j |.

On the other hand, we deduce from (2.3.6) with v = |D|αu

I2
1,2,1 =

1

2

∫ (
u|D|2αu− (|D|αu)2

)
|ϕ′j |+

1

2

∫
(|D|αu)2 |ϕ′j |

>
1

2

∫
(|D|αu)2 |ϕ′j | −

C

A
α
2

∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j |.

Now, we deal with I1,2,2. Using integration by parts

I1,2,2 =
1

2

∫
∂xu|D|α(u2)ϕj −

1

2

∫
u|D|α(u2)|ϕ′j |.

Arguing similarly as for I1,2,1, we get from (2.3.6), (2.3.7) with v = u2 that

I1,2,2 >− α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
u2
√
|ϕ′j |

)
− 1

2

∫
u2 (|D|αu) |ϕ′j |

− 1

2

∫
∂x
(
u2
)

(|D|αu)ϕj −
C

A
α
2

∫ (
u2 + u4 +

(
|D|

α
2 u
)2
)
|ϕ′j |.

Hence, we conclude gathering these estimates

I1,2 >
3

4

∫
(|D|αu)2 |ϕ′j | −

1

2

∫
∂x
(
u2
)
|D|αuϕj −

1

2

∫
u2|D|αu|ϕ′j |

− α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
u2
√
|ϕ′j |

)
+
α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
(|D|αu)

√
|ϕ′j |

)
− C

A
α
2

∫ (
u2 + u4 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j |. (2.4.7)

Finally, we compute I1,3 by integrating by parts

I1,3 =

∫
(|D|αu) ∂x

(
u2
)
ϕj −

∫
(|D|αu)u2|ϕ′j |+

1

2

∫
u4|ϕ′j |. (2.4.8)
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�erefore, combining (2.4.6),(2.4.7) and (2.4.8), we deduce that

I1 >
∫

(|D|αu)2 |ϕ′j | −
3

2

∫
u2 (|D|αu) |ϕ′j |+

1

2

∫
u4|ϕ′j |

− α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
u2
√
|ϕ′j |

)
+
α− 1

2

∫
|D|

α
2

(
u
√
|ϕ′j |

)
|D|

α
2

(
(|D|αu)

√
|ϕ′j |

)
− C

A
α
2

∫ (
u2 + u4 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j |.

By using the identity∫
(|D|αu)2 |ϕ′j |+

1

2

∫
u4|ϕ′j | −

3

2

∫
(|D|αu)u2|ϕ′j |

=

∫ (
1

4
|D|αu− 3u2

)2

|ϕ′j |+
15

16

∫
(|D|αu)2 |ϕ′j | −

17

2

∫
u4|ϕ′j |,

α−1
2 ∈ [−1

4 ,
1
2 ], and Lemmas 2.3.4, 2.3.7 we conclude that

I1 >
1

4

∫
(|D|αu)2 |ϕ′j | − 9

∫
u4|ϕ′j | − C

(
1

A
α
2

+ γ2

)∫ (
u2 +

(
|D|

α
2 u
)2
)
|ϕ′j | −

C

(βt)1+α .

Using (2.3.4) to control I2, we obtain that

d

dt

(
j∑

k=1

Ek(t)

)
>

1

4

∫
(|D|αu)2 |ϕ′j | − C

(
1

A
α
2

+ γ2

)∫ (
u2 +

(
|D|

α
2 u
)2
)
|ϕ′j |

−
m′j
3

∫
|u|3|ϕ′j | − 9

∫
u4|ϕ′j | −

C

(βt)1+α .

We need to add the mass to the energy in order to control the remaining terms

d

dt

(
j∑

k=1

Ek(t) + σ0Mk(t)

)
>− 9

∫
u4|ϕ′j | − C

(
1

A
α
2

+ γ2

)∫ (
u2 +

(
|D|

α
2 u
)2
)
|ϕ′j |

− σ0

∫
|D|αu

(
∂xuϕj − u|ϕ′j |

)
− σ0

∫
1

3
|u|3|ϕ′j |+ σ0m

′
j

∫
u2|ϕ′j |

−
m′j
3

∫
|u|3|ϕ′j | −

C

(βt)1+α .

�us, by using (2.4.5), we deduce

d

dt

(
j∑

k=1

Ek(t) + σ0Mk(t)

)
>− 9

∫
u4|ϕ′j |+

(
σ0m

′
j −

C

A
α
2

− γ2

)∫
u2|ϕ′j | −

m′j + σ0

3

∫
u3|ϕ′j |

+ σ0
3− α

2

∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2
−
(
C

A
α
2

+ γ2

)∫ (
|D|

α
2 u
)2
|ϕ′j |

− C

(βt)1+α .

Observe from (2.2.36) that σ0m
′
j

2 − C

A
α
2
− γ2 > 0. �us, by (2.3.8), we deduce that

d

dt

(
j∑

k=1

Ek(t) + σ0Mk(t)

)
>
σ0m

′
j

2

∫
u2|ϕ′j | − 9

∫
u4|ϕ′j | −

m′j + σ0

3

∫
u3|ϕ′j |

+ σ0
3− α

4

∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2
− C

(βt)1+α .
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From Lemma 2.3.6 , we get

d

dt

(
j∑

k=1

Ek(t) + σ0Mk(t)

)
>

(
σ0m

′
j

4
− Cγ

)∫
u2|ϕ′j | −

C

(βt)1+α

+

(
σ0

3− α
2
− Cγ

)∫ (
|D|

α
2

(
u
√
|ϕ′j |

))2

> − C

(βt)1+α .

�us we have by integrating between t0 and Sn
j∑

k=1

‹Ek(Sn)−
j∑

k=1

‹Ek(t0) > −
∫ Sn

t0

C

(βt)1+αdt > −
C

(βt0)α
,

which proves (2.4.4).

2.4.2 Mass and energy expansion

Lemma 2.4.3. �ere exist C > 0 such that the following hold:

∣∣∣∣Mj(t)−
[∫

Q2
cj + 2

∫
η(t)Rj(t) +

∫
η2(t)ψj(t)

] ∣∣∣∣ 6 C

(βt)α
, (2.4.9)

∣∣∣∣Ej(t)− [E(Qcj )− cj
∫
η(t)Rj(t)+

1

2

∫ (
η(t)|D|αη(t)− 2R(t)η2(t)

)
ψj(t)

] ∣∣∣∣
6

C

(βt)α
+ Cγ‖η(t)‖2

H
α
2

(2.4.10)

and ∣∣∣∣ (Ej(t) +
cj
2
Mj(t)

)
−
(
E(Qcj )+

cj
2
M(Qcj )

)
− 1

2
Hj(t)

∣∣∣∣
6

C

(βt)α
+ Cγ‖η(t)‖2

H
α
2
, (2.4.11)

where

Hj(t) := Hj(η(t), η(t)) =

∫ (
η(t)|D|αη(t) + cjη

2(t)− 2Rj(t)η
2(t)
)
ψj(t). (2.4.12)

Proof. Using u = R+ η in the mass, we get

Mj(t) =

∫ (
R2 + 2Rη + η2

)
ψj .

�us by direct computations,

Mj(t)−
[∫

Q2
cj + 2

∫
ηRj +

∫
η2ψj

]
=

∫ (
R2ψj −Q2

cj

)
+ 2

∫
η (Rψj −Rj) = I1 + 2I2.

We use the translation invariance of the L2 norm of Qcj , and (2.3.10), (2.3.11), (2.3.14) to deduce

|I1| 6
∑

(k,i) 6=(j,j)

∫
RiRkψj +

∫
R2
j (1− ψj) 6

C

(βt)α
.
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By Cauchy-Schwarz inequality, (2.3.11), (2.3.14), we obtain for I2

|I2| 6 2‖η‖L2

∑
k 6=j
‖Rkψj‖L2 + ‖Rj(1− ψj)‖L2

 6
C

(βt)α
.

Combining these two inequalities we conclude the proof of (2.4.9).
To prove (2.4.10), we expand Ej as

Ej(t) =
1

2

∫
R (|D|αR)ψj +

1

2

∫
η (|D|αη)ψj +

1

2

∫
(R|D|αη + η|D|αR)ψj

− 1

3

∫
R3ψj −

∫
R2ηψj −

∫
Rη2 − 1

3

∫
η3ψj .

Hence, ∣∣∣∣Ej(t)− [E(Qcj )− cj
∫
ηRj +

1

2

∫ (
η|D|αη − 2Rη2

)
ψj

] ∣∣∣∣
6

∣∣∣∣ ∫ (1

2
R|D|αR− 1

3
R3

)
ψj − E(Qcj )

∣∣∣∣+
1

3

∣∣∣∣ ∫ η3ψj

∣∣∣∣
+

1

2

∣∣∣∣ ∫ (R|D|αη + η|D|αR)ψj − 2

∫
R2ηψj + 2cj

∫
ηRj

∣∣∣∣
= J1 + J2 + J3.

We use the translation invariance of E(Qcj ), (2.3.11), (2.3.14) and ‖|D|αRk‖L∞ 6 C to bound |J1| by

C

∫ (|Rj‖D|αRj |+R3
j

)
(1− ψj) +

∑
(i,k) 6=(j,j)

∣∣∣∣ ∫ Ri (|D|αRk)ψj
∣∣∣∣+

∑
(i,k,l) 6=(j,j,j)

∫
RiRkRlψj


�us, we get

|J1| 6
C

(βt)α
. (2.4.13)

Replacing |ϕ′j | by ψj in (2.5.15), we have

|J2| 6 Cγ‖η
√
ψj‖2

H
α
2
.

so that it follows arguing as (2.5.18) that

|J2| 6 Cγ‖η‖2
H
α
2
. (2.4.14)

By using (2.1.3), we get

2|J3| 6
∣∣∣∣ ∫ (R|D|αη + η|D|αR)ψj − 2

∫
(|D|αRj) η

∣∣∣∣+ 2

∣∣∣∣ ∫ (R2
jη −R2ηψj

) ∣∣∣∣
6

∣∣∣∣ ∫ R (|D|αη)ψj −
∫

(|D|αRj) η
∣∣∣∣+

∣∣∣∣ ∫ η (|D|αR)ψj −
∫

(|D|αRj) η
∣∣∣∣

+ 2

∣∣∣∣ ∫ R2
jη −R2ηψj

∣∣∣∣
= |J3,1|+ |J3,2|+ |J3,3|.

By using the Cauchy-Schwarz inequality, we obtain

|J3,2|+ |J3,3| 6‖η‖L2

(
‖ (1− ψj) |D|αRj‖L2 + ‖R2

j (1− ψj) ‖L2

)
+ ‖η‖L2

∑
k 6=j
‖ψj |D|αRk‖L2 +

∑
(k,l) 6=(j,j)

‖RkRlψj‖L2
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From (2.1.3), we rewrite |D|αRj = R2
j − cjRj . �us, it follows from (2.3.11) and (2.3.14)

|J3,2|+ |J3,3| 6
C

(βt)α
. (2.4.15)

Now, we estimate |J3,1|. By using the Cauchy-Schwarz inequality,

|J3,1| 6
∑
k 6=j

∣∣∣∣ ∫ Rk(|D|αη)ψj

∣∣∣∣+

∣∣∣∣ ∫ Rj(|D|αη) (1− ψj)
∣∣∣∣

6 ‖|D|
α
2 η‖L2

∑
k 6=j
‖|D|

α
2 (Rkψj)‖L2 + ‖|D|

α
2 (Rj (1− ψj))‖L2


By interpolation ‖u‖

H
α
2
6 ‖u‖1−

α
2

L2 ‖u‖
α
2

H1 . �us, we deduce from (2.3.12), (2.3.14), (2.3.15),(2.3.13) that

|J3,1| 6 ‖|D|
α
2 η‖L2

∑
k 6=j
‖Rkψj‖

1−α
2

L2 ‖Rkψj‖
α
2

H1 + ‖Rj (1− ψj)‖
1−α

2

L2 ‖Rj (1− ψj)‖
α
2

H1

 6
C

(βt)α
.

(2.4.16)

Gathering (2.4.13), (2.4.14), (2.4.15) and (2.4.16) we conclude the proof of (2.4.10).
To prove (2.4.11), gathering (2.4.9) and (2.4.10) we get∣∣∣∣ (Ej(t) +

cj
2
Mj(t)

)
−
(
E(Qcj )+

cj
2
M(Qcj )

)
− 1

2
Hj(t)

∣∣∣∣
6

C

(βt)α
+ Cγ‖η(t)‖2

H
α
2

+

∣∣∣∣ ∫ η2 (R−Rj)ψj
∣∣∣∣

�en by Cauchy-Schwarz, (2.3.11) and the Sobolev imbedding L4(R) ↪−→ H
1
4 (R), we obtain that∣∣∣∣ ∫ η2 (R−Rj)ψj

∣∣∣∣ 6 ‖η‖2L4

∑
k 6=j
‖Rkψj‖L2 6

C

(βt)α
,

which concludes the proof of (2.4.11).

2.4.3 Control of the Rj directions

We recall C∗ is a positive constant changing from line to line and depending only on the parameters
{c1, · · · , cN}.

Proposition 2.4.4. For all j ∈ {1, · · · , N}, t0 ∈ [t∗, Sn],

j∑
k=1

∣∣∣∣ ∫ η(t0)Rk(t0)

∣∣∣∣ 6 C∗
tα0

+ C∗‖η(t0)‖2
H
α
2
. (2.4.17)

Proof of Proposition 2.4.4. �e proof is by induction. For j = 1, by (2.4.9) at time t = t0 and t = Sn, we
deduce that

2

∫
η(t0)R1(t0) 6

C

(βt0)α
−
∫
η2ψ1 −

∫
Q2
c1 +M1(t0)

6
C

(βt0)α
−
∫
η2ψ1 −M1(Sn) +M1(t0) +M1(Sn)−

∫
Q2
c1

6
C

(βt0)α
−
∫
η2ψ1 −M1(Sn) +M1(t0).
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Moreover, by using estimate (2.4.3), we deduce that

2

∫
η(t0)R1(t0) 6

C

(βt0)α
−
∫
η2ψ1 6

C

(βt0)α
.

Now we want to obtain a lower bound of this scalar product. We recall that ‹Ek and σ0 are respectively
de�ned in (2.4.1) and (2.4.2). By (2.4.9), (2.4.10) at time t = t0 and t = Sn, we observe that

(c1 − 2σ0)

∫
ηR1 >− C

(βt0)α
− Cγ‖η‖2

H
α
2
− E1(t0) + E(Qc1)

+
1

2

∫
η(|D|αη)ψ1 −

∫
Rη2ψ1

− σ0M1(t0) + σ0

∫
Q2
c1 + σ0

∫
η2ψ1

>− C∗
tα0
− C∗‖η‖2

H
α
2
− ‹E1(t0) + ‹E1(Sn)

+
1

2

∫
η(|D|αη)ψ1 −

∫
Rη2ψ1 + σ0

∫
η2ψ1.

�us, we deduce from (2.4.4) and the fact ‖Rψ1‖∞ < C

(c1 − 2σ0)

∫
ηR1 >− C∗

tα0
− C∗‖η‖2

H
α
2

+
1

2

∫
η(|D|αη)ψ1.

Note that replacing ϕ′j by ψj in (2.5.16) we deduce

‖|D|
α
2 (ηψj) ‖L2 6 C‖η‖

H
α
2
,

so that

(c1 − 2σ0)

∫
ηR1 >− C∗

tα0
− C∗‖η‖2

H
α
2
.

Combining the lower and upper bound, we conclude that∣∣∣∣ ∫ η(t0)R1(t0)

∣∣∣∣ 6 C∗
tα0

+ C∗‖η‖2
H
α
2
.

Now, we prove the inductive step. We assume that (2.4.17) holds true for some j ∈ {1, · · · , N − 1}
and we prove it for j + 1. Arguing similarly as in the case j = 1, we deduce by (2.4.9) at time t = t0 and
t = Sn, (2.4.3) and then the induction hypothesis (2.4.17) in j, that

2

∫
η(t0)Rj+1(t0) 6

C

(βt0)α
+

j+1∑
k=1

(Mk(t0)−Mk(Sn))−
∫
η2ψj+1

−

[
j∑

k=0

(Mk(t0)−Mk(Sn))−
j∑

k=1

∫
η2ψk

]
−

j∑
k=1

∫
η2ψk

6
C

(βt0)α
+ 2

j∑
k=1

∣∣∣∣ ∫ ηRk

∣∣∣∣
6
C∗
tα0

+ C∗‖η‖2
H
α
2
.
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Arguing similarly as j = 1 for the lower bound, we obtain from (2.4.9), (2.4.10) at time t = t0 and t = Sn,
that

(cj+1 − 2σ0)

∫
ηRj+1 >− C∗

tα0
− ‹Ej+1(t0) + ‹Ej+1(Sn) + σ0

∫
η2ψj+1

+
1

2

∫ (
η|D|α − 2Rη2

)
ψj+1 − C∗‖η‖2

H
α
2

>− C∗
tα0
− C∗‖η‖2

H
α
2

+ σ0

j+1∑
k=1

∫
η2ψk

+

j+1∑
k=1

(‹Ek(Sn)− ‹Ek(t0)
)

+
1

2

j+1∑
k=1

∫ (
η|D|αη − 2Rη2

)
ψk

−

[
j∑

k=1

(‹Ek(Sn)− ‹Ek(t0)
)

+
1

2

j∑
k=1

∫ (
η|D|αη − 2Rη2

)
ψk

+σ0

j∑
k=1

∫
η2ψk

]
.

�us, by using again (2.4.9), (2.4.10) at time t = t0 and t = Sn, (2.4.4), and then the induction hypothesis
(2.4.17) in j, it follows that

(cj+1 − 2σ0)

∫
ηRj+1 >− C∗

tα0
− C∗‖η‖2

H
α
2
−

j∑
k=1

(ck − 2σ0)

∣∣∣∣ ∫ ηRk

∣∣∣∣
>− C∗

tα0
− C∗‖η‖2

H
α
2
.

�is concludes the proof of (2.4.17) in j + 1, and thus the proof of Proposition 2.4.4 by induction.

2.4.4 Proof of Proposition 2.2.8

Recalling the notation η = u−R, it su�ces to prove that

‖η‖2
H
α
2
6
C∗
tα0
. (2.4.18)

Proof of (2.4.18). �e proof of the estimate (2.4.18) relies on the quadratic formHj(t) de�ned in (2.4.12) On
the one hand, we have from (2.4.11),

N∑
j=1

1

c2
j

Hj(t0) 6
N∑
j=1

1

c2
j

(
Ej(t0) +

cj
2
Mj(t0)

)
−

N∑
j=1

1

c2
j

(
E(Qcj ) +

cj
2
M(Qcj )

)
(2.4.19)

+
C∗
tα0

+ C∗γ‖η‖2
H
α
2
.

On the other hand, by a direct resummation argument, we observe that

N∑
j=1

1

c2
j

‹Ej =
N−1∑
j=1

(
1

c2
j

− 1

c2
j+1

)
j∑

k=1

‹Ek +
1

c2
N

N∑
k=1

‹Ek
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and

N∑
j=1

1

c2
j

(cj
2
− σ0

)
Mj =

N−1∑
j=1

[
1

2

(
1

cj
− 1

cj+1

)(
1− 2σ0

(
1

cj
+

1

cj+1

))] j∑
k=1

Mk

+
1

2cN

(
1− 2

σ0

cN

) N∑
k=1

Mk.

Combining these two identities, since ‹Ej = Ej + σ0Mj , we deduce that

N∑
j=1

1

c2
j

(
Ej +

cj
2
Mj

)
=
N−1∑
j=1

(
1

c2
j

− 1

c2
j+1

)
j∑

k=1

‹Ek +
1

c2
N

N∑
k=1

‹Ek
+

N−1∑
j=1

[
1

2

(
1

cj
− 1

cj+1

)(
1− 2σ0

(
1

cj
+

1

cj+1

))] j∑
k=1

Mk

+
1

2cN

(
1− 2

σ0

cN

) N∑
k=1

Mk.

Note that all the coe�cients in front of the partial sums on the right hand side of the above estimate are
positive by de�nition of σ0 in (2.4.2). �erefore, we deduce from (2.4.19), (2.4.9), (2.4.10) at time t = t0 and
t = Sn and the monotonicity results (2.4.3) and (2.4.4) in Proposition 2.4.1, that

N∑
j=0

1

c2
j

Hj(t0) 6
C∗
tα0

+ C∗γ‖η‖2
H
α
2
. (2.4.20)

On the other hand, by Corollary 2.5.8 and (2.2.6), there exists λ0 > 0 such that

N∑
j=0

1

c2
j

Hj(t0) >λ0‖η‖2
H
α
2
− C∗
tα0
− 1

λ0

N∑
j=0

(∫
η(t0)Rj(t0)

)2

.

�e control of the Rj directions derived in Proposition 2.4.4 yields

N∑
j=0

1

c2
j

Hj(t0) >λ0‖η‖2
H
α
2
− C∗
tα0
− 1

λ0

C∗
t2α0
− 1

λ0
C∗‖η‖4

H
α
2
. (2.4.21)

�erefore, we conclude the proof of (2.4.18) by combining (2.4.20) and (2.4.21), which �nishes the proof of
Proposition 2.2.8.

2.5 Appendix

2.5.1 Weak continuity of the �ow

In this appendix, we give the proof of Lemma 2.2.9 in the case α > 6
7 , where the IVP associated to

(2.1.1) is globally well-posed in the energy space (see [148]). We follow a general argument given by L.
Molinet [147] (see also [66]).
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Proof of Lemma 2.2.9 in the case α > 6
7 . Let α > 6

7 . For T > 0, we denote by YT := C0([0, T ] : H
α
2 (R)) ∩

X
α
2
−1,1

T ∩ L2((0, T ),W
α
4
− 1

2
−,∞(R)) the resolution space (see �eorem 1.2 in [148]) and ‖ · ‖YT the norm

associated to YT .
Assume z0,n ⇀ z0 in H

α
2 (R). By the Banach-Steinhaus theorem, we deduce that there exists C > 0

such that ‖z0,n‖H α
2

6 C . Moreover, by the global well-posedness result in �eorem 1.2 in [148], there
exists C > 0 such that for all t ∈ [0, T ], the solution zn of (2.1.1), associated to z0,n, veri�es

‖zn(t)‖YT 6 C, ∀t ∈ [−T, T ]. (2.5.1)

�us, by Banach-Alaoglu’s theorem, there exists z ∈ XT such that zn
∗
⇀ z in L∞([0, T ] : H

α
2 (R)), up to

extracting a subsequence. By (2.5.1), we get

‖Dα∂xzn‖L∞T H−
α
2 −1 6 C,

and since z2
n ∈ L1(R) ↪−→ H−

1
2

−
(R), we have that

‖∂x(z2
n)‖

L∞T H
− 3

2
− 6 C‖zn‖2L2 6 C.

�en, we obtain, by (2.1.1) that
‖∂tzn‖

L∞T H
min(− 3

2
−
,−α2 −1)

6 C. (2.5.2)

�erefore, by the Aubin-Lions theorem (�eorem 1.71 in [158]), we deduce that zn → z in L2([0, T ] :
L2([−k, k]), for all k ∈ N. In particular, this implies z2

n → z2 in L1([0, T ] : L1([−k, k])).
Now, since zn is a weak solution of (2.1.1) in the distributional sense satisfying zn(0, ·) = z0,n, we

know that for all ϕ ∈ C∞c ([−T, T ]× R),∫ T

0

∫
R

(∂tϕ− ∂x|D|αϕ) zndxdt+

∫ T

0

∫
R

(∂xϕ) z2
ndxdt−

∫
R
ϕ(0, x)z0,n(x)dx = 0.

�us passing to the limit, we conclude that∫ T

0

∫
R

(∂tϕ− ∂x|D|αϕ) zdxdt+

∫ T

0

∫
R

(∂xϕ) z2dxdt−
∫
R
ϕ(0, x)z0(x)dx = 0,

which proves that z is a weak solution of (2.1.1) corresponding to the initial datum z0.
Finally, let ψ ∈ C∞c (R). It follows from the Arzela-Ascoli theorem and the bounds (2.5.1)-(2.5.2) that

the function vn : t ∈ [0, T ] 7→
∫
R
ψ(x)zn(t, x)dx converges up to a subsequence in C0([−T, T ] : R).

Moreover, by uniqueness, this limit holds for the whole sequence and is equal to
∫
R z(t, x)ψ(x)dx, which

implies that zn(t) ⇀ z(t) in H
α
2 (R) for all t ∈ [0, T ].

2.5.2 Pseudo-di�erential toolbox

First, we recall some well-known results on pseudo-di�erential operators (see [6], or [80] chapter
18). Let D = −i∂x. We de�ne the symbolic class Sm,q by

a(x, ξ) ∈ Sm,q ⇐⇒

{
a ∈ C∞(R2)

∀k, β ∈ N, ∃Ck,β > 0 such that |∂kx∂
β
ξ a(x, ξ)| 6 Ck,β〈x〉q−k < ξ >m−β

For all u ∈ S(R), we set the operator associated to the symbol a(x, ξ) ∈ Sm,q by

a(x,D)u :=
1

2π

∫
eixξa(x, ξ)F(u)(ξ)dξ.

We state the three following results
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1. Let a ∈ Sm,q , there exists C > 0, such that for all u ∈ S(R)

‖a(x,D)u‖L2 6 C‖〈x〉q〈D〉mu‖L2 . (2.5.3)

2. Let a ∈ Sm,q and b ∈ Sm′,q′ , then there exists c ∈ Sm+m′,q+q′ such that

a(x,D)b(x,D) = c(x,D). (2.5.4)

3. If a ∈ Sm,q and b ∈ Sm′,q′ are two operators we de�ne the commutator by [a(xD), b(x,D)] :=
a(x,D)b(x,D)− b(x,D)a(x,D). Moreover there exists c ∈ Sm+m′−1,q+q′−1 such that

[a(x,D), b(x,D)] = c(x,D). (2.5.5)

As a consequence of (2.5.4), 〈D〉m〈x〉q〈D〉−m ∈ S0,q . �erefore, by (2.5.3), we have

‖〈D〉m〈x〉qu‖L2 = ‖〈D〉m〈x〉q〈D〉−m〈D〉mu‖L2

6 C2‖〈x〉q〈D〉mu‖L2 ,

for C2 > 0. By the same computations with 〈x〉q instead of 〈D〉m, there exists C1 > 0 such that

C1‖〈x〉q〈D〉mu‖L2 6 ‖〈D〉m〈x〉qu‖L2 .

Gathering these two estimates, we conclude that

C1‖〈x〉q〈D〉mu‖L2 6 ‖〈D〉m〈x〉qu‖L2 6 C2‖〈x〉q〈D〉mu‖L2 . (2.5.6)

2.5.3 Proof of the weighted commutator estimates

�is section is devoted to the proofs of Lemmas 2.3.1, 2.3.3 and 2.3.4.
In this section u is a function in H

α
2 (R). Let ϕ be de�ned as in (2.3.1) and for A > 1, ϕj,A as in

(2.3.2). Moreover, we de�ne

Φ(x) =
√
|ϕ′(x)| ∼ 〈x〉−

1+α
2 andΦj,A =

√
|ϕ′j,A|.

Finally, let χ ∈ C∞c (R) such that χ(ξ) = 1 on [−1, 1] and χ(ξ) = 0 on [−2, 2]c.

�e proof of Lemma 2.3.1 is an extension of the proof of Lemmas 6 and 7 in [91]. Note that, while
the estimates in Lemmas 6 and 7 in [91] are stated for α ∈ [1, 2], their proofs extend directly to the case
α ∈ (0, 2). �is yields the estimates (2.3.4) and (2.3.5). However, since the estimates (2.3.6) and (2.3.7) are
not symmetric in u, we cannot use the Claim 3 in [91]. Instead, we use the following estimates (which are
also derived from the techniques in [91]).

Lemma2.5.1. Letα ∈ (0, 2), T = |D|αϕD−Dϕ|D|α. �en, there existsC > 0 such that for all u, v ∈ S(R)
we have

i

∫
(Tu)v = (α− 1)

∫
|D|

α
2 (uΦ) |D|

α
2 (vΦ) +R, (2.5.7)

with

|R| 6


C

∫
(u2 + v2)|ϕ′|, if α ∈ (0, 1],

C

(∫
u2|ϕ′|+ 1

A
α
2

∫
(|D|

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
, if α ∈ (1, 2),

(2.5.8)

for all A > 1.
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Proof. �e proof of (2.5.7) is a combination of the proofs of Claim 1 and Claim 2 in [91]. Following [91], we
split T = T1 + T2, where

T1 = |D|α(1− χ(D))ϕD −Dϕ(1− χ(D))|D|α;

T2 = |D|αχ(D)ϕD −Dϕχ(D)|D|α.

First, we have arguing exactly as in Claim 2 in [91] that, for any α ∈ (0, 2),

i

∫
(T2u)v = (α− 1)

∫
|D|

α
2 χ(D) (uΦ) |D|

α
2 (vΦ) +R2,

with
|R2| 6 C

∫
(u2 + v2)|ϕ′|.

Now, we deal with the operator T1. Let us de�ne a(x, ξ) = ϕ(x)|ξ|α(1 − χ(ξ)) ∈ Sα,0. �en,
following the computations in the proof of Claim 1 in [91], we have

i

∫
(T1u)v = (α− 1)

∫
|D|

α
2 (1− χ(D)) (uΦ) |D|

α
2 (vΦ) +

∫
(‹T1u)v +R1,

with ‹T1 = − i
2

(∂2
x∂

2
ξa)(x,D)D − Φ[Φ, |D|α(1− χ(D))]

|R1| 6 C

∫
(u2 + v2)|ϕ′|.

To estimate
∣∣∣∫ (‹T1u)v

∣∣∣, we cannot use Claim 3 in [91] due to the lack of symmetry. Instead, we use clas-
sical pseudo-di�erential calculus estimates. Observe that the symbol t1(x, ξ) of ‹T1 belongs to the class
Sα−1,−α−2. In the case, 0 < α < 1, t1(x, ξ) ∈ S0,−(α+1). �us the Cauchy-Schwarz inequality and (2.5.3)
yield ∣∣∣∣∫ (‹T1u)v

∣∣∣∣ =

∣∣∣∣∫ (Φ−1‹T1u)Φv

∣∣∣∣ 6 ‖Φ−1‹T1u‖L2‖Φv‖L2 6 C

∫
(u2 + v2)|ϕ′|.

In the case 1 < α < 2, t1(x, ξ) ∈ S
α
2
,−(1+α). By Cauchy-Schwarz’ inequality, (2.5.3), and then Young’s

inequality, we get∣∣∣∣∫ (‹T1u)v

∣∣∣∣ 6 ‖Φ−1‹T1u‖L2‖Φv‖L2 6 C

(
1

A
α
2

∫
(〈D〉

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
.

for any A > 1. Moreover by pseudo-di�erential calculus (2.5.4), (2.5.3), and since the symbols of the
operators Φχ(D)〈D〉

α
2 Φ−1 and Φ(1− χ(D))〈D〉

α
2 |D|−

α
2 Φ−1 belong to S0,0,∫ (

〈D〉
α
2 u
)2
|ϕ′| 6 2

∫ (
χ(D)〈D〉

α
2 u
)2
|ϕ′|+ 2

∫ (
(1− χ(D))〈D〉

α
2 u
)2
|ϕ′|

6 2

∫ (
Φχ(D)〈D〉

α
2 Φ−1 (Φu)

)2

+ 2

∫ (
Φ(1− χ(D))〈D〉

α
2 |D|−

α
2 Φ−1

(
Φ|D|

α
2 u
))2

6 C

(∫
u2|ϕ′|+

∫ (
|D|

α
2 u
)2
|ϕ′|
)
. (2.5.9)

Gathering these estimates concludes the proof of Lemma 2.5.1.
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Lemma 2.5.2. Let α ∈ (0, 2), S = Φ[Φ, |D|α]. �en, there exists C > 0 such that for all u, v ∈ S(R) we
have

∣∣∣∣∫ (Su)v

∣∣∣∣+

∣∣∣∣∫ (Sv)u

∣∣∣∣ 6

C

∫
(u2 + v2)|ϕ′|, if α ∈ (0, 1],

C

(∫
u2|ϕ′|+ 1

A
α
2

∫
(|D|

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
, if α ∈ (1, 2),

(2.5.10)
for all A > 1.

Proof. We split S = S1 + S2, where

S1 = Φ[Φ, |D|α(1− χ(D))];

S2 = Φ[Φ, |D|αχ(D)].

We �rst deal with the high frequency terms involving S1. Since 1 − χ is supported outside 0, S1

is a pseudo-di�erential operator of symbol s1(x, ξ), which belongs to the class Sα−1,−α−2. In the case,
0 < α 6 1, s1(x, ξ) ∈ S0,−(α+1) and in the case, 1 < α < 2, s1(x, ξ) ∈ S

α
2
,−(α+1). �us by arguing as in

the proof of Lemma 2.5.1, we deduce that

∣∣∣∣∫ (S1u)v

∣∣∣∣ 6

C

∫
(u2 + v2)|ϕ′|, if 0 < α 6 1,

C

(
1

A
α
2

∫
(〈|D|〉

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
, if 1 < α < 2.

Observe that the same estimate also holds for
∣∣∫ (S1v)u

∣∣. Indeed, the proof is exactly the same in the case
0 < α 6 1. In the case 1 < α < 2, Φ−1〈|ξ|〉−

α
2 s1(x, ξ) ∈ S0,−α+1

2 , so that∣∣∣∣∫ (S1v)u

∣∣∣∣ 6 ‖Φ−1〈|D|〉−
α
2 S1v‖L2‖Φ〈|D|〉

α
2 u‖L2 6

(
1

A
α
2

∫
(〈D〉

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
Moreover, by using (2.5.9), we deduce that

∣∣∣∣∫ (S1u)v

∣∣∣∣+

∣∣∣∣∫ (S1v)u

∣∣∣∣ 6

C

∫
(u2 + v2)|ϕ′|, if α ∈ (0, 1],

C

(∫
u2|ϕ′|+ 1

A
α
2

∫
(|D|

α
2 u)2|ϕ′|+A

α
2

∫
v2|ϕ′|

)
, if α ∈ (1, 2),

Now we deal with the low frequency term involving S2. We follow the proof given in [91] for the
same type of operator. We remark that |D|αχ(D)u = k ∗ u, with k̂ = |ξ|αχ(ξ). �en, we can rewrite

[Φ, |D|αχ(D)]u =

∫
k(x− y) (Φ(x)− Φ(y))u(y)dy.

We want to prove that the operator de�ned by the kernel

Λ(x, y) = k(x− y) (Φ(x)− Φ(y)) Φ−1(y),

is bounded in L2(R). For this, we need the 3 following results.

�eorem 2.5.3 (Schur’s test [75], �eorem 5.2). Let p, q be two non-negative measurable functions. If there
exists α, β > 0 such that

1.
∫
Y
|K(x, y)|q(y)dy 6 αp(x) a.e x ∈ R.

2.
∫
X
|K(x, y)|p(x)dx 6 βq(y) a.e y ∈ R.
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�en Tf :=

∫
R
K(x, y)f(y)dy is a bounded operator on L2(R).

Claim 2.5.4 ( [91] Claim 8). �ere exists C > 0 such that

|Φ(x)− Φ(y)| 6 C
|x− y|

(〈x〉+ 〈y〉)
α+3
2

if |x− y| 6 1

2
(〈x〉+ 〈y〉) ,

|Φ(x)− Φ(y)| 6 1

〈x〉
1+α
2

+
1

〈y〉
1+α
2

if |x− y| > 1

2
(〈x〉+ 〈y〉) .

Lemma 2.5.5 ( [91], Lemma A.2). Let p be a homogeneous function of degree β > −1. Let χ ∈ C∞0 (R) such
that 0 6 χ 6 1, χ(ξ) = 1 if |ξ| < 1 and χ(ξ) = 0 if |ξ| > 2. Let

k(x) =
1

2π

∫
eixξp(ξ)χ(ξ)dξ.

�en for all q ∈ N, there exists Cq > 0 such that, for all x ∈ R,

|∂qxk(x)| 6 Cq
〈x〉β+q+1

.

Let Λ = Λ1 + Λ2, where Λ1 and Λ2 are restricted respectively to the regions |x− y| 6 1
2 (〈x〉+ 〈y〉)

and |x− y| > 1
2 (〈x〉+ 〈y〉). By using Claim 2.5.4 and Lemma 2.5.5,

|Λ1(x, y)| 6 C
1

〈x− y〉1+α

|x− y|
(〈x〉+ 〈y〉)

α+3
2

〈y〉
1+α
2

6 C
1

〈x− y〉1+α
.

�en, by �eorem 2.5.3, with p = q = 1, Λ1 is the kernel of a bounded operator in L2(R). Now, we deal
with Λ2. By using Claim 2.5.4 and Lemma 2.5.5,

|Λ2(x, y)| 6 C
1

〈x− y〉1+α

(
1

〈x〉
1+α
2

+
1

〈y〉
1+α
2

)
〈y〉

1+α
2

6 C
1

〈x− y〉1+α
+ C

〈y〉
1+α
2

〈x− y〉1+α〈x〉
1+α
2

6 Λ3(x, y) + Λ4(x, y).

�en, by �eorem 2.5.3, with p = q = 1, Λ3 is the kernel of a bounded operator in L2. We compute∫
Λ4(x, y)〈x〉−

1
2dx 6 C〈y〉−

1+α
2 ,

∫
Λ4(x, y)〈y〉−

1+α
2 dy 6 C〈x〉−

1
2 .

�en by �eorem 2.5.3, we deduce that Λ4 is the kernel of a bounded operator in L2(R). Gathering these
estimates, we conclude that

‖[Φ, |D|αχ(D)]u‖L2 6 C‖uΦ‖L2 .

�erefore, by Young’s inequality, we get∣∣∣∣ ∫ (S2u)v

∣∣∣∣ =

∣∣∣∣ ∫ vΦ[Φ, |D|α]u

∣∣∣∣ 6 C

(∫
v2|ϕ′|+

∫
([Φ, |D|α]u)2

)
6 C

∫ (
u2 + v2

)
|ϕ′|.

�e estimate for
∣∣∣∣ ∫ (S2v)u

∣∣∣∣ is similar. �is concludes the proof of Lemma 2.5.2.
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Proof of (2.3.7). By integration by parts, we get∫
((|D|αu) ∂xv + (|D|αv) ∂xu)ϕ =

∫
(|D|α(ϕ∂xu)− ∂x(ϕ|D|αu)) v = i

∫
Tuv,

with T = |D|αϕD −Dϕ|D|α. Hence, we deduce from (2.5.7) that∣∣∣∣ ∫ ((|D|αu) ∂xv + (|D|αv) ∂xu)ϕ−(α− 1)

∫
|D|

α
2

(
u
√
|ϕ′|
)
|D|

α
2

(
v
√
|ϕ′|
) ∣∣∣∣ = |R|,

where |R| satis�es (2.5.8). �erefore, we conclude the proof of (2.3.7) by performing the change of variable
x′ =

x−mj
A .

Proof of (2.3.6). By direct computation we get∫
((|D|αu) v − (|D|αv)u) |ϕ′| =

∫
vΦ[Φ, |D|α]u−

∫
uΦ[Φ, |D|α]v =

∫
(Su)v −

∫
(Sv)u,

where S = Φ[Φ, |D|α]. �erefore, we conclude the proof of (2.3.6) by using Lemma 2.5.2 and performing
the change of variable x′ = x−mj

A .

�is �nishes the proof of Lemma 2.3.1. Now we prove Lemma 2.3.3.

Proof of Lemma 2.3.3. By direct computations, we obtain∫
(|D|α (uΦj,A))2 −

∫
(|D|αu)2 |ϕ′j,A| =

∫
(|D|2αu)u|ϕ′j,A| −

∫
(|D|αu)2 |ϕ′j,A|

−
∫
uΦj,A[Φj,A, |D|2α]u

=

∫
(|D|2αu)u|ϕ′j,A| −

∫
(|D|αu)2 |ϕ′j,A|

− 1

2

∫
u
[
Φj,A,

[
Φj,A, |D|2α

]]
u. (2.5.11)

By applying (2.3.6) to v = |D|αu, we get that∣∣∣∣ ∫ (|D|2αu)u|ϕ′j,A|−
∫

(|D|αu)2 |ϕ′j,A|
∣∣∣∣ (2.5.12)

6


C

Aα

∫ (
u2 + (|D|αu)2

)
|ϕ′j,A|, if α ∈ (0, 1],

C

A
α
2

∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|, if α ∈ (1, 2).

It remains then to estimate the term (2.5.11). By using the proof of Claim 7 in [91], we know that for
any α > 0, there exists C > 0 such that for all u, v ∈ S(R),∣∣∣∣ ∫ (

[
Φ, [Φ, χ(D)|D|α]

]
u)v

∣∣∣∣ 6 C

∫
(u2 + v2)|ϕ′|. (2.5.13)

We observe that the symbol of the pseudo-di�erential operator Φ−1
[
Φ,
[
Φ, χ(D)|D|2α

]]
belongs to

S2α−2,− 1+α
2
−2 ⊂ Sα,−

1+α
2 , since α ∈ (0, 2). �us it follows from (2.5.3), (2.5.13) and Young’s inequal-

ity that ∣∣∣∣ ∫ u
[
Φ,
[
Φ, |D|2α

]]
u

∣∣∣∣ 6 ∣∣∣∣ ∫ uΦΦ−1
[
Φ,
[
Φ, (1− χ(D))|D|2α

]]
u

∣∣∣∣
+

∣∣∣∣ ∫ u
[
Φ,
[
Φ, χ(D)|D|2α

]]
u

∣∣∣∣
6

C

Aα

∫
(〈D〉αu)2 |ϕ′|+ CAα

∫
u2|ϕ′|.
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Moreover, arguing as in (2.5.9), we obtain that∫
(〈D〉αu)2 |ϕ′|dx 6 C

(∫
u2|ϕ′|+

∫
(|D|αu)2 |ϕ′|

)
.

By changing variable x′ = x−mj
A , we deduce that∣∣∣∣ ∫ uΦj,A

[
Φj,A, |D|2α

]
u

∣∣∣∣ 6 C

Aα

∫ (
u2 + (|D|αu)2

)
|ϕ′j,A| (2.5.14)

�erefore, by gathering (2.5.12), (2.5.14), we conclude the proof of (2.3.8).

Proof of Lemma 2.3.4. By Young’s inequality and (2.3.8), we obtain that∣∣∣∣ ∫ |D|α (uΦj,A)(|D|αu)Φj,A

∣∣∣∣ 6 1

2

(∫
(|D|α (uΦj,A))2 +

∫
(|D|αu)2 |ϕ′j,A|

)
6
∫

(|D|αu)2 |ϕ′j,A|+
1

2

∣∣∣∣∫ (|D|α (uΦj,A))2 −
∫

(|D|αu)2 |ϕ′j,A|
∣∣∣∣

6
∫

(|D|αu)2 |ϕ′j,A|+
C

A
α
2

(∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|

)
,

which yields (4.4.28).

2.5.4 Proof of the non-linear weighted estimates

Proof of Lemma 2.3.6. Let j ∈ {1, ..., N}. First we prove estimate (2.3.16). By the Cauchy-Schwarz inequal-
ity, the Sobolev embedding Ḣ

1
4 (R) ↪−→ L4(R) and 1

4 <
α
2 , we get that∫

|η|3|ϕ′j,A| 6
(∫

η2

) 1
2
(∫

η4|ϕ′j,A|2
) 1

2

6 Cγ‖|D|
1
4 (ηΦj,A)‖2L2 6 Cγ‖ηΦj,A‖2

H
α
2
. (2.5.15)

From the decomposition η = u−R, we have

‖ηΦj,A‖H α
2
6 ‖uΦj,A‖H α

2
+ ‖RΦj,A‖H α

2
6 ‖uΦj,A‖H α

2
+ ‖RΦj,A‖Hα . (2.5.16)

To deal with the second term on the right-hand side of (2.5.16), we use pseudo-di�erential calculus.
Observe that the symbols of Φχ(D)〈D〉αΦ−1 and Φ(1− χ(D))〈D〉α|D|−αΦ−1 belong to S0,0. It follows
then from (2.5.6), and then (2.5.4) that, for all v ∈ S(R),

‖|D|α (vΦ) ‖L2 6 ‖vΦ‖Hα

6 C‖ (〈D〉αv) Φ‖L2

6 C‖χ(D) (〈D〉αv) Φ‖L2 + ‖(1− χ(D))〈D〉α|D|−α (|D|αv) Φ‖L2

6 C (‖vΦ‖L2 + ‖ (|D|αv) Φ‖L2) . (2.5.17)

�en, we obtain, by changing variable x′ = x−mj
A ,

‖|D|α (vΦj,A) ‖L2 6 C

(
1

Aα
‖vΦj,A‖L2 + ‖ (|D|αv) Φj,A‖L2

)
,

so that

‖vΦj,A‖Hα 6 C (‖vΦj,A‖L2 + ‖ (|D|αv) Φj,A‖L2) , (2.5.18)

for all v ∈ S(R).
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�erefore, we deduce combining (2.5.15), (2.5.16) and (2.5.18) with v = R that∫
|η|3|ϕ′j,A| 6 Cγ‖uΦj,A‖2

H
α
2

+ Cγ

∫ (
R2 + (|D|αR)2

)
|ϕ′j,A|.

Moreover, by using the equation (2.1.3) and (2.3.12), we obtain∫
(|D|αR)2 |ϕ′j,A| 6 C

(∫
R2 +R4

)
|ϕ′j,A| 6

C

(βt)1+α
,

which concludes the proof of (2.3.16).
Now we prove (2.3.17). Using the Cauchy-Schwarz inequality, the Sobolev embedding and the former

estimates, we conclude that∫
η4|ϕ′j,A| 6

(∫
η4

) 1
2
(∫

η4|ϕ′j,A|2
) 1

2

6 Cγ2

[∫
u2|ϕ′j,A|+

∫ (
|D|

α
2 (uΦj,A)

)2
]

+
Cγ2

(βt)1+α ,

which is exactly estimate (2.3.17).

Proof of Lemma 2.3.7. By using Young’s inequality and the decomposition u = R+ η, we deduce that∣∣∣∣ ∫ |D|α2 (uΦj,A) |D|
α
2
(
u2Φj,A

) ∣∣∣∣ =

∣∣∣∣ ∫ |D|α (uΦj,A)u2Φj,A

∣∣∣∣
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∫
u4|ϕ′j,A|+

1

8

∫
(|D|α (uΦj,A))2

6C

(∫
η4|ϕ′j,A|+

∫
R4|ϕ′j,A|

)
+

1

8

∫
(|D|α (uΦj,A))2 .

Using (2.3.17), (2.3.12), (2.3.8), we have that∣∣∣∣ ∫ |D|α2 (uΦj,A) |D|
α
2
(
u2Φj,A

) ∣∣∣∣ 6C (γ2 +
1

A
α
2

)(∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|

)
+ Cγ2

∫ (
|D|

α
2 (uΦj,A)

)2
+

1

8

∫
(|D|αu)2 |ϕ′j,A|

+
C

(βt)1+α .

Furthermore, by using again (2.3.8) with α
2 < 1, we deduce that∣∣∣∣ ∫ |D|α2 (uΦj,A) |D|

α
2
(
u2Φj,A

) ∣∣∣∣ 6C (γ2 +
1

A
α
2

)(∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
|ϕ′j,A|

)
+

1

8

∫
(|D|αu)2 |ϕ′j,A|+

C

(βt)1+α .

�is concludes the proof of Lemma 2.3.7.

2.5.5 Coercivity of the localized operator

To begin, we recall the de�nition of Hj given in (2.4.12)

Hj(u, u) =

∫ (
u|D|αu+ cju

2 − 2Rju
2
)
ψj,A,

where Rj is de�ned in (2.2.5), ψj,A is de�ned in (2.3.3) and u ∈ H
α
2 (R). Moreover, let

Lju = |D|αu+ cju− 2Rju and Lu = |D|αu+ u− 2Qu.
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It has been proved in �eorem 2.3 in [60] that the spectrum of L is composed by one negative eigen-
value, the eigenvalue 0 and that the rest is the continuous spectrum [1,+∞). Moreover, the eigenspaces
associated with the negative eigenvalue and 0 are one-dimensional vector spaces and the eigenspace of 0
is spanned by Q′.

Furthermore, from Lemma E.1 in [187], since we are in the subcritical case, we can replace the eigen-
function associated with the negative eigenvalue byQ to get the coercivity property stated in the following
theorem.

�eorem 2.5.6. Let α ∈
(

1
2 , 2
)
. �en, there exists µ > 0 such that for all u ∈ H

α
2 (R)∫

uLu > µ‖u‖
H
α
2
− 1

µ

(∫
uQ

)2

− 1

µ

(∫
uQ′

)2

Remark 2.5.7. By using a scaling argument, the result of �eorem 2.5.6 still holds if one replaces L by Lj
and Q by Rj , for j ∈ {1, · · · , N}.

As a consequence of the former theorem, we deduce a coercivity property for the bilinear form Hj .

Corollary 2.5.8. �ere exist ν > 0, C > 0 such that for all A > 1, u ∈ H
α
2 (R)

N∑
j=1

Hj(u, u) >

(
ν − C

(βt)α
− C

A
α
2

)
‖u‖2

H
α
2
− 1

ν

N∑
j=1

((∫
uRj

)2

+

(∫
u∂xRj

)2
)
.

Proof of Corollary 2.5.8. For all j ∈ {1, · · · , N}, we have from �eorem 2.5.6 that

Hj(u, u) =

∫
u
√
ψj,AL(u

√
ψj,A) +

∫
u (|D|αu)ψj,A −

∫ (
|D|

α
2

(
u
√
ψj,A

))2

>µ‖u
√
ψj,A‖2

H
α
2
− 1

µ

(∫
u
√
ψj,ARj

)2

− 1

µ

(∫
u
√
ψj,A∂xRj

)2

+

∫
u (|D|αu)ψj,A −

∫ (
|D|

α
2

(
u
√
ψj,A

))2
.

By (2.3.14), (2.3.15), and the Cauchy-Schwarz inequality we deduce that for all j ∈ {1, · · · , N}(∫
u
√
ψj,ARj

)2

+

(∫
u
√
ψj,A∂xRj

)2

6 2

(∫
uRj

)2

+ 2

(∫
u∂xRj

)2

+ 2

(∫
u(1−

√
ψj,A)Rj

)2

+ 2

(∫
u(1−

√
ψj,A)∂xRj

)2

6 2

(∫
uRj

)2

+ 2

(∫
u∂xRj

)2

+
C‖u‖2L2

(βt)α
.

Observe from 〈D〉
α
2 ∼ 1 + |D|

α
2 that

‖u
√
ψj,A‖2

H
α
2
> c

∫
(u2 + (|D|

α
2 u)2)ψj,A − c

∫
(|D|

α
2 u)2ψj,A + c

∫ (
|D|

α
2

(
u
√
ψj,A

))2
,

for a small positive constant 0 < c < 1. Since
N∑
j=1

ψj,A = 1, we have

N∑
j=1

∫
u (|D|αu)ψj,A =

∫ (
|D|

α
2 u
)2

=

N∑
j=1

∫ ((
|D|

α
2 u
)√

ψj,A

)2
. (2.5.19)
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Hence, we deduce by summing over j that
N∑
j=1

Hj(u, u) >N

(
cµ− C

(βt)α

)
‖u‖2

H
α
2
− 2

µ

N∑
j=1

((∫
uRj

)2

+

(∫
u∂xRj

)2
)

+ (1− cµ)
N∑
j=1

(∫
u (|D|αu)ψj,A −

∫ (
|D|

α
2

(
u
√
ψj,A

))2
)
.

It remains to estimate the last term on the right hand side of the former inequality. By using (2.5.19) and
direct computations,

N∑
j=1

(∫
u (|D|αu)ψj,A −

∫ (
|D|

α
2

(
u
√
ψj,A

))2
)

=
N∑
j=1

∫ ((
|D|

α
2 u
)√

ψj,A + |D|
α
2

(
u
√
ψj,A

))((
|D|

α
2 u
)√

ψj,A − |D|
α
2

(
u
√
ψj,A

))

= −
N∑
j=1

∫ ((
|D|

α
2 u
)√

ψj,A + |D|
α
2

(
u
√
ψj,A

))
[|D|

α
2 ,
√
ψj,A]u.

By arguing as in (2.5.17) and using 0 6 ψj,A 6 1, we deduce that
N∑
j=1

‖|D|
α
2 (u
√
ψj,A)‖L2 6 C

N∑
j=1

(
‖u
√
ψj,A‖L2 + ‖

(
|D|

α
2 u
)√

ψj,A‖L2

)
6 C‖u‖

H
α
2
. (2.5.20)

�en, it follows from the Cauchy-Schwarz inequality and (2.5.20) that
N∑
j=1

∣∣∣∣ ∫ u (|D|αu)ψj,A −
∫ (
|D|

α
2

(
u
√
ψj,A

))2
∣∣∣∣ 6 C‖u‖

H
α
2

N∑
j=1

‖[|D|
α
2 ,
√
ψj,A]u‖L2

Finally to estimate the commutator on the right-hand side of the former estimate, we will rely on pseudo-
di�erential calculus and argue as in the previous subsection. By (2.5.5), we have that the symbol of
[|D|

α
2 (1− χ(D)),

√
ψ] belongs to S

α
2
−1,−1 ⊂ S0,0, since α < 2. �en, it follows from (2.5.3) that

‖[|D|
α
2 ,
√
ψ]u‖L2 6 C

(
‖u‖L2 + ‖[|D|

α
2 χ(D),

√
ψ]u‖L2

)
.

We recall |D|
α
2 χ(D)u = k ∗ u, with k̂ = |ξ|

α
2 χ(ξ), so that

[χ(D)|D|
α
2 ,
√
ψ]u =

∫
k(x− y)

(√
ψ(x)−

√
ψ(y)

)
u(y)dy.

We want to prove that the operator T de�ned by the kernel

R(x, y) = k(x− y)
(√

ψ(x)−
√
ψ(y)

)
,

is bounded in L2(R). By Lemma 2.5.5, we obtain that |k(x)| 6 C

〈x〉1+α
2

. Since
√
ψ ∈ L∞(R), we deduce

by Lemma 2.5.3 that
‖[|D|

α
2 χ(D),

√
ψ]u‖L2 6 C‖u‖L2 .

By changing the variable x′ = x−mj
A , we get that

‖[|D|
α
2 ,
√
ψj,A]u‖L2 6

C

A
α
2

‖u‖L2 .

We �nish the proof of Corollary 2.5.8 by combining all these estimates and by choosing ν small
enough.
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Chapter 3

Asymptotic of non-linear ground states
for fractional Laplacian
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3.1 Introduction

3.1.1 Motivation

Consider the class of elliptic equations:

|D|αu+ u− f(u) = 0, u : R→ R, 0 < α < 2, (3.1.1)

with the notation |D|α standing for the Riesz potential of order −α given by the Fourier multiplier:

F(|D|αu) := |ξ|αF(u),

and with a non-linearity f(u) = |u|p−1u or f(u) = up, p integer, and 1 < p < p∗(α) where:

p∗(α) :=


2α

1− α
+ 1 if 0 < α 6 1,

+∞ if 1 6 α < 2.

p∗(α) is de�ned such that the ”equation isH
α
2 (R)-subcritical”, whereHs(R) stands for the Sobolev spaces.

�ose fractional elliptic equations appear naturally when studying solitary waves of the following
equations:

• the fractional generalized Korteweg-de Vries equation [171, 174]:

∂tu+ ∂x (−|D|αu+ f(u)) = 0, (fgKdV)

• the fractional generalized Benjamin-Bona-Mahony equation [48, 49, 161]:

∂tu+ ∂xu+ ∂x(f(u))− |D|α∂tu− |D|α∂xu = 0 (fgBBM)

• the fractional generalized nonlinear Schrödinger equation [112]:

i∂tu+ |D|αu+ f(u) = 0. (fgNLS)

�e particular case of f(u) = up with an integer p is particularly relevant for (fgKdV) and (fgBBM),
whereas the non-linearity f(u) = |u|p−1u naturally appears when studying the Schrödinger type equa-
tions.

A solitary wave for (fgKdV) is a wave moving in one direction with a constant velocity c, keeping its
form along the time and decaying at in�nity, and can thus be wri�en as u(t, x) = Qc(x− ct). In the case
c = 1, the function Q1 has to be a solution of (3.1.1).

Up to adequate change of variables, the solitary waves of (fgBBM) satisfy the same equation. �e
counterparts of (fgNLS) are stationary waves of the form eiωtQω(x), where the solution Q1 with phase
ω = 1 also satis�es (3.1.1).

Having a deeper understanding of the solutions of the fractional elliptic equation (3.1.1) is necessary
to get more insights on the behaviour of solitary waves. It is of great interest to get more properties of
those solutions, such as the existence and uniqueness of solutions, their regularity, the number of zeros or
the asymptotic behaviour. �e aim of this article to give the asymptotic development of the solutions to
that fractional elliptic equations and some subsequent properties.

3.1.2 Survey of properties of the solutions.

In the two speci�c cases α = 2 for general p, and α = 1 with f(u) = u2, the solutions of the elliptic
equation (3.1.1) have been widely studied during the last ��y years. �e main questions on those solutions
are their existence, uniqueness, and some intrinsic properties.
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Let us give a brief review of the previous results in the case α = 2, for algebraic non-linearities
p ∈ (1, p∗(α)). We consider the set of solutions Q : Rd → R with |Q(x)| →

x−→+∞
0. For the dimension

d = 1, there exists a unique solution Q(x) =
(

(p+1)
2 cosh−2

(
p−1

2

)) 1
p−1 up to translations of the origin

(see �eorem 5 of Berestycki-Lions [17]). For higher dimensions d > 2, there exists a unique positive
solution (see Weinstein [189] and Kwong [109]), but also an in�nite number of non-positive solutions as
shown in Strauss [177], [17] and Musso-Pacard-Wei [152]. All the previous solutions have an exponential
decay.

Concerning the equation associated with the Benjamin-Ono equation (BO), corresponding to α = 1,
f(Q) = Q2 and d = 1, a solution is explicit Q(x) = 4(1 + x2)−1, see Benjamin [14]. In fact, any solution
to this problem is equal, up to translation, to this solution, as proved in Amick-Toland [7] relying on former
ideas of Benjamin [14] (see also Albert [3] for an alternative proof). Notice that the solution is even, positive
and has a polynomial decay at in�nity.

In the generic case α ∈ (0, 2), the existence of solutions relies on the existence of a minimizer for
the functional Jα de�ned by:

Jα(u) =

(∫
||D|

α
2 u|2

) p+1
2α
(∫
|u|2
) (p+1)

2α
(α−1)+1

∫
|u|p+1

. (3.1.2)

A minimizer Q of the functional is called a ground state. �e existence of a minimizer has been obtained
by Weinstein [189] and Albert-Bona-Saut [4]. �e structure of the set of solutions of (3.1.1) is complex, and
it is not easy to know which elements compose this set. For example, the question of existence and unique-
ness of solutions of (3.1.1) not minimizing the functional Jα remains open. However, a breakthrough was
achieved by Frank-Lenzmann [60] by proving the uniqueness of ground states. �eir proof relies on the
non degeneracy of the linearized operator L = |D|α + 1 − pQp−1, in other words ker(L) =span(Q′).
�e understanding of the kernel of L is based on a result by Ca�arelli-Silvestre [29] to express |D|α as
a Dirichlet-to-Neumann operator for a local problem on the upper half-plane. Furthermore in higher di-
mensions, Felmer-�aas-Tan in [54] derived the existence and some properties of the ground states and
Frank-Lenzmann-Silvestre in [61] extended the uniqueness result.

In the following theorem, we summarize the well-known properties of the ground states.

�eorem 3.1.1 ( [4, 60, 61, 189]). Let α ∈ (0, 2) and p ∈ (1, p∗(α)). �ere exists Q ∈ Hs(R), for all s > 0,
such that

1. (Existence) �e function Q solves (3.1.1) and Q = Q(|x|) > 0 is even, positive and strictly decreasing in
|x|. Moreover, the function Q is a minimizer of Jα in the sense that:

Jα(Q) = inf
u∈H

α
2 (R)

Jα(u).

2. (Uniqueness) �e even ground state solution Q = Q(|x|) > 0 of (3.1.1) is unique. Furthermore, every
optimizer v ∈ H

α
2 (R) for the Gagliardo-Nirenberg problem (3.1.2) is of the form v = βQ(γ(· + y))

with some β ∈ R, β 6= 0, γ > 0 and y ∈ R.

3. (Decay) �e function Q veri�es the following decay estimate:

C1

〈x〉α+1
6 Q(x) 6

C2

〈x〉α+1
,

for some C1, C2 > 0.
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As explained above, it is not clear whether other solutions of (3.1.1) which are not minimizers of
(2.1.4) exist or not. �e critical points of the functional Jα are called bound states and solve (3.1.1). In
dimension 1 for other elliptic equations, we expect the ground state to be the unique solution vanishing
at in�nity. For some elliptic equations in higher dimensions, other bound states di�erent from the ground
state exist: they are called excited states. For non-local equations such as (3.1.1), except for α = 1 and
f(u) = u2, the existence of a unique bound state in dimension 1 and of multiple excited states in higher
dimensions is still an open problem. In this context, we propose in this article to sharpen the asymptotic
behaviour of the ground-state and to address the issue of the asymptotic behaviour of any solution of (3.1.1)
at +∞.

3.1.3 Main results

In this paper, we give several results on the asymptotic expansion of a solution Q of (3.1.1) and of its
derivatives, and extend this development in the case of a non-linearity f(u) = u3. �ese results extend the
ones of Cappiello-Gramchev-Rodino [30], where they proved that the solutions of a wider class of equations
remain in some algebraic weighted spaces.

All the propositions stated in this article are given for x > 1. However the proofs can be adapted to
get the asymptotic developments at −∞.

To do so, we de�ne the following explicit constants:

k1 :=
sin
(
π
2α
)

π
Γ (α+ 1) , k2 := −sin (πα)

π
Γ (2α+ 1) (3.1.3)

with Γ the Euler Γ-function, and �r a given function Q:

a1 := k1

∫
|Q|p−1Q(x)dx, a2 := k2

∫
|Q|p−1Q(x)dx, a3 :=

(α+ 1)(α+ 2)

2
k1

∫
x2|Q|p−1Q(x)dx.

(3.1.4)

We recall the de�nition of a weak solution of (3.1.1):

De�nition 3.1.2. �e function u is called a weak solution of (3.1.1) if for all ϕ in the Schwartz space S(R),
we have that: ∫

R
(u(x)|D|αϕ(x) + u(x)ϕ(x)− f(u)(x)ϕ(x)) dx = 0.

�e next proposition states the main order terms of the development of the derivatives.

Proposition 3.1.3. Let α ∈ (0, 2), p ∈ (1, p∗(α)) and Q be a weak solution of |D|αQ+Q− |Q|p−1Q = 0,
satisfying:

Q ∈ Lp(R) and ∃l > 0, |x|lQ(x) ∈ L∞(R). (3.1.5)

�en, Q ∈ C0(R) and veri�es:

Q(x)− a1

xα+1
= o+∞

(
1

xα+1

)
,

with a1 dependent on Q and de�ned in (3.1.4).
Futhermore, if α > 1, then Q ∈ Cbpc+1(R) with bpc the �oor function of p, and veri�es for j 6 bpc:

Q(j)(x)− (−1)j
(α+ j)!

α!

a1

xα+1+j
= o+∞

(
1

xα+1+j

)
.

Remark 3.1.4. Some comments on the previous result are in order.
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1. Bona-Li in [24] studied the decay of solutions of elliptic equations similar to (3.1.1), with a set of
assumptions di�erent from (3.1.5). In the context of (3.1.1), if we ask for α > 3

2 , Q ∈ L∞(R) and
vanishing at in�nity, �eorem 3.1.2 of [24] implies the condition (3.1.5). �us condition (3.1.5) is
coherent with their article.

2. Note that if Q is not positive the coe�cient a1 is potentially null.

3. If α > 1, our method does not give an asymptotic expansion of Q(bpc+1). Moreover, we do not know
if Q(bpc+2) exists.

4. If the coe�cient of the non-linearity p is an integer thenQ ∈ H∞(R). �e proof is given in Appendix
3.6.1.

In the next proposition, we assume the function Q to be positive, so that �eorem 3.1.1 applies. We
recall some important results of this theorem and give new asymptotic behaviours.

Proposition 3.1.5. Let α ∈ (0, 2). Let Q satisfying the assumptions (3.1.5) of Proposition 3.1.3. Suppose also
that Q is positive. �en Q ∈ H∞(R), even (up to translation), decaying and veri�es that:

Q(j)(x)− (−1)j
(α+ j)!

α!

a1

xα+1+j
= o+∞

(
1

xα+1+j

)
, ∀j ∈ N,

and the next order asymptotic expansion holds, with a positive constant ã1:

Case p <
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− ã1

xp(α+1)
= o+∞

(
1

xp(α+1)

)
.

Case p =
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− ã1

x2α+1
− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

Case p >
2α+ 1

α+ 1
: Q(x)− a1

xα+1
− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

Remark 3.1.6. Let us notice that the constants involved in the asymptotic expansion are coherent with other
situations. In the case α = 1 and f(u) = u2, thus for (BO), only the terms with an even power are present,
since a2 = 0, but a1 6= 0. On the other hand, the case α = 2 and f(u) = up with p an integer corresponds
to the generalized Korteweg-de Vries equation whose solitons have an exponential decay. By replacing
α = 2 in the coe�cients of the asymptotic expansion, we �nd a1 = a2 = 0, which is coherent with the
exponential decay.

�e next propositions re�ne the asymptotic development of Q in the case of a polynomial non-
linearity.

Proposition 3.1.7. Let p ∈ N, p > 2, α ∈
(
p−1
1+p , 2

)
, and Q be solution of |D|αQ + Q−Qp = 0 verifying

condition (3.1.5). �en Q ∈ H∞(R) and veri�es that:

Q(j)(x)− (−1)j
(α+ j)!

α!

k1

xα+1+j

∫
Qp = o+∞

(
1

xα+1+j

)
, ∀j ∈ N.

In the case of a cubic non-linearity, the next proposition provides a sharper asymptotic development.

Proposition 3.1.8 (Higher order expansion). Letα ∈ (1, 2), p = 3, andQ be a solution of |D|αQ+Q−Qp =
0 verifying condition (3.1.5). �en, there exists a constant C = C(α, p) > 0 such that:∣∣∣Q(x)−

( a1

xα+1
+

a2

x2α+1
+

a3

xα+3

)∣∣∣ 6 C

x3α+1
, (3.1.6)∣∣∣Q′(x) + (α+ 1)

a1

xα+2
+ (2α+ 1)

a2

x2α+2

∣∣∣ 6 C

x3α+1
. (3.1.7)
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Remark 3.1.9. �e constants obtained in the asymptotic development ofQ(x) are dependent of the functions
xlk(x) and xl|Q|p−1(x)Q(x), for l ∈ N, which are dependent on p and α as for a3 de�ned in (3.1.4). �us,
our method allows a further asymptotic development whilexl|Q|p−1(x)Q(x) andxlk(x) remain integrable.

Let us point out an application of these results. �e authors of this article describe in [52] the long
term interaction of two solitary waves with the same velocity for the fgKdV equation. To this aim, they
used the asymptotic behaviour of those waves to quantify the distance between the two objects. Indeed,
the asymptotic behaviour up to order 3 given in Proposition 3.1.7 was necessary to quantify the strong
interaction.

A natural question is the generalization of those results to higher dimensions. �e authors do not
know how the computations introduced in this article can be generalized for higher dimensions, and if
similar theorems can be stated in this new se�ing.

3.1.4 Ideas of the proof

Let us describe the main ideas to obtain the asymptotic developments. We use the kernel formulation,
introduced �rst by Bona-Li [24], of the equation satis�ed byQ: Q = k ?f(Q). Let us explain formally why
the asymptotic behaviour of Q is characterised by the one of k, as remarked by Bona-Li [24]. Consider the
general formulation:

−cu+ Lu+ f(u) = 0, u : Rn → R,

where L stands for a linear operator with symbolm, and f a general non-linearity satisfying |f(u)| ' |u|p
for p > 1. Finding a solution to this equation is equivalent to �nd u of the form:

u(x) =

∫
Rn
k(y − x)f(u(y))dy,

where the kernel k is given by:

k(x) := F−1

(
1

c−m(ξ)

)
(x), (3.1.8)

where F−1 stands for the inverse Fourier transform. Let us suppose that Q decays at in�nity. �e asymp-
totic behaviour of Q at in�nity is given by the largest term in the asymptotic behaviours of k and of f(Q)
at in�nity. Indeed, for x large, from the convolution formula, k(x − ·) and f(Q) are localized at di�erent
places.

f(Q)

k(x− ·)

Ωf(Q) Ωk

One can notice that on Ωf(Q), where the mass of f is located, the tail of k(x − ·) is larger than the tail of
f(Q) on Ωk, where the mass of k(x−·) is located. By the de�nition of |f(u)| ' |u|p, with p > 1, the decay
of f(Q) is larger than the one Q. In other words, the main order term in the integral formulation is given
by the decay of k on Ωf(Q).

�e �rst part of the article is dedicated to the study of integrability and of a potential di�erentia-
bility of k. �e key point of the analysis of k is the use of complex analysis techniques developed in the
beginning of the twentieth century. Following the road map of Pólya [165] developed in 1923 (see also
Blumenthal-Getoor [19]), we rewrite the function k with the help of an auxiliary function h. �e asymp-
totic development of h is obtained by complex analysis tools : we consider the holomorphic extension of
h in di�erent regions to extract the terms at the main orders. We conclude that k is in L1(R) for any
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α ∈ (0, 2), and for α ∈ (1, 2) the derivative of k exists and is also in L1(R). �e bo�leneck of the study
of k stands in its behaviour at 0: having a L1-bound of this operator at 0 is su�cient to get the asymptotic
behaviour of Q.

Once the asymptotic development of k is established, we use this development to obtain the one of
Q with the previous convolution formula. Since the assumption of Q only consists in a slow decay, we
�rst improve the property of decay by injecting successively this bound into the convolution. �e limit
point of improvement of the decay is when the biggest term of the asymptotic expansion is coming from
the asymptotic development of k. We obtain the main order term in the development of Q as being the
same as the one of k. �en, to get the asymptotic development of the �rst derivative of Q, we need the
di�erentiability of k, and our method applies only if α > 1. By using the same arguments as before, we
obtain the asymptotic at �rst order of the derivatives ofQ. Similarly, we obtain the �rst order development
of the derivatives of Q, while those derivatives exist.

�e previous results can be extended if Q is a positive solution. Indeed, the previous issue of the
existence of a �nite number of derivatives was due to the non-regularity of u 7→ |u|p−1u applied at Q,
so potentially applied at 0. Nevertheless the assumption of Q positive circumvents this issue by studying
the regularity of the function u 7→ |u|p−1u on R∗+ only. �is function is smooth, and so is Q. �en, we
notice that having Q positive also implies that Q is an even function, and this property helps to get the
next term in the asymptotic of Q. We distinguish the di�erent cases of balance between the non-linearity
and the dispersion. If the non-linearity is to large, the next order term comes from the development of k;
if the non-linearity is to small, the next order term comes from the development of Qp; in the case of exact
balance, the two previous terms are at the same order and the sum of them furnishes the next order term.

Finally, in Proposition 3.1.8 we study the equation in the case of a particular non-linearity, and the
asymptotic development at order 3, is obtained originating only from the asymptotic development of k.

3.1.5 Related results

For many equations, the solitary waves can be de�ned by a convolution formula, and their asymptotic
expansion is a consequence of the regularity of the kernel. From the de�nition of k by the Fourier transform,
see (3.1.8), the decay of k is given by the regularity of (c−m)−1. �us, if (c−m)−1 is a smooth function,
we expect to get Q exponentially decaying, whereas if (c − m)−1 is not smooth the solution Q should
vanish at in�nity algebraically. Let us give an overview of those phenomena for diverse equations.

We begin with exponentially decaying solutions. For the local dispersion se�ing, the generalized KdV
equation admits solitary waves which decay exponentially, with the kernel k = F−1

(
1

c+|ξ|2

)
. Some non-

local equations admit solitary waves with exponential decay, like the Whitham type equations as studied by
Bruell-Ehrnström-Pei and Arnesen [11,28]. For solitary waves with velocity c > 1, the symbol of dispersion

of the Whitham equation is given by m(ξ) =
(

tanh(ξ)
ξ

) 1
2 , and thus (c −m(ξ))−1 is not in L2(R). Even

though k is not well-de�ned, by an elegant reformulation in [11,28], the study of the asymptotic behaviour
of the solitary waves is equivalent to the study of the kernel operator k̃(x) := F−1( m

c−m)(x). Because this
last formulation is given by a smooth operator m

c−m in L2(R), [28] proved the exponential decay of the
solitary waves. Following the lines of [28], Pei in [164] proved the exponential decay of the solitary waves
for the Degasperis-Procesi equation.

Other equations are known to own solitary waves with algebraic decay. In the local se�ing, the
nonlinear wave equation in dimension 3 6 d 6 5, with the kernel k = F−1

(
|ξ|−2

)
(de�ned in the

weak sense), admits steady waves with algebraic decay proved by Gidas-Ni-Nirenberg [63]. For the non-
local case one can cite the generalized Benjamin-Ono equation studied by Mariş [119], with the kernel
k = F−1

(
1

c+|ξ|

)
, or the fKdV equation investigated by Frank-Lenzmann-Silvestre [61], where the kernel

is given by k = F−1
(

1
c+|ξ|α

)
, with 0 < α < 2.

For non-radial solutions in dimensions larger than 2, the asymptotic behaviour when |x| tend to
+∞ can depend on the direction. Indeed, in de Bouard-Saut [42], an algebraic bound of the asymptotic
behaviour is obtained for a solitary wave of the generalized Kadomstev-Petviashvili equation; furthermore,
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there exists one direction for which this bound is optimal. �is kind of asymptotic behaviour has also been
observed by Gravejat [68]: by studying the solitary waves of the Gross-Pitaevskii equation, he gave an
algebraic asymptotic behaviour of order one, whose coe�cient at the main order depends explicitly on the
angle. For the Benjamin-Ono–Zakharov-Kuznetsov equation, Esfahani-Pastor-Bona [50] proved that the
solitary waves of this 2-dimensional equation decay at least polynomially in one direction, and faster than
any polynomial in another direction. �e question of asymptotic behaviour for several dimensions is thus
more di�cult to answer, in particular if the dispersion operator is not rotationally invariant.

When the non-linearity is not an algebraic function, the asymptotic behaviour can depend at the main
order on the dispersion operator and on the non-linearity. For the non-local Gross-Pitaevskii equation,
de Laire-López-Martı́nez [43] described the asymptotic behaviour of solitary waves vc depending on a
convolution function in the non-linearity. �e asymptotic decay of 1−|vc|2 can be algebraic or exponential
at in�nity depending of the choice of the convolution function.

3.1.6 Outline of the paper

�e second section is dedicated to the study of the kernel k. Section 3 is dedicated to the proof, in the
general case with no assumption onQ, α nor p, of the the �rst order asymptotic ofQ, see Proposition 3.1.3.
Section 4 deals with the proof of Proposition 3.1.5 with the case of more regularity. Finally, one particular
case is dealt with in Section 5 where the asymptotic expansion is given at order 3, see Proposition 3.1.8.
�e Appendix recalls the proof of the regularity of Q if p is an integer.

3.1.7 Notations

�e japanese bracket 〈·〉 is de�ned on R by 〈x〉 := (1 + |x|2)
1
2 .

If Ω is a subset of R, we denote by Ck(Ω) the set of k-di�erentiable functions, with the usual gener-
alization for k =∞.

By denoting λ the Lebesgue measure, we de�ne the generalized Lp space as:

∀p ∈ (1,+∞), Lp(R) :=
{
f function on Ω, Ω ⊂ R and λ(ΩC) = 0, ‖f‖Lp(Ω) <∞

}
.

By abuse of notations, we denote by ‖ · ‖Lp the Lp-norm over any subset Ω of R over which the function
is well-de�ned, with λ(ΩC) = 0.

We denote the Fourier transform by F , de�ned by:

∀u ∈ L2(R), F(u)(ξ) :=

∫
R
e−2iπxξu(x)dx,

and its inverse by F−1. �e Sobolev space for s ∈ R de�ned by the Fourier transform is thus:

Hs(R) :=

{
u ∈ L2(R);

∫
R
〈ξ〉2s |F(u)(ξ)|2 dξ <∞

}
.

�e usual convolution operator ? is de�ned by:

∀f, g ∈ L2(R), f ? g(x) :=

∫
R
f(x− y)g(y)dy.

For a �xed x ∈ R, we de�ne the following subset of R:

Ωx :=
{
|y| 6 x

2

}
. (3.1.9)
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3.2 Asymptotic expansion of the kernel operator

Let us de�ne the kernel associated to the operator (1 + |D|α)−1:

k(x) := F−1

(
1

1 + |ξ|α

)
(x).

For α ∈ (0, 1], the inverse Fourier transform of (1 + |ξ|α)−1 is understood as an improper integral
for each x ∈ R∗.

In order to give the asymptotic of the ground state, we establish an asymptotic development of k.
Lemma 3.2.1 is dedicated to this asymptotic development. As an application, we prove in Corollary 3.2.6
that some decay properties are preserved under the convolution with k.

Lemma 3.2.1. �e function k is in C∞(R∗), and in L1(R). Furthermore, there exists a sequence (kn)n ∈ RN,
such that for any N > 0, there exists CN > 0 such that:

∀|x| > 1,

∣∣∣∣∣k(x)−
N∑
n=1

kn
|x|nα+1

∣∣∣∣∣ 6 CN
|x|(N+1)α+1

, (3.2.1)

and k′ admits the following development:

∀|x| > 1,

∣∣∣∣∣k′(x)− sign(x)
N∑
n=1

(nα+ 1)kn
|x|nα+2

∣∣∣∣∣ 6 CN
|x|(N+1)α+2

. (3.2.2)

Furthermore, in the case α > 1 k′ ∈ L1(R).

Notice that the values of k1 and k2 are de�ned in (3.1.3).
Remark 3.2.2. Frank, Lenzmann and Silvestre established in [61], Lemma C.1., the asymptotic of the kernel
at the �rst order, and proved that the kernel k is positive.
Remark 3.2.3. �e previous development only holds for �xed N , we ignore if the serie converges.

Let us �rst write this kernel with a more convenient formula, by de�ning the function h by:

h(y) =

∫ ∞
0

cos (yη) e−η
α
dη.

We claim the formula:

Claim 3.2.4. �e following equality holds:

∀x 6= 0, k(x) =
1

π

∫ ∞
0

e−s

s
1
α

h

(
x

s
1
α

)
ds.

One can notice that this formula is more convenient. Indeed, for any value of α ∈ (0, 2), the asymp-
totic development of h at in�nity induces that k is C∞ on R∗, whereas this property was not clear by the
de�nition by the Fourier transform. Notice that Lemma C.1 of [61] used another formulation of k : by ap-
plying Bernstein’s theorem on the fractional heat kernel, k is rewri�en by the semi-group associated with
the heat kernel and an adequate non-negative �nite measure.

Let us begin by proving Claim 3.2.4. To do so, we need the asymptotic development of h:

Claim 3.2.5. �e following expansions hold:

∀y > 1,

∣∣∣∣h(y)− πk1

yα+1
− πk2

2y2α+1

∣∣∣∣ 6 C

y3α+1
, (3.2.3)
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and

∀y > 1,

∣∣∣∣h′(y)− k′1
yα+2

∣∣∣∣ 6 C

y2α+2
, k′1 ∈ R. (3.2.4)

Furthermore, for any β ∈ (0, 1], there is another constant C = C(β) such that:

∀|y| 6 1, y 6= 0, |yh(y)| 6 Cyβ and |h′(y)| 6 C

y
. (3.2.5)

Proof of Claim 3.2.4. In the case α ∈ (1, 2), the proof holds by a Fubini’s argument, as in [19]. We give the
general proof that also holds in the case α ∈ (0, 1].

Using that 1

t
=

∫
R+

e−stds :

k(x) =
1

2π

∫
R
eixξ

∫ 1

0
e−s|ξ|

α
e−sdsdξ +

1

2π

∫
R
eixξ

∫ ∞
1

e−s|ξ|
α
e−sdsdξ.

We then apply Fubini’s theorem for the �rst integral. By using Claim 3.2.5, it is also possible to
use Fubini’s theorem on the �rst integral: the asymptotic development of h is necessary, in particular if
α ∈ (0, 1]. Finally, the change of variable ηα = ξαs concludes Claim 3.2.4.

Proof of Claim 3.2.5. �e next ideas are inspired from Pólya [165]. By integration by parts and changing
the variable u

1
α = yη, we deduce that:

y1+αh(y) = yα
∫ +∞

0

d

dη
(sin(yη))e−η

α
dη =

∫ +∞

0
sin
(
u

1
α

)
e
− u
yα du = Im

(∫ +∞

0
e
iu

1
α− u

yα du

)
.

Note that the previous integral is not well de�ned for y = +∞. To bypass this di�culty, we apply contour
integration, see [165]. Let:

Dn := {rei
π
4
α : r ∈ (0, n]}, D := {rei

π
4
α : r ∈ (0,+∞)}, Cn := {neiγ : γ ∈

[
0,
π

4
α
]
}.

We set γn the curves that range Dn, Cn and then [0, n] counterclockwise. Since u 7→ e
iu

1
α− u

yα is holomor-
phic in R∗+ + iR+, we deduce that:

0 = lim
n→+∞

∫
γn

e
iu

1
α− u

yα du =

∫
D
e
iu

1
α− u

yα du−
∫ +∞

0
e
iu

1
α− u

yα du.

Furthermore, we get that:

y1+αh(y) = Im
(∫ +∞

0
exp

(√
2

2
(i− 1)r

1
α − rei

π
4
α

yα

)
ei
π
4
αdr

)
.

To obtain the asymptotic expansion of y1+αh(y) at +∞, we split the former integral in two parts. We set:

J1 := Im
(∫ y

α
2

0
exp

(√
2

2
(i− 1)r

1
α − rei

π
4
α

yα

)
ei
π
4
αdr

)
,

J2 := Im
(∫ +∞

y
α
2

exp

(√
2

2
(i− 1)r

1
α − rei

π
4
α

yα

)
ei
π
4
αdr

)
.

Since α ∈ (1, 2), we have that:

|J2| 6
∫ +∞

y
α
2

exp

(
−
√

2

2
r

1
α − cos

(π
4
α
) r

yα

)
dr 6 C

∫ +∞

y
α
2

exp

(
−
√

2

2
r

1
α

)
dr 6 Ce−

√
y

4 . (3.2.6)
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Now, we estimate J1. First, we rewrite J1 as:

J1 =Im
(∫ y

α
2

0
exp

(
i
(
rei

π
4
α
) 1
α − rei

π
4
α

yα

)
ei
π
4
αdr

)

=Im
(∫ y

α
2

0
exp

(
i
(
rei

π
4
α
) 1
α

+ i
π

4
α

)[
exp

(
−re

iπ
4
α

yα

)
− 1 +

rei
π
4
α

yα

]
dr

)

+Im
(∫ y

α
2

0
exp

(
i
(
rei

π
4
α
) 1
α

+ i
π

4
α

)[
1− rei

π
4
α

yα

]
dr

)
=: J11 + J12. (3.2.7)

From the Taylor expansion of ez , we deduce that:

|J11| 6 C

∫ y
α
2

0
e−
√

2
2
r
1
α

(
r

yα

)2

dr 6
C

y2α
. (3.2.8)

Let us rewrite J12:

J12 = Im
(∫ +∞

0
e
√
2
2

(i−1)r
1
α+iπ

4
αdr

)
− Im

(∫ +∞

y
α
2

e
√
2

2
(i−1)r

1
α+iπ

4
αdr

)
(3.2.9)

− 1

yα
Im
(∫ +∞

0
re
√

2
2

(i−1)r
1
α+iπ

2
αdr

)
+ Im

(
1

yα

∫ +∞

y
α
2

re
√

2
2

(i−1)r
1
α+iπ

2
αdr

)
.

Arguing similarly as (3.2.6), we get that:∣∣∣∣∫ +∞

y
α
2

e
√

2
2

(i−1)r
1
α+iπ

4
αdr

∣∣∣∣+

∣∣∣∣ 1

yα

∫ +∞

y
α
2

re
√
2
2

(i−1)r
1
α+iπ

2
αdr

∣∣∣∣ 6 Ce−
√
y

4 . (3.2.10)

In order to get the sign of the two integrals over R+ in (3.2.9), we use again a contour integration. We set:

D̃n := {rei
π
2
α : r ∈ (0, n]}, ‹D := {rei

π
2
α : r ∈ (0,+∞)}, ›Cn := {neiγ : γ ∈

[π
4
α,
π

2
α
]
}.

�erefore, by using the curves who range D̃n, ›Cn and Dn counterclockwise, we have that:

Im
(∫ +∞

0
e
√
2
2

(i−1)r
1
α+iπ

4
αdr

)
= Im

(∫ +∞

0
e−r

1
α+iπ

2
αdr

)
= sin(

π

2
α)Γ(α+ 1), (3.2.11)

Im
(∫ +∞

0
re
√
2

2
(i−1)r

1
α+iπ

2
αdr

)
= Im

(∫ +∞

0
re−r

1
α+iπαdr

)
=

1

2
sin(πα)Γ(2α+ 1).

Gathering (3.2.6), (3.2.8), (3.2.10) and (3.2.11) we conclude (3.2.3), with k1 and k2 recalled in (3.1.3).
We continue by proving (3.2.4). �e proof of this property is also obtained by contour argument as

for h, Claim 3.2.5. Let us give some steps of the proof. By integration by part, and the change of variables
u = (yη)2 we obtain that:

y2h′(y) = −1

2

∫ ∞
0

sin
(
u

1
2

)
e−u

α
2 y−αdu.

First, using the contour de�ned by

D′n :=
{
rei

π
2 : r ∈ (0, n]

}
, D′ :=

{
rei

π
2 : r ∈ (0,+∞)

}
, C ′n :=

{
neiγ : γ ∈

[
0,
π

2

]}
,

we have

y2h′(y) = −1

2
Im
(∫ +∞

0
exp

(
√
rei

3
4
π − r

α
2

yα
ei
π
4
α + i

π

2

)
dr

)
.
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By using a decomposition as in (3.2.6) and (3.2.7) with the bound of the di�erent terms, we have:∣∣∣∣∣y2h′(y) +
1

2
Im
(∫ +∞

0
exp

(
(rei

3
2
π)

1
2 + i

π

2

)(
1− r

α
2

yα
ei
π
4
α

)
dr

)∣∣∣∣∣ 6 C

y2α
.

Using a second contour integration de�ned by

D̃′n :=
{
rei

3π
2 : r ∈ (0, n]

}
, ‹D′ := {r : r ∈ (0,+∞)} , ›C ′n :=

{
neiγ : γ ∈

[
3π

2
, 2π

]}
,

and the fact

<
(∫ +∞

0
e
√
2
2

(i−1)
√
udu

)
= 2<

(∫ +∞

0
ve
√

2
2

(i−1)vdv

)
= 0,

we obtain the asymptotic development (3.2.4) of h′.
To prove (3.2.5), we multiply h by y1−β and integrate by part:

y1−βh(y) =

∫ +∞

0

sin(yη)

(yη)β
αηα−1+βe−η

α
dη.

Since sin(z)
zβ

is uniformly bounded in β 6 1, we obtain the �rst inequality of (3.2.5). For the second inequal-
ity:

y2h′(y) = −y − y
∫ +∞

0

sin(yη)

yη
α
(
(α− 1)ηα−1 − αη2α−1

)
e−η

α
dη,

and a direct bound gives the second part of (3.2.5).

We continue with the proof of Lemma (3.2.1). We focus on the case N = 2, the general statement is
obtained using the same proof.

Proof of Lemma 3.2.1. Concerning the regularity of k, our description of the kernel is not well-suited to get
this regularity. However, in Lemma C.1 of [61], the kernel k is proved to be in C∞(R∗).

We continue with the asymptotic expansion of k at in�nity. By parity of k, we focus on the case
x > 0. By Claim 3.2.4, we decompose the integral according to the values of s; in other words, we need to
study carefully when x

s
1
α

tends to +∞ as x→ +∞. We thus decompose:

πk(x) =

∫ x
α
2

0

e−s

s
1
α

h

(
x

s
1
α

)
ds+

∫ +∞

x
α
2

e−s

s
1
α

h

(
x

s
1
α

)
ds = I1 + I2.

Let us �rst �nd a bound of I2. Since h is a bounded function, we get:

|I2| 6 Ce−x
α
4 .

�e asymptotic expansion of I1 is now given by the the one of h, since x

s
1
α

> x
1
2 for s 6 x

α
2 . Since∫

R
se−sds = 1,

∫
R
s2e−sds = 2 and by using (3.2.3), we conclude the proof of the asymptotic development

of k.
�is development justi�es the integrability of k at∞. We now justify the integrability of k around

0:

xk(x) =
1

π

∫ xα

0
e−s (yh(y))

|y=xs−
1
α
ds+

1

π

∫ +∞

xα
e−s (yh(y))

|y=xs−
1
α
ds.
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For the �rst integral, we use (3.2.3) for |y| > 1, and the �rst integral is bounded by xα. For the second
integral, we use (3.2.5) for |y| 6 1 with β = min(1, α) and we compute the integral:

if α 6 1,

∫ +∞

xα
e−s

(
x

s
1
α

)α
ds 6 Cxα| ln(x)|; if α > 1,

∫ +∞

xα
e−s

x

s
1
α

ds 6 Cx.

and thus a bound on the behaviour of k at 0:

if α 6 1, |k(x)| 6 Cxα−1| ln(x)|; if α > 1, |k(x)| 6 C.

�is last inequality justi�es k ∈ L1(R), and justi�es that k is bounded when x goes to 0 for α > 1.
In addition for α > 1, we obtain more results on k′. We prove �rst the asymptotic development

at +∞, and its proof is along the same lines as the arguments for k. We have for any x 6= 0, by the
development (3.2.4) for the integrability at 0:

k′(x) =
1

π

∫ +∞

0

e−s

s
2
α

h′
(
x

s
1
α

)
ds.

Performing as for k, we get the asymptotic development of k′ for α > 1. We investigate on the
behaviour of k′ at 0. As before, we split the integral into two parts: on (0, xα), by (3.2.4), the �rst part of
the integral is bounded by xα−2; on (xα,+∞), with (3.2.5), this second part of the integral is bounded by
xα−2. With the two estimates, k′ is in L1(R) for α > 1.

�is concludes the proof of Lemma 3.2.1.

Corollary 3.2.6. Let g ∈ L1(R) satisfying |g(x)| 6 C|x|−α−1. �ere exists C = C(g) such that:

|k ∗ g|(x) 6
C

〈x〉α+1
. (3.2.12)

Furthermore, if g ∈ C1(R) and |g′(x)| 6 C|x|−2−α, then there exists C = C(g, g′) such that:

|∂x (k ? g) |(x) 6
C

〈x〉α+2
.

Proof. For sake of simplicity, we focus on the case x > 0, the negative terms are obtained by parity of k.
First, by the decomposition of (3.1.9), we have that:

k ∗ g(x) =

∫
Ωx

k(x− y)g(y)dy +

∫
Ωcx

k(x− y)g(y)dy = I1 + I2.

By the decay assumption on g, we get that:

|I2| 6
C

〈x〉α+1
.

Moreover, from Lemma 3.2.1, we deduce that:

|k(x)| 6 C

〈x〉α+1
.

Furthermore, the inequality |y| 6 x

2
implies |x− y| > x

2
. �us, we deduce that:

|I1| 6
C

〈x〉α+1
.

Gathering these estimates, we conclude (3.2.12) for x > 0. By arguing similarly as the case x > 0, we get
(3.2.12) for x ∈ R.
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�e second estimate is based on one step further on the asymptotic development of k:∣∣∣∣k(x)− k1

xα+1

∣∣∣∣ 6 C

〈x〉2α+1
. (3.2.13)

By the same decomposition as previously, we have:

∂x(k ? g)(x) = I1 + I2,

where:

I1 =

∫
Ωx

(
k(x− y)− k1

(x− y)α+1

)
g′(y)dy +

∫
Ωx

k1

(x− y)α+1
g′(y)dy.

I2 =

∫
Ωcx

k(x− y)g′(y)dy.

It su�ces to prove the bound with I1, since I2 is dealt with like the previous step. For the �rst term, due
to (3.2.13), we have: ∣∣∣∣∫

Ωx

(
k(x− y)− k1

|x− y|α+1

)
g′(y)dy

∣∣∣∣ 6 C

〈x〉2α+1
.

For the second term of I1, by integration by part:∣∣∣∣∫
Ωx

k1

(x− y)α+1
g′(y)dy

∣∣∣∣ 6 ∣∣∣∣ k1

(x2 )α+1
g
(
−x

2

)∣∣∣∣+

∣∣∣∣∣ k1

(3x
2 )α+1

g
(x

2

)∣∣∣∣∣+

∣∣∣∣∫
Ωx

k1(α+ 1)

(x− y)α+2
g(y)dy

∣∣∣∣ 6 C

〈x〉α+2
.

�is achieves the proof of one derivative applied to k ? g in Lemma 3.2.6.

3.3 Proof of the asymptotic expansion of order 1

In this section we prove Proposition 3.1.3, the asymptotic development of order 1 ofQ for α ∈ (0, 2)
and p ∈ (1, p∗(α)). [61] proved the decay of a positive Q at in�nity:

|Q(x)| 6 C

〈x〉α+1
. (3.3.1)

We propose here to establish a more precise asymptotic development in the general case that Q is not
necessarily positive, but satis�es (3.1.5). �e proof is separated in two steps: the �rst consists in establishing
the �rst order asymptotic, and to prove in particular that (3.3.1) is satis�ed. Second, we get successively
the asymptotic development of order 1 of the derivatives of Q(j), by using an induction process on j.

3.3.1 First order expansion of Q

Let us prove the asymptotic expansion of order 1 for |x| > 1. To begin with, if Q is a weak solution
of (3.1.1), then Q is a weak solution of the following equation:

Q = F−1
(

(|ξ|α + 1)−1
)
?
(
|Q|p−1Q

)
= k ?

(
|Q|p−1Q

)
. (3.3.2)

Before giving the asymptotic expansion, we improve the bound on Q:

|Q(x)| 6 C

〈x〉α+1
.
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We split the integral (3.3.2) in high and low values, with Ωx de�ned in (3.1.9):

K1 :=

∫
Ωx

k(x− y)|Q|p−1Q(y)dy, K2 :=

∫
Ωcx

k(x− y)|Q|p−1Q(y)dy. (3.3.3)

Using (3.2.1) on K1, and the hypothesis Q ∈ Lp(R), we deduce that:

|K1| 6
C

〈x〉α+1
.

Now we continue with K2. We use the decay assumption on Q: |Q(x)| 6 C〈x〉−l, and k ∈ L1(R) to
deduce:

|K2| 6
C

〈x〉pl
.

�en, we obtain that |Q(x)| 6 C〈x〉−pl. Since p > 1, by iterating the previous steps with the improved
bound on the decay of Q, we conclude that:

|Q(x)| 6 C

〈x〉α+1

From this inequality, we deduce thatQ ∈ Lq(R) for any q ∈ [1,+∞]. By the equation (3.1.1), |D|αQ
is also in Lq(R) and Q ∈ Hα(R). �us Q is a solution of (3.1.1) and solves (3.3.2) in the usual sense.

We continue with the asymptotic expansion of Q. We �nd the equivalent at the �rst order, which
comes from K1. We have:∣∣∣∣K1 −

∫
Ωx

k1

(x− y)1+α
|Q|p−1Q(y)dy

∣∣∣∣ 6 ∫
Ωx

∣∣∣∣k(x− y)− k1

(x− y)α+1

∣∣∣∣ |Q|p(y)dy

6 C

∫
Ωx

|Q|p(y)

|x− y|2α+1
dy 6

C

〈x〉2α+1
.

We then get a development in x of the term in the le� hand-side, where a1 is de�ned in (3.1.4):

∣∣∣∣∫
Ωx

k1

(x− y)α+1
|Q|p−1Q(y)dy − a1

xα+1

∣∣∣∣ 6 C

〈x〉α+1

∫
Ωcx

|Q|p(y)dy +
C

〈x〉α+2

∫
Ωx

|y||Q|p(y)dy.

�e �rst term is dealt with the asymptotic bound Q(y) 6 C〈y〉−(1+α):

1

〈x〉α+1

∫
Ωcx

|Q|p(y)dy 6
C

〈x〉α+p(1+α)
.

For the second term, we need to split the di�erent cases between α and p:

C

〈x〉α+2

∫
Ωx

|y|1−min( pα
2
,1)|y|min( pα

2
,1)|Q|p(y)dy 6

C

〈x〉α+1+min( pα
2
,1)
.

We continue with K2:

|K2| 6 C

∫
Ωcx

|k(x− y)|
〈x〉p(α+1)

dy 6
C

〈x〉p(α+1)
.

Gathering the estimates on K1 and on K2 we obtain the asymptotic development of Q at the main order:

∀x > 1,
∣∣∣Q(x)− a1

xα+1

∣∣∣ 6 C

〈x〉2α+1
+

C

〈x〉p(α+1)
+

C

〈x〉α+1+min( pα
2
,1)
.
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3.3.2 First order expansion of the derivatives of Q

�is section is dedicated to the asymptotic expansion of any j-derivative ofQ, forα > 1 and j 6 bpc.
We use the notation f(u) := |u|p−1u. We prove the following statement by induction on j ∈ [1, bpc]:
Statement. �e functionQ is of class Cj(R). If j > 2, there exists a sequence of polynomialsRj,l such that:

dj

dxj
(f(Q)) = pQ(j)f ′(Q) +

j∑
l=2

Rj,l(Q
′, · · · , Q(j−1))f (l)(Q), (3.3.4)

where Rj,l satis�es:

∀j, l, |Rj,l(Q′(x), · · · , Q(j−1)(x))f (l)(Q(x))| 6 C

〈x〉p(α+1)+j
.

If j > 1, the following asymptotic expansion holds:

∀x > 1, Q(j)(x)− (−1)j
(α+ j)!

α!

a1

xα+1+j
= o+∞

(
1

xα+1+j

)
. (3.3.5)

Notice that in this induction process, we need j such that p − j > 0 to ensure that f (p−j)(Q) or
equivalently |Q|p−j is well-de�ned; this constraint does not occur if Q is positive.

We prove the statement for j = 1. �e �rst derivative of Q is continuous since k′ is in L1(R) (see
Claim 3.2.4), Q ∈ Lq(R), for any q ∈ [1,+∞] (see Proposition 3.1.3), and given by Q′ = k′ ? (|Q|p−1Q).
Moreover, we have Q′ ∈ L∞(R), since k′ ∈ L1(R) and Q ∈ L∞(R). Now, we prove that:

|Q′(x)| 6 C

〈x〉α+2
.

We write, for x > 1:

J1 :=

∫
Ωx

k′(x− y)|Q(y)|p−1Q(y)dy, J2 :=

∫
Ωcx

k′(x− y)|Q(y)|p−1Q(y)dy. (3.3.6)

On the one hand, by using Q ∈ Lp(R) and the decay property of k′ (3.2.2), we deduce that:

|J1| 6
C

〈x〉α+2
.

On the other hand, from the bound |Q(x)| 6 C〈x〉−(1+α) and the fact k′ ∈ L1(R) for α > 1, we have that:

|J2| 6
C

〈x〉p(1+α)
.

�en, we obtain that |Q′(x)| 6 C〈x〉−min(p(1+α),2+α). By integrating by parts J2, and using the new bound
on Q′, we get that:

|Q′(x)| 6 C

〈x〉min((2p−1)(1+α),2+α)
.

Since p > 1, by iterating the previous steps, we conclude that:

|Q′(x)| 6 C

〈x〉2+α
.

Now, we derive the asymptotic development of order 1 of Q′ in (3.3.5), with:

Q′(x) = k ? ((|Q|p−1Q)′)(x).



3.3 Proof of the asymptotic expansion of order 1 75

First, we estimate the convolution on Ωx. From the asymptotic development of k (3.2.1), and the fact
Q′|Q|p−1 ∈ L1(R) we obtain that:∣∣∣∣∫

Ωx

(
k(x− y)− k1

(x− y)α+1
− k2

(x− y)2α+1

)
(|Q|p−1Q)′(y)dy

∣∣∣∣ 6 C

〈x〉3α+1
.

By integrating by parts, we deduce that:∣∣∣∣∫
Ωx

k2

(x− y)2α+1
(|Q|p−1Q)′(y)dy

∣∣∣∣ 6 C

〈x〉2α+2
.

A�er an integration by parts on the term with k1, using the fact |y|min(1, pα
2 )Q ∈ L1(R), we get that:∣∣∣∣∫

Ωx

k1

(x− y)α+1
(|Q|p−1Q)′(y)dy +

(α+ 1)k1

xα+2

∫
Ωx

|Q|p−1(y)Q(y)dy

∣∣∣∣ 6 C

〈x〉α+2+min(1, pα
2 )

+
C

〈x〉2α+2
.

Furthermore, using the decay assumption on Q, we obtain that:∣∣∣∣∣(α+ 1)k1

xα+2

∫
Ωcx

|Q|p−1(y)Q(y)dy

∣∣∣∣∣ 6 C

〈x〉(p+1)(α+1)+1
.

To summarize, we have proved that:∫
Ωx

k(x− y)(|Q|p−1(y)Q(y))′dy +
(α+ 1)k1

xα+2

∫
R
|Q|p−1(y)Q(y)dy = o+∞

(
1

xα+2

)
.

To �nish the proof of the asymptotic development ofQ′, we have to estimateQ′(x) = k ? ((|Q|p−1Q)′)(x)
on Ωc

x. By using the decay assumption on Q and Q′, we obtain that:∣∣∣∣∣
∫

Ωcx

k(x− y)|Q|p−1(y)Q′(y)dy

∣∣∣∣∣ 6 C

〈x〉p(1+α)+1
.

�erefore, gathering these estimates, we conclude that:

Q′(x) +
(α+ 1)a1

xα+2
= o+∞

(
1

xα+2

)
.

To prove the statement for the other j, we proceed by induction. �e regularity ofQ(j+1) is obtained
by k′ ∈ L1(R), the formula (3.3.4) at j, and the asymptotic expansion of Q(i) for i 6 j. �us, we have:

Q(j+1) = k ? (|Q|p−1Q)(j+1).

�e proof of the existence of the polynomials Rj+1,l in (3.3.4), for l ∈ [2, j + 1], is given by direct
computations. Before giving the bound on the polynomials, we remark that for all l ∈ {0, · · · , bpc} there
exists Cl > 0 such that:

f (l)(x) =

{
Clx|x|p−l−1, if l is even,
Cl|x|p−l, if l is odd

.

We detail the bound satis�ed by the polynomial Rj+1,l. If l = 2, we have that:

|Q(j)f (2)(Q)| 6 C

〈x〉p(1+α)+j+1
and

∣∣∣∣ ddx(Rj,2)f (2)(Q)

∣∣∣∣ 6 C

〈x〉p(1+α)+j+1
.
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Moreover, for a �xed number l ∈ [3, j + 1], the polynomial Rj+1,l is at most composed of two terms:∣∣∣Rj,l−1f
(l)(Q)

∣∣∣ 6 C

〈x〉p(1+α)+j+1
and

∣∣∣∣ ddx(Rj,l)f
(l)(Q)

∣∣∣∣ 6 C

〈x〉p(1+α)+j+1
,

which concludes the decay of the term with f (l) for j + 1.
Now, we prove (3.3.5) for Q(j+1). Let us sketch the proof of the rough bound of Q(j+1):

|Q(j+1)(x)| 6 C

〈x〉α+2+j
. (3.3.7)

As for the �rst derivative, we de�ne J1,j+1 and J2,j+1 as in (3.3.6):

J1,j+1 :=

∫
Ωx

k′(x− y)(|Q|p−1Q)(j)(y)dy, J2,j+1 :=

∫
Ωcx

k′(x− y)(|Q|p−1Q)(j)(y)dy.

For the �rst term with the asymptotic development (3.2.2) of k′, for any N and by successive inte-
gration by parts:

|J1,j+1| 6

∣∣∣∣∣
∫

Ωx

(
k′(x− y)−

N∑
n=1

(nα+ 1)kn
(x− y)nα+2

)
(|Q|p−1Q)(j)(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ωx

N∑
n=1

(nα+ 1)kn
(x− y)nα+2

(|Q|p−1Q)(j)(x)dx

∣∣∣∣∣
6

C

〈x〉(N+1)α+2
+

C

〈x〉α+2+p(α+1)+j
+

C

〈x〉α+2+j
6

C

〈x〉α+2+j
,

where the last inequality holds for N large enough, for instance N > j
α .

For the second term, by Lemma 3.2.1 and the Statement, we have:

|J2,j+1| 6
C

〈x〉p(α+1)+j
.

Once we have the bound |Q(j+1)(x)| 6 C〈x〉−(α+2+j) + C〈x〉−(p(α+1)+j), we improve this bound
by injecting it successively in J2,j+1 a�er an integration by part and with (3.3.4):

|J2,j+2| 6 C‖(|Q|p−1Q)(j+1)‖L∞(ΩCx ) 6
C

〈x〉(p−1)(α+1)
‖Q(j+1)‖L∞(ΩCx ) +

C

〈x〉p(α+1)+j+1
.

By doing the injection enough times, we get the bound (3.3.7).
To obtain the exact asymptotic development, it su�ces to use the same proof as the one of Q′ and

the decomposition used in J1,j+1 to extract the term of main order. We get:∣∣∣∣J1,j+1 −
k1

xα+j+2

(α+ j + 1)!

α!

∫
|Q|pQ

∣∣∣∣ = o+∞

(
1

xα+j+2

)
By injecting (3.3.7) in J2,j+1, we conclude the asymptotic expansion (3.3.5) for j + 1.

By �nishing to prove the Statement for any j 6 bpc, we conclude the proof of Proposition 3.1.3.
Notice that by the same method, we obtain the existence of the next derivative:

Q(bpc+1) =

∫
k′(x− y)

(
|Q|p−1Q

)(bpc)
(y)dy.

However, an integration by parts is not justi�ed since Q can be equal to 0 at some points, therefore the
function

(
|Q|p−1Q

)(bpc+1) may not be de�ned. Our method does not provide an asymptotic expansion of
Q(bpc+1).
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3.4 Asymptotic expansion for positive solutions

To start this section dedicated to the proof of Proposition 3.1.5, we recall that, on the one hand, if
Q > 0 then Q ∈ H∞(R), see [61], the third point in the Remarks a�er Proposition 1.1, and Q is even (up
to translation) see Proposition 1.1 of [61] and [117].

Since Q ∈ H∞(R) and even, we give the asymptotic expansion of Q(j) for any j. �e proof of
this result follows the line of the one of Proposition 3.1.3. We use the induction on the statements (3.3.4)
and (3.3.5) as for Proposition 3.1.3. For Q > 0 the induction process given in Proposition 3.1.3 does not
stop anymore. �erefore, in the case of Q > 0 we get the asymptotic development of order 1 for all the
derivatives.

We continue by giving the second order expansion of Q.
�e proof is based on the same arguments as the ones of subsection 3.3.1, where we have obtained:

Q(x)− a1

xα+1
= o+∞

(
1

xα+1

)
.

We prove in this section the expansion at the next order. We study separately the di�erent cases.
Let K1 and K2 be de�ned as in (3.3.3), we have the following decomposition. First, with K1:

K1 = K11 +K12 +K13 +K14

with

K11 =

∫
Ωx

(
k(x− y)− k1

(x− y)α+1
− k2

(x− y)2α+1

)
Qp(y)dy,

K12 =

∫
Ωx

(
k1

(x− y)α+1
+

k2

(x− y)2α+1
−
(

k1

xα+1
+

k2

x2α+1

))
Qp(y)dy,

K13 =

(
k1

xα+1
+

k2

x2α+1

)∫
R
Qp(y)dy and K14 = −

(
k1

xα+1
+

k2

x2α+1

)∫
Ωcx

Qp(y)dy.

By the asymptotic expansion (3.2.1) of k, we have |K11| 6 C〈x〉−(3α+1). For K12, we use the parity
of Q to get

∫
Ωx
yQp(y)dy = 0, therefore we obtain:

|K12| 6
C

〈x〉3+α

∫
y2Qp(y)dy +

C

〈x〉3+α

∫
|y|Qp(y)dy 6 Θ(x)

where

Θ(x) =



1

〈x〉α+3
if p(1 + α) > 3,

ln(|x|)
〈x〉α+3

if p(1 + α) = 3,

1

〈x〉α+p(1+α)
if p(1 + α) < 3.

From the asymptotic of Q on Ωc
x, we have:

|K14| 6
C

xp(1+α)+α
.

K13 is the only remaining term that could potentially give the next order term in the asymptotic
expansion of Q.

We decompose K2 as:

K2 =

∫
Ωcx∩(x

2
, 3x
2

)
k(x− y)Qp(y)dy +

∫
Ωcx∩(x

2
, 3x
2

)c
k(x− y)Qp(y)dy = K2,1 +K2,2.
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Using the decay assumptions on k (3.2.1) and Q given in Proposition 3.1.3 we obtain that:

|K2,2| =

∣∣∣∣∣
∫

Ωcx∩(x
2
, 3x
2

)
k(x− y)Qp(y)dy

∣∣∣∣∣ 6 C

〈x〉p(1+α)+α
.

Furthermore, by using again the decay estimate on k (3.2.1) and the asymptotic expansion of Q given in
Proposition 3.1.3, we deduce that:

K2,1 =

∫
Ωcx∩(x

2
, 3x
2

)
k(x− y)

ap1
yp(α+1)

(
1 +

Q(y)− a1
yα+1

a1
yα+1

)p
dy =

ã1

xp(1+α)
+ o+∞

(
1

xp(1+α)

)
,

with ã1 := ap1

∫
R
k(x)dx, and let us decompose the proof into three cases, depending on p with respect to

2α+1
α+1 .

First case : p < 2α+1
α+1

�is case corresponds to a low non-linearity compared to the in�uence of the dispersion, and the
biggest error term comes from K21. Gathering the estimates on K1 and on K2, we obtain:

Q(x)− a1

xα+1
− ã1

xp(α+1)
= o+∞

(
1

xp(1+α)

)
Second case: p = 2α+1

α+1
In this particular case of balance between dispersion and non-linearity, the next order is given by

two di�erent terms, from K13 and K21:

Q(x)− a1

xα+1
− ã1

x2α+1
− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

where a2 is given in (3.1.4).
�ird case: p > 2α+1

α+1

When the non-linearity is above 2α+1
α+1 , the tail of Q is negligible compared to the next order term

given by the dispersion:

Q(x)− a1

xα+1
− a2

x2α+1
= o+∞

(
1

x2α+1

)
.

�is concludes the proof of Proposition 3.1.5.

3.5 Asymptotic expansion for polynomial non-linearities

�e proof of Proposition 3.1.7 follows the arguments given in the proof of the Proposition 3.1.3 and
of Proposition 3.1.5.

We now continue with the proof of Proposition 3.1.8. In this section the non-linearity is �xed at
p = 3 and the dispersion α ∈ (1, 2).

To begin with, using (3.3.2), we obtain the decomposition in high and low values:

Q(x) =

∫
Ωx

k (x− y)Q3 (y) dy +

∫
Ωcx

k (x− y)Q3 (y) dy =: K1 +K2.

Using the asymptotic development of k (3.2.1), we get that:∣∣∣∣K1 −
∫

Ωx

(
k1

(x− y)α+1
+

k2

(x− y)2α+1

)
Q3(y)dy

∣∣∣∣
=

∣∣∣∣∫
Ωx

(
k(x− y)− k1

(x− y)α+1
− k2

(x− y)2α+1

)
Q3(y)dy

∣∣∣∣
6 C

∫
Ωx

1

|x− y|3α+1
Q3(y)dy 6

C

〈x〉3α+1
.
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From the asymptotic expansion of 1
(1+x)β

for β ∈ R, with
∫
|y|3Q3(y)dy <∞ for α > 1, we deduce that:∣∣∣∣∫

Ωx

(
k1

(x− y)α+1
− k1

(
1

xα+1
+ (α+ 1)

y

xα+2
+

(α+ 1)(α+ 2)

2

y2

xα+3
+

(α+ 1)(α+ 2)(α+ 3)

3!

y3

xα+4

)
+

k2

(x− y)2α+1
− k2

(
1

x2α+1
+ (2α+ 1)

y

x2α+2

))
Q3(y)dy

∣∣∣∣
6

C

〈x〉α+5
+

C

〈x〉2α+3
6

C

〈x〉2α+3
.

Since
∫

Ωx

yQ3(y)dy =

∫
Ωx

y3Q3(y)dy = 0, we deduce that the terms for the asymptotic develop-

ment of Q are a1

xα+1
+

a2

x2α+1
+

a3

xα+3
, with a1, a2, a3 de�ned in (3.1.4). Now, we have to verify that the

estimates on the asymptotic development hold on Ωc
x.

From the decay of Q (3.3.1), we obtain that:

|K2| 6
∫

Ωcx

|k(x− y)|dy‖Q‖3L∞(|y|>x
2

) 6
C

〈x〉3(1+α)
and

∫
Ωcx

Q3(y)

x3(α+1)
+
y2Q3(y)

xα+3
dy 6

C

〈x〉4α+3
.

�is concludes the proof of the estimate (3.1.6).
�e proof of the estimate (3.1.7) is similar as the proof of the estimate (3.1.6).

3.6 Appendix

3.6.1 Regularity result for polynomial non-linearities

Let p ∈ N. We prove in this appendix that if Q veri�es (3.1.5), then:

∀β ∈ R+, ‖Q‖Hβ <∞.

We prove this statement by induction. Since Q is in Lq(R) for any q ∈ [1,+∞] by Proposition 3.1.3, we
obtain the result for β = 0. To prove that Q ∈ H(n+1)α(R) with the assumption Q ∈ Hnα(R), it su�ces
to study |D|nα(Qp). By the fractional Leibniz rule (also called Kato-Ponce commutator estimate, see [67]
for the endpoint), and γ > 0, we have:

‖|D|γ(Qp)‖L2 6 ‖〈|D|〉γ(Qp)‖L2 6 C
(
‖Q‖L∞‖〈|D|〉γ(Qp−1)‖L2 + ‖〈|D|〉γQ‖L2‖Qp−1‖L∞

)
6 C‖Q‖p−1

L∞ ‖〈|D|〉
γQ‖L2 ,

where the last step is obtained by induction. �us we obtain:

‖|D|(n+1)αQ‖L2 6 ‖|D|nαQ‖L2 + ‖|D|nα(Qp)‖L2 6 C
(

1 + ‖Q‖p−1
L∞

)
‖Q‖Hnα <∞.

Remark 3.6.1. Instead of the set of assumptions (3.1.5) on Q, one can ask Q ∈ L2(R) ∩ Lp+1(R) to obtain
the same result (see Lemma B.1 of [60]).
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Chapter 4

Strongly interacting solitary waves for
the fractional modi�ed Korteweg-de Vries
equation
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4.0.1 Introduction of the equation

�is article is dedicated to the fractional-modi�ed Korteweg-de Vries equation (also known as the
dispersion generalized modi�ed Benjamin-Ono equation):

∂tu+ ∂x
(
−|D|αu+ u3

)
= 0, u : It × Rx → R, 1 < α < 2, (fmKdV)

where It is a time interval, ∂x (respectively ∂t) denotes the space (respectively time) derivative, and the
symbol |D|α is de�ned by the Fourier transform as an operator acting on the space of distributions:

F(|D|αu)(ξ) := |ξ|αF(u)(ξ).

For the purposes of motivating the equation, let us introduce the more generalized equation:

∂tu+ L∂xu+ ∂x(f(u)) = 0. (4.0.1)

�e operator L represents the dispersion of the equation, and f(u) stands for the non-linearity.
In the case of a quadratic non-linearity f(u) = u2 and a dispersion L = −|D|α, we get respectively

the Benjamin-Ono equation (BO) and the Korteweg-de Vries equation (KdV) for α = 1 and α = 2. Shrira
and Voronovich, in [174], introduced the equation of coastal waves, where the parameter is the evolution of
the depth of the coast. If the evolution of the depth is algebraic and given by −(1 +X)α−1, for α ∈ (1, 2),
then the dispersion operator is approximated, for waves with a small wave number, by−c|D|α. Notice that
other dispersions are justi�ed by Klein, Linares, Pilod and Saut [100].

While the change of dispersion in the quadratic case models di�erent phenomena, the change of non-
linearity helps to understand the balance between non-linearity and dispersion. Indeed, studying equations
with a cubic non-linearity f(u) = u3 and di�erent dispersions give new insights of the competition be-
tween those two terms. �e caseL = ∂2

x = −|D|2 corresponds to the modi�ed Korteweg-de Vries equation
(mKdV), while the case L = −|D| corresponds to the modi�ed Benjamin-Ono equation (mBO). We chose
in this article to focus on the case of a non-local dispersion L = −|D|α, with 1 < α < 2.

Since, for 1 < α < 2, fmKdV does not enjoy a Lax pair as KdV, BO or mKdV, no tools from complete
integrability can be applied to this equation. On the other hand, fmKdV possesses 3 conserved quantities
(at least formally):∫

R
u(t, x)dx,

1

2

∫
R
u2(t, x)dx,

∫
R

(
(|D|αu(t, x))2

2
− u4(t, x)

4

)
dx.

We de�ne the scaling operators by:

∀λ ∈ R∗+, u 7→ uλ, with uλ(t, x) := λ
α

2(1+α)u(λt, λ
1

1+αx). (4.0.2)

�e set of solutions of fmKdV is �xed under the scaling operations. �e mBO equation is mass-critical in the
sense that the L2-norm is preserved under any scaling operation. Meanwhile, fmKdV is mass-subcritical
since the conserved space under the operator of scaling is the homogeneous Sobolev space Ḣs(R) with
s = 1−α

2 < 0 as soon as α > 1. �e equation fmKdV has been proved to be locally well-posed inHs(R) for
s > 3−α

4 by Guo [71], and the �ow is locally continuous on that space. As a consequence, the equation is
globally well-posed in the energy spaceH

α
2 (R) (see Appendix 4.5.1). We also refer to Guo and Huang [72],

Kim and Schippa [98], Molinet and Tanaka [150] for other well-posedness results. Moreover, in the case
α = 1 the problem is locally well-posed in the energy space, see Kenig and Takaoka [96].

4.0.2 Ground states and solitary waves.

Di�erent coherent structures may appear in the study of non-linear dispersive equations, and solitary
waves are one of them. A solitary wave is a solution u(t, x) = Qc(x − ct) moving at a velocity c in one
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direction, decaying at in�nity and keeping its form along the time. �e function Qc satis�es the elliptic
equation:

−|D|αQc − cQc +Q3
c = 0. (4.0.3)

A remarkable point is the existence of those objects for any velocity c > 0. Unlike the mKdV equation
the function Qc is not explicit. �e existence of a such solution of the elliptic problem (4.0.3) relies on the
existence of a minimizer of an adequate functional. Such a minimizer is called a ground state, and the
existence of a ground state has been proved by Weinstein in [189] and Albert-Bona-Saut in [4]. Moreover,
the ground state is positive. For now, the notation Qc will refer to the ground-state of the functional.

If we denote by Q the positive ground state associated to c = 1, all the other ground states Qc can
be expressed in terms of the ground state Q by the operation of scaling (4.0.2):

Qc(x) = (Q1)c(x).

�e question of the uniqueness of the ground state of (4.0.3) is di�cult and has been solved by
Frank-Lenzmann in [60]. Note however that no result seems to be known for the uniqueness of solutions
to (4.0.3) which do not minimize the Euler-Lagrange functional. �e non-locality of the operator |D|α does
not allow to use classical ODE’s tools for this equation. �e uniqueness of the solution of the non-local
elliptic problem (4.0.3) is derived from the non-degerenency of the linearized operator

L = |D|α + 1− 3Q2,

by proving that ker(L) = span(Q′). �is result was obtained by Frank-Lenzmann in [60]. �e proof is
based on an extension process to the upper half-plane, introduced by Ca�arelli-Silvestre [29], which allows
to look at the operator |D|α as a Dirichlet-Neumann operator.

Furthermore, as soon as α < 2, the function Q has a algebraic decay (see (4.1.4) for a more precise
expansion):

Q(x) '+∞
1

x1+α
.

�e question of stability of a solitary wave in this case has been done by Pava [9], see also [154].

One conjecture in the �eld of dispersive equation states that any solution decomposes, at large time,
into di�erent dispersive objects (such as the solitary waves) plus a radiation term. Whereas the solitary
waves move to the right, the radiation term moves to the le�. �is conjecture has been proved for the KdV
equation using the tools of complete integrability, but remains open in the non-integrable cases. It is then
natural to introduce multi-solitary waves, which are solutions u that in large time [T0,+∞) are close to a
sum of K decoupled solitary waves:

De�nition 4.0.1. Let K > 0, and K di�erent velocities 0 < c1 < · · · < cK . A function u is called a
multi-solitary waves associated to the previous velocities (or pure multi-solitary waves) if there exist T0 > 0,
K functions vk : (T0,+∞)→ R such that:

lim
t→+∞

∥∥∥∥∥u(t)−
K∑
k=1

Qck(· − vk(t))

∥∥∥∥∥
H
α
2

= 0 and ∀k ∈ (1,K), |vk(t)− ckt| = o+∞(t).

Notice that the de�nition of a multi-solitary waves may depend on the information one can get from
those objects. For example, in a recent result by the �rst author [51], the proof of the existence of the multi-
solitary waves has been established for the equation fKdV with a dispersion α ∈ (1

2 , 2) and an explicit rate
of convergence of the solution to the sum of the K-decoupled solitary waves. Notice that the proof can
easily be adapted to fmKdV, establishing then the existence of multi-solitary waves for this equation. �e
proof of existence of those objects is a �rst step toward the soliton resolution conjecture for this equation
in the case 1 < α < 2.
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4.0.3 Dipoles and main theorem

Notice that in the previous de�nition of multi-solitary waves, all the velocities are distinct. One
can wonder if there exist solutions u behaving at in�nity as a sum of two solitary waves with the same
velocity c and di�erent signs. A solution satisfying this de�nition is called a dipole. In particular, if the two
solitary waves have the same velocity, they interact in large time one with each other, and the velocity of
the di�erent solitary waves is thus expected to be of the form vk(t) ∼+∞ ct− gk(t), with gk(t) = o+∞(t).

�is object has �rst been observed on the mKdV equation using the complete integrability of the
equation [184]. For an odd non-linearity f(u) = |u|p−1u, p ∈ (2, 5) and a dispersion L = ∂2

x, Nguyen
in [156] proved the existence of dipoles for those equations that are not completely integrable.

In this paper, we prove the existence of a dipole for the fmKdV in the L2-subcritical case:

�eorem 4.0.2. Let α ∈ (1, 2). �ere exist some constant T0 > 0, C > 0 and U ∈ C0([T0,+∞) : H
α
2 (R))

solution of (fmKdV) such that, for all t > T0:∥∥∥U(t, ·) +Q
(
· − t− a

2
t

2
α+3

)
−Q

(
· − t+

a

2
t

2
α+3

)∥∥∥
H
α
2
6 Ct

− α−1
4(α+3) ,

where

a :=

(
α+ 3

2

√
−4b1
α+ 1

) 2
α+3

and b1 := −2
(α+ 1)2

α− 1

sin(π2α)

π

∫ +∞

0
e−

1
rα dr

‖Q‖6L3

‖Q‖2
L2

< 0. (4.0.4)

�is result sheds new light on the relation between the dispersion L and the distance between two
solitary waves of a dipole. Indeed, Nguyen in [156, 157] studied the case of a dispersion L = −|D|2 = ∂2

x

and di�erent non-linearities, which corresponds to the generalized Korteweg-de Vries equation. Since
the ground states Q have an exponential decay e−|x|, the distance between the two solitary waves of a
dipole is logarithmic in time 2 ln(tc), with c depending on the non-linearity. A second example is the
recent preprint of Lan and Wang [111], where they studied the generalized Benjamin-Ono equation with
a dispersion L = −|D| = −H∂x with H the Hilbert transform and di�erent non-linearities. For this
equation, since the ground states have a prescribed algebraic decay x−2, the solitary waves of the dipoles
they studied have a distance α

√
t+β ln(t)+γ, where α, β and γ are constants dependent only on the non-

linearity. �eorem 4.0.2 emphasises how the dispersion in�uences the distance between the two solitary
waves, that is at

2
α+3 . One can conjecture that the dipoles for an equation L = −|D|α, for α ∈ (1, 2) and a

non-linearity f(u) = |u|p−1u with various values of p, are composed of two solitary waves at a distance
ct

2
α+3 , with a constant c dependent on p.

4.0.4 Related results

As explained in the introduction, the behaviour of a solution of (4.0.5) is determined by the balance
between the non-linearity and the dispersion, therefore blow-ups are expected in the critical and super-
critical cases. An important result for blow-up, in �nite or in�nite time, in a non-local se�ing has been
obtained by Kenig-Martel-Robbiano in [91] for:

∂tu− ∂x|D|αu+ |u|2αu = 0.

�is equation is critical for all the values of α. For α = 2 in the former equation, which corresponds to the
critical general Korteweg-de Vries equation, Merle [140] proved the existence of blow-up solutions in �nite
or in�nite time. Using this result, [91] proved by a perturbative argument the existence of blow-up for all
α ∈ (α1, 2], for some 1 < α1 < 2. �e proof is based on the existence of a Liouville property and localized
energy estimates. �ose localized estimates generalize the pioneering work of Kenig and Martel [90] for
the asymptotic stability of the soliton of the Benjamin-Ono equation.

In the case α = 1 in fmKdV, the equation is L2-critical and blow-up phenomena occur. Bona-
Kalisch [23], and Klein-Saut-Wang [102] studied numerically the critical fmKdV and conjecture a blow-up
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in �nite time for this equation. In [133] Martel-Pilod proved rigorously the existence of minmial mass
blow-up solution for mBO. We mention also the result by Kalisch-Moldabayev-Verdier in [87], where they
observed that two solitary waves may interact in such a way that the smaller wave is annihilated.

For the super-critical case we refer to the work of Saut-Wang in [171], where they proved the global
well-posedness for small initial data and [102] for numerical simulation of blow-up in �nite time.

�e phenomenon of strong interaction between two di�erent objects also occurs in di�erent situ-
ations. Let us enumerate the di�erent families of equations and results (this list may not be exhaustive)
by beginning with the KdV family. By using the integrable structure of mKdV, Wadati and Ohkuma [184]
exhibited the existence of a dipole. More recently, Koch and Tataru [104] characterized the set of com-
plex two-solitons as a 8-dimensional symplectic submanifold of Hs for s > −1

2 . �e explicit formula of a
dipole holds for the mKdV equation only. In the non-integrable case Nguyen [156] proved the existence of
a dipole for (4.0.1) for a dispersion L = ∂2

x and a non-linearity f(u) = |u|p−1u, with p ∈ (2, 5). Moreover,
he discovered that for each super-critical equation with a non-linearity p > 5, there exists a dipole formed
by two solitary waves with same signs, and the distance between the two objects is also logarithmic in
time. Inspired by this result, Lan and Wang [111] looked for the phenomenon of dipoles for a dispersion
L = −|D| and a non-linearity f(u) = |u|p−1u, with various values of p 6= 3. We also list some results
in the se�ing of the strong interaction of two non-linear objects in the non-linear Schrödinger se�ing.
Ovchinnikov and Sigal [162] for the time-dependent Ginzburg Landau equation, with two vortices with
di�erent signs; Krieger, Martel and Raphaël [107] for the three dimensional gravitational Hartree equa-
tion with two solitons; Nguyen [157] for the subcritical non-linear Schrodinger with two solitary waves
with di�erent signs, and the same signs for the super-critical case; Nguyen and Martel [132] for coupled
non-linear Schrödinger, for two solitary waves with di�erent velocities. �e phenomenon of dipole also
appears in the family of wave equations: Gérard, Lenzmann, Pocovnicu and Raphaël [62] for the cubic
half-wave equation; Côte, Martel, Yuan and Zhao [40] for the damped Klein-Gordon equation; Aryan [12]
for the Klein-Gordon equation; Jendrej and Lawrie [85] for the wave maps equation.

�e strong interaction between di�erent objects also gives rise to exotic behaviours. For example,
the existence of strongly interacting objects has been proved with multi-solitary waves for the mass-critical
non-linear Schrödinger equation by Martel and Raphaël [135] and with bubbles for the critical gKdV equa-
tion by Combet and Martel [36].

Even if the question of dipoles occur at in�nity, one can wonder what happens on the real line to
a solution that behaves like a two soliton at −∞. �e problem of inelastic collision of two solitary waves
has been investigated by Mizumachi [146], Martel and Merle [125,126] and Muñoz [151] for non-integrable
equations in the KdV family. Indeed, only the completely integrable equations exhibit an elastic collision,
that is a solution that can be decomposed at +∞with the same decomposition as at−∞ (up to phase shi�).

We end this part with open questions related to the dipoles of fmKdV. We begin with the particular
case of the critical equation mBO: we do not know if the dipole phenomenon exists for this equation. For
a �xed dispersion L = −|D|α, one can also wonder about the importance of the non-linearity f(u) =
|u|p−1u : if p is close to 1, does the structure of a dipole still make sense, or does the non-linearity breaks
the structure? Concerning the fmKdV equation, if a solution behaves at time−∞ as a sum of two di�erent
solitary waves, what will be the behaviour of this solution at +∞? Even though this article does not answer
those questions, it gives insights and tools to tackle those problems with non-local dispersion.

4.0.5 Ideas of the proof

Let us perform the following change of variables. Let y := x− t, then v(t, y) := u(t, x) veri�es

∂tv + ∂y
(
−v − |D|αv + v3

)
= 0. (4.0.5)

�is equation is be�er suited than fmKdV for the phenomenon of strong interaction, since most of the
objects considered here are moving at a velocity close to 1. �eorem 4.0.2 can be rewri�en in this new
se�ing:



86 Strongly interacting solitary waves for the fractional modi�ed Korteweg-de Vries equation

�eorem 4.0.3. Let α ∈ (1, 2). �ere exist some constant T0 > 0, C > 0 and w ∈ C0([T0,+∞) : H
α
2 (R))

solution of (4.0.5) such that, for all t > T0:∥∥∥w(t, ·) +Q(· − a

2
t

2
α+3 )−Q(·+ a

2
t

2
α+3 )

∥∥∥
H
α
2
6 Ct

− α−1
4(α+3) ,

with the constant a de�ned in (4.0.4).

From now on, we focus on proving the existence of the function w. We provide some ideas for the
proof of �eorem 4.0.3.

�e �rst important point is the construction of a good approximation. We look for a solution closed
to the sum of two solitary waves −R1 + R2 modulated by a set of parameters Γ = (z1, z2, µ1, µ2), where
zi(t) correspond to the centres of the solitary waves moving along the time, whereas 1 +µi(t) correspond
to their size. To this aim, we search for an accurate description of w + R1 − R2, and we introduce the
approximation V of the form V (t, x) = −R1(t, x)+R2(t, x)+ b(t)W (t, x)−P1(t, x)+P2(t, x). �e goal
is to adapt the four other functions such that V almost solves (fmKdV), in the sense that the quantity EV
is close to 0, with:

EV := ∂tV + ∂y(−|D|αV − V + V 3).

By computing the time derivative of R1 and R2, four intrinsic directions appear: ∂yR1, ∂yR2, ΛR1 and
ΛR2. For convenience, we will write them under a vector form by −−→MV . �ey go hand in hand with the
derivatives of the modulation parameters ż1, ż2, µ̇1 and µ̇2. �en, the functionW is inherent to the problem
: it compensates two of those speci�c directions, and has a plateau between z2 and z1. Even if the previous
constructions of strong interactions ( [125, 132, 156, 157]) used this function, it seems to be the �rst time
that it is understood as an intrinsic part of the evolution of the solitary waves, and not only as a part of
the pro�les Pi. With this function we understand how the dispersion of the �rst solitary wave−R1 on the
front in�uences the second solitary wave in the back, and vice-versa. Once this function W is de�ned, we
�x the functions P1 and P2 with algebraic decay to cancel the remainder terms with algebraic decay too,
concentrated around the solitary waves. As a conclusion of this construction, the error can be decomposed
into:

EV = −→m ·
−−→
MV + ∂yS + T,

with −−→MV containing the four peculiar directions cited above, −→m gives a system of ODEs that is satis�ed
by Γ and adapted from the interaction terms. �e two other source terms, S and T are error terms coming
from the rough approximation and are bounded by functions depending on Γ. If one wants to go further
in the development of the approximation, it su�ces to extract from S and/or T the terms at the next order
to build more precise pro�les.

Once the approximation V is constructed, the second step is to estimate the error between the ap-
proximation and a solution, and to �nd a set of equations satis�ed by µ := µ1 − µ2 and z := z1 − z2. Fix
Sn >> 0, and vn the solution of fmKdV with �nal condition vn(Sn) = V (Sn). We estimate the H

α
2 -norm

of the error backward in time by using an adequate weighted functional, mostly composed of quadratic
terms in the error. Whereas studying the error by the energy is quite classic, we adapt in this article the
energy functional used by Nguyen [156] by adding a source term

∫
Sε, linear in ε. �is trick has been used

by Martel and Nguyen [132], by mixing the source term S in the functional, and allows to get rid of the
term

∫
∂yLSε in the functional. It generally helps to get a be�er approximation of the functional, but in

our case, the use of the modi�ed energy enables us not to compute the high Sobolev norms of the source
term S. It means in particular that the in�uence of S on the error of the approximation is lower than the
one of T .

One technical issue of this functional, as opposed to the ones previously used in this context, is the
appearance of the non-local operator |D|α: two of the di�culties are the singularity of this operator for
low frequencies, and the lack of an explicit Leibniz rule for this operator and the weight ϕ. To bypass
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those di�culties, we generalize the weighted commutator estimates given in Lemma 6 and Lemma 7 of
Kenig-Martel-Robbiano [107] and of the �rst author [51].

�ese estimates rely on the understanding of the operator |D|α. Since the operator is singular at
frequency 0, we need to localize in high and low frequencies : for the high frequencies, we use the pseudo-
di�erential calculus, and the low frequency part is dealt with the theory of bounded operators on L2. In
particular, this method implies important restrictions on the choice of the weight.

When orthogonality conditions are imposed to the error, we get a system of ODEs ruling the be-
haviour of z and µ in −→m. Roughly speaking, the system is the following:

µ̇(t) ∼ 2b1
zα+2(t)

, and µ(t) ∼ ż(t).

Notice that it is the solution of this system that gives the distance between the two solitary waves in
�eorem 4.0.3.

To obtain a suitable bound on the di�erent unknowns, we use a bootstrap argument. �e more
important ones are the error, the parameters z and µ. �e error is dealt with the previous functional and µ
by the bootstrap argument. Notice that a bootstrap argument alone would not have been su�cient to close
the estimates: because of the algebraic decay in time of the di�erent parameters, several integrations in
time can not close the estimates. A topological argument, as introduced by Côte, Martel and Martel in [39],
is necessary to conclude the estimate on z: roughly speaking, this argument of connectedness asserts that
there exists at least one initial data zin, chosen in a �xed interval of initial data, such that the estimates
hold on the all time interval. Once this initial data is chosen, the all set of estimates is proved to hold on
[T0, Sn].

With these estimates in hand, a classical argument of extraction by compactness allows to get an
adequate initial data. By weak-continuity of the �ow, we prove that the chosen initial data is close at any
time to the sum of the two decoupled solitary waves. Furthermore, we obtain the algebraic decay in time
of the error between the �nal solution and the two solitary waves.

4.0.6 Outline of the paper

�e paper is organised as follow. Section 4.1 is dedicated to the properties related to the ground-state
Q. It contains in particular the more recent results on those objects, the properties on the linearized operator
and various lemmas related to this operator. Section 4.2 contains the construction of an approximation of
the solution. Notice that the proof of the main theorem of this part can be skipped at �rst lecture. In section
4.3, we give the modulation theorem to describe a solution close to the multi-solitary waves with strong
interaction. Section 4.4 provides the proof of the existence of the solution. �e appendices recall satellite
results used in this article : well-posedness, the pseudo-di�erential calculus, proofs of various lemmas based
on pseudo-di�erential calculus, and the coercivity of the localised linearized operator.

4.0.7 Notations

�roughout the article, we use the following notations.
We denote by C a positive constant, changing from lines to lines independent of the di�erent pa-

rameters.
We say x ∼ y if there exists 0 < c1 < c2 < +∞ such that c1x 6 y 6 c2y.
�e japanese bracket 〈·〉 is de�ned on R by 〈x〉 := (1 + x2)

1
2 .

L2(R) is the set of square integrable functions. We denote the scalar product on L2(R) by 〈u, v〉 :=∫
R u(x)v(x)dx with u, v ∈ L2(R). �e Fourier transform is de�ned by:

∀f ∈ L2(R), f̂(ξ) :=

∫
R
eixξf(x)dx.

We de�ne the following spaces:
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• the Sobolev space, for s ∈ R : Hs(R) :=

{
f ∈ L2(R) :

∫
R

(1 + |ξ|2)
s
2 f̂(ξ)dξ < +∞

}
,

• the Schwartz space : S(R) =
{
f ∈ C∞(R); ∀α ∈ N, ∀β ∈ N, ∃Cα,β , |fα(x)| 6 Cα,β 〈x〉−β

}
,

• the set of functions with enough decay:

Xs(R) :=

{
f ∈ Hs(R) : ∃C > 0, ∀x ∈ R, |f(x)| 6 C

〈x〉1+α

}
, and X∞(R) =

⋂
s∈N

Xs(R). (4.0.6)

Let f, g ∈ L2(R). We say that f is orthogonal to g if
∫
R
f(x)g(x)dx = 0, and is sometimes shortened

by f ⊥ g.
Q is the ground-state associated to the elliptic problem (4.1.1), and for c > 0, we set Qc(x) :=

c
α

2(α+1)Q(c
1

1+αx). Moreover, let us de�ne:

ΛQc :=
d

dc′
Qc′|c′=c

=
1

c

[
α

2(α+ 1)
Q+

1

α+ 1
xQ′

]
c

, (4.0.7)

Λ2Qc :=
d2

dc′2
Q|c′=c =

1

c2

(
− α(α+ 2)

4(α+ 1)2
Q+

x2Q′′

(α+ 1)2

)
c

.

�e parameters of the approximation are z1, z2, µ1 and µ2. We denote by Γ = (z1, z2, µ1, µ2) the
set of those parameters. z and µ are de�ned in (4.2.1), and z̄ and µ̄ in (4.4.4). �e two solitary waves are
de�ned by:

R1(Γ, y) := Q1+µ1(y − z1), R2(Γ, y) := Q1+µ2(y − z2), and ΛRi(t, y) := (ΛQ1+µi(t))(y − zi(t)).

Along the article, the functions z1, z2, µ1, µ2 and Γ can depend on the time, and it is precised when
needed. �e asset of this notation is to remark that the two solitary waves depend on the time through the
parameter Γ. For purposes of notations, we can denote the solitary waves by Ri(t) to emphasize on the
time dependency. �e solitary waves dependent only on the translation parameters are denoted by:‹Ri(t, y) := Q(y − zi(t)) and Λ‹Ri(t, y) := (ΛQ)(y − zi(t)).

�e derivatives are denoted by ∂y and ∂t. �e notation ∇Γ holds for the gradient along the four
directions of Γ. When no confusion is possible, we denote by prime (as in Q′) the space derivative, and by
a dot (as in µ̇) the time derivative.

4.1 Ground state

�is part recalls the properties known on Q: existence, uniqueness and the recently proved asymp-
totic expansion. We emphasize that the asymptotic expansion is composed of terms with algebraic decay,
and is thus di�erent from the one of the (gKdV) family −cQc + ∆Qc + Qpc = 0, with exponential decay.
Next, we focus our a�ention on the linearized operator L.

4.1.1 Ground state properties

Considering the equation (4.0.5), the existence of solitary waves is related to the existence of solutions
to the following elliptic time-independent equation:

−|D|αQ−Q+Q3 = 0, 1 < α < 2. (4.1.1)
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�e previous elliptic equation is related to a calculus of variation problem. If Q is a minimizer of the
following functional Jα:

Jα(v) =

(∫
||D|

α
2 v|2

) 1
α
(∫
|v|2
)2− 1

α

∫
|v|4

. (4.1.2)

then it is a solution to the elliptic problem.
We now sum up the previous known results on the ground states, which are the minimizer of Jα.

�eorem 4.1.1 ( [4, 60, 61, 189]). Let α ∈ (1, 2). �ere exists Q ∈ Hs(R) for all s > 0 such that

1. (Existence) �e function Q solves (4.1.1) and Q = Q(|x|) > 0 is even, positive and strictly decreasing in
|x|. Moreover, the function Q is a minimizer of Jα in the sense that:

Jα(Q) = inf
v∈H

α
2 (R)

Jα(v).

2. (Uniqueness) �e even ground state solutionQ = Q(|x|) > 0 of (4.1.2) is unique, up to the multiplication
by a constant, scaling and translation.

3. (Decay) �e function Q veri�es the following decay estimate:

C1

(1 + |x|)1+α
6 Q(x) 6

C2

(1 + |x|)1+α
,

for some C1, C2 > 0.

4. (Gagliardo-Niremberg inequality) �ere exists a constant C = C(α) such that:

‖v‖L4 6 C ‖v‖1−
1
2α

L2 ‖v‖
1
2α

H
α
2
.

Remark 4.1.2. Notice that since the non-linearity is cubic, the function Q in the theorem and −Q are both
solutions of the elliptic equation (4.1.1).

Proof. We give some classic ideas to prove the Gagliardo-Niremberg inequality. �e proof of this inequal-
ity relies on �nding a universal constant C which bounds (Jα)−1. Indeed, by denoting the following
2-parameters transformation for (λ, γ) ∈ R∗+ × R∗+:

vλ,γ(x) := λv

(
x

γ

)
,

we notice that Jα(vλ,γ) = Jα(v). As a consequence, if for any v, the inequality is proved for some vλ,γ for
some values of λ and γ, then the inequality is proved for any function. In particular, if we choose λ = ‖v‖−1

L2

and γ = ‖v‖
2

α−1

Ḣ
α
2

, we have ‖vλ,γ‖L2 = ‖vλ,γ‖Ḣ α
2

= 1. �us it su�ces to prove that (Jα)−1(vλ,γ) =

‖vλ,γ‖4L4 is uniformly bounded with the constraints on λ and γ. By the Sobolev embedding for a certain
constant C (see for example [44]):

‖v‖L4 6 C‖v‖
H
α
2
,

and thus we have (Jα)−1(vλ,γ) 6 2C independently of vλ,γ . �is last inequality concludes the proof of
the Gagliardo-Niremberg inequality.

Remark 4.1.3. As from [4,91,189], the optimal constant in the Gagliardo-Niremberg inequality can be given
explicit in terms of Q.
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Recently, the asymptotic expansions of the ground states have been improved, see [52]. We recall
the results applied to our case:

�eorem 4.1.4 ( [52]). Let α ∈ (1, 2) and x > 1. �e positive, even function Q de�ned in �eorem 4.1.1
veri�es:

1. (First-order expansion) �e function Q veri�es the following decay estimate:∣∣∣∣Q(j)(x)− (−1)j
(α+ j)!

α!

a1

x1+α+j

∣∣∣∣ 6 Cj
(1 + x)2+α+j

, j ∈ N, (4.1.3)

for some Cj > 0, with a1 := k1‖Q‖3L3 > 0 and k1 :=
sin
(
π
2α
)

π

∫ +∞

0
e−r

1
α dr .

2. (Higher order expansion) �ere exists C > 0 such that:∣∣∣Q(x)−
( a1

xα+1
+

a2

x2α+1
+

a3

xα+3

)∣∣∣ 6 C

x3α+1
, (4.1.4)∣∣∣Q′(x) + (α+ 1)

a1

xα+2
+ (2α+ 1)

a2

x2α+2

∣∣∣ 6 C

x3α+1
, (4.1.5)∣∣∣∣ΛQ(x) +

a1(α+ 2)

2(α+ 1)

1

xα+1
+
a2(3α+ 2)

2(α+ 1)

1

x2α+1

∣∣∣∣ 6 C

xα+3
.

with a2 := k2‖Q‖3L3 , k2 := −2 sin (πα)

π

∫ +∞

0
re−r

1
α dr, and a3 ∈ R.

We also recall some results of regularity given by convolution with the kernel k associated to the
dispersion:

k(x) :=

∫
R

eixξ

1 + |ξ|α
dξ.

Lemma 4.1.5 ( [52]). Let g ∈ X0(R). �ere exists C = C(g) such that:

|k ∗ g|(x) 6
C

〈x〉1+α
.

Furthermore, if g ∈ C1(R), and |g′(x)| 6 C〈x〉−2−α, then there exists C = C(g, g′) such that:

|∂x (k ? g) |(x) 6
C

〈x〉2+α
.

We set the expansion of the translated ground state Q(x+ z) at +∞ in x by:

Qapp(x, z) :=
a1

zα+1
− (α+ 1)a1

x

zα+2
+

a2

z2α+1
+

(
a1

(α+ 1)(α+ 2)

2
x2 + a3

)
1

zα+3
.

Lemma 4.1.6. Let z be large enough. We have for all |x| 6 z
2 :

|Qapp(x, z)−Q(x+ z)|+ |Qapp(−x, z)−Q(x− z)| 6 C

(
|x|3

zα+4
+
|x|

z2α+2
+

1

z3α+1

)
,(4.1.6)

|∂xQapp(x, z)−Q′(x+ z)|+ |∂xQapp(−x, z)−Q′(x− z)| 6 C

(
x2

zα+4
+

1

z2α+2

)
∣∣∣∣ΛQ(x+ z) +

a0(α+ 2)

2(α+ 1)

1

zα+1

∣∣∣∣+ |∂xΛQ(x+ z)| 6 C

(
|x|
z2+α

+
1

z2α+1

)
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Proof. From the asymptotic of Q in (4.1.4) and the asymptotic expansions:∣∣∣∣ a1

|x− z|α+1
−
(

a1

zα+1
− a1(α+ 1)

x

zα+2
+ a1

(α+ 1)(α+ 2)

2

x2

zα+3

)∣∣∣∣ 6 C
|x|3

zα+4

and the ones of a2

|x− z|2α+1
and a3

|x− z|α+3
, we get the development of Q(x+ z). �e proof is similar for

Q′ with (4.1.5).
�e proof of ΛQ is a combination of the two previous asymptotic expansions.

Proposition 4.1.7. Let µ∗ > 0 be small enough. �ere exists a constant C > 0, such that for any µ 6 µ∗,
we have:

|Q1+µ −Q− µΛQ|+
∣∣Q2

1+µ −Q2 − 2µQΛQ
∣∣ 6 C

µ2

〈x〉1+α
. (4.1.7)

�e following terms are also bounded in terms of µ:

‖Q1+µ −Q− µΛQ‖H2 6 Cµ2 and ‖ΛQ1+µ − ΛQ‖H1 6 Cµ. (4.1.8)

Moreover, the scalar product of Q with ΛQ is:

〈Q,ΛQ〉 =
α− 1

2(α+ 1)
‖Q‖2L2 . (4.1.9)

Proof. By the Taylor formula in µ, we have, with (4.0.7), (4.1.4) and (4.1.3) for the second derivative:

Q1+µ −Q− µΛQ =

∫ 1+µ

1
(1 + µ− s)Λ2Qsds,

|Q1+µ −Q− µΛQ| 6
∫ µ

0

µ− s
(1 + s)2

1

〈x〉α+1
1+s

ds 6 C
µ2

〈x〉α+1
.

�e proof is similar for Q2
1+µ.

Notice that the previous bound still holds for two more derivatives, and the integral gives the �rst
part of (4.1.8). �e second part is similar.

4.1.2 Properties of the linearized operator

We recall some results on the spectrum of the linearized operator L and establish new inversion
lemma on L.

�eorem 4.1.8 ( [4, 60, 91, 189]). Let α ∈]1, 2[. �ere exists Q ∈ H
α
2 (R) ∩ C∞(R) such that

1. (Linearized operator) Let L be the unbounded operator de�ned on L2(R) by:

Lv = |D|αv + v − 3Q2v.

�en, the continuous spectrum of L is [1,+∞[, L has one negative eigenvalue µ0, associated to an even
eigenfunction v0 > 0, and kerL = span {Q′}.

2. (Invertibility) For any g ∈ L2(R) orthogonal to v0 and Q′, there exists a unique f ∈ L2(R) such that
Lf = g and f ⊥ Q′. Furthermore, if g ∈ Hk(R), then f ∈ Hk+α(R).

Proof. We give the proof of the second point. By the Lax-Milgram theorem on H
α
2 (R), we obtain the

existence of f in the same space. Because f satis�es |D|αf = g − f + 3Q2f , we have f ∈ Hα(R).
Concerning the higher regularity of g, if f is solution of Lf = g with g ∈ Hk(R), then, since

[∂y, L]v = 3∂y(Q
2)v for all v ∈ S(R), we obtain that f ∈ Hk+α(R).
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Remark 4.1.9. From �eorem 4.1.8 we have the operator L veri�es that there exists κ > 0 such that for all
f ∈ H

α
2 (R), with f ⊥ v0, Q

′ then:

〈Lf, f〉 > κ‖f‖2
H
α
2
.

However, it is not convenient to work with v0. An argument of Weinstein will allow us to replace the
orthogonality on v0 by an orthogonality on Q to get the coercivity. Indeed, from Lemma E.1 in [187] and
since

〈L−1Q,Q〉 = −〈ΛQ,Q〉 = − α− 1

2(α+ 1)
‖Q‖2L2 < 0.

we obtain the coercivity of L up to the orthogonality condition on Q and Q′:

∀f ∈ H
α
2 (R), f ⊥ Q,Q′ implies 〈Lf, f〉 > κ‖f‖.

H
α
2

(4.1.10)

We continue this section with two lemmas on the characterisations on the inverse of particular
functions by L on speci�c directions.

Lemma 4.1.10. Let k > 0 and g ∈ Xk(R) with g ⊥ Q′, then there exist a unique f ∈ Xk+α(R), a ∈ R
such that: {

Lf = g + aQ

f ⊥ Q, f ⊥ Q′
.

Proof. Since g + aQ ⊥ Q′, we apply the invertibility property of �eorem 4.1.8 and there exists a unique
f ∈ Hk+α(R) such that: {

Lf = g + aQ

f ⊥ ker(L) = span(Q′)
.

To obtain the second orthogonality condition, since LΛQ = −Q, with (4.1.9) we deduce that:

〈f,Q〉 = 0 ⇐⇒ 〈g + aQ,ΛQ〉 = 0 ⇐⇒ a = − 〈g,ΛQ〉
〈Q,ΛQ〉

= −2(α+ 1)

α− 1

〈g,ΛQ〉
‖Q‖2

L2

,

We �nish with the decay in 〈x〉−1−α from the de�nition (4.0.6) ofXk+α(R). Since g+aQ+3Q2f ∈
Xk(R), we obtain by Lemma 4.1.5 that f = (|D|α + 1)−1(g + aQ + 3Q2f) ∈ Xk+α(R). �is concludes
the proof of Lemma 4.1.10.

Lemma 4.1.11. Let g ∈ Xk(R). �ere exist a unique a, ã ∈ R and a unique function f ∈ Xk+α(R) such
that: {

∂yL(f − ãS0) = ∂yg + aQ′ + ãΛQ

f − ãS0 ⊥ Q, f − ãS0 ⊥ Q′

with

a = −2(α+ 1)

α− 1

〈g − ã(|D|α + 1)S0),ΛQ〉
‖Q‖2

L2

and ã =
2(α+ 1)

α− 1

〈g,Q′〉
‖Q‖2

L2

. (4.1.11)

Similarly, there exist a unique a, ã ∈ R and a unique function f ∈ Xk+α(R) such that:{
∂yL (f + ã(l − S0)) = ∂yg + aQ′ + ãΛQ

f + ã(l − S0) ⊥ Q, f + ã(l − S0) ⊥ Q′

with

a = −2(α+ 1)

α− 1

〈g + ã(|D|α + 1)(l − S0)),ΛQ〉
‖Q‖2

L2

and ã =
2(α+ 1)

α− 1

〈g,Q′〉
‖Q‖2

L2

.
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Proof. We denote byH the Hilbert transform. Since |D|α = |D|α−1H∂y , we deduce that:

|D|αS0 = |D|α−1H(|D|α + 1)−1ΛQ =

∫ +∞

y
|D|α(|D|α + 1)−1ΛQ.

�en, we get that:

∂yLS0(y) = −ΛQ(y)− 3∂y
(
Q2(y)S0(y)

)
.

�erefore, it is enough to prove that the following problem has a unique solution:{
Lf = g + aQ− ã3Q2S0

f − ãS0 ⊥ Q, f − ãS0 ⊥ Q′
.

We choose ã such that g + aQ+ ã3Q2S0 is orthogonal to Q′, and then arguing as in the proof of Lemma
4.1.10, we conclude the proof the �rst identity of Lemma 4.1.11. �e second identity is similar.

4.2 Construction of the approximation

�e approximation V of the expected solution u is built in this section. �e purpose is to minimise
the �ow EV associated to the approximation, by detailing V . By taking the time derivative of the sum of
two solitons −R1 +R2, a particular direction intrinsic to the problem appears and is compensated by the
use of a function W . �is term possesses a tail at −∞. We also de�ne a time-dependent variable b(z(t)).
We then minimise the �ow associated to −R1 +R2 + bW by adding localised pro�les −P1 and P2 in the
approximation to cancel the source term coming from the non-linearity.

4.2.1 Notation

Let us consider four C1 functions µ1, µ2, z1 and z2 on a time interval I ⊂ R, and

Γ(t) = (µ1(t), µ2(t), z1(t), z2(t)).

We de�ne the distance between the di�erent functions by:

µ(t) := µ1(t)− µ2(t), z(t) := z1(t)− z2(t). (4.2.1)

For a �xed constant C0 > 0, we use the following set of assumptions on the interval I :

−z(t) 6 z2(t) 6 −1

8
z(t),

1

8
z(t) 6 z1(t) 6 z(t), (4.2.2)

|µ1(t)|+ |µ2(t)|+ |µ(t)|+ |ż1(t)|+ |ż2(t)|+ |ż(t)| 6 C0

z(t)
1+α
2

, (4.2.3)

|µ̇1(t)|+ |µ̇2(t)| 6 C0

z(t)2+α
. (4.2.4)

Remark 4.2.1. �e constant C0 is used to �x the set of assumptions on Γ. �e computations of this section
involve the constant C0, but it does not have any in�uence on the �nal constant C in �eorem 4.0.3. For
the sake of simplicity, we omit the presence of this constant in the computations. To close the bootstrap,
we will �x the constant C0 to be large enough so that the set assumptions on Γ is satis�ed.

We de�ne a function

b(z(t)) :=
b1

z2+α(t)
(4.2.5)

with b1 = −2a1
(α+ 1)2

α− 1

‖Q‖3L3

‖Q‖2
L2

< 0 and a1 > 0 de�ned in �eorem 4.1.4.
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4.2.2 Approximate solution

We de�ne a function S0 such that the ∂yLS0 is close to ΛQ, in the sense that the remaining terms are
of the form ∂y(g) for some function g:

S0(y) :=

∫ +∞

y
(|D|α + 1)−1 ΛQ(ỹ)dỹ, and W (Γ(t), y) := S0(y − z1(t))− S0(y − z2(t)). (4.2.6)

S0 is a well-de�ned function. It has a limit at −∞, which may be di�erent from 0 and is denoted by l:

l := lim
y→−∞

S0(y). (4.2.7)

See Appendix 4.5.2 for the justi�cation of S0.

�eorem 4.2.2. Let I ⊂ R an interval such that the assumptions (4.2.2)-(4.2.4) on Γ are satis�ed.
�ere exist two constants β0 and δ0 in R, two functions β(Γ) and δ(Γ) and two functions P1(Γ, y) and

P2(Γ, y) such that the following holds:

• Asymptotic of β and δ. �e functions β and δ have the following expansion:∣∣∣∣β(Γ)− β0

z1+α

∣∣∣∣+

∣∣∣∣δ(Γ)− δ0

z1+α

∣∣∣∣ 6 C

z2+α
. (4.2.8)

• Orthogonality conditions and limits. �e pro�les Pi(Γ) ∈ C(I,X2+α(R)) satisfy:

−P1 + b(z)S0(· − z1) ⊥ ‹R1, ∂y‹R1, P2 + b(z)(l − S0(· − z2)) ⊥ ‹R2, ∂y‹R2.

We then de�ne the approximation V of a solution by:

V (Γ, y) :=
2∑
i=1

(−1)i (Ri(Γ, y) + Pi(Γ, y)) + b(z)W (Γ, y), (4.2.9)

and for simplicity we will write V (t, y) := V (Γ(t), y).

• Decomposition and estimate of the �ow. �e �ow EV of the approximation

EV := ∂tV + ∂y
(
−|D|αV − V + V 3

)
(4.2.10)

can be decomposed into:

EV = −→m ·
−−→
MV + ∂yS + T (4.2.11)

with

−→m(t) =


−µ̇1(t) + b(z(t))

ż1(t)− µ1(t) + β(Γ(t))
µ̇2(t) + b(z(t))

−ż2(t) + µ2(t)− δ(Γ(t))

 ,
−−→
MV (t, y) =


ΛR1(t, y)
∂yR1(t, y)
ΛR2(t, y)
∂yR2(t, y)

 , (4.2.12)

and the source term S and the approximation due to the �ow T are in C1(I,X2+α(R)) and satisfy the
set of inequalities :

‖S‖H1 6
C

z
5+3α

2

, (4.2.13)

‖∂tS‖L2 6
C

z3+2α
, (4.2.14)

‖T‖H1 6
C

z
5+3α

2

+
C

z1+α

2∑
i=1

|żi − µi|. (4.2.15)
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We add some estimates related to the previously de�ned functions. We recall the de�nition of ϕ in
(4.4.19) and Φ in (4.4.20).

Proposition 4.2.3. With the previous notations, the following estimates hold:

• Estimates on the solitary waves:

‖Ri(ϕ− δ2i)‖H1 + ‖∂yRi (ϕ− δ2i)‖H1 + ‖(1−
√
|δ1i − ϕ|)Ri)‖L2 6

C

zα
, i = 1, 2, (4.2.16)

‖∂yRiΦ‖L2 + ‖ΛRiΦ‖L2 6
C

z
1+α
2

, i = 1, 2, (4.2.17)

where δij holds for Kronecker delta.

• Estimates on the pro�les:

‖ (P1 − P2 − bW ) ‖L∞ + ‖∂y (P1 − P2 − bW ) ‖L∞ 6
C

z1+α
, (4.2.18)

‖∂t (P1 − P2 − bW ) ‖L∞ 6
C

z
3+3α

2

, (4.2.19)

• Estimates on the approximation:

‖V ‖L∞ + ‖∂yV ‖L∞ 6 C, (4.2.20)

‖V kΦ2‖L∞ + ‖(V 2 −R2
1)∂yR1‖L2 6

C

z1+α
k ∈ N (4.2.21)

‖∂tV ‖L∞ 6
C

z
1+α
2

. (4.2.22)

�e next subsections are dedicated to the proof of the theorem on the approximation V . We begin
with the expansion of EV de�ned in (4.2.10). Let us �rst compute the di�erent time derivatives:

∂t(−R1) = ż1∂yR1 − µ̇1ΛR1 and ∂tR2 = −ż2∂yR2 + µ̇2ΛR2.

By the de�nition of V in (4.2.9), we get the development:

EV =

2∑
i=1

(−1)i (µ̇iΛRi − żi∂yRi) +

2∑
i=1

(−1)i∂y
(
−|D|αRi −Ri +R3

i

)
(4.2.23)

+
2∑
i=1

∂y
((
−|D|α − 1 + 3R2

i

)
((−1)iPi)

)
+ ∂y ((−|D|α − 1)(bW ))

+ ∂y(V
3 +R3

1 −R3
2 + 3R2

1P1 − 3R2
2P2) (4.2.24)

+
d

dt
(−P1 + P2 + bW ). (4.2.25)

Notice also the following identities:

∂y(−|D|α(−R1)− (−R1)−R3
1) = −µ1∂yR1 and ∂y(−|D|αR2 −R2 +R3

2) = µ2∂yR2.

We extract from (4.2.23) and (4.2.25) the higher orders terms, and for sake of clarity we denote:

∀i ∈ {1, 2}, T (i, β0) :=
β0

z1+α
∂y

(
µiΛ‹Ri)− µi∂yPi,
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and the remaining term outside of ∂y by:

T :=
2∑
i=1

b(z)
(

Λ‹Ri − ΛRi

)
+ β(Γ)

(
−∂yR1 + ∂y‹R1

)
− δ(Γ)

(
−∂yR2 + ∂y‹R2

)
+ T (1, β0)−T (2, δ0) +

d

dt
(−P1 + P2 + bW ) . (4.2.26)

Note that the directions ΛRi and ∂yRi involved in −−→MV are switched by T to Λ‹Ri and ∂y‹Ri.
We continue by decomposing the term (4.2.24). First, from the interaction term V 3 + R3

1 − R3
2 we

extract the higher orders terms, and denote by SV 3 the rest:

SV 3 :=V 3 +R3
1 −R3

2 + 3R2
1P1 − 3R2

2P2 − 3R2
1bS0(y − z1)− 3R2

2b(l − S0(y − z2))

− 3R2
1R2 + 3R1R

2
2

=3R2
1(P2 − bS0(y − z2)) + 3R2

2(−P1 + b(S0(y − z1)− l))− 6R1R2(−P1 + P2 + bW )

+ 3(−R1 +R2)(−P1 + P2 + bW )2 + (−P1 + P2 + bW )3. (4.2.27)

�e pro�les Pi are built to remove the main orders of the interaction terms and some added terms
in T . We want to inverse the following terms to get a be�er approximation of the solution:

∀i 6= j ∈ {1, 2}, S (i, j) :=3‹R2
i
‹Rj − 6µiR̃iΛ‹RiPi + 6µiR̃iΛ‹Ri‹Rj + 3µj‹R2

iΛ
‹Rj

+ µiPi − β0
µi
z1+α

Λ‹Ri, (4.2.28)

and thus the quantities that we want to be close to 0 are the functions S1 and S2, equal to 0 at +∞ and
satisfying:

∂yS1 := ∂y

((
−|D|α − 1 + 3‹R2

1

)
(−P1 + bS0(· − z1)) + S (1, 2)

)
− b(z)Λ‹R1 − β(z)∂y‹R1, (4.2.29)

∂yS2 := ∂y

((
−|D|α − 1 + 3‹R2

2

)
(P2 + b(l − S0(· − z2)))−S (2, 1)

)
− b(z)Λ‹R2 + δ(z)∂y‹R2.(4.2.30)

By an adequate choice of Pi, b, β and δ, the functions S1 and S2 will not have a tail at −∞.
We �nally gather the previous approximations and �nd the remaining terms in ∂y , by se�ing:

∀i 6= j ∈ {1, 2}, S̃ (i, j) := 6µi‹RiΛ‹RiPi + 3R2
iRj − 3‹R2

i
‹Rj − 6µi‹RiΛ‹Ri‹Rj − 3µj‹R2

iΛ
‹Rj ,

and thus:

S̃ := 3(R2
1 − ‹R2

1)(−P1 + bS0(· − z1)) + S̃ (1, 2) + 3(R2
2 − ‹R2

2)(P2 + b(l − S0(· − z2)))− S̃ (2, 1).
(4.2.31)

We �nally get the following decomposition:

EV = −→m ·
−−→
MV + ∂yS + T,

where the coe�cients −→m and −−→MV are de�ned in (4.2.12), T is de�ned in (4.2.26), and S by

S = S1 + S2 + SV 3 + S̃.

Let us continue the construction in the next subsection by the choices of P1 and P2.
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4.2.3 Construction of the pro�les

�is part is dedicated to the construction of the pro�les P1 and P2. �e goal is to minimise the quantities
S1 and S2 by exploiting the intrinsic directions of the problems ∂yR1, ∂yR2, ΛR1 and ΛR2. In particular,
the coe�cient b de�ned in (4.2.5) is central in the study of the interaction. �e pro�les Pi are established
term by term in S in (4.2.28), and using the expansion of the interaction terms, given by Qapp.

Due to the de�nition of S in (4.2.28), for any i 6= j ∈ {1, 2}, we de�ne an approximate value of the
function S , where it is located, by:

F (i, j, β0, B0) := 3‹R2
iQapp((−1)j(· − zi), z)− 6

µi
z1+α

R̃iΛ‹RiB0(· − zi) + 6
µi
z1+α

‹RiΛ‹Ria1

− 3
µj
z1+α

‹R2
i

a1(α+ 2)

2(α+ 1)
+

µi
z1+α

B0(· − zi)− β0
µi
z1+α

Λ‹Ri.
�e de�nitions of b1 and b are given in (4.2.5), and S0 and l respectively in (4.2.6) and (4.2.7).

Proposition 4.2.4. �ere exist two constants β0 and δ0, two functions β(Γ) and δ(Γ) in C1(I) satisfying
(4.2.8), two even functionsB0, D0 ∈ X∞(R) and two pro�le functionsP1(Γ, y) andP2(Γ, y) in C(I,X∞(R))
satisfying: ∣∣∣∣P1(Γ, y + z1)− β0

z1+α
B0(y)

∣∣∣∣+

∣∣∣∣P2(Γ, y + z2)− δ0

z1+α
D0(y)

∣∣∣∣ 6 C

z2+α

1

〈y〉1+α
,

∂y

((
−|D|α − 1 + 3‹R2

1

)
(−P1 + b(z)S0(· − z1)) + F (1, 2, β0, B0)

)
= b(z)Λ‹R1 + β(Γ)∂y‹R1,

(4.2.32)

∂y

((
−|D|α − 1 + 3‹R2

2

)
(P2 + b(z)(l − S0(· − z2)))−F (2, 1, δ0, D0)

)
= b(z)Λ‹R2 − δ(Γ)∂y‹R2,

(4.2.33)

with the orthogonality conditions:

P1 − b(z)S0(· − z1) ⊥ ‹R1, ∂y‹R1, and P2 + b(z) (l − S0(· − z1)) ⊥ ‹R2, ∂y‹R2.

Moreover, the pro�les P1, P2 verify:

|Pi(Γ, y)|+ |∂yPi(Γ, y)| 6 C

z1+α

1

〈y − zi〉1+α
, (4.2.34)∣∣∣∣ ddtPi(Γ, y)

∣∣∣∣ 6 C

z
3+3α

2

1

〈y − zi〉1+α
, (4.2.35)∣∣∣∣ ddtPi(Γ, y) + żi∂yPi(Γ, y)

∣∣∣∣ 6 C

z
5+3α

2

1

〈y − zi〉1+α
. (4.2.36)

�e pro�les P1 and P2 are de�ned by:

P1(Γ(t), y) :=
−→
f (Γ(t)) ·

−→
B (y − z1(t)), P2(Γ(t), y) :=

−→
f (Γ(t)) ·

−→
D(y − z2(t)),

where the functions
−→
f , −→B and −→D are established in the next proposition, and the quantities F are trans-

lated to be centered at 0 and correspond to
−→
f ·
−→
F . �e proof of Proposition 4.2.4 is postponed a�er the

proof of the next proposition.

Proposition 4.2.5. Let us de�ne the vector functions:

−→
f (Γ) :=

(
1

z1+α
,

1

z2+α
,
µ1

z1+α
,
µ2

z1+α
,

1

z2α+1
,

1

z3+α

)
,
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and for all i ∈ {1, 2}:
−→
F (i, β0, B0) :=

(
3Q2a1, 3Q2a1(−1)i(α+ 1)y, −6QΛQB0 + 6QΛQa0 +B0 − β0ΛQ,

−3a1
α+ 2

α+ 1
Q2, 3Q2a2, 3Q2

(
a1

(α+ 1)(α+ 2)

2
y2 + a3

))
.

�ere exist unique β0 ∈ R, β(Γ) ∈ C1(I) satisfying (4.2.8), B0, B1, B2, B3, B4 and B5 ∈ X∞(R),
with B0 an even function, and B0, B1 + b1S0, B2, B3, B4, B5 ⊥ Q,Q′ such that, :

∂y

(
L
(−→
f (Γ) ·

−→
B − b(z)S0

)
+
−→
f (Γ) ·

−→
F (1, β0, B0)

)
= b(z)ΛQ+ β(Γ)Q, (4.2.37)

with
−→
B := (B0, B1, B2, B3, B4, B5).
Similarly, there exist unique δ0 ∈ R, δ(Γ) ∈ C1(I), satisfying (4.2.8), D0, D1, D2, D3, D4 and D5 ∈

X∞(R) with D0 an even function, D0, D1 + b1(l − S0), D2, D3, D4, D5 ⊥ Q,Q′ such that:

∂y

(
L
(−→
f (Γ) ·

−→
D + b(z)(l − S0)

)
+
−→
f (Γ) ·

−→
F (2, δ0, D0)

)
= −b(z)ΛQ+ δ(Γ)Q′, (4.2.38)

with
−→
D := (D0, D1, D2, D3, D4, D5).

Notice that in the previous decomposition, the tail of the pro�le of the �rst solitary wave, given by
B1, has an in�uence on the pro�les around the second solitary wave, on D1. However, this tail does not
change the coe�cient −b(z)ΛQ, which is of great importance in the system of ODEs ruling the equations
of µ and of z.

To prove Proposition 4.2.5, we need Lemma 4.1.10 and 4.1.11 to �nd the adequate pro�les.

Proof. We de�ne from Lemma 4.1.10 the unique function B0 ∈ X∞(R) and the unique coe�cient β0 ∈ R
satisfying: {

LB0(y) = −3a1Q
2(y) + β0Q(y),

B0 ⊥ Q, B0 ⊥ Q′.
(4.2.39)

Notice that since L keeps stable the parity of the functions, B0 is an even function.
For the second term, we use Lemma 4.1.11 by de�ning the function B1, and the coe�cients β1 and

b1 as the unique solution of the following problem:

{
∂yL(B1(y)− b1S0(y)) = ∂y

(
3(α+ 1)a1yQ

2(y)
)

+ β1Q
′(y) + b1ΛQ,

B1 − b1S0 ⊥ Q, B1 − b1S0 ⊥ Q′.

Notice in particular that b1 is de�ned by the formula (4.1.11):

b1 = −
2(α+ 1)2a1‖Q‖3L3

(α− 1)‖Q‖2
L2

< 0, (4.2.40)

since the sign of a1 > 0 is given in Lemma 4.1.4. �is justi�es the choice of de�nition of b(z) :=
b1
z2+α

, as
stated in (4.2.5).

�e third, fourth, ��h and sixth terms are de�ned as for B0 and β0. With Lemma 4.1.10, we de�ne
B2, B3, B4, B5 inX∞(R), and the coe�cients β2, β3, β4 and β5 as the solutions of the following problems:{
LB2(y) = −6QΛQB0 − 6QΛQa1 −B0 + β0ΛQ+ β2Q(y)

B2 ⊥ Q, B2 ⊥ Q′
,

LB3(y) = 3a1
α+ 2

α+ 1
Q2 + β3Q(y)

B3 ⊥ Q, B3 ⊥ Q′
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and{
LB4(y) = −3a2Q

2(y) + β4Q(y)

B4 ⊥ Q, B4 ⊥ Q′.
,

LB5(y) = −3

(
a1

(α+ 1)(α+ 2)

2
y2 + a3

)
Q2(y) + β5Q(y)

B5 ⊥ Q, B5 ⊥ Q′.

�erefore, we set:

β(Γ) = (β0, β1, β2, β3, β4, β5) ·
−→
f (Γ).

Now, we continue with the construction of −→D . Since the �rst, forth, ��h and sixth coordinates in−→
F (2, δ0, D0) are respectively equal to the �rst, forth, ��h and sixth terms in −→F (1, β0, D0), the functions
D0, D3, D4, D5 will solve respectively the same problem as B0, B3, B4 and B5. �en, we take:

D0 = B0, D3 = B3, D4 = B4, D5 = B5,

and

δ0 = β0, δ3 = β3, δ4 = β4, δ5 = β5.

�e situation is similar for D2 = B2 and for β2 = δ2. To construct D1, as for the function B1, we use
Lemma 4.1.11. Since z2+αb(z) = b1, there exist a unique functionD1 ∈ X∞(R) and coe�cients δ1, d1 ∈ R
such that:{

∂yL (D1(y) + d1(l − S0(y))) = ∂y
(
−(α+ 1)a1y3Q2(y)

)
+ δ1Q

′(y) + d1ΛQ(y),

D1 + d1(l − S0) ⊥ Q, D1 + d1(l − S0) ⊥ Q′.

Moreover, Q2 is orthogonal to Q′. �erefore by the formula (4.1.11), we obtain that:

d1 = −b1.

�us, we conclude the proof of Proposition 4.2.5 by de�ning:

δ(Γ) := (δ0, δ1, δ2, δ3, δ4, δ5) ·
−→
f (Γ).

Proof of Proposition 4.2.4. �e two identities (4.2.32) and (4.2.33) are deduced from the one of −→B and −→D in
(4.2.37) and (4.2.38), as well as the orthogonality conditions.

We continue with the estimate (4.2.34) and (4.2.35). First, we deal with the term ∂yB0. From (4.2.39),
we deduce that:

∂yB0 = (|D|α + 1)−1 ∂y
(
3Q2B0 + 3a1Q

2 + β0Q
)
.

Since B0 ∈ X2+α(R), we have that ∂yB0 ∈ L∞(R) ∩ C(R). �en, by Lemma 4.1.5, we obtain that
∂yB0 ∈ X2+α(R). By a similar argument on B1, B2, B3, B4 and B5 with (4.2.3), we conclude that:

|∂yP1(Γ, y)| = |
−→
f (Γ) · (∂y

−→
B )(y − z1)| 6 C

z1+α

1

〈y − z1〉1+α
.

�e same estimate holds for P2.
Now, we estimate ∂tPi for i ∈ {1, 2}. Note that the pro�les P1(Γ) and P2(Γ) are C1(I), since

Γ ∈ C1(I). By direct computation, we obtain that:

d

dt
P1(Γ(t), y) =

(
d

dt
Γ(t) · ∇Γ

)
−→
f (Γ(t)) ·

−→
B (y − z1(t))− ż1(t)∂yP1(Γ(t), y).
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By Proposition 4.2.5, we have that Bj ∈ X∞ for j ∈ {0, · · · , 5}. �erefore, we deduce with (4.2.3) and
(4.2.4), that:∣∣∣(Γ̇ · ∇Γ

)−→
f (Γ) ·

−→
B (y − z1)

∣∣∣ 6 C

(
|ż|
z2+α

+
|µ̇1|+ |µ̇2|
z1+α

)
1

〈y − z1〉1+α
6

C

z
5+3α

2

1

〈y − z1〉1+α
.

We conclude that: ∣∣∣∣ ddtP1(Γ) + ż1∂yP1(Γ)

∣∣∣∣ 6 C

z
5+3α

2 〈y − z1〉1+α
.

�e same arguments hold to estimate the pro�le P2. �is �nishes the proof of Proposition 4.2.4.

4.2.4 Proof of Proposition 4.2.3 and�eorem 4.2.2

Once the construction of the pro�les is �nished we continue with the estimates of the di�erent terms
involved in the error.

Proof of Proposition 4.2.3. To obtain (4.2.16), we have the decomposition on ∂yR1:

‖∂yR1ϕ‖L∞({y6 z1
2
}) 6

∥∥∥∥ C

〈y − z1〉1+α

1

〈y〉α

∥∥∥∥
L∞

6
C

zα
,

‖∂yR1ϕ‖L∞({y6 z1
2
}) 6 ‖∂yR1‖L∞({y6 z1

2
}) 6

C

z1+α
.

�e same estimate holds for R2. Applying the same argument for the H1-norm, we deduce (4.2.16). We
can replace ∂yRi by ΛRi in the former estimates and we get (4.2.17).

�e estimate (4.2.18) and (4.2.19) are direct consequences of Proposition 4.2.4 and the de�nition of b.
By Proposition 4.2.5 the pro�les Pi and ∂yPi for i = 1, 2 belong to L∞(R). Moreover, by de�nition,

W and ∂yW are also in L∞(R). �en we deduce (4.2.20).

By Proposition 4.2.5 for the pro�les, and since b(z) =
b1
zα+2

, we deduce that :

‖P1‖L∞ + ‖P2‖L∞ + ‖bW‖L∞ 6
C

z1+α
.

Furthermore, using Ωi = {y ∈ R : y 6
zi
2
}, we get for i = 1, 2 that:

‖Rki Φ2‖L∞ 6 ‖Rki Φ2‖L∞(Ωi) + ‖Rki Φ2‖L∞(Ωci )
6

C

z1+α
.

Gathering these estimates, we conclude the �rst part of (4.2.21). Concerning the second term:

‖(V 2 −R2
1)∂yR1‖L2

6 ‖2R1(R2 − P1 + P2 + bW )∂yR1‖L2 + ‖R2
2∂yR1‖L2 + C‖ − P1 + P2 + bW‖2L∞ 6

C

z1+α
.

By di�erentiating V and using Proposition 4.2.4, therefore we obtain the estimate (4.2.22).

Proof of �eorem 4.2.2. We continue with the inequalities (4.2.13), (4.2.14) and (4.2.15).
We �rst begin with the estimate on the L2-norm of the term S = SV 3 + S1 + S2 + S̃ with

SV 3 , S1, S2, S̃ are respectively de�ned in (4.2.27), (4.2.29), (4.2.30) and (4.2.31).
We begin with SV 3 , by decomposing the di�erent terms. We have, using the decomposition of Propo-

sition 4.1.7: ∥∥∥(R2
1 − ‹R2

1

)
P2

∥∥∥
L2

6 C|µ1|
∥∥∥∥ 1

〈y − z1〉1+α
P2

∥∥∥∥
L2

.
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Let Ω :=
{
y 6 z1+z2

2

}
. By (4.2.34) and (4.2.3), we obtain that:∥∥∥(R2

1 − ‹R2
1

)
P2

∥∥∥
L2

6 C
|µ1|
z1+α

(∥∥∥∥ 1

〈y − z1〉1+α

1

〈y − z2〉1+α

∥∥∥∥
L2(Ω)

+

∥∥∥∥ 1

〈y − z1〉1+α

1

〈y − z2〉1+α

∥∥∥∥
L2(ΩC)

)
6

C

z
5+3α

2

.

By similar computations, we have that:

∥∥R2
1P2

∥∥
L2 6

∥∥∥‹R2
1P2

∥∥∥
L2

+
∥∥∥(R2

1 − ‹R2
1

)
P2

∥∥∥
L2

6
C

z
5+3α

2

.

Similarly:

∥∥3R2
1(−bS0(· − z2)) + 3R2

2 (−P1 + b(S0(y − z1)− l))
∥∥
L2 6

C

z
5+3α

2

.

For the third and forth terms of SV 3 , by (4.2.18), we have:

‖R1R2(−P1 + P2 + bW )‖L2 6 ‖R1R2‖L2‖ − P1 + P2 + bW‖L∞ 6
C

z
5+3α

2

and ∥∥∥(−R1 +R2) (−P1 + P2 + bW )2
∥∥∥
L2

6 ‖ −R1 +R2‖L2‖ − P1 + P2 + bW‖2L∞ 6
C

z
5+3α

2

.

Finally, we compute the L2-norm of the bump function W :

‖bW‖L2 6
C

z2+α

√
z =

C

z
3
2

+α
,

and therefore:∥∥(−P1 + P2 + bW )3
∥∥
L2 6 ‖(−P1 + P2 + bW )‖2L∞ ‖(−P1 + P2 + bW )‖L2 6

C

z
5+3α

2

.

With the previous computations, we conclude that :

‖SV 3‖L2 6
C

z
5+3α

2

.

We continue with S1. Notice that by de�nition of Pi, another formulation of S1 and S2 is available:

S1 = S (1, 2)−F (1, 2, β0, B0)

S2 = −S (2, 1) + F (2, 1, δ0, D0).

We focus on S1, the computations are similar for S2. We separate each term of S (1, 2)−F (1, 2, β0, B0).
First we look at

∥∥∥3‹R2
1(‹R2 −Qapp(· − z2, z))

∥∥∥
L2

. �e approximation of Q(· + z) by Qapp(·, z) in (4.1.6)
holds on a certain region, thus we begin with

{
y ∈ R; |y − z1| 6 z

2

}
. In this region, we have:

∥∥∥3‹R2
1(‹R2 −Qapp(· − z1, z))

∥∥∥
L2(|y−z1|6 z

2
)
6 C

∥∥∥∥3‹R2
1

(
1

z3α+1
+
〈y − z1〉
z2α+2

+
〈y − z1〉3

zα+4

)∥∥∥∥
L2

6
C

z2α+2
6

C

z
5+3α

2

.
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In the other part, we get:∥∥∥3‹R2
1(‹R2 −Qapp(· − z1, z))

∥∥∥
L2(|y−z1|> z

2
)
6
∥∥∥3‹R2

1
‹R2

∥∥∥
L2(|y−z1|> z

2
)

+
∥∥∥3‹R2

1Qapp(· − z2, z)
∥∥∥
L2(|y−z1|> z

2
)
.

�e �rst term on the right hand side of the former estimate is bounded by:∥∥∥3‹R2
1
‹R2

∥∥∥
L2(|y−z1|> z

2
)
6 C‖‹R2

1‖L∞(|y−z1|> z
2

)‖‹R2‖L2 6
C

z
5+3α

2

.

We estimate the second term on the right hand side by:∥∥∥‹R2
1Qapp(· − z1, z)

∥∥∥
L2(|y−z1|> z

2
)

6
C

z
5+3α

2

+
C

z2+α

∥∥∥‹R2
1(y − z1)

∥∥∥
L2(|y−z1|> z

2
)

+
C

z3+α

∥∥∥‹R2
1(y − z1)3

∥∥∥
L2(|y−z1|> z

2
)
6

C

z
5+3α

2

.

�us we conclude: ∥∥∥3‹R2
1(‹R2 −Qapp(· − z1, z))

∥∥∥
L2

6
C

z
5+3α

2

.

�e estimates on the other terms of S1 are obtained by similar computations:∥∥∥∥6µ1
›R1Λ‹R1

(
P1 −

B0(· − z1)

z1+α

)∥∥∥∥
L2

+
∥∥∥6µ1

›R1Λ‹R1

(‹R2 −
a0

z1+α

)∥∥∥
L2

+

∥∥∥∥3µ2
‹R2

1

(
Λ‹R2 +

1

z1+α

a0(α+ 2)

2(α+ 1)

)∥∥∥∥
L2

+

∥∥∥∥µ1

(
P1 −

B0(· − z1)

z1+α

)∥∥∥∥
L2

6
C

z
5+3α

2

then we conclude:

‖S1‖L2 6
C

z
5+3α

2

.

To �nish the proof on S, we have to estimate S̃. We focus on the �rst part of S̃, which contains S̃ (1, 2):

3
(
R2

1 − ‹R2
1

)
(−P1 + bS0(y − z1)) + 6µ1

‹R1Λ‹R1P1 + 3R2
1R2 − 3‹R2

1
‹R2 − 6µ1

‹R1Λ‹R1
‹R2 − 3µ2

‹R2
1Λ‹R2

since the computations are similar for the other part. By using Proposition 4.1.7, (4.2.3) and (4.2.5) we
deduce:

‖3(R2
1 − ‹R2

1)bS0(y − z1)‖L2 + ‖3(R2
1 − ‹R2

1 − 2µ1
‹R1Λ‹R1)P1‖L2 6

C

z
5+3α

2

.

To estimate the next terms in S̃, we remark:

R2
1R2 − ‹R2

1
‹R2 = R2

1(R2 − ‹R2) + ‹R2(R2
1 − ‹R2

1).

From Proposition 4.1.7 and (4.2.3), we obtain that:

‖3R2
1(R2 − ‹R2)− 3µ2Λ‹R2

‹R2
1‖L2 6‖3R2

1(R2 − ‹R2)− 3µ2Λ‹R2R
2
1‖L2 + ‖3µ2Λ‹R2

(
R2

1 − ‹R2
1

)
‖L2)

6C

(
µ2

2

z1+α
+
|µ1||µ2|
z1+α

)
6

C

z
5+3α

2

.

Arguing similarly, we obtain:

‖3‹R2(R2
1 − ‹R2

1)− 6µ1
‹R1Λ‹R1

‹R2‖L2 6
C

z
5+3α

2

.
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�is concludes the estimate on S̃.
We continue with the estimate on T . We decompose each term of its de�nition in (4.2.26). First, we

have with (4.1.7) and (4.2.3) :∥∥∥b(z)
(

ΛR1 − Λ‹R1

)∥∥∥
L2

6 C
|µ1|
z2+α

∥∥∥∥ 1

〈x− z1〉α+1

∥∥∥∥
L2

6
C

z
5+3α

2

.

Second, we use the inequality (4.2.8) as used in Proposition 4.2.4, and from the asymptotic development of
∂yQ, by (4.1.8) and (4.2.4):∥∥∥∥β(Γ)

(
−∂yR1 + ∂y‹R1

)
+

β0

z1+α
∂y(µiΛ‹Ri)∥∥∥∥

L2

6

∥∥∥∥(β(Γ)− β0

z1+α

)
∂y(−R1 + ‹R1)

∥∥∥∥
L2

+

∥∥∥∥ β0

z1+α
∂y

(
−R1 + ‹R1 + µ1Λ›R1

)∥∥∥∥
L2

6 C
|µ1|
z2+α

+ C
µ2

1

z1+α
6

C

z
5+3α

2

.

�en, we consider the case of the time derivative on −P1. We have, by (4.2.36):∥∥∥∥ ddt(−P1)− µ1∂yPi

∥∥∥∥
L2

6
C

z
5+3α

2

+
C

z1+α
|ż1 − µ1|

We continue with the the term d
dtW :

d

dt
W (Γ(t)) = (|D|α + 1)−1

(
ż1(t)Λ‹R1 − ż2Λ‹R2

)
, (4.2.41)

which with (4.2.3) and (4.2.41) give:∥∥∥∥ ddt (b(z(t))W (Γ(t)))

∥∥∥∥
L2

6 C
|ż1|+ |ż2|
z2+α

+ C
|ż|
z3+α

‖W‖L2

6
C

z
5+3α

2

+ C

√
z

z
7+3α

2

6
C

z
5+3α

2

.

�ose previous estimates conclude the bound (4.2.15) on T .
Since all the estimates have been established in L2, we need to continue with the �rst derivative to

establish the bound in H1. We can notice that all the estimates are based on two main arguments:

• An argument of localisation : if two functions are located at a distance z large, and if the two functions
have an explicit decay at in�nity, then the product of the two functions can be quanti�ed in terms of
z. �e spatial derivative either leaves unchanged the decay property in terms of z of this product or
improves it.

• An argument of smallness of the objects: the objects already have a quanti�ed bound in terms of z,
see for example the L∞-norm of Pi in (4.2.34).

�erefore the computations made on the L2-norm are similar to those on the H1-norm.
Concerning the time derivative of S in (4.2.14), let us deal with a generic example of a function

1
z(t)1+α

g1+µ(t)(y − z(t)), since all the involved functions, except W , are on this form. Either the time
derivative applies to 1

z(t)1+α
, or to the scaling parameter 1 + µ(t) of the function g or to the translation

parameter−z(t). However, we get in each case either µ̇(t) or ż(t), which by (4.2.3) and (4.2.4) are bounded
by z−

1+α
2 . Notice also that the time derivative of the considered functions leaves unchanged or improves

the space decay at in�nity, and from the remark on the space derivative above, the bound in z still holds.
�e time derivative of W has been developed in (4.2.41), and ∂tW �ts in the previous discussion. As a
result, the estimate on ‖∂tS‖L2 is reduced to the product of two terms: one whose bound is the one of
‖S‖L2 , and one bounded by z−

1+α
2 .
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4.3 Modulation

�e previous section was dedicated to the expected approximate solution. Here, we prove that if a
solution is close to the approximation V , for two solitary waves far enough one to each other, then the
solution stays close to this approximation on a certain time interval. Furthermore, we can impose some
orthogonality conditions to the error between the solution and the approximation.

Let us de�ne some conditions (CondZ ) on a vector Γ = (z1, z2, µ1, µ2) ∈ R4 dependent on a param-
eter Z :

z1 >
Z

4
, z2 < −

Z

4
, 0 < −µ1 <

1

Z
, and 0 < µ2 <

1

Z
, (CondZ )

and the tube:
U(Z, ν) :=

{
u ∈ H

α
2 (R); inf

Γ satisfying (CondZ )
‖u− V (Γ)‖

H
α
2
6 ν

}
.

We also shorten the notations by:

Ri(y) = Ri(Γ, y) := Q1+µi(y − zi). (4.3.1)

�is proposition is time-dependent, and can be found, for example, in [51, 130].

Proposition 4.3.1. �ere exist Z∗ > 0, ν∗ > 0 and a constant K∗ > 0 such that the following holds. Let v
be a solution of (4.0.5) in C(R, H

α
2 ). Let us de�ne a time interval I . If for Z > 2Z∗ and ν ∈ (0, ν

∗

2 ), we have :

sup
t∈I

(
inf

Γ satisfying (CondZ )
‖v(t, ·)− V (Γ, ·)‖

H
α
2

)
< ν,

then there exists a unique C1-function Γ : I → R4 such that:

ε(t, ·) := v(t, ·)− V (Γ(t), ·)

satis�es for any i ∈ {1, 2} and for any t ∈ I :

ε(t, ·) ⊥ Ri(t, ·) and ε(t, , ·) ⊥ ∂yRi(t, ·). (4.3.2)

Moreover, for any t ∈ I :

‖ε(t, ·)‖
H
α
2

+ |µ1(t)|+ |µ2(t)| 6 K∗ν, (4.3.3)
|ż1(t)|+ |ż2(t)|+ |µ̇1(t)|+ |µ̇2(t)| 6 K∗, (4.3.4)

z1(t) >
Z

8
, z2(t) 6 −Z

8
. (4.3.5)

Proof. We give here some insights of the proof. �e proof is composed of two steps. �e �rst part involves
a qualitative version of the implicit function theorem, see section 2.2 in [32], to obtain the existence of the
continuous function Γ. To this end, we study the functional

g :U(Z, ν)× R∗+ × R∗− × R× R −→ R4

(w, z1, z2, µ1, µ2) 7−→
(∫

(w − V (Γ))R1,
∫

(w − V (Γ))∂yR1∫
(w − V (Γ))R2,

∫
(w − V (Γ))∂yR2

)
,

at the point (V (Γ̃), Γ̃) with V de�ned in (4.2.9) and Γ̃ satisfying (CondZ ). Note that the estimates obtained
on g and dΓg used to verify the implicit function theorem, are uniform in Γ̃ satisfying (CondZ ), forZ > 2Z∗

withZ∗ large enough, and ν < ν∗

2 with ν∗ small enough. In other words, for all Γ̃, the function Γ associated
with Γ̃ given by the implicit function theorem is de�ned on a ball B(V (Γ̃), ν), with ν independent of the
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point V (Γ̃). Since ν is chosen independently of Γ̃ satisfying (CondZ ), we can extend by uniqueness the
parameters to the whole tube U(Z, ν). �erefore, we get Γ ∈ C1(U(Z, ν)).

However, the solution u of (4.0.5) is only continuous, then we obtain that the function Γ(t) :=
Γ(v(t, ·)) is only continuous. To get more regularity, we use the Cauchy-Lipischtz theorem. By di�er-
entiating the orthogonality condition, we have that the parameters verify an ODE system. By using the
Cauchy-Lipischtz theorem, we obtain the regularity of the parameters even though u is only continuous.

Remark 4.3.2. �e parameters z1, z2, µ1, µ2 de�ned in Proposition 4.3.1, verify an ODE system which is
globally Lipschitz. In other words, the function Γ is well-de�ned and C1(R). However, the conclusion of
the Proposition 4.3.1 are only veri�ed for t ∈ I .

4.4 Proof of the �eorem 4.0.3

4.4.1 Bootstrap setting

Let (Sn)+∞
n=0 be a increasing sequence of times going to in�nity, with Sn > T0, for T0 > 1 large

enough to be chosen later. Recall that V is de�ned in (4.2.9). For all n ∈ N, we de�ne un as being the
solution of (4.0.5) verifying

vn(Sn, ·) = V (Γinn , ·), (4.4.1)

with

Γinn := (zin1,n, z
in
2,n, µ

in
1,n, µ

in
2,n),

zin1,n = −zin2,n :=
zinn
2
, µin1,n = −µin2,n :=

µinn
2
, µinn :=

√
−4b1
α+ 1

(
zinn
)−α+1

2 , (4.4.2)(
zinn
)α+3

2 ∈ [a
α+3
2 Sn − S

1
2

+r
n , a

α+3
2 Sn + S

1
2

+r
n ], (4.4.3)

with b1 de�ned in (4.2.40), a =
(
α+3

2

√
−4b1
α+1

) 2
α+3 and r = α−1

4(α+3) . �e constant zinn will be �xed later.

By choosing T0 large enough and C0 = 2
√
−4b1
α+1 , we can suppose that (4.2.2)-(4.2.4) and (CondZ )

are satis�ed by Γinn for any n ∈ N. By (4.4.1), vn(Sn) ∈ U(Z, ν) and V (Γinn ) satis�es the assumption of
theorem 4.2.2. By continuity of vn (see Corollary 4.5.2), on an open time interval In 3 Sn, {vn(t); t ∈ In}
is in U(Z, ν). By applying Proposition 4.3.1, we de�ne a unique function Γn = (z1,n, z2,n, µ1,n, µ2,n, ) on
In such that the conditions (4.3.2), (4.3.3) and (4.3.5) are satis�ed and Γn(Sn) = Γinn by construction. Γn
also satis�es (4.2.2)-(4.2.4), which justi�es the se�ing of �eorem 4.2.2.

By sake of clarity, we drop the index n, and denote v, Γ, z1, z2, µ1, µ2 instead of vn, Γn, z1,n, z2,n,
µ1,n, µ2,n for the subsections 4.4.2 and 4.4.3.

As in Section 4.2, we denote:

z := z1 − z2, µ := µ1 − µ2, z̄ := z1 + z2, µ̄ := µ1 + µ2 and ε := v − V (Γ). (4.4.4)

We introduce the bootstrap estimates

‖ε(t)‖2
H
α
2
6 t−

3α+5
α+3 ,

|z
α+3
2 (t)− a

α+3
2 t| 6 t

1
2

+r,∣∣∣∣∣µ(t)−
√
−4b1
α+ 1

t−
α+1
α+3

a
α+1
2

∣∣∣∣∣ 6 C∗t
− 5α+11

4(α+3) ,

|z̄(t)| 6 C∗t
− α−1

2(α+3) ,

|µ̄(t)| 6 C∗t−2α+1
α+3 ,
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with C∗ > 1 to be �xed later. Note that the condition (4.4.6) implies

|z(t)− at
2

α+3 | 6 Ct−r. (4.4.10)

We de�ne

t∗(zinn ) = inf{t ∈ [T0, Sn] : ∀t̃ ∈ [t, Sn], (4.4.5)− (4.4.9) is true }.

We want to prove that for an adequate choice of zinn in (4.4.3), t∗(zinn ) = T0.
By the previous choice of C0, the assumptions (4.2.2)-(4.2.4) on the approximation and the condition

(CondZ ) on the modulation are satis�ed on (t∗(zinn ), Sn], increasing T0 if necessary.

�e section 4.4.2 provides the tools to get a bound of z1, z2, µ1 and µ2, and the section 4.4.3 the
bound on ‖ε‖

H
α
2

. Next, in the section 4.4.4, we prove that we can choose zinn to close the bootstrap. We
�nish the proof of �eorem 4.0.3 in the section 4.4.5.
Remark 4.4.1. Notice that di�erent parameters are involved along this section. We clarify the order in
which they are �xed. First, we �x the parameter A, introduced in subsection 4.4.3; then the parameter C∗
involved in the bootstrap dependently of A, and �nally, the initial time T0 dependently of A and C∗.

4.4.2 System of ODE

We now continue with the system of ODEs ruling the parameters z1, z2, µ1 and µ2. To do so, we
compute the time derivative of the orthogonality conditions.

Proposition 4.4.2. �e functions z1, z2, µ1 and µ2 satisfy that for all i ∈ {1, 2} :

2∑
i=1

|µ̇i(t) + (−1)ib(z(t))| 6C

(
1

z
5+3α

2 (t)
+

1

z1+α(t)
‖ε(t)‖

H
α
2

+ ‖ε(t)‖2
H
α
2

)
, (4.4.11)

and

|ż1(t)− µ1(t) + β(Γ(t))|+ |ż2(t)− µ2(t) + δ(Γ(t))| 6C

(
1

z
5+3α

2 (t)
+ ‖ε(t)‖

H
α
2

)
. (4.4.12)

Proof. We begin with the �rst orthogonality condition
∫
εR1. Since ε = v − V and v solves (4.0.5), we

deduce that:

∂tε+ ∂y

(
−|D|αε− ε+ (ε+ V )3 − V 3

)
= −EV .

By di�erentiating in time the equality 0 =
∫
εR1 and using the fact

∫
ε∂yR1 = 0, we obtain that:

0 =
d

dt

∫
εR1 =

∫ (
−|D|αε− ε+ 3R2

1ε
)
∂yR1 +

∫ (
(V + ε)3 − V 3 − 3R2

1ε
)
∂yR1

−
∫
−→m ·
−−→
MVR1 −

∫
∂ySR1 −

∫
TR1 + µ̇1

∫
εΛR1.

By using the equation of R1 and the condition ε ⊥ ∂yR1, we deduce that:∫ (
−|D|αε− ε+ 3R2

1ε
)
∂yR1 =

∫ (
−|D|αε− (1 + µ1)ε+ 3R2

1ε
)
∂yR1 = 0.

Now, we continue with
∫ (

(V + ε)3 − V 3 − 3R2
1ε
)
∂yR1. First, note that:

(V + ε)3 − V 3 − 3R2
1ε = 3V ε2 + ε3 + 3ε

(
−2R1 (R2 − P1 + P2 + bW ) + (R2 − P1 + P2 + bW )2

)
.
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We recall ‖V ‖L∞ + ‖∂yR1‖L∞ 6 C . �erefore, using the Sobolev embedding H
1
6 (R) ↪−→ L3(R), we have

that: ∣∣∣∣ ∫ (3ε2V + ε3
)
∂yR1

∣∣∣∣ 6 C
(
‖ε‖2L2 + ‖ε‖3

H
α
2

)
.

Furthermore, |R2∂yR1| 6 C
z1+α

and |P1|+ |P2|+ |bW | 6 C
z1+α

, we conclude that:∣∣∣∣ ∫ ((V + ε)3 − V 3 − 3R2
1ε
)
∂yR1

∣∣∣∣ 6 C

(
‖ε‖L2

z1+α
+ ‖ε‖2L2 + ‖ε‖3

H
α
2

)
.

Let us estimate
∫ −→m · −−→MVR1. Using the set {y ∈ R : y 6 z1+z2

2 }, we get that:∣∣∣∣ ∫ ΛR2R1

∣∣∣∣+

∣∣∣∣ ∫ ∂yR2R1

∣∣∣∣ 6 C

z1+α
.

Moreover, with R1 ⊥ ∂yR1, we obtain that:∣∣∣∣ ∫ −→m · −−→MVR1 − (−µ̇1 + b(z))

∫
ΛR1R1

∣∣∣∣ 6 C

z1+α
(|µ̇2 + b(z)|+ |ż2 − µ2 + δ(Γ)|) .

Finally, using Cauchy-Schwarz inequality, (4.2.13) and (4.2.15) we get that:∣∣∣∣ ∫ ∂ySR1

∣∣∣∣+

∣∣∣∣ ∫ TR1

∣∣∣∣+ |µ̇1|
∣∣∣∣ ∫ εΛR1

∣∣∣∣ 6 C

(
1

z
5+3α

2

+ |µ̇1|‖ε‖L2

)
.

Gathering these estimates, and thanks to the facts ‖ε‖
H
α
2
6 Cκ and |µ̇i|+ |żi| 6 C from (4.3.3) and (4.3.4),

we obtain that:
α− 1

2(α+ 1)
‖Q‖2L2 |µ̇1 − b(z)| 6 C

z1+α
(|µ̇2 + b(z)|+ |ż2 − µ2 + δ(Γ)|+ ‖ε‖L2) +

C

z
5+3α

2

(4.4.13)

+ C
(
|µ̇1|‖ε‖H α

2
+ ‖ε‖2

H
α
2

)
.

By similar computations, we also deduce that:

α− 1

2(α+ 1)
‖Q‖2L2 |µ̇2 + b(z)| 6 C

z1+α
(|µ̇1 − b(z)|+ |ż1 − µ1 + β(Γ)|+ ‖ε‖L2) +

C

z
5+3α

2

(4.4.14)

+ C
(
|µ̇1|‖ε‖H α

2
+ ‖ε‖2

H
α
2

)
.

�erefore, by adding (4.4.13) and (4.4.14) we obtain:
2∑
i=1

|µ̇i + (−1)ib(z)| 6 C

z1+α
(|ż1 − µ1 + β(Γ)|+ |ż2 − µ2 + δ(Γ)|)

+C

(
1

z
5+3α

2

+

(
|µ̇1|+ |µ̇2|+

1

z1+α

)
‖ε‖

H
α
2

+ ‖ε‖2
H
α
2

)
. (4.4.15)

Let us continue with the second orthogonality condition:

0 =
d

dt

∫
ε∂yR1 =

∫ (
−|D|αε− ε+ (V + ε)3 − V 3

)
∂2
yR1 −

∫
−→m ·
−−→
MV ∂yR1

+

∫
S∂2

yR1 −
∫
T∂yR1 + µ̇1

∫
ε∂yΛR1 − ż1

∫
ε∂2
yR1.

Since |V | +
∣∣(∂2

y + |D|α∂2
y)R1

∣∣ 6 C and using the Sobolev embedding , H
1
6 (R) ↪−→ L3(R), we deduce

that: ∣∣∣∣∫ (−|D|αε− ε+ (V + ε)3 − V 3
)
∂2
yR1

∣∣∣∣ 6 C
(
‖ε‖

H
α
2

+ ‖ε‖2
H
α
2

+ ‖ε‖3
H
α
2

)
.
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By developing −→m · −−→MV and using the facts
∣∣∫ ∂yR1 (∂yR2 + ΛR2)

∣∣ 6 C
z1+α

and
∫
∂yR1ΛR1 = 0 since

∂yR1 is odd, we get that:∣∣∣∣∫ −→m · −−→MV ∂yR1 − (ż1 − µ1 + β(Γ))

∫
(∂yR1)2

∣∣∣∣ 6 C

z1+α
(|µ̇2 + b(z)|+ |ż2 − µ2 + δ(Γ)|) .

We estimate the last terms by applying Cauchy-Schwarz inequality, (4.2.13) and (4.2.15). We have that:∣∣∣∣∫ S∂2
yR1

∣∣∣∣+

∣∣∣∣∫ T∂yR1

∣∣∣∣+

∣∣∣∣µ̇1

∫
ε∂yΛR1

∣∣∣∣+

∣∣∣∣ż1

∫
ε∂2
yR1

∣∣∣∣ 6 C

(
1

z
5+3α

2

+ (|µ̇1|+ |ż1|) ‖ε‖L2

)
.

Gathering these estimates and using ‖ε‖
H
α
2
6 Cκ and the fact |µ̇i|+ |żi| 6 C (4.3.4), we conclude that:

|ż1 − µ1 + β(Γ)|
∫

(∂yQ)2 6 C

(
1

z1+α
|µ̇2 + b(z)|+ |ż2 − µ2 + δ(Γ)|+ 1

z
5+3α

2

+ ‖ε‖
H
α
2

)
. (4.4.16)

By similar arguments, we deduce that:

|ż2 − µ2 + δ(Γ)|
∫

(∂yQ)2 6 C

(
1

z1+α
|µ̇1 − b(z)|+ |ż1 − µ1 + β(Γ)|+ 1

z
5+3α

2

+ ‖ε‖
H
α
2

)
. (4.4.17)

�en, by adding (4.4.16) and (4.4.17), we obtain:

|ż1 − µ1 + β(Γ)|+ |ż2 − µ2 + δ(Γ)| 6C
(

1

z1+α
(|µ̇1 − b(z)|+ |µ̇2 + b(z)|) +

1

z
5+3α

2

+ ‖ε‖
H
α
2

)
.

(4.4.18)

Gathering (4.4.15) and (4.4.18), we obtain (4.4.12), and

2∑
i=1

|µ̇i + (−1)ib(z)| 6C
(

1

z
5+3α

2

+

(
|µ̇1|+ |µ̇2|+

1

z1+α

)
‖ε‖

H
α
2

+ ‖ε‖2
H
α
2

)
.

Since |µ̇i| 6 |µ̇i+(−1)ib(z)|+b(z), by applying the former inequality and (4.2.5), we conclude (4.4.11).

4.4.3 Monotonicity

We de�ne:

ϕ(y) =

(∫ +∞

−∞

ds

〈s〉1+α

)−1 ∫ +∞

y

ds

〈s〉1+α
, (4.4.19)

and

ϕ1(t, y) :=
1− ϕ(y)

(1 + µ1(t))2
+

ϕ(y)

(1 + µ2(t))2
and ϕ2(t, y) :=

µ1(t)

(1 + µ1(t))2
(1− ϕ(y)) +

µ2(t)

(1 + µ2(t))2
ϕ(y).

Let A > 0, we de�ne the rescaled functions:

ϕA(y) = ϕ
( y
A

)
, ϕ1,A(t, y) := ϕ1

(
t,
y

A

)
, ϕ2,A(t, y) := ϕ2

(
t,
y

A

)
,

the derivatives by:

Φ(y) =
√
|ϕ′(y)|, Φi(t, y) =

√
|ϕ′i(t, y)|, Φi,A(t, y) = Φi

(
t,
y

A

)
. (4.4.20)
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By direct computation, we have:

Φ1(y) =
c

〈y〉
1+α
2

µ
1
2 (2 + µ̄)

1
2

(1 + µ1)(1 + µ2)
and Φ2(y) =

c

〈y〉
1+α
2

µ
1
2 (1− µ1µ2)

1
2

(1 + µ1)(1 + µ2)
. (4.4.21)

We also de�ne the functional:

F (t) =

∫ (
ε|D|αε

2
+
ε2

2
− (V + ε)4

4
+
V 4

4
+ V 3ε− Sε

)
ϕ1,A +

ε2

2
ϕ2,A. (4.4.22)

We claim the following theorem that will help us to get the estimate (4.4.5) on the error ε.

�eorem 4.4.3. �e following bound on the functional holds:

F (t) 6 Ct
− 7α+9

2(α+3) .

Preliminary results

To get the monotinicity properties of the modi�ed energy, we need to recall a result from Lemma 6
and Lemma 7 from [91] and Lemma 3.2 from [51].

Lemma 4.4.4. Let α ∈]0, 2[. In the symmetric case, there exists C > 0 such that:∣∣∣∣∫ (|D|αu)uΦ2
j,A −

∫ (
|D|

α
2 (uΦj,A)

)2
∣∣∣∣ 6 C

Aα

∫
u2Φ2

j,A,

and ∣∣∣∣∫ (|D|αu) ∂xuϕj,A + (−1)j+1α− 1

2

∫ (
|D|

α
2 (uΦj,A)

)2
∣∣∣∣ 6 C

Aα

∫
u2Φ2

j,A,

for any u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
In the non-symmetric case, there exists C > 0 such that:

∣∣∣∣∫ ((|D|αu) v − (|D|αv)u) Φ2
j,A

∣∣∣∣ 6

C

Aα

∫ (
u2 + v2

)
Φ2
j,A, if α ∈]0, 1],

C

A
α
2

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)

Φ2
j,A, if α ∈]1, 2[,

(4.4.25)

and ∣∣∣∣ ∫ ((|D|αu) ∂xv + (|D|αv) ∂xu)ϕj,A + (−1)j+1(α− 1)

∫
|D|

α
2 (uΦj,A) |D|

α
2 (vΦj,A)

∣∣∣∣
6


C

Aα

∫ (
u2 + v2

)
Φ2
j,A, if α ∈]0, 1],

C

A
α
2

∫ (
u2 + v2 +

(
|D|

α
2 u
)2
)

Φ2
j,A, if α ∈]1, 2[,

,(4.4.26)

for any u, v ∈ S(R), A > 1 and j ∈ {1, · · · , N}.

�e estimates (4.4.23)-(4.4.24) are proved in Lemmas 6 and 7 in [91] for α ∈ [1, 2]. Observe however
that their proofs extend easily to the case α ∈]0, 2[. Note also that while only one side of the inequalities
in (4.4.23)-(4.4.24) is stated in Lemmas 6 and 7 in [91] , both sides are actually proved.

Lemma 4.4.5 ( [51], Lemma 3.3). Let 0 6 α 6 2. For all u ∈ S(R), we have that:∣∣∣∣∫ (|D|α2 (uΦ1,A)
)2
−
(
|D|

α
2 u
)2

Φ2
1,A

∣∣∣∣ 6 C

A
α
2

∫ (
u2 + (|D|

α
2 u)2

)
Φ2

1,A. (4.4.27)
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�e following estimates are proved in Appendix 4.5.3.

Lemma 4.4.6. For α ∈]0, 2[, then for all u ∈ S(R) we have that:

∥∥∥∥ [|D|α,Φj,A]u

∥∥∥∥2

L2

6


C

A2α

∫
u2Φ2

j,A, if α ∈]0, 1]

C

Aα

∫ (
u2 +

(
|D|

α
2 u
)2
)

Φ2
j,A, if α ∈]1, 2]

Lemma 4.4.7. Let α ∈]0, 2[, then for all u ∈ S(R) there exists C > 0 such that:∣∣∣∣ ∫ |D|α (uΦj,A) ((|D|αu)Φj,A)−
∫

(|D|αu)2 Φ2
j,A

∣∣∣∣
6
C

A
α
2

∫ (
u2 +

(
|D|

α
2 u
)2

+ (|D|αu)2

)
Φ2
j,A, (4.4.28)

for all u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.

Lemma 4.4.8. Let 1 6 α 6 2. For all u ∈ S(R), we have that:

‖[|D|α, ϕ1,A]u‖L2 6 C

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ 12 ‖uΦ1,A‖H1 .

Remark 4.4.9. Notice that the scaling in A is not coherent with the previous inequality. In the proof in the
appendix, we establish this inequality inH

α
2 (R) and use at the very end the embeddingH

α
2 (R) ⊂ H1(R).

Lemma 4.4.10. Let 0 6 α 6 2. For all u ∈ S(R), we have that:

‖[|D|α,√ϕA]u‖L2 + ‖[|D|α,
√

1− ϕA]u‖L2 6


C

Aα
‖u‖L2 , α ∈ (0, 1]

C

A
α
2

‖u‖
H
α
2
, α ∈ (1, 2]

.

Proof of the �eorem 4.4.3

In this part, we study the functional F de�ned in (4.4.22), dependent on the two functions ϕ1,A and
ϕ2,A. For sake of clearness, we drop the indices A in this part only and denote those functions by ϕ1 and
ϕ2. �e parameter A will appear explicitly when needed.

We recall the equation satis�ed by ε:

∂tε+ ∂y

(
−|D|αε− ε+ (ε+ V )3 − V 3

)
= −EV .

We di�erentiate in time the functional F de�ned in (4.4.22), by using (4.2.11) we deduce that:

d

dt
F (t) =

∫
(∂tε)

(
|D|αε+ ε− (ε+ V )3 + V 3 − S

)
ϕ1 +

1

2

∫
(ε|D|α∂tε− (∂tε)|D|αε)ϕ1

+

∫ (
−(∂tV )

(
(V + ε)3 − V 3 − 3V 2ε

)
ϕ1 + (∂tε)εϕ2

)
−
∫

(∂tS)εϕ1

+

∫ (
ε|D|αε

2
+
ε2

2
− (V + ε)4

4
+
V 4

4
+ V 3ε− Sε

)
∂tϕ1 +

∫
ε2

2
∂tϕ2

=I1 + · · ·+ I6.
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Estimate on I1: Using integration by parts and the de�nition of EV , we deduce that:

I1 =
1

2

∫ (
|D|αε+ ε− (V + ε)3 + V 3

)2
Φ2

1 −
∫
∂y
(
|D|αε+ ε− (V + ε)3 + V 3

)
Sϕ1

−
∫
EV
(
|D|αε+ ε− (V + ε) + V 3 − S

)
ϕ1

=
1

2

∫ (
|D|αε+ ε− (V + ε)3 + V 3

)2
Φ2

1 −
∫ ((−→m · −−→MV + T

) (
|D|αε+ ε− (V + ε)3 + V 3

)
− TS

)
ϕ1

−
∫
S
(
|D|αε+ ε− (V + ε)3 + V 3

)
Φ2

1 +

∫
−→m ·
−−→
MV Sϕ1 +

1

2

∫
S2Φ2

1

= I1,1 + · · ·+ I1,5.

We start with I1,1. By direct computations, we get that:

1

2

∫
(|D|αε+ ε− (V + ε)3 + V 3)2Φ2

1 −
1

2

∫ (
(|D|αε)2 + ε2 +

(
−(V + ε)3 + V 3

)2)
Φ2

1

=

∫
(|D|αε) εΦ2

1 +

∫
(|D|αε+ ε)

(
V 3 − (V + ε)3

)
Φ2

1 = I1,1,1 + I1,1,2.

By using the estimate (4.4.23), we obtain that:∣∣∣∣I1,1,1 −
∫ (
|D|

α
2 (εΦ1)

)2
∣∣∣∣ 6 C

Aα

∫
ε2Φ2

1.

Since V 3 − (V + ε)3 = −3V 2ε− 3V ε2 − ε3, by applying Young’s inequality, the bound on V (4.2.20) and
Cauchy-Schwarz’ inequality, we have that:

|I1,1,2| 6
C

Aα

∫
(|D|αε)2 Φ2

1 + CAα
∫ (

V 4ε2 + ε4 + ε6
)

Φ2
1 + C

∫ (
V 4ε2 + ε3 + ε4

)
Φ2

1.

We recall that 2µ1 = µ+ µ̄, 2µ2 = µ̄−µ and α > 1. �erefore, using the bootstrap estimates (4.4.5), (4.4.7)
and (4.4.9) and (4.2.21), we conclude for I1,1 that:

I1,1 −
1

2

∫
(ε2 + (|D|αε)2)Φ2

1 −
∫ (
|D|

α
2 (εΦ1)

)2
> − C

Aα

∫ (
ε2 + (|D|αε)2

)
Φ2

1 − CAαt
− 3(3α+5)

2(α+3) .

Let us estimate I1,2. By using the de�nition of −→m · −−→MV in (4.2.12), we obtain that:∫
−→m ·
−−→
MV

(
|D|αε+ ε− (V + ε)3 + V 3

)
ϕ1

=
2∑
i=1

∫ (
(−1)iµ̇i − b(z)

)
ΛRi

(
|D|αε+ ε− (V + ε)3 + V 3

)
ϕ1

+

∫
((ż1 − µ1 + β(Γ))∂yR1 − (ż2 − µ2 + δ(Γ))∂yR2)

(
|D|αε+ ε− (V + ε)3 + V 3

)
ϕ1

= J1 + J2.

Since 1
1+µi

6 C , we deduce that:

|J1| 6
2∑
i=1

|(−1)iµ̇i − b(z)|
∣∣∣∣ ∫ ΛRi

(
|D|αε+ ε− (V + ε)3 + V 3

)(
ϕ1 + (−1)i

1

(1 + µi)2

) ∣∣∣∣
+C

2∑
i=1

|(−1)iµ̇i − b(z)|
∣∣∣∣ ∫ ΛRi

(
|D|αε+ (1 + µi)ε−R2

i ε
) ∣∣∣∣

+C

2∑
i=1

|(−1)iµ̇i − b(z)|
∣∣∣∣ ∫ ΛRi

(
−µiε− (V + ε)3 + V 3 − 3R2

i ε
) ∣∣∣∣ = J1,1 + J1,2 + J1,3.
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�anks to the identity (V + ε) − V 3 = ε3 + 3ε2V + 3εV 2, the fact α < 2, and by Cauchy-Schwarz’
inequality, we get that:

J1,1 6 C
2∑
i=1

|(−1)iµ̇i − b(z)|
∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ ‖ΛRi(ϕ− δ2i)‖H1 ‖ε‖H α
2
.

Moreover, we recall LΛQ = −Q and since ε ⊥ Ri, we deduce that:

J1,2 = C

2∑
i=1

|(−1)iµ̇i − b(z)|
∣∣∣∣ ∫ Riε

∣∣∣∣ = 0.

Applying Cauchy-Schwarz’ inequality, and Sobolev embedding H
1
3 (R) ↪−→ L6(R) , we have that:

J1,3 6 C
2∑
i=1

|(−1)iµ̇i − b(z)|
((
|µi|+

∥∥(V 2 −R2
i )ΛRi

∥∥
L2

)
‖ε‖L2 + ‖ε‖2L2 + ‖ε‖3

H
α
2

)
.

Now, let us estimate J2. We focus on the �rst term of J2 with ∂yR1, the second is similar. We decompose
this term into:

(ż1 − µ1 + β(Γ))

∫
∂yR1

(
|D|αε+ ε− (V + ε)3 + V 3

)(
ϕ1 −

1

(1 + µ1)2

)
+
ż1 − µ1 + β(Γ)

(1 + µ1)2

(∫
∂yR1

(
|D|αε+ ε− 3R2

1ε
)

+

∫
∂yR1

(
V 3 − (V + ε)3 + 3R2

1ε
))

= J2,1 + J2,2 + J2,3.

By applying the Cauchy-Schwarz’ inequality and Sobolev embedding H
1
3 (R) ↪−→ L6(R), we obtain that:

|J2,1| 6 C|ż1 − µ1 + β(Γ)|
∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ (‖∂yR1ϕ‖H1 ‖ε‖H α
2

+ ‖ε‖2L2 + ‖ε‖3
H
α
2

)
.

Since ε ⊥ ∂yRi and LQ′ = 0, we deduce that:

J2,2 = 0.

Moreover, by Cauchy-Schwarz inequality and Sobolev embedding , H
1
6 (R) ↪−→ L3(R) we have that:

|J2,3| 6 C|ż1 − µ1 + β(Γ)|
(
‖ε‖L2‖(V 2 −R2

1)∂yR1‖L2 + ‖ε‖2L2 + ‖ε‖3
H
α
2

)
.

By Cauchy-Schwarz’ inequality, we have that:∣∣∣∣∫ T
(
|D|αε+ ε− (V + ε)3 + V 3 − S

)
ϕ1

∣∣∣∣ 6 C‖Tϕ1‖H α
2

(
‖ε‖

H
α
2

+ ‖ε‖2
H
α
2

+ ‖ε‖3
H
α
2

+ ‖S‖L2

)
.

Gathering those identities, and using the estimate on T (4.2.15), the estimates on the solitary waves
(4.2.16), (4.2.17), (4.2.21), the bootstrap estimates (4.4.5), (4.4.7), (4.4.9) and the equation on µ̇i (4.4.11) and
żi (4.4.12), we get that:

|I1,2| 6 Ct
− 3(3α+5)

2(α+3) .

Let us estimate I1,3. By Cauchy-Schwarz inequality, the estimate on S (4.2.13) and the bootstrap estimate
on ε (4.4.5), we obtain that:

|I1,3| 6 C
∥∥SΦ2

1

∥∥
H
α
2

(
‖ε‖

H
α
2

+
∥∥∥(V + ε)3 − V 3

∥∥∥
L2

)
6 Ct

− 3(3α+5)
2(α+3) .
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Using the de�nition of −→m · −−→MV , the estimate on µ̇i (4.4.11), żi (4.4.12) and the estimate on S (4.2.13), we
deduce that:

|I1,4| 6 C‖S‖L2

(
2∑
i=1

|(−1)iµ̇i − b(z)|+ |ż1 − µ1 − β(Γ)|+ |ż2 − µ2 − δ(Γ)|

)
6 Ct

− 3(3α+5)
2(α+3) .

Finally, by the estimate on S (4.2.13):

|I1,5| 6 Ct
− 3(3α+5)

2(α+3) .

Conclusion:

I1 −
1

2

∫
(ε2 + (|D|αε)2)Φ2

1 −
∫ (
|D|

α
2 (εΦ1)

)2
> − C

Aα

∫ (
ε2 + (|D|αε)2

)
Φ2

1 − CAαt
− 3(3α+5)

2(α+3) .

Estimate on I2: From the equation of ε, since ϕ1 is decreasing and integration by parts, we deduce that:

2I2 = −1

2

∫
(|D|αε)2 Φ2

1 −
∫
∂yε|D|α (|D|αε+ 2ε)ϕ1 +

∫
ε|D|α (|D|αε+ ε) Φ2

1

+

∫
(EV |D|αε− ε|D|αEV )ϕ1 +

∫ (
ε|D|α∂y

(
−(V + ε)3 + V 3

)
− ∂y

(
−(V + ε)3 + V 3

)
(|D|αε)

)
ϕ1

= I2,1 + · · · I2,5.

Let us estimate I2,2 and I2,3. Using the commutator estimates in the non-symmetric case (4.4.25), (4.4.26)
with v = |D|αε, the commutator estimates in the symmetric case (4.4.23), (4.4.24) , and Lemma 4.4.7 we
get that:∣∣∣∣I2,2 + I2,3 − α

∫ (
|D|

α
2 (εΦ1)

)2
−
(
α+

1

2

)∫
(|D|αε)2 Φ2

1

∣∣∣∣ 6 C

A
α
2

∫ (
ε2 +

(
|D|

α
2 ε
)2

+ (|D|αε)2

)
Φ2

1

From Cauchy-Schwarz inequality and Lemma 4.4.8, we get that:

|I2,4| =
∣∣∣∣∫ ε (|D|α (EV ϕ1)− |D|α (EV )ϕ1)

∣∣∣∣ 6 ‖ε‖L2‖[|D|α, ϕ1]EV ‖L2

6 C

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣‖ε‖L2

∥∥∥EV√ϕ′∥∥∥
H1

6 C

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣‖ε‖L2

(∥∥∥−→m.−−→MV
√
ϕ′
∥∥∥
H1

+ ‖S‖H1 + ‖T‖H1

)
.

�erefore, by using the estimates on µ̇i (4.4.11), on żi (4.4.12), the estimates on S (4.2.13), T (4.2.15), the
interaction between ∂yRi or ΛRi and Φ (4.2.17) and the bootstrap estimates (4.4.5)-(4.4.9), we have that:

|I2,4| 6 t
− 3(3α+5)

2(α+3) .

Now, we estimate I2,5. Note that:

(V + ε)3 − V 3 = 3V 2ε+ 3V ε2 + ε3.

�en, we decompose I2,5 as:

I2,5 =

∫ (
∂y
(
3V 2ε

)
(|D|αε)− ε|D|α∂y

(
3V 2ε

))
ϕ1 +

∫ (
∂y
(
3V ε2

)
(|D|αε)− ε|D|α∂y

(
3V ε2

))
ϕ1

+

∫ (
∂y
(
ε3
)

(|D|αε)− ε|D|α∂y
(
ε3
))
ϕ1.
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Let v ∈ {3εV 2, 3ε2V, ε3} . Using integration by parts, the commutator estimates in the non-symmetric
case (4.4.25) and (4.4.26), we get that:∣∣∣∣∫ (∂yv(|D|αε)− ε|D|α∂yv)ϕ1

∣∣∣∣ =

∣∣∣∣∫ ∂yv(|D|αε)ϕ1 +

∫
∂yε(|D|αv)ϕ1 −

∫
ε(|D|αv)Φ2

1

∣∣∣∣
6 (α− 1)

∣∣∣∣∫ |D|α2 (vΦ1) |D|
α
2 (εΦ1)

∣∣∣∣+

∣∣∣∣∫ (|D|αε)vΦ2
1

∣∣∣∣
+

C

A
α
2

∫ (
ε2 + v2 + (|D|

α
2 ε)2

)
Φ2

1.

Moreover, from Young’s inequality, we obtain that:∣∣∣∣∫ (|D|αε)vΦ2
1

∣∣∣∣ 6 C

Aα

∫
(|D|αε)2Φ2

1 + CAα
∫
v2Φ2

1.

By using Young’s inequality and (4.4.27), we deduce that:∣∣∣∣∫ |D|α2 (vΦ1) |D|
α
2 (εΦ1)

∣∣∣∣ 6 C

Aα

∫
(ε2 + (|D|αε)2)Φ2

1 + CAα
∫
v2Φ2

1

By the Sobolev’s embeddings, H
1
4 (R) ↪−→ L4(R), H

1
3 (R) ↪−→ L6(R), we obtain that:

|I2,5| 6 CAα
(
‖V 4Φ2

1‖L∞‖ε‖2L2 + ‖V 2Φ2
1‖L∞‖ε‖4H α

2
+ ‖ε‖6

H
α
2

)
+

C

A
α
2

∫ (
ε2 + (|D|

α
2 ε)2 + (|D|αε)2

)
Φ2

1.

Moreover, applying the estimate (4.2.21), (4.4.5) and (4.4.6), we get that:

|I2,5| 6 CAαt
− 3(3α+5)

2(α+3) +
C

A
α
2

∫ (
ε2 +

(
|D|

α
2 ε
)2

+ (|D|αε)2

)
Φ2

1.

Conclusion:∣∣∣∣I2 −
α

2

∫
(|D|αε)2 Φ2

1 −
α

2

∫ (
|D|

α
2 (εΦ1)

)2
∣∣∣∣ 6CAαt− 3(3α+5)

2(α+3) +
C

A
α
2

∫ (
ε2 + (|D|

α
2 ε)2 + (|D|αε)2

)
Φ2

1.

Estimate on I3: We decompose I3 as:

I3 = −3

∫
∂y(V

2ε)εϕ2 + ∂tV V ε
2ϕ1 −

∫
∂y
(
3V ε2 + ε3

)
εϕ2 + ∂tV ε

3ϕ1

+

∫
∂y (|D|αε+ ε) εϕ2 −

∫
EV εϕ2 = I3,1 + I3,2 + I3,3 + I3,4.

By adding 0 and integrating by part, we deduce that:

I3,1 = 3

∫
∂yR1(ϕ2 − ż1ϕ1)V ε2 + 3

∫
∂yR2(ż2ϕ1 − ϕ2)V ε2 − 3

∫
(∂yV + ∂yR1 − ∂yR2)V ε2ϕ2

− 3

∫
(∂tV − ż1∂yR1 + ż2∂yR2)V ε2ϕ1 +

3

2

∫
V 2ε2Φ2

2 = I3,1,1 + · · ·+ I3,1,5.

Using the de�nition of ϕ1 and ϕ2, we obtain that:

|I3,1,1| =
∣∣∣∣3µ1 − ż1

1 + µ1

∫
∂yR1V ε

2(1− ϕ) + 3
ż1 − µ2

1 + µ2

∫
∂yR1V ε

2ϕ

∣∣∣∣
6 C‖ε‖2L2 (|ż1 − µ1|+ (|ż1|+ |µ2|) ‖∂yR1V ϕ‖L∞) .
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Using the same argument, we deduce that:

|I3,1,2| 6 C‖ε‖2L2 (|ż2 − µ2|+ (|ż2|+ |µ1|) ‖∂yR2V (1− ϕ)‖L∞) .

Using the de�nition of V and ϕ2:

|I3,1,3| 6 C‖ε‖2L2 (|µ1|+ |µ2|) ‖∂y (P2 − P1 + bWχ) ‖L∞

and

|I3,1,4| 6 C‖ε‖2L2 ((|µ̇1|+ |µ̇2|) + (|µ1|+ |µ2|) ‖∂t (P2 − P1 + bWχ) ‖L∞) .

Gathering these identities, and using the bootstrap hypothesis, the time estimate of the di�erent
terms and (4.2.18) and (4.2.19), we conclude that:

|I3,1| 6 Ct
− 3(3α+5)

2(α+3) .

For I3,2, using integration by parts and Sobolev embedding, and the bootstrap hypothesis, we deduce that:

|I3,2| 6 C
(
‖ε‖3

H
α
2
‖∂tV ‖L∞ + (|µ1|+ |µ2|)(‖V ‖L∞ + ‖∂yV ‖L∞)‖ε‖3

H
α
2

+ (|µ1|+ |µ2|)‖ε‖4
H
α
2

)
6 Ct

− 3(3α+5)
2(α+3) .

Using integration by part, the commutator estimates in the symmetric case (4.4.23) and (4.4.24), and since
∂yϕ2 < 0, we obtain that:

I3,3 > −α+ 1

2

∫ (
|D|

α
2 (εΦ2)

)2
−
(

1

2
+

C

Aα

)∫
ε2Φ2

2.

Moreover with (4.4.21), we have:

Φ2
2 =

∣∣∣∣ µ1µ2 − 1

2 + µ1 + µ2

∣∣∣∣Φ2
1.

�en, we get that:

I3,3 > −α+ 1

2

1− µ1µ2

2 + µ1 + µ2

∫ (
|D|

α
2 (εΦ1)

)2
−
(

1

2
+

C

Aα

)
1− µ1µ2

2 + µ1 + µ2

∫
ε2Φ2

1.

Since 1−µ1µ2
2+µ1+µ2

6 3
4 by (4.4.7) and (4.4.9), we deduce that:

I3,3 > −3(α+ 1)

8

∫ (
|D|

α
2 (εΦ1)

)2
−
(

3

8
+

C

Aα

)∫
ε2Φ2

1.

Let us estimate the last term of I3. Using the de�nition of EV and Cauchy-Schwarz inequality, we have
that:

|I3,4| 6 C(|µ1|+ |µ2|)‖ε‖L2 (‖∂yS‖L2 + ‖T‖L2) +

∣∣∣∣∫ −→m · −−→MV εϕ2

∣∣∣∣ .
Using the de�nition of −→m · −−→MV and the orthogonality condition ε ⊥ ∂yRi, we deduce that:∣∣∣∣ ∫ −→m · −−→MV εϕ2

∣∣∣∣ 6 C‖ε‖L2(|µ1|+ |µ2|)

(
2∑
i=1

|(−1)iµ̇i − b(z)|+ |żi − µi| ‖∂yRi(ϕ− δ2,i)‖L2

)
.

�erefore with (4.2.16), we get that:
|I3,4| 6 Ct

− 3(3α+5)
2(α+3) .
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Conclusion:

I3 > −3(α+ 1)

8

∫ (
|D|

α
2 (εΦ1)

)2
−
(

3

8
+

C

Aα

)∫
ε2Φ2

1 − Ct
− 3(3α+5)

2(α+3) .

Estimate on I4: Applying Cauchy-Schwarz inequality and the estimate on the time derivative of S (4.2.14),
we obtain that:

|I4| 6 C‖∂tS‖L2‖ε‖L2 6 Ct
− 3(3α+5)

2(α+3) .

Estimate on I5: First, note by direct computation, we have:

|∂tϕ1| =
∣∣∣∣ 2µ̇1

(1 + µ1)3
(1− ϕ) +

2µ̇2

(1 + µ2)3
ϕ

∣∣∣∣ 6 C (|µ̇1|+ |µ̇2|) .

�en, by the Sobolev embedding H
1
3 (R) ↪−→ L6(R) and H

1
4 (R) ↪−→ L4(R), we deduce that:∣∣∣∣ ∫

(
ε2

2
− (V + ε)4

4
+
V 4

4
+ V 3ε

)
∂tϕ1

∣∣∣∣ 6 C (|µ̇1|+ |µ̇2|)
(
‖ε‖2

H
α
2

+ ‖ε‖3
H
α
2

+ ‖ε‖4
H
α
2

)
.

Moreover, by Cauchy-Schwarz inequality, we get:∣∣∣∣ ∫ Sε∂tϕ1

∣∣∣∣ 6 C (|µ̇1|+ |µ̇2|) ‖S‖L2‖ε‖L2 .

Now, let us estimate the �rst term in I5. By direct computations, we have that:∫
ε|D|αε∂tϕ1 = − 2µ̇1

(1 + µ1)3

(∫
D

α
2 ε[|D|

α
2 , (1− ϕ)]ε+

∫ (
|D|

α
2 ε
)2

(1− ϕ)

)
− 2µ̇2

(1 + µ2)3

(∫
D

α
2 ε[|D|

α
2 , ϕ]ε+

∫ (
|D|

α
2 ε
)2
ϕ

)
.

Using Lemma 4.4.10, we deduce that:∣∣∣∣ ∫ ε|D|αε∂tϕ1

∣∣∣∣ 6 C(|µ̇1|+ |µ̇2|)‖ε‖2
H
α
2
.

Conclusion:

|I5| 6 C(|µ̇1|+ |µ̇2|)
(
‖S‖L2‖ε‖

H
α
2

+ ‖ε‖2
H
α
2

+ ‖ε‖3
H
α
2

+ ‖ε‖4
H
α
2

)
6 Ct

− 3(3α+5)
2(α+3) .

Estimate on I6: By de�nition of ϕ2, we obtain that:

|∂tϕ2| 6 C (|µ̇1|+ |µ̇2|) .

then, by using the estimate on µ̇i (4.4.11), the bootstrap estimates (4.4.5), (4.4.6), we have that:

|I6| 6 Ct
− 3(3α+5)

2(α+3) .

Gathering the estimates on I1, ..., I6, we obtain that:

d

dt
F (t) >

α+ 1

2

∫
(|D|αε)2 Φ2

1 +

(
1 +

α

2
− 3(α+ 1)

8

)∫
(|D|

α
2 (εΦ1))2 +

(
1

2
− 3

8

)∫
ε2Φ2

1

− C

A
α
2

∫
(ε2 + (|D|

α
2 ε)2 + (|D|αε)2)Φ2

1 − CAαt
− 3(3α+5)

2(α+3) .
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To compare the quantities
∫

(|D|αε)2 Φ2
1 and

∫
(|D|αεΦ1)2 we use (4.4.27), thus we have:

d

dt
F (t) >

α+ 1

2

∫
(|D|αε)2 Φ2

1 +

(
1 +

α

2
− 3(α+ 1)

8

)∫
(|D|

α
2 ε)2Φ2

1 +

(
1

2
− 3

8

)∫
ε2Φ2

1

− C

A
α
2

∫
(ε2 + (|D|

α
2 ε)2 + (|D|αε)2)Φ2

1 − CAαt
− 3(3α+5)

2(α+3) .

By taking A > A1 large enough, T0 large enough, we deduce that:

d

dt
F (t) > −CAαt−

3(3α+5)
2(α+3)

However, the choice ofA is independent of parameters. We setA > max(A1, A2), withA2 de�ned in Claim
4.5.7 for the coercivity of the localized linearized operator. For now, A is a constant. �en, integrating in
time from t to Sn we conclude that:

F (t) 6 Ct
− 7α+9

2(α+3) ,

with the constant C independent of the di�erent parameters.

4.4.4 Topological argument

We argue by contradiction. Let suppose for all zinn in (4.4.3), we have t∗(zinn ) > T0.
Suppose �rst that one of the bootstrap estimates (4.4.5), (4.4.7), (4.4.8) or (4.4.9) is saturated, in the

sense that the equality is achieved.
1) Closing bootstrap for ε. First we start to show we can improve (4.4.5). We recall that the notations

ϕ, ϕ1 and ϕ2 holds respectively for ϕA, ϕ1,A and ϕ2,A. Using the Cauchy-Schwarz inequality, (4.2.13),
(4.4.5) and the de�nition of ϕ1 , we get that:

F (t) >− Ct
3(3α+5)
2(α+3) +

1

2

∫ (
ε|D|αε+ ε2 − 3‹R2

1ε
2
) 1− ϕ

(1 + µ1)2
+

1

2

∫ (
ε|D|αε+ ε2 − 3‹R2

2ε
2
) ϕ

(1 + µ2)2

+

∫
ε2

2
ϕ2 +

∫ (
V 4

4
+ V 3ε− (V + ε)4

4

)
ϕ1 +

3

2
‹R2

1ε
2 1− ϕ
(1 + µ1)2

+
3

2
‹R2

2ε
2 ϕ

(1 + µ2)2
. (4.4.29)

First of all, we estimate the last term on the right hand side. We get that, by straight forward computations:

V 4

4
+ V 3ε− (V + ε)4

4
= −3

2
V 2ε2 − ε3V − ε4

4
.

Using the Sobolev embedding and the bootstrap estimates on ε (4.4.5), we deduce that:∣∣∣∣∫ (ε3V +
1

4
ε4)ϕ1

∣∣∣∣ 6 Ct
− 3(3α+5)

2(α+3) .

Moreover, we have that:‹R2
1

1− ϕ
(1 + µ1)2

+ ‹R2
2

ϕ

(1 + µ2)2
− V 2ϕ1 =

(‹R2
1 −R2

1

)
ϕ1 +

(‹R2
2 −R2

2

)
ϕ1 − ‹R2

1

ϕ

(1 + µ2)2
− ‹R2

2

1− ϕ
(1 + µ1)2

+ 2R1R2ϕ1 − 2(−R1 +R2)(−P1 + P2 + bW )ϕ1 − (−P1 + P2 + bW )2ϕ1

�erefore, by applying the bootstrap estimate on ε (4.4.5), the estimate on the pro�lePi (4.2.34), the estimate
on the solitary waves (4.2.16), the estimate on ΛQ (4.1.7) and �nally the bootstrap estimate on z (4.4.6), we
get that: ∣∣∣∣∣

∫ (
V 4

4
+ V 3ε− (V + ε)4

4

)
ϕ1 +

3

2
‹R2

1ε
2 1− ϕ
(1 + µ1)2

+
3

2
‹R2

2ε
2 ϕ

(1 + µ2)2

∣∣∣∣∣ 6 Ct−
4α+6
α+3 .
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Moreover, from the bootstrap estimates on µ (4.4.7) and µ̄ (4.4.9) we have that:∣∣∣∣∫ ε2ϕ2

∣∣∣∣ 6 Ct−
α+1
α+3 ‖ε‖2L2 .

Now, we estimate the two �rst integrals in (4.4.29). We claim the following:∫ (
ε|D|αε+ ε2 − 3‹R2

i ε
2
) 1− ϕ

(1 + µ1)2
+
(
ε|D|αε+ ε2 − 3‹R2

i ε
2
) ϕ

(1 + µ2)2
> κ‖ε‖2

H
α
2
, i = 1, 2.

�e proof of this inequality is given in Claim 4.5.7 in the Appendix 4.5.4. �e proof is based on the
coercivity of the linearized operator L. By combining the former inequalities and using �eorem 4.4.3, we
deduce that:

κ‖ε‖2
H
α
2
− Ct−

4α+6
α+3 − Ct−

α+1
α+3 ‖ε‖2L2 6 F (t) 6 Ct

− 7α+9
2(α+3) .

�erefore for T0 large enough, we conclude that:

‖ε‖2
H
α
2
6 Ct

− 7α+9
2(α+3) .

�erefore, we strictly improved the bound (4.4.5) on ε. �is concludes the proof for ε.
2) Closing bootstrap for µ,µ̄ and z̄. Now, we improve the bound on µ (4.4.7). We recall µ = µ1 − µ2

and z = z1 − z2. Combining the bootstrap estimate on ε (4.4.5) and z (4.4.6) on the right hand side of the
estimate of µ̇i in (4.4.11) we deduce that:∣∣∣∣µ̇− 2b1

zα+2

∣∣∣∣ 6 Ct−
3α+5
α+3 .

Because b1 < 0 and by the equivalent of z in (4.4.10), we have µ̇ < 0. By the initial condition µ(Sn) > 0,
see (4.4.2), µ is positive on (t∗, Sn].

�en, multiplying by µ, using the estimate on żi (4.4.12) and the bootstrap on z (4.4.6) and µ (4.4.7),
we obtain that: ∣∣∣∣∣∣∣

˙︷︸︸︷
µ2

2
+

2b1
α+ 1

˙︷ ︸︸ ︷
1

zα+1

∣∣∣∣∣∣∣ 6 Ct−
4α+6
α+3 .

By the choice of the initial data, we have that:

µ2(Sn) = − 4b1
α+ 1

1

zα+1(Sn)
.

�erefore, by integrating from t to Sn, we get that:∣∣∣∣µ2

2
+

2b1
α+ 1

1

zα+1

∣∣∣∣ 6 Ct−
3(α+1)
α+3 . (4.4.30)

With the bootstrap hypothesis on z (4.4.6), we deduce that:∣∣∣∣∣µ−
√
−4b1
α+ 1

t−
α+1
α+3

a
α+1
2

∣∣∣∣∣ 6 C1t
− 5α+11

4(α+3) ,

with the constant C1 > 0.
Let us compute the bound on µ̄. From the estimate on µ̇i (4.4.11) and the bootstrap estimate on ε

(4.4.5) and z (4.4.6), we obtain that:

| ˙̄µ| 6 Ct−
3α+5
α+3 .
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By the choice of the initial data, we have that µ1(Sn) = −µ2(Sn). �us, by integrating we deduce that:

|µ̄| 6 C2t
− 2(α+1)

α+3 (4.4.31)

with the constant C2 > 0.
Let us get a bound on z̄. Using the fact that |β(Γ)|+|δ(Γ)| 6 2(β0+δ0)

zα+1 , the bound obtain for µ̄ (4.4.31)
and the estimate on żi (4.4.12), we deduce that:

| ˙̄z| 6| ˙̄z − µ̄+ β(Γ) + δ(Γ)|+ |µ̄|+ |β(Γ) + δ(Γ)| leqC3t
− 3α+5

2(α+3) + (2(β0 + δ0) + C2)t−
2(α+1)
α+3

6 2C3t
− 3α+5

2(α+3) .

�erefore by integrating, we conclude that:

|z̄| 6 2C3(2(α+ 3))

α− 1
t
− α−1

2(α+3)

Hence, by taking the constant C∗ > max

(
C1, C2,

2C3(2(α+ 3))

α− 1

)
, we can close the bootstrap

estimate on µ, µ̄ and z̄. �en, none of the previous inequalities on µ̇, ˙̄µ and ˙̄z can saturate independently
of the initial condition zinn .

3) Closing bootstrap for z. Subsequently, the inequality (4.4.6) saturates for any zinn . We now prove
that this equality is the source of a contradiction on t∗(zinn ).

First, we remark zinn =

(
a
α+3
2 Sn + λnS

1
2

+r
n

) 2
α+3

, for some λn ∈ [−1, 1]. �erefore, we can write

t∗(zinn ) = t∗(λn). We set:

Φ : [−1, 1] −→ {−1, 1}

λ 7−→
(
z
α+3
2 (t∗(λ))− a

α+3
2 t∗(λ)

)
(t∗(λ))−

1
2
−r ,

and

f : R −→ R+

s 7−→
(
z
α+3
2 (s)− a

α+3
2 s
)2
s−1−2r.

By assumption, we have for any λ ∈ [−1, 1], t∗(λ) > T0 and thus:

|z
α+3
2 (t∗(λ))− a

α+3
2 t∗(λ)| = (t∗(λ))

1
2

+r. (4.4.32)

We claim:

Claim 4.4.11. 1. Transversality condition: Let s0 > T0 such that (4.4.32) is veri�ed at s0, then:

f is decreasing on a neighbourhood of s0. (4.4.33)

2. Continuity: Φ ∈ C0([−1, 1] : {−1, 1}).

Let us assume the claim and �nish the proof. �e transversality condition (4.4.33) implies that
t∗(±1) = Sn. Moreover, Φ(±1) = ±1. �is contradicts (2) of the former claim. Now, we prove the
claim. First, we prove the transversality condition (4.4.33). By direct computations, we have that:

f ′(s) = 2

(
˙̆

z
α+3
2 (s)− a

α+3
2

)(
z
α+3
2 (s)− a

α+3
2 s
)
s−1−2r − (1 + 2r)

(
z
α+3
2 (s)− a

α+3
2 s
)2
s−2−2r.
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From the estimate obtain on µ2 (4.4.30) and the estimate on żi (4.4.12), we obtain that:∣∣∣∣∣ ˙̆
z
α+3
2 (t)− α+ 3

2

√
−4b1
α+ 1

∣∣∣∣∣ 6 Ct−
α+1
α+3 . (4.4.34)

�erefore, by using (4.4.32) and (4.4.34), and since a
α+3
2 = α+3

2

√
−4b1
α+1 , we deduce that:

f ′(s0) < Cs−1−3r
0 − (1 + 2r) s−1

0 .

Since r > 0 and for T0 large enough, we conclude that:

f ′(s0) < 0.

To prove the second part of the former claim, it is enough to show that λ 7→ t∗(λ) is continuous. Let
us �x λ ∈ [−1, 1]. From the transversality condition, there exists ελ > 0 such that ∀ε ∈ (0, ελ), ∃δ > 0
and the two following conditions are veri�ed: f(t∗(λ)−ε) > 1+ δ, and for all t ∈ [t∗(λ)+ε, Sn] (possibly
empty), f(t) < 1− δ.

Note that the function is well de�ned, since the function z is globally well de�ned, see Remark (4.3.2).
�en by the continuity of the �ow, there exists η > 0 such that for all |λ − λ̄| < η, with λ̄ ∈ [−1, 1], the
corresponding f̄ veri�es |f̄(s) − f(s)| < δ

2 for s ∈ [t∗(λ) − ε, Sn]. �erefore, we obtain that for all
s ∈ [t∗(λ) + ε, Sn]:

f̄(s) < |f̄(s)− f(s)|+ f(s) < 1− δ

2
.

�us, t∗(λ̄) < t∗(λ) + ε. Furthermore,

f̄(t∗(λ)− ε) > f(t∗(λ)− ε)− |f̄(t∗(λ)− ε)− f(t∗(λ)− ε)| > 1 +
δ

2
.

In other words, t∗(λ)− ε < t∗(λ̄), and then Φ is continuous.
�is contradicts the fact t∗(λ) > T0 and implies the existence of zinn such that (4.4.5)-(4.4.9) are true

for all t ∈ [T0, Sn].

4.4.5 Conclusion

In this section we have proved that there exists (zinn )
α+3
2 ∈ [a

α+3
2 S

1
2

+r
n − Sn, a

α+3
2 Sn + S

1
2

+r
n ] such

that the bootstrap estimates (4.4.5)-(4.4.9) are true for all t ∈ [T0, Sn]. Let us show this implies �eorem
4.0.3. From (4.4.5), we obtain that:

‖vn(T0, ·)‖H α
2
6 ‖εn(T0, ·)‖H α

2
+ ‖V (Γn(T0), ·)‖

H
α
2
6 C.

�erefore, by Banach-Alaoglu, there exists w0 ∈ H
α
2 (R) and a sub-sequence also denoted by (vn)n such

that:

vn(T0) ⇀ w0.

�us, we denote by w the solution of (4.0.5) such that w(T0) = w0. Let t > T0. From the weak continuity
of the �ow of �eorem 4.5.3, we have that:∥∥∥w(t, ·) +Q

(
· − a

2
t

2
α+3

)
−Q

(
·+ a

2
t

2
α+3

)∥∥∥
H
α
2

6 lim inf
n→∞

‖εn(t, ·)‖
H
α
2

+ lim inf
n→∞

∥∥∥V (Γn(t), ·) +Q
(
· − a

2
t

2
α+3

)
−Q

(
·+ a

2
t

2
α+3

)∥∥∥
H
α
2
.

�en, by using (4.4.5)-(4.4.8), we conclude that:∥∥∥w(t, ·) +Q
(
· − a

2
t

2
α+3

)
−Q

(
·+ a

2
t

2
α+3

)∥∥∥
H
α
2
6 Ct

− α−1
4(α+3) .
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4.5 Appendix

4.5.1 Local well-posedness

We recall the results of well-posedness of (4.0.5).

�eorem 4.5.1 ( [71], �eorem 1.5). Let α ∈ (1, 2), and u0 ∈ Hs(R), with s > 1
2 −

α
4 . �ere exists a time

T = T (‖u0‖
H

1
2−

α
4 (R)

) > 0, and a unique solution u ∈ C([−T, T ], Hs(R)) of (4.0.5). Furthermore, the �ow

u0 7→ u is locally Lipschitz continuous from Hs(R) to C([−T, T ], Hs(R)).

Because the equation is subcritical, we obtain as a corollary the global well-posedness.

Corollary 4.5.2 ( [71], Corollary 1.6). For any initial condition u0 ∈ H
α
2 (R), there exists a unique global

solution of 4.0.5 in C(R, H
α
2 (R)).

We continue with another property of the �ow, which is the weak-continuity in H
α
2 (R).

�eorem 4.5.3 (Weak continuity of the �ow). Let α ∈ (1, 2). Suppose that u0,n ⇀ u0 ∈ H
α
2 (R). We

consider un solutions of (4.0.5) corresponding to the initial data un(0) = un,0 and satisfying un ∈ C([0, T ] :
H

α
2 (R)) for any T > 0. �en, un(t) ⇀ u(t) in H

α
2 (R), for all t > 0.

�e proof of the weak continuity of the �ow relies on the well-posedness result given in the Corollary
4.5.2. We refer to [51] Appendix A, [66] for a proof of this result.

4.5.2 Justi�cation of the de�nition of S0

First, we recall some well-known results on pseudo-di�erential operators (see [6], or [80] chapter
18). Let D = −i∂x. We de�ne the symbolic class Sm,q by

Sm,q :=
{
a ∈ C∞(Rx × Rξ); ∀k, β ∈ N, ∃Ck,β > 0 such that |∂kx∂

β
ξ a(x, ξ)| 6 Ck,β〈x〉q−k〈ξ〉m−β

}
.

For all u in the Schwartz space S(R), we set the operator associated to the symbol a(x, ξ) ∈ Sm,q by

a(x,D)u :=
1

2π

∫
eixξa(x, ξ)F(u)(ξ)dξ.

We state the three following results

1. Let a ∈ Sm,q , there exists C > 0, such that for all u ∈ S(R)

‖a(x,D)u‖L2 6 C‖〈x〉q〈D〉mu‖L2 . (4.5.1)

2. Let a ∈ Sm,q and b ∈ Sm′,q′ , then there exists c ∈ Sm+m′,q+q′ such that

a(x,D)b(x,D) = c(x,D). (4.5.2)

3. If a ∈ Sm,q and b ∈ Sm′,q′ are two operators, we de�ne the commutator by [a(xD), b(x,D)] :=
a(x,D)b(x,D)− b(x,D)a(x,D). Moreover there exists c ∈ Sm+m′−1,q+q′−1 such that

[a(x,D), b(x,D)] = c(x,D). (4.5.3)

4. Let a ∈ Sm,q , we have the following development for the adjoint a∗ of a. Let k ∈ N, then

a∗(x, ξ) =
∑
β6k

1

β!
∂βξD

β
x ā(x, ξ) +Rk(x, ξ)

with ∂βξD
β
x ā ∈ Sm−β,q−β and Rk ∈ Sm−β−1,q−β−1. Moreover the rest Rk is given by

Rk(x, ξ) =
1

2π

∫ 1

0
(1− t)2k+1dt

∫
e−iyη

∑
β+γ=2k+2

2k + 2

β!γ!
∂βy ∂

γ
η ā(x− ty, ξ − tη)yβηβdydη.
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As a consequence of (4.5.2), 〈D〉m〈x〉q〈D〉−m ∈ S0,q . �erefore, by (4.5.1), we have

‖〈D〉m〈x〉qu‖L2 = ‖〈D〉m〈x〉q〈D〉−m〈D〉mu‖L2

6 C2‖〈x〉q〈D〉mu‖L2 ,

for C2 > 0. By the same computations with 〈x〉q instead of 〈D〉m, there exists C1 > 0 such that

C1‖〈x〉q〈D〉mu‖L2 6 ‖〈D〉m〈x〉qu‖L2 .

Gathering these two estimates, we conclude that

C1‖〈x〉q〈D〉mu‖L2 6 ‖〈D〉m〈x〉qu‖L2 6 C2‖〈x〉q〈D〉mu‖L2 .

We recall also the Schur’s test.

�eorem 4.5.4 (Schur’s test [75], �eorem 5.2). Let p, q be two non-negative measurable functions. If there
exists α, β > 0 such that

1.
∫
R
|K(x, y)|q(y)dy 6 αp(x) a.e. x ∈ R.

2.
∫
R
|K(x, y)|p(x)dx 6 βq(y) a.e. y ∈ R.

�en Tf :=

∫
R
K(x, y)f(y)dy is a bounded operator on L2(R).

We recall two other lemmas useful for the rest of the appendix. �e de�nition ofϕ is given in (4.4.19).

Lemma 4.5.5 ( [91] Claim 5). �ere exists C > 0 such that

|ϕ(x)− ϕ(y)| 6 C
|x− y|

(〈x〉〈y〉)
α+1
2

+ C
|x− y|2

(〈x〉+ 〈y〉)α+2 if |x− y| 6 1

2
(〈x〉+ 〈y〉) ,

|ϕ(x)− ϕ(y)| 6 C if |x− y| > 1

2
(〈x〉+ 〈y〉) .

Lemma 4.5.6 ( [91], Lemma A.2). Let p be a homogeneous function of degree β > −1. Let χ ∈ C∞0 (R) such
that 0 6 χ 6 1, χ(ξ) = 1 if |ξ| < 1 and χ(ξ) = 0 if |ξ| > 2. Let

k(x) =
1

2π

∫
eixξp(ξ)χ(ξ)dξ.

�en for all q ∈ N, there exists Cq > 0 such that, for all x ∈ R,

|∂qxk(x)| 6 Cq
〈x〉β+q+1

.

Now, we can start the proof of the justi�cation of the de�nition of S0.

Proof. We recall the de�nition of ΛQ, and estimate on Q from [61]:

ΛQ =
α

2(α+ 1)
Q+

1

α+ 1
x∂xQ, |Q|+ |x∂xQ| 6

1

1 + |x|1+α
.

Since ΛQ ∈ L2(R), we can de�ne by the Fourier transform (1 + |D|α)−1ΛQ ∈ Hα(R):

∥∥(1 + |D|α)−1ΛQ
∥∥2

Hα =

∥∥∥∥∥(1 + |ξ|2)
α
2

1 + |ξ|α
Λ̂Q

∥∥∥∥∥
2

L2

. ‖ΛQ‖L2 <∞.
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�e integral of (1 + |D|α)−1 ΛQ on a �nite interval is well-de�ned since it is in L2(R). However, it is not
clear that the integral over an in�nite interval is �nite. We use the pseudo-di�erential theory to prove that
the limit is �nite. Let us de�ne χ, a cut-o� function equal to 1 in a neighbourhood of 0, with compact
support. Let I be a compact interval. By the Cauchy-Schwarz inequality :∫

I

∣∣∣(1 + |D|α)−1 ΛQ
∣∣∣ 6 ∫

I

∣∣∣(1− χ(D)) (1 + |D|α)−1 ΛQ
∣∣∣+

∫
I

∣∣∣χ(D) (1 + |D|α)−1 ΛQ
∣∣∣

6 C
∥∥∥〈x〉 34 (1− χ(D)) (1 + |D|α)−1 ΛQ

∥∥∥
L2(I)

+ C
∥∥∥〈x〉 34χ(D) (1 + |D|α)−1 ΛQ

∥∥∥
L2(I)

= I1 + I2.

Note that the previous constant can be chosen independently of I . We have from (4.5.3) that the symbol
〈x〉

3
4 (1− χ(ξ))(1 + |ξ|α)−1 belongs to S−α,

3
4 ⊂ S0, 3

4 . �us, since 〈x〉
3
4 ΛQ ∈ L2(R):

I1 . ‖〈x〉
3
4 ΛQ‖L2(R) <∞.

We can not deal with the integral I2 with symbols only, because χ(ξ)(1 + |ξ|α)−1 is not smooth
around 0. We use the commutator to bring the decay in x close to ΛQ (notice the integral is over R):

I2
2 .

∫
R

([
〈x〉

3
4 , χ(D)(1 + |D|α)−1

]
ΛQ
)2

+

∫
R

(
χ(D)(1 + |D|α)−1〈x〉

3
4 ΛQ

)2
.

By the Plancherel formula, the second term can be bounded by
∥∥∥〈x〉 34 ΛQ

∥∥∥2

L2
<∞. �e �rst term needs to

develop the commutator. First, let us de�ne the kernel k satisfying:

χ(D)(1 + |D|α)−1u(x) =
1

2π

∫
eiξx

χ(ξ)

1 + |ξ|α
û(ξ)dξ = k ? u(x), so k̂(ξ) =

χ(ξ)

1 + |ξ|α
.

�e kernel k is well-de�ned as the inverse Fourier transform of a function in L2. We thus get:[
〈x〉

3
4 , χ(D)(1 + |D|α)−1

]
u = 〈x〉

3
4k ? u(x)− k ?

(
〈x〉

3
4u
)

(x)

=

∫
k(x− y)

(
〈x〉

3
4 − 〈y〉

3
4

)
u(y)dy.

By Lemma 4.5.4 and the symmetry of k, it is enough to prove that y 7→ k(x− y)
(
〈x〉

3
4 − 〈y〉

3
4

)
∈ L1(R).

First, we have to estimate k. By integrating by parts twice, we deduce that :

1

1 + x2
(1− ∂2

ξ )eixξ = eixξ and |k(x)| =
∣∣∣∣ 1

2π

∫
eixξ

χ(ξ)

1 + |ξ|α
dξ

∣∣∣∣ 6 Cα
〈x〉2

. (4.5.4)

Let A1 := {y ∈ R : |x − y| 6 1
2 (〈x〉+ 〈y〉)}, and A2 := {y ∈ R : |x − y| > 1

2 (〈x〉+ 〈y〉)}. Notice the
following equivalences :

|x− y| 6 1

2
(〈x〉+ 〈y〉)⇒ 〈x〉 ∼ 〈y〉, (4.5.5)

and

|x− y| > 1

2
(〈x〉+ 〈y〉)⇒ 〈x− y〉 ∼ |x− y| ∼ 〈x〉+ 〈y〉. (4.5.6)

�en, from (4.5.4) and (4.5.6), we deduce that∣∣∣∣∫
A2

k(x− y)
(
〈x〉

3
4 − 〈y〉

3
4

)
dy

∣∣∣∣ 6 ∫
A2

〈x〉
3
4 + 〈y〉

3
4

(〈x〉+ 〈y〉)
3
4

1

〈x− y〉
5
4

dy 6 C. (4.5.7)
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Moreover by (4.5.5), we obtain that A1 ⊂ [−c2|x|,−c1|x|] ∪ [c1|x|, c2|x|], for some 0 < c1 < c2 < +∞
independent of x. Moreover, by the mean value theorem and ln(x+ 〈x〉)′ = 1

〈x〉 , we get that∣∣∣∣∫
A1

k(x− y)
(
〈x〉

3
4 − 〈y〉

3
4

)
dy

∣∣∣∣ 6 C〈x〉−
1
4

∫
A1

1

〈x− y〉
dy 6 C〈x〉−

1
4 ln(C(|x|+ 〈x〉)) 6 C.(4.5.8)

Gathering (4.5.7) and (4.5.8), we conclude that k de�nes a bounded operator on L2(R). It implies that I2

is bounded, and thus
∫
I |(1 + |D|α)ΛQ| is bounded independently of I . �is achieves the proof of the

well-posedness of S0, and that S0 has a �nite limit at −∞.

4.5.3 Proof of the preliminary results

Proof of Lemma 4.4.6. Let χ be a smooth cut-o� function supported around 0. To estimate this commutator
we split the norm in low and high frequency. For the low frequency we use the Schur’s Lemma (Lemma
4.5.4), and the pseudo-di�erential calculus for the high frequency. To get an explicit dependence in A we
prove the estimate∥∥∥∥ [|D|α,Φ]u

∥∥∥∥2

L2

6

C
∫
u2Φ2, if α ∈]0, 1]

C
∫ (

u2 +
(
|D|

α
2 u
)2
)

Φ2, if α ∈]1, 2]

�en, we conclude Lemma 4.4.6 by changing the variable x = x′

A and multiplying by
∣∣∣ 1

(1+µ1)2
− 1

(1+µ2)2

∣∣∣.
Let us start the proof. By the Schur’s lemma (Lemma 4.5.4), we deduce that∥∥∥∥ [χ(D))|D|α,Φ]u

∥∥∥∥2

L2

6 C

∫
u2Φ2

From pseudo-di�erential calculus, and 〈x〉
α
2 ∼ 1 + x

α
2 , we get that

∥∥∥∥ [(1− χ(D))|D|α,Φ]u

∥∥∥∥2

L2

6


C

∫
u2Φ2, if α ∈]0, 1]

C

∫
u2Φ2 + C

∫ (
|D|

α
2 (uΦ)

)2
, if α ∈]1, 2]

.

Again, by applying the pseudo-di�erential calculus, we deduce that∫ (
|D|

α
2 (uΦ)

)2
6 C

(∫ (
χ(D)|D|

α
2 (uΦ)

)2
+

∫ (
(1− χ(D))|D|

α
2 (uΦ)

)2
)

6 C

(∫
u2Φ2 +

∫
(|D|

α
2 u)2Φ2

)
.

�en, by changing the variable x = x′

A and multiplying by
∣∣∣∣ 1

(1+µ1)2
− 1

(1+µ2)2

∣∣∣∣, we conclude the proof of
Lemma 4.4.6.

Proof of Lemma 4.4.7. By direct computations and Young’s inequality, we have that∫
|D|α (uΦj,A) ((|D|αu)Φj,A)−

∫
(|D|αu)2 Φ2

j,A =

∫
|D|αuΦ1,A[|D|α,Φ1,A]u

6
C

A
α
2

∫
(|D|αu)2 Φ2

1,A + CA
α
2 ‖[|D|α,Φ1,A]u‖2L2 .

(4.5.9)

and by the change of variable x′ = x
A and v(x′) = u(x):

‖[|D|α,Φ1,A]u‖2L2 =
1

A2α−1
‖[|D|α,Φ1]v‖2L2 .
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We write

‖[|D|α,Φ1]v‖2L2 6 C
(
‖[|D|αχ(D),Φ1]v‖2L2 + ‖[|D|α(1− χ(D)),Φ1]v‖2L2

)
.

Using �eorem 4.5.4, we deduce that

‖[|D|αχ(D),Φ1]v‖2L2 6 C

∫
v2Φ2

1.

Moreover, using pseudo-di�erential calculus, we deduce that

‖[|D|α(1− χ(D)),Φ1]v‖2L2 6 C

∫ (
v2 +

(
|D|

α
2 v
)2
)

Φ2
1.

Gathering those estimates and coming back to the initial data, we get:

‖[|D|α(1− χ(D)),Φ1,A]u‖2L2 6
C

Aα

∫ (
u2 +

(
|D|

α
2 u
))2

Φ1,A.

Using this last inequality in (4.5.9), we conclude the lemma.

Proof of Lemma 4.4.8. We recall that if A,B are two pseudo-di�erential operators then the commutator
[A,B] is also a pseudo-di�erential C . Moreover the principal symbol of C is given by

{a, b} = ∂ξa∂yb− ∂ya∂ξb, (4.5.10)

with a, b respectively symbol of A and B. �erefore, [(1 − χ(D))|D|α, ϕ1] ∈ Sα−1,−α−1 ⊂ S
α
2
,−α−1.

�en, by applying the pseudo-di�erential calculus and the fact ∂yϕ1 =
(

1
(1+µ2)2

− 1
(1+µ1)2

)
∂yϕ, we have

that

‖[(1− χ(D))|D|α, ϕ1]u‖L2 6 C

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ 12 ‖uΦ1‖H α
2
.

Now, we estimate the low frequency. Let k be the operator de�ned by F(k(u))(ξ) = χ(ξ)|ξ|αF(u)(ξ).
�en, we have that

[χ(D)|D|α, ϕ1]u =

(
1

(1 + µ2)2
− 1

(1 + µ1)2

)∫
k(x− y)(ϕ(y)− ϕ(x))u(y)dy.

To prove that [χ(D)|D|α, ϕ1] de�nes an operator bounded on L2(R), we use the Schur’s lemma (Lemma
4.5.4) on x 7→

∫
k(x−y)(ϕ(y)−ϕ(x))u(y)dy and by using Lemma 4.5.5 and 4.5.6. Notice that this process

gives us an explicit constant in term of µ1 and µ2. By changing the variable x =
x′

A
, we deduce that:

‖[|D|α, ϕ1,A]u‖L2 6
C

A
α−1
2

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ 12 ‖uΦ1,A‖H α
2
.

We obtain by de�nition of the Sobolev space:

‖[|D|α, ϕ1,A]u‖L2 6 C

∣∣∣∣ 1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣ 12 ‖uΦ1,A‖H1 .

�is concludes the proof of Lemma 4.4.8.

Proof of Lemma 4.4.10. �e proof is based on the same arguments as the former lemmas. For the high fre-
quency we use the pseudo-di�erential calculus, except that we use the function√ϕ instead of ϕ. Using the
Poisson bracket in (4.5.10), we deduce that the commutator satis�es [(1−χ(D))|D|α,√ϕ] ∈ Sα−1,−1−α

2 ⊂
S
α
2
,0, and we can use the same arguments as above. For the low frequency we use the Schur’s lemma

(Lemma 4.5.4).
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4.5.4 Proof of the coercivity property

We prove the following result of coercivity which is time-independent, with R1, R2, ‹R1 and ‹R2

de�ned in (4.3.1) and dependent on Γ satisfying the condition (CondZ ):

Claim 4.5.7. Let ε ∈ H
α
2 (R) satisfying the four orthogonality conditions:

0 =

∫
εR1 =

∫
ε∂yR1 =

∫
εR2 =

∫
ε∂yR2,

and Γ = (z1, z2, µ1, µ2) satisfying (CondZ ). �en, there exists A2, Z∗1 , κ > 0 such that for all A > A2 and
Γ satisfying (CondZ∗1 ):

2∑
i=1

∫ (
ε|D|αε+ ε2 − 3‹R2

i ε
2
)
ψi,A > κ‖ε‖2

H
α
2
, i = 1, 2,

with ψ1,A :=
1− ϕA

(1 + µ1)2
or ψ2,A :=

ϕA
(1 + µ2)2

.

Proof. Since ψi,A > 0, and L is coercive, see (4.1.10), we deduce that:∫ (
ε|D|αε+ ε2 − 3‹R2

i ε
2
)
ψi,A

=

∫ (
|D|

α
2

(
ε
√
ψi,A

))2
+
(
ε
√
ψi,A

)2
− 3‹R2

i

(
ε
√
ψi,A

)2
+

∫
ε
√
ψi,A

[
|D|α,

√
ψi,A

]
ε

> κ1

∥∥∥ε√ψi,A∥∥∥2

H
α
2

+

∫
ε
√
ψi,A

[
|D|α,

√
ψi,A

]
ε− 1

κ1

(∫
ε
√
ψi,A‹Ri)2

− 1

κ1

(∫
ε
√
ψi,A∂y‹Ri)2

.

Since 〈ξ〉
α
2 > κ2(1 + |ξ|

α
2 ), we obtain that:∥∥∥ε√ψi,A∥∥∥2

H
α
2
> κ2

∫ (
ε2 + (|D|

α
2 ε)2

)
ψi,A + κ2

∫
(|D|

α
2 (ε
√
ψi,A))2 − (|D|

α
2 ε)2ψi,A.

Notice that:∫
(|D|

α
2 (ε
√
ψi,A))2 − (|D|

α
2 ε)2ψi,A = 2

∫ (
|D|

α
2 (ε
√
ψi,A)

)
[|D|

α
2 ,
√
ψi,A]ε−

∫ (
[|D|

α
2 ,
√
ψi,A]ε

)2
.

Using Lemma 4.4.10 and Young’s inequality, we obtain that:

κ1

∥∥∥ε√ψi,A∥∥∥2

H
α
2

+

∫
ε
√
ψi,A

[
|D|α,

√
ψi,A

]
ε >κ1κ2

∫ (
ε2 + (|D|

α
2 ε)2

)
ψi,A −

C

A
α
2

∫
ε2 + (|D|

α
2 ε)2.

Note that since ε ⊥ Ri, we have that:∫
ε
√
ψi,A‹Ri =

∫
ε
(√

ψi,A − 1
)
Ri +

∫
ε
√
ψi,A

(‹Ri −Ri)
�en, by using the Cauchy-Schwarz’ inequality, (4.2.16), we get that:(∫

ε
√
ψi,A‹Ri)2

+

(∫
ε
√
ψi,A∂y‹Ri)2

6 C‖ε‖2L2

(
1

zα
+ ‖Ri − ‹Ri‖2H1

)
.

Moreover, we have that ψ1,A + ψ2,A > κ3 > 0. �erefore, we can conclude, with (4.1.7):

‖Ri − ‹Ri‖H1 6 Cµ2
i ,

by taking Z and A > A2 large enough, that there exists κ > 0 such that:
2∑
i=1

∫ (
ε|D|αε+ ε2 − 3‹R2

i ε
2
)
ψi,A > κ‖ε‖2

H
α
2
.
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Poincaré. Analyse Non Linéaire 28 (2011), no. 6, 853–887.

[92] Carlos E. Kenig, Didier Pilod, Gustavo Ponce, and Luis Vega, On the unique continuation of solutions to
non-local non-linear dispersive equations, Communications in Partial Di�erential Equations 45 (2020),
no. 8, 872–886.

[93] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and sca�ering results for the general-
ized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied
Mathematics 46 (1993), no. 4, 527–620.

[94] , A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2,
573–603. MR 1329387

[95] , Uniqueness properties of solutions to the Benjamin-Ono equation and related models, J. Funct.
Anal. 278 (2020), no. 5, 108396, 14. MR 4046209

[96] Carlos E. Kenig and Hideo Takaoka, Global wellposedness of the modi�ed Benjamin-Ono equation with
initial data in H1/2, Int. Math. Res. Not. (2006), Art. ID 95702, 44. MR 2219229

[97] Rowan Killip, Soonsik Kwon, Shuanglin Shao, and Monica Visan, On the mass-critical generalized
KdV equation, Discrete Contin. Dyn. Syst. 32 (2012), no. 1, 191–221. MR 2837059

[98] Kihyun Kim and Robert Schippa, Low regularity well-posedness for generalized Benjamin-Ono equa-
tions on the circle, J. Hyperbolic Di�er. Equ. 18 (2021), no. 4, 931–984. MR 4378713

[99] Nobu Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the crit-
ical regularity, Di�erential Integral Equations 22 (2009), no. 5-6, 447–464. MR 2501679

[100] Christian Klein, Felipe Linares, Didier Pilod, and Jean-Claude Saut, On Whitham and related equa-
tions, Stud. Appl. Math. 140 (2018), no. 2, 133–177. MR 3763731

[101] Christian Klein and Jean-Claude Saut, A numerical approach to blow-up issues for dispersive pertur-
bations of Burgers’ equation, Physica D: Nonlinear Phenomena 295 (2015), 46–65.

[102] Christian Klein, Jean-Claude Saut, and Yuexun Wang, On the modi�ed fractional Korteweg–de Vries
and related equations, Nonlinearity 35 (2022), no. 3, 1170–1212. MR 4374000

[103] Herbert Koch, Self-similar solutions to super-critical gKdV, Nonlinearity 28 (2015), no. 3, 545–575. MR
3311593

[104] Herbert Koch and Daniel Tataru, Multisolitons for the cubic nls in 1-d and their stability, 2020.

[105] Teruhisa S Komatsu and Shin-ichi Sasa, Kink soliton characterizing tra�c congestion, Physical Review
E 52 (1995), no. 5, 5574.

[106] DJ Kordeweg and G de Vries, On the change of form of long waves advancing in a rectangular channel,
and a new type of long stationary wave, Phil. Mag 39 (1895), 422–443.
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[151] Claudio Muñoz, On the inelastic two-soliton collision for gKdV equations with general nonlinearity, Int.
Math. Res. Not. IMRN 9 (2010), 1624–1719. MR 2643578

[152] Monica Musso, Frank Pacard, and Juncheng Wei, Finite-energy sign-changing solutions with dihedral
symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6,
1923–1953. MR 2984592
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