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Abstract

Programming languages are the basis of computer science and are extensively used in

computer science education. Many educational materials, such as tutorials, constantly

appear on the market with the goal of targeting various user groups. These tutorials,

however, oftentimes present language constructs in inconsistent ways, with constructs

completely missing from some of the tutorials. This makes it difficult for a language

learner to get a holistic overview of the language.

In this thesis, we focus on syntax of programming languages, specified in a form of

context-free grammars, and design an algorithm to generate syntactically correct sam-

ple code snippets written in the language in question. Our algorithm can be used to

comprehensively explore constructs of a programming language. We test our prototype

implementation of the designed algorithm on several grammars, including a tiny model

programming language and a children-oriented programming language Hedy.
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Chapter 1

Introduction

Programming languages are the basis of computer science and are extensively used in

computer science education, from school pupils to universities to vocational education.

To tackle the abundance of existing programming languages, many educational materials

(e.g., tutorials) constantly appear with the goal of targeting various user groups. Unfor-

tunately, these tutorials often explain different language constructs in inconsistent ways,

and in some of the tutorials, certain constructs are completely missing. This makes it

difficult for language learners to get a holistic overview of the language.

This thesis aims to develop an algorithm for generating sample snippets of code based

on a grammar specification for that language. The algorithm can then be used to explore

complete constructs of a programming language.

The formalism we work with in this thesis is context-free grammars in Extended

Backus-Naur Form (EBNF). These grammars are the natural choice since they are de

facto the standard formalism used to specify syntax of programming languages. This

formalisms is extensively discussed in numerous textbooks on compiler construction and

formal languages, among others. The EBNF form for context-free grammars is the most

widespread notation used to define context-free grammars.

The omnipresence of context-free grammars and EBNF in computer science means

that there are many formats to represent them. In this thesis, the representation we

choose is Lark [15]. Lark is a Python-based parser generator, meaning it has all the func-

tionality we were looking for. It has functionality for creating a parser from a grammar,

the parser can then be used to parse the input grammar, giving us a parse tree. Another

functionality is that we can traverse the parse tree, building a new, more convenient,
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representation of the grammar for us to work with. The fact that Lark is Python-based

also factored into our choice, as this shall lower the entry bar for grammar- and parser-

developers. Another factor for basing our work on Lark is that it becomes more and

more widely used within academic community; for instance, the levels of the gradual

programming language Hedy [6] are specified in Lark.

We now showcase the machinery of the algorithm that we developed in this thesis. The

input of the algorithm is a context-free grammar in the Lark format, as given below. The

grammar specifies a tiny programming language with variable declarations, assignment

statements, while loop, and simple arithmetic expressions over integer numbers.

start: program

program: "program" ID "{" (var_decl ";")* (statment ";")* "}"

var_decl: "var" ID

| "let" ID

| "const" ID

statement: assign_statement

| write_statement

assign_statement: ID "=" expr

write_statement: "write" expr

expr: NUM

| expr "+" expr

| expr "-" expr

| expr "*" expr

| expr "/" expr

NUM: \[0 -9]\

ID: \[A-Za -z]\

When executed, our algorithm processes the grammar in multiple stages, and then

outputs a sample code snippet for the starting symbol start.
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program A {

var x;

const x;

write Y;

h = 1;

}

As can be seen from this sample generated snippet, the algorithm only focuses on the syn-

tax of the language—any generated snippet will comply with the grammar specification

and thus be syntactically correct. Semantic correctness, such as the requirement that all

variables have been declared prior to use, or that there are no duplicate declarations, are

not satisfied, as they are not specified in a context-free grammar.

The thesis is organized as follows. Chapter 2 presents an introduction to formal

grammars: we focus on formalism of our choice—context-free grammars, as well as on the

Lark parser generator, which will be used in course of implementation. We then present

in Chapter 3 the designed algorithm for generating sample code snippets and showcase

how it is applied to a running example of a grammar. We have implemented the algorithm

in Python; we focus on the its implementations details in Chapter 4. Chapter 5 then

discusses the related work: other grammar formalisms, the idea of grammarware [9],

”Query by Example” and existing tools for learning programming. Finally, we discuss

our approach and outlines some directions for future work in Chapter 6.
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Chapter 2

Background

2.1 Grammars

A language consists of two parts, semantics and syntax. Grammar is the syntax of the

language. It is a set of rules that tells us how to build a valid string for the language.

However, it is the semantics that gives meaning to the string.

A grammar is a tuple G = ⟨T,N, P, S⟩, where T is the set of terminals, N is the set of

nonterminals, P is the set of production rules, and S is the start symbol in the grammar.

The terminals T of the grammar include all the strings and tokens. The nonterminals N

are the names of the production rules P , which are defined as sequences of terminals and

nonterminals. The start symbol S is the nonterminal that all valid terminal strings can

be generated from.

There are different classes of grammar as described in Chomsky hierarchy [7]. Chom-

sky hierarchy divides grammars into four types: Type 0: Unrestricted Grammar, Type

1: Context Sensitive Grammar, Type 2: Context-Free Grammar, and Type 3: Regular

Grammar.
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Figure 2.1: Chomsky hierarchy

Credit: JavaTPoint https://www.javatpoint.com/automata-chomsky-hierarchy

As one can see from Figure 2.1, type 0 is the most general class, and type 3 is the

most restricted. Every class of a higher type have the same requirements as the ones of

lower types. This means that a grammar of type 3 will also go under types 0, 1, and 2.

A,B ∈ N

a, b ∈ T

α ∈ (T ∪N)∗

β ∈ (T ∪N)+

Unrestricted Grammar or Recursively Enumerable language has no restrictions on the

rules of the grammar, as one can tell from the name. It only requires the left-hand side

of a production not to be empty, it must contain a nonterminal.

A → B

Ab → α

Context Sensitive Grammar requirements are that neither the left-hand side nor the

right-hand side of a production can be empty. The left-hand side must also have fewer

symbols than the right-hand side.

A → B

Ab → β – where | β | > | Ab |

In Context-Free Grammar, the left-hand side can only consist of one nonterminal, and

the right-hand side can contain anything.

A → α

5
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B → β

Regular Grammar, as mentioned, is the most restricted grammar. Here production

rules generate regular languages, languages that can be described by a regular expres-

sion. In Regular grammar, there are two forms, left-regular grammar and right-regular

grammar.

A → Bb

A → bB

In this thesis, we are focusing on context-free grammars, two common ways of pre-

senting context-free grammars are Backus-Naur Form (BNF), and Extended Backus-Naur

Form (EBNF). These are ways of representing grammar, the syntax of the grammar. As

one can tell by their names, EBNF is the same as BNF only with more syntactic sugar.

Meaning that EBNF adds more syntax for representing the grammar.

BNF & EBNF:

• Alternatives:

A ::= a | b → A is either a or b.

EBNF:

• Optional:

A ::= a? → a is repeated 0 or 1 time.

A ::= [α] → α is repeated 0 or 1 time.

• Repetition:

A ::= a∗ → a is repeated 0 or more times.

A ::= a+ → a is repeated 1 or more times.

• Group:

A := (a | b)α → (a | b) is treated as a single element.

2.2 Grammar derivation

From the grammar of languages, we can get terminal strings. Terminal strings are strings

that are valid according to the grammar. To get terminal string for a grammar, we start

with the start symbol for the grammar and go through its production rules, replacing

6



Listing 2.1: Example of a grammar

Rule 1: Expr → Expr + Expr

Rule 2: Expr → NUM

Rule 3: Expr → CHAR

Rule 4: NUM → \[0 -9]\

Rule 5: CHAR → \[A-Za-z]\

Listing 2.2: Example of leftmost derivation for terminal string: 1 + a + 3

Expr

Expr + Expr (Rule 1 on Expr)

NUM + Expr (Rule 2 on first Expr)

1 + Expr (Rule 4 on first NUM)

1 + Expr + Expr (Rule 1 on Expr)

1 + CHAR + Expr (Rule 3 on first Expr)

1 + a + Expr (Rule 5 on CHAR)

1 + a + NUM (Rule 2 on Expr)

1 + a + 3 (Rule 4 on NUM)

every nonterminal with one of its production rules until there are no nonterminals left.

The steps taken to get from the start symbols production rule, to a terminal string is

called derivation.

There are two types of derivation, leftmost derivation and rightmost derivation. With

leftmost derivation, the ”leftmost” nonterminal, the nonterminal farthest to the left, is

always chosen to be replaced by one of its production rules. The rightmost derivation

will always replace the nonterminal farthest to the right. In Listing 2.1, we have given

a grammar with five rules. The start symbol here is Expr. A terminal string for Expr is

1 + a + 3, a leftmost derivation for this string is given in Listing 2.2, and a rightmost

derivation in Listing 2.3.
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Listing 2.3: Example of rightmost derivation for terminal string: 1 + a + 3

Expr

Expr + Expr (Rule 1 on Expr)

Expr + Expr + Expr (Rule 1 on last Expr)

Expr + Expr + NUM (Rule 2 on last Expr)

Expr + Expr + 3 (Rule 4 on NUM)

Expr + CHAR + 3 (Rule 3 on last Expr)

Expr + a + 3 (Rule 5 on CHAR)

NUM + a + 3 (Rule 2 on Expr)

1 + a + 3 (Rule 4 on NUM)

2.3 Lark

Lark is a parser generator for Python, that can parse arbitrary context-free grammars [15].

Lark also has its own context-free EBNF grammar that we will be using in the imple-

mentation of this algorithm.

The Lark grammar specification has two forms of nonterminal, tokens and rules/nonterminals.

The main difference between these is that tokens are closer to terminal string then rules.

This is because the tokens are a form of nonterminals where the production rule is a

sequence of regular expressions, terminals, and/or tokens. Tokens are defined by capital

letters, as shown in the example below:

NUMBER: /[0-9]/

NEG_NUMBER: "-" NUMBER

INT: NUMBER | NEG_NUMBER

COMMENT: "#" /[a-zA-Z]+/

The rules, or nonterminals, are the names of the production rules that are defined as

sequences of terminals, nonterminals, and/or tokens, they have a longer path for getting

to terminal string:

decimal: INT "." NUMBER

expr: expr "+" expr | expr "-" expr

| expr "*" expr | expr "/" expr

| decimal | INT

8



Chapter 3

The Algorithm to Generate Sample

Strings

In this section, we will show our algorithm, Sample Generation Algorithm, and explain

its different parts. While explaining the Sample Generation Algorithm we will also give

an example of a grammar that we can take through the algorithm, showing how it works.

An overview of the different parts of the algorithm can be seen in Table 3.1.

The grammar we are working with in this Sample Generation Algorithm is a context-

free EBNF grammar. We will demonstrate various parts of the algorithm using a running

example presented in Listing 3.1. The Sample Generation Algorithm only works on and

modifies the production rules of the grammar; all other parts of the grammar specification

stay the same.

,

Listing 3.1: An example grammar for the algorithm.

Σ : a, b, c, d, e

N : A, B, D

R :

A → a B+ (c | D)∗ [e]

B → b [B]

D → d | d D

S : A

9
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Algorithm Explanation

The grammar (Algotithm ??) The representation of the grammar used in the
algorithm.

Extract groups (Algorithm 1) Loops over every constituent part of every pro-
duction rule, looking for group instances, and ex-
tracts them into there own rule if found.

Splitting the grammar (Algo-
tithm 2)

Given a grammar, without groups, splits the
grammar into two parts, one whiteout cardinality
modifiers and cycles, and one with.

Handling repetition (Algo-
tithm 4)

Given a grammar, it loops over every con-
stituent part of every production rule, looking
for instances of repetition elements (Kleene star,
Kleene plus, optional), and add the content of
the element x number of times to the rule, where
x is decided based on the element, replacing the
repetition element that was there originally.

Detecting cycles (Algotithm 3) Takes a nonterminal and a production rule to
check whether the rule contains the given non-
terminal; makes recursive calls in cases of non-
terminals that are not the one we are looking for.

Inline nonterminals (Algo-
tithm 5)

Given a production rule, for every nonterminal in
that rule, replaces it with one of its production
rules.

Contains nonterminal (Algo-
tithm 6)

Returns true or false based on whether or not a
production rule contains a nonterminal.

Generate terminal string (Al-
gotithm 7)

Generates a finished terminal string for every
nonterminal in a grammar.

Generate constituent part (Al-
gotithm 8)

Generates and returns terminal string for the
given constituent part.

Table 3.1: The different parts of the algorithm.

Listing 3.2: The grammar definition

Let G be a EBNF grammar.

G = (Σ, N,R, S)
A ∈ N
α, β ∈ (Σ ∪N)*
ρ is a regular expression

γ ∈ {α, α∗, α+, α | β, [α], (α), ρ}
A → γ1 . . . γ2



Listing 3.3: Set of rules before and after extracting groups.

R : R with extracted groups:

A → a B+ (c | D)∗ [e] A → a B+ A3
∗ [e]

B → b [B] B → b [B]

D → d | d D D → d | d D

A3 → c | D

The first step of the algorithm is to extract groups, that is, a collection of grammar

symbols that are grouped together, represented by parenthesis ”(” ”)”, being treated

as a single symbol. Algorithm 1 presents the implementation of this. The algorithm

loops over every constituent part of a production rule for every production rule in the

given grammar, looking for instances of groups. In the case when a group is detected, a

new production rule is created and added to the set of rules in the grammar. The new

production rule will have the same nonterminal-name as the nonterminal-name of the

rule it was detected in, only with an added number. As an example, if the nonterminal

of the production rule at hand is A, and the group is the second element of the rule, then

the new nonterminal for that extracted group would be named A2.

The group’s content will be the right-hand side of the new production rule. The ex-

tract group function is called recursively on the group’s content, before the group content

is added to the grammar. This recursive call is done in case there is a group inside of

another group—in that case both groups should be extracted. The new nonterminal is

added to the production rule we are looking at, replacing the group. The other cases

are when an element of star, plus or optional element contains a group; then the same

extraction is applied as with just a group, and the new nonterminal for the extracted

group is replacing the group element inside of the star, plus or optional element. The

result after this algorithm is a set of rules where every group has been replaced by a new

nonterminal, containing the content of the group it replaced.

If we run our example grammar through Algorithm 1, ”Extracting groups”, we would

get one new production rule and modify one of the existing rules. The group (c | C) in

A will be extracted out into its own rule A3. In Listing 3.3, the original set of rules can

be seen to the left, and the set of rules with extracted groups to the right.

After groups have been extracted from the grammar, the next step is to divide the new

set of rules into two new sets, where one of the sets will contain rules without constituent

parts such as Kleene star, Kleene plus, and optional elements. The goal is to simplify

the rules so we have a set we can choose from when the goal is to finish generating as

11
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Algorithm 1 Extracting groups

Let G be a context-free EBNF grammar. Let A → γ1 . . . γn be a production rule, where
A is the nonterminal and γ1 . . . γn is the sequence of constituent part making up the rule.

1: G = (Σ, N,R, S)
2: A ∈ N
3: α ∈ (Σ ∪N)∗

4: β ∈ (Σ ∪N)(Σ ∪N)+

5: for A → γ1 . . . γn do
6: for i = 1 to n do
7: switch γi do
8: case (α)
9: R = R ∪ {Ai → γi}
10: γi = Ai

11: case (α)∗

12: R = R ∪ {Ai → γi}
13: γi = A∗

i

14: case (α)+

15: R = R ∪ {Ai → γi}
16: γi = A+

i

17: case [β]
18: R = R ∪ {Ai → γi}
19: γi = [Ai]

20: end switch
21: end for
22: end for



quickly as possible. Therefore, will this set also not contain rules with cycles, here we

define cycles as a path from a nonterminals production rule back to that nonterminal.

We will call the grammar holding this set cycle-free grammar. The other set will contain

the rest of the rules: namely, the original rules before modifications, and every rule that

contains one or more cycles. The grammar with this set of rules will be called cyclical

grammar.

The process for this algorithm can be seen in Algorithm 2, ”Splitting the grammar”.

The algorithm loops over every constituent part of every production rule in the grammar

with extracted groups. A new rule is constructed for every production rule, with possible

modifications. Then, for every constituent part of a rule we have three cases. The first

case is for optional and star elements; here nothing is added to the new rule. This

is because the minimum number of repetitions for both of these elements is zero. In

the algorithm, the empty string (designated by ϵ) represents nothing being added. The

second case is for star elements: star elements are repeated one or more times, so one

is the minimum number of repetitions for star elements. This means that we add the

content of the star element to the new rule. The last case is for anything not covered by

the previous two cases, just adding the constituent part as it is to the new production

rule. For example, for a rule ”X → b∗ c+ [d] e”, a new rule ”X → c e” will be

constructed.

When a new production rule is completed, it will be compared to the original rule. If

the rules are not the same, meaning that the new rule is a modification of the original

rule. Then the original rule is added to the set of rules for the cyclical grammar. We

then check the new production rule for cycles. This is done by the function has cycle,

presented in Algorithm 3. If the new rule has a cycle, it is added to the rule set in the

cyclical grammar. Otherwise, if it does not have any cycles, it is added to the rule set of

the cycle-free grammar.

The has cycle function is shown in Algorithm 3, ”Detecting cycles”. This function

takes a production rule and a nonterminal as parameters. The production rule is the

sequence of constituent parts that the function will loop over, looking for the given

nonterminal. While looping over the constituent parts, an action is performed if it is a

nonterminal, or an element containing a nonterminal, like a Kleene star, Kleene plus, or

an optional element. In these cases, we look at that nonterminal, if it is the nonterminal

we were given, then the function will return true. If its not the nonterminal we are looking

for, we check if it is in the set of visited nonterminals, a set of nonterminal we have already

checked, none of the production rules for the nonterminals in this set have a reference to

13
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Algorithm 2 Splitting the grammar

Let G be the grammar with extracted groups.

1: G = (Σ, N,R, S)
2: G⊗ = (Σ, N,R⊗, S)
3: G⟲ = (Σ, N,Rc, S)
4: G = G⊗ ∪G⟲

5: A ∈ N
6: α ∈ Σ ∪N
7: for A → γ1 . . . γn ∈ R do
8: for i = 1 to n do
9: switch γi do
10: case [α], α∗

11: γf
i = ε

12: case α+

13: γf
i = α

14: case α, ρ
15: γf

i = γi

16: end switch
17: end for
18: if A → γ1 . . . γn ̸= A → γf

1 . . . γ
f
n then

19: R⟲ = R⟲ ∪ {A → γ1 . . . γn}
20: end if
21: if has cycle(A → γf

1 . . . γ
f
n, A) then

22: R⟲ = R⟲ ∪ {A → γf
1 . . . γ

f
n}

23: else
24: R⊗ = R⊗ ∪ {A → γf

1 . . . γ
f
n}

25: end if
26: end for



Listing 3.4: Set of rules with simplified duplicates.

R with extracted groups : Newly built rules :

A → a B+ A∗
3 [e] A → a B

B → b [B] B → b
D → d

D → d D

A3 → c

A3 → D

the nonterminal we are looking for. If it is not in this set, we add it to the set of visited

nonterminals, so we do not end up in a loop, checking the same nonterminals over again.

Then we call has cycle recursively for every production rule of that nonterminal, with

the nonterminal we are looking for. Returning true if one of them have a reference to

the original nonterminal. If we have not returned by the end of the loop, no path back

to the given nonterminal was found, so the function returns false.

Algorithm 3 Detecting cycles

1: G = (Σ, N,R, S)
2: A,B ∈ N
3: let N̂ = ϕ
4: function has cycle(A → γ1 . . . γn, A)
5: for i = 1 to n do
6: if γi = B or γi = B∗ or γi = B+ or γi = [B] then
7: if B == A then
8: return true
9: else if B /∈ N̂ then
10: N̂ = N̂ ∪ {B}
11: for B → ω1 . . . ωm ∈ R do
12: if has cycle(B → ω1 . . . ωm, A) then
13: return true
14: end if
15: end for
16: end if
17: end if
18: end for
19: return false
20: end function

Say we are starting with the set of rules we got from extracting the groups of the

sample grammar, we build simplified duplicates for some of the rules in the first part of

the algorithm, see Listing 3.4. The next step of the algorithm is to add all the original

rules, that have a new modification, to the cyclical grammar. For the example grammar,
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Listing 3.5: Rule with and without cycle.

Rule containing a cycle: Rule not containing a cycle:

D → d D A3 → D

D → d

D → d D

Listing 3.6: The two sets of rules after splitting.

Cyclical grammar: Cyclefree grammar:

A → a B+ A∗
3 [e] D → d

B → b [B] A3 → c

D → d D A3 → D

A → a B

B → b

that is the rules for A and B. Then we have to check the remaining rules for cycles, an

example of a rule containing a cycle and one not containing a cycle is done in Listing 3.5.

In our example grammar, D is the only remaining rule that contains a cycle, after

adding the original rules for A and B to the cyclical grammar. In Listing 3.6 the rule

list for the cyclical grammar is to the left, and the rules of the cycle-free grammar to the

right.

Before the grammar with extracted groups, the cycle-free grammar, and the cyclical

grammar can be used to inline nonterminals, repetition elements must be dealt with.

Repetition elements are Kleene Star, Plus and Optional. In Algorithm 4, ”Handle rep-

etition”, we loop over every production rule in the rule sets of these three grammars,

the grammar with extracted groups, the cycle-free grammar, and the cyclical grammar,

calling the function handle repeater on the Sequence making up the rule.

The handle repeater function loops over every constituent part of the given rule,

looking for repetition elements. The function has four cases for the constituent part

it is processing, all of which make a recursive call on the content of the constituent

part. Three for the repetition element, and the last and fourth case is for a Sequence

element. For this case, the Sequence, the constituent part is updated with the return

of the recursive call on the content of the Sequence. In two of the other three cases,

the repetition cases, the constituent part is updated with a Sequence of the output from

the recursive call. For a Plus element this is a Sequence of one or more repetition of

the output, and for a Star element this is a Sequence of zero or more repetition of the
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Listing 3.7: Grammar with extracted groups before and after handling repetition

R with extracted groups: R with handled repetition:

A → a B+ A∗
3 [e] A → a B B B A3 A3 e

B → b [B] B → b B
D → d D → d

D → d D D → d D

A3 → c A3 → c

A3 → D A3 → D

Listing 3.8: Cyclical grammar before and after handling repetition

Cyclical grammar: Cyclical grammar(handled repetition):

A → a B+ A∗
3 [e] A → a B B B A3 A3 e

B → b [B] B → b B
D → d D D → d D

output. The last case is for a Optional element. Here the constituent part is updated

to the output of the recursive call or the empty string, ϵ. In Listings 3.7 and 3.8, the

rule sets for extracted groups and cyclical grammar can be seen before and after going

through this algorithm for handling repetition elements.

The next step of our algorithm is to inline nonterminals for all the production rules in

the grammar, with extracted groups (Algorithm 1) and handled repetition elements (Al-

gorithm 4). To do this, we use the two new grammars we got from splitting the grammar

(Algorithm 2). We create a function inline nonterminals that takes a production rule as

a parameter and a number d for how deep the function should go. The function returns

the production rule with all of its nonterminals inlined. This function can be seen in

Algorithm 5, ”Inlining the grammar”. The number d is used to represent how big/long

the generated terminal string should be, if we should fill the empty set R̃ with the rules

from the cycle-free grammar or the cyclical grammar.

In this function, we define a variable h, h is the number d divided by two. d is the depth

we are given, and h is halfway. The function contains nonterminal (Algorithm 6) is used

in the while-loop of the inline nonterminals function. This is to keep the function going

until every nonterminal has been inlined, replaced by one of its production rules. Inside

this while-loop, we loop over every constituent part of the rule, if the constituent part we

are processing is a nonterminal, or an element containing a nonterminal, a sequence, we

have to update the rule set R̃.

If the variable d is greater than h, we are early in the inline process, and the set R̃ will

be updated with the rule set from the cyclical grammar. If d is less than h but greater
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Algorithm 4 Handle repetition

Let G be the grammar with extracted groups. Let G⊗ be the cycle-free grammar. Let
G⟲ be the cyclical grammar.

1: G = (Σ, N,R, S)
2: G⊗ = (Σ, N,R⊗, S)
3: G⟲ = (Σ, N,R⟲, S)
4: A ∈ N
5: α ∈ (Σ ∪N)∗

6: for A → γ1 . . . γn ∈ R do
7: A → handle repeater(γ1 . . . γn)
8: end for
9: for A → γ1 . . . γn ∈ R⊗ do
10: A → handle repeater(γ1 . . . γn)
11: end for
12: for A → γ1 . . . γn ∈ R⟲ do
13: A → handle repeater(γ1 . . . γn)
14: end for
15:

16: function handle repeater(γ1 . . . γn)
17: for i = 1 to n do
18: switch γi do
19: case α+

20: λ = handle repeater(α)
21: γi = λk, with k = random int(1, ∞)

22: case α∗

23: λ = handle repeater(α)
24: γi = λk, with k = random int(0, ∞)

25: case [α]
26: λ = handle repeater(α)
27: γi = choose random(λ, ϵ)

28: case α
29: λ = handle repeater(α)
30: γi = λ

31: end switch
32: end for
33: return γ1 . . . γn
34: end function



than zero R̃ is updated to contain the rules from both sets, from both the cyclical and

cycle-free grammars. This is because we are no longer in the beginning phase of inlining,

nor in the end, so it does not have a lot to say if we take the fastest path to finish inlining

or not. When d is less than zero, we have to take the fastest path to finish inlining, so in

this case we update R̃ with the rule set of the cycle-free grammar.

After R̃ have been updated with the correct set(s) we have to retrieve all the produc-

tion rules for the nonterminals in R̃, the set of these production rules are saved in R̃B,

and decrease d by one. We can then choose randomly from the set R̃B which rule that

will replace the nonterminal. There are three possibilities of a nonterminal occurrence,

and the function has three cases for them. Making sure that the production rule that is

replacing the nonterminal is placed correctly in the rule, directly in the rule or inside of

a sequence. When every nonterminal has been replaced by one of its production rule, the

new production rules without nonterminals is returned.

Algorithm 6, ”Production rule containing nonterminal”, has the contains nonterminal

function, that is used by Algorithm 5, ”Inlining the grammar”, in the while loop. this

function takes in a production rule and returns true or false based on whether or not it

contains a nonterminal.

To find out if a production rule contains a nonterminal we loop over every constituent

part of the rule. There are two cases to think about, the first is if it is a nonterminal, then

we return true. The second is if it is a sequence element, an element containing something

else then we return the result of a recursive call on that content. If the constituent part

is neither, then there is nothing to do. If we loop over every constituent part without

detecting a nonterminal, the function returns false.

In Listing 3.9, an example is shown for a rule going through this process. It shows

the rule A → a B+ A∗
3 [e], with a depth d of five, as it is being transformed into a rule

not containing nonterminals. In Listing 3.10, a complete list of the rules for the example

grammar with extracted groups is to the left, with their inlined version to the right. This

is just one result of the inlining step on these rules (Algorithm 5), but there are many

choices underway, so there exist multiple alternatives for the result of this algorithm.

The final step of the algorithm is to do the actual generating. This is done in Al-

gorithm 7, ”Generate terminal string”. Before starting the actual generating, we have

to call the inline nonterminals function (Algorithm 5), on every production rule in the

grammar with extracted groups and handled repetition elements, saving the returned

rules in a new set, R′. We can then loop over this set of rules, generating terminal strings
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Algorithm 5 Inlining the grammar

Let G⊗ be the cycle-free grammar, and G⟲ be the cyclical grammar we got from splitting
the grammar in Algorithm 2, and after handling repetition elements in Algorithm 4. Let
R̃ be an empty set that we can fill with rules from G⊗ and/or g⟲.

1: G⊗ = (Σ, N,R⊗, S)
2: G⟲ = (Σ, N,R⟲, S)

3: R̃ = ∅
4: A,B ∈ N
5: function inline nonterminals(A → γ1 . . . γn, d)
6: let h = d/2
7: while contains nonterminal(A → γ1 . . . γn) do
8: for i = 1 to n do
9: if γi = B or γi = αBβ then
10:

11: if d > h then
12: R̃ = R⟲

13: else if d > 0 then
14: R̃ = R⊗ ∪R⟲

15: else
16: R̃ = R⊗
17: end if
18:

19: R̃B = {ω1 . . . ωn | B → ω1 . . . ωn ∈ R̃}
20: d = d− 1
21:

22: switch γi do
23: case B
24: γi = choose random uniformly(R̃B)

25: case αBβ
26: γi = α choose random uniformly(R̃B) β

27: end switch
28: end if
29: end for
30: end while
31: return A → γ1 . . . γn
32: end function
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Algorithm 6 Production rule containing nonterminal

1: A,B ∈ N
2: α ∈ Σ ∪N
3: function contains nonterminal(A → γ1 . . . γn)
4: for i = 1 to n do
5: switch γi do
6: case B
7: return true
8: case α
9: return contains nonterminal(α)

10: end switch
11: end for
12: return false
13: end function

Listing 3.9: Example of inlining

A → a B B B A3 A3 e d=5 Cyclical grammar:

A → a bB B B A3 A3 e d=4 A → a B B B A3 A3 e

A → a bB bB B A3 A3 e d=3 B → b B
A → a bB bB b A3 A3 e d=2 D → d D

A → a bB bB b D A3 e d=1

A → a bB bB b D c e d=0 Cyclefree grammar:

A → a bb bB b D c e d=-1 A → a B

A → a bb bb b D c e d=-2 A3 → c
A → a bb bb b d c e d=-3 A3 → D

B → b
A → a bb bb b d c e D → d

Listing 3.10: Inlined rule set

R: R with inlined nonterminals:

A → a B B B A3 A3 e A → a bb bb b d c e

B → b B B → b b b b b b

D → d D → d

D → d D D → d d d d d

A3 → c A3 → c

A3 → D A3 → d d d d d d



for them. This is done by looping over the production rule’s constituent parts, concate-

nating the results from calling the generate function (Algorithm 8) on all of them, and

then printing the result.

Algorithm 7 Generate terminal string

Let G be grammar after extracting groups and repetition. Let G′ be the grammar we
end up with after inlining the rules in R.

1: G = (Σ, N,R, S)
2: G′ = (Σ′, N ′, R′, S ′)
3: for A → γ1 . . . γn ∈ R do
4: R′ = R′ ∪ inline nonterminals(A → γ1 . . . γn, d)
5: end for
6: for A → γ1 . . . γn ∈ R′ do
7: let t = ””
8: for i = 1 to n do
9: t = t + generate(γi)
10: end for
11: print(t)
12: end for

The generate function is shown in Algorithm 8, ”Generate constituent part”. It takes

a constituent part as a parameter and returns a generated terminal string for that part.

There are three cases for the constituent part, sequence, terminal and regular expression.

In the case of a sequence, we do the same thing we do for a production rule in Algorithm 7,

loop over the different parts of the sequence calling the generate function recursively on

every part, and then concatenating the results into one terminal string that is returned

by the function. Terminals and regular expressions are the base cases of this generate

function, this means that they do not make recursive calls but return output directly. For

a terminal string, it is returned as is, because it already is a terminal string. For regular

expression, we use an existing function to generate a string from the expression, more on

this in the next section, ”Implementation” 4.

In Listing 3.11, an example of generated terminal strings is given. There is not much

of a difference between the left and right-hand sides, but to the right, before generating,

we have sequence elements. The entire rule is one sequence, and different parts inside

of the rule can also be sequences. For the nonterminal A the different bb are different

sequences, so is b. There could have been more b’s in the different sequences of the rule,

but the reason they do not have it in this example is because of the variable d, in the

inline nonterminals Algorithm 5. The variable d is used to decide which rule is to replace

a nonterminal, and with the value for d we had in this example, this is what we got.
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Algorithm 8 Generate constituent part

1: δ is a constituent part.
2: a ∈ Σ
3: ρ is a regular expression
4: function generate(γ)
5: switch γ do
6: case δ
7: let s = ””
8: for a in δ do
9: s = s + generate(a)
10: end for
11: return s
12: case a
13: return a
14: case ρ
15: return RegExp(ρ)

16: end switch
17: end function

Listing 3.11: Example of generated terminal string.

R with inlined nonterminals: Generated terminal text:

A → a bb bb b d c e A : abbbbbdce

B → b b b b b b B : bbbbbb

D → d D : d

D → d d d d d D : ddddd

A3 → c A3: c

A3 → d d d d d d A3: dddddd



Chapter 4

Implementation & Case Study

4.1 Implementation

In the previous section, we explained the algorithm, Sample Generation Algorithm, Fur-

thermore, we showed an example grammar being taken through the algorithm. Now

we have implemented this algorithm in Python, and will in this section look at how we

implemented the different parts, making up the complete algorithm.

Our implementation1 of the Sample Generation Algorithm takes a grammar specifi-

cation in the format of a parser generator Lark [15], and outputs a set of strings which

can be derived by each of the Nonterminal and Token2 symbols in the grammar.

To parse grammar specifications made in Lark and construct their corresponding

parse trees, we use a Lark grammar in the format of Lark [16]. This way, we can use

the parsing facilities from the library to create a parser for Lark grammars. The library

provides functionality to traverse the parse trees of the grammar specifications, and to

build various representations of Lark grammars that are more convenient to work with

in certain contexts. In our case, the data structure of choice is a dictionary, where the

keys are the Nonterminal or Token symbols, and the values are lists of grammar rules

for a corresponding Nonterminal (or Token).

Different constituent parts of a Lark-formatted EBNF grammar, such as nonterminals,

groups of terminals and nonterminals, cardinality modifiers, thereof such as Kleene star

modifier, Kleene plus modifier, optionality modifier, and others, are represented as Python

classes, a complete list of these classes can be seen in Table 4.1.
1https://github.com/mhhundvin/Master Project
2The difference between nonterminal symbols and tokens in Lark is described in Section 2.3.

24

https://github.com/mhhundvin/Master_Project


Listing 4.1: An example of a simple Lark grammar.

start: list | dict | STRING | NUMBER | "null"

list: "[" [start ("," start)*] "]"

dict: "{" [pair ("," pair)*] "}"

pair : STRING ":" start

STRING: /[a-zA-Z0 -9 ]*/

NUMBER: /[0 -9]+/

All of these classes encapsulate common behaviour expressed in the following methods:

• to string — to get the original grammar representation;

• get arg — to get the arguments of the class, what it contains;

• generate — to generate terminal string for the arguments;

• contains cycle — to check if the arguments contains a cycle.

The generate function is only implemented in six of the eleven classes. This is because

we will have removed instances of Group and repetition elements (Plus, Star, Optional,

Repeat) before we get to the generating step.

Instances of these classes are created when a parse tree of a Lark grammar is traversed:

the dictionary corresponding to a grammar is populated with the respective instances of

the classes following the structure of the constituent parts in a grammar. In Listing 4.1,

an example grammar in Lark is given, with its corresponding parse tree in Listing 4.2,

and the dictionary created by traversing the tree is given in Listing 4.3.

After the dictionary corresponding to a given grammar has been created, the next

step is to simplify the grammar. This is done by the extract groups Algorithm 1, which

performs group extraction [17, p. 182] from the rules. The algorithm loops through every

production rule of every Nonterminal (and Token) and looks for grouping expressions.

In the implementation, this comes down to having a function that for every key–value

pair in the dictionary loops through the value list (i.e., a list of productions) and calls

extract group function on every production rule. The extract group function, in its

turn, loops over the elements in a production rule, and rebuilds that rule with groups

extracted, and added to the grammar dictionary as new rules.

The next step of the implementation is splitting the grammar, as specified in Algo-

rithm 2. Our implementation uses two more dictionaries, one for the cycle-free grammar,

and one for the cyclical grammar.
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Class Explanation

Generatable An interface for the rest of the classes. They
implement its functions, and makes it easier to
check if an element is one of our implemented
classes, have the given functions.

Literal Range The arguments of this element is a start and end
value for a list of elements, generating for this
element is a random value for the given range.
A: ”a” .. ”z” | ”0” .. ”9”

Repeat The argument of this element is repeated as many
times as specified, between two numbers.
A: elem∼1 .. 3

Optional The argument of this element is either generated
or not.
A: [elem] | elem?

Star The argument of this element is repeated zero or
more times.
A: elem*

Plus The argument of this element is repeated one or
more times.
A: elem+

Group The arguments of this element is grouped to-
gether, into one argument/element.
A: (elem elem2)

Sequence A sequence of arguments, that, unlike a group, is
not treated as one argument.

Regexp The argument of this element is a regular expres-
sion, anything that is valid according to the ex-
pression is a valid terminal string for this element.

Nonterminal The argument of this element is a lower-cased
”name” for a production rule.

Token The argument of this element is a capitalized
”name” for a production rule.

Terminal The argument of this element is a string, this is
the base structure of a grammar.

Table 4.1: The different python classes that we implemented.
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Listing 4.2: Parse tree for the example grammar.

rule

start

expansions

name list

name STRING

name NUMBER

literal "null"

rule

list

expansion

literal "["

maybe

expansion

name start

opexper

group

expansion

literal ","

name start

*

literal "]"

token

STRING

literal /[a-zA -Z0 -9 ]*/

token

NUMBER

literal /[0 -9]+/



Listing 4.3: The dictionary created from the example grammar.

{

Nonterminal(start) : [Nonterminal(list),

Token(STRING),

Token(NUMBER),

Terminal(null) ],

Nonterminal(list) : [Sequence(Terminal ([),

Optional(Nonterminal(start),

↪→ Star(Group(Terminal(,),

↪→ Nonterminal(start)))),

Terminal (]))],

Token(STRING) : [Regexp ([a-zA-Z0 -9 ]*)],

Token(NUMBER) : [Regexp ([0 -9]+)]

}

In the implementation, we have a function that loops over every constituent part

of every rule in the grammar, and builds a new rule for every production rule, a list

new alternative. If we come across an optional element, Star or Optional, we have a

Boolean variable, multiple options, that is updated to true, this variable is set to false for

every new rule we iterate over. If the constituent part is a Plus, the multiple options vari-

able is set to true, and the content of the Plus element is added to the list new alternative.

For every other case, the constituent part is added as it is to the new alternative list.

After looping through every constituent part of a rule, and building the list

new alternative, we have to add them, the new rule and the original rule, to the fit-

ting grammar dictionary. If the multiple options is true, then we add the original rule

to the cyclical grammar dictionary, and check the new rule, new alternative, for cycles,

after making it a Sequence. We check the new rule for cycles using the contains cycle

function every class has. If the new rule does not have any cycles, it is added to the

cycle-free grammar dictionary, otherwise, it too is added to the cyclical grammar dic-

tionary. If multiple options is false, we only care about the original rule, checking it for

cycles and adding it to the correct grammar dictionary based on the result of calling the

contains cycle function on the rule.

The contains cycle function works by calling it on every element of a class except for

the classes Terminal and Regular expression, these classes returns false because they can

not contain cycles. The contains cycle function for the Nonterminal class is the only one

that can return true. It checks if it is the Nonterminal we are looking for (started with),

and if it is, the function returns true. If its not the one we are looking for, we check if we
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have looked at that Nonterminal before, by seeing if it is in a list of visited nonterminals.

If we have not looked at it before, we add the Nonterminal to the visited nonterminals

list, and check every production rule for that nonterminal, seeing if they have a path back

to the original Nonterminal.

After we have created the two new dictionaries for the cycle-free and cyclical grammar,

we deal with repetitions (cf. Alg. 4). The implementation for this is a function that loops

over every key–value pair of a grammar dictionary. This function is called for the three

grammar dictionaries we have, the extracted groups, cycle-free and cyclical grammar

dictionaries. For every production rule in the value list for a Nonterminal (or Token),

another function is called, handle repeater, that takes the production rule as a parameter.

The handle repeater function loops over every constituent part of the production rule,

building a new rule to replace it in the grammar, a list new alternative, acting if it comes

across a repetition element. Repetition elements are instances of the Plus, Star, Optional,

and Repeat classes. The function makes a recursive call on the content of the constituent

part for all of these cases, and saves the returned output in a variable. The function

then creates a Sequence of the output before adding that Sequence to the new rule,

new alternative. The number of times the output from the recursive call is repeated in

the Sequence depends on what element the constituent part was. For Plus elements,

the output is repeated a random number of times between one and 10. It is almost the

same for Star, but the random number is between zero and 10, and it is only added if

another random number, between zero and nine, is an even number. In the case that

the constituent part is an Optional element, the output is only repeated once, and only

if a random number between zero and nine is even, same as with Star elements. The

final repetition element, the Repeat element, have a start and an end field, as well as the

arguments. In this case, the arguments of the Repeat element are repeated a random

number of times between the start and end number of the Repeat element.

The function also acts for instances of Sequence elements. In this case a recursive call

is made on the content of the Sequence, and the returned output is added to the new

rule, the new alternative list, as a Sequence. In all other cases, the constituent part is

added to the new alternative list as they are. After the function is done iterating over

the rule, the new alternative list is made an instance of a Sequence before it is returned.

The returned Sequence replaces the original production rule in the grammar dictionary.

The next step after dealing with repetition is to inline Nonterminals (and Tokens)

(cf. Alg. 6). For this step, the two new grammar dictionaries returned by splitting the
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grammar, with handled repetition, will be used to inline the Nonterminals (and Tokens).

We have the function, inline nonterminals, that takes in these two dictionaries (cycle-free

grammar dictionary and cyclical grammar dictionary), a production rule, and a depth.

We loop over every element of the production rule replacing Nonterminals (and Tokens)

with a random one of their rules, inlining them [17, p. 181], and calling the function

recursively in cases of Sequence. In the case of a Nonterminal or Token, another function

is called to decide from which grammar we should choose the production rule to replace

the Nonterminal/Token with. If the depth is greater than the start depth divided by

two, we choose the replacement from the cyclical grammar. If it is below this, but still

greater than zero, we choose randomly from both the cycle-free and cyclical grammars.

If the depth is zero or below, we only choose from the cycle-free grammar. In cases where

the Nonterminal (or Token) has no rule in the preferred grammar, the other grammar is

chosen. For every Nonterminal we replace, we decrease the depth by one. When we know

which grammar to look at, we choose one of the production rules for the Nonterminal

randomly. The loop that loops over the constituent parts of the rules is inside of a while

loop, this while loop will run until there are no nonterminals left, meaning that we will

keep iterating over the rule replacing Nonterminals and Tokens until there are none left

in the rule. To check for Nonterminals (and Tokens) in the rule we have a function

contains nonterminal(cf. Alg. 6). This function loops over the constituent parts of the

rule, it returns true if one of the constituent parts is a Nonterminal or Token, and it is

called recursively in the case of a Sequence element, to check if the Sequence contains a

Nonterminal (or Token). If no Nonterminal (or Token) is detected it returns false. After

every Nonterminal (and Token) have been replaced the new production rule is returned.

In the implementation, we have a Parser class that creates the Lark parser, and parses

the grammar giving the parse tree. Another class, a Compiler class, imports this tree and

traverse it, building the grammar dictionary. After the grammar dictionary is created,

the extract groups function is called, updating the grammar dictionary. The next step

in the implementation is to call a generate function. This generate function starts by

splitting the grammar, using the splitting function described earlier. Then it calls the

function for handling repetition for the grammar with extracted groups, the cycle-free

grammar, and the cyclical grammar dictionaries, updating their production rules. This

generate function now have three grammar dictionaries without groups and repetition

elements. The next step is then to loop over the grammar with extracted groups calling

the inline nonterminals function on every production rule for every Nonterminal (and

Token), using the cycle-free grammar dictionary and the cyclical grammar dictionary.

This function, the generate function, takes in the grammar with extracted groups, and

the users wanted depth. A new dictionary is built by the new production rules returned
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by the inline nonterminals function calls. The final step is then to loop over this new

dictionary, generating terminal string for every production rule of every Nonterminal

(and Token). To do this, we loop over the constituent parts of the rules, calling their

generate function, and concatenating the returned terminal strings.

The generate function works similarly to the contains cycle function. Where the

generate function is called for every element of an object’s argument, concatenating the

results before returning it. The function calls go all the way ”down” until a terminal or

a regular expression is reached. The argument of Terminals are strings, so their value

is returned directly as terminal strings. The generate function for regular expressions is

more complicated.

The generate function for RegExp elements uses a library to try and match the ex-

pression against a string. The strings we try to match the regular expression with are

decided by using the name of the rule. We have one list for comments and one for iden-

tifiers. If the name corresponds to something that makes us believe it is a comment, we

try to match the expression against the list of comments. We do the same with the list of

identifiers if the name corresponds to something that makes us believe it is an identifier

(such as ”var”, ”identifier”, etc.). In other cases, we have a text file we try to match the

regular expression against. This text file contains different types of text, a story, binary

numbers, and other types of numbers. If the regular expression is not matched against

any of the mentioned methods, we use the library to generate a random string from the

regular expression. This is the last option because the goal is to generate somewhat of a

sensible result.

4.2 Case Study

In this section, we will give two examples of grammars, and their results for the generated

terminal string. The two grammars we have chosen are a test grammar we created and

the grammar for Hedy level 1. Hedy is a gradual language. On their website, kids and

other learners, can learn programming gradually with this language [6]. It consists of

different levels, where different constructs of programming are added for each new level.

This way, the learner can focus their learning on one thing at a time.

In Figure 4.1, a section of the level 1 Lark grammar for Hedy is shown, the full gram-

mar can be seen in Appendix A [5]. This section is the main part of the grammar, with
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the start symbol, start, and what it builds. Using the implementation of the algorithm,

Sample Generation Algorithm, we generate terminal strings for every nonterminal of the

grammar. Here we have chosen to include the terminal string for the nonterminals start

and program, this can be seen in Figure 4.2 for the start nonterminal, and in Figure 4.3

for the program nonterminal. As can be seen in the grammar for Hedy 4.1, the production

rule for the nonterminal start is the nonterminal program. This means that anything

generated for program, can also be generated for start. So the two examples given can

be generated from the grammar’s start symbol, start.

Figure 4.1: Lark grammar for Hedy level 1

The generated output for start is shown in Figure 4.2, it is a program, and in the

generated terminal string, we can see that it started with two EOL, followed by two of

the group (command EOL+) and finishes off with a command. We can see this because it

starts with three line breaks, followed by three commands. the first line break is not part

of the generation, it is added when printing the generated terminal string, hence two line

breaks are generated from EOL*. Since there is no line break after the last command, it

can not be from the group because the group ends with at least one line break. The two

first commands are turtle, as can be seen by the ”forward” keyword. The last command

is echo, as seen by the ”echo” keyword.
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Figure 4.2: Generated terminal string for nonterminal start for Hedy level 1

For the nonterminal program, the generated terminal string is shown in Figure 4.3.

It does not include the optional element command (at the end of the rule), nor the star

element EOL, star elements are repeated zero or more times, here it is repeated zero times.

But it does contain 16 repetition of the star element (command EOL+). The first three

generated output for the group (command EOL+), have multiple repetition of EOL, while

the rest only have one repetition, which is the minimum number of repetitions possible

for plus elements. Here three different options for command is used, ask, echo and turtle,

as can be seen by the keywords: ”ask”, ”echo”, ”forward” and ”turn”. The keywords

”forward” and ”turn” are two different options for turtle.

Same as with the Hedy grammar, a section of the main part of our test grammar is

given in Figure 4.4, and the full grammar is given in Appendix B. In Figures 4.5, 4.6

and 4.7 examples of generated terminal strings are given for the nonterminals: start,

variable decl and statement. From both the grammar and the generated output one

can see that the terminal string for this test grammar has spaces, this is because of the

token SPACE. Our algorithm does not fill in spaces, so it is up to the user to add them to

the grammar if they are needed.

Figure 4.5 has the generated output for the nonterminal start, there are four different

generated results, one for each production rule alternative. The first terminal string is
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Figure 4.3: Generated terminal string for nonterminal program for Hedy level 1
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Figure 4.4: Lark grammar for our test grammar



Figure 4.5: Generated terminal string for nonterminal start for our test grammar

generated from program, where the plus element containing variable decl has been

repeated two times, followed by the plus element containing statement, that is repeated

eight times. The second terminal string is generated from expr, for multiplication, ”*”,

and addition, ”+”. The third terminal string is from the variable decl, and the last

from statement, a if statement.

Generated output for variable decl can be seen in Figure 4.6. variable decl also

has multiple options for generating, three different keywords: ”var”, ”let” and ”const”.

The algorithm generated one example for each option. The nonterminal statement also

have multiple production rules, while, if, print and assign. In Figure 4.7, examples of

generated terminal strings for these four options are shown.
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Figure 4.6: Generated terminal string for nonterminal variable decl for our test gram-
mar
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Figure 4.7: Generated terminal string for nonterminal statement for our test grammar



Chapter 5

Related Work

5.1 Other Grammar Formalisms

For the algorithm we had the context-free grammar in mind, or more specifically the

grammar formalism EBNF. But the algorithm could work for multiple types of grammars,

not just one. Meaning, it could be generalized to work with other grammars. Such as

conjunctive grammars, Boolean Grammars or grammars with context.

For the implementation we went for the parser generator Lark, but here we also have

other options. A parser generator, or compiler compilers as it is also called, is a tool

that takes a grammar and creates a parser for that grammar[2]. A parser is a code that

given a sequence try to match it against the grammar to see if it is valid[10]. If it is valid

the parser divides the sequence into parts matching the grammar. For example subject,

verb and object for a sentence. The returned result after parsing is a parse tree, that

shows how the sequence matches the grammar. Examples of other parser generators are;

ANTLR, Yacc/Bison, CoCo/R, etc.

5.2 Prior art

There exists several relevant papers on the subject of grammars in the context of software

engineering. Some of these papers cover the broad sens of grammars and other focuses

on certain parts. One article that looks at grammar in a general way is ”Toward an

Engineering Discipline for Grammarware” by Paul Klint, Ralf Lammel and Chris Verhoef

[9]. I will look a little more into this article before moving on to other works.
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5.2.1 Grammarware

The article ”Toward an Engineering Discipline for Grammarware” [9], look at current

software engineering practices for grammarware and the way to evolve them. Within

this article, the term grammarware is defined as to include both grammar and grammar-

dependent software. Here grammar is used for all established grammar notations and

formalisms, and grammar-dependent software for software that, in an essential manner,

involves grammar knowledge. The goal of the authors is to shine a light on the missing

engineering discipline for grammarware, and by doing so, opening up for improving the

overall quality of grammarware. To achieve this, they focuses on identifying the current

challenges within grammarware, and then suggesting further research topic to address

the identified challenges.

In software systems structural description is what we use the term grammar for. By

doing so we apply some informal, non-strict, assumptions. The assumptions are non-strict

as to not exclude any grammar forms that do not yet exist, or that we have not thought

of. As grammar is used for structural description, software component with grammatical

structure is used for grammar dependency.

The article also talks about grammar formalisms, and grammar notations. The gram-

mar formalism context-free grammars, algebraic signatures and regular tree and graph

grammars, is what the authors looks at as the foundations for grammar. Grammar

notation is what the structural description is given in, for example: Syntax Definition

Formalism (SDF), Backus-Naur Form (BNF) and Extended Backus-Naur Form (EBNF).

For grammar formalisms there are different operation one can do to map one for-

malisms to another, this can be used to convert between different formalisms. It is also

possible to do the same for some grammar notations. For example: one can convert

EBNF to BNF, and BNF to EBNF. This is a bidirectional conversion, in other cases the

conversion might be uni-directional.

The purpose of a structural description is what we refer to as the grammar use case.

There are two types of use cases that we differentiate: abstract and concrete. A grammar

requires a commitment to a concrete use case before it can be executable. Software that

supports concrete use cases we call meta-grammarware.

Despite the fact that grammars is a big part of development processes and software

systems, there exists no set of best practices for grammarware. Because of this lack of beat
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practices there is no engineering discipline for grammarware. This means that working

with grammarware is more like hacking than engineering. To change from hacking to

engineering there are several things that can be done. Lack of best practises is not

the only thing missing from grammarware. There is a lack of coverage in university

curriculum, or in books. It is also missing a foundation.

The overall goal of grammarware engineering is to improve the quality of grammar-

ware. To achieve this the authors mentions four promises; Increased Productivity, Im-

proved Evolvability, Improved Robustness and Fewer Patches, More Enhancements. A

grammarware engineering will increase productivity via grammar recovery, systematic

processes and automation in grammarware life cycle. Grammarware engineering can also

help connect grammars, so changes in one grammar use case can be transferred to other

use cases, this will help to improve evolvability. Robustness in grammarware will be

improved by the same link between grammars as just mentioned, and also by testing and

reuse of grammars. The last promise, fewer patches, more enhancements, will be achieved

by there being less failures in grammarware. This will lead to fewer patches which in

turn gives more time for enhancements.

Further, the article goes on to name principles that grammarware engineering should

be based on. These principles can help grammarware life cycle which will again reinforce

the software life cycle. These principles are:

• Start from base-line grammars. Base-line grammars, in the grammarware life

cycle, are pure grammars. It is from these grammars grammarware shall start from.

Without commitment to implementation, use case or technology.

• Customize for grammar use cases. Then from these base-line grammars we

can develop new grammars via customization. There exist ways of doing this cus-

tomization, but they are manual and only created when needed.

• Separate concerns in grammarware. Grammarware can be separated into

grammar-based concerns and grammar concerns. There exist research that have

concluded in techniques for this, but more research and development is needed.

• Evolve grammarware by transformation. In grammarware the evolution of a

grammar will not only affect the grammar, but also grammar-dependant software

and other data. So we need automated transformations that will not only transform

the grammar, but all the other aspect of grammarware as well.

• Reverse-engineer legacy grammarware. Base-line grammar will not in all

cases be available. So we need a way to reverse-engineer data containing grammar

knowledge.
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• Ensure quality of grammarware. We need ways of ensuring quality in grammar-

ware. This also has to be divided into grammar and grammar-dependent software.

This article looks at grammar in a very abstract and general manner, where we look

at a specific grammar formalism and how to work with it. But with further work on this

algorithm, it should be capable to generalize it to work on other grammar formalisms as

well.

5.2.2 Other Papers

Another relevant paper is ”Recovery, Convergence and Documentation of Languages” by

Vadim Zaytsev [17]. This is a PhD thesis that talk about 5 fields of research:

• grammar recovery,

• grammar extractions,

• grammar convergence,

• grammar transformations and

• language documentation.

Grammar recovery is a way to go from some data, containing information about a

grammar, to a grammar. In Zaytsev’s PhD, they took inspiration from grammar recovery

that start with the extraction of this knowledge. [17] talks about grammar extraction as

abstraction by extraction and grammar extractors. Where extractors are software compo-

nents that process software artefacts and produce grammar. Grammar convergence is, as

Zaytsev says in [17]; ”a verification method that establishes and maintains grammatical

correspondence constraints on software”. Grammar transformation have been along for

a long time, but Zaytsev is more interested in automated grammar transformation. The

last research field in his PhD thesis is an elaboration on language documentation.

5.2.3 Example-Driven Approaches in Programming Languages

When a programmer is looking at code, most will mentally run an example through the

code to try and understand what it does. Running examples through code is also a great

way for beginner programmers to see what their code actually dose. Or to learn how

different constructs of a language actually works. Not just seeing the end result after
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running the code, but what actually happens during runtime. What, how and where

different variables get updated, in which order functions are called, etc.

A tool that gives a visualization of examples running through ones code, while coding,

would be a good way to learn, and also improve the coding experience for every coder.

Updating the examples automatically if changes are made to the code. One would get

immediate feedback on the changes. There already exist different tools for this, with

different ways of showing the examples. In the implementation in [4] the examples are

shown in a separate view from the one showing the coding. while in [11] it is added as

comments in the code.

The implementation in [4] lets the user see the steps of the run through, and have

functionality for stepping back and forth seeing the state of the program at different

times. Like a more advanced form of debugging, Which is another usage for the example

visualization. This can further be used for testing, as well as teaching, debugging and

improving coding experience, so why is it not used more?

In [11] they argue that the reason it is not used more is because it takes to much

effort to make it work for multiple languages and multiple runtime environments. The

[4] implementation is a plugin for Eclipse and only works for Java. To make a similar

tool for another language will require a lot of the same implementation a new. [11] uses

some other technology, Language Server Protocol (LSP) and language implementation

frameworks, to make a tool that will work regardless of the language being used. But it

does not have all the functionalities as the [11] implementation. The article also discusses

the benefits and limitation of this language independent implementation.

5.3 Existing Tools for Assisting Learning Program-

ming Languages

PyCharm Edu is an existing tool for learning and teaching python[8]. One can learn/teach

both theory and practice, through interactive tasks. PyCharm Edu offers different kind

of tasks such as multiple choice, fill in the blank spaces and more comprehensive coding

assignments. One can also get feedback on ones responses with hint and error messages.

An educator can create their own courses with tasks and choose whom to share their

courses with. One can make it public, so everyone that wants can take it, or private and

only share it with a chosen group of people, for instance, a teacher can create a course
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and only shear it with his/her students. As a learner, one can try every public course,

and private courses that have been shared with you.

Another existing tool is CodingBat, CodingBat is a free online resource that can help

someone learn Java and/or Python[14]. This is a website consisting of a lot of smaller

coding task to help the person build a coding foundation. Since this is a website, there is

no need to install any software. Just code ones answer directly on the web page, and get an

immediate response on whether or not the answer was correct. CodingBat was created by

a computer science lecturer at Stanford, Nick Parlant, as a tool for practicing pure coding,

without any distraction. The task at CodingBat is good for beginner programmers, and

for practicing.

Pythontutor.com is another online website that can help someone learn programming[1].

It is a vizualisation tool, that works for Python, Java, C, C++ and JavaScript. Here one

can paste inn, or write code, and see what actually happen when it runs. What variables

the code have, and their current values, what is printed etc. This tool can be used to

debug code, or to learn how different constructs of a programming language actually

works.
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Chapter 6

Conclusion and Future Work

In this thesis we consider the most straightforward grammar formalism to specify syntax

of programming languages, context-free EBNF grammars. With this grammar formalism

in mind we designed an algorithm for parsing the grammar and generating syntactically

correct sample strings for the programming language of the grammar. This thesis gives

a formal presentation of the grammar and its different parts.

A prototype implementation of the algorithm is given in Python. For the implemen-

tation, we focused on a particular EBNF format, namely, Lark. The choice of using this

particular parser generator is motivated by the fact that it is Python-based, which lowers

the entry bar for grammar and parser developers. In addition, Lark is currently gaining

some popularity; it is used, for instance, to specify the programming language Hedy [6].

The implemented prototype is tested on different Lark grammars for programming lan-

guages, such as Hedy level 1 and a simple programming language grammar.

We have identified the following directions for future work:

• extending the class of grammars that the algorithm supports;

• implementing a user-friendly GUI for the algorithm, for example, as a web-based

tool;

• conducting a large-scale user study on usability of our algorithm for various exam-

ples of grammars;

• implementing heuristics to generate meaningful regular expressions;

• enabling users to modify generated code samples, with these modifications being

propagated back to the grammar specification.
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Listing 6.1: An example for conjunctive grammars.

Correct by context Not correct by context

S -> A B S -> A B

A -> hello A -> hi

B -> world & < D B -> world & < D

D -> hello D -> hello

S = hello world S = hi world

The first direction is to extend the class of grammars that the algorithm

supports. Here two ideas can be explored: one is to include static semantics (i.e.,

context conditions) into the syntax specifications, and the other is to modify the algorithm

to support other grammar classes beyond context-free grammars as the input to our

algorithm.

As the algorithm is designed now, it can not generate meaningful examples, but rather

only syntactically correct examples. The algorithm has no way of knowing that a variable

needs to be declared before it is used; this is because this information—which constitutes

the semantics of a language—is not included in its grammar. Thus, a valuable direction

for future work is to find a way to include the semantics of the language in the input for

the algorithm.

Expanding the grammar classes that the algorithm supports beyond context-free

grammars would make the algorithm more versatile. Other grammar classes the algo-

rithm could be extended to support are grammars with contexts, conjunctive grammars,

and Boolean grammars. When talking about grammars with contexts, there are two

forms, grammars with one-sided context (left or right), and grammars with two-sided

contexts [3]. There are two types of contexts, regular context and extended context. Left

context says what should prefix the symbol, while right context says what should follow

the symbol. With extended context, the symbol itself is included in the context. For

instance, with left context, one could say that an object needs to be declared before use,

or after use with right context. In Listing 6.1, one can see an example where the symbol S

-> A B is correct according to the left context of B to the left, and not correct according

to the left context of B to the right. More examples of grammars with context can be

found in [3, p. 21-30].

Conjunctive grammars are grammars where the production rules have intersec-

tions [12].
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Listing 6.2: An example for conjunctive grammars.

X → A B & C D X’ → A’ B’ & C’ D’

A → h e l l o w A’ → h e l l o w

B → o r l d B’ → o r l d

C → h e l c’ → h e l

D → l o w o r l d D’ → l o w

X : h e l l o w o r l d & h e l l o w o r l d

X’: h e l l o w o r l d & h e l l o

Listing 6.3: An example for Boolean grammars.

X → A B & not C D X’ → A’ B’ & not C’ D’

A → h e l l o w A’ → h e l l o w

B → o r l d B’ → o r l d

C → h e l c’ → h e l

D → l o w o r l d D’ → l o w

X : h e l l o w o r l d & not h e l l o w o r l d

X’: h e l l o w o r l d & not h e l l o

A → B & C

When parsing conjunctive grammars, it has to be parsed according to every inter-

section. For A, both B and C have to be valid for A to be valid. Boolean grammars are

conjunctive grammars with negation [13].

A → B & not C

Here A is valid if B is valid and C is not valid. For example, with conjunctive grammars,

the grammar to the left in Listing 6.2 is valid for X since A B is the same as C D, even

if A is not equal to C. Furthermore, the grammar to the right is invalid for X’, since A’

B’ is not the same as C’ D’, h e l l o w o r l d ̸= h e l l o w. With Boolean grammars

we have negation, so if we add negation to the grammar, as we have done in Listing 6.3,

the opposite is true, X is invalid and X’ is valid. X is invalid because A B and C D are the

same, and we want them not to be, which is why X’ is valid.
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The current implementation of the algorithm is done in Python, and the running of

the code is done in the terminal. To make the algorithm more usable, and accessible

to more users, it would be valuable to implementing a user-friendly GUI for the

algorithm, for example, as a web-based tool. Using such a tool would make it easier

to use for programmers of all levels, even for those who only explore their first steps in

programming.

The third direction, conducting a large-scale user study, would give the chance

to survey potential users’ preferences. One could have different groups of user to include

in such a survey: for example, inexperienced programmers, or, if our algorithm is framed

as a tool for learning programming language’s syntax, the target group of a survey could

be programming teachers. Another target group could be users interested in designing

grammars, and using our algorithm to test whether their specifications comply with the

examples they get.

The fourth direction is to implement heuristics to generate meaningful regu-

lar expressions, that is, to focus on how one can generate sensible output for a given

regular expression. This implementation could then be used in our algorithm for gen-

erating meaningful and user-friendly strings that comply with regular expressions. For

example, for a token specification IDENTIFIER: /[a-zA-Z_]\w*/, meaningful samples of

generating strings are var a, apples, or maxValue, rather than just random sequences

of symbols that unsystematically comply with the specification.

The final direction is to enable users to modify generated code samples, with

these modifications being propagated back to the original grammar specifi-

cation. Based on these changes by the user, an algorithm would modify the original

grammar to match the new modified example.

G
generate−−−−−→ Ex

modify−−−−→ Ex′ generate−−−−−→ G′
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Glossary

Eclipse Eclipse is an integrated development environment (IDE), mostly used for Java,

but can be used for other programming languages as well..

Hedy Hedy is a gradual language, on their website kids can learn programming grad-

ually with there language. It consist of different levels, where different concepts

of programming is added for each new level. This way the learner can focus their

learning on one thing at the time..
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List of Acronyms and Abbreviations

BNF Backus-Naur Form.

EBNF Extended Backus-Naur Form.

IDE integrated development environment.

LSP Language Server Protocol.

SDF Syntax Definition Formalism.
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Appendix A

Lark grammar for Hedy level 1 [5]

// symbols. they start with an underscore so they don’t appear in the parse tree

// (Lark convention)

_SPACE: " "+

_COMMA: _SPACE? (","|""|"") _SPACE? // support latin and arabic and Chinese commas

// and always allow these to be surrounded by spaces

_COLON: _SPACE? ":" _SPACE?

_LEFT_BRACKET : _SPACE? "(" _SPACE?

_RIGHT_BRACKET : _SPACE? ")" _SPACE?

_LEFT_SQUARE_BRACKET : _SPACE? "[" _SPACE?

_RIGHT_SQUARE_BRACKET : _SPACE? "]" _SPACE?

_HASH: "#"

_SMALLER : _SPACE? "<" _SPACE?

_LARGER: _SPACE? ">" _SPACE?

_EQUALS: _SPACE? "=" _SPACE? //always allow = to be surrounded by spaces

_DOUBLE_EQUALS: _SPACE? "==" _SPACE?

_NOT_EQUALS: _SPACE? "!=" _SPACE?

_SMALLER_EQUALS : _SPACE? "<=" _SPACE?

_LARGER_EQUALS: _SPACE? ">=" _SPACE?

_EXCLAMATION_MARK: "!"

_QUESTION_MARK: "?"

_PERIOD: "."

_SINGLE_QUOTE: "’" | "‘" | "’"

_DOUBLE_QUOTE: "\""

_QUOTE: _SINGLE_QUOTE | _DOUBLE_QUOTE

_PLUS: _SPACE? "+" _SPACE?
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_MINUS: _SPACE? "-" _SPACE?

_MULTIPLY: _SPACE? "*" _SPACE?

_DIVIDE: _SPACE? "/" _SPACE?

start: program

program: _EOL* (command _EOL+)* command?

command: print | ask | echo | turtle | error_invalid_space | error_invalid

print: _PRINT (text)?

ask: _ASK (text)?

echo: _ECHO (text)?

turtle: _FORWARD ((NUMBER

| text))? -> forward

| _TURN ((left | right ))? -> turn

| _COLOR ((black | blue | brown | gray | green | orange

| pink | purple | red | white | yellow | text))? -> color

error_invalid_space: _SPACE any

error_invalid: textwithoutspaces text?

any: /.+/ -> text

COMMENT: _HASH /([^\n]+)/

%ignore COMMENT

_EOL: "\r"?"\n"

NEGATIVE_NUMBER: _MINUS /[0-9]+/ ("." /[0-9]/)?

POSITIVE_NUMBER: /[0-9]+/ ("." /[0-9]/)?

NUMBER: NEGATIVE_NUMBER | POSITIVE_NUMBER

INT: _MINUS? /[0-9]+/

//anything can be parsed except for a newline and a comment hash

text: /([^\n#])([^\n#]*)/ -> text

// to properly deal with tatweels,

// we also need to prevent text from starting with a tatweel,

// otherwise we might parse as the printing of ___ (see #2699)

//anything can be parsed except for a new line, spaces and a comment hash
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textwithoutspaces: /([^\n #]+)/ -> text

// FH Sept 2021: More info on this variable format:

// https://www.unicode.org/reports/tr31/tr31-1.html

// Exact grammar stolen from:

// https://lark-parser.readthedocs.io/en/latest/classes.html

NAME: LETTER_OR_UNDERSCORE LETTER_OR_NUMERAL*

LETTER_OR_UNDERSCORE: /[A-Za-z]+/

LETTER_OR_NUMERAL: LETTER_OR_UNDERSCORE | /[A-Za-z0-9]+/

// Internal symbol added by the preprocess_blocks function

// to indicate the end of blocks

_END_BLOCK: "end-block"

// keywords-en.lark

// https://github.com/Felienne/hedy/blob/main/grammars/keywords-en.lark

_PRINT: ("print" | "print") _SPACE?

_ASK: ("ask" | "ask") _SPACE?

_ECHO: ("echo" | "echo") _SPACE?

_FORWARD: ("forward" | "forward") _SPACE?

_TURN: ("turn" | "turn") _SPACE?

left: ("left" | "left") _SPACE?

right: ("right" | "right") _SPACE?

black: ("black" | "black") _SPACE?

blue: ("blue" | "blue") _SPACE?

brown: ("brown" | "brown") _SPACE?

gray: ("gray" | "gray") _SPACE?

green: ("green" | "green") _SPACE?

orange: ("orange" | "orange") _SPACE?

pink: ("pink" | "pink") _SPACE?

purple: ("purple" | "purple") _SPACE?
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red: ("red" | "red") _SPACE?

white: ("white" | "white") _SPACE?

yellow: ("yellow" | "yellow") _SPACE?

_IS: _SPACE ("is" | "is") _SPACE

_SLEEP: ("sleep" | "sleep") _SPACE?

_ADD_LIST: ("add" | "add") _SPACE

_TO_LIST: _SPACE ("to" | "to") _SPACE

_REMOVE: ("remove" | "remove") _SPACE

_FROM: _SPACE ("from" | "from") _SPACE

_AT: _SPACE ("at" | "at") _SPACE

random: ("random" | "random") _SPACE?

_IN: _SPACE ("in" | "in") _SPACE

_IF: ("if" | "if") _SPACE

_ELSE: "else" | "else"

_AND: _SPACE ("and" | "and") _SPACE

_REPEAT: ("repeat" | "repeat") _SPACE

_TIMES: _SPACE ("times" | "times")

_FOR: ("for" | "for") _SPACE

_RANGE: ("range" | "range") _SPACE?

_TO: _SPACE ("to" | "to") _SPACE

_STEP: "step" | "step"

_ELIF: _SPACE? ("elif" | "elif") _SPACE

_INPUT: ("input" | "input")

_OR: _SPACE ("or" | "or") _SPACE

_WHILE: ("while" | "while") _SPACE

_LENGTH: "length" | "length"

_COLOR : ("color" | "color") _SPACE?
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Appendix B

Lark grammar for our test grammar

start: program

| expr

| variable_decl

| statement

program: "program" SPACE CNAME SPACE "{" SPACE (variable_decl ";" SPACE)+

(statement ";" SPACE)+ "}"

expr: NUMBER

| (expr _NEWLINE expr)

| expr SPACE "+" SPACE expr

| expr SPACE "-" SPACE expr

| expr SPACE "*" SPACE expr

| expr SPACE "/" SPACE expr

| "(" expr ")"

variable_decl: "var" SPACE CNAME

| "let" SPACE CNAME

| "const" SPACE CNAME

statement: while_statement

| if_statement
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| print_statement

| assignment_statement

while_statement: "while" SPACE "(" SPACE expr SPACE ")" SPACE "{" SPACE

(statement ";" SPACE)* SPACE "}"

// | "while" SPACE "(" SPACE expr SPACE ")" SPACE

// ["do" SPACE "{" (statement ";" SPACE)* SPACE "}"]

// "until" "(" expr ")"

if_statement: "if" SPACE "(" SPACE expr SPACE ")" SPACE "{" SPACE

(statement ";" SPACE)* SPACE "}"

// | "if" SPACE "(" SPACE expr SPACE ")" SPACE "{" SPACE

// (statement ";" SPACE)* SPACE "}"

// "else" "{" SPACE (statement ";" SPACE)* SPACE "}"

print_statement: "print" "(" expr ")"

// print_statement: "print" SPACE expr

assignment_statement: CNAME SPACE "=" SPACE expr

SPACE: " "

// From GitHub:

// https://github.com/lark-parser/lark/blob/master/lark/grammars/common.lark

//

// Basic terminals for common use

//

// Numbers

//
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DIGIT: "0".."9"

SPACE: " "

HEXDIGIT: "a".."f"|"A".."F"|DIGIT

INT: DIGIT+

SIGNED_INT: ["+"|"-"] INT

DECIMAL: INT "." INT? | "." INT

_EXP: ("e"|"E") SIGNED_INT

FLOAT: INT _EXP | DECIMAL _EXP?

SIGNED_FLOAT: ["+"|"-"] FLOAT

NUMBER: INT //FLOAT | INT

SIGNED_NUMBER: ["+"|"-"] NUMBER

//

// Strings

//

_STRING_INNER: /.*?/

_STRING_ESC_INNER: _STRING_INNER /(?<!\\)(\\\\)*?/

ESCAPED_STRING : "\"" _STRING_ESC_INNER "\""

//

// Names (Variables)

//

LCASE_LETTER: "a".."z"

UCASE_LETTER: "A".."Z"

LETTER: UCASE_LETTER | LCASE_LETTER

WORD: LETTER+

CNAME: ("_"|LETTER) ("_"|LETTER|DIGIT)+
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//

// Whitespace

//

WS_INLINE: (" "|/\t/)+

WS: /[ \t\f\r\n]/+

CR : /\r/

LF : /\n/

NEWLINE: (CR? LF)+

// Comments

SH_COMMENT: /#[^\n]*/

CPP_COMMENT: /\/\/[^\n]*/

C_COMMENT: "/*" /(.|\n)*?/ "*/"

SQL_COMMENT: /--[^\n]*/

NAME: /[a-zA-Z_]\w*/

STRING : /[A-Za-z]+/

// /[ubf]?r?("(?!"").*?(?<!\\)(\\\\)*?"|’(?!’’).*?(?<!\\)(\\\\)*?’)/i

LONG_STRING: /[A-Za-z]+/

// /[ubf]?r?(""".*?(?<!\\)(\\\\)*?"""|’’’.*?(?<!\\)(\\\\)*?’’’)/is

DEC_NUMBER: /0|[1-9]\d*/

HEX_NUMBER.2: /0x[\da-f]*/

OCT_NUMBER.2: /0o[0-7]*/

BIN_NUMBER.2 : /0b[0-1]*/

FLOAT_NUMBER.2: /((\d+\.\d*|\.\d+)(e[-+]?\d+)?|\d+(e[-+]?\d+))/

IMAG_NUMBER.2: /\d+j/ | FLOAT_NUMBER "j"

TAB: /\t/

60


	Introduction
	Background
	Grammars
	Grammar derivation
	Lark

	The Algorithm to Generate Sample Strings
	Implementation & Case Study
	Implementation
	Case Study

	Related Work
	Other Grammar Formalisms
	Prior art
	Grammarware
	Other Papers
	Example-Driven Approaches in Programming Languages

	Existing Tools for Assisting Learning Programming Languages

	Conclusion and Future Work
	Glossary
	List of Acronyms and Abbreviations
	Bibliography
	Lark grammar for Hedy level 1 web:LarkHedy
	Lark grammar for our test grammar

