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Comparison of calibration models for rapid prediction of lignin content in 
lignocellulosic biomass based on infrared and near-infrared spectroscopy 
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Lignocellulosic biomass has great potential as a renewable energy source due to abundance both as vegetation 
and in residues from agriculture and forestry. It can be utilized for biofuels and for value-added chemicals and 
materials. The challenge concerning lignocellulosic biomass lies in its heterogenous nature. The chemical 
composition may vary according to species, location, harvest season and botanic fractions. Therefore, it is crucial 
to assess the composition prior to any biofuel conversion method. Vibrational spectroscopy has been used 
extensively for rapid predictions of the chemical properties of biomass. In this study, calibration models based on 
infrared and near-infrared spectra has been compared using the same calibration set, 36 samples comprising 
wood, bark, needles, and twigs of three different wood species. PLS was performed to correlate EMSC pretreated 
infrared and near-infrared spectra to the chemical contents of the samples. R2 for the standard curve of the 
infrared model is 0,896 and for the near-infrared standard curve 0,921, using 3 PLS components. The effect of 
heterogeneity was tested by comparing calibration models based on finely and coarsely ground sample, where 
the R2 of the coarsely ground sample was 0,825, lower than 0,896, but still significant. The results also show that 
there is more variation in the lignin content between the fractions from a single tree than between similar 
fractions from different species. The calibration models that have been developed will be useful for frequent, 
rapid determination of lignin content in wood biorefining feedstocks.   

Introduction 

Biomass is emerging as the primary renewable source of organic 
carbon compounds to replace petroleum-based products in a future 
circular economyBiomass can be converted to liquid fuels, and into bulk 
and fine chemicals to replace products that at present are produced from 
fossil carbon sources. However, even with a great potential for future 
sustainable use, the economics of production and refining at present is a 
barrier for the development of biomass use in the overall economy [1]. 
Thus, research is needed to provide economically viable and sustainable 
biomass valorization concepts. 

Lignocellulosic biomass has great potential to be a renewable energy 
source due to a wide abundance both as standing vegetation and as 
residues from agriculture and forestry [2]. It can be utilized for both 
biofuels and for value-added chemicals and materials. The challenge 
concerning lignocellulosic biomass lies in its heterogenous nature. The 
chemical compositions may vary according to species, location, harvest 
season and botanic fractions [3]. Therefore, it is crucial to assess the 
composition prior to any biofuel conversion method. The conventional 

assessment procedure of lignocellulosic biomass includes decomposing 
the sample, which is time consuming, labor-intensive, expensive and 
destroys the sample. Vibrational spectroscopy has proven effective to 
predict the composition of lignocellulosic biomass using models based 
on a calibration set [4]. 

Vibrational spectroscopy is a useful analytical technique that is 
sensitive to functional groups present in organic matter. These tech
niques have been utilized to determine the lignin content in wood, pulp, 
paper and plants [5]. Early studies were limited by the classical 
dispersive methods which produced low resolution spectra and a low 
signal-to-noise ratio. Fourier transform spectrometers were later devel
oped and provides wide range spectra with high resolution that are 
rapidly obtained [6]. This is done by measuring all frequencies simul
taneously, as opposed to dispersive methods which only provides indi
vidual single-frequency scans. Using Fourier transform spectroscopy, 
there is no degradation of optical throughput, which provides higher 
resolution without compromising on signal-to-noise ratio. The vibra
tional spectroscopic techniques included in this paper is Fourier trans
formed infrared (FT-IR) and near-infrared (NIR). For FT-IR, an 
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attenuated total reflectance (ATR) attachment built into the instrument 
allows for measurements without complex sample preparation. ATR 
allows for enhanced band intensities at the lower wave numbers. 

A few applications where FT-IR and NIR spectroscopy have been 
used for lignin quantification have already been described. Sanderson et 
al, (1996) used NIR spectroscopy for compositional analysis of biomass 
feedstocks. They investigated a sample set comprising 121 samples of 
woody and herbaceous feedstocks and generated a calibration model 
using PLS modeling. The accuracy of their predictions of lignin content 
is reported to be very promising, with an R2 of 0,98 and a standard error 
of performance (SEP) of 0,70. Tamaki et al, (2010) [7] used FT-IR to 
determine lignin content in triticale (67 samples) and wheat (47 sam
ples). Their model based on PLS yielded an R2 of 0,985 and a root-mean- 
square error of prediction (RMSEP) of 0,163. 

Thus, though FT-IR and NIR have been used for biomass character
ization, they have not previously been compared based on the same 
sample set. In this work, the predictive power of two different models 
based on infrared and near-infrared spectroscopy and their combina
tions are evaluated and considered with respect to lignin content, a 
large-scale scenario, tolerance to heterogeneity, and effectiveness. Here, 
we establish a calibration model for predicting the lignin content of 
woody biomass based on both IR and NIR spectra of powdered samples. 
FT-IR is included because the spectral elements can be interpreted in 
terms of chemical functional groups, compared to NIR which may give 
more precise models but where interpretation in terms of chemical 
structures is not an option. To cover a sufficient range of variability in 
the calibration model, samples from three different species of trees; 
spruce, birch and pine, three different trees for each specie, growing 
naturally on the coast of Western Norway are further fractionated into 
heartwood, bark, twigs, and leaves/needles, yielding a total of 36 
different samples. The fractionation step is to secure a wide range of 
variability in the calibration set, as it is assumed that the variability can 
be as large between these fractions as between tree species [8]. Another 
advantage of fractionating the samples is an easier comparison with 
industrial applications. The wood samples will be comparable to waste 
from sawmills to produce high-value products and bark samples will be 
comparable to bark waste from forestry. Next, chemical degradation of 
each sample is performed to determine the lignin content. The spectra 
are then used as dependent variables to predict the different ratios of 
constituents in the biomass. 

Materials and methods 

To cover a large range of variability in the calibration model, samples 
from three different trees; spruce, birch and pine growing naturally on 
the coast of Western Norway (Radøy) were collected in September 2020. 
These species were chosen as they are most relevant in terms of 
abundancy and upscaling. The samples were taken from young, small 
trees, and manually separated into wood, bark, twigs, and leaves/nee
dles as seen in Fig. 1, yielding a total of 36 different samples. 

The samples were oven-dried at 105 ◦C until the change in weight did 

not exceed 1 %, measured every 24 h [9]. The air-dried samples were 
then milled and sieved with a 500 mesh to achieve a homogenous par
ticle size. A high lignin content was expected for all samples as lignin 
content in trees tend to be anticorrelated with age [10]. 

NIRSystemsTM Holographic Grating model 6500 were used to collect 
NIR diffuse reflectance spectra, averaging 32 scans within 1100–2500 
nm with a resolution of 2 nm. FT-IR spectra were collected with a Nicolet 
iS 50R FTIR Spectrometer equipped with an ATR diamond. The spectral 
range for the spectrometer is 4000–400 cm− 1 and a spectral resolution 
better than 2 cm− 1. 

Reference analysis 

After spectral acquisition, the samples were subjected to the wet 
chemistry procedure used to determine the content of extractives, ash, 
lignin, and carbohydrates. The ash content was measured in accordance 
with the NREL procedure “Determination of Ash in Biomass, NREL/TP- 
510-4262” [11], which involved subjecting a weighted oven-dry sample 
to a 575 ◦C furnace overnight. Extractives was measured by a procedure 
involving Soxhlet extraction “Determination of Extractives in Biomass, 
NREL/TP-510-42619” [12] with ethanol as the solvent to extract 
ethanol soluble material. Lignin content was determined by a two-step 
acid hydrolysis process based on the NREL procedure “Determination 
of Structural Carbohydrates and Lignin in Biomass, NREL/TP-510- 
42618” [13]. Total lignin content consists of acid soluble and insoluble 
lignin. The whole procedure is summarized in Fig. 2. Two replicates 
were made for all samples to determine reliability of the procedure. 

Data treatment 

Extended multiplicative signal correction (EMSC) is a pretreatment 
method used to remove spectral variation due to physical interferences 
[14]. This method was chosen for both infrared and near-infrared 
spectra to yield better predictions. Without any correction for light 
scattering variation, a highly complex calibration model would have 
been needed. The effects of this pretreatment procedure are illustrated 
in Fig. 3. 

The spectral information was further investigated by performing a 
principal component analysis (PCA) to reduce the dimensionality for 
better interpretation of the data with minimal information loss [15]. 
This is done by creating new, uncorrelated variables, termed principal 
components (PC), that successively explain maximum variance to avoid 
statistical information loss. PC1 is the principal component explaining 
the largest amount of variation, PC2 second largest etc. In the case of 
spectral data, spectra are easily comparable by plotting PCs against each 
other, creating 2-dimensional planes named score plots. Score plots 
reveal information like similarities between spectra and potential 
outliers. 

Partial least squares regression (PLS) was then used to correlate the 
spectral data with the chemical constituents (w/w%) of the tree samples. 
PLS is a method for relating a data matrix of independent variables to a 
response vector or matrix. Relating the independent variables to a 
response vector often result in a better model in comparison to decom
posing a response matrix. The drawback by doing this is the requirement 
of one model per response vector. It differs from the more traditional 
multiple linear regression as PLS can handle collinearity in the inde
pendent variables [16]. Infrared spectroscopy produces spectra with 
highly collinear variables where PLS is a suitable regression method. 

The resulting PLS models were validated by evaluating the correla
tion coefficient, R2, and the root mean square error of leave-one-out 
cross validation (RMSECV). For further evaluation, a validation set 
was made from replicates of 9 of the samples. In addition, The American 
Association of Cereal Chemists (AACC) has established a score for 
evaluating a model’s performance, termed R/SEP. R is the range of the 
validation set and SEP is the standard error of performance [17]. Any 
model with R/SEP > 4 is qualified for screening calibration, between 4 Fig. 1. From left to right; ground heartwood, bark, needles, and twigs.  
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and 10 is acceptable for quality control, while between 10 and 15 is 
suitable for research quantification. 

Results and discussion 

The results from the wet chemistry procedures are presented in 
Table 1. The result shows the contents of the different constituents of 
every sample. In terms of lignin content, it is clear that the largest 

Fig. 2. Flowchart of the whole procedure, including wet chemistry analysis and spectral acquisition.  

Fig. 3. Infrared and near-infrared spectra before and after EMSC pretreatment.  
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variation in lignin content lies between the different fractions, with the 
largest variation of 33,6% between the average of bark and the average 
of wood. The largest variation regarding individual trees lies between 
spruce and birch with 11,3 %. The smallest variation is observed be
tween species with 6,7%, indicating that there is a larger variation be
tween individual trees, independent of species. This is significant in a 
biorefinery concept, as feedstock screening should focus on fractions 
more than tree species. 

Spectral analysis 

Fig. 4 shows infrared spectra of pine samples. The different fractions 
differentiate the most at the peaks of the different functional groups. The 
spectra clearly support that wood contains the highest amount of car
bohydrates, as the peaks of hydrogen bonded OH groups and particu
larly the peak for C–O–C is stronger than the others. The peaks for CH 
groups are less defined in comparison to the other fractions, which 
shows two distinct peaks. CH2 is more prominent in carbohydrates, 
whereas CH2 and CH3 groups are more equally present in other chemical 
constituents, yielding two defined peaks. C––O is another peak that 
differs in the fractions. This can also be tied to carbohydrates, which 
does not contain any C––O groups, while other chemical constituents do. 
The near-infrared spectra are not as easy to interpret without the use of 
multivariate methods. A selection of typical spectra shown in Fig. 3 for a 
general overview. 

PCA of EMSC pretreated spectral data is performed. The transformed 

information is presented as score plots in Fig. 5, plotting principal 
component 1 (PC1) against PC2. These score plots can explain the 
maximum variance of the original data, as PC1 and PC2 are the principal 
components explaining most of the variance. PC1 and PC2 for the 
infrared model explains 69,3% and 9,5% of the variance, summed to 
78,8%. PC1 and PC2 for the near-infrared model covers 75,5% and 
14,0% of the variance, summed to 89,5%. As seen in Fig. 5, the infrared 
spectra reveals that the samples of the same biomass fraction tend to 
group together. This supports the observed variation in the chemical 
components, which indicates that there is larger variation between 
fractions than tree species. The score plot also reveals that the wood 
samples have the largest leverage on the model, being furthest away 
from the origin of the plot. In general, well defined and separate 
groupings indicates chemical differences between the group. Very 
different groups may not be suitable for incorporation into the same 
model. 

As for the near-infrared spectra, there are no recognizable groupings. 
This indicates that near-infrared spectra alone are not capable of 
differentiating between fractions but is more suitable for a calibration 
model. The first principal components of the near-infrared score plot 
also covers more of the variance. 

Relative standard deviation (RSD) vs leverage is a useful plot to 
identify statistical outliers in the model. RSD alone can be an indicator of 
an outlier, but that does not necessarily entail a bad model. If some 
spectra have a high RSD and a high level of leverage on the model, 
exclusion must be considered. Fig. 6 shows that no particular spectrum 
has a very high leverage when considering PC1, PC2 and PC3. This in
dicates that the model does not contain any outliers. 

Plotting loadings and against wavenumber yields information of 
which parts of the spectra that are significantly different. Generally, 
loadings can be interpreted as the coefficients of the linear combination 
of the initial variables from which the principal components are con
structed. As shown in Fig. 4, the peaks for C–O–C, OH groups, CH 
groups and C––O groups differed between the fractions. By plotting 
loadings in the same spectra, it is clearly shown where the largest var
iations lie. In the case of infrared spectra, loadings 1, 2 and 3 all show 
that the largest variations lie within the peaks of these functional groups, 
shown in Fig. 7. Information of functional groups is an advantage IR 
holds over NIR, as NIR-spectra are harder to interpret qualitatively. 

Establishing a calibration model 

PLS is performed to correlate EMSC pretreated infrared and near- 
infrared spectra to the chemical contents of the samples. The 

Table 1 
Chemical composition of tree species and fractions. The first character in the 
label code represents tree species. P = Pine, S = Spruce and B = Birch. The 
second character represents fraction, where B = bark, W = wood, N = needles/ 
leaves and T = twigs. The numbers represent individual trees. Two replicates for 
each sample were used to calculate the uncertainly. No replicates were taken for 
ash, and the carbohydrate fraction is just calculated based on the other fractions.   

Ash (wt%) Extractives (wt%) Lignin (wt%) Carbohydrates (wt%) 

PB1 2,34 11,33 ± 0,72 41,01 ± 4,59 45,32 
PB2 1,97 10,28 ± 0,09 52,33 ± 3,23 35,42 
PB3 3,58 5,53 ± 0,15 51,27 ± 4,01 39,62 
SB1 3,09 15,47 ± 0,47 37,82 ± 4,58 43,61 
SB2 3,11 12,98 ± 0,40 39,89 ± 3,50 44,02 
SB3 3,22 13,52 ± 0,61 43,02 ± 0,92 40,24 
BB1 1,63 10,65 ± 0,52 50,81 ± 0,70 36,92 
BB2 1,57 12,02 ± 0,02 49,65 ± 4,89 36,76 
BB3 1,74 16,58 ± 0,74 50,73 ± 3,91 30,95 
PW1 0,54 2,33 ± 1,22 31,80 ± 2,89 65,33 
PW2 0,39 3,46 ± 1,32 30,58 ± 4,93 65,57 
PW3 0,44 1,64 ± 0,36 32,08 ± 3,80 65,83 
SW1 0,24 6,25 ± 0,95 30,24 ± 1,40 63,27 
SW2 0,65 4,53 ± 1,71 33,93 ± 0,89 60,89 
SW3 0,70 4,75 ± 1,52 34,41 ± 0,70 60,14 
BW1 0,65 3,71 ± 0,67 27,37 ± 1,77 68,26 
BW2 0,76 4,20 ± 0,54 29,04 ± 3,21 66,00 
BW3 0,58 5,34 ± 0,46 26,93 ± 4,86 67,14 
PN1 2,55 8,23 ± 1,85 37,89 ± 1,76 51,33 
PN2 2,85 8,04 ± 0,40 40,92 ± 3,96 48,19 
PN3 2,50 11,22 ± 1,29 39,95 ± 2,28 46,33 
SN1 5,20 9,89 ± 1,33 47,69 ± 2,11 37,23 
SN2 3,43 7,21 ± 1,95 43,61 ± 3,32 45,74 
SN3 5,14 6,50 ± 0,12 38,11 ± 2,45 50,25 
BN1 1,98 18,65 ± 0,26 44,75 ± 2,07 34,62 
BN2 5,64 11,55 ± 1,35 49,97 ± 2,17 32,84 
BN3 7,34 10,14 ± 1,60 52,06 ± 2,52 30,46 
PT1 1,98 10,94 ± 4,76 43,02 ± 1,55 44,06 
PT2 1,91 9,57 ± 2,97 47,73 ± 0,57 40,79 
PT3 1,90 12,69 ± 5,36 42,60 ± 0,42 42,82 
ST1 1,16 7,64 ± 2,78 41,14 ± 0,66 50,06 
ST2 1,43 4,87 ± 0,98 41,85 ± 1,48 51,85 
ST3 2,34 4,67 ± 1,48 44,35 ± 0,60 48,64 
BT1 1,59 8,67 ± 4,78 49,93 ± 0,31 39,80 
BT2 2,33 18,71 ± 6,53 44,57 ± 2,36 34,39 
BT3 1,65 15,35 ± 4,25 39,74 ± 3,00 43,26  

Fig. 4. Infrared spectra of samples of pine bark, wood, needles, and twigs from 
sample PB1, PW1, PN1 and PT1 in Table 1. 
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calibration curves are shown in Fig. 8. The coefficient of determination, 
R2 for the standard curve of the infrared model is 0,896 and for the near- 
infrared standard curve 0,921, using 3 PLS components. This shows that 
a high correlation is achieved with relatively few samples, and both 
spectroscopic techniques show good predictive abilities. The near- 
infrared model seems to have a slight edge, but more validation is 

needed. 
Response residuals shows how each object deviates from the cali

bration curve presented in Fig. 9. Only one object has a response residual 
greater than 5 % for the infrared model and none for the near-infrared 
model. 

The root mean square error of cross validation (RMSECV) is an es
timate of the model performance based on how well the model predicts 
the values obtained from cross-validation. RMSECV for the infrared 
model is 3,29 wt% and 2,21 wt% for the near-infrared model. This shows 
that there is a lower mean error associated with the near-infrared model. 
A validation set consisting of 9 random replicate samples was incorpo
rated into the near-infrared model. The square error of performance 
(SEP) is 3,73 % and the root mean square error of performance (RMSEP) 
is 3,95. With R/SEP = 6,38, the model falls in the range that is consid
ered suitable for quality control according to AACC. In the work of 
Tamaki et al, (2010) and Sanderson et al, (1996), the reported R/SEP 
was 10,67 and 11,86, respectively. 

Prediction of other chemical constituents 

Calibration models were made to predict other constituents than 
lignin as well. Most of these fell under an R2 of 0,7 with 3 PLS compo
nents, deeming the model unviable for comparison purposes. This con
tradicts the results reported for “Determination of Extractives in 
Biomass, NREL/ TP-510–42619” [11], where calibration models based 
on near-infrared spectra are shown to be suitable for predicting the 
contents of extractives in lignocellulosic biomass. However, these 
studies include more samples, resulting in more robust models. For the 
samples investigated here, a noteworthy model was the prediction of ash 

Fig. 5. Score plot of PC1 and PC2 from PCA on infrared (left) and near-infrared spectra (right). Yellow = wood, brown = bark, red = twigs and green = needles/ 
leaves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. RSD vs leverage for infrared (left) and near-infrared (right) model. Yellow = wood, brown = bark, red = twigs and green = needles/leaves. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Loading 1, 2 and 3 plotted against wavenumber to visualize which 
peaks yield the most important information for the infrared model. 
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content based on the infrared spectra, showed in Fig. 10. This calibration 
model achieved an R2 of 0,815, with RMSECV of 1,16. 

Heterogeneity 

Particle size of the samples has been shown to have great impact of 
results regarding the wet chemistry analysis chemical degradation and 
spectroscopic information. By using spectra from coarsely ground 

sample (approximately 0,3 cm3) to build the model shown in Fig. 11, the 
R2 for the calibration curve was 0,825, notably lower than 0,896 for the 
model using more finely ground (0,5 mm3 sieved with a 500 mesh) 
sample. Although it yields lower prediction power, an R2 of 0,825 is still 
significant. According to NRELs procedure “Determination of Structural 
Carbohydrates and Lignin in Biomass, NREL/TP-510–42618” [12] par
ticles sized too big and too small yields a higher content of lignin, which 

Fig. 8. Predicted values by the PLS model plotted against measured values for infrared (left) and near-infrared (right) model. Yellow = wood, brown = bark, red =
twigs and green = needles/leaves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Response residuals for the PLS-model for infrared (left) and near-infrared (right). Yellow = wood, brown = bark, red = twigs and green = needles/leaves. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. PLS model that predicts ash content based on infrared spectra. Yellow 
= wood, brown = bark, red = twigs and green = needles/leaves. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 11. PLS model of coarsely ground sample that predicts lignin content 
based on infrared spectra. Yellow = wood, brown = bark, red = twigs and 
green = needles/leaves. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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provides uncertainty within the procedures. As for spectroscopy, parti
cle size greatly affects the spectra of the samples, and the differences is 
directly measurable by acquiring both IR and NIR spectra of the same 
sample set. As near-infrared spectra are measured at the surface of the 
sample, different particles meet the near-infrared probe. This was 
handled by averaging 6 spectra measured after stirring the sample vial. 
The same problem occurred for infrared measurements. As the ATR- 
diamond has a very small surface area, only a small portion of the 
sample was measured, and was not necessarily representative for the 
whole sample. This was handled by averaging 6 spectra. Fig. 12, a score 
plot containing spectra of both finely and coarsely ground samples, re
veals no clustering. This indicates that particle sizes within these limits 
might be included in the same model and a reasonable calibration may 
be performed. Precise monitoring of particle size in a large-scale sce
nario may not be necessary, but an evaluation of spectroscopic tech
niques and their resilience to heterogeneity in the samples is indicated. 

Overview and model evaluation 

Table 2 presents a summary of the statistical values for every model. 
As the model based on NIR shows the best R2 and RMSECV, the statis
tical values produced from the validation set, SEP and RMSEP, shows 
that the model based on IR might be a more robust model. The R/SEP of 
the IR model is above 10, and thus meets the criteria for research 
quantification. As for the models which predicts the ash content and 
lignin from coarsely ground samples, no validation set was made and 
needs to be investigated further. 

Conclusion 

Results from the wet chemistry procedure showed that there is more 
variation between individual trees than it is for tree species in terms of 
lignin content. This is significant in a biorefinery concept, as feedstock 
screening should focus on fractions rather than tree species. Infrared 
spectra showed that differences between the fractions were clearly 
observable, as OH and C–O–C groups were most prominent in wood 
samples and CH, C––O and the lack of C–O–C were observed in the 
other fractions. This is due to higher carbohydrate content in the wood 
samples. PCA showed that scores from infrared spectra were more 
grouped together in their respective fractions, while scores from near- 
infrared were more convoluted. R2 for the standard curve made by 
PLS of the infrared model is 0,896 and for the near-infrared standard 
curve 0,921, using 3 PLS components. RMSECV also substantiated that 
the near-infrared model yielded the best results in terms of prediction 
power. It is worth noting however, that prediction of the wood samples 
seems to be less precise compared to the rest of the model. The effect of 
heterogeneity was tested by comparing calibration models based on 
finely and coarsy ground sample, where the R2 of the coarsely ground 
sample was 0,825, lower than 0,896. For use as a rapid measurement of 
feedstock in a biorefinery concept, this information will be relevant for 
choosing the right instrumentation and calibration model. 

A user friendly, open access tool for lignin predictions based on the 
sample set presented in this paper will be published for easy quality 
control predictions of lignin content in lignocellulosic biomass. 
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