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Abstract

Dialogue systems have gained more attention in recent years and have been called “the new

app”. This is much due to the advancement in deep learning, more precisely in Natural

Language Processing (NLP). An additional factor to the growing popularity of dialogue

systems has also been the enabling of integration of task-oriented dialogue systems with

social media platforms.

The original purpose of this thesis was to take the first steps in developing such a task-

oriented dialogue system. One crucial component in a task-oriented dialogue system is the

Natural Language Understanding (NLU) component. The NLU aims at capturing a semantic

representation of a user’s utterance. It achieves this by classifying the domain and intent of

the utterance, in addition to extracting potential slots in the utterance. Our focus for the

thesis revolved around the domain and intent classification of the NLU component.

We were given a collection of utterances conveyed to a driving school via their social media

account. Due to the condition of the dataset we received, we simplified the domain and intent

classification problem to a binary domain classification. The binary classification task was to

determine if an utterance should be handled by a human or the dialogue system. We trained

a selection of binary classification models, combining different sentence representations with

different machine learning models. We explored the sentence representations Bag-of-Word

(BoW), Word2vec, Doc2vec and embeddings created with Bidirectional Encoder Represen-

tations from Transformers (BERT), in combination with the machine learning algorithms

Logistic regression, Random forest, Feedforward Neural Network (FFNN), Recurrent Neural

Network (RNN) and Long Short-Term Memory (LSTM). The models were evaluated using

accuracy. Given the poor result of the binary classification task, we did not proceed the

development of the NLU component, but instead shifted our focus towards understanding

the reasons behind this result.

We observed that increasing the complexity of the model gave better results for the binary

classification problem, while changing the sentence representation had little impact, beside

BERT’s embeddings. The best performing model was an FFNN with BERT’s classification

token. However, none of the models showed any remarkable results. We concluded that the



main reason for this was the lack of data and the unsatisfactory quality of the data labeling.

In addition to this, the utterances in the dataset were quite long and not narrowed down

to specific intents, which made them harder to classify. In summary, we experienced that

the data played a big part in holding back the machine learning model’s performance. This

shows the importance of both good quality data, and proper labeling in the development of

a well-functioning dialogue system.
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Chapter 1

Introduction

In this chapter we will introduce the background and problem description of this thesis.

1.1 Background

Dialogue systems, commonly referred to as chatbots or conversational agents, are a type of

software that are capable of communicating with human users via natural language, usually

over the internet. Dialogue systems have gained popularity in the recent years due to the

advances in fields of artificial intelligence like machine learning, deep neural networks and

natural language processing [45, Ch1 p1]. While there has been done a lot of research on NLP

for the English language, the NLP-research for other languages, like for instance Norwegian,

has been more scarce.

Dialogue systems can be used in a range of applications, among them customer service.

A dialogue system could for example automate customer inquiries, increasing availability,

reducing response time and overall achieve higher customer satisfaction and coverage. This

also relieves human resources and saves expenses [40, Ch1 p1, Ch8.2 p14] [8].

Many companies use social media platforms to promote their business and services, and to

handle their customer care. Social media platforms have changed how customers interact

with companies and service providers. Customers may now reach out via private messages
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or posts, requesting information or services, or expressing their frustration or satisfaction

with the company [45, Ch5.1 p388].

In 2016, social media platforms like Facebook allowed developers to integrate dialogue sys-

tems with their platforms. Since then there has been observed an increase in the use and

research of dialogue systems [40, Ch2 p3]. In 2019, Facebook also announced that they are

going to merge WhatsApp, Instagram and Facebook Messenger. This will allow communi-

cation across social media platforms, and may further increase the popularity of dialogue

systems [39].

Dialogue systems have been proclaimed to be “the new apps”, and are predicted to have a

big impact on retail, healthcare and banking [45, Ch1 p1] [8]. The advancement in the field

of artificial intelligence and the growing need for automated digital customer services via

social media platforms, are the main reasons for the selected topics of this thesis.

1.2 Problem description

The problem description for this thesis was proposed by Funbit AS [13]. Funbit is a digital

agency, specializing in digital visibility and marketing, and offers development of digital

solutions. Funbit wants to develop and integrate a dialogue system for one of their customers,

via their customer’s Facebook account. The customer is a driving school, delivering related

services. The driving school handles their customer service via their Facebook account. This

is time consuming and drains human resources. Some inquiries are repetitive, and some of

them could be handled simply by a visit to their website.

To use in the development of the dialogue system, Funbit provided a dataset of utterances

collected via the driving school’s account. This dataset was then also the basis for this thesis.

The dataset had been anonymized and personal information censored. The utterances in

the dataset express intents sent from customers to the driving school, asking about related

services. The majority of utterances in the dataset were in Norwegian (bokm̊al and nynorsk)

and the thesis mainly focuses on these. There were also some utterances in English, but

these were removed early in the process.

The utterances in the dataset were authentic in comparison to utterances one would usually

send well knowing one was using a dialogue system, where utterances would be short and

specific. In contrast, the utterances in the dataset were long, messy and rarely specific.
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The initial problem description for this thesis was to develop a dialogue system based on

the given dataset. There are a lot of commercial platforms available to develop and inte-

grate dialogue systems, for instance Dialogueflow 1 (Google), wit.ai2 (Facebook) or Watson3

(IBM). These platforms enable anyone, with or without programming or machine learning

experience, to develop a dialogue system by defining intents/utterances corresponding with

responses/actions. They are very convenient, but the machine learning part is already config-

ured and hidden away from the developer. There are also available programming frameworks

for developing dialogue systems. One worth mentioning is Rasa4, which is an open-source

framework for Python. Rasa provides a lot of freedom, but is still quite user friendly with de-

fault and recommended settings etc. Since this is a thesis in machine learning and the goal is

to understand the underlying machine learning models, none of the mentioned conventional

solutions were used. However, they were used as a reference throughout the thesis.

Given the scope and complexity of a full functional dialogue system, we narrowed down the

problem description to developing and analysing the first component in a dialogue system, the

natural language understanding component. The NLU component classifies which domain an

utterance belongs to, what intent it carries and extracts potential slots within the utterance.

This information is then used as a semantic representation of the utterance further down the

dialogue system. Our original purpose was to develop and analyse a NLU component with

domain and intent classification. Due to the faulty condition of our data, we simplified the

problem to a binary domain classification task. The task of the binary classification model

was to determine if the utterance should be handled by a human or the dialogue system.

This was done to see if the binary domain classification task had any success before preceding

with the complete domain and intent classification task. Unfortunately, the results were not

particularly impressive, and we shifted our focus to understand why this was the case.

The goal of this thesis was to find out which sentence representation techniques, combined

with different machine learning models, performed best at classifying the collection of utter-

ances sent from customers to the driving school. We began with a baseline model were the

utterances were represented with Bag-of-words combined with a Logistic regression model.

We then increased the complexity of the sentence representations and machine learning al-

gorithms. For sentence representation we tried Word2vec, Doc2vec and BERT, which was

1https://cloud.google.com/dialogflow/docs
2https://wit.ai/
3https://www.ibm.com/watson
4https://rasa.com/
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pre-trained on Norwegian. We also explored Random forrest, Feedforward neural network,

Recurrent neural network and Long short-term memory as machine learning algorithms. Af-

ter observing the results, we tried to understand why the models did not perform as well as

we initially thought.
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Chapter 2

Machine learning

In this chapter we will explain some general concept within the field of machine learning and

associate them with natural language processing. First will we take a look at what machine

learning is, different categories of machine learning and good practices. Then we will look

at some relevant machine learning algorithms.

2.1 What is machine learning?

Machine learning is the field of study that enables computers to learn from data rather

than being explicitly programmed. Machine learning algorithms are used to train machine

learning models. A model is trained by feeding it data, from which it fits the model’s

parameter, enabling the model to generalize to unseen data. For instance linear regression is

an algorithm that fits a line that minimizes the distance from given data points to the line.

Liner regression is mentioned later in this thesis as well, but will not be further elaborated.

The model can then be used to make predictions or decisions on new data [58, Ch1]. There

are both good and poor generalizations. George Box once said: “All models are wrong, but

some are useful” [44, Ch2.3 p792].

Machine learning can be divided into four categories; supervised, unsupervised, semi-

supervised and reinforcement learning. Each category corresponds with the type and amount

of supervision given during training [58, Ch1 p8]. For the purpose of this thesis, we will ex-

plain supervised and unsupervised learning closer in the following subsections.
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2.1.1 Supervised learning

In supervised learning both the input data as well as the desired output is fed to the ma-

chine learning algorithm during training. The input is usually called features, predictors or

independent variables, and is denoted as X. The output is known as target, classes/labels,

or dependent variables, and is denoted as y [58, Ch1 p9]. The input data usually consist of

numerical or categorical features, or a mixture of both. However, most machine learning

algorithms prefer numerical input [58, Ch2 p69], hence it is usually necessary to encode the

categorical features into a vector of some form. Word embedding, which is a vector represen-

tation of a word, is such an example. We will further explain word embeddings in section

3.3.3.

A model is trained by fitting some parameters to the machine learning algorithm by mini-

mizing a cost function for that specific problem. The cost function is a penalty measurement

for the model, defining a target for the model given the labeled data [58, Ch1 p23]. One

example of a cost function is the log loss function, which we will explain in section 2.2.1.

A model could predict either numerical or categorical output. This is respectively referred

to as regression and classification. Regression is the task of predicting continuous/numeric

values while classification is the task of predicting a class [58, Ch1 p9]. Classification tasks

are involved in many NLP problems (section 4.3.1) and will now be further elaborated.

2.1.1.1 Classification

As mentioned, classification is the task of categorizing an instance as a class/label based

on its features. An example of a classification task are spam filters. Spam filters classify

incoming mail as either “Ham” or “Spam” [58, Ch1 p9]. NLP has many classification related

tasks. For instance, classifying documents or utterances according to their content. Sequence

labeling is the act of classifying a sequence of instances, for example the words in a sentence.

Sequence labeling is therefore especially useful when extracting information preserved in

text. This is done by performing name entity recognition [51, Ch8 p148], which we write

more about in section 3.1.2.
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2.1.1.2 Splitting the dataset into training-, validation- and testing sets

An important step when building machine learning models is splitting the dataset. It is

common to keep a portion of the dataset untouched for the final evaluation of a model. By

doing this we preserve an unbiased evaluation of the final model. This portion of the dataset

is known as the testing set. The remaining portion of the dataset is used to train and tune

the selection of models. A portion of the remaining training set is used for selecting the

best model. This portion is called the validation set and is usually used for hyperparameter

tuning. Hyperparameter tuning is the process of finding the optimal set of parameters for the

machine learning algorithm, so that it can achieve the best possible model. It is common to

use 80% of the data for training and validating, and the remaining 20% for testing. However,

this is a question about the availability of data. If there is a lot of data available, the testing

set may be reduced. Correspondingly, if the dataset is small one should consider increasing

the amount of testing data [58, Ch1 p31-32].

2.1.1.3 Performance measures

Another important step when building machine learning models is to evaluate them for both

fine-tuning the model and for a final measurement of performance [58, Ch1 p32]. Accuracy

is a performance metric that tells you the percentage of correctly classified instances done by

the model. However, accuracy is sometimes a naive approach when evaluating a classifier.

Imagine your spam filter scores an accuracy of 99%, but then it turns out that 99% of your

incoming emails are actually “Ham”. By only classifying your mail as “Ham”, the classifier

would get a high but misleading performance score. Therefore, accuracy is not a good

measurement of performance if the data is skewed or unbalanced, meaning some classes are

much more frequent than others [58, Ch3 p92].

Confusion matrix provide much more insight when evaluating classifiers. This method

presents a matrix that show how many instances where correctly classified, and how many

were misclassified (see Figure 2.1). Correctly classified instances of a class are referred to

as true positives (TP). Correctly classified instances of a separate class are true negatives

(NP). Instances classified as “Ham”, but were in reality “Spam” are known as false negatives

(FN). Lastly, instances classified as “Spam”, but that were actually “Ham” are called false

positives (FP) [58, Ch3 p92].
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Figure 2.1: Example of an confusion matrix summarizing the prediction of “Spam” and
“Ham”.

The confusion matrix gives us an overview over what classes a classifier struggles to classify.

From here, concrete measurements can be taken towards a better performance. If accuracy

does not cover the evaluation of a problem, more complex metrics can be calculated from

the confusion matrix, precision and recall. Precision can be calculated as the following

Precision =
TP

TP + FP
, (2.1)

and estimates what portion of the positive identifications were actually correct. Recall is

another metric

Recall =
TP

TP + FN
. (2.2)

Recall tells us what portion of actual positives were identified correctly. It is common to

combine these metrics to one unified metric, F1 score. F1 score takes both aspects into

account as the following

F1 score = 2 × Precision×Recall

Precision + Recall
. (2.3)

F1 score ranges between 0 to 1, where a score closer to 1 indicates the better model [58, Ch3

p95].
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2.1.1.4 Overfitting and underfitting

One of the main challenges when training machine learning models is underfitting and over-

fitting [58, Ch4 p136]. This is also known as the bias-variance tradeoff (see Figure 2.2).

Overfitting refers to the situation when a model is too complex - fitting the model too

closely to the training data and fails to generalize to unseen data. Underfitting happens

when a model is too simple and therefore fails to model the training data and generalize to

new data [58, Ch1 p28-30].

Bias-variance tradeoff expresses the error made by machine learning models as the sum of

three different types of errors; bias, variance and irreducible errors. Bias is errors due to

wrong assumptions in the learning algorithm. A high-bias model is likely to underfit the

data, for instance using linear regression when the data is non-linear. Variance refers to how

sensitive a model is to variation in the data. A high-variance model is therefore likely to

overfit the data. Lastly, irreducible error is caused by the general noise in the data [58, Ch4

p136].

Figure 2.2: Illustration of bias-variance tradeoff.

2.1.2 Unsupervised learning

Unsupervised learning is machine learning techniques that aim to learn patterns from the

data without human supervision (no labels). Some applications of unsupervised learning

are for example clustering and dimensionality reduction [58, Ch1 p10]. Clustering is the

task of grouping similar instances together [58, Ch9 p238]. Dimensionality reduction aims

at simplifying the data by reducing its feature dimensions, usually by creating and selecting

new ones [58, Ch1 p12]. This is useful for speeding up training of machine learning models

and for visualization of the data [58, Ch8 p216]. Uniform Manifold Approximation and

Projection (UMAP) and t-distributed Stochastic Neighbor Embedding (t-SNE) are both
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dimension reduction techniques used for visualizing high-dimensional data. We are going

to look more into t-SNE in section 2.4.1, and UMAP in 2.4.2. Another application of

unsupervised learning, and quite useful in NLP, is representation learning. Representation

learning are methods that automatically learn features from the data [51, Ch5.1.1 p81]. This

is done through self-supervised learning. Self-supervised learning generates labels from the

available data, which it then uses for training [51, Ch6.8 p113]. Word2vec and other word

embedding methods utilize this technique [63, Ch1.5 p8]. Word2vec and other embedding

techniques will be explained in section 3.3.

2.2 Machine learning algorithms

This chapter will explain different machine learning algorithms that are relevant for this

thesis. We will begin with logistic regression, followed by random forrest and lastly Artificial

Neural Network (ANN), which lay the foundation for the following section about Neural

network architectures.

2.2.1 Logistic regression

Logistic regression is a common supervised learning technique used for binary classification,

i.e distinguishing data into two different classes. It estimates the probability of an instance

belonging to a particular class [58, Ch4 p144]. Logistic regression can also be generalized for

multiple classification. This is known as multinomial logistic regression, or softmax regression

[58, Ch4 p149].

Logistic regression works very similar to linear regression. It computes the weighted sum of

the input features, but then applies the logistic function, which is done as follows:

p(θXT ) =
1

1 + e−θXT . (2.4)

The logistic function outputs a value between 0-1, representing the probability of a class. The

probability is computed via the logistic function p(θXT ) given the model parameters θ and

the transpose input features XT . Logistic regression aims at finding the correct parameter
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that minimizes the cost function J(θ). Logistic regression uses the log loss function, also

known as cross-entropy [58, Ch4 p146]

J(θ) = − 1

m

m∑
i=1

[yilog(p̂(i)) + (1 − yi)log(1 − p̂(i))]. (2.5)

In log loss, m denotes the number of instances, yi denotes correct class of that instance (0

or 1), while p(i) is the probability given by the logistic function.

Log loss is practical when we optimize the cost function according to probability [58, Ch4

p150]. Logistic regression optimizes the model parameters by utilizing optimization algo-

rithms, usually by gradient descent which we will explain in section 2.2.3 [58, Ch4 p146].

2.2.2 Random forest

Random forest is an ensemble learning method used to train classification models. An en-

semble learning method combines multiple models into one model. The ensemble model

makes prediction by taking the average or the majority of prediction from the collection of

models [58, Ch7 p191]. Random forest ensembles multiple models of decision trees, which

will be explained next.

Decision trees are models structured with nodes and edges, resembling trees. Each node has a

decision boundary that defines which edge to follow. Decision trees make predictions, starting

at the root node then proceeds to move down the tree according to decision boundaries. This

continues until it finds a leaf node. A leaf node is at the end of a tree representing the decision

made by the tree, see Figure 2.3. The decision boundaries are defined with a threshold value

for a feature, for example; petal length (cm) ≤ 2.45 [58, Ch6]. We will not elaborate on the

algorithms that create the decision boundaries, but rather give the essence of what they aim

at doing. The algorithm recursively splits the dataset according to one of its feature and its

threshold which produces the “purest” subsets. Purity refers to the portion of similar classes

within each subset. The algorithm continues to split the subset until some stopping criteria

is met. Some of these stopping criteria are maximum depth and minimum samples per leaf

[58, Ch6 p182].
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Figure 2.3: Figure of a decision tree’s decision boundaries and leaf nodes, and is based on
[58, Figure 6.1]

Figure 2.4: Figure of a bagging. Based on [58, Figure 7.4]

Random forest creates a number of decision trees which it ensembles. To obtain diversity
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between the trees and avoid training the same decision tree over and over again, the random

forest utilize a method called bagging. Bagging is also known as aggregated bootstrapping,

which is random sampling with replacement, meaning some instances might be sampled

multiple times, while others not at all [58, Ch7 p195]. Figure 2.4 illustrates bagging, where

different models are created of different bootstrapped datasets. Additionally, random forest

apply random sampling of the features, only taking into account a portion of the available

features in the dataset at each split. The portion is set via a hyperparameter called maximum

features.

2.2.3 Artificial neural networks

Artificial neural networks, or just neural networks, are computational systems that where

inspired by the biological brain [57, Ch1 p13]. ANNs are networks of artificial neurons

connected by edges. The edges are associated with weights, which are the neural networks

parameters. The artificial neurons take the weighted sum of the input edges and applies

an activation function to it [57, Ch1] [58, Ch10]. The activation function introduces non-

linearity to the network, which is necessary for the network to learn complex relationships

[47, Ch1 p11-12]. The most common and recommended activation function is the Rectified

Linear Unit (ReLU)[57, Ch6.1 p171]. ReLU outputs the weighted sum z, if z is higher than

zero. If it is less than zero, ReLU outputs zero; ReLU(z) = max(0, z).

The arrangement of neurons and connections of edges may be structured in many different

ways, creating complex architectures of ANNs. One of the simplest ANN is the perceptron,

see Figure 2.5.

Figure 2.5: Figure of a perception with three inputs.
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Figure 2.6: Figure of a Multi-layer perceptron.

The perceptron takes the weighted sum z of inputs and passes it through the threshold logic

unit (TLU). The TLU takes the weighted sum and applies the step function as the activation

function, to compute the output ŷ [58, Ch10 p281-283]

step function(x) =

0 x < 0

1 x ≥ 0
.

If we stack multiple perceptrons together, we get what is called a Multi Layer Percepton

(MLP) [58, Ch10 p285]. MLPs have one input layer, one or more hidden layers and one

output layer[58, Ch10 p286], see Figure 2.6. Increasing the number of hidden layers in the

network, increases the depth of the network. This concept is what deep learning refers to

[57, Ch6 p165]. Deeper networks are able to learn more complex non-linear functions from

the data [42, p60].

MLP uses gradient decent (see section 2.2.3.1) to train the weights of the network [58, Ch10

p286]. Gradient decent is the most common method to train neural networks [57, Ch1 p17],

and is used to “tweak” the model’s parameter in the right direction.

2.2.3.1 Gradient decent

Gradient descent is an optimization algorithm, which finds the optimal parameters for a

model by “tweaking” them in the right direction iteratively [58, Ch4 p119]. To implement

gradient decent we need to compute the gradient of all the parameters based on the error

given by the cost function, ∇J(θ) [58, Ch4 p123]. Once we have the gradients we nudge the
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parameter in the right direction, and this minimizes the cost function. Gradient decent can

be applied in three different ways; batch-, stochastic- and mini-batch gradient decent.

Batch gradient decent runs through the entire training set, before correcting the parameters.

This method is therefore terribly slow when the training sets are very large [58, Ch4 p123-

125].

Stochastic gradient decent only takes one random instance from the dataset at each step. It

then computes the gradients based on the error produced by this one instance and change the

model parameters accordingly. This makes the algorithm converge much faster. However,

since it is random and only considers one instance is the cost function is very irregular and

bounces up and down. In other words, it will not converge in the same way as batch gradient

decent [58, Ch4 p126-128].

Mini-batch gradient decent is between the two extremes we have just explained. It ran-

domizes and splits the data into smaller portions called batches. For each batch are the

gradients calculated and used to update the models parameters. Mini-batch gradient decent

is therefore both faster than batch and more stable than stochastic [58, Ch4 p129].

To efficiently compute all of the gradients and update every single parameter in a model,

is the backpropagation algorithm used. The backpropagation algorithm is a widely used

method for training neural networks [58, Ch10 p287]. We will explain the backpropagation

algorithm in the next section.

2.2.3.2 Backpropagation

Backpropagation utilizes gradient decent to fit a model’s parameters according to the training

data. It works in two “steps”. The first step is known as the forward pass, where each

instance in the mini-batch is passed through the network and predicted an output for. In

addition to this, all intermediate values are computed throughout the network and preserved

for later. The second step is called the backward pass. Here, the gradient of each parameter

is computed based on the error given by the cost function. It then uses the chain rule

(F ′(g(x)) = f ′(g(x))g′(x)) and the preserved values to efficiently compute the gradient for

each parameter throughout the network [58, Ch10 p287-288].
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Figure 2.7: Figure of backpropagation for a simple perceptron. The perceptron consisting
of one input (x), one weighted edge (w) and one output (y). During the forward pass
the perceptron computes z, the product of w and x, which it applies the ReLU activation
function to and outputs y. The backward pass computes the partial derivatives of the cost
function C, the ReLU function y and the product z.

We will demonstrate backpropagation for a simple perceptron (see Figure 2.7) with a ReLU

activation function.

We use gradient decent to adjust the parameter w according to gradient ∇w calculated from

the cost function C and the learning rate α, as follow

wnew = wold − α · ∇w. (2.6)

The gradient expression can be expanded using the chain rule like this

∇w =
∂C

∂w
=

∂C

∂y

∂y

∂z

∂z

∂w
. (2.7)

We will use the mean square error as the cost function C for this example. The variables we

are going to use are: x = 2.0, w = 2.0, ŷ = 1.0 and α = 0.1. The first step of backpropagation

is the forward pass
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z = w · x = 2.0 · (2.0) = 4.0,

y = max(0, z) = 4.0,

C =
1

2
(y − ŷ)2 =

1

2
(4.0 − 1.0)2 = 4.5.

After the forward pass we preform the backward pass using the computed value y to compute

the gradient, as follow

∂C

∂y
= (y − ŷ)(1) = (4.0 − 1.0) = 3.0,

∂y

∂z
=

z < 0, 0

z > 0, 1
= 1,

∂z

∂w
= x = 2.0.

Once we have all the partial derivatives associated with ∇w following equation 2.7 is the

gradient easy to compute

∂C

∂y

∂y

∂z

∂z

∂w
= 3.0 · 1.0 · 2.0 = 6.0.

With the gradient we can preforme the gradient step using equation 2.6

wnew = 2.0 − 0.1 · 6.0 = 1.4.
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Figure 2.8: Figure of a feedforward neural network with two hidden layers.

Once w have been updated, we can preform a second forward pass to shows that the cost

function have been reduced from 4.5 to 2.42. The perception is then closer at estimating the

actual value.

2.3 Neural network architectures

In this section will we look closer at some of the architecture used in deep learning. First

we will explain the simplest architecture, called feedforward neural network, followed by

recurrent neural network which covers relevant concepts for NLP. Then we will look at the

long short-term memory architecture, and lastly will we explain the transformer architecture,

which made a big impact on the field when it was introduced.

2.3.1 Feedforward neural network

Feedforward neural networks are the same as MLPs, which we have already explained in

section 2.2.3. FFNNs are pretty straight forward, as the network consists of one input layer,

one or more hidden layers and one output layer, see Figure 2.8. It is called “feedforward”

because the information flows in an forward motion; from the input layer, through the

intermediate computations in the hidden layers and then finally through the output layer

[57, Ch6 p1].

A FFNN with at least one hidden layer using any non-linear activation function and with

enough hidden units, will be able to approximate any continuous function mapping from one

dimensional space to another [57, Ch6.4.1 p194].
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Figure 2.9: Unrolled recurrent neural network. The recurrent neural network takes an input
xt, passes it through the hidden layer ht and outputs a value yt. The recurrent connection
allows information to flow from one time step, to another. This figure is inspired by a figure
from Christopher Olah’s blog [33].

2.3.2 Recurrent neural networks

The term recurrent neural networks refer to any type of network that have a cycle within its

network. This meaning that at least one unit within the network is dependent directly or

indirectly on its previous state. The previous hidden state is passed on till the next hidden

state for each time step t, see Figure 2.9. RNNs are hard to interpret and difficult to train

because of this relation. However, they have been proven to be extremely effective with

language [52, Ch9.2 p186]. The cycle, known as the recursive link, work as a memory for

the network. The recursive link is the main difference between RNNs and FFNNs.

One problem with basic FFNNs is that they require a fixed input size and produces a

fixed output size (one-to-one relationship). This is not very convenient when processing, or

generating text, and the same can be said for any type of sequential data. As mentioned,

the recursive link in an RNN works as a memory. This enables the network to remember

sequential data, and overcomes the limitations of fixed lengths [52, Ch9.2 p187]. RNNs

therefore enable a framework where more complex architectures are possible; many-to-one,

one-to-many or many-to-many [35] [57, Ch10.2 p372], see Figure 2.10.

RNNs are convenient networks for a range of NLP tasks. The many-to-one design is useful

for sequence classification and for language models, see more in section 3.1.1. If we combine

the many-to-one design with the one-to-many design, we get an encoder-decoder network.
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Figure 2.10: Overview of some designs possible with recurrent neural networks. The rect-
angles represent vectors while the arrows are functions. Blue rectangles are input vectors,
green are hidden state vectors, and the orange are output vectors. (1) One to one illustrates
feedforward neural networks with a fixed input and output size. (2) Many to one is a useful
design for sequence classification as it takes a sequence in and outputs a label. (3) One to
many is suitable for generating image caption since it can take an image as input and output
a image caption text. (4) The many to many design takes a sequence as input and also
outputs a sequence and is therefore useful for sequence labeling. The figure is inspired by a
figure from Computer Science Ph.D Andrej Karpathy’s blog [35].



Encoder-decoder network is useful for NLP tasks like question answering and machine trans-

lation [52, Ch10.3 p219]. The input, for instances a sentence in a given language, is encoded

into a contextualized representation, and then decoded into the same sentence in another

language. The many-to-many design is also suitable for sequence labeling, where each item

in a sequence is given a labeled. We will explain more about sequence labeling in section

3.1.2.

A plain RNN will quickly run into some challenges. The first challenge is learning backwards

in time. Due to the nature of the recurrent connections the gradients backwards in time

will gradually vanish. Meaning the network will take very long, or fails at learning what

information is important to carrying forth or not [59, Ch1 p1]. This is known as the vanishing

gradients problem [52, Ch9.6 p198]. Because of the vanishing gradients, it is quite challenging

to perform backpropagation backwards in time. The gradients become smaller and smaller

further back in time, until they eventually are driven towards zero [52, Ch9.6 p198]. When

the gradients are zero, the network does not learn. Lastly, due to the nature of RNNs, they

are very slow to train. This is because they operate on sequential data which is hard to

compute in parallel [52, Ch9.6 p200]. More complex architectures have been designed to

overcome these problems, among them are the long short-term memory, which we well look

at in the next section, and the transformers which we will look at in section 2.3.4.

2.3.3 Long short-term memory

Long short-term memory is a recurrent network architecture designed to overcome the van-

ishing gradients problem which occurs in regular RNNs [59, p1] [52, Ch9.6 p198].

LSTM introduce memory cells and gate units, which it utilizes alongside the hidden states.

The memory cells, sometimes referred to as context, is a vector where information may be

written to or read from. This information flow is regulated by the gate units [59, Ch4 p6]

[52, Ch9.6 p198]. These are the following gate units; the forget gate, the input gate and the

output gate, see Figure 2.11.

The first gate unit is the forget gate. The forget gate concatenates the previous hidden state

ht−1 and the input xt and runs it through a sigmoid layer. The forget gate creates a vector

ft with values between 0 and 1 which it multiplies with the memory cells Ct. Values in

ft indicates how much of each cell it should forget. The second gate is the input gate. It
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Figure 2.11: Figure illustrating the logic happening inside an LSTM block. The green
rectangles represents neural networks layer with the given activation function, while the
orange circles are pointwise operations. (1) The forget gate. (2) The input gate. (3) The
output gate. The figure is inspired by a figure from Christopher Olah’s blog [33]

computes what information to add to the memory cells. It does this by computing candidates

it using a sigmoid layer, which is then multiplied with the information C̃t and then added

to Ct, updating the memory cell. C̃t is a layer with tahn activation function. Both it and

C̃t is computed from ht−1, xt and ht. The last gate unit is the output gate. The output

gate decides what to output (ht) by computing candidates ot from xt and ht−1, which it then

multiplies with tanh(Ct). tanh(Ct) scales the value of the memory cells Ct to be between -1

and 1 [33] [52, Ch9.6 p198] [57, Ch10.10.1 p404].

The recurrent connection of memory cells become a loop known as the Constant Error

Carousel (see Figure 2.12). The constant error carousel overcomes the vanishing gradients

problem by keeping a constant error flow equal to 1.0 throughout each time step with the

identity function, enabling the gradient to flow directly through the network [59, Ch3.2 p5]

[70, Ch8.1 p19] [57, C10.10.1 p405].

2.3.4 Transformers

Transformers are neural networks with an encoder-decoder architecture. They are based

around the problem with recurrent networks and the success of attention mechanism in

encode-decoder models [73, p1]. Transformers are designed to handle sequential data like

RNN, but are not recurrent. Since they are not recurrent, they instead use positional encoding

to keep track of the sequential order (we will not elaborate on positional encoding) [73, Ch3.5]

[52, Ch9 p185]. Avoiding recurrent computations enables the transformer to be parallelized,
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Figure 2.12: Figure of a LSTM block, illustrating the Constant Error Carousel (CEC) which
is a loop of the memory cells allowing the gradients to flow directly through the network
overcoming vanishing and exploding gradients. (1) The forget gate. (2) The input gate.
(3) The output gate. The figure is inspired by [57, Figure 10.16]

significantly reducing the time and resources they demand during training and usage [73,

Ch1 p2].

Attention is the ability to compare an item of interest to other items within the same

sequence. The simplest form of attention is the dot-product between two items represented

as vectors (xi and xj). The dot-product is a scalar value indicating the similarity of the

items. The larger the value, the more similar the items are [52, Ch9.7 p201]. The more

similar an item is, the more attention it is given. Attention is used to reinforce or reduce

the information of an item taken into account when performing computations. We will

demonstrate this with a very simple equation based on the equations in [52, Ch9.7 p201];

yi =
n∑

j=1

dot(xi, xj)xj (2.8)

The output yi is computed as the sum of attention dot(xi, xj) multiplied with xj for all n

elements. Figure 2.13 illustrates a simple visualization of attention.

The transformer uses an attention mechanism called self-attention. Self-attention helps relat-

ing different positions over long distances of the same input sequence to compute a sequence

representation [50] [73, Ch2 p2]. To compute the attention, the transformer uses scaled

dot-product attention. It is similar to what we just explained (equation 2.8), but includes

scaling (dk), normalization via softmax and some additional features. In scaled dot-product
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Figure 2.13: Illustration of how attention weights different words in a sentence given the
word of interest.

attention, items are mapped via trainable networks into three different roles that the items

play in attention; query, key and value. The items then play the different roles depending

on what item is the one of interest at any given moment in the process. Query is the repre-

sentation of an item of interest, while Key is the item representation being compared with

the query. The dot product of the query and keys is then computed and normalized, as the

attention. Finally, Value is the representation of the actual value of an item being mapped

with the attention [73, Ch3.2.1]. The queries are kept in matrix Q, keys in K and values in

V . The attention function is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.9)

Transformers take the scaled dot-product attention a step further by stacking several layers

of them together. Each layer then learns different relationships between items. The stacked

layers are called a multi-head attention layer [73, Ch3.2.2 p4] [52, Ch9.7.2 p206], see Figure

2.14.

The multi-head attention layer plays a major role in both the encoder and decoder part

of the transformer [73, Ch3]. The encoder consists of N identical layers, composed of two

layers. First layer is a multi-head self-attention mechanism, followed by a FFNN. Both layers

have a residual connection with a normalization layer. The decoder is also a stack of N (see

Figure 2.15) identical layers. The decoder have the same layers as the encoder, but have also

a third layer. The third layer is an multi-head attention over the output from the encoder.

Each layer in the decoder have an residual connection followed by a normalization layer [73,

Ch3.1 p3].
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Figure 2.14: Figure of the architecture for the Scale Dot-Product Attention (left) and the
Multi-Head Attention (right). This figure is based on [73, Figure 2].

2.4 Dimensionality reduction methods

As mentioned in section 2.1.2, dimensionality reduction is considered an unsupervised learn-

ing task. It is usually used for compression, feature extracting or visualization. This is done

by reducing the dimensions of the data [58, Ch1 p12] [58, Ch8 p216]. In this section we will

explain two useful visualization techniques; t-distributed Stochastic Neighbor Embedding and

Uniform Manifold Approximation and Projection. Both t-SNE and UMAP are non-linear

dimension reduction techniques. However, the interpretability of the data is lost when ap-

plying non-linear reduction techniques, meaning the new dimensions in lower space have no

specific meaning [64, Ch6 p45].

2.4.1 t-SNE

t-SNE aims at keeping similar instances close and dissimilar instances apart when performing

dimensionality reduction [58, Ch8 p235]. t-SNE computes the conditional probability of

all the neighboring points under a Gaussian distribution in high-dimension, and then tries

to compute a similar conditional probability distribution for the same neighbors in lower

dimensional space. The points are initially mapped randomly onto lower dimension space.
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Figure 2.15: Figure of the transformer architecture. This figure is based [73, Figure 1].

Then similar instances are moved closer to each other, and dissimilar instances moved apart,

iteratively [72, Ch2 p2581]. The lower dimension conditional distribution uses student’s t-

distribution rather than Gaussian. t-SNE also uses gradient decent to minimize the cost

function for making the lower dimension conditional probability distribution as similar to

the high dimensional distribution as possible.

For a while, t-SNE was the state-of-the-art dimensionality reduction technique used when

visualizing, until UMAP was proposed. UMAP is arguably better at preserving the global

structure of the data, and is faster to train then t-SNE [64, Ch5.1 p30, Ch8 p50].

2.4.2 UMAP

UMAP works very similarly to t-SNE. The difference between them is mainly linked to

how the high-dimensional space is computed and how the algorithms optimize the lower-

dimension representation. UMAP constructs a high-dimensional graph representation called
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“fuzzy simplicial complex”. This is just a graph where the weighted edges are the likelihood

of two points being connected. UMAP then optimizes to make the lower-dimension as similar

to the graph representation as possible. We will not further explain the algorithm used by

UMAP. UMAP preserves more of the global structure, is faster and more scalable than t-SNE

[64, Ch8 p51] [34].
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Chapter 3

Natural language processing

Natural language processing is a subfield of linguistics and computer science (mainly artif-

ical intelligence), considering interactions between human language and computers. NLP

techniques allow computers to understand human language via text or speech and communi-

cate back in human language [62, vii]. Typical applications for NLP are speech recognition,

dialogue systems (section 4.2), information retrieval, question answering, and machine trans-

lation. All of these applications are strongly impacted by deep learning [62, vii].

3.1 NLP tasks

In this section will we briefly explain two specific NLP tasks relevant for dialogue systems.

First we will explain language models, which are relevant to how modern semantic repre-

sentations are made. Secondly we will explain name entity recognition which is used for

information extractions.

3.1.1 Language models

Language models are models that assign probability to a sequences of words, based on what

words they have already seen. N-grams models are a simple example of this: Given the

sequence of words (the n-gram), what is most likely to be the next word? Today the state-

of-the-art language models are usually based on RNNs and transformers [52, Ch3.1 p31] [63,
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Ch4.3 p61]. The learned probability distributions can then be used as a vector representation

of the words (word embeddings), and may be further used in other natural language tasks.

The vector representation is beneficial since the vector representation has a smaller amounts

dimension and gets rid of the sparsity [63, Ch1.4 p5].

3.1.2 Name entity recognition

Named entity recognition (NER) is the task of labeling a sequence with tags. Named entity

is anything that can be referred to with a tag; name, date, place, etc. [52, Ch8.3 p164]. A

sequence is run through a model and outputs a sequence of tags of the same length as the

input. The named entities can then be extracted based on the tags. This task is known as

sequence labeling. RNNs are quite suitable for such tasks [52, Ch8 p159], as we mentioned

in section 2.3.2. The many-to-many architecture in Figure 2.10 illustrates how this could be

done.

3.2 Text normalization

Text normalization is usually performed before almost any NLP task, and is also referred to

as text preprocessing [52, Ch2.4] [67, Ch2.1 p10]. Text normalization is necessary to convert

the text into a more convenient standard form [52, Ch2 p2]. Some common steps of text

normalizing are tokenization and normalizing word formats [52, Ch2.4 p14].

3.2.1 Tokenization

Tokenization is the task of separating words from the text, referred to as tokens. Words are

usually separated with whitespace, but the seperation can in some cases be more challenging.

For instance; I’m should be divided into I and am. Sometimes we would like to segment

multiple words into one token; New York and rock ’n’ roll for example. In some languages,

like Japanese, words are not even separated by whitespace, which makes tokenization a bit

more challenging [52, Ch2 p2-3]. However, these examples are less relevant for Norwegian.

After the text has been tokenized, different techniques may be applied on the tokens to nor-

malize the text. Depending on the task, different compositions of normalization techniques

are used to preprocess the text into a suitable format [52, Ch2.4.4 p20] [31].

30



3.2.2 Normalizing word formats

As mentioned, there are different techniques to normalize the text. The simplest technique

is case folding. In case folding every token is converted into lowercase. “Hello” is converted

into “hello” and both versions of the word are now the same token [52, Ch2.4.4 p21]. In the

following we will go through several normalization techniques including lemmatization and

stemming, stop word removal and noise removal.

Lemmatization is the process of reducing the inflectional form of a word to its lemma (root

word). For instance, am, are, and is have the same lemma be. Lemmatization could be

done via a dictionary lookup. Stemming is a simpler but cruder method for reducing the

inflectional forms. It does this by chopping the ends of words to get their stem (the form

of the word with all inflectional affixes removed), and hoping it gets it right [30] [52, ch2

p3, Ch2.2.4 p20-21]. The result of either performing stemming or lemmatization of selected

words is shown in Table 3.1.

Table 3.1: Table comparing the result after performing either stemming or lemmatization of
selected words.

Word Stemming Lemmatization
Love Lov Love
Loves Lov Love
Loved Lov Love
Loving Lov Love
Innovation Innovat Innovation
Innovations Innovat Innovation
Innovate Innovat Innovate
Innovates Innovat Innovate
Innovative Innovat Innovative

Stop word removal is the process of removing highly frequent words that may carry little

semantic value. These words are called stop words and are collected into a stop list that is

used to filter the words from the text [51, Ch23.1.2 p468]. There are however no universal

list or agreed upon rules on what words to include in your stop list. Some cases can use a

list of 9 words, others a list of 571 [67, Ch19.2.2.2 p458].

Noise removal is the process of removing what is considered as unnecessary noise for a specific

task. This might be as simple as disposing punctuation, or removing html syntax [31].
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3.3 Semantic representation

Most NLP related tasks rely on semantic representation of words, phrases, sentences or

documents. These representations typically appear in vector form. In this section we will

start off by explaining the distributional hypothesis (section 3.3.1), and sparse and dense

vectors (section 3.3.2). Then will we explain some of the techniques used for creating word

(3.3.3) and sentence representations (3.3.4).

Section 3.3 is inspired by the blog From Words To Vectors [12]

3.3.1 Distributional hypothesis

A very simple, but extremely profound concept in NLP is the distributional hypothesis. The

distributional hypothesis is elegantly summarized by John R Firth [55]:

”You shall know a word by the company it keeps.”

The distributional hypothesis is the basis for semantic word representation learning. Fol-

lowing the hypothesis one can project the semantic meaning of a word into vector space

[63, Ch2.3 p14, Ch3.1 p43]. This representation of a word in terms of a vector is known as

word embeddings [52, Ch6 p102]. Words that occur in similar context, tend to have similar

meaning [51, Ch6 p96]. Hence, they tend to appear closer in vector space. These represen-

tations are usually projections to vector space [63, Ch3.2 p45]. Word2vec (section 3.3.3.4)

for instance, utilizes this concept [63, Ch2.1 p14]. Figure 3.1 shows an example of positive,

negative and neutral words representations, projected into 2D-space for visualization.

3.3.2 Sparse and dense

We can categorize vector representations into sparse and dense [51, Ch6.13 p123].

Sparse refers to vectors, matrices or tensors usually of high dimension where most of the

values are zero. High-dimensional sparse vectors are very ineffective to work with considering

these vectors carry little information and take up a lot of storage [15].

Dense vectors, in terms of semantic representations, refers to vectors with only 50-1000

dimensions containing real-valued numbers rather than mostly zeros. It turns out that dense

vectors perform better in every NLP task. The intuition behind this is that a classifier has

fewer parameters to learn which helps with generalization and avoids overfitting. Moreover,

dense vectors do a better job at capturing similarities between words [51, Ch6.8 p112].
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Figure 3.1: Visualizing an example of projecting positive, negative and neutral words in
vector space. The axis function only as a coordinate system for how words roughly relate to
each other. This figure is based on [52, Figure 6.1]

3.3.2.1 Distributed representation

Distributed representation refers to object representation produced by deep learning algo-

rithms. Distributed representation are typically low-dimension, dense vectors [63, Ch1.1 p2].

For example, word2vec learns a distributed representation of words [63, Ch3 p2]. Distributed

representation of words has significantly improved the performance of almost all NLP tasks

[63, Ch Preface p vi].

3.3.3 Word representation

Word representation, aims at representing words in vector-space. As mentioned, these vector

representations are what is known as embeddings [51, Ch6 p96]. Sometimes embeddings refer

more strictly to dense vectors like word2vec (3.3.3.4), rather than sparse vectors [51, Ch6.2

p100]. You could either train a new embedding based on your corpus with for example

word2vec, or use a pre-trained embedding, like BERT (3.3.3.6). A corpus is a computer-

readable collection of text or speech [52, Ch2.2 p11].

3.3.3.1 Basic numbering

The initial thought when one thinks of representing words for a machine learning algorithm,

might be a alphabetical numbered list of the corpus vocabulary. The vocabulary is a list of
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distinct words within the corpus and is denoted as V [51, Ch2.2 p12] (see Table 3.2). However,

this enumerated representation carries no meaning. Also, it does not handle words that are

not within the vocabulary, also including misspellings. These words are known as Out Of

Vocabulary (OOV), unknown words. Lastly, the semantic ordering usually gives a misguiding

relation between the words. This is a drawback considering that machine learning algorithms

might pick up this relation and evaluate the words according to the semantic order [37].

Table 3.2: Example of encoding each word with a unique number.

Word Value
A 1
... ...
Bil 23
... ...
Kjøretime 534
... ...
Sertifikat 1243
... ...
Trafikk 1323

3.3.3.2 One-hot-encoding

One-hot encoding avoids the ordered relationship by treating each word individually. Words

are represented as a vector with the same dimension as the vocabulary. Each dimension/in-

dex corresponds to a unique word in the vocabulary. Only one index can be “1” at the

time. The remaining dimensions are “0” [63, Ch2.2 p14]. For example: “The quick brown

fox jumps over the lazy dog” would result into the matrix shown in Table 3.3.

Table 3.3: One-hot encoding of the phrase “The quick brown fox jumps over the lazy dog”.

Word One-hot
the [1, 0 ,0 ,0 ,0 ,0, 0 ,0]
quick [0, 1 ,0 ,0 ,0 ,0, 0 ,0]
brown [0, 0 ,1 ,0 ,0 ,0, 0 ,0]
fox [0, 0 ,0 ,1 ,0 ,0, 0 ,0]
jumps [0, 0 ,0 ,0 ,1 ,0, 0 ,0]
over [0, 0 ,0 ,0 ,0 ,1, 0 ,0]
the [1, 0 ,0 ,0 ,0 ,0, 0 ,0]
lazy [0, 0 ,0 ,0 ,0 ,0, 1 ,0]
dog [0, 0 ,0 ,0 ,0 ,0, 0 ,1]
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However, one-hot encoding have some problems. Firstly, the vectors quickly become very

high-dimensional and sparse. Norwegian has over 300,000 words [6] and encoding a Norwe-

gian word would result in a 300,000-dimension vector with only one index as “1”. One-hot

encoding also does not capture any semantic relation between words. They are all indepen-

dent units and are equally distanced apart in vector space. Meaning, “apple” has the same

relation to “banana” as it has with “cat” [63, Ch2.1 p13]. One-hot encoding does not solve

the OOV problem either.

3.3.3.3 Latent semantic analysis

Latent semantic analysis (LSA), sometimes referred to as Latent semantic indexing (LSI)

[52, Ch6 p131], learns word representations from the term-document matrix. The term-

document matrix has rows of words and columns of documents. Each row has cells carrying

the frequency of a word/term in each documents [52, Ch6.13 p129], see Figure 3.2. LSA

applies Singular value decomposition (SVD), and factorizes the term-document into three

matrices.

M = EΣDT (3.1)

M is the term-document matrix. E corresponds to the word embeddings, D to the document

embeddings, and Σ the singular values/importance. Each row vector in E represents a word

that corresponds with a term in M . The word embeddings are represented as a distribution

of topics, hence it is a dense vector. How important a topic is, is defined by the singular

value. We can remove a portion of the less important topics, to reduce the vector size of the

embeddings [63, Ch2.3.2 p17].

3.3.3.4 Word2vec

Word2vec is a toolkit proposed and released by Google in 2013 [63, Ch2.3.3 p18]. In the

paper where word2vec was introduced, two very similar neural network architecture models

were proposed for learning distributed representations of words. These models are known as

continuous bag-of-words (CBOW) and the Skip-gram [63, Ch2.3.3 p18]. The paper observed

large improvements in accuracy using these methods, and that they achieved this at a much
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Figure 3.2: Illustration how SVD is used in LSA to generate word and document represen-
tations distributed as topics. This figure is base on a figure found in the blog post; Latent
Semantic Analysis using Python [18].

lower computational cost [71, p1]. Word2vec was for a while the de facto for word embedding

[36].

Both the CBOW and Skip-gram are shallow neural networks. They only consist of one input

layer, one hidden/projection layer and one output layer [71, Ch3.1 p4]. The dimension of the

hidden layer is between 50-100, while the input and output layer have the same dimension as

the vocabulary [71, Ch1.1 p2]. The input word/words are encoded using one-hot encoding

of the vocabulary. The output is also one-hot encoding, using a softmax function to predict

the correct word. After training, the final embeddings are stored in the projection matrix,

the weights between input layer and projection layer [71, Ch2.1 p3] [41].

CBOW learns the embeddings by predicting the center word given the context, see Figure

3.3. By context we mean words surrounding a word within a window. The window is

a hyperparameter and is denoted as C. The window defines the range of precursing and

subsequenting words to include during training. Training is achieved by finding the optimal

parameters for the model that maximizes the log-likelihood function:

L =
1

T

T∑
t=1

log p(wt|wt−C , ..., wt−1, wt+1, ..., wt+C). (3.2)

The network computes the softmax function denoted as p(wa|wb). The model is then fed a

sequence of training words [w1, w2, w3, ..., wT ] to process [71, Ch2.1 p3] [41]. Skip-gram is

very similar to CBOW, but instead learns the embedding by predicting the context given a

target word, see Figure 3.3. Skip-gram is also fed a sequence of training words, but optimizes

its parameters to maximize the average log probability
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Figure 3.3: Illustration of the CBOW and Skip-gram architecture. CBOW predicts a target
word w(t) given the context. Skip-gram predicts the context given the target word w(t).
This figure is based on [71, Figure 1]

.

L =
1

T

T∑
t=1

∑
−C≤j≤C,j ̸=0

log p(wt+j|wt). (3.3)

Increasing the range of the context/window, improves the quality of skip-grams word em-

bedding, but also increases the computational complexity. [65, Ch2 p2-3]

Skip-gram is better at capturing semantic relationships, while CBOW is slightly better at

syntactic relationships. However, Skip-gram takes much longer than CBOW to train [71].

Word2vec also demonstrated the analogical properties hidden within the embeddings. By

performing simple algebraic operations like; King − Man + Woman, it would result in

a vector very close to Queen [66]. Figure 3.4 illustrates the vector location of “Man”,

“Woman”, “King” and “Queen”, and how they relate.

The distributional representation provided by word2vec is much better than our previous

representation techniques [71, Ch1 p1]. Still, the word embedding is restricted by the vo-

cabulary and does not solve OOV (3.3.3.1). Word2vec embeddings are static embeddings,

meaning the model learns a fixed representation for each word [51, Ch6.8 p112]. So how

do we distinguish between “Apple” the fruit and “Apple” the company? This is where

Contextualized word embedding come in.
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Figure 3.4: Illustration showcasing the relationship between “woman”,and “queen”, com-
pared with the relation between “man” and “king” in vector space.

3.3.3.5 Contextualized word embedding

NLP took a big leap in 2018 when pre-trained language models like BERT, Generative Pre-

trained Transformer (GPT) and Embeddings from Language Models (ELMo) came out. Pre-

trained language models are trained on a large corpus, use more advanced architectures

and more computing resources, than static embeddings like word2vec. They also take into

account the context of the words, which results in a complex dynamic representation of

words based on their surrounding words. This is especially useful when a word has multiple

meanings. A new trend also emerged along with pre-trained language models. We can

now use the pre-trained language models for new NLP tasks and achieve state-of-the-art

performance by extracting embeddings or fine-tune the models for the specific task [63,

Ch1.4 p6]. Fine-tuning is the process of taking a pre-trained model and further train it,

usually with some extensions of the network. The model is trained for a new specific task,

but utilizes the perception of language within the pre-trained model [52, Ch11 p243].

Pre-trained language models had huge success and got a lot of attention in the NLP and

machine learning communities [63, Ch1.4 p6]. Both BERT and GTP were inspired by the

success of transformers (section 2.3.4), which they use [63, Ch4.4.4.2 p67].
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3.3.3.6 Bidirectional encoder representations from transformers

BERT is a language representation model. It is a multilayered bidirectional transformer

encoder based on the architecture we explained in section 2.3.4. It consists of multiple layers

of transformer blocks that make up the encoder [54, Ch3]. BERT’s framework was designed

to pre-train a bidirectional representation of text, followed by fine-tuning the model for

different tasks. BERT is pre-trained using two supervised tasks; masked language modeling

and next sentence prediction [54, Ch3.1]. In masked language modeling, a certain percentage

of the input tokens are masked, and the model predicts these masked words. In sentence

prediction the model aims at predicting which one out of two possible sentences is the correct

following sentence [54, Ch3.1]. BERT’s input and output representation use WordPiece

embedding [54, Ch3]. WordPiece divide words into a limited set of common sub-words called

WordPieces [74, Ch Abstract]. For example, “embedding” is split into “em”, “##bed,”

and “##ding”. When the model sees a new or misspelled word, it might have learned a

representation of that word’s subwords. This solves the problem with OOV. Additionally,

this reduces the input/vocabulary size of the embedding as WordPiece only has a vocabulary

of 30,000 tokens [54, Ch3].

3.3.4 Sentence representation

Sentence representation is an important task for many NLP applications. For example,

text summarizing, machine translation, sentimental analysis and dialogue systems all in-

clude/use sentence representation [63, Ch4 p59]. Before the deep learning era, sentences

were represented as one-hot-encoded vectors, bag-of-words or term frequency-inverse docu-

ment frequency (tf-idf) [63, Ch4.1 p59].

3.3.4.1 Bag-of-words & TF-IDF

Bag-of-words is a simple and common method for representing sentences and documents.

BoW have the same length as the vocabulary. Each index represents a word, as with one-hot

encoding, and the corresponding value is the frequency of that word in the sentence/docu-

ment (see Table 3.4). Simplified, BoW is the same as summing up all the one-hot encodings

occurring in a sentence [63, Ch5.2 p92].

39



Table 3.4: Example of bag-of-word inspired by a figure found in the blog; Spam Filtering
Using Bag-of-Words [29].

Sentences the red dog cat eats food
the red dog 1 1 1 0 0 0
cat eats dog 0 0 1 1 1 0
dog eats food 0 0 1 0 1 1
red cat eats 0 1 0 1 1 0

Tf-idf is a method that enhances bag-of-words ability by weighting the importance of words

in a document [63, Ch5.2 p93]. Tf-idf does this by punishing highly frequent words across

documents, and reward highly frequent words occurring only in few documents. By doing

this, we get rid of words that appear regularly but has little meaning, such as; “a”, “an”

and “the” [63, Ch4.2 p60]. Tf-idf is calculated as following:

tft,d = log10 (term-document matrix + 1)

idft = log10

N

dft

tf-idf(t, d) = tft,d · idft

(3.4)

Tf-idf is the product of the term frequency (tf ) and indirect document frequency (idf ). dft

is the document frequency of a term t, and N the total number of documents [52, Ch23.1.1

p496].

Both BoW and tf-idf have two main issues. The vector space quickly becomes sparse and of

high dimensions. Secondly, the sequence of words and their semantic meaning are not taken

into account. This means that “Alice stole from Bob” is equal to “Bob stole from Alice”

[63, Ch4.1 p59-60]. A simple approach to overcome the sparsity could be done by taking the

average of all the word embeddings, for instance by using word2vec. However, this approach

still ignores the order of the words [61, Ch1]. To preserve the information about the word

order we can therefore use a language model such as doc2Vec.

3.3.4.2 Doc2vec

Doc2vec is inspired by word2vec and created by the same lead author. It has two algorithms;

distributed memory, which is similar to CBOW, and distributed bag of words, which is similar

to Skip-gram. Figure 3.5 illustrates their architectures.
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Figure 3.5: Illustration of distributed memory and distributed bag of words. This figure is
based on [61, Figure 2, Figure 3] [61]

Both models create a distributed representation of sentences and documents. Distributed

memory is considered to consistently work better than distributed bag of words [61, Ch3.4].

The representations may further be fed to any conventional machine learning techniques as

features for analyzing or solving tasks [61, Ch2.2].

3.3.4.3 BERT for sentence representation

BERT is also viable for sentence and document representation. BERT was trained to un-

ambiguously represent a single or a pair of sentences. The paper that introduced BERT

defines a “sentence” as “an arbitrary span of contiguous text, rather than an actual linguistic

sentence”. The “sentence” is converted into a “sequence” of tokens. There is then added a

special token ([CLS]) in front of every sequence. This special token is known as the clas-

sification token and is the aggregated representation of the sequence. It may be used for

classification tasks. Another special token is ([SEP ]). This token is used when we pass a

sentence pair to BERT. This is for instance useful for question-answer tasks [54, Ch3].

3.3.5 Document representation

Document representation aims at capturing the semantic information of a whole document;

blog, article, paper etc. We have already covered some methods for document representation;

bag-of-words, tf-idf and doc2vec. Another approach for document representation is topic

modeling. Topic modeling is an unsupervised machine learning technique that finds hidden

semantic structures across documents. It is helpful for understanding large amounts of data

and searching/clustering similar documents [63]. Latent dirichlet allocation (LDA) is perhaps

the most common method. In LDA, each document is represented as a distribution of topics,

and each topics is a distribution of words, see Figure 3.6.
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Figure 3.6: Illustration comparing bag-of-word and latent dirichlet allocation. This figure
is base on a figure found in the blog post; Topic Modeling with Latent Dirichlet Allocation
[32].



Chapter 4

Dialogue systems

This chapter covers what a dialogue system is, the two categories dialogue systems fall

into, and the modern standard architecture for a dialog system, namely the dialogue-state

architecture.

4.1 What is a dialogue system?

Dialogue systems, sometimes called conversational agents or virtual agents [62, Ch3 p49],

are programs that interact with human users via natural language [52, Ch24 p521]. They

may also be referred to as chatbots. However, in [52, Ch24] and this thesis chatbots refer to

a category of dialogue systems, see section 4.2.1.

Dialogue systems may be used for a range of applications, like educational environments,

customer service, health care and industrial use cases. In education, dialogue systems can be

a personal assistant for students providing educational support and content, as well as helping

with administrative issues. Dialogue systems can also be available 24 hours for customer

support. Further more, they can be of assistance in health care, providing information

about illness, symptoms, treatment, products and services. Another useful application of

dialogue system, they could be used to handle booking reservations for restaurants [40, Ch8

p13-15].
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4.2 Dialogue system categories

Dialogue systems can be divided into two categories; chatbots and task oriented-dialogue

systems. Chatbots, also known as a non-goal-oriented dialogue systems or open-domain

dialogue systems, are used to simulate human conversation, usually for entertainment. A

task-oriented dialogue system, or goal-oriented dialogue system aims to help users complete

tasks through dialogue [52, Ch24 p521]. Since the two different categories serve different

purposes, they also have different system designs and components [62, Ch3.1 p50] [76, p1].

4.2.1 Chatbots

Chatbots are the simplest type of dialogue systems. They have the main goal of mimicking

human conversation by picking the most likely response based on the utterance from the user.

They are mostly used for entertainment. There are two types of architecture for chatbots;

rule-based and corpus-based [51, Ch24.4 p496]. It is also possible to combine both methods

into a hybrid architecture [51, Ch24.2.3 p503-504].

The rule-based architecture uses rules, or patterns, to recognize different phrases which are

then transformed into responses. Rule-based systems have been around for a long time

and are still used today [51, Ch24.2.1 p498-500]. ELIZA is considered to be the first and

most important chatbot in the history and was developed in 1966. ELIZA used rules to

imitate a Rogerian psychologist where patients statements are reflected back at them [52,

Ch24.2.1 p527]. Pandorabots is a modern platform for developing dialogue systems and is

based around artificial intelligence markup language (AIML) [24]. AIML is an extension of

the markup language XML and is used to define the rules in the dialogue system [3].

Corpus-based systems rely on human-to-human conversation instead of rules. They are

very data-intensive and require a lot of it for training. The system responds to users by

using retrieval or generative methods. Retrieval methods finds and copies the most suitable

response from the corpus. Generative methods generate a response, usually with the help of

a language model or a encode-decoder model [51, Ch24.2.2 p500-503].

44



4.2.2 Task-oriented dialogue system

Task oriented dialogue systems try to solve a specific task within a domain as efficiently as

possible. The task is given by the user through language, either as text or by speech. The

tasks usually involve finding information within a database and presenting it to the user,

gathering information from a user, or performing certain actions [53, Ch3.1 p760-761].

Most modern task-oriented dialogue systems are based on the dialogue-state architecture,

also called the belief-state architecture. The dialogue-state architecture revolves around

frames [52, Ch24.3 p534, Ch24.4 p537-538]. Frames are data structures that capture the

semantic representation of what the user utters or queries. Each frame has a collection of

slots that need to be initialized, specifying what the dialogue system needs to know [52,

Ch24.3 p534] [62, Ch2.1 p25].

4.3 The dialogue-state architecture

The Dialogue-state architecture consists of six components. Automatic speech recognition,

natural language understanding (4.3.1), dialogue-state tracker (4.3.2), dialogue policy (4.3.3),

natural language generation (4.3.4) and text-to-speech. A system with all of the components

is known as a spoken dialogue system. The pipeline of a spoken dialogue system is shown in

Figure 4.1. This thesis will not elaborate more on the automatic speech recognition and text-

to-speech components. However, the four remaining components will be further explored in

this chapter, and makes up what is called a textual dialogue system [51, Ch24.4 p508-509].

Sometimes the dialogue state tracker and dialogue policy are combined into one component.

This component is called the dialogue manager. The dialogue manager has the same purpose

as the dialogue state tracker and the dialogue policy in one [62, Ch3.1 p50] [53, Ch3.3 p763].

4.3.1 Natural language understanding

Natural language understanding is the first component of a dialogue system. It tries to

capture a semantic representation of a user’s utterance by solving three tasks; domain clas-

sification, intent determination and slot filling. Domain classification refers to the process of

defining the domain within what the user is talking about. Is the utterance about restaurants
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Figure 4.1: Pipeline of the spoken dialogue system consisting of; automatic speech recogni-
tion (translates speech to text), natural language understanding (creates a sentence represen-
tation from the utterance), dialogue state tracker (tracks the state of the dialogue), dialogue
policy (chooses what action to perform next), natural language generator (generates the
response) and text-to-speech (generates speech based on the response).



Figure 4.2: An example of a frame extract from the utterance “Show me morning flights
from Boston to San Francisco on Tuesday”. The key to each slot is listed in the left column,
while the key-values are listed in the right column. This example is taken from [51, Ch24.3.2
p506].

or airlines? Intent determination aims at figuring out what the user wants to accomplish.

Does the user want to book a flight or ask for the weather tomorrow? The last task is

slot extraction and aims at extracting any parameters given in the users utterance. These

parameters are then used to fill slots belonging to the respective intent. For instance, to

provide a weather forecast, the system would need to know the location of interest for the

user [51, Ch24.3.2 p506-507].

Here is an example: The utterance “Show me morning flights from Boston to San Fran-

cisco on Tuesday”, would belong to the domain AIR-TRAVEL and the user’s intent would

be SHOW-FLIGHTS. The corresponding slots to fill would be; ORGIN-TIME=“morning”,

ORGIN-CITY=“Boston”, DEST-CITY=“San Francisco” and ORGIN-DATE=“Tuesday”

[51, Ch24.3.2 p506]. Once the information has been extracted, it is put into a semantic

representation, which is known as a frame [62, Ch3.3.1 p55]. Figure 4.2 shows an example

of a frame given the example we have just used.

Before any of the mentioned tasks can be solved, however, the utterance first needs to

be processed into a sentence representation, for instance by passing it through BERT (Ch

3.3.3.6) [51, 24.4.2 p510].

4.3.1.1 Domain and Intent classification

Both domain classification and intent determination are defined as classification problems

[62, Ch2.3.1 p27]. As mentioned, the domain is the topic of the dialogue. In cases where
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Figure 4.3: An example of BIO-tagging. Each word is assigned a tag/label. B indicates the
beginning of a span of interest, I is inside a span, and O means outside any span of interest
[51, Ch8.3 p154].

there is only a single domain, this task would be unnecessary. Many domains would require

multiple frames to distinguish slots for different actions and domains [62, Ch24.3.1 p506]. The

multi domain dialogue systems have become the modern standard. Domain classification is

usually done as a top-level delegation followed by intent determination and slot filling. This

way of modeling provides some advantages, like abstracting domains actions and slots. But

there are also some disadvantages. For example, you would need to train as many models

as there are domains [62, Ch2.4.3 p37].

4.3.1.2 Slot filling

Slot filling aims at extracting potential slots given in an utterance [51, Ch24.3.2 p506]. Slot

filling is considered one of the most challenging tasks in spoken language understanding [62,

Ch3.2.1 p53] and is defined as a sequential classification problem [62, Ch2.4.3 p37].

Earlier systems used handcrafted rules to extract slots, and this technique is still common

in the industry [51, Ch24.3.2 p506]. The handcrafted rules can be used as a descent solution

while generating data. When the handcrafted rules have provided sufficient data, the devel-

oper may use bootstrapping machine learning techniques that can outperform the original

rules [51, Ch24.4.2 p511]. With the use of machine learning each word is passed through a

classifier and paired with a label. The label might correspond with a slot or not. The words

are then extracted and assigned to a slot based on the label [51, Ch24.4.2 p511].

One technique to solve the sequence classification problem is with BIO-tagging. BIO-tagging

labels each word/token in a sentence with a tag. B indicates the beginning of a span of

interest, I means inside the span of interest, and O means outside the spans of interest [51,

Ch8.3 p154]. Figure 4.3 shows an example of sequence labeling with BIO-tagging of the

sentence “Show me morning flights from Boston to San Francisco on Tuesday”.

As mentioned, domain classification and intent determination are defined as classification

problems, while slot filling is a sequence classification problem. Because they are different
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problems they initially required different solutions. With the advances in deep learning, it is

however possible to solve both types of problems with one unified model. Hakkani-Tür [62,

Ch2.4.3 p37] proposed a single RNN approach that preformed all three tasks. The utterance

is enclosed with an 〈BOS〉 (beginning of sentence) and a 〈EOS〉 (end of sentence) tag, and

the domain and intent classification is done on the 〈EOS〉 output.

4.3.2 Dialogue state tracker

The dialogue state tracker, sometimes called the belief tracker, maintains the systems per-

ception of the current state of the dialogue. It does this by estimating the dialogue state,

also known as the belief state, at each step of the dialogue [62, Ch3.3.2 p56] [75].

A simple dialogue state tracker might just use the output of a sequence model at the end of

each sentence [51, Ch24.4.3 p512], or the current state of a given frame, as a representation

of the dialogue state. A more sophisticated dialogue state tracker would also include the

previous dialogue state, and the latest utterance from both the user and the system. The

state-of-the-art for dialogue state tracker uses neural networks to estimate the dialogue state

[62, Ch3.3.2 p56].

4.3.3 Dialogue policy

The dialogue policy decides what action to performe based on the dialogue state. It aims at

guiding the dialogue toward completing a task successfully [62, Ch3.2.3 p54]. Early systems

had quite simple policies; ask questions until the frame is filled, then preform a query [51,

Ch24.4 p509]. More sophisticated policies could be defined as a probability distribution of

actions, given the dialogue state. The probability could be estimated using a classification

algorithm. Even more sophisticated policies could be trained via reinforcement learning [52,

Ch24.4.4 p542].

4.3.4 Natural language generation

The last component of the dialogue system is the natural language generation. This compo-

nent generates a response based on the output from the dialogue policy. A simple and quite

common solution is to return a pre-written template as the response. A more sophisticated

solution is to generate the response based on the context passed from the dialogue policy.

A generated response seems more natural, but sufficient training data for this method is

unfortunately hard to come by [51, Ch24.4 p509] [53, Ch3.3.1 p12].
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Chapter 5

Related work

This thesis is based on research done in the field of dialogue systems. Most influential books

we have based this thesis on are Speech and Language Processing [52], Deep Learning in Nat-

ural Language Processing [42] and Representation Learning for Natural Language Processing

[63].

In this chapter we cover similar/related work for this thesis. We will cover two papers and

one master thesis. The first paper (section 5.1) compares combinations of both different em-

bedding techniques and machine learning algorithms for intent classification of utterances.

It also experiments with hierarchical classification. The master thesis (section 5.2) also eval-

uates combinations of embeddings and machine learning algorithms for intent classification.

The master thesis focuses more heavily on hierarchical classification and Norwegian utter-

ances. Both the first paper and the master thesis share similarities with this thesis in regards

to the project goal, chosen embeddings (word2vec and BERT) and machine learning algo-

rithms (FFNN, LSTM). The second paper introduces a large dataset as a new benchmark

for multi-domain dialogue systems, and underlines the importance of proper datasets.

5.1 Intent Classification for Dialogue Utterances

The Intent Classification for Dialogue Utterances [69] investigates several machine learning

methods for classifying intents of utterances. Among them was flat classification compared

with hierarchical classification. They use Näıve Bayes combined with BoW as their baseline.
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The dataset used was the curated dataset proposed in [46]. The dataset consists of three

small corpora (206, 100 and 190 utterances) with disjoint intents. Each corpora had respec-

tively associated number of intents; 2, 4 and 7. From the dataset, they computed several

variations of word embedding using CBOW for word2vec, GloVe and FastText. The word

embeddings were summed up, averaged and kept as sequences, and used as representation

of the utterances.

The machine learning algorithms they explored were Support Vector Machines (SVM), long

short-term memory and Bidirectional LSTM. The methods were evaluated using macro-F1,

which is the unweighted mean of all F1 scores for all the classes. The models were compared

with commercial solutions like Rasa and Watson, to name a few.

The baseline model for the flat classifier had a macro-F1 score of 0.541. The SVM models with

different embedding techniques ranged from 0.657 to 0.752. The recurrent networks on the

flat classifier scored macro-F1 between 0.502 to 0.605. The best performing recurrent model

was LSTM with FastText scoring 0.605. The baseline model for hierarchical classification

had a macro-F1 score of 0.614, and the SVM models ranged between 0.642 and 0.782. The

best model was the hierarchical SVM model combined with FastText average and scored

0.782.

The paper concluded the following. The best performing model was hierarchical, however

hierarchical classifiers had mixed results across word embeddings. Taking the average of the

word embeddings gave better results than taking the sum [69, p86], this indicated that it is

useful correcting the length of the utterance [69, p87]. The SVM models out preformed the

LSTM models indicating that the order of words had little impact, due to short utterances.

LSTMs are less useful when instances are short [69, p83]. Finally, the paper models were on

par with the commercial methods, which they were measured against.

5.2 Exploring pretrained word embeddings for multi-

class text classification in Norwegian

In the master thesis Exploring pretrained word embeddings for multi-class text classification

in Norwegian [43] from Norges teknisk-naturvitenskapelige universitet (NTNU), they explore

pre-trained Norwegian word embeddings for a hierarchical classification on utterances. They
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used pre-trained word2vec (of dimension 100 and 300) and BERT embeddings combined

with FFNN and LSTM. They use a baseline model made with Näıve Bayes combined with

BoW and used macro-F1 to evaluate the models.

The dataset they evaluated was a large corpus of collected utterances from an existing

dialogue system used in Norway’s largest bank Den Norske Bank (DNB) [16]. The dataset

consisted of 1,716 classes and 267,000 utterances were 193,000 of them where Norwegian and

following groupings was of Finnish and English. The utterances had varying lengths, but

generally quite short.

The baseline model achived an accuracy of 51.6% and a macro-F1 score of 0.396. The thesis

evaluated mainly three models; FFNN with word2vec, LSTM with word2ved and FFNN

with BERT. First model achieved an accuracy of 67.3% and macro-F1 score of 0.657. The

second model scored 86.8% accuracy and 0.849 macro-F1. The last model had an accuracy

score of 91.1% and an macro-F1 score of 0.886.

The thesis achieved the best performing model with an FFNN architecture combined with

BERT embedding. Second best was LSTM with word2vec of 100 dimension embeddings

while LSTM with word2vec embeddings with dimension of 300 was worse than 100. The

thesis concluded that word2vec embeddings with the correct model at best come close to

models using BERT’s embeddings in performance. BERT performed well regardless of model.

5.3 MultiWOZ - A Large-Scale Multi-Domain Wizard-

of-Oz Dataset for Task-Oriented Dialogue Mod-

elling

In the MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented

Dialogue Modelling [48], the authors introduces a new benchmark dataset for dialogue sys-

tems. The dataset is a large collection of fully labeled human to human written conversation

spanning across several domains. The dataset consists of 7 domains, more than 8,000 dia-

logues and 113,000 utterances/turns. Additionally the paper establishes a baseline for the

dataset for comparison to future studies.

The dataset was introduced to overcome the fundamental obstacle around available data for

dialogue systems. The data was collected using crowd sourcing and the Wizard-of-Oz setup
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where a human plays the role of the dialogue system. The setup was designed to be easy to

operate for the wizard and the users where given easy to follow tasks to fulfill.
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Chapter 6

Method

This section covers the methods we used in this thesis. It will cover the following:

Data∼(6.1), here we write about the content of the data, point out concerns regarding

privacy, and the condition of the data. Labeling (6.2), explains the importance and chal-

lenges around data labeling, and the setup we used in this thesis. In Pre-processing (6.3),

we will cover the different pre-processing techniques we used to enhance the dataset. Then

we will explore the data in Exploratory data analysis (6.4), presenting some descriptive

statistics and label distributions. In Generating sentence embeddings (6.5), we generate and

visually inspect all of the fixed sized sentence representations. The creation of sequential

word embeddings are explained in Generating sequential word embeddings (6.6). Finally,

we describe machine learning algorithms with fixed sized embeddings in Training binary

classification models (6.7), and the sequential embeddings in Training sequential binary

classification models (6.8).

6.1 Data

First we start of by covering the content of the data, followed by a section about privacy

and personal data. Lastly we will address the lack of labels in the dataset.
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6.1.1 Dataset

As mentioned in the Introduction, the dataset in this thesis was provided by Funbit AS. It

is a collection of chat messages/utterances from 1,219 customers sent to a driving school.

The dataset consist of 4,948 rows and four columns/features. The columns are; timestamp

(date and time of the utterances), generated user id (random generated id), enumerated

conversation (the order of the utterance from a user) and the user’s utterance. The utterances

were about driving school related services. This includes general information about licenses

and courses, prices and availability etc. Most of the utterances are in Norwegian, both

Nynorsk, Bokmål and a mixture. There were some occurrences of English utterances as

well, but as the main focus in this thesis was classification of Norwegian utterances, the

English utterances was removed during the labeling process.

6.1.2 Privacy

The dataset contain real utterances from real people and involves distribution of personal

data. Personal data is any information that is identifiable to a natural person. To name a

few; name, identification number, location data, or physical, physiological, genetic, mental,

economic, cultural or social specific factors [7].

This thesis did not concern with any personal data, but rather the generic utterances. How-

ever, in the original data, personal data were present in the data within the utterances

providing information to the driving school (we processed a anonymized dataset). This

could be information like phone numbers and e-mails. The privacy information given via

text are more challenging to anonymize/censor than separate features in a dataset because

they are within the utterance.

We were given a pre-anonymized dataset. All of the utterances had been anonymized with

a random id, while the personal data within the utterances had been replaced with masked

tags. The masked tags represent the type of information it had replaced. For example;

phone numbers was replaced with “@ phone” and email addresses with “@ email”. The

anonymization is also in line with the data minimization principal from General Data Pro-

tection Regulation (GDPR) [27]. Because of the pre-anonymized dataset, this work did not

process any direct or indirect personal data. The thesis was also registered in RETTE.

RETTE is the University of Bergen’s registration and overview system for projects concern-

ing personal data [26].
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6.1.3 Missing labels

The data was not labeled when we first received it. Additionally, the dataset was a collection

of every utterance the driving school had recevied to their Facebook page, both concrete and

specific utterances, as well as vague and nonspecific ones. However, it was a good example of

how data might appear in a real-life scenario. We will describe more of the labeling process

the data had to undergo in the following section.

6.2 Labeling

Labeled data is essential to solve a classification problem. All of the tasks done by the

natural language component in a dialogue system are classification problems or sequence

classification problems. We therefore needed labeled data to train the classifiers that defines

what domain each utterance belongs to and what intent it carries. Labeling the utterances

for named entity recognition was skipped since this would have taken a significant amount

of time.

6.2.1 Challenges with labeling utterances

The task of labeling utterances is usually very time-consuming and complex [51, Ch13.5

p271]. The MultiWOZ paper points out that most time consuming and challenging part of

any dialogue data collection is annotation of the data [48, Ch3.4 p5]. One of the biggest

challenges when annotating is defining the set of dialogue acts/intents, which the utterances

can be grouped into [49]. We took some inspiration from the MultiWOZ paper when we

planned our own approach for labeling the dataset.

Defining suitable labels for domains and intents was challenging considering the levels of

services provided by a driving school. For instance, there are multiple types of licenses with

different criteria regarding courses, experiences and evaluations. An utterance may therefore

involve one or more of the mentioned factors.

Labeling data precisely lay the foundation for creating any supervised model. A recent

interview with AI-pioneer Andrew Ng [4] underlines the importance of proper labeling. In

the article, Andrew explains that noisy and inconsistent data will affect the performance of

the system, and that his company therefore has built tools to flag inconsistent data so that

it easily can be identified and relabeled.
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6.2.2 Labeling setup

At the very beginning of the thesis we were given a csv-file with the unlabeled dataset. At

one point we decided to hand-label the dataset, and therefore we had to label each utterance

as efficiently as possible. We used Google Sheets where we defined a list of domains and a

list of intents that were selectable via a drop-down menu. Since the utterances might have

multiple domains and intents they were given two columns for both (Domain 1, Domain 2,

Intent 1, Intent 2). Additionally, we added a column for different driver license categories

(B, A, A1, BE, etc.).

The initial set of domains and intents were based on the services provided by the driving

school. They were also based on visual inspection of the utterances in the dataset. Some

of the initial domains were; “Licenses”, anything related to a driving license, “Courses”,

anything related to courses offered by the driving school, and “Complex”, an utterance too

complex to be handled by the dialog system. Furthermore, some of the initial intents were;

“getInformation”, customer asks for information within a domain, “getBooking”, customer

request their booking order within domain, and “getPrice”, customer asks for the price of a

product within a domain. All of the domains and intents are specified in the Guidance for

domain and intent labeling in Appendix A of the thesis. We used the guide as documentation

to keep track of the different labels throughout the labeling process. We were well aware that

we would continuously adjust the domain and intent labels as we got to know the content of

the dataset better. We did so to the best of our ability.

We did all the hand-labeling manually and with a lot of respect for the complexity and

importance of the labeling. Additionally, we took some measures to enhance the quality

of the data by reviewing and re-labeling a couple of miss-labeled utterances. Once we had

some labeled data we could analyze and process the data, and lastly build and evaluate the

machine learning models.

6.3 Pre-processing

When we analyzed the corpus, we performed three steps of pre-processing. We gradually

increased the level of normalization, and observed the effect of each step. Before we analyzed

the corpus, we had to split the labeled data into three; training, validation and test set

(section 2.1.1.2). We used the ratio 60/20/20.
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6.3.1 Tokenizing

First we tokenized each utterance in the corpus into lists of tokens. We used NLTK for

tokenization. NLTK is a Python library used for NLP [21].

6.3.2 Normalization

After tokenizing the utterances we applied some normalization to them. We removed punc-

tuations (“.”, “,”, “?”, “!”, “(”, “)”, “:”, “*”) and mapped each token to lower case (case

folding). Secondly, we removed stop words by using a stop list provided by the NLTK for

Norwegian. This stop list contains 172 unique words that were removed from the corpus.

We also removed rare words that occurred less than three times in the corpus.

6.3.3 Lemmatization

Lastly, we lemmatized the tokens using spaCy, another NLP library in Python [17]. We used

a trained pipeline provided by spaCy, “nb core news sm” to map each token to its lemma

[22].

6.4 Exploratory data analysis

Once the data had been tokenized and normalized, we explored it through Exploratory data

analysis (EDA). Exploratory data analysis is a widely used method in data science. EDA

is used to analyze and summarize the main characteristics of the data, usually through

descriptive statistics and visualization. This helps to discover patterns and anomalies in the

data, and provides a better understanding of the data as a whole [10].
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6.4.1 Descriptive statistics

A quite common, simple and fast method for looking at the main characteristic of a dataset

is through descriptive statistics. Descriptive statistics are statistical procedures that simplify

and summarize the data [56, Ch1.2 p8]. The summary usually captures central tendencies,

dispersions and the shape of the data. We used mean and median as the central tendency,

and min and max to describe the range. We summarized the length of each of the utterances

in terms of tokens, and the length of each conversation in terms of the number of messages

sent by a user. We then used histograms to visualize the distribution.

The specific descriptive statistics for analyzing the data took inspiration from this blog [11]

and will be more closely described in the following.

6.4.1.1 Frequencies of words and phrases

The simplest way of getting a feeling of the corpus is by counting tokens and observing which

tokens are the most frequent. We visualized the most frequent tokens after both the first

(6.3.1), second (6.3.2) and third (6.3.3) pre-processing steps.

We can take this method a step further by observing what sequences of words that are

most frequent, also known as n-grams. The approach for analyzing the frequency of n-grams

is exactly similar to the analyzing of the frequency of tokens. The only difference is that

we are measuring the frequency of sequences of n tokens and not of the singular tokens in

themselves. This reveals the most common phrases in the dataset and may indicate what

type of questions are most frequently asked. We did this by first displaying phrases of the

corpus when only punctuation was removed. We used n-grams of two, three and four words.

Then we removed n-grams that carried any stop words and displayed the remaining n-grams

that consisted of two and three words.

We used vertical histograms to visually display the distributions of the frequent tokens and

phrases.

6.4.2 Label distribution

It is also common to plot the distributions of classes within the dataset. This gives an

insight how the data is distributed across the classes. We are then able to spot majority

and minority classes. We visualized both the “domain 1” and “intent 1” distribution via a

histogram, see section 7.3.2.
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6.5 Generating sentence embeddings

After the explorative data analysis, we generated the different types of sentence represen-

tations. The embeddings we created were BoW, the average of word2vec embeddings of

utterances, doc2vec and BERT’s classification tokens.

We used t-SNE and UMAP to visualize the embeddings and to observe if there were any

patterns that correlations with the hand-labeled data. Keep in mind that the generated

dimensions had lost their interpretability due to non-linearity (section 2.4). t-SNE captures

local relations between utterances (section 2.4.1), while UMAP captures local and global

relations between utterances (section 2.4.2).

The different embedding techniques used different degrees of pre-processing. Table 6.1 shows

an overview of Dataset A and B, and their pre-processing steps. When generating embed-

dings, the need for pre-processing is more vital than when extracting them via a pre-trained

model. Pre-processing reduces the variation and noise within the data, which makes it more

viable to generate embeddings from. We used Dataset A, which was the most heavily pre-

processed dataset of the two, when we generated the embeddings. Dataset B was used when

extracting the embeddings from BERT. Pre-trained models, like BERT, are used to extract

embeddings, are less dependent on pre-processing and might even benefit from the varia-

tion. This is because the models have been trained on large corpus and already have good

representations of all the words.

Table 6.1: Overview of datasets with different pre-processing applied.

Datasets Case folding Removed
punctuation

Removed stop
words

Removed rare
words

Dataset A ✓ ✓ ✓ ✓
Dataset B ✓ × × ×

Bag-of-words is widely used as sentence representation along side with a baseline model. It

is the simplest form for representing a sentence or document. Word2vec is another quite

common and successful embedding technique used to represent both words and sentences,

for instance in [69] and [43]. Doc2vec is however not that widely used after what we observed

when we researched sentence representation. Still, doc2vec suited our need of representing

utterances that consisted of one or more sentences. This, in comparison to word embeddings

that only represents single words, or tf-idf that represents entire documents. BERT is again

widely used and usually provides good results for NLP related tasks, as it did in [43].
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6.5.1 Bag-of-words

We generated the BoW embeddings for each utterance using scikit-learn [28]. We created

BoW embedding based on Dataset A. Each sentence was generated into a BoW represented

as a vector with the same dimension as the vocabulary (section 3.3.4.1).

6.5.2 Word2vec average

We trained the word2vec embeddings on Dataset A using the Gensim NLP library [38]. We

chose the algorithm, skip-gram, but left the remaining hyperparameters as default. The

reason for choosing skip-gram was because the corpus was relatively small and we could

therefore afford the heavier algorithm and increase the semantic capturing (section 3.3.3.4).

We used the algorithm parameters; epochs=50 and min count=3. “epochs” are the number

of iterations over the training data and “min count” defines the threshold where words are

ignored if they occur less often than the threshold. This is similar to the last normaliza-

tion processes described in subsection 6.3.2. The algorithm was also given the parameters

workers=1 and seed=42 for reproducibility.

After training the word2vec model, we calculated the average embedding of the word embed-

dings of each utterance. The average embedding was used as the sentence representation.

6.5.3 Doc2vec

For the doc2vec embeddings did we trained the model on Dataset A, also using the Gensim

library [9]. Here we also left the hyperparameters as default. We choose the distributed

memory algorithm as the paper states it is consistently better than distributed bag of words

(section 3.3.4.2). We used the algorithm parameters; epochs=50, min count=3, workers=1

and seed=42 here as well.
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6.5.4 BERT classification tokens

We used a pre-trained version of BERT to create the embeddings of the utterances. The

pre-trained model was made and distributed by Nasjonalbiblioteket AI Lab [23] [60], via

Huggingface. Huggingface is an AI community which provides an API accessing pre-trained

models in Python [2]. We used the nb-bert-base provided by Nasjonalbiblioteket AI Lab [20].

For this we used Dataset B and ran each utterance through the model and extracted the

CLS token from the embedded sequence.

Since BERT is pre-trained there are embeddings for all of the subwords occurring in the

dataset and therefore there is less need for pre-processing the data. Also, the information

which is not removed in Dataset B may prove useful. This is different from the other

sentence representation which were trained from scratch, and were more dependent on pre-

processing. This is important for reduce the noise, variation and training time, as we did

with Dataset∼A.

6.6 Generating sequential word embeddings

The sentence embeddings where also representatd as sequences of word embeddings. These

sequences of word embeddeds was then fed to RNN and LSTM networks. To embed the

words we used word2vec and BERT. We utilized the same models to generate the word

embeddings, as we did for the word2vec average (section 6.5.2) and the CLS token generated

by BERT (section 6.5.4).

6.6.1 Word2vec word embeddings

To generate the sequences of the word embeddings, we used Dataset A and the same model

we used to generate the averaged word2vec embeddings. The sequence embedding is done

in the exact same way as the word2vec average, but instead of computing and saving the

averaged vector, the entire sequence of word embedding was saved. The embedded sequences

was then of the dimension; (length of the sentence × 100).
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6.6.2 BERT word embeddings

We used the same BERT model [23] as we did when extracting the classification tokens, to

generate the sequences of word embeddings. The last hidden state generated by the model

was stripped from the CLS (first) and SEP (last) tokens. The remaining vectors was saved

as the sentence representation. Since BERT utilizes the WordPiece embedding were the

embedded sequences usually longer than the utterances them self in terms of words. This

slowed down the training of the recurrent networks since they had to process longer sequences

(see section 2.3.2).

6.7 Training binary classification models

This section will cover the selection and training of the different compositions of ma-

chine learning algorithms and embedding techniques. Knowing the suboptimal quality of

our dataset and challenges around the utterances, we concluded to simplify the classifi-

cation problem. By simplifying the problem we could see if this would give any promis-

ing results, before attempting the complete problem. The problem was simplified into

a binary classification: Should the utterances be handled by the dialogue system or by

a human? The following domains were grouped to be handled by the dialogue sys-

tem; “Courses”, “General”, “Licenses”, “IntensiveCourses”, “Corona”, “Payment”, “On-

lineCourse”, “PackagePrice”, “CustomerReturne”, “Giftcard”, “Finance”, “DrivingTest”,

“Rudskogen/Førerutviklingskurs”. The following domains should be handled by a human;

“Request”, “Toss”, “Complex”, “Advice”, “Other”.

First, we defined a baseline model for the binary classification problem. For the baseline

model we used logistic regression with bag-of-words as sentence representation. A baseline

model is a simple model used to evaluate successive models as their complexity gradually

increases. We chose to evaluate the models performance based on accuracy. We chose accu-

racy because it tells us overall how the binary classification model performed. Additionally

it is simple and easy to understand. Accuracy made it easy to interpret the fundamental

problem in this thesis.

After training the baseline model, we trained some additional models with logistic regression,

random forest and FFNN for all the different sentence embeddings; bag-of word, word2vec

average, doc2vec and BERTs classification token.

63



We chose logistic regression as the baseline model since it is a simple algorithm for making

binary classification models. Random forest is also generally quite common and usually give

good results. Still, random forest does not seem to be frequently used to solve NLP related

tasks, after what we have observed. FFNNs however are quite common in NLP related tasks,

and are especially often used for classification, for instance in [43]. Another common neural

network architecture for NLP tasks are recurrent networks (see section 6.8), for instance

simple RNNs, but especially LSTMs, which were used in both [69] and [43].

6.7.1 Logistic regression

As mentioned, the first model we trained was the baseline model, which was with logistic

regression and bag-of-words as sentence representation. Bag-of-words is the simplest way of

representing the utterances. We chose logistic regression because it is a simple algorithm

for binary classification, originally with no hyperparameters. Another optional algorithm to

create the baseline model could have been näıve Bayes, which is commonly used in similar

problems, for example in [69] and [43].

Following the baseline model, we created additional models with logistic regression for

word2vec average, doc2vec and BERT embeddings. Each model was trained on the training

data and evaluated on the validation set.

6.7.2 Random forest

The second machine learning algorithm we used was random forest. We trained 30 different

models for each embedding via random search. Random search picks a random values within

a range of a hyperparameters. We searched the hyperparameters; min samples leaf within

the range of 1-100, max features between 10% and 100% and max depth within the range of

5-50. We then selected the best model for each embedding based on the accuracy achieved

on the validation set.
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6.7.3 Feedforward neural network

The last machine learning algorithm we used for the fixed sentence representation was

FFNNs. In FFNN, each network was constructed with one input layer, one hidden layer

and one output layer. The size of the input layer depends on the dimension of the embed-

ding, while the size of the output layer was two. We trained 30 feedforward neural networks

for 30 epochs for each of the embeddings. We used random search for the number of hidden

units and the learning rate alpha. For the number of hidden units we searched the range

between the input and output size. For the learning rate we searched between 1 and 0.001

using the logarithmic function 10x and picking a random value between 0 and −3. Finally,

we selected the best performing model according to the accuracy score on the validation set

for each embedding.

6.8 Training sequential binary classification models

We trained four different sequential binary classification models using the RNN and LSTM

architectures combined with either word2vec or BERT word embeddings.

Training recurrent networks took significantly more time than training the other machine

learning models. Because of this we only trained 10 models for 30 epochs for each the four

models. We then selected the best models according to the accuracy scored on the validation

set.

All of the sequential binary classification models, had one input layer, one hidden state

layer and one output layer. The input size depended on the type of word embedding. For

word2vec, the models had an input size of 100 dimensions, while the models using BERT

had the size of 768 dimensions. The output layer was of size 2, while the size of the hidden

layer was chosen using random search. We searched the range between the size of the input

and output layer. Random search was also applied to choose the learning rate. The learning

rate was selected using the logarithmic function 10x, where x was a randomly chosen value

between 0 and −3.

The sequential models needed some extra setup before training. To efficiently train them

we had to transform each sequence into equally sized lengths. Once the samples were of

the same length they could be stored and processed as a tensor. A tensor is a matrix with
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three or more dimensions. This was done by padding each sequence with trailing “0”s. The

network could then do computation on mini batches of tensors. Since each sample now were

of the same length, the network needed to extract the correct hidden state according to

the length of the sample. Once the hidden states were extracted could they be forwarded

through the output layer.
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Chapter 7

Results

In this section we present the results we got from the methods. We will cover the labeling

and pre-processing of utterances, the exploratory data analysis, visualize sentence represen-

tation of the utterances with t-SNE and UMAP and finally the performance of the different

combinations of sentence representations and machine learning algorithms.

7.1 Labeling

The labeling was quite challenging because of the complexity and variations of utterances.

Some were easy and straight forward, like:

I would like a driving lesson.

While others were more complex and could contain multiple domains and intents. For

instance, the following example was labeled with the domains Courses and License and

have the intents getPrice and getAvailable:

Hi, what is the price for Driving-at-dark course and when is the next available

driving lesson?

67



Another challenge was the personality characteristic in a lot of the messages. These variations

do not provide any relevant information for the dialogue system and are more noise than

they are helpful. Still, such characteristics display a very human way of communicating. See

for example the complexity in the following message:

I’ve always wanted to drive a motorcycle since I was a child. However, I have

children of my own now which makes it challenging. How flexible are the lessons?

I took a motorcycle course a couple of years ago, is this still valid do you think?

Also, I’ve been recommended Terje by a friend, is he available?

Defining suitable labels for domains and intents was also challenging because of the levels

of services the driving school provided. There are multiple types of licenses with different

criteria regarding courses, experiences and evaluations. We ended up labeling 18 domains

and 32 intents in the dataset. Some labels were initially added, but turned out not to be

that relevant during the labeling process. Others were added along the way after observing

the already labeled data and deciding that a domain or an intent was missing. We took

some inspiration from the MultiWOZ paper [48] for the labeling approach. At the end we

had hand-label 2,800 of the 4,948 utterances in the dataset.

7.2 Pre-processing

The 2,800 labeled utterances was split into a training set with 1,680 instances, a validation

set with 560 instances and a testing set with 560 instances. When producing Dataset A, we

performed case folding and removed both punctuation and stop words in the training set.

This resulted in a vocabulary of 3,271 tokens. Then we removed rare words, meaning words

that occurred less than three times (section 6.3.2), and this further reduced the vocabulary

to 936 tokens.

7.3 Exploratory data analysis

In this subsection we present the graphs and observations we discovered through our ex-

ploratory data analysis. First, we will go through the simple descriptive statistics of dia-

logues in the corpus, including the frequencies of words and n-grams. Then we will look at

the distribution of the hand-labeled classes.
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Figure 7.1: Histogram showing lengths of dialogues, number of messages sent by the users,
provided in the dataset. The plot is right-skewed since longer dialogues happen less often.

7.3.1 Descriptive statistics

The length of each dialogue varied from one message to a maximum of 96. The histogram

in Figure 7.1 shows the distribution of the lengths of dialogues. The average length of a

dialogue consists of 7.5 messages. However, when the distribution is skewed, the median is

a better estimation of central tendency, representing more of the majority of the messages.

The median of the dialogue length was 4 messages [56, Ch3.5 p75].

The length of each utterance, in terms of words, varied from a minimum of one word to a

maximum number of 1,451 words. The distribution is skewed here as well and has a mean

of 84.9 words and a median of 56 words per utterance. See Figure 7.2 for the distribution

og lengths of utterances.

7.3.1.1 Frequencies of words and phrases

We counted the frequency of each token and plotted 20 of the most common tokens. These

20 tokens are displayed in Figure 7.3.
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Figure 7.2: Histogram showing length of messages in terms of tokens/words provided in the
dataset. The plot is right-skewed since longer messages are rarer than short ones.

Figure 7.3: Histogram showing 20 of the most frequent tokens in our corpus.



Figure 7.4: Chart showing the 20 most common words after removing stop words, and
comparing the effect of lemmatization.

The tokens are quite common and do not capture any characteristic of the corpus. Just by

looking at the most common tokens, the corpus could concern just about anything, and it

certainly does not suggest references to a driving school’s services. As observed in Figure 7.3,

a simple word count provide little insight into our corpus. Figure 7.4 shows what words that

are most common after we removed the stop words (blue bars). Additionally, we show the

most common words after removing stop words and lemmatization (orange bars in Figure

7.4).

However, we had to manually adjust some of the mapping of words. For instance, spaCy

converted “kurs” to “kurse”. After manually finding and correcting 61 of such instances

in various degrees. Lemmatization was only used for analyzing the corpus, and was not

performed as a pre-processing step when we created the embeddings.

In Figure 7.4 we observe that the most common words now relate more to driving school

activities. We can also see the effect of lemmatization. The most notable instance of lemma-

tization is “lure” which increased its frequency drastically. After lemmatization “lure” also

captured the conjugations “lurte” and “lurer”.
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Figure 7.5: Chart showing most common 2-, 3- and 4-grams.

7.3.1.2 N-grams

We created n-grams of; two, three and four tokens, and analyzed the top 20 phrases (Figure

7.5). We kept the stop words when creating the n-grams to prevent inconsistent sequences.

The frequency of n-grams drops when n increases, and show that longer sequences are rarer.

Studying the second graph in Figure 7.5, we observe that “lurte p̊a om” and “lurer p̊a om”

are treated as two separate instances, and could be an argument for using lemmatization in

some cases. There were some instances in the top 20 phrases that relate to driving school

activities. However, most of the phrases are more general and service oriented. We therefore

went a step further and removed n-grams where stop words appeared, see Figure 7.6.

In Figure 7.6 we can see which unique phrases are sent to the driving school. These phrases

regard different licenses and related courses. Some of the masked-tags also appear here, for

instance “@ name” and “@ phone”.

7.3.2 Label distribution

The label distribution of classes over domains are shown in Figure 7.7. “Complex”, “License”

and “General” are the top three most common classes. “Finance”, “Giftcard” and “Corona”

are the least common classes.
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Figure 7.6: Chart showing the most common 2- and 3-grams after removing n-grams con-
taining stop words.

Each domain has a selection of intents. All the different intents and their distribution is

shown in figure 7.8. Some utterances were to complex and were just given a domain that

indicated that they should be handled by humans. “Complex” and “Request” are domains

where this applies. Samples within these domains were usually not given an intent. We

gave samples with missing intents the label “human”. There are 794 instances labeled with

“human”. “getAvailable”, “endOfConversation” and “confirm” are the most common classes

of intents.

As mentioned, we simplified the classification problem into a binary problem, dividing the

domain labels into two labels; “chatbot” (handled by the dialogue system) and “human”

(handled by a human). There were 987 (58.8%) utterances labeled as “chatbot” and 692

(41.2%) utterances labeled as “human” in the training set. The distribution is shown in

Figure 7.9.

7.4 Creating sentence representations

In this section we present the created sentence representations via visualization. We used

t-SNE and UMAP to project the embeddings into 2D space. As mentioned in section 6.5
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Figure 7.7: Histogram of domains in the dataset.
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Figure 7.8: Histogram of intents in the dataset.



Figure 7.9: A barplot showing the distribution between two labels; “Chatbot” and “Human”.

the axes of both t-SNE and UMAP do not carry any meaning. They are only useful for

visualization. In each plot we display the 5 most common classes for both the domains

(left plot) and intents (right plot). The reminding labels are grouped under a unified label;

“Other labels”.

7.4.1 Bag-of-words

The first embedding we visualize is BoW. The initial dimension of the generated bag-of-

words was 3,271. However, 1,871 (57%) of the dimensions represented single occurrence of

words in the training corpus. We therefore removed words that occurred less then three

times. After removing rare words we had reduced the dimension down to 936. Figure 7.10

displays each of the utterance’s representation as a BoW mapped into 2D-space. The 2D

representation is generated via t-SNE (section 2.4.1).

There appears to be some small clusters at (35, 0) in Figure 7.10. These corresponds to

utterances such as; “Ok, takk”, “Supert, takk” and “Oki, takk for hjelpen”. There are no

dense areas in terms of labels except for the green areas in the domain plot. The green

area are located around coordinate (35, 0). Figure 7.11 shows the projection of BoW with

UMAP.
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Figure 7.10: Two scatter plots of the same utterances represented as a bag-of-words, mapped
into 2D-space using t-SNE. The left plot is labeled with domain classes, and the right plot
is labeled with intent classes.

Figure 7.11: Two scatter plots of the same utterances represented as a bag-of-words, mapped
into 2D-space using UMAP. The left plot is labeled with domain classes, and the right plot
is labeled with intent classes.



The UMAP-plots show a few more distinct clusters, however they do not correspond with

the hand-labeled classes in neither the domain or intent plot. In the following we will refer

to the domain plot. The wide cluster at (-25, 60) is a collection of varying utterances, but

had in common that they were opening messages in the conversation. For example; “Hei,

n̊ar er neste kurs?” and “Hei, jeg vil ta lappen”. The large cluster at (-22, 60) varied alot

as well, but were utterances providing or asking for information. The cluster at (-5, 5) were

utterances containing “Tusen takk”, while the cluster at (5, 5) were utterances like; “Takk”

and “Supert, takk for det”.

7.4.2 Word2vec average

In this subsection we visualize the averaged word2vec embeddings using t-SNE and UMAP.

The samples are projected from the original 100 dimensions down to two dimensions. First

we will look at the t-SNE plot.

Figure 7.12: Two scatter plots of the same utterances represented as the average of word2vec
embeddings, mapped into 2D-space using t-SNE. The left plot is labeled with domain classes,
and the right plot is labeled with intent classes.

The t-SNE plot in Figure 7.12 show three distinct clusters. Referring to the domain plot,

the largest cluster at (-10, -20) has a clear dense area corresponding to some of the domains.

The domains “General” (green) and “licenses” (orange) have a noticeable boundary between

them. The green area were utterances of “Oki takk”, “Ja” and “Den er grei”. The orange

area had a variation of driving license related utterances. For instance, the orange line at
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Figure 7.13: Two scatter plots of the same utterances represented as the average of word2vec
embeddings, mapped into 2D-space using UMAP. The left plot is labeled with domain classes,
and the right plot is labeled with intent classes

(-18, -12) were experiences related, for example; “Har ikke kjørt før” and “Jeg har kjørt en

god del”. While the orange field at (-9, -6) were motorcycle related, containing keywords

like; “MC”, “A1” and “A2”. The cluster at (8, -32) were utterances of greetings; “Hei” and

“Heisann”. The strange ark at (25, 20) had a high variance of utterances. Their coherence

seems to be that they contained dates and time expressed with numbers. We present the

UMAP plot of word2vec average in Figure 7.13.

UMAP projected the utterances into two distinct clusters. There were not observed any

remarkable differences in terms of the content of utterances between the clusters. However,

the cluster at (13, 23) had much simpler (short and precise) utterances and had some internal

groupings of utterances. For instance, the orange cluster of “licenses” at (11,23) in the

domain plot, contains utterances asking for free lessons; “Kan jeg f̊a en gratis kjøretime”

and “Jeg ønsker en gratis prøvetime”. While the area around (14, 22) had utterances asking

about prices. The second cluster at (-4, -3) were highly variated and showed no internal

grouping of the utterances.

There are four smaller cluster as well. The utterances at (-18, 16) were all the same; “takk”.

At (-2, 23) the utterances were also the same; “hei”. The cluster at (13, 4) were utterances of

gratitude; “tusen takk” and “flott takk”. And the last cluster at (13, 15) was also utterances

of gratitude; “Okei, takk”, “Supert!” and “Mange takk”.
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7.4.3 Doc2vec

In this section we visualize the doc2vec embeddings. Unfortunately, doc2vec turned out to

be difficult to reproduce [25]. We did our best to make it as consistent as possible. The

samples are projected from the original 100 dimensions down to two dimensions.

Figure 7.14: Two scatter plots of the same utterances represented via doc2vec embeddings,
mapped into 2D-space using t-SNE. The left plot is labeled with domain classes, and the
right plot is labeled with intent classes.

In Figure 7.14, t-SNE projects the utterances into a relative even distribution with no distinct

clusters, except for the circular cluster at (14, 29). This cluster are utterances with rare words

or punctuation which have been removed, hence they are actually empty. There are some

dense spots of different classes, mostly visible in the domain plot as green areas. These areas

are the same as we have mentioned earlier, consisting of utterances like: “Takk”, “Hei” and

“Tusen takk”. Besides these, there were no obvious areas of correlated utterances. The

visualization with UMAP is shown in Figure 7.15.

In the UMAP plot, the same green areas in the domain plot appears at (6.5, 9) “Hei”, (8, 5)

“Tusen takk” and (9, 3) “Takk”. The cluster at (6, 1) was mostly empty utterances, similar

to the cluster we pointed out in the previous section. The areas around (11.5, 6) were of

utterances carrying confirmation. For example; “Ja, det har jeg”, “Okey, da søker jeg om

det” and “Ja, A2 til A”. Besides this, the distribution was quite varying.
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Figure 7.15: Two scatter plots of the same utterances represented via doc2vec embeddings,
mapped into 2D-space using UMAP. The left plot is labeled with domain classes, right plot
is labeled with intent classes.

7.4.4 BERT

The last embedding we are going to visualize is the embeddings made form BERT. The

samples are projected from the original 768 dimensions down to two dimensions. We will

start off with t-SNE.

There appears to be some patterns separating the clusters to a certain degree in Figure 7.16.

The utterances in the upper half (above y equals 0) were simpler, shorter and more precise,

than those found in the lower half. The clusters appearing at (28, 50) and around (26, 14)

are utterances expresses gratitude. Interestingly enough, the instances around (-20, 0) are

also utterances of gratitude, but with emoticons like; “:)” and “:D”. Utterances at (32, 22)

are greetings, while those around (10, 35) consists of confirmations and rejections; “Den er

god” and “Nei, har ikke det”. Still, there was a very high variation in the utterances when

inspecting the plot closer. The visualization with UMAP is shown in Figure 7.17.

UMAP projected the utterances into mainly three clusters. The wide cluster at (12, 13)

contained varying and complex utterances. Utterances appearing at (6, 11) also contained

mostly varying, long, challenging requests form users. However, there were some simpler,

first-line requests in the left half of this cluster. The cluster at (11, 4) had simple, short and

precise requests, and showed some internal groupings of the utterances. Utterances around

(9, 2) reflected confirmations and gratitude. The area around (10, 4) expressed experience
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Figure 7.16: Two scatter plots of the same utterances represented via BERT embeddings,
mapped into 2D-space using t-SNE. The left plot is labeled with domain classes, and the
right plot is labeled with intent classes.

Figure 7.17: Two scatter plots of the same utterances represented via BERT embeddings,
mapped into 2D-space using UMAP. The left plot is labeled with domain classes, and the
right plot is labeled with intent classes.



and requirements from the user. Utterances around (12, 3) seemed to concern to course and

motorcycle related questions.

The small cluster at (-10, 17) consisted of; “takk”, while the one at (9, -4) were greetings;

“Hei” and “Hallo”. The passage at (7.5, 8.5) was combinations of confirmations and grati-

tude; “Flott, takk for svar” and “Supert, takk for hjelpen”. While utterances at (9.5, 7) was

utterances counting emoticons; “:)”, and were also mostly confirmations and expressions of

gratitude.

7.5 Trained binary classification models

As we mentioned in section 6.7, knowing the complexity and challenges around our utter-

ances, limited data and quality of the labels, we choose to first simplify the the classification

problem. Additionally, we did not observe any groupings of our labeled data in the plots

we showed in the previous sections. We divided the dataset according to the domain labels

since we already filtered out challenging utterances with specific labels (see section 6.7).

7.5.1 Baseline model and logistic regression models

The first model we trained was the baseline model, which was with logistic regression and

bag-of-words as the baseline model. The baseline model scored an accuracy of 68.4% on the

validation set. After the baseline model, we a trained logistic regression model for each of

the remaining embeddings. The model trained with word2vec average achieved 64.3%, the

model trained with doc2vec achieved 63.0%, and the one with BERT’s classifications tokens

got 71.3%.

7.5.2 Random forest models

The second machine learning algorithm we used was random forest. We trained 30 models

for each of the different embeddings via random search. We selected the best preforming

model for each embedding and measured their performance on the validation set. The model

trained for bag-of-words scored 64.1%, the model trained with word2vec average achieved

71.2%, doc2vec 67.7% and the one with BERT’s classification tokens scored 69.6%. Their

corresponding hyperparameters found via random search are listed in Table 7.1.
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Table 7.1: Showcase of four different random forest models and their hyperparameters trained
on different sentence representations.

Embeddings min samples leaf max features max depth
Bow 4 0.394 17
Word2vec average 16 0.614 22
Doc2vec 4 0.499 29
BERT 10 0.1 9

7.5.3 Feedforward neural networks

The last models we trained for the fixed sentence representation was via FFNN. For each

of the embeddings we trained 30 FFNNs for 30 epochs using random search. Each model

was selected based on the validation score. The network for the bag-of-words embeddings

achived 72.3% while the one for word2vec average got 67.7%. doc2vec scored 67.3% and

BERT embeddings 73.9%. The hyperparameters we found for each of the networks are

listed in Table 7.2.

Table 7.2: Overview of hyperparameters corresponding to best preforming FFNN respec-
tively to embeddings.

Embeddings alpha hidden units epochs
Bow 0.464 792 18
Word2vec average 0.462 23 26
Doc2vec 0.046 67 16
BERT 0.046 257 29

7.5.4 Summarized performance of the binary classification models

We summarized the validation score of all the binary classification models in Table 7.3. The

scores correspond to the models trained with the different machine learning algorithms on

the different embeddings.
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Table 7.3: Overview of validation accuracy for each model. The models are trained with
either logistic regression, random forest or feedforward networks. They are also trained using
either bag-of-words, word2vec average, doc2vec or BERT embeddings of utterances.

Algorithm BoW Word2vec
average

Doc2vec BERT

Logistc regression 0.684 0.643 0.630 0.713
Random forest 0.641 0.718 0.677 0.696
Feedforward network 0.723 0.677 0.673 0.739

By comparing the machine learning algorithms, random forest performed better overall than

logistic regression. FFNN did again in total perform slightly better than random forest.

Overall, regarding the embeddings, the doc2vec representation had the worst performance.

Bag-of-words was slightly better than word2vec average, while BERT’s classifications tokens

performed overall the best.

The model who achieved the highest accuracy score for this binary classification problem

was the one combining FFNN with BERT embeddings. By using an FFNN with BERT

embedding the performance was increased by 5.5% from the baseline accuracy score of 68.4%

to 73.9%.

7.6 Sequential binary classification models

In this section we will present the four sequential binary classification models trained using

the RNN and LSTM architecture with word2vec and BERT word embeddings.

7.6.1 Recurrent neural networks

We trained two RNN models, one with the word2vec embeddings and one for the BERT

embeddings. The RNN with word2vec achieved an of 65.9% accuracy on the validation

set. The RNN model trained for the BERT embeddings scored an accuracy of 68.6%. The

hyperparameters for each model is listed in Table 7.4.

Table 7.4: Overview of recurrent neural network hyperparameters corresponding to the best
preforming models using the word embeddings: word2vec and BERT.

Word embeddings alpha hidden units epochs
Word2vec 0.1748 59 7
BERT 0.0265 141 15

85



7.6.2 Long short-term memory

Using the LSTM architecture, the model trained on the word2vec embeddings achieved an

accuracy of 70.4%, while the one trained on the BERT embeddings scored 70.0%. The

hyperparameters for each of the LSTM models are shown in Table 7.5.

Table 7.5: Overview of hyperparameters corresponding to the best preforming LSTM with
the word embeddings generated form word2vec and BERT.

Word embeddings alpha hidden units epochs
Word2vec 0.1748 59 7
BERT 0.0265 141 15

7.6.3 Summarized performance of the sequential binary classifica-

tion models

As with the binary classification models, the accuracy scores from each model trained on the

sequential embeddings are listed in Table 7.6. Each score corresponds with a neural network

architecture and a word embedding technique.

Table 7.6: Overview of validation accuracy for RNN and LSTM networks, using word2vec
and BERT word embeddings.

Algorithm Word2vec word embeddings BERT word embeddings
RNN 0.659 0.688
LSTM 0.704 0.700

RNN combined with word2vec embeddings performed the most poorly. Changing out the

embedding increased the accuracy score to 68.8%, while switching to LSTM increased the

score with word2vec to 70.4%. LSTM with word2vec embeddings achieved the highest score

of the recurrent networks. LSTM combined with BERT had only barley worse results than

LSTM with word2vec.
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7.7 Summary of all the models

The recurrent models took significantly longer to train then the models with fixed sized

input, and especially with the word embeddings generated with BERT.

We trained in total 16 different models, combining different machine learning algorithms and

embeddings techniques. Four of the models were also recurrent neural networks.

The first model we trained, the baseline model, scored an accuracy of 68.4%. There were 7

models that had a lower accuracy score than the baseline model. The worst of them, logistic

regression with doc2vec, had an accuracy score of 63.0%.

The worst preforming reccurent network, RNN with word2vec, scored 65.9% which was also

below the baseline model. The best preforming recurrent model, LSTM with word2vec,

achieved 70,4% which was better than the baseline model, but was still beaten by three

models trained on sentence representations.

The model that achieved the highest accuracy score, was the feedforward network trained

on classification tokens generated by BERT. It managed to score 73.9%, which was an im-

provement of 5.5% from the baseline model. We evaluated the final model on the testing

set, of which it scored an accuracy of 73.2%. The final model also had an F1 score of 0.639

which we will compare with the F1 score of the related work in section 8.3.

7.8 Summary of results

We tested out the following sentence representations: bag-of-words, average of word2vec em-

beddings, doc2vec embedding, BERT’s classification token, sequence of word2vec embeddigs

and sequence of BERT’s word embeddings. We used the following machine learning algo-

rithms to train our models: Logistic regression, random forrest, feedforward neural network,

recurrent neural network and long short-term memory.

The utterances in the dataset had high variation, were inconsistent and complex. Hence we

choose to train binary classification models first, observe how they preform, before potentially

expend the classification problem. We used accuracy to measure the performance of the

models. The binary data distribution was 58.8%/41.2%.
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We trained first an baseline model using logistic regression with bag-of-words embeddings.

The baseline model scored an accuracy of 68.4%. The best performing model was an feedfor-

ward neural network combined with BERT’s classifiaction tokens. It achieved an accuracy

of 73.9%. The best preforming recurrent model was an long short-term memory model

with word2vec embeddings, which scored 70.4%. The worst preforming model wast logistic

regression with doc2vec embedding, and it only had an accuracy of 63.0%.

Due to the performances we did not advance with the classification problem. We concluded

the models were not preforming remarkable, because of the quality of the data. However,

we observed that increasing the complexity of both the machine learning algorithms and

sentence representation made some performance improvements.

Lastly, we evaluated the finale model, FFNN with BERT classification tokens, on the test

set. The model scored an accuracy of 73.21% and F1 score of 0.639.
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Chapter 8

Discussion

In this chapter we will discuss the processing and results of the data labeling, sentence

representation and the machine learning models considered in this thesis. We set out to

explore which combination of sentence representation combined with a machine learning

algorithm would perform the best on the given dataset.

8.1 Data, labeling and quality

The data labeling was a very time-consuming process. We managed to label 2800 of the

4948 available utterances due to time constraint. This left us with a relatively small dataset

for the machine learning models to train on. Another challenge with the data labeling was

some inconstency in the actual labeling. The reasons for this were complex; continuous

updates of the labeling guidelines based on the already observed data, varying conception

of which label the data should be distributed, and human error. It was challenging to

label the data, mostly due to the amount of different information in the utterances. As

mentioned in section 6.4.1, the average number of tokens in an utterance was 84.9. To put

this into perspective, we compared our dataset with two benchmark datasets; The Schema-

Guided Dialogue Dataset (SGT) [68] and Multi-DomainWizard-of-Oz (MultiWoZ) [48]. We

also compared our dataset to the dataset in a similar master thesis; Exploring pretrained

word embeddings for multi-class text classification in Norwegian [43] from Norges teknisk-

naturvitenskapelige universitet. The comparision is visualized in Table 8.1.
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Table 8.1: Comparison of our dataset with the two benchmark datasets; The Schema-Guided
Dialogue Dataset (SGT) and Multi-Domain Wizard-of-Oz (MultiWOZ), and a dataset used
in a similar master thesis from Norges teknisk-naturvitenskapelige universitet (NTNU).

* Contains only one side of the dialogue

** Contains typos

Compairing datasets
Metric Our NTNU MultiWOZ SGT
# dialogues 1,219 NA 8,438 16,142
Total # of utterances 2,800 193,000 113,556 329,964
Avg. turns per dialogues 7.5* NA 13.46 20.44
Avg. length of utterances 84.9 9.6 13.13 9.75
Total unique tokens 6,638** 8,790 23,689 30,352

There are two things that are worth noticing in the comparison of the datasets. Firstly, our

dataset only has a fraction of total utterances compared to the others. Secondly, the average

length of the utterances are notably higher than the others. The length of the utterances

indicates that there is more information in each utterance. However, the higher amount of

information would often be a mixture of multiple intents in each utterance, and just more

noise or irrelevant information. We pointed out that both of these instances were occurring

in section 7.1. This makes the data both harder to label reassuringly, and harder to process

for the machine learning algorithms. This problem was also pointed out by a Rasa employee

answering a question at their forum [19];

“it’s impossible to build a bot that can handle very long user inputs simply because

NLU model will fail to classify them correctly. The user inputs you train your

assistant to understand should be short and correspond to a specific intent label

which is impossible to achieve with very long inputs.”

Both Google’s Dialogflow and Rasa therefore recommend to keep the intent’s training data

distinct from each other to enable the dialogue system to properly be able to distinguish

utterances in production [14] [1].

In retrospect we could have handled the data differently. Firstly, we could have filtered

away complex utterances by limiting the maximum length of the utterances with a certain
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threshold. We could also have spent more time defining the guidelines for labeling the data.

In addition, we could have increased the data quality by having multiple people label the

data simultaneously and overlapping, detecting and correcting inconsistent labeling. For

instance, in the dataset used in Intent Classification for Dialogue Utterances, one of the

corpuses were labeled by 5 different workers to ensure data quality [46, Ch5.2 p177].

Lastly, we could have spent more time iterating the dataset, correcting mislabelings and

applying changes to the labeling according to the final, updated guidelines. However, this

work is immensely demanding in terms of resources and time, and there would therefore

have been even less labeled data if we were to complete the thesis in the same amount of

time. Furthermore, the removal of more complex utterances would have given us less data

to work on, especially since long utterances were so common in our dataset, compared to

the dataset from NTNU, MultiWOZ and SGT (Table 7.1).

8.2 Sentence representation

We either generated the representations (bag-of-words), train and mapped the sentence rep-

resentations (word2vec and doc2vec) or mapped/extracted them via a pretrained model

(BERT). We did not perform any form of hyperparameter tuning when we trained the em-

beddings. We used some recommended settings and left the rest as default. This was mostly

because evaluating embeddings on their own is difficult. The most important evaluation

metric for embeddings is done via machine learning tasks, by observing whether or not the

embeddings improve the performance of the tasks [52, Ch6.12 p128].

We visualized the different embeddings and observed some patterns, or clusters, with t-

SNE and UMAP. There were also a few dense areas corresponding with the hand-labeled

classes. We observed some of the patterns and found a few correlations between them, but

the distribution of the utterances was still highly varying.

The performance of the different sentence representations was surprising. Bag-of-words

would outperform averaged word2vec, doc2vec and the sequence representation with

word2vec, accross many machine learning algorithms. This might indicate that word2vec

failed to capture a mapping of semantic representation of words, due to the small size of the

corpora. In that case, the same possible reason for under-performing applies to doc2vec as

well, since the algorithms doc2vec uses are very similar to word2vec’s algorithms. However,

the sentence representation created with BERT did out-perform BoW.
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8.3 Machine learning models

The last part of our discussion revolves around the different machine learning algorithms

we experimented with. We had two variations of machine learning models, for the first

variation the sentence representation was fixed sized, while for the second variation the

sentence representation was sequences of word embeddings. We will begin discussing the

fixed sized variation.

As we mentioned in section 7.6, the overall performance rose as we used more complex

models. We experimented with a few different hyperparameters for both random forest and

FFNN. We could have tried out even more or different hyperparameters, or different ranges

for our chosen hyperparameter. However, we kept both the classification problem and models

as simple as possible without any remarkable success.

Network complexity seem to matter for the recurrent models as well. LSTM performed better

than regular RNN. LSTM did however not outperform the FFNN model. Unfortunately, the

recurrent networks were slow to train and we were only able to explore a few different

variations.

We compared our final model with the best performing models presented in Related work

([69] and [43]). The comparison is presented in Table 8.2.

Table 8.2: Comparison of our models F1 score with the model in Exploring pretrained
word embeddings for multi-class text classification in Norwegian and the model in Intent
Classification for Dialogue Utterances.

Compairing datasets
Model # utterances # labels F1
SVM w/FastText average [69] 496 13 0.782
FFNN w/BERT [43] 193,000 1,716 0.886
FFNN w/BERT (Our) 2,800 2 0.639

The two models we compared our model with are notably better when comparing F1 score.

Additionally, our model only distinguished between 2 labels, which is easier than the 13

labels and 1,716 labels the two models classified. The model in [69] was also based on

quite a lot fewer utterances than our model. This indicates that our data was not optimal.

Unfortunately, the average length of utterances was not reported in [46], so we could not

92



compare it to the average length in our dataset. Still, we have an indication that the

utterances were on average shorter than in our dataset, as the intents were described to

be disjoint. This in comparison to our data, where each utterance could contain multiple

classes.

8.4 Summary

The best performing machine learning algorithms were FFNN and LSTM, while the best

sentence representation was BERT’s classification token. The model which performed the

best was FFNN combined with BERT’s classification token, and scored a validation accuracy

of 73.9%. The worst scoring model, logistic regression with doc2vec, achieved 65.0% accuracy.

The recurrent network which had the best performance was LSTM with word2vec, and scored

an accuracy of 70.4%. LSTM with word2vec was still only the fourth best model overall.

Unfortunately did none of the binary classification models achieved any remarkable results,

hence we did not precede with the classification problem.

Other observations worth mentioning are that our baseline model did surprisingly well com-

pared to more complex sentence representations and models. It achieved 68.4% and out-

performed 7 other models. Also, both LSTM networks with word2vec and BERT had very

similar performances, and were only separated by 0.4% accuracy. This was surprising be-

cause of the simplicity of both BoW and logistic regression, and might be a pointer that the

problem was not embedding or machine learning algorithm related, but connected to the

data.
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Chapter 9

Conclusion and Future work

9.1 Conclusion

We concluded that the quality of the data held back the sentence representations and the

binary classification models. We were therefore not able to achieve any impressive results

regarding the classification problem. The conclusion was drawn from the underwhelming

performance of the machine learning models on our simplified binary classification problem.

This again shows that the quality of the training data is very important, if not the most

essential factor for developing a well-functioning dialogue system.

We have pointed out the two main reasons as to why our binary classification failed. The

first reason was the condition, quality and quantity of the data. Due to the dataset being

unlabeled, we only managed to hand-label a few samples, and were not able to ensure the

quality of those samples. The second problem was the length of the utterances. They were

remarkably longer compared to utterances in other datasets (see section 8.1). This made

the utterances more challenging to classify. We observed that the reason for this was the

amount of information conveyed related to driving school services and personal characteristics

occurring in the utterances. We have explained both these occurrences in section 7.1.

The problems with the data were observable via the models that we trained. The models

were decreasing their cost functions according to the training data, and converging their

performance on the validation set. Unfortunately, the performances were not particularly
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impressive for any of the models, and the classification problem was not further pursued.

However, this lead us to shifting our focus to analyzing the problem, where we learned the

importance of both data quality and labeling in developing a well-functioning classification

model.

9.2 Future work

Regarding this specific classification problem and dataset, there are a few things we could

have further explored. Hyperparameter tuning of the different embedding- and machine

learning algorithms is for instance something that we could have experimented more with and

that might have boosted the performance of the models. We could also have experimented

with different algorithms for generating static embeddings, like GloVE (an extension of

word2vec) or fastText [52, Ch6.8.3 p124]. In addition, we could have experimented more

with pre-trained models. Examples of such models are pre-trained word2vec, GloVe and

fastText models for Norwegian, or other contextualized embedding models like ELMo or

GPT [63, Ch1.4 p6 Ch4.4.4.2 p67]. It would have been interesting to see if any of these

could change the visualizations, and if they would have made an impact on the performance.

Regarding the neural networks and potential approaches for training and arranging the

networks, a vast range of possibilities exist. Given a second round at the dataset, and with

more computing resources and time, we would therefore have tried out different options.

We would for example have increased the training duration, tried out different optimization

algorithms and explored the effect of deeper networks to see if this would have any effect on

the performance.

Based on the results and conclusion we would also like to shed some light on the importance

surrounding data for dialogue systems, and in general for any supervised classification prob-

lem. Furthermore, we would like to suggest some methods for approaching similar problems.

As mentioned in section 6.2, the dataset lay down the foundation for any machine learning

model. For classification models, which dialogue systems rely on, correct and sufficient

labeled data is essential. However, the process of creating a proper dataset is very costly and

time consuming. Our approach, where collected utterances were hand-labeled, is a viable

approach but requires a lot of resources, demands proper guidelines and measurements to

ensure the quality of the data.
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Another approach for collecting and labeling utterances is the Wizard-of-Oz setup, which

was used in [48] (see section 5.3). In the Wizard-of-Oz setup, the user thinks it interacts

with a dialogue system, but is in reality communicating with a human “wizard”. The wizard

is provided an interface interacting with a system that handles input from users. Based on

the users utterances, the wizard can fetch requested information or straight away answer

the utterance [52, Ch24 p550]. In this way the dataset may be collected relativity fast and

at a low cost [48, Ch3 p3]. Additionally, the system could be configured to guide the users

utterances in certain directions and limit the length of them as well. The wizard’s interface

could also have a setup for labeling each utterance, guiding the dialogue and replying with

pre-written templates, to create a dataset efficiently and consistently.

Commercial solution, like for instance Rasa, is another feasible approach. Rasa recommends

to build the dataset over time on real data via the dialogue system. Initially, the system

will only be based on a few synthetic training examples. By continuously annotating the

incoming messages from real users, the dataset will grow. The new data is used to re-train

the dialogue system, which will then continue to improve [1] [5]. In comparison to having to

hand-label a large collection of already existing data before one can begin the development

of the dialogue system, Rasa provides a framework for continuously gathering and selecting

data that is then used to gradually enhance the dialogue system.
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Guidance for Domain & Intent
The goal of the natural language understanding component in the frame-based architecture
is to extract three things from the user’s utterance.

Domain classification: Is this user for example talking about airlines, programming an alarm
clock, or dealing with their calendar? Of course this 1-of-n classification tasks is
unnecessary for single-domain systems that are focused on, say, only calendar management,
but multi-domain dialogue systems are the modern standard.
Intent determination: what general task or goal is the user trying to accomplish? For example
the task could be to Find a Movie, or Show a Flight, or Remove slot filling a Calendar
Appointment.
Slot filling: extract the particular slots and fillers that the user intends the system to understand
from their utterance with respect to their intent.

Multi-output classification:
Classifier-models that output multiple labels. Probably not necessary, but won't hurt.

“The simulator also allows for multiple intents to be active during a given turn.”
- SGT

“TOP, which pertains to navigation and event search, is unique in that 35% of the
utterances contain multiple, nested intent labels. These hierarchical intents require the
use of specialized models.”

- Learn to Classify Intents



T. Solbakken labels:

Domains | Description:

Courses Any cours, TG, Mrk etc

IntensiveCourses Intensive courses for any licences

Licences Any licence

Package price Any package

General General questions

Finance Financing lessons

Payment Anything regarding paying

Complex Anything that's seems challenging and should
be handled of an employee.

DrivingTest Anything regarding driving test

Other Possible features for later, REVISIT.
Oppkjøring,

Request Customer request beyond chatbot, REVISIT
Eger customers, unordinary req,

Toss REVISIT

Advice Customer asks for any advice

Corona Corona related messages

Giftcard Giftcard related messages

OnlineCourse Anything regarding online courses

Rudskogen/Førerutviklingskurs Anything regarding Rudskogen or
Førerutviklingskurs



Intents | Description:

Intent: Description: Action:

alterBill change bill, => getEmployee

alterBooking change booking, =>
getEmployee

alterBookingOther Asks to change booking for
another person

cancelBooking cancel one or more bookings

confirme Customer confirmed current
state

confirmMultiple (Intent for production)
Confirm multiple slots

deny Customer deny current state

denyMultiple (Intent for production)
Customer deny multiple slots

endOfConversation Customer thanks or says bye

freeLesson Anything regarding Free
Lessons

gatherExperience Customers provide experian.
Slot extraction later.

gatherInformation Customers provide relevant
information,

Slot extraction later.

getAvailable Customer asks for available
courses/driving lessons

Link to page course page or
(licence => getEmployee)

getBill Customer ask for bill =>
getEmployee

getBooking Show booking (time, location,
instructor)



getBookingOther Asks for booking regarding
another person

getContactInformation Gets some information about
contact

getEmployee Get employee

getEstimatedTime: Estimated time of an event

getInformation Customer ask for information
regarding domain

Link to related page at
website

getInformationComplex Complex req about info

getLocation Asks where to meet, office
location or service location
(Norheimsund, Sotra etc)

getPaymentMethode Asks about payment
methodes.

getPractical Practical information about
current domain

getPrice Asks for price Link to price page, and
section at page.

getPractical Customer ask practical Q, =>
getEmployee

getStarted When a customer say they
want to get started, or
something regarding
‘Prøvetime’.

getTime Customers request time-slots
for the specific domain. After
dinner? When and for how
long.

None

Other Revisit



postBooking Customer wants booking
information after booking is
completed

reqBill Customer req the bill

reqBooking Customers want to book. All
domains (license/driving
lesson, course, package,
intensive course).

Slotts might differ.

reqCompetition Customer replays to
competition

reqGiftcard Customer request giftcard

reqMultipleBooking Book multiple events, =>
getEmployee

reqPrice More custom req for price =>
getEmployee

suggestBokking Customer is wondering to
book

Suggest booking, link to
book-page

suggestLocation Customer want to propose
location

suggestTime Customer suggest time

Chatbot specific intents
Intents that are not in the dataset but might be relevant in production.

challenge Ask about chatbot

getOptions Ask about options for current domain

getEmployee Customer req a human



Licence class
This feature categorieze licence classes, might be useful.

A (Tung) Motorsykkel lett

A1 (Lett) Motorsykkel mellom

A2 (Mellom) Motorsykkel tung

AM146 (Mop) Moped

B Personbil

B96 (4250kg) Personbil m/tilhenger

BAut Personbil (automat)

BE (7000kg) Personbil m/tilhenger

Annet

None
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