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Abstract

This thesis compares the ability of different vaccination strategies in
limiting the peak infected, on a model for disease spread based on the
SIR model, where we can set the underlying graph. We tested strategies
based on Betweenness centrality, closeness centrality, and different k-
neighbourhood based centralities. For the graphs, we used random,
small world, and geometric graphs. We show that the diameter of the
graphs is important for which strategies perform good and show that the
strategies that considers the state of nodes (immune, infected, etc.)
performs better than the ones that do not. We also give fast algorithms
for calculating the k-neighbourhood and betweenness centrality on small
sparse graphs.
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1 Introduction

March 2020 was the start of the covid-19 pandemic, now, two years later, the virus has lost
its pandemic status in most countries. In accomplishing this, vaccines where the most
important factor. But because of their limited supply, countries made different choices of how
they should be distributed. In Norway and many other countries healthcare workers got
priority, as they are both more exposed to the pandemic, and important for the maintaining
the capacity of the healthcare system. The older age groups were also prioritized, as these
have a higher likelihood of serious symptoms and death. While both groups where prioritized
by most countries, other exposed groups like teachers where not always prioritized. During
the pandemic there were those who argued that young people should be prioritized for
vaccines as they were more likely to spread the virus since they tend to have more contacts.
Now mutations of the virus give rise to new vaccines and ensuing discussions on how these
should be distributed.

Thus, it is interesting to see how different vaccination strategies performs. In this thesis we
investigate and evaluate different ways of allocating vaccines. There are different ways to
measure how a strategy performs, we have chosen to use the peak number of infected. This
is because one can assume that in a pandemic, everyone gets infected, and since the number
of hospitalizations is proportional to the number of infected, minimizing the number of
infected at any moment also minimizes the load on the healthcare system.

There are different ways of modelling pandemics, one of these is the SIR model introduced by
of Kermack and McKendrick, where an individual can be in one of three groups, S —
Susceptible, | — Infectious or R — Recovered/Resistant, and there is some chance for an
individual to move from one group to the next (from S to | and from | to R). There are other
models based on the same concept, such as SIS or SIRD. In general, this kind of model is called
a compartmental model. All of these have an expression in the form of a differential equation,
but this assumes a homogeneous mixing of the population, and thus does not allow for the
ability to change the structure of the population or try different strategies based on structure.
To circumvent this, one can use a graph for representing a population and their connection,
as an underlying structure. Doing this gives the ability to test more complex population
structures, and different strategies for vaccination/isolation.

For some intuition behind the strategies, we look at two examples, super spreaders and
bridge-nodes. For super spreaders, that is vertices with high degree, it is easy to see that
removing these can result in lowering the rate of spread, as if one of these vertices become
infected there is a high probability that the neighbouring vertices will also become infected.
As for bridge-nodes, that is a vertex whose removal would split the graph into two or more
components. Removing these effectively isolates the components where there are no already
infected vertices. Thus, one can isolate the spread to a smaller part of the graph.

Some of the strategies we have looked at are vaccinating based on the degree of vertices, the
size of different k-neighbourhoods, betweenness centrality, closeness centrality, and random.
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The graphs used are random connected graphs, small world graphs and geometric graphs. A
problem with using many of these strategies in the real world is that it can be difficult to collect
enough data to calculate the needed measures, where one of the most important reasons is
privacy. For example, in the calculation of betweenness centrality one needs to know the
whole graph. This is totally unrealistic as there is already concern about the amount of data
existing apps made for limiting spread collects. Some of the centralities used has known
approximations, for example betweenness centrality ( (Riondato & Kornaropoulos, 2014),
(Bader, Kintali, Madduri, & Mihail , 2007) ), although these approximations use shortest path
sampling, and still needs most of the graph structure. Approximations for some of the
centralities could perform almost as well as what they approximate and could also elevate
some of the privacy concern.

We will show the potential of some strategies to limit the peak.

One of the results we got is that for random and small world graphs, since the graph diameter
log(n)
log(n-p)
p chance of an edge existing), it is unlikely that any strategy performs much better than
random, at least using a realistic number of vaccines. While when we increase the diameter

of the graphs using geometric graphs, we see a larger difference between strategies.

is small ( for random, and log(n) for small world, with n number of vertices and

In Chapter 2 (Graphs), we define the graph notation that is used for this thesis. We introduce
the different types of graphs that are used, some properties of these different types of graphs,
and how the graphs are generated.

In Chapter 3 (Centralities), we introduce the centrality measures that are used, and how these
are calculated. For the calculation of the centralities, we look at known algorithms for
calculating the centralities, and introduce and compare these to our own algorithms, and
show that our algorithms are faster on small and sparse graphs.

In Chapter 4 (Simulation), we introduce our implementation of the SIR model (with
vaccinations). We show the parameters of the model and the vaccination strategies that are
implemented based on the centralities from Chapter 3. We also go into the details of how the
simulations are run in parallel, and some of the challenges around this.

In Chapter 5 (Results), we show the results from the different runs of the model from Chapter
4.



2 Graphs

2.1  Definitions
In the following we define the graph notation that is used in this thesis.

Agraph G(V,E) is a structure where V is the set of vertices and E the set of edges, with |V| =
n and |E| = m. Here V = {1,2,---,n} and an edge e = (u, v) where u,v € V, represents a
connection between u and v. Two vertices u and v are neighbours if (u,v) € E. G is an
undirected graph, that is if u has v as a neighbour, v also has u as a neighbour. Thus (u, v)
and (v, u) denotes the same edge.

An ordered sequence of vertices P = {v,, v,, -, v;} is a path, if all consecutive vertices v; and
V;4+1 are neighbours, and all vertices are unique, that is v; # v; for all v;,v; € P,i # j. The
length of path P is |P| — 1, and the distance dist(u, v) between to vertices u and v, is the
length of the shortest path between v and u. If there is no path between v and u we let
dist(v,u) = oo. Also dist(v,v) = 0.

We call graph G connected if for every pair of vertices v;, v; € V there exists a path from v; to
v;. If G is not connected, we can divide V into maximal subsets C = {ci, ¢y, Ci} such that
each ¢; is connected. We call C the connected components of G.

The neighbourhood of a vertex v, N(v), is the set of all vertices that are neighbours of v, and
the degree of v, deg(v) = |N(v)|, is the size of the neighbourhood of v. Let deg,,,(G) be
the maximal degree of the vertices in the graph, i.e., max{deg(v)|v € V}.

The k-neighbourhood N (k, v) of vertex v, is the set of vertices with distance at most k from

v, that is N(k,v) = {u € V| dist(v,u) < k}. Note that N(1,v) = N(v) U {v}. We also

denote N(1,v) by N[v]. We let n(k) = mea‘;dN(k, v)| be the largest k-neighbourhood in the
v

graph.

The eccentricity €(v) of a vertex v is the length of a longest shortest path starting from v, i.e.,
e(v) = max dist(v,u). The diameter, diam(G), of graph G is the largest eccentricity over all
ue

vertices, i.e., diam(G) = max e(v).
ve

Let L(k, v) be the k’th distance layer of vertex v, i.e., all vertices with distance exactly k from
v, L(k,v) = {u € V | dist(v,u) = k}. We define the density of a graph G as dens(G) = %
Let BW (v) be the betweenness centrality and CL(v) be the closeness centrality of vertex v,
these are defined in Chapter 3.1.

The following table gives a summary of the graph notation.

Notation Explanation




G A graph

%4 The set of vertices of G

E The set of edges of G

n |V], the number of vertices in G

m |E|, the number of edges in G

dist(v,u) The distance between vertices v and u

deg(v) The degree of v

dens(G) The density of G, =

N(v) The neighbourhood of v

N(k,v) The k-neighbourhood of v

e(v) The eccentricity of v

diam(G) The diameter of graph G

L(k,v) The k’th distance layer of v

degmax(G) The maximum degree of any vertex in G

BW (v) The betweenness centrality of v, (defined in Chapter 3.1)

CL(v) The closeness centrality of v, (defined in Chapter 3.1)
2.2 Graphs

We use different types of synthetically generated graphs in our experiments. In the following
we define each of these graph classes and explain how we have generated them. The three
main graph types are random connected graphs (RND), small world graphs (SWG), and
geometric graphs (GEO or GEO_d where d is the lower bound for the diameter). We want to
keep the graphs connected since we use them to model a pandemic where a disease spreads
between vertices (persons) along edges (interactions). Thus, a disease cannot spread from one
component to another.

2.3 Random connected graphs
Random graphs, or Erdds-Rényi graphs, are graphs where every edge has an equal chance of
existing. In the paper On the evolution of random graphs, Erd6s and Rényi show different

properties of these graphs like the binomial distribution of vertex degree, and a lnTn threshold

for connectedness, that is, if each edge has a probability of existing higher than this value one

would expect the graph to be connected. The diameter of random graphs is most probably

log(n)
log(Zn-dens)

n-1

(Chung & Lu, 2001) if we keep the graphs sparse.

We construct random connected graphs by starting with V = {1,2, ...,n} and E = @. Then we
add edges until |E| = dens - n = m. There are two types of edges that can be added, these
are edges that connecting two vertices of different connected components, and edges
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connect two vertices of the same connected component. Since we want the graph to be
connected, we ensure that n — 1 edges connecting two different connected components are
picked, as then the graph will be connected. We do this by using a union-find data structure
to keep track of the connected components and generate edges at random. We add the edge
if it is either an edge connecting two connected components or if the number of edges we
have left to pick is more than or equal the number of connected components left. Since we

cannot add an edge twice, we create a recursive function R that, given a random start seed,
n(n-1)
2

generates a non-repeating sequence of values in the range [0, — 1], and use a function

M that takes a number from R and return an edge. We use
R(0) = seed, R(x + 1) = (R(x) + prime)% m,

where prime is some prime number larger than m, and seed some initial seed in the range
[0,m — 1] chosen at random. Let R.next be the next number in the sequence, that is, if we
have R(x) = y, then R.next = R(x + 1). And,

n(n-1)
2

M: [0, — 1] - (a,b), witha < b.
_ 5(x)? —6(x)

1++/1 +8x|
2 2

M) = ( ,5(x>>,a<x> - {

We show how we get these functions in Appendix 2. As an example of what different values
for x gives, M(0) = (0,1), M(1) = (0,2), M(2) = (1,2), that is, the function first returns all
edges endingin 1, then all edges ending in 2 etc, where the edges are not self-edges i.e., (v, v).

ALGORITHM FOR GENERATING RANDOM CONNECTED GRAPHS
Input: integers n, m

Output: the edge list of a random connected graph with n vertices and m edges

if UF.find(v1)! = UF. find(v2) Vm — edges = UF.components:
edgelist — (v1,v2) //append the edge to the list
UF.join(v1,v2) /ljoin the components if v1 and v2 are different
/lcomponents, else this does nothing

1 UF : union find

2 edgelist : Array[(int,int)] /Ithe edge list for the output graph

3 R: RandomGenerator /lrandom generator as described

4 whileledgelist| <m:

5 vl, v2 = M(R.next) //generate edge between vertices v1 and v2
6

7

8

9 returnedgelist

The time complexity of the algorithm, if we assume the graph is connected after trying to add
0(m) edges, is O(m - a(m,n)), where «a is the inverse Ackerman function. This is achieved



using path compression and union-by-rank for the union-find data structure (Tarjan & Van
Leeuwen, 1984). Although there is a possibility of the graph not being connected after O(m)
steps, this is highly unlikely. If this is the case, the algorithm has a time complexity of
O(n2 . a(nz,n)), as all edges incident to some vertex can come at the end of the random
numbers generated by R. Since we guarantee that the graph is connected, the graph is not

chosen totally random, as randomness would include non-connected graphs. But as a random
(n—1)Inn

S as long as we choose m large

graph is most probably connected when dens(G) >

enough this should not affect the randomness.

2.4 Small world graphs

Small world graphs are useful when modelling social networks. Their vertex degree
distribution follows a power law distribution (see Figure 2), meaning that some small set of
the vertices have a high degree, while the others have much lower degree. The diameter of
small world graphs is also small, being proportional to the logarithm of the number of vertices,
0(log(n)) (see Figure 1).

For generation of small world graphs, we use the Stanford Snap module (Leskovec & Sosic,
2016) for python, which generates graphs using the Watts-Strogatz model. The function takes
three parameters, the size of the graph, the outdegree (density), and a rewiring probability.
The rewiring probability is the chance of an edge being disconnected from one of its vertices
and connected to some other vertex at random, this is what creates the “long” edges which
gives the graph its small-world behaviour. We let the rewiring probability be 0.0505, which is
in the middle of the range 0.001 and 0.1 where the small world property emerges (Menezes,
Kim, & Huang, 2017).

2.5  Geometric graphs

Geometric graphs are model entities in the physical domain where there typically is an edge
between two vertices if they are sufficiently close to each other. For our simulations we
generate geometric graphs by distributing some number of points n in a 2D plane. Then if the
Euclidian distance between two points, x and y is less than or equal to some threshold we add
an edge between x and y with probability g. We can set the lower bound d for the diameter
of our geometric graphs, which allows us to look at the effect diameter has on the algorithms
in Chapter 3, and the effect on disease spread and how different vaccination strategies depend
on diameter in Chapter 5.

The generation of geometric graphs where we want a lower bound on the diameter d is
simple. First create a plane with sides of length 1 and width a < 1. Then the diagonal of this
plane has length Vva? + 1. If we divide the diagonal into d parts of length r, and we let these
d parts be edges between d + 1 vertices, we will get a graph with a diameter of at least d. If
some of these points is missing while the graph is still connected, then this will result in a
graph with higher diameter than d.



To generate a geometric graph, we place n points at random positions in the plane. Next, we
Vaz+1

choose a radius r = . Each point represents a vertex of the graph, and an edge exists

between two points x and y if their Euclidean distance is < r. This gives the desired diameter,

as the length of the diagonal of the plane is Va? + 1, and dividing this into lengths of size r,
gives d parts. If each of these parts represent an edge, we get the desired diameter. Although
the diameter is not guaranteed since the random points can be generated in such a way that
the two point furthest away from each other is significantly closer than the diagonal of the
plane. We show in Figure 1 that this way of generating geometric graphs does give d as a lower
bound for the diameter. The problem with this approach is that we have no control over how
many edges there are in the graph. To have better control over the number of edges, we
introduce a probability g of an edge existing, between two points within distance r of each
other. This gives us the ability to have the three parameters n, m and d (number of vertices,
number of edges, and minimum diameter) when generating the graphs.

We choose g the following way:

Let the area of the circle of radius  around a point be C = 77?2, and the point density of the

m____2 ThenC-D =104

—_— ™ is the estimated number of points within
Area of plane a

plane be D =

the radius r of a point. We want there to be 2 - %edges incident to each vertex, and we also

want there to be at least two points within each radius as this includes the point that we draw

the radius from. From thiswe gety = 2 - % + 1 as the number of points we want within each

2

T Ya
-gorg = . We also
a q q nnr2

nm

radius. Let q be the chance of an edge existing. We then gety =

need some constraints for the input parameters.
We want r less than a and 1, since an r larger than any of these would always be outside the

plane. Then r < a < 1 gives the following constraint for d: ’1 + % < d. We also want 0 <
q < 1, as q is a probability.

. . . 2m+n _ nw(a?+1 a?+1)wn?
From this we get the following constraints: < ( ), d < ¥,anda <
n? ad? 2m+n
z—Vz2-4

2
, Where z = %. In addition, for this additional constraint for a we fall back to

the constraint of @ < 1 when z? < 4. In summary we get these constraints.

(a? + 1)mn?

1
1+—=<d<
+a2 a(Zm+n)

2m+n<7r(a2+1)

nz2 - ad?
z—Vz%2—4
aﬁf



If these constraints are not met, we say the geometric graph does not exist. For example, the
geometric graph with 1000 vertices, a density of 12, and a diameter of 128 does not exist.

Although we can choose a at will within the constraints, if we choose a value for a that is as
high as possible, we get the plane to be as square-like as possible. We want to do this because
when a is small, there is more overlap between the area of each of the circles formed by the
points in the plane and the outside of the plane. One solution to this problem is to change the
expression of the area of the plane from 1 a to a + mr? + 2ra + 2r, that is, all the areas
outside the plane that can overlap with the area of circles around the points. This has the
effect of making the graph be closer to the desired number of edges but makes the graph
structurally less like one with a higher value for «.. Ignoring the overlap outside the plane gives
a graph with a structure more like one of a higher value of a, and has the same effect as taking
a 1 X a cut-out of a larger plane of points. We can see the effect of this decision in Figure 2
when comparing GEO_32 and GEO_128 when the density is 30. The a values for the two
graphs are 1 and 0,31 respectively, and we can see that the number of vertices with a degree
between 30 and 50 is significantly higher for GEO_128 than for GEO_32. For the same graph
we also get slightly fewer edges than the aimed for density of 30. On average GEO_32 has
29,4 edges per vertex, and GEO_128 has 27,1 edges per vertex.

For the following algorithm for generating geometric graphs, we first check the constraints
above and set a value for «, then generate n random points on the 1 X a plane. Then for all
1 < i <j < nif the Euclidian distance between points i and j is less than r we add the edge
(i,)) to E with probability q.



ALGORITHM FOR GENERATING GEOMETRIC GRAPH
Input: integers n, m, and d

Output: the edge list of a geometric graph with n vertices, m edges and diameter of
minimum d
check constraints for n,m,and d
points : Array|[(float, float)]  //the array of all the points, indexed by their id
edgelist : Array[(int,int)] /lthe edge list for the output graph

z—Vz2—4

A W N R

orlifz?><4

loop n times:
points « (random,random - a) //appends a new point to the array, where
random gives a float between 0 and 1

r=vaZ+1+d

y=2-m+-n+1

9 qgq=y mrr-n+a

10 fori:1<i<n-1:

a =

a n

11 forj:i+1<j<n:

12 a, b = points|i], x,y = points|[j]

13 di=a—x,d2=b-y

14 ifdl-d1+d2-d2<r-r:

15 add edge (i,j) to edgelist with probability q

16 returnedgelist

We only add edges when i < j since q is the probability of an edge existing, and if we had
looked at the edge twice (when i > j) we would have had to change g to compensate. Since
the product C - D is the estimated value of how many points is in the radius of a vertex, some
vertices will have higher degree than others. In addition to this being an estimate we also do
not account for circles intersecting with the edges of the plane. These two factors combined
makes the number of edges in the graph lower than m (especially when «a is small), similarly
to the small world graphs. Another way of generating a geometric graph could be to first count
all the edges satisfying the radius and call this number § and then add these edges with
probability %. We chose not to do it this way, as the probability of an edge existing would not
be the same between different graphs generated with the same inputs. Our algorithm has a
time complexity of 0(n?). This can be improved by creating % buckets (% . %) and adding the

points to these buckets. Then for each point we only need to check the neighbouring 8
buckets, and the bucket containing the vertex for vertices within distance r. This would give

an 0 (%) algorithm.



2.6 Properties of the graph types

In the following we show figures for diameter, degree distribution, and eccentricity
distribution, for the following graph classes: SWG, RND, GEO 32, and GEO_128.

In Figure 1 we see the diameter of SWG, RND, GEO_32, and GEO_128, with densities 10, 20,
and 30. For all the RND and SWG graphs, the diameter is small, and lies in the range [6, 10].
As can be seen, the GEO graphs have higher diameter than their lower bounds, and the
diameter is relatively consistent when the number of vertices changes.

In Figure 2 we see the degree distribution of SWG, RND, GEO_32, and GEO_128, with n =
10000, and with densities of 10, 20, and 30.

In Figure 3 we see the eccentricity distribution of SWG, RND, GEO_32, and GEO_128, withn =
10000, and with densities of 10, 20, and 30. We see that for SWG and RND the eccentricities
are centred on a few values. This is expected as the diameter of the graphs are low. For
GEO_32 and GEO_128, we see that they both reach a “peak” value. For GEO_32 the value
decreases after the peak, while the value stays constant for a while for GEO_128. This plateau
is due to that GEO_128 has a@ = 0,31, making the plane rectangular instead of square, as is
the case for GEO_32.

Diameters
SWG GEO 32
b [T
(0] o [J]
g £ o
= = 10
(S a”
© © >
o L A
2 3 a 20
© © A
(] [ON0)
=, = vw
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
number of vertices number of vertices
RND GEO 128
9 10 O
I o] ‘\f’ \—/\10
£ £ o
kS &~
[a) a
A 20 b:\
2 bl ¥
=] S5 20
® B~
(V] (V]
= © 30 = W e @ @ 3
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
number of vertices number of vertices

Figure 1 The diameter of SWG, RND, GEO_32, and GEO_128, with different numbers of vertices. The number on the right
of each curve represents the density of the graphs. Note the geometric graph with diameter of 128, size 2000, and density
30 does not exist.
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Degree distribution on graphs with n=10000

SWG GEO 32
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Figure 2 The degree distribution of SWG, RND, GEO_32, and GEO_128, where the number of vertices is 10000. The graphs
have densities of 10, 20, and 30.

Eccentricity distribution on graphs with n=10000
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Figure 3 The eccentricity distribution of SWG, RND, GEO_32, and GEO_128, where the number of vertices is 10000. The
graphs have densities of 10, 20, and 30.
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3 Centralities

Centralities are used to describe properties of vertices that are important in some given
context and are used to rank a vertex’s relative importance in the graph. Some examples of
centralities are betweenness, closeness and the vertex degree. In Chapter 4.3 we use different
centralities to choose vertices to vaccinate in the simulations. Since centralities can be costly
to compute it is important that this is done in a timely manner.

In this chapter we define and show algorithms for betweenness centrality, closeness centrality
and k-neighbourhood on unweighted, undirected, and connected graph:s.

3.1 Centralities used

Degree
The degree of a vertex v is defined as the number of incident vertices to v.

In the context of disease spread, vertices with high degree are the ones with a possibility
of being “super spreaders”, that is vertices that can infect many others in a short window
of time. From this it is easy to see how these high degree vertices can be important in the
spread of a pandemic.

k-Neighbourhood
The definition of the k-neighbourhood of a vertex v is:

N(k,v) = {u e V(G)|dist(v,u) < k}

that is, all vertices within distance k of v in G. The k-neighbourhood is not a centrality
measure by itself, but it is included here since one can create different centralities
measures based on it. For example, the k-neighbourhood, here the size of the 1-
neighbourhood is equivalent to the degree of a vertex. Another use of the k-
neighbourhood is the size of an intersection between the k-neighbourhood and some
other set, for instance the set of infected vertices or the set of vaccinated vertices.

k-degree
The definition of the k-degree of a vertex v is |N(k, v)|, the size of the k-neighbourhood
of v. The k-degree is a generalization of the normal degree of a vertex, as the regular
vertex degree is equivalent to the 1-degree.

k-Neighbourhood intersections

The k-neighbourhood intersection is defined as [N(k,v) N A|, where A C V(G) is a set
of vertices with some property, for example the set of all infected vertices or the set of
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immune vertices. If A = V(G) then this is equivalent to k-degree. The intersection gives
the ability to ignore vertices that are predetermined to be less important.

Betweenness
The betweenness centrality of a vertex v is defined as:

Oab (17)

BW(v) =

a*v+b & av,beV(G)
where a,;, (V) is the number of shortest paths between vertices a and b with v as an
intermediate vertex, and gy, is the total number of shortest paths between a and b in
the graph G.
In the contexts of betweenness, we can look at two types of vertices, leaves, and bridges.
For leaf vertices, a vertex v where deg(v) = 1 (see vertex 3 in Figure 4), it is easy to see
that the betweenness is zero as there are no paths going through it. Incident to every leaf
node is always a bridge node, that is, a vertex which would create two or more connected
components if it is removed (see vertex 1 in Figure 4). Let the set of these components
be C, then we know that the betweenness of this vertex is at least }.|C,| - |C,| where
C, Cp € C and C, # Cp, that is, the sum of the products of the pairs of the sizes of the
components in C. Betweenness centrality is useful when determining vertices controlling
information or disease spread on the paths going through them (Das, Samanta, & Pal,
2018).

Oab

Closeness
The definition of closeness centrality is:

1
L) = Z dist(v,u)

uev(G)
One observation with leaf vertices and closeness is that the leaf vertex has smaller
closeness centrality than its incident vertex (unless it is also a leaf). Note that when v and

u are in different components, dist(v,u) — oo, if we let the inverse - 0 then

1
dist(v,u)
this results in the two vertices not having any effect on each other’s closeness. Closeness

centrality is useful for determining a vertex that can spread information or disease fast
(Das, Samanta, & Pal, 2018).

Figure 4 shows an example graph together with a table of the values for betweenness,
closeness and 2-neighbourhood. As previously noted, the k-neighbourhood is a set of vertices,
and betweenness and closeness are both positive real numbers.
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Figure 4: Example graph together with different centrality measures.

Vertex Betweenness Closeness 2-neighbourhood
0 3,33 4,75 {012345}
1 9,67 5,42 {0123467}
2 9,00 5,67 {01245678}
3 0,00 3,70 {0134}
4 17,00 6,33 {012345679}
5 8,65 5,42 {0245789}
6 0,00 4,08 {12467}
7 12,33 5,67 {12456789}
8 0,00 3,70 {2578}
9 0,00 3,83 {4579}

3.2 Calculation of centralities

In this section we show the algorithms used in Chapter 5 to compute the different centralities.
Because we work on relatively small graphs, there is a possibility of creating faster algorithms
by lowering overhead or having better hardware utilization, despite sometimes introducing
higher asymptotic time complexity. We present three algorithms that we have found to be
efficient in practice. These are k-neighbourhoods (3.2.1) an algorithm for computing the k-
neighbourhoods of all vertices in a graph, distance-layers (3.2.2) an algorithm for creating
layers of vertices for each vertex where the different layers each contain all vertices at some
distance from the vertex, and an algorithm for betweenness (3.2.4) that uses the distance
layers algorithm. In Chapter 3.2.3 we analyse the algorithms k-neighbourhoods and distance-
layers and compare k-neighbourhoods to similar algorithms. In Chapter 3.2.5 we compare
Brandes’s algorithms for betweenness to ours and show that ours is faster for small sparse
graphs.
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The bases for computing the different centralities are the two algorithms k-neighbourhood
and distance-layers. The result from the distance-layers algorithm is used for calculation of
the betweenness and closeness centralities, while the other centralities, such as k-degree use
the k-neighbourhoods algorithm.

An easy algorithm for computing closeness centralities is to first find the shortest distance
between each pair of vertices in the graph, and then for each vertex sum the inverse distance
from it to all the other vertices (see definition of closeness). Since this is an unweighted graph
the easiest way of finding the shortest paths/distances is to use Breath First Search (BFS)
starting from every vertex. For computing a k-neighbourhood we can similarly also use BFS
from every vertex and stop after reaching distance k. For betweenness centrality the
calculation becomes harder on unweighted graphs than for most weighted graphs. This is
because there are often multiple shortest paths between two pairs of nodes in unweighted
graphs. For example, in Figure 4, there are two shortest paths between vertex 0 and vertex 4
(0>1—->4 and 0 » 2 — 4). For weighted graphs, at least when the weights are mostly
unique this is unlikely to happen. Because of this the shortest path algorithm we use needs to

n
be able to reconstruct or save up to O (35) shortest paths between each pair of vertices

(upper bound shown in Appendix 1).

3.2.1 Algorithm for k-neighbourhoods

For the pseudo codes below, we use two data structures, Array and Set. We use the
shorthand of id of v = v in both these data structures. Array is an indexable collection of
some data, where we can get the data from a given index. Set is an unorder collection of data,
where we can check the inclusion or exclusion of some element. We also have some standard
set operations with AU B and A N B being the union and intersection between A and B
respectivly, and A — B the difference between A and B (remove all elements of B from A). As
for now the implementation of Set is not important. We get back to this in chapters 3.2.4 and
3.2.5.

There are several algorithms for finding the k-neighbourhood of a vertex. One can use breath
first search and stop when reaching distance k, or a shortest paths algorithm and then make
an array of vertices with distance < k. It is also possible to use the fact that the k-
neighbourhood of a verte, is the union of the (k-1)-neighbourhoods of the neighbours of v.
That is, N(k,v) = Uyen@p) N(k — 1,u), where N(0,u) = {u}. This is the main idea for our
algorithm.
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ALGORITHM FOR CALCULATING K-NEIGHBOURHOODS
Input: A graph G and an integer k

Output: An array of the k-neighbourhoods for each vertex of G

1 prevlayer,nextLayer : Array(Set)
2 forvveV(G):
3 prevLayer|[v] = {v}
4 nextLayer|v] = {v}
5 loop ktimes:
6 prevLayer,nextLayer = nextLayer,prevLayer
//saves us from creating a new nextLayer for each iteration.
7 forvve V(G):
8 forvVue N():
9 nextLayer|v] = nextLayer|v] U prevLayer|u]

10 returnnextLayer

3.2.2 Algorithm for distance-layers

The distance-layers algorithm builds on a similar idea as the k-neighbourhoods algorithm, but
it instead creates an array of sets for each vertex. The length of the array for a vertex v is equal
to the eccentricity of the vertex, and the set at index k of the array contains the vertices with
distance exactly k to v. This is equivalent to the difference between the k-neighbourhood and
the (k-1)-neighbourhood. Recall L(k, v) being the set of vertices with distance exactly k from
v, then L(k,v) = {u € V(G) | dist(u,v) = k} = N(k,v) — N(k — 1,v).

k=0 | k=1 k=4

Figure 5: The distance layers of vertex 0
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Figure 5 shows an example graph and the distance layers of vertex 0, where k is the number
of each layer.

ALGORITHM FOR CALCULATING DISTANCE-LAYERS
Input: A graph G

Output: An array of arrays containing the set of vertices at distance k from each vertex

inG
1 layers : Array(Array(Set)) //Indexed by [vertex][distance/layer]
2 cumulative : Array(Set) //Set of all vertices already in a lower layer
3 notFinished < V(G) //Set of all unfinished vertices
4 forvveV(G):
5 layers[0][v] = {v}
6 cumulative[v] = {v}
7 counter =0 //Keeps count of the current distance
8 while notFinished + 0:
9 counter < counter +1
10 for Vv € notFinished:
11 v_layer = layers[counter][v] = { }
12 forvue Nw):
13 v_layer = v_layer U layers[counter — 1][u]
14 v_layer = v_layer — cumulative|v]
15 cumulative[v] = cumulative[v] U layer
16 if |lv_layer| == 0:
17 notFinished = notFinished — {v}
18 returnlayers

3.2.3 Analysis of k-neighbourhood and distance-layers

We now analyse the running time of the k-neighbourhood and distance-layers algorithms.

Both k-neighbourhood and distance-layers algorithms use a “Set” data structure for storing
the different distance layers, hence the size of the sets is at most [V (G)| = n. The choice of
data structure for Set is important for the time complexity of the algorithms. Here we will look
at two implementations of a set and their impact on the time complexity of the two
algorithms. The two implementations are using hashsets and bitsets. Hashsets are hash maps
where we only care whether a key is in use or not. Using this we can keep track of the inclusion
of elements in the set, and it is also simple to compute the union between two sets as this can
be done in 0(n(k)) by adding the keys of the first set to the other. Bitsets are bit arrays where
the i’th position in the array is a binary value representing either the exclusion or inclusion of
vertex i in the set. Each set has n such binary values, one for each vertex, and therefor the
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union of two sets can be computed in time O(n) using a bitwise or-operation over the two
values. One can obtain a more efficient implementation by storing the bits in some larger
structure such as a 64-bit integer and then use bitwise or-operations on these. Then a lookup
of a specific value needs to use a binary mask in addition to the normal array lookup. Although

L . . . 1
the asymptotic time complexity does not get any better doing this, we only need =, @ many

or-operations compared to storing the bits individually.

A common expression for the complexity of both k-neighbourhoods and distance-layers using
either of the set implementations is given by O(it - (n + m) - op) = O(it - m - op) where it
is the number of iterations of the outermost loop (line 5 in k-neighbourhoods and line 8 in
distance-layers) and where op is the complexity of the union operation. The n + m term, from
lines 7 and 8 in k-neighbourhoods, and 10 and 12 in distance-layers, comes from iterating over
all vertices and then all the vertices incident to them. Using BFS to compute the k-
neighbourhood and distance layers both gives the same time complexities of O(n - (n +
m)) = O(nm). Below is a table of the different complexities.

Bitset Hashset BFS
k-neighbourhood k -mn k-m-n(k) mn
Distance layers diam(G) - mn diam(G) - m - n(k) mn

Apart from the time complexity there are three main properties of the implementations that
impact their performances. These are, the amount of memory used, cache performance, and
usage of the output.

We first consider memory usage. The hashset implementation for k-neighbourhoods keeps a
hashset for each vertex containing the vertices in its k-neighbourhood. For distance-layers
each vertex has an array of hashsets. The length of this is equal to the diameter of the graph.
Since there is no overlap among the layers, together they contain exactly n vertices. The
disadvantage of hashsets in the context of memory usage, is that their memory overhead can
be large, dependent on how they are implemented. We use Java HashSet (java.util.HashSet)
when comparing the different implementations. This implementation of HashSet uses
memory for the buckets that stores the hash values in the form of linked lists. For the bitset
we use Java bitsets (java.util.BitSet). With a bitset implementation there is no overhead, but
every set needs 6”—4 64-bit integers. This means that if a set has more than i vertices in it, a

bitset will use less space than a hash map. But for smaller sets, like a 1- or 2-neighbourhood,
hash maps can use less memory. For the BFS implementation we can use an array of vertices
for representing each of the k-neighbourhoods, this needs n arrays, each the size of its
corresponding neighbourhood. For the distance-layers, we use an array of all the vertices
sorted by their layers, and an array for keeping the indices of each layer. This uses n +
diam(G) integers. In addition, we need a queue and an array dist of size n to do the BFS, but
these can be reused for each vertex.
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Secondly, we consider cache performance. Here there is little difference between k-
neighbourhood and distance-layers when it comes to the different implementations, and
therefore we only look at the cache performance of bitsets, hashsets, and BFS. The cache
performance of hashsets is poor as the buckets consisting of linked lists requires non-
sequential access of memory. Similarly, for BFS where checking whether a vertex has been
visited is non-sequential on the dist array, as one of some vertex v’s neighbour’s position in
the dist array is not necessarily in the same cache line as v’s. For the bitset implementation
the union operations have good cache performance and can also make use of larger registers
supporting or-operations. Going back to the time complexity of the bitset and BFS
implementations of the distance layers, the only difference is the diam(G) term. But adding
that the or-operations requires 6"—4 operations instead of n, we see that if the diameter of the

graph is less than 64, the bitset implementation has fewer operations. Since we will mostly be
using small diameter graphs this is significant.

Lastly, we look at how the output of the algorithms is to be used. There are two main uses of
the output of these algorithms, iteration over the sets, and intersections between these sets
and other sets. As described, we must consider three different types of outputs; hashsets,
bitsets, and either arrays or arrays with an additional index array. For iteration both bitsets
and arrays are much faster than hashsets, as again both the cache and space use of hashsets
are poor. For intersections we have two cases, a “native” intersection, that is, an intersection
between two sets of the same data structures (bitset, hashset, etc.), and a “non-native”
between two different types of data structures. Comparing the “native” intersection between
hashsets and between bitsets, the bitsets are again much faster, as they use bitwise and-
operations in the same way as for the or-operations. For intersections between two unsorted
arrays, we get an O(a,loga,;) operation (sort a; and do binary search lookups on the
elements of a,), where a; and a5, (@; < a,) are the sizes of the two arrays being intersected.
As for the “non-native” intersections, mainly between a set and an array, it is usually better
to iterate over the array, and do the lookup in the set, as the time use of a lookup is constant
in both set implementations. This should be compared to arrays where a lookup is a linear
operation.

With these three properties in mind, it is not surprising that the experimental results
comparing the three methods used in computing k-neighbourhood and distance layers show
that for small graphs the bitset implementation is the fastest. These results are presented in
Chapter 3.3.1.

3.2.4 Algorithm for betweenness and closeness centrality

Calculation of closeness for a vertex v is easy when we have the distance-layers of v as it is
simply the sum of the product between the size of each layer and the layer number of the
layer, thatis, CL(v) = X1<i<ew)|L(L, v)|/1. This is because L(l, v) contains all the vertices that
are at distance [ from v. And all of these contribute 1/ to the total closeness of v. Since there
are |L(l,v)| such vertices, therefor the total contribution for each layer is |L(I, v)|/!.
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Calculation of betweenness is more difficult, as mentioned in Section 3.2 the algorithm for
betweenness centrality needs to be able to recompute the multiple possible shortest paths
between two vertices as saving all the paths is too costly as there can be exponentially many.
A solution for this is Brandes’s algorithm introduced in A faster algorithm for betweenness
centrality, using BFS to count all the paths. We introduce an algorithm with some
commonalities with Brandes’s algorithm, but where we use distance-layers instead of BFS to
count paths.

The main idea in this algorithm for betweenness centrality, is using the distance layers from
the distance-layers algorithm to reconstruct all the shortest paths between all the pairs of
vertices. First, we fix some vertex v, then we find all the paths with v as an endpoint. This is
done by starting with the vertices in the distance layer furthest from v, and then dividing all
the paths going through it and the one additional path where the vertex itself is an endpoint
between the vertices it neighbours in the distance layer one closer to v.

ALGORITHM FOR CALCULATING BETWEENNESS CENTRALITY
Input: A graph G and the distance layers of G
Output: An array containing the betweenness centrality of each vertex
1 tempC : Array(float)
//tracks how many paths runs through a node for each iteration of the outmost loop

2 centralities : Array(float)

3 tempC < Array of length V(G) with all values set to 0.0

4 centralities < Array of length V(G) with all values set to 0.0

6 forvveV(G):

7 tempC < set all values to 0.0

8 forVifrom |layers|to1: //iisthe index of the current layer of the distance
layers

9 if layersl|i][v] == null: continue

10 for Y u € layers|i][v]:

11 intersection = N(1,u) N layers[i — 1][v]

12 inverseCardinality = 1/|intersection|

13 for vV w € intersection :

14 toNext = (tempClu] + 1) - inverseCardinality

15 centralities[w] = centralities[w] + toNext

16 tempC[w| = tempC[w] + toNext

17 return centralities

Recall Figure 5, calculating the betweenness of vertex (0) starts with vertex (9) adding 1 to the
paths going through vertex (7). Then (7) adds the number of paths going through it from the
previous layer, 1, with the one path formed by itself, and divides these between its neighbours
in the next layer (vertex (4) and vertex (5)). After we are done with the k = 3 layer vertex (3)
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has no path going through it, vertex (4) has 1 path from vertex (6) and % from vertex (7) in a

total for 2, and vertex (5) has ; from vertex (7) and 1 from vertex (5).

3.2.5 Analysis of betweenness and closeness centrality

We now analyse the time complexity and running time of betweenness centrality and
closeness centrality.

First, we consider the closeness centrality algorithm. There are two implementations, one
using BFS and one using distance-layers. The BFS implementation has a time complexity of
O(n -(n+ m)) = 0(mn), while the distance-layers implementation has complexity
O(diam(G) ‘n-(n+ m)) = 0(diam(G) - nm) (the complexity of distance-layers). In the
case that the distance layers (or BFS) are precomputed these complexities become 0(n) and

0 (nz(degmax G+ diam(G))) = 0(n®) for the BFS and distance-layers implementations

respectively. For the complexity of betweenness centrality, we compare our algorithms, with
that of Brandes.

For the complexity of our algorithm for betweenness, we start with noticing that the
combination of lines 8, 9, and 10 is equivalent to a for-loop over I/, as the distance layers don’t
share any vertices. There is one difference from a normal iteration over V, in that this iteration
is an O(diam(G) - n) operation. Lines 11 to 16 are essentially iterating over the neighbours
of each vertex. In combination this gives an 0(n?diam(G) + n? + nm), since n < m this is
O(nm - diam(G). This assumes we are given the distance layers, if we are not, the complexity
falls back to that of the distance-layers algorithm (O(diam(G) - nm) using the BitSet
implementation). In comparison, Brandes’s algorithm has complexity O (nm).

When comparing these algorithms experimentally, since our algorithm for betweenness and
closeness both use distance-layers, and both Brandes’s algorithm and the BFS based closeness
algorithm uses BFS, we can compute both closeness and betweenness together.

3.3 Experimental results for computing centralities

In this section we show the experimental results when comparing the three implementations
of k-neighbourhoods and compare our algorithm for betweenness and closeness to Brandes’s
algorithm. We run the algorithms on four different sets of graph types, small world (SWG),
random connected (RND), and two sets of geometric graphs (GEO), one with diameter of 32
and one with diameter of 128. Each of these sets contains three graphs with the same number
of vertices and the same density. The graphs can have number of vertices is 2000, 4000, 6000,
8000, and 10000, and density of 10, 20, and 30. (Except for GEO with 2000 vertices and density
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of 30, which does not exist). For each graph in these sets, we run the algorithm three times,
and record the smallest time. Then we take the average of these numbers for the graphs of
the same size and density. For hardware setup see Chapter 5.1.1.

3.3.1 Experimental results for k-neighbourhoods

In the following we compare the three different implementations of the k-neighbourhoods
algorithm. That is using BFS, HashSet, and the BitSet, as explained in sections 3.2.1 and 3.2.3.
The results are shown in figures 3, 4, 5, 6.
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k-Neighbourhoods on GEO with diam=32
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Figure 6 Timings for the k-neighbourhoods algorithm on geometric graphs with diameter of 32, and k=2,3,4. The
numbers on the right of each curve represent the density of the graph.

k-Neighbourhoods on GEO with diam=128
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Figure 7 Timings for the k-neighbourhoods algorithm on geometric graphs with diameter of 128, and k=2,3,4.
The numbers on the right of each curve represent the density of the graph. Note: the geometric graph of size
2000 with density of 30 does not exist for geometric graphs with diameter 128.
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k-Neighbourhoods on SWG
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Figure 8 Timings for k-neighbourhoods algorithm on small world graphs, with k=2,3,4. The numbers on the right
of each curve represent the density of the graph. The dotted lines represent curves going far outside the average
values. Note: For k=3 and density of 30 the starting value is 2303, for k=4 and densities 20 and 30 the starting
values are 9277 and 13551 respectively.

k-Neighbourhoods on RND
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Figure 9 Timings for k-neighbourhoods algorithm on small world graphs, with k=2,3,4. The numbers on the right
of each curve represent the density of the graph. The dotted lines represent curves going far outside the average
values. Note: For k=3 and density of 30 the starting value is 14610, for k=4 and densities 20 and 30 the starting
values are 28921 and 34127 respectively.
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From Figure 6, Figure 7, and Figure 8 we see that for GEO_32, GEO_128, and SWG, the BitSet
implementation is the fastest followed by the HashSet implementation, while the BFS
implementation only performs close to the other implementations when the density of the
graphs is 10. In fact, for SWG with k = 3,4 the BFS implementation is at least 30 times slower
for the values that are not shown in the figure. Similarly to Figure 8, Figure 9 showing the RND
runs, also show that the BFS implementation is orders of magnitude slower than HashSet and
BitSet. But, unlike for GEO_32, GEO_128, and SWG, for RND the HashSet implementation is
sometimes faster by a small margin.

BitSet does not use vectorized instructions and registers like AVX. Therefor the speedup of the
BitSet implementation compared to the two others comes from better cache usage and that

the k - nin the complexity of the BitSet implementationisak - % as the BitSet does the merge

of two BitSets in % operations. There is also less overhead with the BitSet implementation

being only an array of longs (64-bit integers) compared to the HashSet implementation that
has buckets, linked lists, and stores both the values, and their hashvalues in these linked lists.

Overall, we see that the BitSet implementation performs best, and therefore we will use this
for the k-neighbourhoods algorithm.

Note: For some reason the BitSet does not use vectorized instructions (AVX), although it
should be easy to change. Preliminary results for a vectorized implementation using the Java
jdk.incubator.vector, a non-final java module. Shows a speedup from 5 to 20 times compared
to the non-vectorized BitSet.

3.3.2 Experimental results for betweenness and closeness

In the following we compare the two different algorithms for betweenness and closeness.
That is using our implementation for betweenness and closeness, using BitSets, and Brandes’s
algorithm, as explained in Section 3.2.4. The results are shown in Figure 7.
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Betweenness and Closeness
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Figure 10 Experimental timings for calculation for Betweenness and closeness using the two different
implementations. The numbers on the right of each curve represent the density of the graph.

In Figure 10 we see that the distance layers approach is faster than Brandes’s algorithm, and
where only for GEO_128 we see the Brandes’s algorithm on graphs with a diameter of 20
coming close to taking the same time as our algorithm on graphs with a diameter of 30.
Because of this we use our algorithm for Betweenness and Closeness in Chapter 5.
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4 Simulation

In this chapter we describe how our simulations are done. We start by describing the
parameters to the simulation in Section 4.1. Then in Section 4.2 we (show) the different
vaccination strategies we will use. Lastly in Section 4.3 we describe how the simulations are
structured.

We let a node, representing an individual, be a vertex with 6 fields (+ ID field) wrapped around
it, these fields are:

Field Type  Explanation

ID int Id of the vertex corresponding to the node

vaccinated bool  Whether the node is vaccinated

immune bool  Whether the node is immune

beenInfected bool  Whether the node is, or has been infected

counter int If (Infected), this is the time until the node is no longer infected
current bool  Whether the node is infected in the current step

next bool  Whether the node is infected in the next step

A node is immune if it has either been infected and is no longer infected, or if it has been
vaccinated. That is, a hode that is vaccinated is both vaccinated and immune, while a node
that has gained immunity from previously being infected is only immune.

For the simulation there are 7 parameters, the vaccination strategy, the graph, how many to
vaccinate each timestep, the length of an infection, the chance of infection, the length of the
simulation, and how many nodes are infected initially.

A simulation is initialized by infecting N;,,;; nodes at random (described in Section 4.3). After
the initialization the simulation runs for T steps, with a step described in Section 4.3. We want
to be able to run the simulations in parallel, because of this, we precompute the betweenness
centrality, the closeness centrality, and the k-neighbourhoods, and share these between the
threads.

The code is written in Java, giving us descent speed and good modularity. Adding new
vaccination strategies is simple and is done by creating a new class with a function for choosing
nodes based on their status in the simulation. Then these choices are vaccinated.

On average one simulation takes 0.01 seconds. This of course depends on how many vertices
and edges are in the graph, and what strategy is used.

4.1  Parameters
For the simulation we have 7 parameters:

Vaccination strategy (S)
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The strategy we follow for choosing which nodes to vaccinate, a list of the strategies, and
explanations for them is given in Chapter 4.2

Infection probability (p)
The probability of a node infecting a neighbouring node for each timestep

Length of infection (L)
L is the number of steps a node is infected

Vaccination fraction (N)
The number of nodes to vaccinate each step of the simulation, given as a fraction of the
total number of nodes (n), that is we try to vaccinate n - N each step.

Graph parameters (G, n, dens, diam)
The parameters for the input graph G, with n number of vertices, and dens number of
edges divided by the number of vertices % If the G is a geometric graph we have the
additional d being the diameter. Although the graphs are generated independently of the
simulations, as described in Chapter 2, it is useful to think of n, dens, and diam as
parameters.

Simulation Steps (T')
The number of steps the simulation lasts.

Initial Infected (N;y,;¢)
The set of nodes to infect when initializing the simulation.

4.2 Vaccination strategies

Here we have the different strategies that we will compare in Chapter 5, the values for
betweenness centrality, closeness centrality and the k-neighbourhoods are precomputed.
These precomputations are done in parallel. The precomputed values do not change during
the simulation. We also do not vaccinate infected nodes, or nodes that are already immune.

Betweenness centrality (BC)
Vaccinates nodes in order of their betweenness centrality in decreasing order.

Closeness centrality (CC)
Vaccinates nodes in order of their closeness centrality in decreasing order.

Random (R)
Vaccinates non-immune nodes at random.

k-Neighbourhood (k-NH)
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Vaccinates vertices according to the size of their k-neighbourhood.

Infected in k-Neighbourhood (k-INH)
Vaccinates the nodes according to how many infected are in their k-neighbourhood. The
size of the k-neighbourhood is used as a tiebreaker.

Infected in k-Neighbourhood negative vaccinated (k-INH-VAC)

Vaccinated the nodes according to the number of infected nodes that are in their k-
neighbourhood. Where the size of the k-neighbourhood minus the number of vaccinated
nodes is used as a tiebreaker.

Infected in k-Neighbourhood negative immune (k-INH-IMM)
Same as “Infected in k-Neighbourhood negative vaccinated” but using immune instead
of vaccinated.

k-Neighbourhood ignoring immune (k-NH-ilMM)

Unlike the other strategies, this one does not use precomputed values. The k-
neighbourhood is recalculated each step but where the immune nodes are ignored. That
is, the k-neighbourhoods are computed on the graph where the vertices corresponding
to immune nodes are removed. Because this is recalculated during the simulation, this
strategy does not have any part that can be precomputed. After this the nodes are ranked
in the same way as “k-Neighbourhood” but using the newly calculated k-neighbourhood
instead of the precomputed one.

4.3 Simulation steps

The simulation is done in steps, where a step is equivalent to some fixed time period in a real
pandemic. Each step consists of three phases, the incrementing phase, the infection phase,
and the vaccination phase. Infecting the initial nodes P; € N;,;;, is done by setting
P;.counter = L, P.current = true and P;. beenInfected = true VP; € N;y;;. To save time,
if there are no infected nodes left after some step, we skip the rest of the steps.

In the incrementing phase we want to check what nodes go from infected to immune. We do
this by iterating over every node P and decrement its counter (how long a node has left as
infected if it is infected). If P. counter > 0 we set P. current = P.next, P.next = true, that
is, the node is infected in the next step. If P.counter < 0, P is either just done with being
infected, or has not been infected. If P.current we set P.immune = true. Then we set
P.current = P.next, P.next = false.

In the infection phase we want to see which nodes become infected in the next step. We do
this by iterating over all the nodes, and if a node is infected, we try to infect each of its
neighbours with a probability p. If the neighbour is either already infected or is immune, we
skip it. If a neighbouring node P becomes infected, we set P.counter = L, P.next = true
and P.beenInfected = true.

29



Lastly, in the vaccination phase we use the vaccination strategy S and choose n - N nodes to
vaccinate. If n - N is more than there are candidates for nodes to vaccinate, we vaccinate all
the candidates. The vaccination of a node P is done by setting P.immune = true and
P.vaccinated = true.

During each step we can record different data, for example how many newly infected nodes,
how many nodes are infected in total, etc. This gives us a lot of flexibility for how and what
we want to show as results without needing to rerun the simulations.
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5 Results

In this chapter we precent the results from the simulation and vaccination strategies described
in Chapter 4.

5.1 Setup

5.1.1 Hardware

For experiments, we used an Intel Core i9-9900k CPU @ 3.60GHz and 32 GB of DDR4 memory
running at 2666 MT/s. We are using Java 19 (build 19+36-2238), on Windows 10.

5.1.2 Parameters

In Chapter 4.1 we introduced the 7 input parameters for the simulation, the vaccination
strategy S, the infection probability p, the length of infection L, the vaccination fraction N,
the simulation steps T, the initially infected N;,;;, and the graph G. With the parameters of G
being, the number of vertices n, the density dens, and for geometric graphs the lower bound
for the diameter diam (written as GEO_dens). To limit the number of simulations we need to
run, we fix some of these parameters.

For T, the number of steps in the simulation, we set this to 300. Since we only look at the peak
value, we can safely do this as we found in practice that no peak happened after 300 steps.
We fix N;,;¢, the set of nodes to initially infect, to have size 1, we found that higher values for
this parameter ended in the graphs being infected fast, especially for RND and SWG where the
diameter is small. We chose the same initial node to infect for the i’th run of each strategy
but made sure that the node picked for the i"th run and (i + 1)’th run were different. As we
have 20 runs for each of the input parameters, we do this by selecting the node with id

Lig' n—1D+ 1J (with 0 < i < 19). This gives the 20 nodes perfectly spread on the range

[1,n]. Since the graphs have random indices, this results in the picks being random, but
consistent between the strategies. Lastly, the parameters p (infection probability) and L
(length of infection) are set such that the infection does not die of too quick, but also so that
it does not spread too fast. For an example of how different values of p and L look, see Figure
11. We let p = 1,5% and L = 8. We also fix n, the size of the graphs, to 10000, as this value
is the highest where the simulations can still be run in a feasible amount of time. We also want
n to be large since smaller values gives more noise in the results.
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Different lengths of infection and infection probabilities
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Figure 11 How the number of infected looks for different values of L and p. The graph used is SWG with n=10000 and
density = 14

For the variable parameters, that is strategy S, vaccination fraction N, and the rest of the
graph parameters dens and diam for geometric graphs, we use all the strategies described in
Chapter 4.2 (with k € {1,2,3,4} for the strategies that take an input k), for a total of 23
different strategies.

For the vaccination fraction N, we used numbers close to those of the Norwegian covid-19
vaccination program (FHI, 2021), where the average vaccination each day between January 1%
and October 1°tis 0,5% of the total population (5,4 million) with a peak number of vaccinated
in one day being 2,3%. As our vaccine gives total immunity, we chose to halve this, therefor
N ranges from 0,25% to 1%, with steps of 0,125% and a total on 7 different values.

For the two graph parameters, we choose the lower bound for the diameter diam to be 32
(GEO_32) and 128 (GEO_128), this gives us 4 types of graphs, SWG, RND, GEO_32, and
GEO_128. Lasty, the density parameter dens, we don’t want this to be too high as then the
spread is fast (as p is the chance for each neighbour), for the same reason we don’t want the
value to be to small (< 4 or 6) as then there is little to no spread, therefor we let dens €
{6,8,10,11,12,13,14} for RND and GEO_32, dens € {8,10,11,12,13, 14} for SWG, and
dens € {10,11,12,13,14} for GEO_128.
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5.1.3 Visualization

Because some runs of the simulation stop early, in that there is little to no spread, as is the
case for many of the runs where the density is low, we remove these to get cleaner data. If
we don’t remove these, there is more noise introduced, as these types of runs are randomly
spread out over the strategies (see Table 1 for numbers on how many runs were removed).
We remove all runs where the peak is less than 1% of the total population.

SWG RND GEO_32 GEO_128
Min | 4-NH-IIMM: 13,0% | 3-NH-iIMM: 17,0% | 2-NH-ilMM: 15,7% | 2-INH: 26,5%
Max | 1-INH-VAC: 14,5% | 2-INH: 18,7% | 1-INH-IMM: 17,9% | 3-NH-ilMM: 28,2%
Avg 13,8% 17,8% 17,1% 27,4%

Table 1 Shows the maximum and minimum of runs removed for each of the 4 graph types. Data on the form (strategy: ‘amount
removed’) where amount removed is the % of the total number of runs removed.

In Figure 12 we see an example of how the performance of a strategy is presented. Where
dark green is good (close to the best performing strategy), white is bad (more than x% higher
than the best performing strategy), and grey means that there are no results for the input
because the runs are removed. The title of the figure is in the order of; strategy S, then the
graph type (SWG, RND, GEO_32, and GEO_128), and the number of vertices (usually 10000).
The x-axis has the values of the densities, and the y-axis the vaccination fraction. There is a
colour bar on the right of the figure mapping the distance from the best to its corresponding
colour.

To get the value vg gons v (the value used in the figures) for a coordinate in the grid (dens, N),

we calculate the normal of the runs, x5 4ons n, fOr that coordinate over all the strategies S. We

. X N
take the best of these values xg,,,s v, and then calculate the distance as Vg gensy = “SdensN _

*
Xdens,N

1, @s Xgensn < Xsgensn. this value is always positive. If Vg 4onsn > €, We set Vs gensy = €,
were c is some cut-off value (in Figure 12 ¢ = 1%). We set ¢ such that as much of the colour
range (dark green to white) is used, while cutting of outliers (these become white in the
figures). We use ¢ = 2% for RND, ¢ = 3% for SWG, ¢ = 10% for GEO_32, and ¢ = 12% for
GEO_128.
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Figure 12 An example of a result figure, the title of the figure is the 3 parameters for the simulation, namely the strategy used,
the type of graph used, and the size of the input graphs. For the colours in the grid, dark green is good, white is bad, and grey
means there are no runs where the spread is sufficient.

For simplicity we want to have some measure that ranks the strategies on a graph class in a

. ’ _ YVUS dens,N 1 _
natural way. To do this, we let vg,,s v = s Vdensn = Yvdensyn Vs.aensn /15|, be the

average value for the grid coordinate (dens, N) (see Figure 14 for an example). Letting
rank(S") be the rank of strategy S’, we define rank(S") as the sum of the distances from the
average value to the value of S’ over all the densities and vaccination fractions, that is,
rank(S") = Zvdens'VN(v&ens,N - Us’,dens,zv)- If some strategy performs bad compared to the
average performance, this value can be negative. Another way to define rank is to only sum
the positive values (where the strategy performed better than average), instead of all the
values, this gives a similar order to the definition we use.

The rank measure has some practical properties, for one, it lets us compensate for that some
of the densities and vaccination fractions it might be easier to have a good value. For example,
with RND it becomes easier to have a good value with higher densities, as seen in Figure 14.
It will also rank both a strategy that performs good over many of the densities and vaccination
fractions, and a strategy performing very good in just a small amount of the densities and
vaccination fractions similarly.
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For each of the graph classes we give an “overview” figure, showing the performance of R
(random), CC (closeness centrality), 1-NH (1-neighbourhood), and BC (betweenness
centrality). We will give a figure for the average performance over all the strategies, and table
of the rank for each of the strategies, and finally a figure of the four best performing
strategies according to rank.
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5.2 Results for RND
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Figure 13 An overview of 4 different strategies (Random (R), closeness (CC), 1-neighbourhood (1-NH), and betweenness (BC))
on RND with 10000 vertices.

In Figure 13 we see the effectiveness the 4 overview strategies. Of these, R has the highest
rank value, and 1-NH the lowest. We can see that all these strategies perform bad on the low
densities (6 and 8).
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Figure 14 The average performance of the strategies on RND

In Figure 14 we see the average performance over all the strategies. Clearly, the figure shows
that it is easier to come close to the best strategy when the density increases. Therefor a
strategy that is good when the density is low, is in some sense “better” than one that performs
good when the density is high. Likewise, if a strategy performs bad when the density is high,
it is “worse” than one that performs bad when the density is lower.

37



Strategy Rank Strategy Rank
1-INH 2.77 4-NH —-0.37
4-INH-IMM 1.13 BC —0.39
2-NH 0.88 1-INH-IMM —0.39
1-INH-VAC 0.85 3-INH —0.44
4-INH 0.63 2-INH-VAC —-0.47
2-INH-IMM 0.60 4-INH-VAC —0.52
R 0.55 4-NH-iIMM —0.55
1-NH-iIMM 0.40 2-INH —0.84
3-INH-VAC 0.25 cC —-0.86
3-INH-IMM 0.22 3-NH -1.29
2-NH-iIMM 0.01 1-NH -1.79
3-NH-ilIMM —-0.35

Table 2 The rank of the strategies for RND

In Table 2 we see the rank value for the strategies on RND. We can see that 1-INH and 4-INH-
IMM have good rank. We can also see that R has a high rank, indicating that it can be hard
to do much better than random.
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Figure 15 The 4 best strategies according to rank, in order from left to right, and top to down.

Figure 15 shows the 4 best strategies for RND. We see that the reason for the high rank of 1-
INH is its performance on the low density, low vaccination part of the figure, as well as average
performance on the rest of the figure. The other three strategies look similar, and (as does
those in the overview Figure 13).
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5.3 Results for SWG
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Figure 16 An overview of 4 different strategies (Random (R), closeness (CC), 1-neighbourhood (1-NH), and betweenness
(BC)) on SWG with 10000 vertices.

Figure 16 we see the effectiveness the 4 overview strategies. Of these, 1-NH has the highest
rank value, and R the lowest, although they are both low. Similarly, to SWG, we see that these
strategies does not perform good on the low densities (8).
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Figure 17 The average performance of the strategies on SWG

In Figure 17 we see the average performance of the strategies on SWG. Like for RND, the
strategies on average perform bad on the lowest densities (here 8) and performs closer to the
average as the density increases. We also see as the vaccination fraction increases it is easier
to perform close to the average.
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Strategy Rank Strategy Rank
1-NH-iIMM 2.62 4-NH-iIMM —-0.07
2-NH-iIMM 2.28 1-NH —0.24
3-INH-IMM 2.14 2-INH-IMM —0.38
3-INH-VAC 1.67 3-INH —0.67
3-NH-ilIMM 1.38 BC —-0.70
3-NH 0.95 CcC —0.93
2-INH 0.79 1-INH-IMM —-1.32
4-INH-IMM 0.69 1-INH-VAC —-1.75
4-INH-VAC 0.67 1-INH —-2.10
2-NH 0.49 2-INH-VAC —2.30
4-NH 0.22 R —3.39
4-INH —0.06

Table 3 The rank of the strategies for SWG

In Table 3 we see the ranks for the strategies on SWG. We can observe that k-NH-iIMM
performs good, having good rank for k € {1,2,3}, while for k = 4 the performance is close to
average. This shows that the recalculation of the k-neighbourhoods can be important. This is
also supported by that both 3-INH-IMM and 3-INH-VAC perform good, while 3-INH performs
a bit worse than average. As these 3 strategies use the number of infected in the 3-
neighbourhood as the first key in their sorting, and only differ by their second key. This second
key being the size of the k-neighbourhood minus either the number of immune or vaccinated
in the neighbourhood (0 for k-INH). For 3-INH-IMM and 3-INH-VAC the second key seems have
a similar effect as recalculating the neighbourhoods (this holds for a lesser extent for 4-INH-
IMM and 4-INH-VAC). Lastly, we see that R performs the worst, indicating that it is hard to do
worse than random.
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Figure 18 The 4 best strategies on SWG according to rank, in order from left to right, and top to down.

In Figure 18 we can see that 1-NH-iIMM, 2-NH-iIMM, and 3-INH-VAC have good rank because
they have some very good performing configurations. While for 3-INH-IMM we see a more
consistent performance over all the densities and vaccination fractions, and as the average is
bad in the low densities this gives a good rank.
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5.4 Results for GEO_32
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Figure 19 An overview of 4 different strategies (Random (R), closeness (CC), 1-neighbourhood (1-NH), and betweenness (BC))

on GEO_32 with 10000 vertices.

In Figure 19 we see the effectiveness the 4 overview strategies. Of these, CC has the highest
rank value, and BC the lowest, although they are both amongst the lowest ranks. Like for
RND and SWG, we see bad performance on the low density (6).
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Figure 20 The average performance of the strategies on GEO_32

Figure 20 shows the average performance on GEO_32. One can observe that, unlike for RND
and SWG, the average performance is consistent (except for 6) when the density increases.
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Table 4 The rank of the strategies for GEO_32

In Table 4 we see the rank of the strategies on GEO_32. We can see that 2-INH-VAC, 2-INH-
IMM, and 2-INH perform good, and close to each other. Similarly, 4-INH and 4-INH-IMM
perform good, although it is unclear why 4-INH-VAC performs poorly as these strategies are
similar. For the k-NH-iIMM we see bad performance, where 4-NH-iIMM has the lowest rank.
We can also see that BC performs bad, together with the bad performance of R, it seems that

BC and 4-NH-iIMM bad strategies.
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Strategy Rank Strategy Rank
4-INH 3.98 3-INH-VAC —-0.57
4-INH-IMM 2.70 4-NH —0.65
2-INH-VAC 2.04 3-NH-iIMM —-0.72
2-INH-IMM 1.91 4-INH-VAC —0.82
2-INH 1.69 1-INH —0.83
2-NH 0.92 CcC —0.85
2-NH-iIMM 0.26 3-NH —-1.15
1-INH-VAC 0.21 1-NH —1.38
3-INH —0.06 R —-1.49
1-NH-iIMM —0.24 BC -1.79
3-INH-IMM —0.26 4-NH-iIMM —-2.61
1-INH-IMM —-0.31
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Figure 21 The 4 best strategies on GEO_32 according to rank, in order from left to right, and top to down.

In Figure 21 we see the 4 best performing strategies for GEO_32. We can see that 4-INH has
good performance when the density is low (an area where the average is bad), this leads to
the significantly higher rank value than the next three. Overall, we see a good performance
over all the densities and vaccination fractions for all the 4 best performing strategies.

5.5 Results for GEO_128

47



R GEO_128 10000 CC GEO_128 10000

0.0%
1.2%
2.4%
3.6%
4.8%
6.0%
7.2%
8.4%
9.6%
10.8% -
10 11 12 13 14 212.0%

0.0%

1.2%

2.4%

3.6%

4.8%

6.0%

7.2%

8.4%

9.6%

vaccinations each step as % of total population
vaccinations each step as % of total population

10.8%

10 11 12 13 =12.0%
density density
1-NH GEO_128 10000 0.0% BC GEO_128 10000 0.0%
25%
c 12% < 1.2%
il o
= e
® ©
3 24% 3 2.4%
S 9]
o a
= 36% ® 3.6%
- -
S S
“ N
5 48% © 4.8%
X X
] %)
a 6.0% 2 6.0%
Q o
o] 9]
2 -
0 7}
< 7.2% o 7.2%
< [}
o ©
o o
0 84% w 8.4%
< c
i<l o
- e
© 9.6% R-875% 9.6%
£ e
4 o
[ ©
s 10.8% > 10.8%
1%
10 1 12 13 14 o=120% 10 1 12 13 14 - =120%
density density

Figure 22 An overview of 4 different strategies (Random (R), closeness (CC), 1-neighbourhood (1-NH), and
betweenness (BC)) on GEO_128 with 10000 vertices.

In Figure 22 we see the effectiveness the 4 overview strategies. Of these, CC has the highest
rank value (followed close by 1-NH), and BC the lowest. Unlike for the other graph classes we
do not see bad performance on the low densities for these strategies, but there are strategies
that perform bad on this density.
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Figure 23 The average performance of the strategies on GEO_128

In Figure 23 we see the average performance of the strategies on GEO_128. For density 10 we
see that the average performance is bad, while for the other densities the performance is
consistently good, with some increase for the higher densities.
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Strategy Rank Strategy Rank
3-NH-iIMM 1.81 2-INH-VAC —-0.33
cC 1.61 1-INH-VAC —0.35
1-NH 1.16 2-INH —-0.37
4-NH-iIMM 0.72 3-INH-IMM —0.53
1-INH 0.42 3-INH —0.53
3-NH 0.41 4-INH-VAC —0.54
2-INH-IMM 0.40 4-INH-IMM —0.58
1-INH-IMM 0.40 R —0.65
4-NH 0.34 BC —0.93
2-NH-iIMM —0.01 4-INH —1.04
1-NH-iIMM —0.16 3-INH-VAC —1.05
2-NH —-0.21

Table 5 The rank of the strategies for GEO_128

In Table 5 we see the rank of the strategies for the different strategies on GEO_128. We can
see that, unlike for the other graph classes, both CC and 1-NH performs good. Similarly, to
SWG and GEO_32, we see that R gets a low rank, indicating that most strategies are better
than average. We can also see that 3,4-NH-iIMM does good.
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Figure 24 The 4 best strategies on GEO_128 according to rank, in order from left to right, and top to down.

In Figure 24 we see the 4 best performing strategies for GEO_128. We can see that all the
strategies do good, this is also supported by their similar rank.

Note: In Figure 22 and Figure 24 we weak performance for density 12. This can also be seen
in the average performance (Figure 23). This is because 1-INH-IMM and 2-INH-IMM (seen in
Figure 25) performed good for this density. The reason they have bad rank value is from the
bad performance on density 10. The bad performance on 10 for these has a large effect on
the average and is the main reason why the average looks bad for density 10.
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Figure 25 The strategies 1-INH-IMM and 2-INH-IMM on GEO_128.

5.6 Comparing results between graph classes

In Section 5.1.3 we introduced a cut-off value c for each of the graph classes, with ¢ set to 2%,
3%, 10%, and 12%, for RND, SWG, GEO_32, and GEO_128 respectively. This indicates that
the spread in the performance of the strategies is different depending on the graph classes.
Moreover, as ¢ increases when the diameter of the graphs increases, as diam(RND) <
diam(SWG) < diam(GE0_32) < diam(GE0_128), we can see that as the diameter
increases some strategies become stronger. As can be seen with CC, where on GEO_128 it has
the 2" highest rank, while for the other graph classes CC has a low rank.

For BC we see that it consistently scores low. This can be explained by that betweenness
centrality is unstable, in that the centrality of a vertex can change significantly when some
other vertex is removed. As we do not recalculate the betweenness, this can become a
problem.

For R (random) we can see that, except for on RND, the strategy is among the worst
performing. This is to be expected as most of the strategies end up prioritizing vertices that
have high degree.

Overall, we see that the k-INH-group (k-INH, k-INH-IMM, and k-INH-VAC) does good. As all
these prioritize nodes that are close to infected nodes and have a large neighbourhood. These
strategies end up vaccinating nodes that have a high possibility of being infected in the next
few steps. For k-INH-IMM and k-INH-VAC we also prioritize nodes that can reach the most
infectable nodes in few steps, unlike k-INH, which can deprioritize nodes that are effectively
isolated.
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For k-NH-iIMM, we see that for RND and GEO_32 it scores among the average. For SWG and
GEO_128 k-NH-ilMM scores good, having the 15t and 2" best rank on SWG with k = 1, 2, and
the 15t and 4™ best rank on GEO_128. As this strategy uses the number of nodes distance at
most k away, when we “remove” immune nodes, we get a similar effect to that of k-INH-IMM
where we deprioritize nodes that are likely isolated (at least for higher values for k).

For k-NH we see that it performs good on SWG and GEO_128, while for RND and GEO_32 we
see much worse performance. This strategy is like k-NH-iIMM, but does not consider infected
nodes, or vaccinated/immune nodes. This gives a similar disadvantage to that of BC and CC.
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6 Conclusion

6.1  Strategies

Using the simulation and vaccination strategies described in Chapter 4, we found that when
the diameter for the graphs increases, there is more spread in the performance of the
different strategies. We saw that the strategies that does not use the state of the simulation
(BC, CC, k-NH) performs less consistently good. Both k-NH-iIMM and the k-INH-group perform
good on all the graph classes for some k’s, indicating that it is important to have strategies
that use the state of the simulation for their prioritization of which nodes to vaccinate.

6.2  Algorithms for centralities

In Chapter 3 we introduced 3 algorithms, k-neighbourhoods, distance-layers, betweenness-
centrality, and showed that our algorithms are fast for graphs with density less than 30, and
withn < 10000.

6.3 Future work

6.3.1 Simulation

There are several examples of centralities that were not tested here, two such are k-shell
centrality, and percolation centrality, which both can perform good. Especially k-shell
centrality, which can be updated during the simulation as it is fast to calculate (like for k-NH-
iIMM).

We used the SIR model to build our simulation. One could use other compartmental models,
like SIS (susceptible — infected — susceptible) or SIRS (susceptible — infected — resistant —
susceptible). Where nodes can be infected multiple times. Together with temporary
immunity, both from moving from moving back into the susceptible group, and from vaccines.
This would give a more realistic model.

6.3.2 Algorithms

In Chapter 3.2 we introduced algorithms k-neighbourhoods and distance-layers. We only
tested forn < 10000, density < 30, and diameter < 128, but from the figures the algorithms
look to have potential for larger graphs. In Chapter 3.3.1 we mentioned preliminary results
using vectorized instruction, this should give better performance. In addition, both k-
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neighbourhoods and distance-layers should have fast parallelized algorithms for both CPU and
GPU.
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Appendix 1  Upper bound for number of shortest paths

n
We show that 33 is an upper bound for the number of shortest paths between two vertices

n
v; and v, ina graph G = (V,E) with |V| = n + 2. We can do this, as if 33 is an upper bound,
n+2

2 n n
then33 =33:-33 €0 (35) is also an upper bound.

If we run BFS from a vertex v; in G, we get all the distances from v, to every other vertex in
the graph. If we want to get all the shortest paths between v; and some other vertex v,, we
can go from v, to any neighbour of v, that is closer to v; than v, is. Then again for each of
these vertices. If we have a graph where all the edges between the vertices with distance k
from v;, and all the vertices with distance k+ 1 from v;, exist, that is, Vu,v €
V,dist(vy,u) + 1 = dist(v,,v) - (u,v) € E, and where we have v, being the vertex strictly
furthest away from vy, that is Yu € V\{v,}, dist(v,,u) < dist(vy,v,). If we let ¢, be the
number of vertices with distance k from v;, and dist(v;,v,) = L + 1, then the number of
shortest paths between v; and v, is given by l‘[ﬁ=1 ¢;, as we can choose to go from any vertex
k away (cj) to any vertex k + 1 (cj,1) away. We also have that Y'_, ¢; = n. Since we want an
upper bound, we want to maximize H%zl c;, either by changing the sizes of the ¢;’s or by
changing [. This gives the following problem:

1<l<nand V1<i<Il:1<c¢ <n

l

l
Maximize C = 1_[ c¢; ,while Z ci=n

i=1 i=1

This is shown (Krause, 1996) to have solutions:

Let C* be the maximal value for C, then

n
3

n=0(mod3)—->C"=3

n—4

n=1(mod3) > C*=2%-33
n—2

n=2(mod3)->C"=2-33

n
In general, this gives an upper bound for C* < 3s.

59



Appendix 2 Number to edge function

We will construct a function M that generates all the edges for a graph G with n vertices.

M: [O,n(nz_l) - 1] - (a,b), witha < b.

. 5(x) 6(@)’6@ _ {1 + \/; ¥ 8x|

M(x) = (x _%’

( )

edges. We let the

edges be on the form (a, b), a < b. We want the function M to work W|th all values forn, and
n(n-1)
_ 1]

We know that for an undirected graph with n vertices there exists

for any value x € [0

We want the edges in the order (0,1), (0,2), (1,2),(0,3),(1,3),(2,3) -+, that is, in the order
such that we first get all edges on the form (t, 1), then (t, 2), etc. We let §(x) be the second

value of an edge. Clearly there is k edges with k as the second value, as there are k numbers

less than k. Because of this §(x) only increases when the inverse of —y(yz_l)

1+v1+8x

reaches a new

integer value. From this we get 6(x) = l J the floor of the inverse of y(yz .

When §(x) increases, the first value in the edge is 0. We know that when §(x) changes,

S)(B)-1) _ §(x)*-6(x)

2 2 )
As 6(x) does not increase before x has increased by §(x), we can set the first value of the
8(x)2-85(x)

As 6(x) is smaller than or equal to the inverse of y(yz hence x =

edge as x — . This gives the desired function.
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