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Abstract
In proton therapy, a constant relative biological effectiveness (RBE) factor of 1.1 is applied although
theRBEhas been shown to depend on factors including the Linear Energy Transfer (LET). The
biological effectiveness of radiotherapy has also been shown to depend on the level of oxygenation,
quantified by the oxygen enhancement ratio (OER). To estimate the biological effectiveness across
different levels of oxygenation the RBE-OER-weighted dose (ROWD) can be used. To investigate the
consistency between different approaches to estimate ROWD,we implemented and comparedOER
models in aMonteCarlo (MC) simulation tool. FiveOERmodels were explored:Wenzl andWilkens
2011 (WEN), Tinganelli et al 2015 (TIN), Strigari et al 2018 (STR), Dahle et al 2020 (DAH) andMein
et al 2021 (MEI). OER calculationswere combinedwith a protonRBEmodel and themicrodosimetric
kineticmodel for ROWDcalculations. ROWDandOERwere studied for awater phantom scenario
and a head and neck cancer case using hypoxia PETdata for theOER calculation. TheOER and
ROWDestimates from theWEN,MEI andDAH showed good agreementwhile STR andTIN gave
higherOER values and lower ROWD.TheWEN, STR andDAH showed some degree ofOER-LET
dependencywhile this was negligible for theMEI andTINmodels. The ROWD for all implemented
models is reduced in hypoxic regions with anOERof 1.0–2.1 in the target volume.While some
variations between themodels were observed, allmodels display a large difference in the estimated
dose fromhypoxic and normoxic regions. This shows the potential to increase the dose or LET in
hypoxic regions or reduce the dose to normoxic regionswhich again could lead to normal tissue
sparing.With reliable hypoxia imaging, RBE-OERweighting could become a useful tool for proton
therapy plan optimization.

1. Introduction

Tumor hypoxia (low oxygenation) is associated with
radioresistance, potentially leading to treatment fail-
ure and poor disease survival [1, 2]. The increased
radioresistance of hypoxic tumors is estimated by
means of the oxygen enhancement ratio (OER),
defined as the ratio of radiation doses in hypoxic
(Dhyp) and fully oxygenated conditions (Dnorm) that
result in the same cell surviving fraction. The effects of
hypoxia on photon radiation have been known for a
long time, where the OER commonly is between 2 and

3 [3]. High linear energy transfer (LET) radiation,
characteristic of heavy-ion radiotherapy, is little
affected by hypoxia, resulting in an OER close to 1 [4].
With proton therapy, as a low to mid LET radiation
type, the effect of hypoxia is intermediate, with typical
OER values around 1.5–2.5 depending on the
energy [2].

Proton and heavy-ion radiotherapy are more
efficient than photon radiotherapy because they
induce more complex, clustered DNA damage that is
more difficult to repair. Radiation efficiency relative to
photons is quantified by the relative biological
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effectiveness (RBE) [5, 6]. The proton-RBE may be
used to estimate the biological dose (Dbio) of a proton
therapy plan. Dbio accounts for the different biological
effect of protons compared to conventional photon
radiation and is found by weighting the physical dose
(Dphys) with the RBE, i.e., D RBE Dbio phys= · . Many
RBE models have been proposed up to date [7], but in
daily clinical practice the consensus is to adopt a 1.1
constant RBE. However, several studies have shown
that the RBE is not constant and that it depends on
factors such as the deposited physical dose, the
radiation quality, and the irradiated tissue type [6–11].
Proton therapy plansmay benefit fromusing a variable
RBE and from accounting for theOER [11, 12].

Proton therapy plans can be adapted using the
microdosimetric kinetic model (MKM), a model that
can predict the RBE for heavy ions [10, 13, 14], and
others are based on phenomenological models [7, 15].
These RBE models rely on experimental data such as
the radiosensitivity parameters a and b from the
linear quadratic (LQ) model. And with both, it is
possible to perform a hypoxia adaptation to estimate
and study the RBE-OER weighted dose (ROWD).
Severalmodels to adapt the RBE for hypoxia have been
published for proton therapy [16–24], but how these
models agree or differ in their predictions has not yet
been studied. Therefore, before a potential hypoxia
adaptation of clinical proton therapy plans, there is a
need to investigate and compare the performance of
the differentmodels.

In this study, we aimed to implement and analyze
different hypoxia adapting RBE models in order to
compare the predicted OER and the resulting ROWD
for proton therapy. Five published models that weight
the RBE using the OER were implemented in the
FLUKA Monte Carlo (MC) simulation framework.
For each model, we simulated proton therapy plans
both on a virtual water phantom and on a head and
neck cancer (HNC) patient case where hypoxia was
quantified by positron emission tomography (PET)
imaging using a hypoxia tracer.

2.Materials andmethods

2.1. Calculating the RBE for proton therapy
With the formalism presented by the LQ model [25],
the RBE can be expressed as
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showing that the RBE depends on the proton physical
dose (Dp) and the radiosensitivity parameters of the
tissue, a, b , xa and xb [26, 27]. The a and b
corresponds to the radiation sensitivity for protons
and xa and xb to the sensitivity for photons, the
reference radiation. Note that some of these models
define the extreme values, achieving the parameters

RBEmax and RBEmin and rewrite equation (1) to
calculate the RBE [7].

2.1.1. Rørvik RBEmodel (ROR)
ROR developed a proton-RBE model by defining the
extreme RBE values, RBEmax and RBEmin, as the high
and low dose limits. Resulting in RBE xmax a a= /

and RBE xmin b b= / [15]. When substituting these
into equation (1) it becomes
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Furthermore, ROR includes a biological weighting
function (BWF) based on phenomenological data
from in vitro cell experiments to include a dependency
in RBEmax on the full dose weighted LET spectrum.
Finally, it assumes a constant xb b= that makes
RBE 1min = [15]. Using these RBEmax and RBEmin in
equation (2) the ROR-RBE is obtained.

2.1.2.Microdosimetric kineticmodel (MKM)
The MKM can predict the RBE of heavy-ion (high-
LET) radiation [10, 13, 28, 29]. It defines the
number of lethal lesions produced in the cell
nucleus averaged over a cell population to describe
the surviving fraction S after cell irradiation as

S z D Dln D phys phys0 1
2a b b= - + -*( ) ( ) [14, 30, 31].

Making an analogy with LQ model, the MKM defines
its radiosensitivity parameters zMKM D0 1a a b= + *( )
and .MKMb b= Where 0a and b are often taken as the
reference photon xa and xb parameters [31–33] and
z D1* is the saturation-corrected dose-mean specific
energy from a single event [30, 33]. Substituting MKMa
and MKMb for a and b in equation (1) the MKM-RBE
is estimated.

2.2.OERmodels andRBE adaptation
Hypoxia can be quantified by the partial oxygen
pressure (pO2), expressed in% or inmmHg. Different
approaches to calculate the OER from pO2 have been
proposed [16–24]. Generally, these models use exper-
imental in vitro data from different cell lines under
normoxic and hypoxic conditions to fit a reverse-
sigmoid shaped curve describing the OER and pO2

relationship through the Alper-Howard-Flanders
formalism [3]. In general, the experimental data
defined their normoxic data to correspond to 160
mmHg or 21% oxygenation. From how the fitted
experimental data is used on the modeling and
estimation of the OER, we see that the models follow
two differentmethods.

The first methods is used by the adaptations
proposed by Mein et al (MEI) [19] and Tinganelli et al
(TIN) [18], who use published and in-house phenom-
enological data, respectively, to parameterize the OER

2

Biomed. Phys. Eng. Express 8 (2022) 065026 GGarrido-Hernandez et al



for photons (OERph) as a function of the pO2 and then
correct for high LET-particles using a radiation quality
parameter, L. For these models, the resulting OER
follows

OER L pO
a OER pO L

a L
, 3
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2

2=
+

+

g

g
( )

· ( )
( )

where a and g are parameters obtained from the
numerical fit to the experimental data and OERph is
described as
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2

2
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where the m and K are constants obtained via a
numericalfit to the experimental data [34, 35].

The second method is used on the OERmodels by
Wenzl and Wilkens (WEN) [16], Dahle et al (DAH)
[20] and Strigari et al (STR) [22], and it consists of
adapting the LQ radiosensitivity parameters, La( )
and Lb ( ), to account for hypoxia. The modeled

L pO, 2a( ) and L pO, 2b ( ) are then used to calculate
the OER using equation (5) [16, 36], obtained after
expanding iso-effective Dhyp and Dnorm, and where
pnorm is the partial oxygen pressure in normoxic
conditions and S is the surviving fraction.

The calculated OER, regardless of whether is directly
modeled (first method) or calculated from the hypoxia
adapted LQ parameters (second method), is then used
together with the RBE to define the ROWD-factor,
described in this study as RO RBE OER.= / This
makes the ROWD-factor an RBE relative to photon
radiation at normoxic conditions. The ROWD is then
calculated as ROWD D ROphys= · where Dphys is the
total physical dose.

Adaptations that use the modeled OER using
methods resulting in heavy, time-consuming numer-
ical calculations [21, 23] and earlier versions of the
studiedOERmodels [17]where left out in this work. A
summary of all the studied models can be found in
table 1. The table shows that some models account for
the oxygenation level by measuring the pO2 in % and
other models by using mmHg. However, the conver-
sion fromone unit to the other is trivial [37].

To account for oxygenation effects, OERmodels are
used in combination with an RBE model. Particularly,
the studied OER models could have been used together
with a low/intermediate-LET RBE model or with an
RBEmodel that considers high-LET radiation aswell. At
the time of coupling the OER models with an RBE
model we followed the approach detailed in themodels’
original publications. Consequently, in the present

work, both WEN and DAH were used to adapt for
hypoxia together with the variable RBEmodel by Rørvik
et al (ROR) [15] and a constant RBE of 1.1 (RBE1.1)
(low/intermediate-LET RBE). The TIN, MEI, and STR
models were combined with the RBE in the MKM
framework (high-LETRBE).

2.2.1.Wenzl andWilkensOERmodel (WEN)
WEN modeled the LQ parameters accounting for the
LET and the pO2 measured in mmHg, before
adjusting the OER [16]. In this framework, the whole
LET dependence is carried by a and b is LET
independent. Following the Alper-Howard-Flanders
relation [3], the Wenzl and Wilkens a and b
parametrization follows:
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where K 3.0= mmHg, LETd is the dose-averaged
linear energy transfer, a 0.221 = Gy−1, a 0.00242 =
μmGy−1keV−1, a 0.053 = Gy−1, a 0.00314 =
μmGy−1keV−1, b 0.41 = Gy−1 and b 0.0152 = Gy−1

[16]. The WEN model used results from OER
experiments for several cell lines (V79, HSG, HeLa,
p388, FSa-II, R1, T1, L2, EMT6, SCC VII, NFSa,
RAT1, and 9L), to find 10% cell survival for multiple
radiation types (protons, deuterons, He-, C-, Ne- and
Ar-ions) under normoxic and hypoxic conditions.

2.2.2. DahleOERmodel (DAH)
The model by Dahle et al is based on the WENmodel.
The particularity of this model is that it only uses
experimental proton data from several cell lines (V79,
HSG, T1, HeLa, p388, and H4) to parametrize the LQ-
parameters following equations (6) and (7), resulting
in a 0.11 = Gy−1, a 0.0012 = μmGy−1keV−1,
a 0.013 = Gy−1, a 0.0014 = μmGy−1keV−1,
b 0.7651 = Gy−1 and b 0.2372 = Gy−1 [20].

2.2.3.MeinOERmodel (MEI)
MEI modeled a parameter called the hypoxia reduc-
tion factor (HRF) that acts as the OER to account
for hypoxia [19]. The HRF depends on the pO2 in %
and a dimensionless particle and energy dependent
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parameter, the radiation quality energy, RQE =
Z .eff ion

2b( )/ Zeff is the effective charge of the ionizing
particle and v c,ionb = / where v is the velocity of the
particle and c the speed of light.

MEI first takes the photon OERmodelling [34, 35]
to introduce the photonHRF as:

HRF pO
pO m K

pO K
, 8ph 2

2

2

=
+
+

( ) · ( )

where m 2.94= and K 0.129%.=
Data from OER experiments for protons, alpha

particles and carbon ions is used to perform a second
parametrization to include the RQE dependence.
HRF ,ion is then calculated as

HRF RQE pO
a HRF pO RQE

a RQE
,
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ion
ph

2
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+

+

g

g
( )
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( )

where a 2.988 106= · and 2.169g = [19]. The
HRFion from MEI is used as the OER, previously
defined in equation (3).

MEI is based on in vitro experimental data from
the V79 cell line irradiated with proton and higher-
LET radiation data from heavier ions, and it was used
to adapt the MKM, an RBE model for high-LET
radiation.

2.2.4. Tinganelli OERmodel (TIN)
Similar to MEI, TIN parametrizes the OER using
a two-step process to include the pO2 in % and
the LETd [18], enabling adaptation also to heavy-ion
RBE models, i.e., TIN can also be used to adapt
theMKM.

First, the LETd dependence is introduced in anoxic
conditions, i.e., pO 0%,2 = and theOER is given by

OER LET
LET M a

a LET
, 0% , 10d

d

d

=
+

+

g

g( )
·

( )

where M 2.7= , a 8.27 105= · (keV/μm)γ and
3.0.g = This fit was performed on V79 cell line data

from an extensive dataset measured at NIRS and then
adapted to the Chinese hamster ovary (CHO) cell line
data set that was subject of their study [18].

In a second step, the pO2 dependence is included
resulting in

OER LET pO
b m pO

b pO
, , 11d 2

2

2

=
+

+
( ) · ( )

where b 0.25%= according to an x-ray data para-
metrization [38] and m OER LET , 0%d= ( ) as
described in equation (10) [19].

2.2.5. Strigari OERmodel (STR)
STR is intended to use with theMKM, and it considers
the specificity of different ions, LET and tissue type

Table 1. Summary of oxygen enhanced ratio (OER)models for particle therapy.MKM=microdosimetric kineticmodel, HRF=hypoxia
reduction factor, LET=linear energy transfer, pO2=partial oxygen pressure.

Fitted datac Modeled

parametersd Dependenciese
MKM

adapting

Cell lines Particles

Survival

fraction

Wenzl and HSG protons 0.1 hypa LETd NO

Wilkens

(WEN) [16]
V79CHO

othersa
deuteronsHe-ions

C-ionsNe-ions
hypb pO2 [mmHg]

Ar-ions

Tinganelli et al V79 x-rays 0.1 OERph LETd YES

(TIN) [18] CHO C-ions OERion pO2 [%]
N-ions

O-ions

Si-ions

Dahle et al HSG protons 0.1 hypa LETd NO

(DAH) [20] V79 hypb pO2 [mmHg]

othersb

Mein et al V79 protons 0.1 HRFph (Zeff ionb/ )2 YES

(MEI) [19] He-ions HRFion pO2 [%]
C-ions

Strigari et al HSG He-ions 0.1 MKM hypa - z D1̄ z Dn1̄ YES

(STR) [22] V79 C-ions MKM hypb - pO2 [mmHg]

CHO Ne-ions

a others: HeLa, p388, FSa-II, R1, T1, L2, EMT6, SCCVII, NFSa, RAT1, and 9L.
b others: T1,HeLa, p388, andH4.
c Fitted data displays details on the irradiated cell lines, the type of radiation used to acquire the experimental data and the survival fraction of

the irradiated cells.
d Modeled parameters are obtained from the experimental data and are specific for eachmodel.
e Dependencies of the models are listed, as these may affect the OER adaptation ( v cionb = / ). Note that some of them imply a tissue type,

particle type and/or particle energy dependence.
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[22]. STR models the a and b parameters from the
MKMand defining pO2a( ) and pO2b ( ) as

pO
pO K

pO K
12max min
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a a

=
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( ) · · ( )
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. 13
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The mina and minb correspond to the LQ radio-
sensitivity parameters under extreme hypoxic condi-
tions, with pO2 close to 0 mmHg while maxa and maxb
correspond to normoxic conditions. These parameters
are evaluated accounting for the non-Poisson lethal
event distributions for high-LET particles by multi-
plying MKMa with a correction factor [13, 31], result-
ing in

exp z

z

1
, 14MKM Dn

Dn
MKM

1

1

a
a

a=
- -( ¯ )

¯
· ( )

where z Dn1̄ is the dose-averaged specific energy in the
nucleus and z ,MKM D

0 0
1a a b= + ¯ where z D1̄ is the

dose-averaged specific energy in the domain and 0a
and 0b the LQ radiosensitivity parameters used in the
MKM. These parameters were fitted to experimental
in vitro data for the HSG, V79 and CHO cell lines
under normoxic and extreme hypoxic conditions to
obtain the max

0a and min
0a parameters needed to solve

equation (12).
To account for non-Poisson lethal event distribu-

tions for high-LET particles for MKMb parameter they
multiplied it by MKM

2a a( )/ resulting in

, 15
MKM

MKM

2

⎜ ⎟
⎛
⎝

⎞
⎠

b
a

a
b= · ( )

where a is obtained from equation (14) and
.MKM

0b b= From equation (15) they obtain the max
0b

and min
0b needed to solve equation (13). Note that

equation (15) the same scaling between LQ-para-
meters in theMKM.

Details on the dose-averaged specific energies z Dn1̄

and z D1̄ are beyond the scope of this study, these can be
found elsewhere [39, 40]. Their calculationwas carried
out as described by Kase et al 2008 [31], and for their
implementation in FLUKA we followed the approach
fromMagro et al 2017 [33].

2.3.MonteCarlo implementation
We implemented thesefiveOERmodels in the FLUKA
MC tool [41] following three steps as indicated in
figure 1:

1. Input data is created and organized into input
tables that are read by FLUKA. These include the
pO2-position table needed for hypoxia adaptations
and the radiation quality parameter tables required
for eachmodel. Single-track dose-averaged specific
energies or the RQE were calculated and given to
FLUKA as z Dn1̄ -energy, z D1̄ -energy and RQE-
energy tables. With an internal subroutine, FLUKA
uses the proton energy recorded at each step of the
Monte Carlo simulation to interpolate and use the
corresponding radiation quality parameter on the
corresponding voxel.

2. Based on the input data and the corresponding
radiotherapy plan input file, FLUKA calculates the
model parameters with a dedicated subroutine for
each model. Depending on the model, FLUKA will
calculate and score the OER(L, pO2). Note that for
WEN, DAH and STR, the OER(L, pO2) is scored
after estimating the L pO, 2a( ) and L pO, 2b ( )
parameters and using them into equation (5).

3. FLUKA output is studied with in-house Python
scripts. The calculated and scored OER(L, pO2) is
used together with the scored physical dose and the
RBE specific a and b parameters to estimate the
ROWD, create OER-maps, dose-volume histo-
grams (DVHs) and asses the effects of hypoxia on
the original proton plan.

Figure 1. Scheme of the general implementation structure in the FLUKAMonteCarlo tool for the studied relative biologic
effectiveness (RBE)- oxygen enhancement ratio (OER) adaptedmodels indicating the threemain steps.
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2.4.Model simulations on a virtual water phantom
and in a patient case
To study and evaluate the five OER models, MC
simulations were performed using the in-house
FLUKA based system for treatment plan recalculation
[42] with standard FLUKA physics settings (PRECI-
SIOn defaults, a delta-ray threshold of 10 keV and a
logarithmicwidth of dp dx/ momentum loss tabulated
interval of 1.03, as recommended for particle therapy)
and activating the modified RQMD (Relativistic
Quantum Molecular Dynamics) for nucleus-nucleus
interactions above 125 MeV per nucleon. Detailed
explanations of the FLUKA recalculation tool are
found in [20, 42]. Results on the LETd, Dphys, Dphysa
and Dphysb were scored using the FLUKA subrou-
tine fluscw (FLUence ScoringWeight) and, the number
of primaries simulated was chosen to achieve a voxel
mean statistical uncertainty below 2% and a voxel
maximum statistical uncertainty below 3% in the
target.

To verify the model implementation in FLUKA
and evaluate the OER, a first set of MC simulations
recalculated a proton field irradiating a water phan-
tom. The proton field implemented in FLUKA was
optimized in an analytical TPS to deliver, in a virtual
water phantom, a homogeneous Dbio of 2.0 Gy(RBE)
in a 4×4×4 cm3 volume that ranges from 8 cm to
12 cm depth in water using spread-out Bragg (SOBP)
peaks. During the optimization process, the TPS used
the constant RBE1.1 for Dbio calculations. We first set a
homogeneous pO2 value for thewhole water phantom
and changed it in repeated simulations. The oxygena-
tion (pO2) levels ranged from fully hypoxic
(pO 0.00752 = mmHg or pO 0.001%2 = ) to fully
normoxic (pO 160.02 = mmHg or pO 21.13%2 = )
to score the corresponding OER(L, pO2) for different
oxygenation levels. The results from these simulations
were compared to the expected theoretical results
from the implementedOERmodels.

Secondly, five 0.5 cm wide hypoxic layers were
defined inside the virtual water phantom, perpend-
icular to the proton field incidence direction. The
central layer corresponded to pO 2.52 = mmHg
(0.33%), the intermediate layer to pO 10.02 = mmHg
(1.32%) and the outer layer to pO 20.02 = mmHg
(2.63%). The rest of the water phantom was set to
pO 160.02 = mmHg (21.13%). These simulations
enabled to mimic the clinical case in which the most
severe hypoxia is found in the center of the target.

Finally, all implemented models were used to
simulate a hypoxia-adapted proton therapy plan for a
HNC case. Hypoxia imaging of the patient using
[18F]-EF5 PET enabled quantification of oxygenation
levels of the target volumes. The conversion from PET
uptake to pO2 values was calculated as previously
published [20] where a threshold on the PET uptake
data is implemented to keep pO2 values from being

higher than 60 mmHg, this pO2 value is generally
taken as normoxic in the clinic [37, 43].

Since all studied OER models used data from the
V79 cell line, all simulations were based on published
data from the V79 cell line with normoxic LQ
parameters of 0.147xa = Gy−1 and 0.02xb = Gy−2

[21]. This was done to account for possible uncertainty
effects in the results when simulating on a cell line not
used when fitting the OER model parameters, and to
minimize model differences caused by uncertainties
arising from the use of different cell line data for
differentmodels.

2.5. Treatment plan
Treatment plans for both the virtual water phantom
and patient case were created in the Eclipse (Varian
Medical Systems, Palo Alto, CA, USA) treatment
planning system (TPS), without accounting for
hypoxia andwere optimized for a constant RBEof 1.1.

For the HNC case, three proton fields were used to
target the planning target volume (PTV). None of the
three fields used a range shifter and were optimized
with Eclipse TPS multifield optimization function to
deliver a homogeneous DRBE1.1 of 70 Gy(RBE) in 35
fractions to the PTV.

2.6.Model overview
Table 1 shows properties of the implemented OER
models. Model differences arise from the mathema-
tical modeling dependencies, the unit used for the
pO ,2 the parameter used for radiation quality and the
conditions under which the phenomenological data
used by the OER models was obtained, i.e., the
radiation type, the irradiated tissue type and the
biological effect achieved, being this a survival fraction
of 0.1 for all models. Regarding radiation type, WEN,
TIN, and MEI were fit using data points from low and
high LET radiation, DAH was fit using proton
radiation data points, i.e., low LET, and STR was fit by
only using data fromhigh-LET radiation.

3. Results

3.1.OER study
All models show a clear increase in OER with
decreasing pO2 (figure 2). WEN, DAH and MEI agree
well for clinically relevant pO2 values on the studied
patient case (∼2.5 mmHg and above). For the same
pO2 values themaximumOER ranges between 1.4 and
2.1 for all models and, as expected, drops towards 1.0
as the pO2 increases. The shape of the curve is different
for STR, where the resultingOERdiverges for low pO2

values. In general, TIN and STR give higher OER than
the other models, but while STR differs more at low
pO ,2 the results are more similar to WEN, DAH and
MEI at pO2 above 8–9mmHg than for TIN.

Figure 2 also shows higher OER with lower LET
for all implemented OER models except TIN, that
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exhibits no changes for the shown LET values of 1 keV
μm−1 and 11 k eV μm−1. However, WEN, DAH and
STRhave a stronger LET dependence thanMEI.

How OER estimations from FLUKA fit to the
theoretical results is shown infigure S1.

3.2.Oxygenation effect on the biological dose
The resulting ROWD from the different models for
the water phantom simulations can be seen in figure 3.
All hypoxia adapted RBEmodels show a dip in ROWD
in the hypoxic layers placed between 8 cm and 12 cm
depth. The dip in the 2.5mmHg layer corresponds to a
reduction in dose between 25% and 40% when
comparing all ROWD results to the dose from
normoxic RBE models (D ,bio RBE, 1.1 D ,bio ROR, and
Dbio MKM, ).

In the normoxic region (pO 1602 = mmHg) all
ROWDs approximated the Dbio estimated by the
corresponding RBE model. In the first region with
intermediate hypoxia (pO 202 = mmHg) the lowest
ROWD is predicted by TIN and the highest by WEN,
DAH and MEI, which estimate the highest ROWDs at

all hypoxic layers. In the second intermediate hypoxic
region (pO 102 = mmHg) the ROWDs from STR and
TIN cross, with STR being the model with the lowest
results. In themost hypoxic layer (pO 2.52 = mmHg),
the lowest ROWD is still estimated by STR. The
ROWDs from the WEN and DAH models are
indistinguishable at all depths and very similar to the
ROWD from the MEI model in the hypoxic layers.
The oxygen level at which results from TIN and STR
cross is the same in bothfigures 2 and 3.

Differences in the ROWDwithin the same hypoxic
regions for the same model are the result of
inhomogeneities in the SOBP, which can be seen in the
plotted D ,phys and the effects of averaging the ROWD
values from voxels found on the boundary between
hypoxic layers. As the voxel grid used in our
simulations and the limits of the pO2 layers do not
match, the averaged value for the data points near these
boundaries will be affected by the overlap of different
pO2 values within the same voxel. At the same time,
Dbio results for theMKMmodel are higher than for the
RORmodel in the distal edge of the SOBP and slightly

Figure 2.Oxygen enhancement ratio (OER) as a function of partial oxygen pressure (pO2). Results shown for linear energy transfer
LET 11.0= keVμm−1 (solid lines) and for LET 1.0= keVμm−1 (dash-dotted lines).

Figure 3.Relative biological effectiveness (RBE)- andRBE-oxygen enhancement ratio (OER)-weighted depth-dose curves for a virtual
water phantomwith layers of different oxygenation levels from2.5mmHg (hypoxic) to 160mmHg (normoxic).
ROR=phenomenological Rørvik-RBEmodel [7, 15]. The right panel shows a zoomof themain plot from the left panel in the region
where the dose reduction is found.
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lower in the plateau region. These differences are still
noticeable after ROWDcalculations.

3.3. Simulations onpatient case
Figure 4 shows that for WEN, DAH, and MEI the
volume percentage corresponding to the same OER is
similar for the patient case, resulting in three similar
differential OER-volume histograms. For TIN and
STR the shapes are alike, with the differential OER-
volume distribution slightly shifted towards higher
OER values for STR, see zoom in plot in figure 4. The
peaks at low OER correspond to the respective OER
model predictions at pO 602 = mmHg, the upper
pO2 limit set during the hypoxia PET data conversion.

The OER distributions for the patient case are also
shown in figure 5, together with the LET and pO2

distribution in the target. Similar OER maps are seen
for WEN, DAH and MEI, while higher OER are
observed for TIN and STR models. However, regions
of OER variation were found to be consistent between
allmodels.

The MC simulations show that the PTV received
LETd in the range of 1.1–5.3 keV μm−1 with a mean
value of 2.7 keV μm−1. As for the pO ,2 it ranges
between 2 mmHg and 60 mmHg in the PTV with a
mean pO2 of 9.75mmHg.

Figure 6 shows ROWD volume histograms for
each model. All models predict a ROWD lower than

Figure 4.Differential oxygen enhancement ratio-volume histograms for the planning target volume for the head and neck cancer
treatment plan.

Figure 5.OER-maps corresponding to the implementedmodels. The PTV is delineated in pink. Top left corner corresponds to the
pO2 values obtained from the hypoxia [18F]-EF5 positron emission tomography (PET) scan.
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the normoxic DRBE1.1 used in the plan optimization.
The ROWD50 ranged from 53.6 to 60.2 Gy(RBE),
while the DRBE1.1,50 is equal to 70.0 Gy(RBE). WEN
and DAH give similar results when used to adapt the
constant RBE1.1 and the ROR phenomenological RBE.
WENandDAH show similar results as theMEImodel.
These three models predict a higher ROWD than STR
and TIN. For WEN, DAH and MEI a ROWDmean

between 58.7 and 60.2 Gy(RBE) is estimated, along
with a ROWD95 between 50.9 to 51.2 Gy(RBE). For
TIN, ROWDmean is 54.2Gy(RBE) andROWD95 is 45.7
Gy(RBE), while for STR ROWDmean equals 53.6
Gy(RBE)with a ROWD95 of 41.5Gy(RBE) respectively
(table 2).

4.Discussion

In this study we implemented and compared pre-
viously publishedmodels that adapt the RBE in proton
therapy for hypoxia through modelling of the OER.
Using the FLUKA MC tool, we compared the OERs
and resulting ROWDs predicted by each model. The
evaluation was performed on a one field proton plan
for a virtual water phantom with different hypoxia
(pO2) levels as well as on a three-field HNC patient
case. When studying phenomenological models, we

must be aware that uncertainties in the experimental
data affect the model parameters. Information about
the precision of model parameters and their relation-
ship with phenomenological uncertainties is not
available in the literature. However, all studiedmodels
provide a methodology of estimating the OER and the
OER-weighted dose to account for hypoxia. In the
present work, we compare these models as they would
be used in the clinic, where it is not a common practice
to apply model uncertainties in the biological dose
optimization process. We studied the effect of these
models on the parameters from the V79 cell-line as
this cell-line was included in all the model databases.
This, together with enough primaries on the MC
simulations to calculate physical quantities (voxel
mean statistical uncertainty<2%and voxelmaximum
statistical uncertainty<3%), allows us to compare the
outcome from the OER models as the impact of the
assumptions made by the authors on the results
instead of as the impact of the different uncertainties
from the data on the results. A sensitivity study of the
impact of uncertainties on dose estimates, as presented
by Dahle et al [32], would be of high interest also for
ROWDestimations.

As expected, OER-adapted RBE-models predict a
lower biological dose absorption in hypoxic regions
compared to RBE-models not adapted for hypoxia.

Figure 6.Dose volume histograms (DVH) for all the oxygen enhancement ratio (OER)- relative biologic effectiveness (RBE) adapting
models including the non-OER adapted constant RBEof 1.1 from the optimizationmade in Eclipse.

Table 2.ROWDreceived by 50%and 95%of the PTV (ROWD50 andROWD95) andmeanROWDreceived by the PTV
(ROWDmean) according to theOER adaptations of the RBE1.1, the RORphenomenological RBEmodel, and theMKM.

ROWD50 [Gy(RBE)] ROWD95 [Gy(RBE)] ROWDmean [Gy(RBE)]

RBE1.1 70.0 67.0 70.1

Wenzl andWilkens (RBE1.1-WEN) [16] 60.2 52.1 60.7

Wenzl andWilkens (ROR-WEN) [16] 59.1 51.3 59.8

Tinganelli et al (MKM-TIN) [18] 54.2 45.7 55.4

Dahle et al (RBE1.1-DAH) [20] 59.9 51.9 60.3

Dahle et al (ROR-DAH) [20] 59.2 51.4 59.9

Mein et al (MKM-MEI) [19] 58.7 50.9 59.5

Strigari et al (MKM-STR) [22] 53.6 41.5 54.6
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The observed sigmoid shape of the OER as a function
of the pO2 (figure 2) agrees with previous results
[16–24]. All models show the same trend with
increasing OER with reduced pO ,2 but while MEI,
WEN and DAH agree very well across the range of
clinically relevant hypoxia levels, TIN and STR predict
higher OER over the whole pO2 range. In particular, a
higher OER for STR at low pO2 is observed, which
may be of clinical relevance.

OER variations for different LETs (figure 2) are
also consistent with the expectations: we find higher
OERs for lower LET values. This supports that high-
LET radiation therapy is more efficient to treat
aggressive hypoxic tumors. However, this LET differ-
ence is rather small for all models because the effect of
the LET on the model equations is low for the studied
pO2 values and the limited range of LET present in
proton therapy. Figures S2 and S3 show the extent of
LET effects on extremely low, low and intermediate
pO2 concentrations on the OER and ROWD respec-
tively. Yet, significative larger LET effects on the OER
forWEN and DAH are captured when compared with
MEI, STR and TIN. This might be explained by the
phenomenological data used by the models: WEN
and, in particular, DAH rely more on low- and
intermediate-LET data compared to MEI, STR and
TIN. DAH only used data from proton radiation,
whereas STR used data from intermediate- (He-ions)
and high-LET (C- and Ne-ions) radiation exclusively.
WEN and MEI used data from low and high LET
radiation throughout the OER modelling, whereas
TIN modeled the photon OER and included the LET
dependence considering only heavy-ion/high-LET
data, which might explain why this dependence fades
for TIN resulting in the same OER for different LETs.
Even so, for the same LET, proton and heavy-ions do
not result in the same radiation quality [44], making it
not ideal to use an OER modeled with high-LET data
for protons. Whether these models can be used to
adapt for hypoxia high-LET radiation RBE models
(like the MKM) has been explored or suggested in the
literature can be seen in table 1. From figure 2 we
suggest a two-group differentiation of the OER
models, with WEN, DAH, and MEI in the first group
and TIN and STR in the second group. This
differentiation is independent of the two different
methods in which the studied models estimate the
OER. However, this two-group differentiation
vanishes for extremely low pO2 values (Figure S2)
since the OER and its dependence with LET becomes
specific for eachmodel:WEN,DAH,MEI and TIN are
seen to behave differently with increasing LET and
STR results diverged and are one order of magnitude
larger than for the othermodels for low LET. The latter
could happen because the correction that STR makes
to account for non-Poisson lethal event distributions
for high-LET particles does not hold for proton LET,
resulting in a divergence in the modeled OER for
extremely low pO2 values.

All adaptedRBEmodels are LETdependent, which
results in an increase of the biological dose towards the
end of the SOBP when comparing to results with the
RBE1.1 model (figure 3). After adapting these RBE
models for hypoxia, all ROWDs reveal an increased
biological dose at the end of the SOBP and a dose
reduction in the hypoxic regions. The lowest pO2 in
the phantom simulation was 2.5 mmHg, which
roughly corresponds to the lowest pO2 in the patient
case. Therefore, the approximated drop of 25% to
40% in the ROWDwhen compared to the Dbio should
be expected in patient simulationswhen the LET of the
incident protons and the pO2 level selected as
normoxic are the same in the phantomand the patient.
These results support the same differentiation in two
groups of models as the data from figure 2. This two-
group model classification still holds when changing
the reference x xa b/ -ratio used on the adapted RBE
models, (Figure S4). The WEN, DAH and MEI group
shows a lower but still severe change of the absorbed
dose estimated by the TPS and more homogeneous
dose distributions than for the TIN and STR group.
Still, all models exhibit a substantial ROWD decrease
in specific tumor regions when accounting for the
pO .2 Thiswould suggest increasing the dose to hypoxic
regions during treatment plan optimization. Locating
then the most radioresistant regions may allow to
reduce the dose in the rest of the PTV, this would
increase the complexity of the proton therapy plans in
the clinic but overall reduce the dose to organs at risk
(OARs). Ignoring the increased radioresistance of
hypoxic tumor regions could potentially result in an
ineffective treatment and poor patient outcome.
Another solution would be to exploit the increased
effectiveness of high-LET radiation on hypoxic tissue
[45]. In this case, instead of boosting the dose on
hypoxic tumor regions the LET could be increased.
Our study indicates that, in the case of proton
radiation, only a slight reduction in OER is obtained
through LET increase (Figure S2). However, with the
RBE increase achieved when increasing the LET, the
ROWD could still be significantly augmented through
the elevated LET (Figure S3).

As a final remark on the WEN, DAH and MEI
models and calculations of the ROWD, we identified
very similar results in spite of having adapted different
RBE models (the MKM for MEI and ROR for WEN
and DAH). Although unexpected, this is explained
when looking at the differences between the normoxic
Dbio MKM, and Dbio ROR, from 9 cm to 11.5 cm depth in
figure 3. In this region of the SOBP we see how the
normoxic ROR and MKM result in very similar D .bio

Therefore, any differences in the corresponding
ROWD calculations would solely appear due to the
OER adaptation. As seen in figure 2, there are only
minor differences in the OER between WEN, DAH
and MEI models for extremely low, low and inter-
mediate oxygen levels. These two features put together
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result in very similar ROWD calculations despite
adapting different RBEmodels.

Since we have exclusively recalculated proton
plans, andTIN and STRdonot use proton data in their
modelling, their results could be less reliable when
compared with the WEN, DAH and MEI results.
Among WEN, DAH, and MEI, we might select DAH
as the most reliable model for proton plan recalcula-
tions since it is only based on proton data, but at the
same time, this model is based on a smaller data set.
However, the differences between these three models
are so small that one could use other criteria to select
which one to use, e.g., implementation complexity.
However, wemust consider that all these models carry
an uncertainty that arises from the incertitude of the
experimental data used for the modelling. Conse-
quently, one might select the model after evaluating
aspects such as the type of radiation, the energy and
LET range, pO2 range, pO2 value set as normoxic
condition, or the different cell-lines accounted for. For
clinical use we must also acknowledge that the
uncertainties will increase due to the lack of in vivo
data and the uncertainties in the PET tracer uptake to
pO2 conversionmethod.

OER-maps (figure 5) go along with the estimated
pO2 distribution and the data from figures 2 and 3. As
for the volume percentage peaks (figure 4) and their
corresponding OERmin value, these appear due to the
maximum pO2 estimated from the hypoxia PET data.
This value was set to 60 mmHg and was defined as the
default normoxic pO2 for PET uptake below a certain
threshold [20] using as reference the normoxic pO2

values in brain, muscle and fat (29.2 mmHg, 33.8
mmHg and 60.0 mmHg respectively) found in the
literature [37, 43]. The model differences result in
slightly different minimum OERs, between 1.01 and
1.05 depending on the model. This occurs because the
cell data used in the models take 160 mmHg as the
normoxic value. If the data used in the OER models
took 60 mmHg as the normoxic value, matching the
normoxic pO2 in the clinical case, these peaks would
appear at OER equal to 1. Consequently, when using
any of theseOER adaptations on clinical cases it should
be considered to include a normalization step to
ensure that we find an OER of 1 on the normoxic
patient tissue, avoiding the calculation of an over-
dosage of these regions during a later optimization
process. OnlyWEN and DAH comment on a normal-
ization step for clinical recalculations. The effects of
setting different pO2 values as normoxic on the OER
can be seen in figure S5. These normalization steps
reduce the OER as we lower the reference pO2 value
for normoxic tissue. Therefore, this would reduce the
depth of the dip of the ROWD in hypoxic regions
shownonfigure 3.

The differences in height of the volume percentage
peaks that correspond to the OERmin are affected by
the influence of the LET on each model: larger OER
variations with the LET result in a lower volume with

OERmin. This argument is not valid for TIN, where the
dispersion of low OER is a direct consequence of the
rapid variation of the OER when increasing the pO .2

The OER curve from TIN approaches 1.0 slower than
the OER curves from the other models (figure 2),
resulting in a larger variety of OER for high pO2

values. Therefore, after a hypothetical normalization
step to adapt the models to clinical cases, the volume
percentage differences at OER equal to 1 would still be
noticeable since it is affected by the dependence of the
OER model with LET. Consequently, the proton-LET
influence, although reduced, is noticeable in most of
the studiedOERmodels.

5. Conclusion

To summarize, we implemented a ROWD calculation
in FLUKA MC using five different hypoxia adapted
RBE models. Models were studied in terms of the
consistency between their ROWD estimates to evalu-
ate the impact of model assumptions, data selection
and the potential for performing hypoxia adaptation
of proton therapy plans. Results from simulations in
both a virtual water phantom and a HNC case suggest
a two-group classification of the models. The WEN,
DAH and MEI models showed good agreement and
more uniform dose distributions with lower OER
values in low pO2 regions when compared with the
TIN and STR models. Application and comparison of
the models indicated that the two latter models,
primarily based on heavy ion data, potentially could
overestimate the OER of protons at low pO .2 Overall,
all models display a large difference in the estimated
dose from hypoxic and normoxic regions. This shows
the potential to increase the dose or LET in hypoxic
regions or reduce the dose to normoxic regions which
again could lead to normal tissue sparing. The
uncertainties in the OER models are however still
largely unknown, but with quantification of uncer-
tainties in the model parameters and reliable hypoxia
imaging, RBE-OER weighting could become a useful
tool for proton therapy plan optimization.
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