
UNIVERSITY OF BERGEN

DEPARTMENT OF INFORMATICS

Prediction of Hyper-Congestion in
Transport Systems

Author:
Senai Askale

Supervisor:
Prof. Ana Ozaki

UNIVERSITY OF BERGEN
Faculty of Mathematics and Natural

Sciences

November 30, 2022

Contents

Abstract v

Acknowledgements vi

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2
1.3 Related work . 2

2 Machine learning 5
2.0.1 Prediction . 7
2.0.2 Time series . 7
2.0.3 Time Series Prediction 10
2.0.4 Evaluating a predicting model 10
2.0.5 Overfitting and Underfitting 11

2.1 Recurrent Neural Network . 12
2.1.1 Vanishing and Exploding Gradient 15
2.1.2 Long Short-Term Memory 15
2.1.3 LSTM architecture . 16
2.1.4 LSTM weights . 17
2.1.5 LSTM Gates . 17
2.1.6 Gated Recurrent Unit 21

2.2 Tsetlin machine . 21
2.2.1 Tsetlin Automaton . 22
2.2.2 Tsetlin Machine Classification 27
2.2.3 Tsetlin Machine Regression 27
2.2.4 Continuous input feature 28

i

CONTENTS ii

3 Traffic prediction 29
3.1 Traffic flow . 29
3.2 Transportation domain . 31
3.3 Intelligent transport system 31

4 Results and discussion 35
4.1 Hardware and software . 35
4.2 Data preparation and dataset 36

4.2.1 Time series . 37
4.3 Tsetlin Machine classification 38

4.3.1 Interpretability . 38
4.4 Regression Tsetlin Machine 40

5 Conclusions and future work 47
5.1 Conclusion . 47
5.2 Future work . 47

List of Figures

2.1 Recurrent neural network . 13
2.2 Recurrent neural network model folded and unfolded states.

Figure from https://colah.github.io/posts/2015- 08-Understanding-
LSTMs/ . 14

2.3 Overview of the LSTM network (Olah, 2015) 18
2.4 cell state of the LSTM network 18
2.5 forget gate state . 19
2.6 output operation . 20
2.7 A tsetlin automaton for two-action environments from O.C

Granmo(2018) . 22
2.8 Tsetlin Mahcine structure, source: [21] 23

4.1 RTM: the traffic flow prediction of one day plot against with
the actual observed traffic flow 43

4.2 GRU: the traffic flow prediction of one day plot against with
the actual observed traffic flow 44

4.3 LSTM: the traffic flow prediction of one day plot against with
the actual observed traffic flow 44

4.4 RTM: After dropping daily rain,traffic flow prediction with
the actual observed traffic flow 45

4.5 GRU: After dropping daily rain,traffic flow prediction with
the actual observed traffic flow 45

4.6 LSTM: After dropping daily rain,traffic flow prediction with
the actual observed traffic flow 46

iii

List of Tables

2.1 Type I Feedback, as designed for the Classifying Tsetlin Ma-
chine Game [20] . 26

2.2 Type II Feedback, as designed for the Classifying Tsetlin Ma-
chine Game [20] . 26

4.1 Accuracy results of the experiments 40
4.2 MAE of predicting results from experiment 43

iv

Abstract

Due to the progressive increase in the population and the complexity of their
mobility needs, the evolution of transportation systems to solve advanced
mobility problems has been necessary. In recent years, the use of machine
learning within transport systems has increased because of a growing amount
of data produced. This data needs analyzing, and there exist many stan-
dard machine learning methods to do so. A traffic prediction of a volume of
traffic flow is usually to manage vehicle movement, reduce congestion, and
generate the optimal route. A combination of different machine learning
techniques seems to be very promising specially to manage and analyze the
massive amount of data generated in a transportation system. However,
many of these methods do have problems when it comes to interpretabil-
ity. Therefore, it is essential to find a method that provides good predictive
performance as well as interpretability in high-stake decision domains. The
Tsetlin Machine is a new approach within machine learning based on propo-
sitional logic. The Tsetlin Machine has shown up as a new and promising
candidate regarding performance and interpretability. The main aim of this
thesis is to consider whether the Tsetlin Machine is an applicable model to
a transportation system and whether it is comparable with neural networks
for detecting traffic flow. We also report results from an experiment to eval-
uate how well the model performs in terms of accuracy. Our results indicate
that the model can be used to predict the capacity of traffic flow, but we
conclude that more experiments are needed to strengthen this.

v

Acknowledgements

Frist, my sincere thanks go to my supervisor, Prof. Ana Ozaki, for her pa-
tience and insightful contributions at every stage of the work. Thank you
for always keeping an open door and making me feel comfortable. I would
like also to thank to Prof. Ole-Christoffer Granmo and Associate Prof. K.
Darshana Abeyrathna for the documentation that give me great input on
the Tsetlin Machine.

Finally, I would like to thank my family and friends for always encour-
aging me to pursue my dreams and for all their love and support.

vi

Chapter 1

Introduction

1.1 Motivation

The acceleration of urbanization and the rapid growth of the urban pop-
ulation bring great pressure on urban traffic management. An intelligent
transportation system is an indispensable part of a smart city, and traffic
prediction is an important component of an intelligent transportation sys-
tem. Accurate traffic prediction is essential to many real-world applications.
For example, traffic flow prediction can help a city alleviate congestion. The
growing traffic-related datasets provide us with potential new perspectives
to explore this problem [1].

Navigating tools like Google maps show us the time needed for our trip,
calculate our estimated time of arrival, create the most optimal route based
on road conditions and predicted traffic1. Traffic prediction is forecasting the
volume and density of traffic flow, usually to manage vehicle movement, re-
duce congestion, and generate the optimal route. Traffic prediction is mainly
important for national or local authorities. Many cities adopted intelligent
transportation systems that support urban transportation network planning
and traffic management. These systems use current traffic information as
well as generated predictions to improve transport efficiency and safety by
informing users of current road conditions and adjusting road infrastruc-
ture, for example, street lights. Furthermore, another area of importance
of traffic prediction is the logistics industry. Transportation, delivery, field
service, and other businesses must accurately schedule their operations and

1https://blog.google/products/maps/google-maps-101-how-ai-helps-predict-traffic-
and-determine-routes/

1

CHAPTER 1. INTRODUCTION 2

create the most efficient routes. Often, this is not only related to current
trips but also activities in the future. Precise forecasts of road and traffic
conditions to avoid congestion are crucial for such companies planning and
performance. The traffic information must include both historical and cur-
rent traffic-related data such as the number of vehicles passing at a certain
point, their speed, and type such as trucks, and light vehicles. A Devices
used to collect this data can be cameras, weigh-in-motion sensors, radars, or
other sensor technologies. Some companies use real-time traffic flows such
as Google maps platform, Waze, TomTom, HERE, INRIX2, OTONOMO3

and PTV that improve real-time traffic flows across road system.

1.2 Research questions

The primary aim of this thesis is to consider whether The Tsetlin Machine
approach is applicable within the field of transportation systems. More
specifically, the Tsetlin Machines can compete with neural networks to pre-
dict accurate traffic flow forecasts. The goal is to answer the following
questions.

– Which data features are the most important in making traffic fore-
casts?

– Interpretability of the Tsetlin Machines

– Compare the Tsetlin Machines approach with neural network

– Which approach for producing traffic forecasts works the best?

1.3 Related work

Much works are already exist on time series forecasting, including in the
context of road traffic predictions using machine learning. We mention very
few portions of the existing work on the subject. Most of the work consisted
of learning about general neural networks and machine learning concepts as
well as traffic forecasting.

In the paper Intelligent Transport by J Zhang, F Chen, Y Guo, X Li
2020 [2] investigating short-term passenger flow forecasting is a crucial task

2https://inrix.com/products/ai-traffic/
3https://otonomo.io/use-cases/traffic-management-data/

CHAPTER 1. INTRODUCTION 3

for urban rail transit operations. Emerging deep-learning technologies have
become effective methods used to overcome this problem. In this study, the
authors propose a deep-learning architecture called Conv-GCN that com-
bines a graph convolutional network (GCN) and a three-dimensional (3D)
convolutional neural network (3D CNN). First, they introduce a multi-graph
GCN to deal with three inflow and outflow patterns (recent, daily, and
weekly) separately. Multi-graph GCN networks can capture spatiotemporal
correlations and topological information within the entire network.

In the study of Reliable traffic prediction by S. Guo, Y. Lin, S. Li, Z.
Chen, and H. Wan [3] is critical to improving the safety, stability, and ef-
ficiency of Intelligent Transportation Systems. However, traffic prediction
is a particularly challenging problem because traffic data are a typical type
of Spatio-temporal data which simultaneously shows correlation and het-
erogeneity both in space and time. In this paper, they propose a novel
end-to-end deep learning model, called ST-3DNet, for traffic raster data
prediction. ST-3DNet introduces 3D convolutions to automatically capture
the correlations of traffic data in both spatial and temporal dimensions.

The work by Schimbinschi et al. (2015) [4] investigated traffic forecasting
in complex urban networks using big data and machine learning. As per-
haps expected, they concluded that more data results in better predictions
for the ML models. They also concluded that spatial dependencies between
road segments are a better predictor compared to temporal patterns. They
mention that the accuracy could be further improved if the biggest source
of invariance in the data is removed. Finally, they say that ARIMA-based
models have trouble forecasting based on Spatio-temporal data and are un-
able to capture complex dynamics. This would make it a bad candidate for
traffic forecasting and a motivator for instead utilizing machine learning.

In the study of investigated traffic flow prediction with big data us-
ing deep learning by Lv et al. (2015) [5]. They mention that statistical
methods such as linear regression and ARIMA perform well during normal
traffic conditions. However, when abnormal traffic patterns appear they do
not respond well. They utilized a deep learning technique called stacked
autoencoders and concluded that this method was able to capture the non-
linear spatial and temporal correlations of the traffic data.

Yang et al. (2010) [6] is investigated short-term traffic flow predictions
using an FFNN while considering weather parameters as features. They

CHAPTER 1. INTRODUCTION 4

concluded that predictions based on weather parameters are more accurate
than those without.

Chapter 2

Machine learning

This chapter provides a brief overview of supervised machine learning where
machines are trained on labeled datasets and enabled to predict outputs
based on the provided training and introduce prediction as a general concept.
The section on Recurrent Neural Networks which briefly introduces RNNs is
well-known to work well for learning tasks where the input data is sequential.
Finally, the section on the Tsetlin machine introduces the architecture of the
TM and the function of each layer.

Machine learning

Machine learning offers a new way to solve problems and answer complex
questions. In basic terms, ML is a process of training a piece of software,
called a model, to make useful predictions from data. An ML model repre-
sents the mathematical relationship between the elements of data that an
ML system uses to make predictions. ML algorithms are molded on a train-
ing dataset to create a model. As new input data is introduced to a trained
ML algorithm, it uses the developed model to make a prediction. The pre-
diction is checked for accuracy. Based on its accuracy, the ML algorithm is
either deployed or trained repeatedly with an augmented training dataset
until the desired accuracy is achieved. Machine learning algorithms can be
trained as supervised or unsupervised machine learning.

5

CHAPTER 2. MACHINE LEARNING 6

Supervised machine learning

Supervised machine learning,this type of ML involves supervision, where
machines are trained on labeled datasets and enabled to predict outputs
based on the provided training. The labeled dataset specifies that some
input and output parameters are already mapped. Hence, the machine is
trained with the input and corresponding output. A device is made to
predict the outcome using the test dataset in subsequent phases. This is
like a student learning new material by studying old exams that contain
both questions and answers. Once the student has trained on enough old
exams, the student is well prepared to take a new exam. These ML systems
are “supervised” in the sense that a human gives the ML system data with
the known correct results. The primary objective of the supervised learning
technique is to map the input variable (a) with the output variable (b).
Supervised machine learning is further classified into two broad categories[7].

Regression

Regression algorithms handle regression problems where a regression model
predicts a numeric value. These are known to predict continuous output
variables. For example, a traffic model that predicts the number of vehicles
passing a junction or a model that predicts the future of house prices.

Classification

These refer to algorithms that address classification problems where the out-
put variable is categorical. Classification models predict the likelihood that
something belongs to a category. Unlike regression models, whose output
is a number, classification models output a value that states whether or
not something belongs to a particular category. For example, classification
models are used to predict if a photo contains a cat or a dog. Classifica-
tion models are divided into two groups binary classification and multiclass
classification. Binary classification models output a value from a class that
contains only two values, for example, a model that outputs either rain or
no rain. Multiclass classification models output a value from a class that
contains more than two values, for example, a model that can output either
rain, hail, snow, or sleet[7].

CHAPTER 2. MACHINE LEARNING 7

2.0.1 Prediction

In the modern world, prediction has many areas of application. Some ex-
amples include stock market forecasting, weather forecasting, earthquake
prediction, and of course traffic prediction. When no historic data features
exist, forecasting is usually done subjectively through intuition, logic, and
experience. This is performed by experts in each field and is referred to as
qualitative forecasting [8]. Conversely, quantitative forecasting models are
used to forecast future data based on existing historic data. This data made
it possible for mathematicians to develop various mathematical models that
could potentially produce more accurate predictions. However, these fore-
casting techniques are usually made for short to medium term predictions.
The reason being that long-term predictions are harder to model. It is espe-
cially hard if the variable being predicted depends on many random events,
and if the historic data is limited in quantity [8]. Instead, one usually uses
qualitative forecasting if this is the case. The historic data corresponds to
several features that arrive in a time sequence. This type of data is referred
to as a time series, and analysis of this data format is a well-studied area [8].

2.0.2 Time series

A time series is a sequence x of measurements of some observable variable
xt at successive points in time with an equal time interval between every
point [8]. Equation (2.1) mathematically describes a time series with T time
steps. The subscript of each element represents the time step at which the
variable was measured.

x = {x1, x2, x3, . . . , xT } (2.1)

This time series is a vector with dimensions T × 1. The order of the ele-
ments is of importance because it defines the temporal structure of the data
points. Furthermore, when only one feature is measured in each time step,
it is called a univariate time series. Now, as already mentioned, prediction
are more commonly generated based on multiple historic features. In that
case a multivariate time series is necessary. This is essentially just multi-
ple univariate time series concatenated. This would give a matrix, which is
described in equation (2.2).

CHAPTER 2. MACHINE LEARNING 8

X =

X11 X12 . . X1T
X21 X22 . . X2T
. . .
. . .

XN1 XN2 . . XNT

 (2.2)

Each column of this matrix contains all the features of each time step in
the time series. Therefore, the column vectors of the matrix correspond to
feature vectors. There are N features and T time-steps which means that
the dimension of X is T ×N . The matrix X can alternatively be described
as follows,

X = {x1, x2, x3, . . . , xT }, xt ∈ RN (2.3)

where each element is a feature vector of size N .

A time series that can be predicted must consist of repeating temporal
patterns that can be modelled. There are three important components of a
time series that often needs to be considered. Namely, the seasonality, trend,
and noise [8]. The trend describes the overall increase and decrease of the
measured variable xt. The seasonality describes the repeating short-term
cycle in the series. The noise corresponds to random variation in the time
series.

Stationary Time Series

The observations in a stationary time series are not dependent on time.
Time series is stationary if they do not have a trend or seasonal effects.
Summary statistics calculated on the time series are consistent over time,
like the mean or the variance of the observations.

Non-Stationary Time Series

Observations from a non-stationary time series show seasonal effects, trends,
and other structures that depend on the time index. Summary statistics
like the mean and variance do change over time, providing a drift in the
concepts a model may try to capture. Classical time series analysis and
forecasting methods are concerned with making non-stationary time series
data stationary by identifying and removing trends and removing seasonal

CHAPTER 2. MACHINE LEARNING 9

effects. Differencing is a popular and widely used data transform for making
time series data stationary machinelearning.

Difference Transform

Differencing is a method of transforming a time series dataset. It can be
used to remove the series dependence on time, the so-called temporal de-
pendence. This includes structures like trends and seasonality. Differencing
can help stabilize the mean of the time series by removing changes in the
level of a time series, and so eliminating or reducing trend and seasonality.
Differencing is performed by subtracting the previous observation from the
current observation [9].

Augmented Dickey-Fuller

The Augmented Dickey-Fuller test is a type of statistical test called a unit
root test. The intuition behind a unit root test is that it determines how
strongly a time series is defined by a trend. There are several unit roots tests
and the Augmented Dickey-Fuller may be one of the more widely used. It
uses an autoregressive model and optimizes an information criterion across
multiple different lag values. The null hypothesis of the test is that the time
series can be represented by a unit root, that it is not stationary (has some
time-dependent structure). The alternate hypothesis (rejecting the null hy-
pothesis) is that the time series is stationary [9].

Null Hypothesis (H0): Fail to reject, it suggests the time series has a unit
root, meaning it is non-stationary. It has some time dependent structure.
Alternate Hypothesis (H1): The null hypothesis is rejected; it suggests the
time series does not have a unit root, meaning it is stationary. It does not
have time-dependent structure. We interpret this result using the p-value
from the test. A p-value below a threshold (such as 5% or 1%) suggests
we reject the null hypothesis (stationary), otherwise a p-value above the
threshold suggests we fail to reject the null hypothesis (non-stationary).

p-value ≤ 0.05 : Fail to reject the null hypothesis (H0); the data has a
unit root and is non stationary.
p-value ≥ 0.05 : Reject the null hypothesis (H0); the data does not have a
unit root and is stationary.

CHAPTER 2. MACHINE LEARNING 10

2.0.3 Time Series Prediction

A given time series of historic data features {x1, x2, . . . , xT }, the idea is to
produce a prediction of some feature δt time steps into the future, δt is called
the forecasting horizon. The prediction is denoted yT+δt, and the generation
of this can be described as shown in the equation (2.4) and the function f
is predicting models.

ŷT+δt = f(x1, x2, x3,, xT), f : RTxN → R1 (2.4)

2.0.4 Evaluating a predicting model

Accuracy is evaluated based on comparing the predicted value ŷ with its
actual observed value y. To make forecasts in a time series with T time
steps, one could make a prediction for the last value in the time series based
on all the previous ones as shown below in (2.5).

ŷT = f(x1, x2, x3, . . . , xT−δt) (2.5)

In that case the predicted value is ŷT , which is at a time step within
the limits of the time series. The actual value at this time step is accessible
from the time series as xT and is denoted yT . However, to get a good
estimation of how well a model is performing, many forecasts are necessary.
This is done by moving through the entire time series and iteratively produce
forecasts. There are two methods that accomplish this. The first method
consists of an expanding window of time steps that each forecast is based
on [10]. The second method is a sliding window method of a constant size
that each forecast. The use of prior time steps to predict the next time step
is called the sliding window method. For short, it may be called the window
method in some literature. In statistics and time series analysis, this is
called a lag or lag method. The number of previous time steps is called the
window width or size of the lag. Out of the two methods, neither is superior
in general. Both come with a few pros and cons, which was discussed by
Clark et al. [10]. In short, selecting the optimal window size is not easy.
It depends on the overall structure of the available data. If the entire time
series follows a similar pattern, then the bigger the window size the better.
Conversely, if old time steps are of very little relevance in predicting more
recent time steps, then a shorter window size may be preferable. Also, if the
time series used is very large, using an expanding window will lead to an

CHAPTER 2. MACHINE LEARNING 11

infeasible computational complexity. Consequently, fitting the forecasting
model as well as generating forecasts will be very time consuming.

Accuracy Metrics

When a large number of forecasts has been generated the next step is to
evaluate the accuracy. The accuracy metric we used is Mean Absolute Error
(MAE) and is defined as shown in equation (2.6).

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.6)

MAE measures the average magnitude of the errors across all predictions
made. ŷi corresponds to the ith forecast, and yi is its actual value. An error
of zero means that all forecasts were equal to the actual value, which is the
best-case scenario.

2.0.5 Overfitting and Underfitting

When a learning algorithm learns unique features to the training set, and so
cannot generalize well to the test set and then the model is said to overfit the
training data [11]. Various ML models use different regularization techniques
to avoid overfitting. Conversely, when the model cannot learn from the
training set at all, it is instead underfitting [11]. In this case, the model
will perform poorly on both the training set as well as the test set. In
the case of avoiding underfitting, the quality of the training data must be
considered. For example, the data must contain relevant features for the
learning objective, and various noise and outliers should be removed.

Hyperparameters

The weights and thresholds change over time as the model is trained. There
are a few additional parameters that must be chosen. These conversely
remain constant throughout the learning phase and are called hyperparam-
eters. There are no general values to assign the hyperparameters, as it is
highly situational. Instead, one must use a trial-and-error approach in decid-
ing the optimal values. Some of the important hyperparameters associated
with NNs are the number of hidden layers, number of neurons, number of
epochs, and learning rate. We have elaborate on each hyperparameter more
below.

CHAPTER 2. MACHINE LEARNING 12

Many hidden layers adding more hidden layers to the model may allow
the network to recognize more complex mappings between the input and
output layers. A network with two or more hidden layers is often considered
deep learning [12] and is currently the most successful technique in machine
learning. Adding many layers could improve the accuracy of the model to a
certain degree. Adding too many layers might make the network too com-
plex and consequently overfit the training data. Too many layers may also
make the training time too long [13].

Number of neurons in each hidden is in a similar fashion dependent on
how complex the given problem is. Too few neurons make the network
unable to capture all the information. Moreover, the more training data
and input/output mappings the network must learn, the more neurons are
required. However, too many neurons make the network more prone to
learning unique features of the training set, and may thus start overfitting.

Number of epochs, one epoch correspond to one iteration through all
pairs of input/output mappings. This is rarely enough for minimizing the
cost function. The network may therefore need many epochs of training be-
fore all knowledge has been learned. Too many epochs, however, may lead
to overfitting [13].

Learning rate, during the learning phase the weights and thresholds are
iteratively updated in order to minimize the cost function. The learning
rate decides how quickly these parameters are to be updated, by limiting
the amount of change by a certain factor. A learning rate that is too low
makes the training very slow. A learning rate that is too high makes the
algorithm overshoot, which increases the risk of missing the global minima
of the cost function.

2.1 Recurrent Neural Network

A Recurrent Neural Network is a type of neural network which accepts
variable-length input and produces variable-length output. It is used to de-
velop various applications such as text-to-speech, chat-bots, language mod-
eling, sentimental analysis, time series stocks forecasting, and machine trans-
lation [14]. A recurrent neural network is a recurrent neural network whose
current output not only depends on its present value but also past inputs,

CHAPTER 2. MACHINE LEARNING 13

whereas for a feed-forward network current output only depends on the cur-
rent input.

In a neural network, inputs and outputs are considered independent of
each other. As the sequential pattern exists in time series data, such a neu-
ral network does not give efficient results for time series forecasting. As an
alternative network, the recurrent neural network is more effective to learn
the dependency between observations. In the below diagram Figure 2.2, A
chunk of the neural network, A, looks at some input Xt and outputs a value
ht. A loop allows information to be passed from one step of the network to
the next.

Recurrent neural networks are well-known to work well for learning tasks
where the input data is sequential. Sharing weights between hidden units
across each time step, the RNN architecture is a natural way to model time
series data, where each time step of the input depends on those in the past.
Furthermore, RNNs can handle variable-length inputs, eliminating the need
for padding inputs. In contrast, multilayer perceptions or convolutional
neural networks are constrained to fixed-size input fixed-size outputs, and
several layers and computational steps.

Figure 2.1: Recurrent neural network

The simple RNN is a network with loops that allows persisting informa-
tion to be passed from one step of the network to the next. A loop allows
information to be passed from one step of the network to the next. A re-
current neural network can be thought of as multiple copies of the same
network, each passing a message to a successor. RNNs are fit and make
predictions over many time steps. As the number of time steps increases,
the simple diagram with a recurrent connection begins to lose all meaning.
We can simplify the model by unfolding or unrolling the RNN graph over
the input sequence. This looping process can be unrolled as described in

CHAPTER 2. MACHINE LEARNING 14

Figure 2.2 The process is illustrated for the time-steps from 0, 1, 2uptotimet
for X0, X1, X2, . . . , Xt are the inputs, and y0, y1, y2, . . . , yt are respectively
the outputs. At the hidden state is an activation function that takes its
input from the hidden state of the previous step H1 and the output of the
current step Xt.

Figure 2.2: Recurrent neural network model folded and unfolded states.
Figure from https://colah.github.io/posts/2015- 08-Understanding-LSTMs/

From Figure 2.2, the Section illustrates the folded and unfolded state of
the RNN network. The unfolded state of RNN simply illustrates the net-
work of the complete sequence. From the unfolded section, we can see that
it is a t− hidden layer neural network. And this can be referred to as deep
learning neural network because it has more than one hidden layer. U , V
and W are representing weight of neurons. Xt is the input at time step t
and Yt is output at time step t.

RNNs consists of an input layer, an output layer, and a recurrent layer,
as depicted in 2.7. They comprised a series of weight matrices and activa-
tion functions. Explicitly, the set of equations that maps a set of inputs x
to predicted outputs y is.

h1 = f(Wx+ bh)

hi = f(Wx+ Uhi−1 + bh)

y = softmax(V hi)

(2.7)

Where b are bias vectors, and W , U , and V are weight matrices shared
across time steps. Over the course of training, the model learns which
setting of weight matrices W , U , V will minimize an overall loss function.
To update these weights, RNNs use backpropagation through time (BPTT)
to optimize weights during training. BPTT uses the chain rule to go back

CHAPTER 2. MACHINE LEARNING 15

from the latest time step to the previous steps and the gradients tend to get
smaller and smaller while moving backward in the network [15].

2.1.1 Vanishing and Exploding Gradient

When training RNNs with multiple layers a problem of the Vanishing Gra-
dient can arise. The problem is as the name suggests when the gradient
vanishes meaning that it is close to zero[Wang(2019)]. The problem arises
if many gradients are close to zero because the gradient is a product of pre-
vious gradients. The problem usually occurs in the earlier layers (gradients
computed using backpropagation). That is a problem because the weight
updates are the subtraction of the gradients multiplied by the learning rate,
from the weights themselves. That means that if the gradient is close to
zero, the weight updates will have little to no effect at all. That also allevi-
ates the exploding gradient problem, which is the opposite of the vanishing
gradient problem, when the gradient reaches an astronomically high value
because the gradient can never be higher than one [16].

2.1.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) network is different from a classical
multilayer perceptron. Like a multilayer perceptron, the network is com-
prised of layers of neurons. Input data is propagated through the network
to make a prediction. Like RNNs, the LSTMs have recurrent connections
so that the state from previous activations of the neuron from the previous
time step is used as context for formulating an output. But unlike other
RNNs, the LSTM has a unique formulation that allows it to avoid problems
that prevent the training and scaling of other RNNs. The impressive results
that were achieved are the reason for the popularity of the technique [16].

The Long Short-Term Memory was introduced by Sepp Hochreicher and
Jürgen Schmidhuber in 1997 (Hochreicher & Schmidhuber, 1997)1. Over
the years it has become one of the most famous RNNs and is still a pop-
ular choice for tasks such as handwriting recognition (Graves Schmidhu-
ber, 2009), music composition, traffic forecast (Zhao, et al., 2017), or other
sequential problems. In a paper written by researchers from Google (Joze-
fowicz, et al., 2015) the LSTM is forwarded as an extremely powerful and
applicable framework for a broad variety of machine learning tasks. The

1https://ieeexplore.ieee.org/abstract/document/6795963

CHAPTER 2. MACHINE LEARNING 16

reason for becoming so popular is attributed to the resilience to the explod-
ing and especially the vanishing gradient problem. In 2015 large tech giants
revealed that LSTM-based networks were used in their technology. For ex-
ample, Google started using LSTM for speech recognition in 2015 on Google
Voice, and in 2016 they started using it for their translation system reducing
translation errors by 50% (Highfield, 2015). Similarly, in 2016 Apple and
Amazon started using LSTM-based networks for translations, Quick typing,
and text-to-speech technology in their devices.

The key technical historical challenge faced by RNNs is how to train
them effectively. Experiments show how difficult this was where the weight
update procedure resulted in weight changes that quickly became so small as
to have no effect, vanishing gradients, or so large as to result in a very large
change or even overflow, exploding gradients. LSTMs overcome this chal-
lenge by design. ”The Long Short Term Memory architecture was motivated
by an analysis of error flow in existing RNNs which found that long-time
lags were inaccessible to existing architectures because backpropagated er-
ror either blows up or decays exponentially. An LSTM layer consists of a
set of recurrently connected blocks, known as memory blocks. These blocks
can be thought of as a differentiable version of the memory chips in a digital
computer. Each one contains one or more recurrently connected memory
cells and three multiplicative units the input, output, and forget gates that
provide continuous analogs of write, read and reset operations for the cells.
The net can only interact with the cells via the gates [17].

2.1.3 LSTM architecture

LSTM resolves the deficiency of conventional RNNs by being able to learn
long-term dependencies. Another difference is that conventional RNNs have
only a single neural network layer. The drawing below figure shows the
LSTM architecture unrolled over time. The cell to the left is the LSTM cell
at the previous time step while the one to the right is the cell at one step
into the future. The current time step is in the middle. Three lines go into
the cell. In the bottom left corner, it receives the input xt and the output
from the previous timestep (the output from the previous layer is in RNNs
called the hidden state abbreviated to ht−1. The input xt and the hidden
state ht−1 concatenated before it runs into the four gates marked as yellow
boxes in the drawing. The third input the cell receives from the previous
cell runs as a straight arrow through the upper part of the cells. That is
the cell state and enables the LSTM to remember long-term dependencies

CHAPTER 2. MACHINE LEARNING 17

with a considerably smaller chance for the vanishing and exploding gradient
problems seen in RNN.

LSTMs are very impressive. The design of the network overcomes the
technical challenges of RNNs to deliver on the promise of sequence predic-
tion with neural networks. The applications of LSTMs achieve impressive
results on a range of complex sequence prediction problems. Furthermore,
the key benefits of LSTM are that it can overcome the technical problems
of training an RNN, namely vanishing and exploding gradients. Possesses
memory to overcome the issues of long-term temporal dependency with in-
put sequences. Process input sequences and output sequences time step by
time step, allowing variable length inputs and outputs. The forget gate and
input gate are used in the updating of the internal state. The output gate
is a final limiter on what the cell outputs. It is these gates, and the consis-
tent data flow called the constant error carrousel that keep each cell stable
(neither exploding nor vanishing).

Each memory cell’s internal architecture guarantees constant error within
its constant error carrousel CEC. That represents the basis for bridging very
long time lags. Two gate units learn to open and close access to error flow
within each memory cell’s CEC. The multiplicative input gate affords pro-
tection of the CEC from perturbation by irrelevant inputs. Likewise, the
multiplicative output gate protects other units from perturbation by cur-
rently irrelevant memory contents [18].

2.1.4 LSTM weights

A memory cell has weight parameters for the input, and output, as well
as an internal state that is built up through exposure to input time steps.
Input Weights are used to weigh input for the current time step. Output
Weights are used to weigh the output from the last time step. The internal
state is used in the calculation of the output for this time step.

2.1.5 LSTM Gates

The key to the memory cell is the gates. These too are weighted functions
that further govern the information flow in the cell. There are three gates
and Forget Gate decides what information to discard from the cell. Input
Gate decides which values from the input to update the memory state.
Output Gate decides what to output based on input and the memory of the

CHAPTER 2. MACHINE LEARNING 18

cell.

Figure 2.3: Overview of the LSTM network (Olah, 2015)

The cell state is not more than a vector in a mathematical sense the cell
state can be thought of as a highway for information that runs through the
whole chain of cells with only some linear interactions. It might be one of the
most central components and it allows the LSTM to remember long-term
input dependencies. It is possible to read write and delete information from
this internal memory. The key to solving the vanishing gradient problem is
that the new information is added not multiplied to the cell state. Addition
distributes gradients equally and the chain rule does not apply within the
back-propagation [18].

Figure 2.4: cell state of the LSTM network

Within the LSTM cell, four neural network layers have their special func-
tion. The sigmoid function that the three of these layers are nested within,
outputs matrices with values between 1 and 0. Sigmoid function for gates
because we want a gate to give only positive values and should be able to
give us a clear-cut answer whether we need to keep a particular feature or we
need to discard that feature. “0” means the gates are blocking everything.

CHAPTER 2. MACHINE LEARNING 19

“1” means gates are allowing everything to pass through them.

Erasing information from the cell state, the first gate is the forget gate.
It considers the current inputs Xt and the output from the previous timestep
ht−1. The product of the current input and the weights (a neural layer) is
squashed into the sigmoid function that transforms this layer into a matrix
with values between 1 and 0. From here the cell state from the previous
cell is multiplied element-wise with the forget gate. One may think of the
forget gate as a filter, that erases or decreases values that we want to delete
or degrade from the previous cell state.

Figure 2.5: forget gate state

The forget gate produces a matrix with values between 0 and 1:

f(t) = σ(Wi × dht1, xte+ bf) (2.8)

Then this is passed up to update the Cell state, the cross above the arrow.
Let’s say the state from the previous timestep is Ct−1 = [2, 4, 6] and the
above computation gives f(t) = [1, 0, 1] then by element-wise multiplication
the number 4 is deleted from the memory. Adding new information to the
cell state, the next step includes the gate with the sigmoid and the tanh
gate. Namely the first input and the second input gates. Similarly, to the
forget gate an input gate act as a filter on the tanh layer. It ranges between
0 and 1 and decides how large proportions of that information should be
stored.

it = σ(Wi × dht1, xte+ bif) (2.9)

The other gate with the tanh activation function is creating candidates
for the new cell state values (the internal memory) it uses the hyperbolic
tangent that ranges between −1 and 1. Apparently because when new can-
didate values are added to the cell state it can both add and subtract some

CHAPTER 2. MACHINE LEARNING 20

information. The equation for the new candidate values Ct is given below.
A closer look reveals that this equation is equal to the core of the simple
recurrent neural network drawn previously.

Ct = tanh(Wi × [ht1, xt] + bC) (2.10)

Further, one calculates the element-wise multiplication of the possible
candidate values with the above input filter.

Ct−i = Ct × it (2.11)

In total the modifications to the cell state is:

Ct = ft × Ct−1 + it × Ct (2.12)

Then finally, we decide what to output from the cell, this is either the
final output or the next hidden state to the next cell depending on the time
steps. The inputs are the previous hidden state and the inputs go into an
ordinary neural layer. A sigmoid activation is used before this output it is
point-wise multiplied with the cell state that has been squashed in a tanh
layer to give a vector of values between −1 and 1. In this operation, the
cell state filters the output. It seems therefore that the previous output and
the current input are most important but that the cell state may modify
the final output by multiplying the output with either positive or negative
values.

Figure 2.6: output operation

CHAPTER 2. MACHINE LEARNING 21

2.1.6 Gated Recurrent Unit

Gated Recurrent Unit, GRU, is a more recent and simpler architecture that
is based on the principles of the LSTM with gated units. GRU is an RNN
architecture that controls the flow of information by using the reset and
update gates. The reset gate decides which information to use and which
information to throw away and it can be considered a mix of the LSTM
forget and input gates. The Gated recurrent unit,Cho et al., 2014a2, is a
slightly more streamlined variant that often offers comparable performance
and is significantly faster to compute [19].

2.2 Tsetlin machine

The Tsetlin Machine is a pattern recognition algorithm introduced by Ole-
Christoffer Granmo in his 2018 paper [20]. The paper explains how the
Tsetlin Machine can perform complex pattern recognition using a collective
of Tsetlin Automata. The Tsetlin Automaton is a method of solving the
multi-armed bandit problem from game theory. It identifies these patterns
using propositional logic [20], which can also be used for interpretation. It
is structured in sub-sections to make each part of the Tsetlin Machine more
understandable, starting with the necessary basics and progressing to the
more complicated components.

The TM, introduced in 2018 by Granmo, uses the TA as a building
block to solve complex pattern recognition tasks. The TM operates as fol-
lows. Firstly, propositional formulas in disjunctive normal form are used to
represent patterns. The TM is thus a general function approximation. The
propositional formulas are learned through training on labeled data by em-
ploying a collective of TAs organized in a game. As a result, the architecture
of the TM is relatively simple, facilitating transparency and interpretation
of both learning and classification. Additionally, the TM is designed for bit-
wise operation. That is, it takes bits as input and uses fast bit manipulation
operators for both learning and classification. This gives the TM an inherent
computational advantage. Experimental results show that TM outperforms
Support Vector Machines, Random Forests, and Logistic Regression in di-
verse benchmarks These promising properties and results make the TM an
interesting target for further research 3.

2https://arxiv.org/pdf/1406.1078.pdf
3https://arxiv.org/pdf/1905.04206

CHAPTER 2. MACHINE LEARNING 22

2.2.1 Tsetlin Automaton

The Tsetlin Machine is a recent pattern classification method that manipu-
lates expressions in propositional logic based on a team of Tsetlin Automata
(TAs) [20]. The basic building block of the Tsetlin Machine is the Tsetlin
Automaton. A Tsetlin Automaton (TA) is a fixed structure deterministic
automaton that learns the optimal action among the set of actions offered
by an environment. Figure 2.7 shows a two-action TA with 2N states. The
action that the TA performs next is decided by the present state of the TA.
States from 1 to N map to Action 1, while states from N + 1 to 2N map
to Action 2. The TA iteratively interacts with its environment. In each
iteration, the TA performs the action associated with its current state.

Figure 2.7: A tsetlin automaton for two-action environments from O.C
Granmo(2018)

There are two possible actions for Tsetlin Automaton and acting will
result in either reward or penalty. The agent of the Automaton will have a
state in the range 1 to 2N . If the agent is in the state range of 1 to N , it
will act as 1. Consequently, it will act 2 when in the range N + 1 to 2N ,
as seen in Figure 2.7. It will then check if the action performed was correct
concerning the ground truth. If it was, it gets a reward, and the agent will
update its state such that it moves further towards state 1 if the state is in
the range 1 to N or towards 2N if the state is in the range N+1 to 2N . This
reward and penalty system will show how strongly the automata prefer one
action. The further toward one side the agent is, the more secure it is that
the given action will give the overall best yield. When transitioning from
action 1 to action 2 or reverse, it is always the result of a penalty. This is
the way Tsetlin Automata tries to solve explore and exploit the problem.

TM structure

Consider an input feature vector X = (xk) ∈ {0, 1}◦ consisting of ◦ proposi-
tional variables xk with domain {0, 1}. The TM considers both the features

CHAPTER 2. MACHINE LEARNING 23

xk themselves as well as their negations ¬xk, jointly referred to as literals
when forming the clauses. Each clause Cj takes the following form.

Figure 2.8: Tsetlin Mahcine structure, source: [21]

Input data

The Tsetlin Machine will use some given binary dataX = [x1, x2, . . . , xn], xp ∈
{0, 1}. The data will be used to create propositional patterns and thus must
be binary so that it is equivalent to a vector of propositional variables. The
counterpart to each of the propositional variables forms together the lit-
eral set L = [l1, l2, . . . , l2n] = [x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn] meaning L
is double the length of X. The Tsetlin Machine learns by creating patterns
through ANDing a subset of the literals Lj ⊆ L into conjunctive clauses
denoted as Cj , with j as the index of the clause.

CHAPTER 2. MACHINE LEARNING 24

Clause construction

A clause construction layer and the sub-patterns associated with class 1 and
class 0 are captured by m conjunctive clauses. The value m is set by the
user where more complex problems might demand a large m. All clauses
receive the same augmented feature set formulated at the input layer, L.
However, to perform the conjunction, only a fraction of the literals are uti-
lized. The TM employs two-action TAs in Figure 2.8 to decide which literals
are included in which clauses. Since we found a number 2◦ of literals in L,
the same number of TAs one per literal k is needed by a clause to decide the
included literals in the clause. When the index set of the included literals
in clause j is given in Ij , the conjunction of the clause can be performed as
follows [22].

Cj = ∧k∈Ij lk (2.13)

Notice how the composition of a clause varies from another clause de-
pending on the indexes of the included literals in the set Ij ⊆ 1, . . . , 2◦. For
the special case of Ij = ∅ an empty clause we have that is, during learning,
empty clauses output 1, and during classification, they output 0.

Cj =

{
1 duringlearning

0 otherwise

Storing states of TA of Clauses

The TA states on the left-hand side of the automaton (states from 1 to N)
ask to exclude the corresponding literal from the clause while the states
on the right-hand side of the automaton (states from N + 1 to 2N) ask to
include the literal in the clause. The systematic storage of states of TAs in
the matrix, A: A = (aj,k ∈ {1, . . . 2N}mx2◦), with j referring to the clause
and k to the literal, allows us to find the index set of the included literals in
clause j, Ij as Ij = {K|aj,k > N, 1 ≤ k ≤ 2◦}.

CHAPTER 2. MACHINE LEARNING 25

Clause output

Once the TA decisions are available, the clause output can be easily com-
puted. Since the clauses are conjunctive, a single literal of value 0 is enough
to turn the clause output to 0 if its corresponding TA has decided to include
it in the clause.

Classification

The classification stage is used to classify data into two classes. Hence, sub-
patterns associated with each class have to be separately learned. For this
purpose, the clauses are divided into two groups, where one group learns the
sub-pattern of class 1 while the other learns the sub-patterns of class 0. For
simplicity, clauses with an odd index are assigned a positive polarity (C+

j)
and they are used to capture sub-patterns of output y = 1. Clauses with
an even index, on the other hand, are assigned negative polarity (C−j) and
they seek the sub-patterns of output y = 0. The summation operator at the
end sums the votes for each class separately and considers the difference to
decide the final output. v =

∑
j c

+
j −

∑
j c
−
j then the final output is decided.

y =

{
1 if v ≥ 0

0 if v < 0

Learning procedure

TAs adjust their states based on feedback from the game (environment),
encompassing rewards, penalties, and inaction feedback. To achieve the
learning goal, the probabilities of receiving this different feedback have been
designed to account for critical factors, namely, the actual output, the clause
outputs, the literal values, and the current state of the TAs. In contrast
to gradient-based learning, learning in TM naturally combats false posi-
tives and false negatives. As a consequence, it eludes the issues attached
to gradient-based algorithms such as vanishing/exploding gradients. In the
case of categorization problems with two classes, the basic idea is to penalize
voters when they vote to procure a false positive or false negative and to
reward voters when they vote to procure a true positive or true negative. In
the TM, this is done by two types of feedback Type I and Type II [23]. An
overview of the transition probability definitions in the feedback mechanism
is shown in Tables 2.2.1 and 2.2.1.

CHAPTER 2. MACHINE LEARNING 26

Table 2.1: Type I Feedback, as designed for the Classifying Tsetlin Machine
Game [20]

Table 2.2: Type II Feedback, as designed for the Classifying Tsetlin Machine
Game [20]

CHAPTER 2. MACHINE LEARNING 27

2.2.2 Tsetlin Machine Classification

For categorization tasks with more classes than two by utilizing an argmax
function the output of multi-class TM given by this.

ŷ = argmaxi=1,...,m = (
n∑
j=1

ci+j −
∑
j=1

ci−j) (2.14)

where m is the number of distinct classes of objects specified in the
problem and the + and symbols indicate the clause polarity,include literals
and exclude literals [20].

2.2.3 Tsetlin Machine Regression

To calculate continuous output, the target y is continuously valued, we re-
move the polarity of clauses since we intend to use the clauses as additive
building blocks. That is, we intend to map the total vote count into a single
continuous output. As a result, the complexity of the Regression Tsetlin
Machine (RTM) is reduced. With merely one type of clause, the summa-
tion operator outputs a value between 0 and T , threshold, which is simply
the number of clauses that evaluates to 1. This value is then normalized
to produce the regression output. Thus, through this simple modification,
the TM can now produce continuous output, with a precision that increases
with higher T .

The sum of the votes from the clauses
∑m

j=1Cj of the TM is normalized
to achieve the regression output by dividing by T and multiplying with ŷmax.
The TM output y◦ is calculated using this.

y◦ =

∑m
j=1Cj(X̂◦)Xŷmax

T
(2.15)

Feedback, then, is based on comparing the output, y◦ of the TM with
the target output ŷ◦. The target value ŷ◦ can be higher or lower than the
output value y◦. This is the basis for our new feedback scheme. That is,
similarly to other machine learning methods, certain internal operations are
needed to minimize the error between the predicted output, y◦, and target
output, ŷ◦. In the RTM, this is quite simply achieved by providing Type I
and Type II feedback according to the following criteria.

Feedback =

{
TypeI, if y◦ < ŷ◦

TypeII, if y◦ > ŷ◦

CHAPTER 2. MACHINE LEARNING 28

The idea here is to increase the number of clauses that output 1 when
the predicted output is less than the target output y◦ < ŷ◦. To achieve this,
we then provide Type I feedback. Conversely, Type II feedback is applied
to decrease the number of clauses that evaluate to 1 when the predicted
output is higher than the target output y◦ > ŷ◦. And to stabilize learning,
an activation probability function makes the probability of giving clause
feedback proportional to the difference between the predicted and target
output (the error). That is, in the RTM, feedback to clauses is determined
stochastically using the following activation probability function Pact

Pact =
{
K×|y◦−ŷ◦|

ŷmax

The constant K is a scaling factor that adjusts the magnitude of the
activation function, preventing severe oscillation between predictions.

2.2.4 Continuous input feature

A preprocessing procedure that transforms continuous features into binary
variables, while maintaining ranking relationships among the continuous
feature values. The preprocessing procedure follows the following steps to
convert them into binary form, one feature at a time.

1. First, for each feature, the unique values are identified.

2. The unique values are then sorted from smallest to largest.

3. The sorted unique values are considered as threshold.

4. The original feature values are then compared with identified thresh-
olds, only from their own feature value set. If the feature value is
greater than the threshold, set the corresponding Boolean variable to
0, otherwise, set it to 1.

5. The above steps are repeated until all the features are converted into
Boolean form.

Chapter 3

Traffic prediction

In this section describes the relationship between the transportation system
and Machine learning.

3.1 Traffic flow

Traffic flow is a study of the movement of individual drivers and vehicles
between cross-sections and the interactions they make with one another. A
better understanding of traffic flow will enable authorities to design roads
with an improved level of service, to improve the performance of existing
transportation systems for instance operations, and to understand how the
system might respond to potential engineering changes.

It is appealing to detect traffic flow information in an accurate and timely
manner [24]. Over a years, with the increasing population, traffic flow has
also increased. That leads to road accidents and delays in arrival time. ML
techniques have proved capable of solving traffic flow patterns and have con-
tributed to the development of ITS [1]. ML approaches such as k-Nearest
Neighbors and Support Vector Machine Regression is used to address traffic
flow detection problems. Other ML approaches like SVM are also used to
predict the travel time of the road segment. The SVM algorithm used for
regression problems like detecting traffic flow and predicting speed at ran-
domly selected roads [1]. Travel time detection of road segments is also an
important contribution when developing an intelligent transportation sys-
tem. Public transportation such as trains and buses can utilized effectively

29

CHAPTER 3. TRAFFIC PREDICTION 30

if there is an efficient system in place to detect traffic flow and travel time
estimation. Several ML techniques such as SVM and deep learning methods
such as Long Short-Term Memory (LSTM) have been applied in an area
of travel time prediction. Deep Learning methods have attracted a lot of
attention nowadays as methods are showing tremendous results in the trans-
portation network [1].

Neural networks have obtained astounding success for important pattern
recognition tasks, but they suffer from high computational complexity and
a lack of interpretability. Furthermore, the recent Tsetlin Machine, TM,
attempts to address this lack by using easy-to-interpret to solve complex
pattern recognition problems. The TM provides competitive accuracy in
several benchmarks while keeping the important property of interpretability.
It further facilitates hardware-near implementation since inputs, patterns,
and outputs are expressed as bits, while recognition and learning rely on
straightforward bit manipulation. “If the next step in the research confirms
my findings, this research can be called ‘groundbreaking’.” Professor Ole-
Christoffer Granmo1. Tsetlin machine is a quicker simple solution and more
precise than most neural network vanilla methods. Additionally, as well as
it is a completely new tool for artificial language, picture understanding,
pattern recognition, reasoning, planning, and diagnostics.

For example, if Google predicts that traffic is likely to become heavy
in one direction, they will automatically find us a lower-traffic alternative.
They also look at several other factors, like road quality. Is the road paved
or unpaved, covered in gravel, dirt, or mud? Elements like these can make
a road difficult to drive down, and they are less likely to recommend this
road as part of route. They also look at the size and directness of a road
driving down a highway is often more efficient than taking a smaller road
with multiple stops. Two other sources of information that are important
to make sure they recommend the best routes are authoritative data from
local governments and real-time feedback from users. Authoritative data lets
Google Maps know about speed limits, tolls, or if certain roads are restricted
due to things like construction. And incident reports from drivers let Google
maps quickly show if a road or lane is closed, if there is construction nearby,
or if there is a disabled vehicle or an object on the road. Both sources are also
used to help users understand when road conditions change unexpectedly
due to mudslides, snowstorms, or other forces of nature [25].

1https://arxiv.org/abs/1804.01508

CHAPTER 3. TRAFFIC PREDICTION 31

3.2 Transportation domain

AI and ML have shown promising results in the applications of transport
system. When applied to the transportation system, these technologies can
improve the quality of lifestyle and provide safety along with the ease of
quicker transportation services to people [26]. AI and ML techniques have
also been used in the overall development of smart cities. Advancement
in AI has given a rise to the introduction of self-driving cars for people
who can take advantage of this latest technology. Autonomous vehicles or
self-driving cars use a combination of the latest technologies like a sensor,
camera, radar, and AI techniques to move around from one location to an-
other [27]. Autonomous vehicles require a lot of trust from the people since
there is always a question of safety involved with these vehicles. Therefore,
a combination of ML, deep learning, and AI techniques need to prove the
safety and reliability of such vehicles.

The combined development of different emerging technologies smart sen-
sors, artificial intelligence boost innovations in transportation systems. The
increasing pressure on achieving societal goals within the transport sector
for example de carbonization, improving traffic safety, reducing congestion
will be another driver for the developments in transportation sector.

3.3 Intelligent transport system

Intelligent Transport Systems (ITS) can be defined as holistic, control, in-
formation and communication upgrade to classical transport and traffic sys-
tems, which enables significant improvement in performance, traffic flows, ef-
ficiency of passenger and goods transportation, safety, and security of trans-
port, ensures more comfortable travelling for passengers, reduces pollution,
etc. ITS presents a crucial breakthrough by changing approaches and trends
in transport and traffic research and technology aiming to solve escalating
problems of congestions, pollution, transport efficiency, safety and security
of passengers and goods [27]. This will also prove by numerous AI and ma-
chine learning projects related to ITS all over the world.

Recently, the European Union has made some significant efforts in the
field of ITS deployment trying to find solutions for the escalating transport
and traffic problems. A substantial number of activities has been stipu-
lated by different European bodies with the single objective to enforce the

CHAPTER 3. TRAFFIC PREDICTION 32

practical ITS deployment all over the Union [?]. An explicit objective of
the transportation system is to provide a safe environment for travel while
continuing to strive to improve the performance of the system. Although
undesirable, crashes and fatalities are inevitable occurrences. Several ITS
services aim to minimize the risk of crash occurrence. This objective focuses
on reducing the number of crashes and reducing the probability of a fatality
should a crash occur. Typical measures of effectiveness used to quantify
safety performance include the overall crash rate, fatality crash rate and
injury crash rate. ITS services should also strive to reduce the crash rate
of a facility or system. The need for ITS is rising linearly with the increase
in the population. Hence, the transportation system should be safer, faster,
reliable, environment friendly, and cost effective [28].

The other major benefits of ITS can be improving mobility and relia-
bility by reducing delay and travel time is a major objective of many ITS
components. Delay can be measured in many different ways, depending
on the type of transportation system being analysed. Delay of a system is
typically measured in seconds or minutes of delay per vehicle. Also, delay
for users of the system may be measured in person-hours. Delay for freight
shipments could be measured in time past scheduled arrival time of the
shipment. Delay can also be measured by observing the number of stops ex-
perienced by drivers before and after a project is deployed or implemented.
Travel time variability indicates the variability in overall travel time from an
origin to a destination in the system, including any modal transfers or end
route stops. This measure of effectiveness can readily be applied to inter-
modal goods movement as well as personal travel. Reducing the variability
of travel time improves the reliability of arrival time estimates that travellers
or companies use to make planning and scheduling decisions. By improving
operations and incident response, and providing information on delays, ITS
services can reduce the variability of travel time in transportation networks.
For example, traveller information products can be used in trip planning
to help re-route commercial drivers around congested areas resulting in less
variability in travel time.

Most ITS components seek to optimize the efficiency of existing facilities
and use of rights-of-way so that mobility and commerce needs can be met
while reducing the need to construct or expand facilities. This is accom-
plished by increasing the effective capacity of the transportation system.
Effective capacity is the maximum potential rate at which persons or vehi-
cles may traverse a link, node or network under a representative composite

CHAPTER 3. TRAFFIC PREDICTION 33

of roadway conditions, including weather, incidents and variation in traffic
demand patterns (McGurrin and Wunderlich, 1999). Capacity, as defined
by the Highway Capacity Manual, is the maximum hourly rate at which
persons or vehicles can reasonably be expected to traverse a given point
or uniform section of a lane or roadway during a given time period under
prevailing roadway, traffic and control conditions, (TRB, 2000). The major
difference between effective capacity and capacity is that capacity is mea-
sured under typical conditions for the facility, such as good weather and
pavement conditions, with no incidents affecting the system, while effective
capacity can vary depending upon these conditions and the use of man-
agement and operational strategies. Throughput is defined as the number
of persons, goods or vehicles traversing a roadway section or network per
unit time. Increases in throughput are sometimes realizations of increases
in effective capacity. Under certain conditions, it may reflect the maximum
number of travellers that can be accommodated by a transportation system.
Throughput is more easily measured than effective capacity and, therefore,
can be used as a surrogate measure when analysing the performance of an
ITS project.

The use of vehicles and other transportation means has increased which
has led to traffic congestion and road accidents. Hence, there is a demand
for intelligent transportation systems in the country that can provide safe
and reliable transportation while maintaining environmental conditions such
as pollution, CO2 emission, and energy consumption. An application of
Artificial intelligence and Machine Learning can be applied to develop an
Intelligent Transportation system that can address the issues of traffic con-
gestion and road safety to prevent accidents. Various ML approaches to
detect road anomalies for avoiding obstacles, predict real-time traffic flow
to achieve smart and efficient transportation, detect and prevent road acci-
dents to ensure safety.

Transportation difficulties can become a major challenge especially when
the network and users activities are too difficult to predict and model the
patterns in travel. Thus, to overcome the challenges of increasing travel
demand, environmental degradation, safety concerns, and CO2 emissions,
AI, and ML are deemed to be a perfect fit for transportation systems. In
developing countries, the steady growth of urban and rural traffic due to the
increasing population is the main cause of these challenges. For instance,
in Australia, by 2031, the population is expected to increase to 30 million,
and therefore the cost of congestion is expected to reach 53.3 billion [?].

CHAPTER 3. TRAFFIC PREDICTION 34

In the twenty-first century, several researchers are attempting to achieve
a smarter and reliable transportation system or in other words, Intelligent
Transportation Systems (ITS). ITS will have less detrimental effects on the
environment, and people will be using AI and ML techniques that are more
reliable and cost-effective [29].

Chapter 4

Results and discussion

In this section, we present a result. Predicting the accuracy of each model
for the evaluation with MAE as the accuracy metric. From our test the
best results for each likelihood plotted in the figures below. The predicted
traffic flow plotted against the actual observation traffic flow for contrast.
The dataset and code is available in this repository [30].

4.1 Hardware and software

The analysis in this thesis has done on most modern personal computers.
The experiments were run on a laptop with Intel(R) Core(TM) i5− 7200U
CPU processor at 2.50GHz. The RAM of the laptop was 8.00GB and run-
ning Windows 10 as the operating system. Furthermore, we have used a
friend’s MacBook Pro, apple M1 new chip 8GB RAM, and 256GB SSD
storage.

To run all the necessary programs for the analysis. The thesis used
Python version 3.7. The primary development environment used was Jupyter
Notebook. That provided a convenient and structured way of implementing
the various steps in the working procedure described in the previous section.
Several python libraries have been utilized in different ways.

NumPy supports a wide range of hardware and computing platforms,
and plays well with distributed, GPU, and sparse array libraries. Fast and
versatile, the NumPy vectorization, indexing, and broadcasting concepts are

35

CHAPTER 4. RESULTS AND DISCUSSION 36

the de-facto standards of array computing today [31].

Pandas used for data analysis and statistics. Pandas is part of the Ana-
conda distribution and can be installed with Anaconda or Miniconda. Pan-
das is a Python package providing fast, flexible, and expressive data struc-
tures designed to make working with relational or labeled data both easy
and intuitive. It aims to be the fundamental high-level building block for
doing practical, real-world data analysis in Python. Additionally, it has the
broader goal of becoming the most powerful and flexible open source data
analysis or manipulation tool available in any language [32].

Scikit-learn is an open source machine learning library that supports su-
pervised and unsupervised learning. It also provides various tools for model
fitting, data preprocessing, model selection and model evaluation. [33].

pyTsetlinMachine used to implements the Tsetlin Machine, Embedding
Tsetlin Machine, Convolutional Tsetlin Machine, Regression Tsetlin Ma-
chine, and Weighted Tsetlin Machine, with support for continuous features,
multigranularity, clause indexing, and drop clause/literal [34]

Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python [35].

Keras is an open-source software library that provides a Python interface
for artificial neural networks. Keras acts as an interface for the TensorFlow
library. It supported multiple backends, including TensorFlow, Microsoft
Cognitive Toolkit and Theano. Keras contains numerous implementations
of commonly used neural-network building blocks such as layers, activation
functions, optimizers, and a host of tools to make working with image and
text data easier to simplify the coding necessary for writing deep neural
network [36].

4.2 Data preparation and dataset

In our thesis, we used the dataset to predict the daily traffic flow. The
dataset provides the number of hourly traffic flow from January 2016 to
October 2018, or just under three years of data. We started with a sim-
ple forecast model to provide a baseline of performance for more sophisti-
cated methods to improve upon. Other hyperparameters result in a well-

CHAPTER 4. RESULTS AND DISCUSSION 37

performing model of both LSTM and GRU, but our intention in this thesis is
to compare Tsetlin Machine with Neural Network. Furthermore, In the test
section, we saved the final five months of the original dataset in a separate
file to validate the final model. We used this file and used it to see how well
the models are on unseen data.

Feature Selection is one of the core concepts in machine learning which
hugely impacts the performance of a model. The data features that we
use to train our models have a huge influence on the performance we can
achieve. We looked at how certain features affect predictions. Determin-
ing which features yield the most predictive power is another crucial step
in a model-building process. Moreover, Temperature, holiday, and weather
features have a large effect on our model predictions while others have not.
Additionally, we have created new features from existing ones. We have
done this by simple mathematical operations by aggregations to obtain the
mean and allocated zero if its value is less than aggregated mean value oth-
erwise we assigned one.

There is a mechanism to transform continuous features into binary val-
ues while maintaining ranking relationships among the continuous feature
values. It is based on sorting the identified unique values from smallest to
largest. But, It is significant that the time series has not shuffled, as this
will remove its temporal structure.

4.2.1 Time series

Time series datasets may contain trends and seasonality, which may need
to be removed before modeling. Trends can result in a varying mean over
time, whereas seasonality can result in a changing variance over time, both
of which define a time series as being nonstationary. Stationary datasets
are those that have a stable mean and variance and are in turn much easier
to model. There are many types of seasonality. Some obvious examples
include the time of day, daily, weekly, monthly, and annual in our datasets.
So, identifying whether there is a seasonality component in our time series
problem is subjective. The simplest approach to determining if there is an
aspect of seasonality is to plot and review our data, perhaps at different
scales and with the addition of trend lines.

CHAPTER 4. RESULTS AND DISCUSSION 38

Data split

It is common to split the dataset into multiple parts, but we split the time
series into a training set 80% and a test set 20%. The training set is used the
train the model to learn the temporal patterns throughout the time series
and the test set is used to measure how well trained model can perform
prediction on previously unseen data. Moreover, it is important that the
time series is not shuffled, as this will remove its temporal structure. Also,
the test set must arrive after the training set to avoid forecasting the past.

4.3 Tsetlin Machine classification

We used classification methods to determine high-volume of traffic flow and
low-volume traffic flow. We used mean values to distinguish between high
and low values. We describe the interpretability of the model below subsec-
tion.

4.3.1 Interpretability

We present the performance of the Tsetlin Machine on the traffic dataset
and its interpretability. The Tsetlin Machine has three hyperparameters
needed to be defined by the user and fine-tuned as required. In our case,
we use 9000 clauses, C, threshold T of 500, and specificity s of 32. The
parameters are responsible for avoiding over-fitting as well as deciding how
many literals can be included and excluded from the clause. We have man-
ually assigned these parameters as the main aim is to demonstrate the in-
terpretability of the model. During training, the TM arrives at a set of
clauses using the features provided, which together describe the task in gen-
eral. During testing, each sample can match only a subset of all clauses,
and these clauses define the classification problem concerning that particu-
lar sample only. In our case, we use high traffic volume as one and low traffic
volume as zero. For instance, for the high volume of traffic, it looks like,
if high temperature ∧ clear ∧ not holiday ∧ not rainwithinhours, then it can be
potential for the high volume of traffic.

The sub-patterns it has learned during training. They are literal forms
from the binarized input data, being shown as conjunctive literal. The
Tsetlin Machine learns this and utilizes conjunctive clauses to represent the
particular facets of each category. For instance, the sub-patterns formed

CHAPTER 4. RESULTS AND DISCUSSION 39

clauses for the class of high traffic volume.

C1: high temperature ∧ clear ∧ not holiday ∧ not rainwithinhours

C2: high temperature ∧ snow ∧ holiday ∧ rainwithinhours

C3: high temperature ∧ rain ∧ not holiday ∧ rainwithinhours

C4: low temperature ∧ rain ∧ holiday ∧ rainwithinhours

C5: low temperature ∧ clear ∧ not holiday ∧ not rainwithinhours

Similarly, clauses for the class of low volume of traffic,
C1: high temperature ∧ clear ∧ not holiday ∧ not rainwithinhours

C2: low temperature ∧ snow ∧ holiday ∧ rainwithinhours

C3: high temperature ∧ rain ∧ not holiday ∧ not rainwithinhours

C4: low temperature ∧ rain ∧ holiday ∧ rainwithinhours

C5: low temperature ∧ snow ∧ not holiday ∧ rainwithinhours

and so on up to 9000 number of clauses formed for each of these classes.
So,let us evaluate input for the classes of high traffic volume and low traffic
volume. For instance, if we consider an input:
input = [2◦ ∧ Sleet ∧ christmas ∧ 10.41mm] and after the necessary prepro-
cessing the input becomes:

input = [low temperature ∧ snow ∧ holiday ∧ rainwithinhours]

If we pass input to both clauses it satisfies three clauses for the low
volume of traffic and whereas it only satisfies two clauses for the sub-patterns
of the high volume of traffic. Moreover, the summation of votes is higher
towards the low volume of traffic, and assigning it to class y equals zero
which is the low volume of traffic.

CHAPTER 4. RESULTS AND DISCUSSION 40

Features RTM LSTM GRU

All features 62% 63% 65%
without daily rain 65% 66% 70%
without temperature 70% 80% 87%

Table 4.1: Accuracy results of the experiments

A binarized format can influence the prediction results, but also shows
that the more relevant attributes have a greater impact on the experimental
results. The experimental results show that staging features in a binarized
format for RTM can improve the accuracy of traffic flow prediction.

4.4 Regression Tsetlin Machine

We want to predict the traffic flow in the future, and we cannot easily col-
lect updated data to validate the model. Therefore, we are using the lagged
data from t to t-n to predict the target, t+n. So, we used t-1 to test the
Tsetlin Machine and Neural Networks models. The baseline prediction for
time series forecasting is a naive forecast or persistence. This is where the
observation from the previous time step is used as the prediction for the
observation at the next time step.

All the models were trained using the same dataset. In the classical
Tsetlin Machine and Multiclass Tsetlin Machine, the polarity of clauses is
used to classify data into different classes. We remove the polarity of clauses
since we intend to use the clauses as additive building blocks that can be
used to calculate the continuous output. That is, we intend to map the total
vote count into a single continuous output [23].

Hyperparameters:

We investigate the effect the hyper-parameters T and s have on learning the
Tsetlin machine. As a strategy for problems where the number of clauses is
unknown, and for real-world applications where noise plays a significant role,
the RTM can be initialized with a much larger threshold. Then, since the
output is a fraction of the threshold, T, the error decreases [23]. For example
the occurrence probability of any of the 8-bit patterns is 1/256. However,
to capture the pattern of 8-bits according to the TM dynamics [20], 1 /s
should be equal to the probability of the considered pattern, which is 128

CHAPTER 4. RESULTS AND DISCUSSION 41

/256 = 1 /2. Hence, s should be 2. For instance, if we assign s = 4, clauses
will start to learn a much finer pattern.

We prepare the necessary hyper-parameters, the number of clauses 9000,
Threshold T = 4000, and specificity s = 32. Since we have two outputs high
and low traffic capacity classes, each class is assigned 9000 clauses to learn
the sub-patterns. So, there are altogether 9000 clauses representing all the
two classes. When test data passed to those 9000 clauses, some of the clauses
are triggered and the class that have the highest number of clauses giving the
value 1 decided to be the predicted class. Each class has a collection of sub-
patterns. When the test data satisfy with one of the lists of sub-patterns, it
represented with that class.

Parameters used in Neural Network

The number of neurons in each layer is in a similar fashion dependent on
how complex the given problem is. Too few neurons make the network
unable to capture all the information. Logically, the more training data
and input/output mappings the network must learn, the more neurons are
required. However, too many neurons make the networks more prone to
learning unique features of the training set and may thus start overfitting.
A learning rate that is too low makes the training slow. A learning rate
that is too high makes the algorithm overshoot, which increases the risk of
missing the global minima of the cost function.

LSTM and GRU are more popular recurrent neural networks. Based on
this model, it is more realistic and persuasive to analyze the effect of the
dataset on prediction results. The experiment conducts predictive analysis
on the test dataset. GRU is the same as LSTM with improved algorithm
and both have the same input and output shape. The input shape format is
several timesteps and we set the lag equal to one as it is a period, represent-
ing the value of predicting the next period with data per one day of periods.
The number of units defines the cell and hidden states of a dimension.

The input data passed into the first LSTM layer with an input of (None, 1, 5)
as (samples, timesteps, features) and the output as (None, 50) and then
passed into the second LSTM layer input of (None, 50) and output as
(None, 50). And then through Dropout layers, Random loss of a certain
proportion of parameters. It can effectively prevent over-fitting during train-
ing. And finally, the full connection layer, the output latitude of the fully

CHAPTER 4. RESULTS AND DISCUSSION 42

connected layer is 1. Here the number of output neurons is set to 1. The
result of training or prediction is an input of (None, 50), the final output is
(None, 1). Similarly, we used GRU the same process with the same param-
eter as for LSTM.

Evaluation

We evaluated the performance of predictions using the mean absolute error,
MAE. That gives us more weight to predictions that are grossly wrong and
will have the same units as the original data. Any transforms to the data
must be reversed before the MAE calculated and reported to make the per-
formance between Tsetlin Machine and Neural Network directly comparable.
We calculated the MAE using the helper function from the scikit-learn li-
brary mean absolute error that calculates the mean absolute error between
a list of expected values, the test set, and the list of predictions.

In the test set section, we saved twenty percent of the original dataset to
test the final model. We can use this data to see how well our model is on
unseen data. Load the model and use it to forecast the next traffic flow. A
plot of the predictions compared to the validation dataset is also provided.
Neural network expectedly gets the best accuracy for short-term forecasts.
The traffic flow in the short-term future is most of the time quite like the
current traffic flow.

The dataset provides the number of hourly traffic flow from January 2016
to October 2018, or just under three years of data. We started with a simple
forecast model to provide a baseline of performance for more sophisticated
methods to improve upon. In the section, we saved the final five months of
the original dataset in a separate datasets to validate the final model. We
used this datasets to see how well the models are on unseen data. A plot of
the predictions compared to the validation dataset is also provided we see
below.

CHAPTER 4. RESULTS AND DISCUSSION 43

Features RTM LSTM GRU

All features 53 13.43 9.22
without daily rain 47 10.75 6.70
without temperature 30 0.27 0.19

Table 4.2: MAE of predicting results from experiment

Figure 4.1: RTM: the traffic flow prediction of one day plot against with the
actual observed traffic flow

The experimental was performed on the attributes of weather, tempera-
ture, amount of rain within one hour, and holiday or regular day data. The
experimental results are shown in the Figure 4.1 where the blue curve rep-
resents the real value, and the orange curve represents the predicted value.
The model under RTM represents the duration between April to October of
the test set and curve represents the traffic flow.

CHAPTER 4. RESULTS AND DISCUSSION 44

Figure 4.2: GRU: the traffic flow prediction of one day plot against with the
actual observed traffic flow

The model under GRU is the same as RTM and represents the duration
between April to October of the test set and curve represents the traffic flow.

Figure 4.3: LSTM: the traffic flow prediction of one day plot against with
the actual observed traffic flow

CHAPTER 4. RESULTS AND DISCUSSION 45

Figure 4.4: RTM: After dropping daily rain,traffic flow prediction with the
actual observed traffic flow

Figure 4.5: GRU: After dropping daily rain,traffic flow prediction with the
actual observed traffic flow

CHAPTER 4. RESULTS AND DISCUSSION 46

Figure 4.6: LSTM: After dropping daily rain,traffic flow prediction with the
actual observed traffic flow

We leave some variables that have fewer impacts on the performance of
the model. We can see from the figures both Neural Network models perform
well on unseen data. But, RTM performs average because of transforms
continuous features into binary while maintaining relationships among the
continuous feature values is not optimal. The experiment was performed on
the attributes of weather, temperature and holiday or not holiday of test
set. The experiment result is shown in the Figure 4.4 where the blue curve
represents the real value, and the orange curve represent the predicted value.
From the experiment result that the features in a binarized format for RTM
can improve the accuracy of traffic flow prediction.

Chapter 5

Conclusions and future work

5.1 Conclusion

The smart transportation system requires a need for a suitable machine-
learning algorithm that is lightweight and accurate in capturing and detect-
ing traffic patterns and generating real-time traffic information. AI and ML
have shown promising results in the applications of transportation systems.
When applied to the transportation system, these technologies can improve
the quality of lifestyle and provide safety along with the ease of quicker
transportation services to people. Advancement in AI has given a rise to
the introduction of self-driving cars for people who can take advantage of
this latest technology. Autonomous vehicles require a lot of trust from the
people since there is always a question of safety involved with these vehicles.
Therefore, a combination of ML, deep learning, and AI techniques need to
prove the safety and reliability of such vehicles.

A crucial factor that makes the Tsetlin Machine promising is the in-
terpretability it provides with clauses in the form of conjunction clauses.
Potentially this gives an insight into which patterns are important for pre-
dicting the target values. That makes Tsetlin machines allow for a degree
of transparency in the decision-making process.

5.2 Future work

We did not take some features into account that can significantly affect pre-
diction accuracy. In our study, we involved the intact dataset. We do not
split datasets on weekdays and weekends the traffic flows to observe how

47

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 48

that affects prediction accuracy. Therefore, future studies can make that to
observe if that gives a better performance in further studies.

To increase the performance, one could explore hyperparameter tuning
more to see if that can lead to better performance. Additionally, there is an
option for weighted clauses and this version of the Tsetlin Machine weighs
clauses so that it needs fewer clauses to reinforce patterns, which require
different settings of hyperparameters s, T, and the number of clauses. One
can also look at different methods for feature selection to see how much
impact finding the right features have on the accuracy and can see with a
different dataset with more features.

Bibliography

[1] Xueyan Yin et al. “Deep learning on traffic prediction: Methods, analy-
sis and future directions”. In: IEEE Transactions on Intelligent Trans-
portation Systems (2021).

[2] Jinlei Zhang et al. “Multi-graph convolutional network for short-term
passenger flow forecasting in urban rail transit”. In: IET Intelligent
Transport Systems 14.10 (2020), pp. 1210–1217.

[3] Shengnan Guo et al. “Deep Spatial–Temporal 3D Convolutional Neu-
ral Networks for Traffic Data Forecasting”. In: IEEE Transactions on
Intelligent Transportation Systems 20.10 (2019), pp. 3913–3926. doi:
10.1109/TITS.2019.2906365.

[4] Florin Schimbinschi et al. “Traffic forecasting in complex urban net-
works: Leveraging big data and machine learning”. In: 2015 IEEE
international conference on big data (big data). IEEE. 2015, pp. 1019–
1024.

[5] Yisheng Lv et al. “Traffic flow prediction with big data: a deep learn-
ing approach”. In: IEEE Transactions on Intelligent Transportation
Systems 16.2 (2014), pp. 865–873.

[6] Jyun-Yan Yang et al. “Prediction of short-term average vehicular ve-
locity considering weather factors in urban VANET environments”. In:
2010 International Conference on Machine Learning and Cybernetics.
Vol. 6. IEEE. 2010, pp. 3039–3043.

[7] Google Developers,developers.google.com. https://developers.google.
com/machine-learning. [Accessed 22-Nov-2022]. 2022.

[8] Rob J Hyndman and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2018.

[9] Jason Brownlee. How to Identify and Remove Seasonality from Time
Series Data Machine Learning Mastery. 2020. url: https://machinelearningmastery.
com/time-series-seasonality-with-python/.

49

https://doi.org/10.1109/TITS.2019.2906365
https://developers.google.com/machine-learning
https://developers.google.com/machine-learning
https://machinelearningmastery.com/time-series-seasonality-with-python/
https://machinelearningmastery.com/time-series-seasonality-with-python/

BIBLIOGRAPHY 50

[10] Todd E Clark and Michael W McCracken. “Improving forecast accu-
racy by combining recursive and rolling forecasts”. In: International
Economic Review 50.2 (2009), pp. 363–395.

[11] Aurélien Géron. “Hands-on machine learning with scikit-learn and
tensorflow: Concepts”. In: Tools, and Techniques to build intelligent
systems (2017).

[12] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Tech. rep. California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[13] BERNHARD Mehlig. “Machine learning with neural networks”. In:
arXiv preprint arXiv:1901.05639 (2019).

[14] Yonghui Wu et al. “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016).

[15] Paul J Werbos. “Generalization of backpropagation with application
to a recurrent gas market model”. In: Neural networks 1.4 (1988),
pp. 339–356.

[16] Sepp Hochreiter. “The vanishing gradient problem during learning re-
current neural nets and problem solutions”. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 6.02 (1998),
pp. 107–116.

[17] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network architectures”.
In: Neural networks 18.5-6 (2005), pp. 602–610.

[18] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[19] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural
networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555
(2014).

[20] Ole-Christoffer Granmo. “The Tsetlin Machine–A Game Theoretic
Bandit Driven Approach to Optimal Pattern Recognition with Propo-
sitional Logic”. In: arXiv preprint arXiv:1804.01508 (2018).

[21] K Darshana Abeyrathna et al. “The regression Tsetlin machine: a
novel approach to interpretable nonlinear regression”. In: Philosophical
Transactions of the Royal Society A 378.2164 (2020), p. 20190165.

BIBLIOGRAPHY 51

[22] Kuruge Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten
Goodwin. “Adaptive Sparse Representation of Continuous Input for
Tsetlin Machines Based on Stochastic Searching on the Line”. In: Elec-
tronics 10.17 (2021), p. 2107.

[23] K Darshana Abeyrathna et al. “The regression Tsetlin machine: a
Tsetlin machine for continuous output problems”. In: EPIA Confer-
ence on Artificial Intelligence. Springer. 2019, pp. 268–280.

[24] Mohammed Hadi et al. “Guidelines for Evaluation of Ramp Signaling
Deployments in a Real-Time Operations Environment”. In: (2017).

[25] How AI helps predict traffic and determine routes-blog.google. https:
/ / blog . google / products / maps / google - maps - 101 - how - ai -

helps-predict-traffic-and-determine-routes/. [Accessed 23-
Nov-2022]. 2020.

[26] Anton Sysoev et al. “Conceptual scheme of regional module for intel-
ligent transportation and logistics system”. In: International Confer-
ence on Traffic and Transport Engineering. 2018, pp. 139–146.

[27] Loc Dang. “Intelligent Transport System and its application in Ho Chi
Minh city”. In: (2018).

[28] Mohd Omar and Pradeep Kumar. “Detection of roads potholes using
yolov4”. In: 2020 International Conference on Information Science
and Communications Technologies (ICISCT). IEEE. 2020, pp. 1–6.

[29] Roxanne Neufville, Hassan Abdalla, and Ali Abbas. “Potential of Con-
nected Fully Autonomous Vehicles in Reducing Congestion and Asso-
ciated Carbon Emissions”. In: Sustainability 14.11 (2022), p. 6910.

[30] SA. Git Hub - SenaiAG/Prediction-in-transport-system-github.com. https:
//github.com/SenaiAG/Prediction-in-transport-system. [Ac-
cessed 27-Nov-2022]. 2022.

[31] Travis Oliphant. “NumPy: A guide to NumPy; 2006–”. In: URL http://www.
numpy. org/.[Last accessed: 2019-05-13] (2019).

[32] Wes McKinney. “Pandas, python data analysis library”. In: URL http://pandas.
pydata. org (2015).

[33] Oliver Kramer. “Scikit-learn”. In: Machine learning for evolution strate-
gies. Springer, 2016, pp. 45–53.

[34] Ole-Christoffer Granmo. pyTsetlinMachine pypi.org. https://pypi.
org/project/pyTsetlinMachine/. [Accessed 18-Nov-2022]. 2021.

https://blog.google/products/maps/google-maps-101-how-ai-helps-predict-traffic-and-determine-routes/
https://blog.google/products/maps/google-maps-101-how-ai-helps-predict-traffic-and-determine-routes/
https://blog.google/products/maps/google-maps-101-how-ai-helps-predict-traffic-and-determine-routes/
https://github.com/SenaiAG/Prediction-in-transport-system
https://github.com/SenaiAG/Prediction-in-transport-system
https://pypi.org/project/pyTsetlinMachine/
https://pypi.org/project/pyTsetlinMachine/

BIBLIOGRAPHY 52

[35] Valentina Porcu. “Matplotlib”. In: Python for Data Mining Quick Syn-
tax Reference. Springer, 2018, pp. 201–234.

[36] François Chollet et al. “Keras [WWW Document]”. In: GitHub. URL
https://github. com/fchollet/keras (2015).

[37] J Lau. “Google Maps 101: how AI helps predict traffic and determine
routes”. In: Retrieved online from https://blog. google/products/maps/google-
maps-101-howai-helps-predict-traffic-and-determine-routes (2020).

[38] Adrian Wheeldon, Alex Yakovlev, and Rishad Shafik. “Self-Timed Re-
inforcement Learning using Tsetlin Machine”. In: 27th IEEE Interna-
tional Symposium on Asynchronous Circuits and Systems (ASYNC
2021). IEEE. 2021. url: https://arxiv.org/abs/2109.00846.

[39] Sondre Glimsdal and Ole-Christoffer Granmo. “Coalesced Multi-Output
Tsetlin Machines with Clause Sharing”. In: arXiv preprint arXiv:2108.07594
(2021). url: https://arxiv.org/abs/2108.07594.

[40] Martın Abadi et al. “Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems”. In: arXiv preprint arXiv:1603.04467
(2016).

[41] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Com-
puting in science & engineering 9.03 (2007), pp. 90–95.

[42] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In:
the Journal of machine Learning research 12 (2011), pp. 2825–2830.

[43] Wes McKinney et al. “Data structures for statistical computing in
python”. In: Proceedings of the 9th Python in Science Conference.
Vol. 445. 1. Austin, TX. 2010, pp. 51–56.

[44] A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[45] Francisco André Barreiros Murçós. “Urban Transport Evaluation Us-
ing Knowledge Extracted from Social Media”. In: (2021).

[46] C Nicholson. “AI Wiki A Beginner’s Guide to Important Topics in
AI”. In: Machine Learning, and Deep Learning. https://wiki. path-
mind. com/neural-network (2019).

[47] David B Larson et al. “Performance of a deep-learning neural network
model in assessing skeletal maturity on pediatric hand radiographs”.
In: Radiology 287.1 (2018), pp. 313–322.

[48] Andrej Krenker, Janez Bešter, and Andrej Kos. “Introduction to the
artificial neural networks”. In: Artificial Neural Networks: Methodolog-
ical Advances and Biomedical Applications. InTech (2011), pp. 1–18.

https://arxiv.org/abs/2109.00846
https://arxiv.org/abs/2108.07594

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research questions
	Related work

	Machine learning
	Prediction
	Time series
	Time Series Prediction
	Evaluating a predicting model
	Overfitting and Underfitting

	Recurrent Neural Network
	Vanishing and Exploding Gradient
	Long Short-Term Memory
	LSTM architecture
	LSTM weights
	LSTM Gates
	Gated Recurrent Unit

	Tsetlin machine
	Tsetlin Automaton
	Tsetlin Machine Classification
	Tsetlin Machine Regression
	Continuous input feature

	Traffic prediction
	Traffic flow
	Transportation domain
	Intelligent transport system

	Results and discussion
	Hardware and software
	Data preparation and dataset
	Time series

	Tsetlin Machine classification
	Interpretability

	Regression Tsetlin Machine

	Conclusions and future work
	Conclusion
	Future work

