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—— Abstract

In this paper, we consider the Minimum-Load k-Clustering/Facility Location (MLkC) problem where
we are given a set P of n points in a metric space that we have to cluster and an integer k£ > 0 that
denotes the number of clusters. Additionally, we are given a set F' of cluster centers in the same
metric space. The goal is to select a set C' C F of k centers and assign each point in P to a center
in C, such that the maximum load over all centers is minimized. Here the load of a center is the
sum of the distances between it and the points assigned to it.

Although clustering/facility location problems have rich literature, the minimum-load objective
has not been studied substantially, and hence MLkC has remained a poorly understood problem.
More interestingly, the problem is notoriously hard even in some special cases including the one in
line metrics as shown by Ahmadian et al. [APPROX 2014, ACM Trans. Algorithms 2018]. They also
show APX-hardness of the problem in the plane. On the other hand, the best-known approximation
factor for MLKC is O(k), even in the plane.

In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al.
[NeurIPS, 2017]. Here the input points are partitioned into ¢ protected groups, and only clusters
that proportionally represent each group are allowed. MLkC is the special case with £ = 1. For the
fair version, we are able to obtain a randomized 3-approximation algorithm in f(k,¢) - nPW time.
Also, our scheme leads to an improved (1 + €)-approximation in the case of Euclidean norm with
the same running time (depending also linearly on the dimension d). Our results imply the same
approximations for MLkC with running time f(k) - nPW, achieving the first constant-factor FPT
approximations for this problem in general and Euclidean metric spaces.
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1 Introduction

Clustering is the task of partitioning a set of data items into a number of groups (or clusters)
such that each group contains similar items. Typically, the similarity in the clusters is
modeled by a proxy objective function, which one needs to optimize. Being a fundamental
computational problem in nature, clustering has a host of diverse applications in computer
science and other disciplines. Consequently, the problem has been studied with several
different and possibly independent objectives. Some of these became notably popular, for
example, k-means, k-median, and k-center [22, 19, 5, 26]. In this paper, we consider an
objective which has not been studied substantially in the literature. In particular, we consider
minimum-load clustering. Here we are given a set P of points in a metric space that we have
to cluster and an integer k > 0 that denotes the number of clusters. Additionally, we are
given a set F' of cluster centers in the same metric space. The goal is to select a set C C F
of k centers and assign each point in P to a center in C, such that the maximum load over
all centers is minimized. Here the load of a center is the sum of the distances between it
and the points assigned to it. That is, if P’ is the set of points assigned to a center ¢, then
its load is Zpe pr d(c,p), where d is the given metric. We formally refer to this problem as
Minimum-Load k-Clustering (MLkC). MLkC can be used to model applications where the
cost of serving the clients (or points) assigned to a facility (or center) is incurred by the
facility, e.g., assigning jobs to the k best servers from a pool of servers balancing their loads.

Surprisingly, MLkC is NP-hard even if the solution set of centers C' is given, via a reduction
from makespan-minimization [2]. In fact, this assignment version of the problem can be
shown to be NP-hard even in line metrics and for & = 2, via a simple reduction from the
Partition problem [29]. (In Partition, given a set of integers, the goal is to partition it into two
subsets such that the difference between the sums of the integers in two subsets is minimized.)
Moreover, [2] proved that the problem is strongly NP-hard in line metrics (points on a line)
and APX-hard in the plane. On the positive side, an O(k)-approximation follows for this
problem from any existing O(1)-approximation for k-median [12, 5, 24, 31, 11]. This is true,
as k-median minimizes the sum of the loads of the centers. Also, constant-approximations
are known for MLkC in some special cases, e.g., in star metrics and line metrics. Beyond
these special cases, obtaining better than O(k)-approximation in polynomial time remained a
notoriously hard question, even in the plane. Indeed, as explicitly pointed out by [2], MLkC
is resilient to attack by the standard approximation techniques including LP rounding and
local search, which has been fairly successful in obtaining good approximation algorithms for
other clustering problems. Given these difficulties, we investigate whether it is possible to
obtain O(1)-approximation for MLkC if we allow time f(k) - n®() instead of only n®®), for
some function f(.) independent of the input size n. Indeed, we study a much more general
fair version of the problem.

Fair clustering was introduced by [14] with the goal of removing inherent biases from the
regular clustering models. In this setting, we also have a sensitive or protected feature of
the data points, e.g., gender or race. The goal is to obtain a clustering where the fraction
of points from a traditionally underrepresented group (w.r.t. the protected feature) in
every cluster is approximately equal to the fraction of points from this group in the whole
dataset. For simplicity, they assumed that the protected feature can take only two values and
designed fair k-center and k-median clustering algorithms in this setting. In particular, here
one is given two sets of points R and B of color red and blue, respectively, and a balance
parameter t € [0,1]. The objective is to find a clustering such that in every cluster O, the
ratio between the number of red points and the number of blue points is at least ¢ and at
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most 1/t ie., t < \lggg‘l < 1/t. Subsequently, [33] considered a general model where the

protected feature can take any number of values and designed fair clustering algorithms for
the k-center objective. Later, [9] and [8] independently considered a fair clustering model
that generalizes the models in both [14] and [33]. In this model, we are given a partition
{P1, Py, ..., Py} of the input point set P and balance parameters 0 < 3; < o; < 1 for each
group 1 < i < {. Then a clustering is called («, 8)-fair if the fraction of points from each
group 7 in every cluster is at least 3; and at most «;. In this paper, we study the («, 8)-Fair
Minimum-Load k-Clustering (FMLkC) problem, where the goal is to compute an («, §)-fair
clustering that minimizes the maximum load. (For a formal definition, please see Section
2.) We note that the only clustering objectives considered in all the above mentioned works
on fair clustering are k-means, k-median and k-center. To the best of our knowledge, fair
clustering was not studied with the minimum-load objective before our work.

1.1 Our Results and Techniques

Considering the FMLKC problem in general and Euclidean metric spaces we obtain the
following results.

» Theorem 1 (Informal). There is a 3-approximation algorithm for («, B)-Fair Minimum-
Load k-Clustering in general metric spaces that runs in time 20(k*) 00 | For d-dimensional
Euclidean spaces, there is a (1 + €)-approzimation algorithm for («, 8)-Fair Minimum-Load
k-Clustering with running time 90(ke? /200 g,

In the above theorem, the O(-) notation hides logarithmic factors. Note that all the
running times are fized-parameter tractable (FPT) [16] in k, £ and e. Moreover, our results
imply the same approximations for Minimum-Load k-Clustering with running times FPT
in only k and e, achieving the first constant-factor FPT approximations for this problem
in general and Euclidean metric spaces. Note that in the Euclidean case, the running
time depends only polynomially on the dimension d. Recall that no better than O(k)-
approximation was known before even in the plane, and this version is known to be APX-hard.
Also, the reduction mentioned before from Partition eliminates the existence of an exact
algorithm in time f(k)-n°®) unless P # NP, as MLkC in line metrics is already NP-hard
when k = 2. In this sense, our FPT (1 + ¢)-approximation for Euclidean spaces is tight and
the best possible.

Our results are motivated by the recent FPT approximation results for constrained
clustering with popular k-median and k-means objectives [15, 7]. However, these results
are based on coreset construction. A coreset is a summary of the original dataset from
which it is possible to retrieve a near-optimal clustering. Their main contribution is to show
that it is possible to obtain coresets of size polynomial in k,logn and d. Alternatively, the
input can be compressed to an almost equivalent instance of size poly(kdlogn). Then one
can enumerate all possible k-tuples of centers in FPT time using the coreset and output
the k-tuple having the minimum clustering cost. This yields a (1 + €)-approximation for
Euclidean spaces and a slightly larger 3-approximation for general metric spaces due to some
technical reasons. However, such a small-sized coreset is not known for our problems. Instead,
we adapt approaches from [17, 23, 10] used for directly obtaining FPT approximations for
constrained k-median and k-means clustering. We note that these schemes were known only
in the special Euclidean case until recently [23]. All these schemes produce in FPT (in k)
time a list of k-tuples of centers, such that at least one such k-tuple is a near-optimal set of
centers. Using the similarity of the k-median and the minimum-load objectives, we show
these approaches can be adapted for our problems as well. However, given such a k-tuple of
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centers, assigning the points to the best centers or finding the optimal clustering, in our case
is still NP-hard. Nevertheless, we give a Mixed-Integer Linear Programming (MILP) based
(1 + e)-approximation for this assignment problem that runs in time FPT in k and ¢ (in k
only for MLKC). Our MILP is partly motivated by the fair k-median MILP [7]. However, our
MILP and its rounding are more involved compared to that for fair k-median, especially due
to the difference in the objectives. For example, if we forget about the fairness constraints,
in that case the assignment algorithm for k-median is trivial: assign each point to its closest
center. However, even in this case the assignment problem for MLkC is NP-hard. Also, no
near-optimal assignment scheme was known in the literature (a 2-approximate assignment
scheme follows from the generalized assignment problem (GAP) [34]). Thus, in this case we
give a novel (1 + ¢)-approximate assignment scheme. In this case, we do not need MILP —
rounding of an LP is sufficient to obtain the desired assignment. All these schemes applied
together help us achieve the desired FPT approximations.

1.2 Related Work

[18] and [4] studied the MLkC problem under the name min-max star cover, where F = P.
In this setting, MLKC can be viewed as a weighted covering problem where the task is to
cover the nodes of a graph by stars. Both works obtain bicriteria approximation for this
problem where the solution returned has near-optimal load, but uses more than k centers.
[2] studied several special cases of the MLKC problem (under the name Minimum-Load
k-Facility Location!). They fully resolved the status of the MLkC problem in line metrics.
On the one hand, they designed a PTAS based on dynamic programming. On the other
hand, they proved that this version is strongly NP-hard. They also designed a quasi-PTAS
in tree metrics. Moreover, they studied a variant of the problem with client demands in star
metrics.

The notion of fair clustering introduced by [14] has been studied extensively in the literat-
ure. For k-center objective, there are several polynomial-time true O(1)-approximations [33, 9].
For k-median and k-means objectives, polynomial-time O(1)-approximations are designed by
violating the fairness constraints by an additive factor [9, 8] and true O(d log n)-approximation
is known in R? for two groups [6]. On the other hand, it is possible to obtain true O(1)-
approximations for these two objectives if one is allowed to use f(k,£) - n®M) time [7].
Clustering problems have been studied under several other notions of fairness, e.g., see
3, 13, 27, 28, 21, 32, 1].

Organization. We define some useful notations and our problem formally in Section 2.
Then we describe the assignment algorithm for the FMLKC problem in Section 3. Finally, in
Section 4, we describe the full algorithms for FMLKC in details.

2 Preliminaries

We are given a set P of points in a metric space (X,d(-,)), that we have to cluster. We
are also given a set F' of cluster centers in the same metric space. We note that P and F’
are not-necessarily disjoint, and in fact, P may be equal to F'. In the Euclidean version of
a clustering problem, P C R¢, F = R% and d(+,-) is the Euclidean distance.? In the metric

L MLKC can also be viewed as a facility location problem with zero facility opening costs where we can
still open only k facilities.
2 Due to the lack of better notations, we denote the dimension by d and distance function by d(-, ).
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version, we assume that F' is finite. Thus, strictly speaking, the Euclidean version is not a
special case of the metric version. In the metric version, we denote |P U F| by n and in the
Euclidean version, |P| by n. For any integer ¢t > 1, we denote the set {1,2,...,t} by [¢].

For a partition O = {Oq,...,0x} of P and a set of k cluster centers C = {cy,...,cx} C F,
we say that O is a clustering of P with the centers ¢y, ..., cx. We say that the load cost of this
clustering (also, simply cost of clustering) is max;cy) costc, (O;). Here cost., (O;) denotes the
sum-of-distances cost of the cluster O; with the center ¢;, which is cost., (0;) = >_,co. d(z, ¢i).
We use the following notation to denote the cost of clustering w.r.t. the set of centers C' up
to a permutation of the clusters,

costc(0) = min max costc, (O;;),

11,0k JE[K]

where 41, ..., i is a permutation of [k]. We also denote by cost(O;) the cost of a cluster O;
with the optimal choice of a center, that is, cost(O;) = min.ep cost.(O;), and by cost(O) the
optimal cost of clustering O,

cost(0) = émr;’ cost(0).
Cl=k

Alternatively, a clustering with centers in C' C F' can be defined as an assignment ¢ : P — C.

The assignment ¢ then corresponds to a clustering {¢~1(¢)}.cc, and we say that the cost of
the assignment ¢ is cost(y) = maxcec Y- e p.p(z)=c U, ).

Now we formally define the main problem of our interest, where the goal is to find the
minimum-cost clustering that satisfies the fairness constraints.

» Definition 2. In the («, 5)-Fair Minimum-Load k-Clustering (FMLkC) problem, we are
given a partition {Py, Pa, ..., Py} of P. We are also given an integer k > 0 and two fairness
vectors a, B € [0,1]%, a = (a1,...,a), B = (B1,...,B¢). The objective is to select a set of
at most k centers C C F and an assignment ¢ : P — C such that ¢ satisfies the following
fairness constraints:

HxeP:px)=c}|<a;-|[{zx€P:plx)=c}, VeeCViel],
HxeP:plx)=cH >6;-{x e P:p(x)=c}, VeeCViel],

and cost(yp) is minimized among all such assignments.

Minimum-Load k-Clustering (MLkC) is a restricted case of FMLkC with ¢ = 1, and
hence there is no fairness constraints involved in this case. The (¢, §)-Fair k-median problem
is defined identically except there the cost is cost(¢) =3 .cc D sepip(a)=c AT, €).

3 Assignment Problem for FMLkC

In the («, 8)-fair assignment problem, we are additionally given a set of centers C' C F and
the goal is to find an assignment ¢ : P — C such that ¢ satisfies the fairness constraints and
cost(yp) = maXcec D, e pup(z)=c (2, ¢) is minimized.

We refer to an assignment as a fair assignment if it satisfies the fairness constraints. Also,
we denote the optimal cost of an («, 8)-fair assignment by OPT. In this section, for any
€ > 0, we give a (1 + ¢)-approximation for this problem in f(k,¢,¢) - n®® time for some
computable function f. In particular, we solve a budgeted version of the problem where we
are also given a budget B and the goal is to decide whether there is a fair assignment of cost
at most B.

4:5
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» Lemma 3. Suppose there is an algorithm A that given an instance of budgeted («, 3)-fair
assignment and any € > 0, in T(n, k, £, €) time, either returns a feasible assignment of cost
at most (1 + €)B, or correctly detects that there is no feasible assignment with budget B.
Then for any € > 0, one can obtain a (1 + €)-approximation for («, B)-fair assignment in
(k£)PFOnOM) 1 O (logk) - T'(n, k, £, ¢/3) time>.

Proof. The idea is to first find a range where OPT belongs and then apply A with budget
within this range to find a feasible assignment. Given an instance I of («, §)-fair assignment,
first we use an algorithm (Theorem 8.2, [7]) to compute a fair assignment of the points to
the centers of C' that minimizes the (a, 8)-fair k-median cost. This algorithm runs in time
(k€)PFOnOM  Let D be the computed (a, §)-fair k-median cost returned by the algorithm.
Then D < k-OPT, as the optimal cost of («, §)-fair assignment is at least 1/k fraction of the
optimal (a, §)-fair k-median cost. Also, OPT < D, as optimal («, 3)-fair assignment cost is
at most the optimal (o, §)-fair k-median cost. Hence D/k < OPT < D.

Let ¢ = €¢/3 and m be the maximum ¢ such that (14 €')* < D/k. Also, let M be the
minimum ¢ such that D < (1 + €)% Thus (1 +¢€)™ < OPT < (1 + ¢)M. We run the
algorithm A setting € to be € for budget B = (1 +¢')* where m < i < M, and use the binary
search to find minimum 7 such that it returns a feasible assignment for some budget B. Let
B’ be the budget for which this algorithm returns a feasible assignment. Then B’ < (1 + ¢€')
OPT, as any instance with budget B > OPT is a yes-instance, and for such a B, A returns a
feasible assignment of cost at most (1 + €) B. Hence, the cost of the assignment returned by
A with budget B’ is at most (1 +€¢/)?2 OPT < (1 +¢) OPT. As the algorithm A can be used
at most Oc(log(M —m + 1)) = O.(log(D/(D/k))) = O(log k) times, the whole algorithm
runs in time (k€)°®0n0M 1 O (logk) - T'(n, k,£,¢/3). <

In the following, we design an LP rounding based algorithm for budgeted (a, 8)-fair
assignment with the properties required in the above lemma. Moreover, this algorithm runs
in time kO (kO gO((ke>/e)log(¢/€) pO(1) Hence, we obtain the following theorem.

» Theorem 4. For any ¢ > 0, a (1 + €)-approximation for («, B)-fair assignment can be
obtained in time kO k0 gO(ke>/e)log(¢/€)) pO(1)

Next, we design the algorithm for the budgeted version of («, §)-fair assignment. Recall
that in the budgeted version, we are given an instance I containing ¢ disjoint groups
{P;} of P = {p1,...,pn}, a set of k centers C = {c1,...,cx} and the budget B. Our
algorithm first rounds each distance to a power of (1 4 €). Fix any center ¢; € C. We
partition the points in P into a number of classes based on their distances from ¢;. For all
p € P, let d(p,c;) = (1+€)'e®B where t = [logy . (d(p,c;)/(€?B))]. For each distinct ¢, let
dy = (1 + €)'e2B. We refer to the points p with distance d(p, ¢;) = d; from ¢; as the distance
class t with respect to (w.r.t.) ¢;, which is denoted by Sj;.

» Observation 5. For allp € P,c € C, d(p,c) < d(p,c) < (1+¢) - d(p,c).

Let I’ be the new instance of budgeted (o, 8)-fair assignment with the modified distance
d. Note that d does not necessarily satisfy the triangle inequality. As d is obtained by scaling
d by at most a factor of (1 + €), we have the following observation.

» Observation 6. If there is a feasible assignment for I with budget B, then there is a
feasible assignment for I' with budget (14 €)B. Also, if there is a feasible assignment for I’
with budget (1 + €)B, then there is a feasible assignment for I with budget (1 + €)B.

3 Oc(-) notation hides a factor of O(1/e).
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By the above observation, it is sufficient to consider d instead of d for the purpose of
computing an assignment of cost at most (1 + €)B. Henceforth, by distance we mean d.

Denote by ¢* a feasible assignment for I’ of cost at most (1 + ¢)B (if any). We define
a point p € P to be costly w.r.t. a center c € C if cZ(p, ¢) > €2B. Otherwise, we define the
point to be cheap w.r.t. c¢. Note that the number of costly points that can be assigned to
each center in * is at most (1 + €)/e2 < 2/e2. The next observation follows from the fact
that d; = (1+ €)'’ B.

» Observation 7. For any point p and center ¢ € C' with cZ(p, c) =di, t <0 if pis cheap
w.r.t. ¢, and t > 0 if p is costly w.r.t. c.

Now, as we are shooting for an assignment of cost at most (1 + €)B, we can discard
all the distances cZ(p, ¢) larger than (1 + €)B, i.e., we can assume that such a p will never
be assigned to c. Without loss of generality, we assume that all the distances we have are
bounded by (1 + €)B. Let A be the maximum ¢ such that there are p € P and ¢ € C with
d(p,c) = dy for a costly point p w.r.t. ¢. By our previous assumption, d(p,¢) < (1 + €)B.
Thus A < [log, . ((1+€)B/(e?B))] = O((1/e)log(1/e)). For 1 <i <k, 0 <t < A and
1< g <4, let z;+ 4 be the number of costly points p € P, assigned to ¢; in ¢* such that
d(p,¢;) = dy. Note that each z;;, < 2/€%, as the total number of costly points assigned to

a center is at most 2/¢2. Thus the total number of distinct choices for these variables is
(2/62)k£A — (1/6)0((k2/e) log(l/s)).

» Observation 8. There are (1/¢)O((F/)10801/€) distinct choices for the variables {z; ., :
1<i<k0<t<A1<g</).

As we can probe all such possible choices, we assume that we know the exact values of
these variables in ¢*. Next, we describe a Mixed-Integer Linear Program (MILP) for the
budgeted version of the problem, which is partly motivated by the («a, 8)-fair k-median MILP
[7]. For every point p; and center c¢;, we have a fractional variable z;; denoting the extent
up to which p; is assigned to ¢;. For every center ¢; and group g € {1,...,¢}, we have an
integral variable y4; denoting the “weight” of the points assigned to ¢; from group g. The
constraints of the MILP are described as follows. Constraint 1 ensures that each point is
assigned to the centers up to an extent of 1. Constraint 2 ensures that the weight assigned

from each group g to each center c; is exactly y4;. Constraints 3 and 4 are fairness constraints.

Constraint 5 ensures that the weight of costly points from each class ¢ and group g assigned
to each c¢; is exactly the same as the guessed value z; ¢ 4. Constraint 6 ensures that the total
load assigned to each ¢; is bounded by (1 4 €)B. The first and the second expressions on the
left hand side of this constraint are corresponding to costly and cheap points, respectively.

1<i<k
Z Tij = Ygi Vi e k], Vge [, (2)
je[n]:ijPg
Ygi = By Z Zij Vi € k], Vg e[l (3)
JEln]
Ygi < O Z Zij Vielk], Vge [l (4)
j€[n]
> mi=zisg Vie k], vt €{0,...,A}, Yge (] (5)
pjEPGNS;y
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14
> dizisg+ Y di Y wi; < (1+€)B Vi [k] (6)
g=10<t<A t<0  p;€Si
zi; >0 Vi€ [n], Vie[k], (7)
Ygi € ZZO Vi € [k}], Vg S [é] (8)

Let us denote the above MILP by Fair-LP. A solution to Fair-LP is denoted by (z,y).
We note that the assignment ¢* induces a feasible solution to Fair-LP. We use the following
popular and celebrated result to solve this MILP.

» Proposition 9 ([30, 25, 20]). An MILP with K integral variables and encoding size L, can
be solved in time KO LOM),

As Fair-LP has k¢ integral variables {y,;} and polynomial encoding size, it can be solved
in (k£)°FOn0M) time. If this algorithm outputs that there is no feasible solution to Fair-LP,
we conclude that I is a no-instance. Otherwise, let (z*,y*) denote the feasible solution
returned by this algorithm. Note that although the y* values are integral, z* values can very
well be fractional. Next, we show how to round these variables to obtain an integral solution
to Fair-LP such that the load of every center is increased by an additive amount of O(e/B)
compared to its load in (z*,y*).

Fix any group g. First, we show how to round the variables corresponding to the points
of P;. For this purpose, we construct a network Gy = (Vy, En) with source S and sink T
(see Figure 1). For each point p; € P,, there is a node v; in V. For each distance class ¢ of
every center ¢;, there is a node w;;. Also, for each center ¢;, there is a node w;. For each
v; € Vi, there is an arc (S, v;) of capacity 1. For each p; € P, and center ¢;, there is an arc
(vj,w;) of capacity 1 where ¢ is the index such that p; € Sy, i.e, cZ(pj, ¢;) = dy. For center ¢;
and distance class ¢, let A}, = >_p;ep,nsy Tij» 1€, the weight assigned from Py N Si to ¢;.
For each node w;, there is an arc (w;t, u;) of capacity [AY,]. Lastly, for each center ¢;, there
is an arc (u;, T') of capacity y,.

Note that for each center ¢;, the number of non-empty distance classes is at most the
number of points n. Hence, the size of Vi is a polynomial in n. Also, note that the solution
(x*,y*) projected on the points of P, induces a feasible fractional solution for the problem of
computing a flow of value |Py| in Gy.

» Observation 10. The network G has a fractional flow of value |Py).

As all the capacities of the arcs are integral, by integrality of flow, there exists an integral
feasible flow in G of value |Py|. We compute such a flow f by using any polynomial time
flow computation algorithm. This flow solution f naturally gives us an integral assignment
@y of the points in P, to the centers in C.

» Observation 11. The number of points assigned to each center c; € C via ¢y is yg,;.

Proof. Due to the capacity constraints of the arcs {(u;,T)}, the number of points assigned
to ¢; must be at most y;,;. Also, by definition, Zle Yy = | Pl As f has value [P, the
capacity of the arcs {(u;, T)} must be saturated, which completes the proof. <

Next, we analyze the load of P, assigned to each center via ¢j.

» Lemma 12. For each center ¢; € C, 32, cp . (p))=c, d(pj,ci) < Yo diAy, 4+ O(e)B.
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Figure 1 Figure showing the network G n constructed using the solution (z*,y").

Proof. Consider the arcs {(w;,u;)}. The maximum flow corresponding to these arcs is
bounded by the sum of the capacities Y_,[AY,]. Note that for every 0 <t < A, X, = z; ¢ g,
which is an integer. Now,

N odi=> (1+€'B<eB((1+€)/e) =0(e)B (9)

t<0 <0

Hence,
Z APV Z di(\) +1) < Z deNj, + Z di=(9) Z diNy, + O(e) B
t<0 t<0 t<0 t<0 t<0

It follows that,

Z d(pj,ci) < Z di[ My ] = Z di N, + Z de [N

Pi€Pyies (pj)=ci 120 t<0
=D d XN, + D AN, +O0(€)B =Y di\, + O(e) B <
t>0 t<0 t

We repeat the above rounding process for all groups g. We combine the assignment
functions ¢ corresponding to the ¢ disjoint groups to obtain a single assignment for the
points in P. For simplicity, we also refer to this combined assignment as ¢¢. By Observation
11, ¢y is feasible, as for each center ¢; and each group g, the weight of the points in P,
assigned to ¢; is exactly yg; as in (z*,y*). Next, we analyze the total load of each center.

~

» Lemma 13. For each center ¢; € C, > d(pj,ci) < (14 O(el))B

pjps(pj)=ci
Proof.

¢
g=

pipr(pj)=c; Ipj€Pyipyr(ps)=c;

- i (Zdt)‘zgt + O(E)B) (By Lemma 12)

g=1

~

(D dx, + Y dng) +0(en)B

g=1 t>0 t<0
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Xef (M diziag+> i Y @) +0()B

g=1 t>0 t<0 pjEPGNS;¢
¢
= <szt2i’t’g +Zdt Z l‘:}) +O(E€)B
g=1t>0 t<0 PjESit
<(1+4+€)B+0(el)B (By Constraint 6 of Fair-LP)
=(14+0(e))B <

By scaling € down by a factor of Q(¢), we obtain the desired approximate bound. Thus,
by Observation 8, it follows that the number of distinct possible choices of the z;; , val-
ues is (E/e)owfﬁm log(t/€)) | For each such choice, solving the MILP and rounding takes
(kﬁ)o(u)no(l) time. Thus, the algorithm for solving the budgeted version runs in time
kO (k) 20((kt?/e) log?(/€) nO(1) - The following lemma completes the proof of Theorem 4.

» Lemma 14. The above MILP based algorithm for budgeted («, B)-fair assignment, in
time kO(kO 20((ke>/e) logz(z/e))no(l), either returns a feasible assignment of budget at most

(14 €)B, or correctly detects that there is no feasible assignment of budget B.

4  Approximation Algorithms for FMLkC

In this section, we describe the FPT approximation algorithms for the FMLkC problem,
both in the general metric case and in the Euclidean case. In the general metric case, we
aim for a (3 + €)-approximation, and in the Euclidean case for a (1 + ¢€) approximation, for a
given 0 < € < 1. Essentially, we obtain these algorithms as a combination of our assignment
algorithm presented before, and known generic results for constrained clustering problems
that follow the framework of [17]. Our general metric algorithm employs the result of [23],
and in the Euclidean case we use the result of [10]. Both of these provide algorithms that
in FPT time produce a reasonably short list of candidate sets of k centers, such that for
each possible clustering of the input points one of the sets in the list provides the desired
approximation, with good probability. Note that the results mentioned above are stated in
fact for the k-median objective, and not the minimum-load clustering that we study in this
work. However, by tweaking the error guarantees in the respective proofs we can show that
these results hold in the minimum-load setting as well. Next, we present these in detail.

We start with the Euclidean case and show the following analogue of Theorem 1 in [10]
for the minimum-load objective.

» Theorem 15. Given a set of n points P C R%, parameters k and 0 < € < 1, there is a
randomized algorithm that in time 20(k/<° D) pq outputs a list L of 20(k/<°D) | _sized sets of
centers such that for any partition P* = {Pf, ..., P}} of P the following event occurs with
probability at least 1/2: there is a set C in L such that

costa(P*) < (1+¢) m?k}]( cost(P)).
1€

Proof. The algorithm proceeds exactly as Algorithm 5.1 in [10]. For the analysis, we observe
that Bhattacharya et al. prove the following statement (follows immediately from invariant
P(4) in [10]): With constant probability, there is a set of centers C' = {c1,...,¢;} in the
output of the algorithm and the permutation i1, ..., i; of the clusters in P* such that for
each j € [k],

25

k
€ €
(P*) < =) . * — . *).
coste, (P) < (1+ 2) cost(P;) + o% ;:1 cost(P})
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From here it easily follows that the set of centers C achieves (1 4 €)-approximation of the
cost of P* with respect to the minimum-load objective:

costo(P*) < max costc, (P;;) < (1+ E) -max cost(P}" ) + — cost(P;") < (1+4€)-max cost(F;"),

€K 4 27 e[kl 72k €lk] 4
P

since Z =1 cost(P}") < kmax ey cost(F}). <

In the general metric case, a similar result can be shown, however with the approximation
factor of (34 ¢€). Specifically, we show an analogue of Theorem 5 in [23] for the minimum-load
objective. Similarly to Theorem 15, the algorithm and the analysis is identical to what is
presented in [23], up to a different view on the cost upper bound.

» Theorem 16. Given a set of n points P in a metric space, parameters k and 0 < e < 1,

there is a randomized algorithm that in time (k/€)°®)n outputs a list L of (k/€)®®) k-sized
sets of centers such that for any partition P* = {Pf, ..., P} of P the following event occurs
with probability at least 1/2: there is a set C' in L such that

costc(P*) < (3+¢) ms[ig]( cost(P).
i€

Proof. The algorithm proceeds exactly as Algorithm 1 in [23]. For the analysis, we observe
that Goyal et al. prove the following statement (encapsulated by Property-I in [23]): With

constant probability, there is a set of centers C' = {¢y, ..., ¢k} in the output of the algorithm
and the permutation 41, ..., i of the clusters in P* such that for each j € [k],
coste, () < 3+ ;) cost(F;") Zcost (P).

Now, analogously to the proof of Theorem 15, it follows that the set of centers C' achieves
(3 + €)-approximation of the cost of P* with respect to the minimum-load objective:
k
costc(P") < maxcoste; (P;;) < (3+ 5 ) max cost (P, ) + cost(P;") < (3+¢€)-max cost(F;"),

JEIK] 27 el 2k — €] “

since Z _y cost(P}") < kmax;ep cost(F). <

Now, Theorem 15 and Theorem 16 imply that for the Minimum-Load k-Clustering

problem with any given set of constraints on the desired clustering, there exists a (1 + ¢€)-

approximation algorithm in the Euclidean case, and a (3 + €)-approximation algorithm in
the general metric case. The running time is 20(k/ 6O(l))(nd + T) for both algorithms, where
T is the running time of an algorithm solving the respective assignment problem, either
exact or (1 + €)-approximate. In particular, combining the theorems with our approximation
algorithm for (o, 8)-fair assignment (Theorem 4), for the FMLkC problem we obtain a
(1 + €)-approximation in R? and a (3 + €)-approximation in general metric in FPT time when
parameterized by the number of clusters k£ and the number of protected groups /.

» Theorem 17. For any 0 < € < 1, there exists a randomized (1+ €)-approxzimation algorithm
for (av, B)-Fair Minimum-Load k-Clustering in R? with running time 20(ke* /20 g The
same holds in general metric with the approzimation factor of (3 + €), where the running
time becomes 20(-€*/€)pO)
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Proof. First, we deal with the Euclidean case. Fix an optimal fair min-load k-clustering
P*={Pf, ..., Py} of P. Run the algorithm of Theorem 15 on P with error parameter €y
to obtain the list L of candidate sets of centers, here ¢ is such that (1 +€g)? < (1 +¢€). In
the following, assume that the event described in the statement of Theorem 15 occurs for
the clustering P*, by constant number of repetitions the probability of this can be lifted
arbitrarily close to one. That is, there exists a set of k centers C’ in L such that

coster (P*) < (1 + o) m?k)]( cost(P;). (10)
1€

Now, for each set of centers C' in L, run the (1 + €)-approximate assignment algorithm given
by Theorem 4 on (P,C), and choose the set of centers C” that gives the best assignment
cost among the considered sets, denote the computed assignment from P to C” by ¢. In
what follows, we show that the set of centers C” and the assignment ¢ : P — C” provide
(1 + €)-approximate solution to the given FMLKC instance. Denote by 1 the assignment
from P to C’ that the algorithm outputs,

cost(p) < cost (1)) < (14 eg)coster (P*) < (1 +¢€)? mrﬁ:}( cost(P) < (1+e¢) m?lg]( cost(P;),
1€ 1€

where the first inequality is by the choice of C” and ¢, the second is by Theorem 4, and the
third inequality is by (10).

Finally, we show that the running time bound holds. Invoking Theorem 15 takes time
2O(k/€t?(l))nd, and produces a list of 90(k/¢”) sets of centers. On each of them, running
the algorithm of Theorem 4 takes time kO ¢O((k€*/ca)log(¢/0) O g Since ey = O(e), the
total running time can be bounded as

90 (k/e0M) (ndJr 1O (k) pO((ke? fe) 1og(z/e))n0(1)d) — 90(ke?/°M) 0(1) 4

The general metric case is identical, but to obtain the list of candidate sets of centers we
use Theorem 16 instead of Theorem 15. The final cost bound changes to

cost(p) < cost(y) < (1+ €o)coste (P*) < (3+¢€0) - (14 €0) m?lj]( cost(P) < (3+¢) m?k}]( cost(F;),
i€ S

where € is chosen so that (3 +¢p) - (1 4+ ¢€) < (3 +¢). <
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