
University of Bergen
Department of informatics

Parameterized Complexity of Fair

Graph Clustering

Author: Joakim Sunde

Supervisors: Petr Golovach

August, 2022



Abstract

The problem of α− BALANCED CLUSTER VERTEX DELETION where α ≥ 1 is

some constant, asks whether it is possible to delete at most k vertecies from a vertex colored

graph such that that it becomes a cluster graph, where for each cluster, the ratios between

the number of vertecies with each color is bounded by the constant α. We study the problem

from a Parameterized Complexity point of view with the parameters k and l, where k is the

solution size and l is the number of colors. We present kernels with O(k2l) and O(k4)

vertecies and an improved O(k3) kernel in the special case when α = 1. We also provide an

O(3k(|V |+ |E|)) FTP algorithm.



Acknowledgements

I wanna thank my supervisor Petr Golovach for his guidance, patience and for bringing some

much need structure in writing this thesis. I would also like to thank my friends at the 3th

floor for a lot of fun and table tennis.

Joakim Sunde

29 August, 2022



ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5

2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Parameterized Complexity . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Colored graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Some basic results 9

4 Hardness 11

5 FTP-algorithm for α−BCVD 13

6 O(k2l) kernel for α−BCVD 15

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Marked vertecies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 Main Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.4 Missing cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.5 Linear cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



6.6 Connected cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.7 Hidden cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.8 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 O(k4) kernel for α−BCVD 43

8 Kernel for α−BCVD when α = 1 45

8.1 O(k2l) Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 O(k3) Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Open Problems 51

Bibliography 54

iv



Chapter 1

Introduction

1.1 Motivation

In this thesis, we will study the problem of clustering which we can describe informally as

grouping similar things together. There are many different types of clustering but here we

will study clustering on graphs and our clusters will be cliques in these graph which means

that in a cluster all the nodes are connected to all other nodes. One natural thing to model

using graphs are social networks where the edges represent a friendship between two people.

In this case a cluster would be a group of friends where everybody is friends with everybody.

A natural question is whether we can modify the social network in some way (usually as little

as possible) so that the remaining graph is a cluster graph. There are multiple possible ways

to define such transformation. One way to to do is if we are allowed to delete edges. This

problem is called CLUSTER EDGE DELETION. Another way to define this transformation

is where we are allowed to delete the nodes. This version of the problem is called CLUSTER

VERTEX DELETION and is a well studied problem.

Now we could require our resulting cluster graph to satisfy certain properties. For

example, if we view our graph as a social network, we might want our resulting clusters

to have some sort of gender balance. A natural way to model this is to give the nodes of

the graph colors and define some constant α ≥ 1 which describes how gender balanced our

cliques has to be. For example, α = 2 would mean that there can be at most two times the

number of people with one gender compared to the other gender in all the resulting cliques.

This is the problem we will study here, but we can have any number of colors and the ratios

of the number of vertecies between each pair of colors have to be within some constant α for

each clique.

1



Another potential application similar to Huffner et al. [6] is if we have some DNA

samples some of which are from the same species and we have a method to check the

equivalence of two samples. A graph is then made by creating a vertex for each sample

and an edge whenever 2 samples are equivalent. If there are no errors then we have a cluster

graph, but some samples may be contaminated so that they produce inconsistent results so

we want to remove these to obtain a cluster graph. Now if we know that for each species

we have approximately the same number of samples from each gender (and a way to test if

two samples have the same gender). Then we can color the vertecies and potentially obtain

a better clustering by picking some appropriate α.

1.2 Related works

Many variants of clustering have been studied. For CLUSTER VERTEX DELETION the

first study from a Parameterized Complexity point of view was done by Huffner et al. [6]

which gave a Fixed-Parameter Algorithm running in time O(2kk9 + n3), and the fastest

known algorithm is given by Tsur [11] which runs in time O∗(1.811k). For kernelizations of

CLUSTER VERTEX DELETION, the best known kernel is given by Le et al. [8] which has

O(k
5
3 ) vertecies. Several different versions of this problem have been studied. One is where

there is a bound on the number of cliques d. Huffner et al. [6] give a O(k3) vertex kernel

for the weighted version of this problem. There are also variants where the cliques have to

be balanced in terms of size. Steinvik [10] gives a kernel of O(k4) vertecies for two different

variants of this problem.

Clustering have also been heavily studied in the context of unsupervised machine learn-

ing. Here the points are in some metric space and the goal is to create clusters minimizing

some objective function. There is a sub area of this kind of clustering called fair clustering

where the clusters have to satisfy some additional ”fairness” requirements. For instance

there is the requirement of balanced representation studied by Chierichetti et al. [2]. Here

each point has a color and the ratio of points from each color has to be within some constant.

This have been generalized by Bera et al. [1] where each point is allowed to have multiple

colors.

2



1.3 Our Results

A cluster graph is a graph where all the components are cliques. In the CLUSTER VERTEX

DELETION (CVD) problem, we are given a graph and integer k and want to find out if it’s

possible to remove at most k vertecies such that the resulting graph is a cluster graph. We

will study a variant of this problem for colored graphs called α−BALANCED CLUSTER

VERTEX DELETION.

Let α ≥ 1 be some rational constant. We denote a pair (G, c) where G is a graph and

c : V (G)→ {1, ..., l} is a function assigning each vertex a color, as a colored graph. A colored

graph (G, c) is an α−balanced cluster graph if

� G is a cluster graph.

� For every connected component C of G, 1
α
|Colorj(C)| ≤ |Colori(C)| ≤ α|Colorj(C)|

for every i, j ∈ {1, ..., l}, where Colori(C) is the set of vertecies with color i in C.

We will study the following problem from a Parameterized Complexity point of view with

the parameters k and l, which represent the solution size and number of colors respectively.

α-Balanced Cluster Vertex Deletion (α−BCVD)

Input: A colored graph (G, c) and integer k.

Output: Does there exist a set X ⊆ V (G) where |X| ≤ k so that G−X is an α-balanced

cluster graph.

This is just the CLUSTER VERTEX DELETION problem when l = 1. One of the

main methods used in kernels for CLUSTER VERTEX DELETION is identifying modules

with more than k vertecies, and then deleting one of these vertecies. This does no longer

work in the same way since the vertecies may have different colors. Another kind of method

used in [8] to obtain an O(k
5
3 ) kernel is using an expansion lemma and finding some part of

the graph that must be included in an optimal solution. This argument also no longer works

since it might no longer be optimal due to the colors.

We will prove the following theorems. We start by using the well-known branching

technique for CLUSTER VERTEX DELETION to obtain an FTP algorithm.

Theorem 1. There is a FTP algorithm for α−BALANCED CLUSTER VERTEX DELE-

TION, running in time O(3k(|V |+ |E|)).

3



Then we show that the problem admits a polynomial kernel when parameterized by k

and l.

Theorem 2. There is a kernel with O(k2l) vertecies for α−BALANCED CLUSTER VER-

TEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

We also give a polynomial kernel when the problem is parameterized by only k.

Theorem 3. When α > 1 there is a kernel with O(k4) vertecies for α−BALANCED CLUS-

TER VERTEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

Finally for the special case when α = 1 we are able to improve the kernel.

Theorem 4. When α = 1 there is a kernel with O(k3) vertecies for αBALANCED CLUS-

TER VERTEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

1.4 Thesis Outline

In Chapter 2, we will give some preliminaries and present the notation we will use and in

Chapter 3 we will give some simple and useful result we will use throughout the thesis.

Then we will prove the hardness in Chapter 4 and give a O(3k(|V |+ |E|)) FTP algorithm in

Chapter 5. We then give kernels with O(k2l) and O(k4) vertecies in Chapter 6 and 7. For

the special case when α = 1, we will give a improved O(k3) kernel in Chapter 8. Finally we

mention some related open problems in Chapter 9.

4



Chapter 2

Preliminaries

2.1 Algorithms

2.1.1 Problems

An alphabet Σ is a set of symbols. We can use these symbols to construct strings which are

a sequence of symbols. We denote all possible sequences of symbols from a given alphabet

as Σ∗. A language L is some subset of all such sequences L ⊆ Σ∗. We will not give a

detailed definition of a Turing machine since for our purposes its enough to think about a

Turing machine as something with a finite set of instructions of how to solve a given problem.

We will call this an algorithm. We define a decision algorithm for some language L as an

algorithm which takes an input x ∈ Σ∗, halts and returns whether or not x ∈ L. A problem

is then recognizing whether or not any given input is in a language. If we have an instance

x of some problem we say that x is a YES-instance if x is in the language, otherwise we say

that x is a NO-instance.

2.1.2 Complexity

We need a way to measure the running time of our algorithms. We do this by counting

the number of steps our algorithm needs to solve a given problem. The notion of steps is

defined formally as the number of times our tape head in the Turing machine moves when

the tape is initialized with the input. But for our use it is enough to think of one step as

anything that can be done in constant time. That means something which can done in the

same amount of time regardless of what the input is. So given an algorithm A and some

instance of a problem x we can define g(n) to be the number of steps A needs to decide x.

5



This is useful but we really want to see how good algorithm is in more general so for this we

look at the worst case input for our algorithm for a given input size. We can define this as

f(n) = maxx∈Σ∗,|x|≤n{g(x)}.
There is a useful notion of O notation which allows us to not worry about constants in

our worst case running times. Given two functions f and g we say that f = O(g) if there

exist some constants c and N such that f(n) ≤ cg(n) for all n ≥ N . This means that the

function g gives an upper bound for f when the input gets larger.

Some problems turns out to be easy to solve and some problems seems to be hard to

solve. The main way we distinguish between hard and easy problems is whether or not the

problem can be solved in polynomial time. This simply means that there is an algorithm

which solves the problem in time O(nc) for some c ∈ N where n is the size of the input. We

denote the set of all such problems as P . We then have another class of problems which we

can’t necessary solve in polynomial time but we can at least verify a solution in polynomial

time. We denote this set of problems as NP . Clearly P ⊆ NP but whether or not NP ⊆ P

as well is the famous P vs NP problem. Something we will use to show that the problems

we are working on are probably not in P is the notion of NP−hardness. We say that a

problem is NP−hard if it’s at least as hard as all other problems in NP . To show that a

problem is NP−hard is enough to show that if we can solve the problem in polynomial time

then we can also solve some other problem already know to be NP−hard in polynomial

time. In practice we do this using what is called polynomial reductions. To show that some

problem A is NP−hard we design an algorithm which takes as input an instance x of some

known NP−hard problem and in polynomial time returns an instance x′ of A where x′ is a

YES-instance if and only if x is a YES-instance. We say that a problem is NP−complete if

it’s both NP−hard and in NP .

2.1.3 Parameterized Complexity

Even if some problem X /∈ P , that does not mean that all instances of problems in X are

hard. For example there are a lot of graph problems which are not generally in P but if

we restrict the graphs to being just trees then they are in P . So if we have some language

L /∈ P we could still find some L′ ⊂ L where L′ ∈ P . One way to formalize this is in the

language of parameterized complexity theory which we will now introduce.

A parameterized problem is a language L ⊆ Σ∗ ×N. For an instance (x, k) ∈ Σ×N we

call k the parameter. A Fixed-Parameter Algorithm (FTP Algorithm) for a parameterized

problem L ⊆ Σ∗ × N is an algorithm which takes as input an instance (x, k) ∈ Σ∗ × N

6



and correctly decides whether or not (x, k) ∈ L in time bounded by f(k)|(x, k)|c for some

c and computable function f . If there exist such an algorithm problem we say that the

problem is in FTP. The idea is that k tells us something about the structure of the input

so we can solve the problem in polynomial time when k is fixed. Be briefly note that there

is something analogous to NP−hardness in Parameterized Complexity which is a whole

hierarchy of hardness called the W−hierarchy for problems believed to not be in FTP. See

the book by Cygan et al. [3] for more on parameterized complexity.

2.1.4 Kernelization

The central idea of a kernelization is simply reducing the size of the problem. For our usage

a kernelization algorithm for a parameterized problem L is a algorithm which takes as input

an instance (x, k) ∈ L and return in time polynomial in |(x, k)| a instance (x′, k′) where

x′, k′ ≤ h(k) for some computable function h and (x, k) ∈ L if and only if (x′, k′) ∈ L. h(k)

is called the size of the kernel. So if we find a kernel we have managed to bound the size

of the problem by some function of k. Our goal is in general to give a polynomial bound

but this is not always possible. We will structure our kernelization algorithms as a set of

reduction rule which given certain conditions are satisfied takes in an instance (x, k) and

returns a new smaller instance (x′, k′). We say that the reduction rule is safe if (x, k) ∈ L if

and only if (x′, k′) ∈ L. See the book by Fomin et al. [4] for more about kernelization.

2.2 Graphs

A graph is a tuple G = (V,E), where V and E are finite sets and the elements of E are

unordered distinct pairs from V . The elements in the sets V and E are called vertecies and

edges respectively, and denoted V (G) and E(G). We denote the elements of E(G) by the

2 elements of V (G). For example, v1v2 ∈ E(G) is the edge between v1, v2 ∈ V (G). The

graphs we consider are simple which means they do not have self edges, so vv /∈ E(G) for

all v ∈ V (G). Given a graph G, we say that a graph H is a subgraph of G, denoted H ⊆ G,

if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H ⊆ G we say that H is an induced subgraph if

for any edge uv ∈ V (G) we have that uv ∈ E(H) if and only if u, v ∈ V (H). For a vertex

set U ⊆ V (G) the graph induced by U written G[U ] is the subgraph with vertex set V and

edge set all including all edges which have both endpoints in V . If X ⊆ V (G) we let G−X

denote the induced subgraph G[V (G)\X].

7



The complete graph with n vertecies, denoted Kn is the graph where every pair of

distinct vertecies are connected by an edge. A clique is an induced subgraph which is

complete. For a integer i let [i] = {1, ..., i}. A path in a graph is a sequence of vertecies

v1....vn where vivi+1 ∈ E(G) for all i ∈ [n− 1]. If such a path exist we say that v1 and vn are

connected. A component in a graph is a subgraph induced by a maximum set of vertecies

which are all connected. A cluster graph is a graph where all components are cliques. Let

P3 denote the graph with 3 vertecies u, v, w where uv, vw ∈ E(P3) and uw /∈ E(P3). We

usually denote this P3 as uvw. We say that a graph G contain a P3 if G contains a P3 as an

induced subgraph.

Given a vertex v and graph G, the open neighborhood of v, written NG(v) is defined

to be the set of all vertecies u ∈ V (G) such that uv ∈ E(G), and the closed neighborhood is

defined as NG[v] = N(v) ∪ {v}. We usually omit G when it’s clear by the context. We say

that u and v are twins if N [u] = N [v]. Given a set of vertecies U we let N [U ] =
⋃

v∈U N(v)

and N(U) = N [U ]\U . A module is a is a set of vertecies M such that N(u)\M = N(v)\M ,

for all u, v ∈M .

2.2.1 Colored graphs

A colored graph is a tuple (G, c) where G is a graph and c is a function c : V (G) → N. We

call c(v) the color of the vertex v. Also we let |c| denote the size of the image of c. We will

refer to |c| as l. In general we assume c is a function c : V → [l], since we can always relabel

the colors. If H ⊆ G, let Colori(H) be the set {v ∈ V (H)|c(v) = i} and let Color∗i (H) be

the set Colori(NG[V (H)]). We say that H is balanced for some rational constant α ≥ 1 if

|Colori(H)| ≤ α|Colorj(H)| for all i, j ∈ [l] otherwise we say that H is unbalanced. We also

say that two colors i and j are balanced in H if 1
α
|Colori(H)| ≤ |Colorj(H)| ≤ α|Colori(H)|,

otherwise we say that i and j are unbalanced in H. We introduce the notation dH(i, j) to

mean ||Colori(H)| − |Colorj(H)|| and d∗H(i, j) to be ||Color∗i (H)| − |Color∗j (H)||, when the

context is clear we sometimes just write d(i, j) and d∗(i, j). And finally we write i = max(H)

if |Colori(H)| ≥ |Colorj(H)| for all j ∈ [l] and min(H) the same just smallest color class.

max∗(H) and min∗(H) are the same just with Color∗(H) instead.

For the rest of the paper we assume α ≥ 1 is a rational constant, α = a
b
, where a ≥ b ≥ 1

are integers with common factors.

8



Chapter 3

Some basic results

We will now presents some useful results which are all well known and used in kernelizations

of the CLUSTER VERTEX DELETION problem, but we provide proofs for completeness.

We usually write CVD for the CLUSTER VERTEX DELETION PROBLEM and α−BCVD
for the α−BALANCED CLUSTER VERTEX DELETION problem.

Lemma 3.1. [3] A graph G is a cluster graph if and only if G contain no P3 as an induced

subgraph.

Proof. First assume G is a cluster graph. If there is any P3 = uvw in G, then uw /∈ E(G)

and since u and w are in the same component, this component can not be a clique. So G is

not a cluster graph.

Now assume G has no P3. Then if any component is not a clique it must contain two

vertecies u,w where uw /∈ E(G), and since u and w are in the same component there must be

a path uv1...vnw between them. Now let vi be the last vertex on the path, where uvi ∈ E(G),

then uvivi+1 where vi+1 could be equal to w is a P3.

Lemma 3.2. If u has a twin in V (G), then G− {u} has a P3 if and only if G has a P3.

Proof. Assume that G− {u} has a P3, then clearly G does as well. Now if G has a P3 and

G\{u} does not then the P3 must have included u, but since u has a twin, call it v. Any P3

with u is still a P3 if u is replaced with v, so G also has a P3.

Lemma 3.3. Let G be a graph with a clique module U and U ′ ⊂ U , where U −U ′ ̸= ∅, then
G has a P3 if and only if G− U ′ has a P3.

Proof. Assume that G has a P3. There must be some vertex v ∈ U which is also in G− U ′.

Label the vertecies in U ′ as v1, ..., vn and let Gi = G− {v1, ..., vi}. For any i ∈ [n], vi has a

9



twin v in Gi−1 since U is a module which means that vi and v has the same neighborhood

outside U , and since U is a clique v and vi has the same neighborhood in U as well. So Gi

has a P3 as well by Lemma 3.2. On the other hand if G − U ′ has a P3 then clearly G does

as well.

Lemma 3.4. If G is a graph with a clique module U , U ′ ⊆ U and |U\U ′| > k, then S∗ is

a solution to the CVD instance (G, k) if and only if S∗ is a solution to the CVD instance

(G− U ′, k).

Proof. Let G′ = G−U ′. Start by assuming (G, k) is an YES-instance with solution S∗, then

clearly S∗ is a solution to (G′, k) as well since G′ ⊆ G.

For the other direction assume that (G′, k) is a YES-instance with solution S∗. We

claim that S∗ is a solution to (G, k) as well. To see why assume that S∗ is not a solution to

(G, k) , which by Lemma 3.1 means that G−S∗ has some P3. Since G′−S = (G−S∗)−U ′

we see that if we apply Lemma 3.3 to the graph G−S∗ that G−S must have have P3, since

(U\S∗)\U ′ ̸= ∅ since |U\U ′| > k and |S∗| ≤ k (which are the conditions to apply Lemma

3.3). This contradicts the fact that S∗ is a solution to (G′, k).

The following Lemma is from Koana and Nichterlein in [7].

Lemma 3.5. We can find an induced P3 in G in time O(|V |+ |E|).

10



Chapter 4

Hardness

In this section we will prove the hardness of α−BCVD. We will do this by reducing from

the well known NP-complete problem CLUSTER VERTEX DELETION (CVD) [5].

Cluster vertex deletion

Input: A graph G = (V,E) and integer k.

Output: Does there exist a set X ⊆ V , where |X| ≤ k, so that G−V is a cluster graph

Algorithm 4.1
Input: Instance of CVD (G, k), integer l and rational number α = a

b
≥ 1.

Output: Instance of α−BCVD (G′, k′).

Given an instance of CVD (G, k), and the value of l. We create a instance of α−BCVD
(G′, k′) with coloring c, the following way.

� For each v ∈ V (G), create and add the vertecies v1, v2, ..., vl to V (G′), where c(vi) = i
for all i ∈ [l]. Also add the edges to E(G′) such that G′[v1, ..., vl] becomes an induced
clique.

� For each uv ∈ E(G) put uivj in E(G′), for all i, j ∈ [l].

� Finally let k′ = lk.

Theorem 5. α-BALANCED CLUSTER VERTEX DELETION is NP-complete for any

value of l and α = a
b
≥ 1.

Proof. First it is easy to see that α−BCVD is in NP since given a proposed solution X, we

can simply check that all the components C of G−X are cliques, and that 1
α
|Colori(C)| ≤

11



|Colorj(C)| ≤ α|Colori(C)| for i, j in [l]. This can clearly be done in polynomial time.

We now want to show that α−BCVD is NP-hard by reducing from the NP-Hard problem

CVD. Given an instance (G, k) of CVD, apply Algorithm 4.1 and let (G′, k′) be the resulting

instance of α−BCVD. We now want to show that (G, k) is a YES-instance of CVD if and

only if (G′, k′) is a YES of α−BCVD.

First assume (G, k) is a YES-instance with solution X. We then create a solution X ′

to (G′, k′) the following way. For each v ∈ X, add v1, ..., vl to X ′. To see that X ′ is a

solution we observe that if there are any P3 = uavbwc in G′ −X ′ then u, v, w are all distinct

vertecies since otherwise uawc is an edge in E(G′). So this P3 correspond to the P3 uvw

in G − X since u, v, w /∈ X and the fact that ua, ub ∈ E(G′), uawc /∈ E(G′) means that

uv, vw ∈ E(G), uw /∈ E(G). This a contradiction. For the color ratios of the clusters in

G′ − X ′, we observe that the clusters in G′ − X ′ have the same number of vertecies from

each color, since for each v ∈ X we put one vertex from each color in X ′ and these vertecies

must all be in the same cluster in G′ − X ′ since G[v1, ..., vl] is a clique. So the ratios will

be satisfied for any α. We also see that |X ′| ≤ lk = k′, since l vertecies are added for each

vertex in X and |X| ≤ k.

Now assume (G′, k′) is a YES-instance with solution X ′. We construct a solution X to

(G, k) by inserting v ∈ V (G) into X, for all v ∈ V (G) if {v1, ..., vl} ⊆ X ′. So see why X is a

solution observe that if there is any P3 = uvw in G −X then there must be corresponding

vertecies ui, vj, wk /∈ X ′. Then By the way G′ was constructed uivj, vjwk ∈ E(G′) and

uiwk /∈ E(G′), so this is a P3 in G′ − X ′, a contradiction. We also see that |X| ≤ lk
l

= k

since there must be at least l vertecies in X ′ for every vertex we add to X.

12



Chapter 5

FTP-algorithm for α−BCVD

We will give a simple branching algorithm for α−BCVD. The algorithm will be presented

as a series of steps to be applied exhaustively. We let (G, k) be an instance of α−BCVD.

(Rule 5.1) If k < 0, then return NO.

(Rule 5.2) If there exist a P3 = uvw in G, branch to the 3 instances (G − {u}, k −
1), (G− {v}, k − 1) and (G− {w}, k − 1).

Lemma 5.1. Rule 5.2 is safe and can be done in time O(|V |+ |E|).

Proof. By Lemma 3.5 we can find a P3 in O(|V |+ |E|) time. For the safeness we note that if

one of the branches is a YES-instance then clearly (G, k) is as well. For the other direction

if (G, k) is a YES-instance and there is a P3 in G, then one of the vertecies in this P3 clearly

have to be deleted, so we try all 3 possibilities.

By applying rules 5.1 and 5.2 we obtain a cluster graph. However this graph may have

unbalanced cliques. To fix this we apply the following algorithm.

13



Algorithm 5.1 Fix Clique
Input: Clique C.
Output: A set X ⊆ V (C), where C −X is balanced
.

1: X ← Empty set.
2: while |Colori(C)\X| < 1

α
|Colorj(C)\X| for some i, j ∈ [l] do

3: X ← X ∪ {v} for some v ∈ Colorj(C)\X
4: return X.

Lemma 5.2. Algorithm 5.1 can be applied in time O(|V (C)|), where C is the clique in the

input.

Proof. Start by sorting the colors using count sort in O(|V (C)|) time. Then starting with

the biggest color simply delete vertecies until this color is balanced with the smallest color.

Then move to the next biggest color and repeat this process until C is balanced.

(Rule 5.3) For each component C in G which is not balanced, apply Algorithm 5.1

on C to get XC and let X =
⋃

XC . If |X| ≤ k then return YES otherwise return NO.

Lemma 5.3. Reduction 5.3 is safe and can be applied in time O(|V |+ |E|).

Proof. First we need to compute the components of G. This can be done in O(|V | + |E|)
time with a simple DFS-search. Then to find a clique C which is not balanced we sort the

colors in each clique using count sort which is done inn O(|V (C)|) time for each clique so

O(|V |) time in total. For the safeness we clearly need to balance all the cliques and the only

way to do this is to delete vertecies from the colors which have to many vertecies in some

clique. If we have to do more than k deletions to balance all the cliques then we clearly have

a NO-instance.

We can now prove theorem 1.

Theorem 1. There is a FTP algorithm for α−BALANCED CLUSTER VERTEX DELE-

TION, running in time O(3k(|V |+ |E|)).

Proof. Rule 5.2 is first applied exhaustively. The result is up to 3k branches where G is a

cluster graph and k ≥ 0 since any branch with to many deletions is killed by Rule 5.1. For

each branch, Rule 5.3 gets applied in O(|V |+ |E|) time and returns either YES or NO.

14



Chapter 6

O(k2l) kernel for α−BCVD

6.1 Overview

We give a overview of the method we will use to obtain a O(k2l) vertex kernel. We start by

constructing a 3k−approximate solution S which we will use as a modulator. We then look

at the cliques in G − S which we denote as the set C. Our next step is to construct a set

M ⊆ V (G) of what we call marked vertecies, and bound the size of this set. We then also

bound the number of cliques in C. All of these steps are already used in the best kernel for

the CVD problem.

The reason for constructing the set M is that the vertecies in a clique C ∈ C which are

not in M , form a module. Most of the chapter is concerned with bounding the number of

these unmarked vertecies.

To bound the number of unmarked vertecies we split the cliques C ∈ C into two cases.

The first is where the distances between the number of vertecies in two colors are large.

We can then remove a unmarked vertecies from colors which have a lot of vertecies and

b unmarked vertecies for colors which have few vertecies, as long as there are a least a

unmarked vertecies with each color to delete, and that we do not bring the number of

unmarked vertecies in the clique below k when we delete vertecies.

If some color i have less that a unmarked vertecies we denote C as a missing cliques,

and we are able to bound the number of vertecies in these cliques by the number of marked

vertecies, since if C contain a lot of vertecies with color i, then it must contain a lot of

marked vertecies.

If we can not delete unmarked vertecies since the number of unmarked vertecies in the

clique would become less than k, the situation is more complicated. We define something

15



called linear cliques, which are cliques with less than θlk vertecies (Where θ is a constant),

and argue that there are at most 5k cliques which are not linear and are missing unmarked

vertecies because these cliques must contain a lot of marked vertecies. This give us the

desired bound for these kind of cliques. For linear cliques we divide the cliques up even

further.

We say that a linear clique C ∈ C is connected if the unmarked vertecies in C are

connected to S. We are able to bound the vertecies in these cliques by arguing that if we

have a lot of such vertecies there is some vertex in S which have to many connections to at

least two different cliques in C.
For cliques which are not connected we define what we call hidden cliques which are

cliques C where the unmarked vertecies are not connected to S, C is balanced and C contains

a lot more unmarked vertecies than marked vertecies. We are able to bound the number

of vertecies in hidden cliques by again dividing the cliques in the 2 cases when the color

distances are either small or large, but now we are able to remove the requirement that

we do not bring the number of unmarked vertecies below k to obtain a better bound than

before.

For cliques C which are not hidden one of the following conditions are true. C must be

connected, C is unbalanced (at most 4k such cliques) or the number of unmarked vertecies

is bounded by a factor times the number of marked vertecies in the clique. We are able to

deal with all these cases.

Now if the distances between colors are small, then we argue that if we have a lot of

vertecies with each color the clique must be ”very” balanced so we can safely remove an

unmarked vertex. If one of the conditions for applying this reduction fails the analysis is

almost the same as when the distances are large.

6.2 Marked vertecies

We call the the instance of α−BCVD with l = 2, k = 0 and the graph being a single vertex

of color 1 the trivial NO-instance, and we call the instance where the vertex set of the graph

is empty instead the trivial YES-instance. In this section we will give some basic reduction

rules that are all well known from work on the regular CVD problem. We apply all reduction

rules from the top exhaustively, and whenever we apply an reduction we also go back to the

start and recompute everything. We will generally assume the data structure of the graph

is an adjacency list for the runtime analysis.

16



(Rule 6.1) If k < 0, return the trivial NO-instance.

Now a lot of the reduction rules are based on first applying the following trivial 3k

approximation algorithm the same way as done by Le et al. [8].

Algorithm 6.1 Approximation algorithm

X ← {}
while There exist P3 = uvw in G−X do
X ← X ∪ {u, v, w}

return X

Lemma 6.1. Algorithm 6.1 is a 3-approximation algorithm for CVD and can be applied in

time O(|V |(|V |+ |E|)).

Proof. Let X be the set returned by the algorithm. It easy to see there are no P3 in G−X

,since one of it’s vertecies must be in X. Let S be a solution to the CVD instance (G, k).

For each set of vertecies u, v, w that is added to X at least one of these vertecies must be

in S, otherwise there would a P3 in G − S. Therefore we see that |S| ≥ |X|
3

. We can find

a P3 in a graph in time O(|V | + |E|) by Lemma 3.5, so we get a running time bounded by

O(|V |(|V |+ |E|)).

Now we define S be the approximate solution (modulator) returned by Algorithm 6.1,

and let C be the set of cliques in G−S, where each element C ∈ C is a component of G−S.

Whenever we apply any reduction rule we recompute S and C.
We need a way to reason about the cliques in C ∈ C after applying some solution to

G. Given a solution S∗ there is a natural mapping from C to some clique in G − S∗ that

contain C. We make the following definition. If X ⊆ V (G), C ′ ⊆ C for some C ∈ C and

G′ ⊆ G, we define the mapping fG′
X (C ′) = G′[NG′ [C]\X]. We usually omit G′ and just write

fX(C ′) when the context is clear. So f is more or less a mapping from a clique in C to the

clique in G−X containing some of this clique.

If our approximate solution is too big, then we have a NO-instance.

(Rule 6.2) If |S| > 3k then return the trivial NO-instance.

Lemma 6.2. Reduction rule 6.2 is safe and can be applied in time O(|V |).

17



Proof. By lemma 6.1 Algorithm 6.1 is a 3-approximation algorithm, so if |S| > 3k then there

is no solution of size at most k. Also we can check the size of S in time O(|V |) time since

|S| ≤ |V |.

For any clique C we say that color i and j are balanced in C if 1
α
|Colori(C)| ≤

|Colorj(C)| ≤ α|Colori(C)|, otherwise we say that i and j are unbalanced. If C have any

unbalanced colors we say that C is unbalanced otherwise we say that C is balanced.

In the CVD problem, isolated cliques can simply be removed from G without decreasing

k, since these cliques will not affect the problem at all, but in α−BCVD we need to balance

the isolated clique before deleting it. This means we need to spend some of our deletion

budget if the isolated clique is not balanced.

(Rule 6.3) If C ∈ C is a isolated clique, then apply Algorithm 5.1 on C to get X, and

return (G− V (C), k − |X|).

Lemma 6.3. Reduction rule 6.3 is safe and can be applied in time O(|V |+ |E| log |V |).

Proof. Since C is an isolated clique it does not matter what vertex we delete when it comes

to deleting P3-s. Now if two colors are not balanced, the only way to fix this is to remove

a vertex from the largest of these color (the color with the most vertecies). This is what

the algorithm does. After the Algorithm finishes C\X must be balanced by the stopping

condition of the loop in Algorithm 5.1.

To find an isolated clique we simply go through each clique in C ∈ C and see if there is

an edge between C to a vertex outside C. This can be done in time O(|V |+ |E|) by checking

each edge and marking a clique as not isolated whenever an edge goes from C to a vertex

outside C. Then apply Algorithm 5.1 to a isolated clique in time O(|V |) if one is found.

Finally deleting the vertecies is done in O(|E| log |V |) time by going through the adjacency

list using a hash set.

Now we will introduce a algorithm called Mark. This algorithm is used in the current

best known kernel for CVD in [8]. We keep a set of edges mark(s) for each s ∈ S with the

property that for each edge uv ∈ mark(s), suv is a P3. We also let M be the set of vertecies

which which is contained in an edge in mark(s), for some s, and we only add an edge uv to

mark(s), if neither u or v is in M .

18



Algorithm 6.2 Mark

1: M ← ∅
2: mark(s)← ∅ for all s ∈ S
3: for i = 1, .., k + 1 do
4: for s ∈ S do
5: if ∃C ∈ C ∃uv ∈ E(C) so su ∈ E(G) and sv /∈ E(G) and {u, v} ∩M = ∅ then
6: M ←M ∪ {u, v}
7: mark(s)← mark(s) ∪ {uv}

Lemma 6.4. Algorithm 6.2 can be applied in time O(|V |2(|V |+ |E|)).

Proof. Keep a list of all vertecies not in M , since those are the only vertecies we need to

consider in each iteration of the inner loop. To find the vertecies u and v we run a BFS from

s. If we find a vertex u with a neighbor u with distance 1 more from s than itself, and where

u and v are in the same clique. These two vertecies become u and v. This BFS can be done

in time O(|V |+ |E|) so we get a total time of O(|V |2(|V |+ |E|)), since the loop starting on

line 5 will run a total of less than |V |2 times.

We will for the rest of the paper denote the set M as the result of running Algorithm

6.2. Whenever we apply any of the reduction rules from now on we will rerun algorithm

6.2 and get a new set M . We call the vertecies of M marked vertecies, and the vertecies of

V (G)\M unmarked vertecies.

If a vertex s is in a part of more than k P3-s, which has no vertex other than s in

common, then s must be deleted.

(Rule 6.4) If |mark(s)| ≥ k + 1 for some s ∈ S, then return (G− s, k − 1).

Lemma 6.5. Reduction 6.4 is safe and can be applied in time O(|V |+ |E|)

Proof. Assume that |mark(s)| ≥ k + 1 for some s ∈ S. We want to prove that if S∗ is a

solution then s ∈ S∗. So assume that s /∈ S∗. For any edges uv, xy ∈ mark(s) we have that

{u, v} ∩ {x, y} = ∅ since M contains the vertecies of one of these edges when the other is

considered, then since s /∈ S∗ for each uv ∈ mark(s), u ∈ S∗ or v ∈ S∗, since suv is a P3. So

|S∗| ≥ k + 1 which is a contradiction.

To apply the algorithm we need to check the size of mark(s) for each s ∈ S. So we simply

count the size of these sets. The total size of all of them can be at most |V |. So this takes

at most O(|V |) time. Deleting a vertex is done in O(|E|) time in an adjacency list.

19



For any s ∈ S, let NC(s) ⊆ C be the set of all cliques C ∈ C where s is connected to C.

We will use the following rule to bound the number of cliques in C.

(Rule 6.5) If some s ∈ S satisfies |NC(s)| > k + 1, then return (G− s, k − 1).

Lemma 6.6. Reduction rule 6.5 is safe and can be applied in time O(|V |+ |E|).

Proof. Assume S∗ is a solution to (G, k) and s /∈ S∗. If |NC(s)| > k + 1 then s is connected

to at least k + 2 cliques C1, ..., Ck+1, Ck+2 ∈ NC(s). Since |S∗| ≤ k at least 2 of the cliques

Ca, Cb have no vertecies in S∗. This means that there is a P3 in G− S∗.

To apply the Reduction rule we need to calculate |NC(s)| for each s ∈ S. We go through all

the cliques C ∈ C. If there is any vertex v ∈ C where vs ∈ E(G) for some s ∈ S, then we

increase the count of |NC(s)| by one. This can all be done in time O(|V |+ |E|). In the end

we just need to check the size of |NC(s)| and potentially delete a vertex in time O(|E|).

Reduction rule 6.3 and 6.5 then gives us the following bound on the number of cliques

in C.

Observation 6.1. |C| ≤ 3k2 + 3k.

Proof. From Reduction 6.3 there are no isolated cliques, which means that all cliques in C
must be connected to some vertex in S. Then by Reduction rule 6.5 any vertex in S is

connected to at most k+1 different cliques. Then since |S| ≤ 3k by Reduction rule 6.2 there

are at most (k + 1)3k = 3k2 + 3k cliques in C.

The number of marked vertecies is also bounded.

Observation 6.2. |M | ≤ 6k2

Proof. Every time a pair of vertecies is added to M an edge is also added to mark(s) for

some s ∈ S. Since for each s ∈ S, |mark(s)| ≤ k and |S| ≤ 3k from Reduction rules 6.4 and

6.2 respectively, there can be at most 3k(2k) = 6k2 vertecies in M .

We already now have a good bound on the number of marked vertecies. The rest of the

chapter will be concerned with giving a bound on the number of unmarked vertecies. The

reason for dividing up the vertecies this way is the very useful and well known fact that the

unmarked vertecies of the cliques in C are modules.

Observation 6.3. For any C ∈ C, V (C)\M is a module.

20



Proof. Assume that there is some C ∈ C where C −M is not a module, then there are two

vertecies u, v ∈ V (C)\M so that su ∈ E(G) and sv /∈ E(G), but then there vertecies u and

v satisfies the requirements on line 6 of Algorithm 6.2. If the loops ends before the vertecies

can get marked ,then Reduction rule 6.4 would be applied, and algorithm 6.2 would be run

again.

6.3 Main Rules

In this section we present the two main Reduction rules. One of the rules is for when the

maximum distance (in terms of number of vertecies) between two colors are large and the

other one is for when this distance is small. We already obtain a O(k3l) using these rules

and an a couple of Observations.

We note that a and b are the integers from the definition α = a
b
. If some colors i and

j are balanced in some clique C and |Colori(C)| ≥ |Colorj(C)|, then if we add a vertecies

with color i and b vertecies with color j to C, color i and j will still be balanced. This works

in the other direction as well (deleting vertecies instead) if certain conditions are satisfied.

We note that we are talking about any cliques, and not just cliques in C.

Lemma 6.7. If for any cliques C and C ′, |Colori(C
′)| = |Colori(C)|+a and |Colorj(C

′)| =
|Colorj(C)| + b, then if |Colori(C)| ≥ |Colorj(C)|, and i and j are balanced in C, they are

also balanced in C ′. If also |Colori(C
′)| ≥ |Colorj(C

′)|+ a, then i and j are balanced in C ′

if they are balanced in C.

Proof. Let C and C ′ be the cliques where |Colori(C
′)| = |Colori(C)| + a, |Colorj(C

′)| =

|Colorj(C)| + b and |Colori(C)| ≥ |Colorj(C)|. First assume that i and j are balanced in

C. It is clear that |Colorj(C
′)| ≤ α|Colori(C

′)|, since |Colori(C)| ≥ |Colorj(C)| and a ≥ b

(Since we ”add” at least as many vertecies with color i as j). To verify that |Colori(C
′)| ≤

α|Colorj(C
′)| as well we have.

|Colori(C
′)| = |Colori(C)|+ a

≤ a

b
|Colorj(C)|+ a (1)

≤ a

b
(|Colorj(C

′)| − b) + a

=
a

b
|Colorj(C

′)| − ab

b
+ a

= α|Colorj(C
′)|.

21



We use the assumption that i and j are balanced in step (1). So we can conclude that i and

j are balanced in C ′ as well.

Now for the second part assume that |Colori(C
′)| ≥ |Colorj(C

′)| + a and that i and j

are balanced in C ′. We clearly have that |Colorj(C)| ≤ α|Colori(C)|, since |Colori(C
′)| ≥

|Colorj(C
′)|+ a. For the other direction we get.

|Colori(C)| = |Colori(C
′)| − a

≤ a

b
|Colorj(C

′)| − a

=
a

b
(|Colorj(C)|+ b)− a

= α|Colorj(C)|+ a− a

= α|Colorj(C)|

So we can conclude that i and j are balanced in C as well.

We only really need to check that the biggest and smallest color (with respect to the

number of vertecies) is balanced to conclude that a clique is balanced.

Lemma 6.8. For any clique C, if the color max(C) and min(C) are balanced, then C is

balanced.

Proof. For any colors i, j ∈ [l], we have that |Colorj(C)| ≤ |Colormax(C)| ≤ 1
α
|Colormin(C)| ≤

1
α
|Colori(C)|. This means that C is balanced.

In the next reduction rule we will utilize Lemma 6.7 to delete unmarked vertecies. The

set of unmarked vertecies in a clique form a module, so they can in some sense be treated as

being the same vertex. So our only concern is the color ratios and bringing the number of

unmarked vertecies in a clique C below k because then we can delete this ”vertex” where as

we could not before. The idea of the Reduction rule is then to delete a vertecies with colors

which could become the maximal color after applying a solution, and b vertecies from any

color which could potentially become the minimal color after applying a solution. Then if

we add these vertecies back, the same solution still works. Also if we have a solution for the

original instance which is disjoint of any deleted vertex, then the same solution works for

the reduced instance.

22



(Rule 6.6) If some C ∈ C satisfies the following conditions:

� d∗C(min∗(C),max∗(C)) > 2k + 2a,

� |Colori(C)\M | > a,

� |V (C)\M | > k + a ∗ l,

Then we construct a set of vertecies A the following way. For each i ∈ [l]

� If d∗C(i,max∗(C)) ≤ k + a, then put a vertecies from Colori(C)\M in A.

� If d∗C(i,min∗(C)) ≤ k + b , then put b vertecies from Colori(C)\M in A.

Finally return (G− A, k).

Lemma 6.9. Reduction rule 6.6 is safe and can be applied in time O(|V |+ |E| log |V |).

Proof. We first note that if the conditions for applying Reduction rule 6.6 is satisfied, then

for any i ∈ [l] we can not have both d∗C(i,max∗(C)) ≤ k + a and d∗C(i,min∗(C)) ≤ k + b be

true at the same time, since d∗C(min∗(C),max∗(C)) > 2k + 2a.

Let G′ = G − A, C ∈ C be the clique which Reduction rule 6.6 is applied to and

CR = C − A.

First assume (G′, k) is a YES-instance with solution S∗, we claim that S∗ is a solution

to (G, k) as well. We first need to prove that there is no P3 in G − S∗. We use Lemma

3.4 on the graph G − S∗ with U = V (C)\M (which is a module by Observation 6.3, and

clearly a clique) and U ′ = A. Then |U\U ′| > k, since |U | > k + al and |U ′| ≤ al. So since

(G′− S∗) = (G− S∗)−U ′, Lemma 3.4 and Lemma 3.1 gives us that G− S∗ has no P3 since

G′ − S∗ does not.

Now let C ′ = fG
S∗(C) and C ′

R = fG′
S∗ (CR). To verify that C ′ is balanced we only need

to check that min(C ′) and max(C ′) are balanced by Lemma 6.8. It is clear that only

colors i where d∗C(i,max∗(C)) ≤ k or d∗C(i,min∗(C)) ≤ k can become max(C ′) and min(C ′)

respectively, since at most k vertecies can be deleted from any one color in N [C]. So if

we let i = max(C ′) and j = min(C ′) we know that there are a vertecies with color i

and b vertecies with color j in A. This means that |Colori(C
′
R)| + a = |Colori(C

′)| and

|Colorj(C
′
R)| + b = |Colorj(C

′)|. We now want to apply Lemma 6.7 to the cliques C ′

and C ′
R. We know that i and j are balanced in C ′

R, also since d∗CR
(i, j) ≥ k we get that

|Colori(C
′
R)| ≥ |Colorj(C

′
R)|, since at most k vertecies can be deleted from Color∗i (CR). So

by Lemma 6.7 color i and j are balanced in C ′ as well.

Now assume (G, k) is a yes instance with solution S∗ and let C ′ = fG
S∗(C). We first

23



want to modify S∗ such that S∗ ∩A = ∅, where A is the set of vertecies from the Reduction

rule. To do this we do the following. For each v ∈ S∗ ∩A with color i remove v from S∗ and

replace it with any vertex in Colori(C)\(A ∪ S∗). First assume there are enough vertecies

in Colori(C)\(A ∪ S∗) for all i to do this replacement, and call the new solution S ′.

To see that S ′ is still a solution we see that the color ratios of C ′ did not change. Let

U ′ be the set of vertecies we removed from S∗, and let U = V (C)\M . We then have that

U\U ′ ̸= ∅ (since |U ′| ≤ |S∗| ≤ k ), and since (G−S ′)−U ′ ⊆ G−S∗ means that (G−S ′)−U ′

does not have a P3 since G − S∗ does not. This means that G − S ′ does not have a P3 by

Lemma 3.3 and Lemma 3.1.

If this replacement was not possible due to too few vertecies in Colori(C)\(A ∪ S∗)

for some i, then |Colori(C
′)| ≤ 2a since if |Colori(C

′)| > 2a then there must be at least

a vertecies in Colori(C
′)\A, which means the replacement would be possible. In this case

we simply let S ′ = S∗\(Colori(C) ∪ A) (For all colors i where the replacement was not

possible). To see that S ′ is still a solution let C ′′ = fS′(C) and let U = V (C)\M and U ′ be

the set of all vertecies we removed from S∗ to create S ′. We observe that U\U ̸= ∅ and that

(G− S ′)− U ′ ⊆ G− S∗ which means (G− S ′)− U ′ does not have a P3, so G− S ′ does not

have a P3 by Lemma 3.3.

For the color ratios we increased the the size of |Colori(C
′)| so the only thing we need to

verify is that |Colori(C
′′)| ≤ |Colormax(C′)(C

′)|, which is true since d∗C(min∗(C),max∗(C)) >

2k + 2a, which means dC′(max(C ′),min(C ′)) > k + 2a ≥ 2a. So since |Colormax(C′)(C
′)| >

2a we get |Colori(C
′′)| < |Colormax(C′)(C

′)|, since |Colori(C
′)| ≤ 2a. Now let S∗ = S ′,

C ′ = fG
S∗(C) and C ′

R = fG′
S∗ (CR).

We want to prove that S∗ is a solution to (G′, k) as well. There is no P3 in G′−S∗ since

G′ − S∗ ⊂ G − S∗. Now for the color ratios let i = max(C ′
R) and j = min(C ′

R). We now

want to apply the second part of lemma 6.7 to C ′. We know that d∗CR
(i,max∗(CR)) ≤ k and

d∗CR
(j,min∗(CR)) ≤ k, which means d∗C(i,max∗(C)) ≤ k+a and d∗C(j,min∗(C)) ≤ k+ b. So

there are a vertecies in Colori(C) ∩ A and b vertecies in Colorj(C) ∩ A which means that

|Colori(C
′
R)| + a = |Colori(C

′)| and |Colorj(C
′
R)| + b = |Colorj(C

′)|. We also know that

|Colori(C
′)| ≥ |Colorj(C

′)|+a since that fact that d∗C(i, j) ≥ k+a means that dC′(i, j) > a.

So all the conditions for Lemma 6.7 are satisfied which means that C ′
R is balanced since C ′

is.

To apply the reduction rule we first need to determine if any cliques satisfy the first

distance requirement. To this for any clique we simply sort the colors using count sort in

O(|V (C)|+ |N(C)|) time. We can do this for all cliques in total time of O(|V |+ |E|) since

24



the total size of N(C) for all cliques is bounded by |E|. Then we can then check the 2

other requirements in O(|V |) time. Then we simply go through the rest of the colors and

check whether or not we need to delete any vertecies. In total we clearly delete at most |V |
vertecies, so the deletions can be done in O(|E| log |V |) if we do them all at the same time by

going through the adjacency list using a dictionary with all the vertecies to be deleted.

We are now going to look at the case when Reduction rule 6.6 can not be applied due

to the distance between the maximal and minimum color is too small. The idea is that if

the distances are small but all the colors have a lot of vertecies, then the clique has to be

balanced anyway.

Lemma 6.10. If for any clique C we have that |Colori(C)|, |Colorj(C)| ≥ c for some con-

stant c, then if dC(i, j) ≤ c(a−b)
a

, i and j are balanced in C.

Proof. Assume without loss of generality that |Colori(C)| ≥ |Colorj(C)|. We first show that

|Colori(C)| ≤ α|Colorj(C)|.

|Colori(C)| = a

b
|Colori(C)| − a− b

b
|Colori(C)|

≤ a

b
(|Colorj(C)|+ c(a− b)

a
)− a− b

b
|Colori(C)| (1)

≤ a

b
(|Colorj(C)|+ c(a− b)

a
)− c

a− b

b
(2)

=
a

b
|Colorj(C)|+ c

a− b

b
− c

a− b

b
(3)

= α|Colorj(C)|

In step (1) we use the assumption that dC(i, j) ≤ c(a−b)
a

and |Colori(C)| ≥ |Colorj(C)|, so

we get that |Colori(C)| ≥ |Colorj(C)| + c(a−b)
a

. In step (2) we use our assumption that

|Colori(C)| ≥ c. Finally in step (3) we simply multiply out a
b

in the first term.

Also since we assumed |Colori(C)| ≥ |Colorj(C)| clearly |Colorj(C)| ≤ α|Colori(C)|, which

means that i and j are balanced in C.

If α > 1, then let β = 5a2

a−b
+ 1. We will now use Lemma 6.10 in the following Reduction

rule which compliments Rule 6.6.

25



(Rule 6.7) If α > 1 and for some C ∈ C the following conditions are satisfied:

� d∗C(min∗(C),max∗(C)) ≤ 2k + 2a,

� |Color∗i (C)| ≥ βk,

� |V (C)\M | > 1 + k,

then let v be any vertex in V (C)\M , and return (G− {v}, k).

Lemma 6.11. Reduction rule 6.7 is safe and can be applied in time O(|V |+ |E| log |V |.

Proof. Let G′ = G− v, and let C be the clique the Reduction rule was applied to.

First assume S∗ is a solution to (G, k). We then claim S∗ is a solution to (G′, k) as well.

Clearly G′ − S∗ does not have a P3 since G− S∗ does not.

Now for the color ratios let C ′ = fS∗(C) and C ′
R = fG′

S∗ (CR). For any i, j ∈ [l] we see that

dCR
(max∗(CR),min∗(CR)) ≤ 2k + 2a + 1 since removing 1 vertex from each color increase

this distance by at most 1 which means dC′
R

(max(C ′
R),min(C ′

R)) ≤ 3k + 2a + 1, since S∗

deletes at most k vertecies, so increases the distance by at most k. We now want to apply

Lemma 6.10. Letting c = (3k+2a+1)a
a−b

Lemma 6.10 tells us that if dC′
R

(i, j) ≤
(3k+2a+1)

a−b
(a−b)

a
=

3k + 2a + 1 and |Colori(C
′
R)|, |Colorj(C

′
R)| ≥ c, then i and j are balanced in C ′

R. We know

that |Colori(C
′
R)| ≥ |Color∗i (CR)|−k ≥ βk− 1−k = 5a2

a−b
k+k− 1−k ≥ (ka+ka+ka+ka+ka)a

a−b
≥

(3k+2a+1)a
a−b

= c for all i ∈ [l], which means C ′
R is balanced.

For the other direction assume S∗ is a solution to (G′, k). And we will show S∗ is a

solution to (G, k) as well. let C ′ = fS∗(C) and C ′
R = C ′ − v. For the color ratios it is clear

that dC′(max(C ′),min(C ′)) ≤ 3k+2a then we can use precisely the same argument as above,

but now for C ′. To see that are no P3 in G − S∗ we apply Lemma 3.3 with U = V (C)\M
and U ′ = {v} to the graph G − S∗. Then since G′ − S∗ = (G − S∗) − U ′, G − S∗ does not

have a P3, since (G− S∗)\U ′ does not.

Applying the reduction can be done in time O(|V | + |E| log |V |) the same way as re-

duction rule 6.6.

We will in the rest of the chapter look at the several cases for when Reduction rules 6.6

and 6.7 can not be applied, and deal with these cases.

6.4 Missing cliques

We will start with one of the conditions for reduction rule 6.6 being applied which is that

all of the colors have more than a unmarked vertecies.

26



Denote a clique C ∈ C where |Colori(C)\M | < a for some i ∈ [l] as a missing clique.

Our goal in this section is to bound the number of vertecies in these cliques. Our first step

is the Observation that if we have to do too many operations to balance all the cliques in C,
then we know we have a NO-instance.

(Rule 6.8) If
∑

C∈C |Colormax(C)(C)| − α|Colormin(C)(C)| > 4αk , then return the

trivial no instance.

Lemma 6.12. Reduction rule 6.8 is safe and can be applied in time O(|V |).

Proof. Assume
∑

C∈C |Colormax(C)(C))| − α|Colormin(C)(C)| > 4αk. Then for any clique

C, let m = |Colormax(C)(C)| − α|Colormin(C)(C)|. If m > 0, C is not balanced since

|Colormax(C)(C)| > α|Colormin(C)(C)|. To balance C we need to either delete vertecies

from Colormax(C)(C) or bring vertecies with color min(C) from S into C. We can do at

most 4k of these operation since |S| ≤ 3k and we can delete at most k vertecies. Each of

these operation can decrease m by at most α. So if the sum is greater than 4αk not all

cliques can be balanced.

To apply the reduction rule for each clique C we need to sort the colors in O(|V (C)|)
time using count sort and add the difference between the smallest and largest color to the

total sum. So we get O(|V |) total time.

We will use reduction rule 6.8 to bound the number of unmarked vertecies in missing

cliques. The idea is that since one color i have very few unmarked vertecies, if there are a lot

of unmarked vertecies in this clique, then i have to have a lot of marked vertecies, otherwise

the clique become unbalanced. So in some sense we have to spend marked vertecies to add

unmarked vertecies. For each α(l − 1) unmarked vertecies a clique have, we have to to give

i one marked vertex if we are not to increase the ”unbalance of the clique”. Then reduction

6.8 gives a bound of how much ”unbalance” we can have in total.

Observation 6.4. For any missing clique C ∈ C, |V (C)\M |−a
l−1

≤ α(|V (C) ∩ M | + a) +

|Colormax(C)(C)| − α|Colormin(C)(C)|+ a.

Proof. Assume C ∈ C is a missing clique where i is the color such that |Colori(C)\M | < a.

First of all by the pigeon hole principle we get that |Colormax(C)(C)| ≥ |V (C)\M |−a
l−1

, because

at most a vertecies of |V (C)\M | have color i, so the rest most be distributed among the

l − 1 other colors. Also since color i only have marked vertecies except for the at most a

27



unmarked, we get that |Colori(C)| ≤ |V (C) ∩M |+ a. This gives us.

|Colormax(C)(C)| − α|Colormin(C)(C)| ≥ |Colormax(C)(C)| − α|Colori(C)| (1)

≥ |V (C)\M | − a

l − 1
− α(|V (C) ∩M |+ a)− a (2)

In step (1) we are using the fact that |Colormax(C)(C)| ≥ |Colori(C)| and in step (2) we use

that |Colormax(C)(C)| ≥ |V (C)\M |−a
l−1

and |Colori(C)| ≤ |V (C) ∩M |+ a.

Rearranging |Colormax(C)(C)|−α|Colormin(C)(C)| ≥ |V (C)\M |−a
l−1

−α(|V (C)∩M |+a)−a

gives us the desired inequality.

We can now give a bound on the number of unmarked vertecies in missing cliques.

Observation 6.5. There are at most a + (6α + 3aα + 3al)lk2 + (6aα + 4 + 6a)lk unmarked

vertecies in missing cliques.

Proof. Let Cm ⊆ C be the set of all missing cliques.∑
C∈Cm

|V (C)\M |

≤
∑
C∈Cm

(l − 1)(α(|V (C) ∩M |+ a) + |Colormax(C)(C)| − α|Colormin(C)(C)|+ a) + a (1)

≤ a(3k2 + 3k) + l
∑
C∈Cm

[α(|V (C) ∩M |+ a) + |Colormax(C)(C)| − α|Colormin(C)(C)|+ a]

(2)

≤ a + αl
∑
C∈Cm

[|V (C) ∩M |+ a] + l
∑
C∈Cm

[|Colormax(C)(C)| − α|Colormin(C)(C)|+ a] (3)

≤ a + αl(6k2 + a(3k2 + 6k)) + l(4k + a(3k2 + 6k)) (4)

= a + 6αlk2 + 3aαlk2 + 6aαlk + 4lk + al3k2 + al6k

= a + (6α + 3aα + 3al)lk2 + (6aα + 4 + 6a)lk

Step (1) is due to Observation 6.4, where we simply multiple both sides by l − 1 and add a

to both sides. In step (2) we bring out the last a from the sum, and multiply it by 3k2 + 3k

since |Cm| ≤ 3k2 + 3k by Observation 6.1. Then we factor out l from the sum. In step (3) we

simply split up the sum. And finally in step (4) the first sum is bounded by Observation 6.2

and Observation 6.1, and the seconds sum is bounded by Observation 6.4 and Observation

6.1.

28



6.5 Linear cliques

We are now going to look at the case when Reduction rule 6.7 can not be applied due to

|Color∗i (C)| < βk for some i. Let θ = αβ + 1, and denote cliques C ∈ C where |Colori(C)| ≤
θk for all i ∈ [l] as linear cliques. Our next step is bounding the number of vertecies in such

cliques.

Our first observation is that if two colors are more than k deletions away from being balanced

,then the clique can not be balanced. This means that in a YES-instance if one color have

less than βk vertecies in a clique, then the clique must be linear.

(Rule 6.9) If for any C ∈ C we have |Color∗i (C)| > α(|Color∗j (C)|)+k for some colors

i, j ∈ [l], then return the trivial NO-instance.

Lemma 6.13. Reduction rule 6.9 is safe and can be applied in time O(|V |).

Proof. Assume |Color∗i (C)| > α(|Color∗j (C)|) + k for some colors i, j ∈ [l], and that S∗ is a

solution to (G, k). Also let C ′ = fS∗(C). There can be at most k vertecies from Color∗i (C) in

S∗ which means that |Colori(C
′)| ≥ |Color∗i (C)|−k > α|Color∗j (C)|+k−k ≥ α|Colorj(C

′)|,
which means that C ′ is not balanced. To apply the Reduction rule we simply need to compare

to largest and smallest color in each clique which can be done in O(|V |) time using count

sort.

Observation 6.6. If for any C ∈ C there is a color i where |Colori(C)| < kβ, then C is a

linear clique.

Proof. Assume that there is some C ∈ C where |Color∗i (C)| < βk for some i ∈ [l] and

that there is some color j where |Color∗j (C)| > θk. We then get that |Color∗j (C)| > θk =

(α(β) + 1)k = αβk + k > α|Color∗i (C)| + k, which means Reduction rule 6.9 would be

applied.

Since we have l colors, we get a simple bound on the number of vertecies in a linear

clique.

Observation 6.7. Any linear clique C ∈ C have |V (C)| ≤ θlk.

29



6.6 Connected cliques

We are now gonna look at a sub-class of linear cliques. We give the following definition. We

say that a linear clique is connected if N(C −M) ∩ S ̸= ∅, so the unmarked vertecies of C

are connected to S. To bound the number of unmarked vertecies in connected cliques we

use the observation that since the clique is linear there is a bounded number of vertecies in

the clique. So if some vertex s ∈ S is connected to a lot of such vertecies then s have a lot

of connections to more than one clique.

For some subset D ⊆ C, we define V (D) =
⋃

C∈D V (C).

(Rule 6.10) If for any s ∈ S we can partition the set NC(s) into 2 sets C1 and C2 such

that |V (C1)| > k and |V (C2)| > k, then return (G− v, k − 1).

We will use an algorithm for the knapsack problem to compute Reduction rule 6.10,

which is the following problem.

KNAPSACK WITHOUT REPETITION

Input: A set of n items numbered 1, ..., n where each item have value vi and weight

wi, and capacity W .

Output: A subset of items I ⊆ [n] where
∑

i∈I vi is maximized with the condition that∑
i∈I wi ≤ W .

Lemma 6.14. Reduction rule 6.10 is safe and can be applied in time O(|V |3).

Proof. If any solution S∗ does not contain v then for each P3 on the form xvy where x ∈
V (C1) and y ∈ V (C2) we must put either V (C1) or V (C2) in S∗ which is impossible since

both of these are greater than k. To apply the Reduction we do the following. Let A be

an empty set and for each clique C ∈ NC(s) put the number |V (C)| into A. The question

then become if we can partition this set where both parts are greater than k. We can

view this as a knapsack problem without repetition where our knapsack capacity is ⌈
∑

a∈A a

2
⌉

where A represent both the weight and value of the items. This problem can be solved in

O(|S|(k + 1)) = O(|V |2) using a standard dynamic programming algorithm [9]. We can also

compute NC(s) in O(|V |) time. Doing this for all s ∈ S we use at most O(|V |3) time.

Observation 6.8. There can be at most 3θlk2+6k2 unmarked vertecies in connected cliques.

30



Proof. Assume there are more than 3θlk2+6k2 unmarked vertecies in connected cliques. Any

given linear clique contains at most θlk vertecies by Observation 6.7. Now each unmarked

vertex in a connected clique is connected to S since these vertecies form a module by Obser-

vation 6.3. So there must be a vertex v ∈ S which is connected to at least 3θlk2+6k2

3k
= θlk+2k

unmarked vertecies in connected cliques. Now this is a contradiction since we can construct

sets C1, C2 ⊆ NC(s) consisting of connected cliques by putting cliques C ∈ NC(s) into C1

until |V (C1)| > k. Then |V (C1)| ≤ θlk + k since |V (C)| ≤ θlk in connected cliques. This

means that |V (C2)| > θlk+2k− (θlk+k) = k, so Reduction rule 6.10 should be applied.

6.7 Hidden cliques

Next we are going to look at cliques where the number of unmarked vertecies are much

greater than the number of marked vertecies. We start by giving a bound on the number of

vertecies in cliques where the number of unmarked vertecies are not more than a constant

factor bigger than the number of marked vertecies.

Observation 6.9. There are at most (18α23a)lk2+3akl unmarked vertecies in cliques C ∈ C
where |V (C)\M | < 2α2l(|V (C) ∩M |+ |N(C)|) + al.

Proof. Let C ′ ⊆ C we the cliques C where |V (C)\M | < 2α2l(|V (C) ∩M | + |N(C)|) + al.

Then ∑
C∈C′

|V (C)\M | ≤
∑
C∈C′

2α2l(|V (C) ∩M |+ |N(C)|) + al (1)

= 2α2l
∑
C∈C′

|V (C) ∩M |+ 2α2l
∑
C∈C′

N(C) +
∑
C∈C′

al

≤ 2α2l6k2 + 2α2l
∑
C∈C′

N(C) +
∑
C∈C′

al (2)

≤ 2α2l6k2 + 2α2l3k2 +
∑
C∈C′

al (3)

= 18α2lk2 + (3k2 + 3k)al.

= (18α2 + 3a)lk2 + 3akl

Step (1) Is due to our assumption and step (2) is from Observation 6.2. In step (3) we use

the fact that any vertex s ∈ S can be connected to at most k different cliques by Reduction

rule 6.5. So s gets counted at most k times in the sum
∑

C∈C N(C). So since |S| ≤ 3k the

total sum will be at most 3k2.

31



Our next next goal is to deal with unmarked vertecies which are isolated from S. To

do this we make the following definition. We call a clique C ∈ C hidden if it satisfies the

following conditions.

� (1) N(C −M) ∩ S = ∅,
� (2) C is balanced,

� (3) |V (C)\M | ≥ 2α2l(|V (C) ∩M |+ |N(C)|) + al.

And we say that a clique C ∈ C is almost hidden if C satisfies condition 1 and 2, and

condition 3 is replaced with the weaker condition |V (C)\M | ≥ 2α2l(|V (C) ∩M |+ |N(C)|).
Denote the set of hidden cliques as CI ⊆ C and almost hidden cliques as CA ⊆ CI . We will

now try and bound the number of unmarked vertecies in hidden cliques.

The main idea is that there is really no point in deleting a lot unmarked vertecies in

almost hidden cliques. This is because there are a lot more unmarked vertecies than marked

vertecies in these cliques, so deleting all the unmarked vertecies is a very sub-optimal way

to delete any potential P3 in G.

We first use the fact that almost hidden cliques are balanced, and have a lot more un-

marked than marked vertecies, to argue that almost hidden cliques contain a lot of unmarked

vertecies with every color.

Lemma 6.15. For any C ∈ CA, |Colori(C)\M | ≥ α(|V (C) ∩M |+ |N(C)|) for all i ∈ [l].

Proof. Assume that there is some color i where |Colori(C)\M | < α(|V (C) ∩M |+ |N(C)|).
This means that |Colori(C)| < α(|V (C) ∩M |+ |N(C)|) + |V (C) ∩M | ≤ 2α(|V (C) ∩M |+
|N(C)|). There must be some j so that |Colori(C)\M | ≥ 2α2(|V (C) ∩M | + |N(C)|) for

some j since otherwise |V (C)\M | < 2α2l(|V (C)∩M |+ |N(C)|), which contradicts condition

(3) for an almost hidden clique. Then i and j can not be balanced since

|Colorj(C)| ≥ 2α2(|V (C) ∩M |+ |N(C)|

> α|Colori(C)|.

So i and j are not balanced in C which contradicts the fact that C is balanced by condition

(2) of almost hidden cliques.

The next lemma is what allows us to potentially delete unmarked vertecies in almost

hidden cliques even if we go below k unmarked vertecies in the clique. There is no reason

for a solution to delete all the unmarked vertecies in isolated cliques.

32



Lemma 6.16. If (G, k) is a YES-instance, then there is a solution S∗ where (V (C)\M)\S∗ ̸=
∅, for all C ∈ CA.

Proof. Assume (G, k) is a YES-instance with solution S∗, where (V (C)\M)\S∗ = ∅. We

know by Lemma 6.15 that |Colori(C)\M | ≥ α(|V (C) ∩M | + |N(C)|) for all i ∈ [l]. So

let A be a set with α(|V (C) ∩M | + |N(C)|) vertecies from Colori(C)\M for each i ∈ [l].

Then let S ′ = (S∗ ∪ fS∗(C))\A. So we delete the clique fS∗(C) and add a lot of the

unmarked vertecies to create a new clique. We know this clique is balanced since all the

colors have the same number of vertecies. And we know we are not creating any P3 since

all the vertecies are isolated so they are only connected to each other and potentially some

of fS∗(C), but we deleted these vertecies (added them to S ′). Finally we need to show that

|S ′| ≤ |S∗|. We add |fS∗(C)| vertecies and delete |V (C)\M | vertecies from S∗ to create

S ′. We know that |f ∗
S(C)| ≤ |V (C) ∩M | + |N(C)| since (V (C)\M)\S∗ = ∅ (So the only

vertecies in fS∗(C) are either marked or in the neighborhood of C)), and we know that

|V (C)\M | ≥ 2α2l(|V (C) ∩M | + |N(C)|) since C is an hidden clique. So we clearly delete

more vertecies than we add to S ′. We can repeat this process for all C ∈ CA.

Not only is there no point in deleting all the unmarked vertecies in a almost hidden

clique, but if we have a solution S∗ we can construct a solution S ′, where the number of

unmarked vertecies in S ′ with each color are upper bounded.

For a vertex set N let min(N) be a color with the fewest vertecies in N .

Lemma 6.17. If (G, k) is a YES-instance, then for any C ∈ CA there is a solution S ′, where

|S ′ ∩ (Colori(C)\M)| ≤ α|V (C) ∩M |+ 1 for all i ∈ [l] and (V (C)\M)\S ′ ̸= ∅.

Proof. Assume (G, k) is a YES-instance with solution S∗. We then construct a new solution

S ′ by first letting S ′ be the solution from Lemma 6.16. We then apply the following procedure

exhaustively.

Let C ′′ = fS′(C), V ′ = V (C ′′) and i = min(V ′). Now remove vertecies v from S ′ where

v ∈ S ′ ∩ (Colori(C)\M) (and update the definition of C ′′ until we run out of such vertecies

or color i will becomes unbalanced in C ′′ (we don’t remove v if i will become unbalanced). If

we run out of such vertecies we also declare i marked and let V ′ = V ′\Colori(C
′′). We then

set i = min(V ′) again and continue this process until all colors are either marked or will

become unbalanced in C ′′ if any more vertecies are added to C ′′ (removed from S ′). After

this, if all colors have the same number of vertecies in C ′′ we remove one unmarked vertex

from each color from S ′ until at least one color have no unmarked vertecies in S ′.

33



First we observe that S ′ is still a solution since by the construction of S ′, C ′′ will still

be balanced. Also all the vertecies we added to C ′′ are unmarked so have a twin by Lemma

6.16.

For the other part let i be any marked color. In that case there are no vertecies

in S ′ ∩ (Colori(C)\M) which means |S ′ ∩ Colori(C)| ≤ |V (C) ∩ M |, which is what we

wanted to prove. Now let i be an unmarked color. That means removing any ver-

tex in S ′ ∩ (Colori(C)\M) from S ′ makes i unbalanced in C ′′, which must mean that

i = max(C ′′). There are then two cases to consider for min(C ′′). If min(C ′′) is marked

then |S ′ ∩ (Colormin(C′′)(C)| ≤ |V (C) ∩M |. For the case where min(C ′′) is unmarked the

only possibility is that |Colormin(C′′)(C
′′)| = |Colormax(C′′)(C

′′)| since otherwise we could

remove an vertex from S ′ ∩ Colormin(C′′)(C). This means all colors have the same num-

ber of vertecies in C ′′. In that case one color j must have no unmarked vertecies in S ′

since we delete one unmarked vertex of each color until this is the case. This means

that |Colorj(C
′′)| ≤ |V (C) ∩ M | (This color j = min(C ′′) since all the colors have the

same number of vertecies). So both the case when min(C ′′) is marked and unmarked we

have that |S ′ ∩ Colormin(C′′)(C)| ≤ |V (C) ∩M |. Then to arrive at a contradiction assume

|S ′ ∩ Colori(C)| > α|V (C)| ∩M |+ 1.

α|Colormin(C′′)(C
′′)| ≥ α(|Colormin(C′′)(C)| − |V (C) ∩M |) (1)

= α|Colormin(C′′)(C)| − α|V (C) ∩M | (2)

≥ |Colori(C)| − α|V (C) ∩M | (3)

≥ |Colori(C
′′)|+ α(|V (C) ∩M |) + 1− α|V (C) ∩M | (4)

= |Colori(C
′′)|+ 1

Step (1) is due to the fact that |S ′ ∩ (Colormin(C′′)(C)) ≤ |V (C)∩M |. In step (2) we simply

simply multiply out the α. Then we use the fact that C is balanced in (3) and finally we use

the assumption that |S ′ ∩ Colori(C)| > α|V (C)| ∩M | + 1 in step (4) which means that at

at least α|V (C) ∩M |+ 1 vertecies are deleted with color i when comparing C to C ′′.

The end result is that it is possible to increase Colori(C
′′) by one and i will still be

balanced in C ′′. Which contradicts the stopping condition, and the fact that i is unmarked.

Finally the fact that (V (C)\M)\S ′ ̸= ∅ follows from Lemma 6.16, and the fact that we do

not add any vertecies to S ′ after this initial construction.

Now we will give 2 reduction rules analogous to reduction rules 6.6 and 6.7 but now only

34



concerning hidden cliques. Using Lemma 6.17 we have a bound of how many vertecies of a

given color a solution will contain, so we do not have to worry about bringing the number

of marked vertecies below k.

(Rule 6.11) If any C ∈ CI satisfies the following conditions

� dC(max(C),min(C)) > 2α|V (C) ∩M |+ 2a + 2

� |Colori(C)\M | > a for all i ∈ [l].

Then let the set X ⊆ V (C)\M be constructed the following way. For each color i ∈ [l]

� If dC(i,max(C)) ≤ α|V (C)∩M |+a+ 1 then put a vertecies from Colori(C)\M
� If dC(i,min(C)) ≤ α|V (C)∩M |+ a+ 1 then put b vertecies from Colori(C)\M

in X

Finally return (G−X, k).

In the following proof we will use Lemma 6.17. We will abuse notation when we use

this Lemma on a clique CR = C − X where C ∈ CI , since CR is not really in C. But this

makes no difference as C still satisfies all the requirements of being almost hidden which is

something we will argue in the proof.

Lemma 6.18. Reduction rule 6.11 is safe and can be applied in time O(|V |+ |E| log |V |).

Proof. Firstly it should be clear that no color i can satisfy both dC(i,max(C)) ≤ α|V (C) ∩
M ′| + a + 1 and dC(i,min(C)) ≤ α|V (C) ∩ M ′| + a + 1 since that would imply that

dC(max(C),min(C)) ≤ dC(max(C), i) + dC(i,min(C)) ≤ 2α|V (C) ∩M ′|+ 2a + 2.

Let G′ = G−X. First assume S∗ is a solution to (G, k) and start by applying Lemma

6.17 to S∗ and C. We first want to modify S∗, such that S∗ ∩X = ∅.
Let C ′ = fS∗(C) and the following. For each v ∈ S∗ ∩X, remove v from S∗ and replace

it with some vertex in Colori(C)\(A∪ S∗). Start by assuming there are enough vertecies in

Colori(C)\(A ∪ S∗) for all colors i to do this replacement for all v ∈ S∗ ∩X, and call this

new solution S ′. To see that S ′ is a solution we clearly did not change any color ratios. Let

U ′ be the set of vertecies removed from S∗ when we created S ′, and let U = V (C)\M . We

see that U\U ′ ̸= ∅ since by Lemma 6.17 there is some marked vertex of C not in S∗, so it

also not in U ′. We also observe that (G − S ′) − U ′ ⊆ G − S∗ which means (G − S ′) − U ′

does not have any P3. Then Lemma 3.3 tells us that G− S ′ also does not have P3.

If there are not enough vertecies in Colori(C)\(A ∪ S∗) for some color i to do this

replacement, then |Colori(C
′)| ≤ 2a, since otherwise there must be at least a vertecies in

35



Colori(C
′)\A, so the replacement would be possible. Then we let S ′ = S∗\(Colori(C) ∪ A)

(For all colors i where the replacement was not possible) and want to show that S ′ is still a

solution. Let C ′′ = fS′(C). For any P3 let U = V (C)\M and U ′ = S∗\S ′. Then U\U ′ ̸= ∅
and since (G−S ′)−U ′ ⊆ G−S∗, (G−S ′)−U ′ does not have a P3 which means that neither

does G− S ′ by Lemma 3.3.

For the colors we increased the size of color i in C ′′ compared to C ′ so we only need to

verify that |Colori(C
′′)| ≤ |Colormax(C′)(C

′)| to conclude that C ′′ is balanced, since we know

that C ′ is balanced. This is clearly true since the fact dC(max(C),min(C)) > 2α|V (C) ∩
M | + 2a + 2 means that |Colormax(C′)(C

′)| ≥ 2a, since there are at most α|V (C) ∩M | + 1

vertecies with color max(C) in S∗ by Lemma 6.17. Then finally let S∗ = S ′. We note

that S∗ still satisfies the specification of Lemma 6.17 since we have not done anything but

potentially remove unmarked vertecies from S∗.

We now want to argue that S∗ is a solution to (G′, k) as well. Since G′ − S∗ ⊂ G− S∗,

G′− S∗ can clearly not contain a P3, since S∗ is a solution to (G, k). For the color ratios let

C ′ = fS∗(C), CR = C −X and C ′
R = fG′

S∗ (CR). Then by Lemma 6.8 we only need to check

that max(C ′
R) and min(C ′

R) are balanced in C ′
R. Since |S∗∩Colori(C)| ≤ α|V (C)∩M ′|+ 1

for all i only colors where dC(i,max(C)) ≤ α|V (C)∩M ′|+ 1 +a can become max(C ′
R) since

there are at most α|V (C) ∩M ′| + 1 + a vertecies deleted from max(C ′
R) when comparing

C to C ′
R (S∗ deletes at most α|V (C) ∩M ′|+ 1 vertecies and X delete at most a vertecies).

For similar reasons only colors i where dC(i,min(C)) ≤ α|V (C) ∩M ′| + 1 + a can become

min(C ′
R), since at most α|V (C)∩M ′|+1+a vertecies from any specific color gets deleted when

comparing C to C ′
R. This means that there are a vertecies with color max(C ′

R) and b vertecies

with color min(C ′
R) inn X. Let i and j be max(C ′

R) and min(C ′
R) respectively. We then

want to apply Lemma 6.7. We have establishment that |Colori(C
′)| = |Colori(C

′
R)|+ a and

|Colorj(C
′)| = |Colorj(C

′
R)|+b since S∗∩X = ∅. We also have |Colori(C

′)| ≥ |Colorj(C
′)|+a

since |S∗∩Colori(C)| ≤ α|V (C)∩M ′|+1 and dC(max(C),min(C)) > 2α|V (C)∩M |+2a+2.

So we can apply Lemma 6.7, and conclude that i and j are balanced in C ′
R as well.

Now assume S∗ is a solution to (G′, k) and let CR = C −X. Start by applying Lemma

6.17 to S∗ and CR. The conditions are satisfied (even though CR is not really in C) because

of the fact that C is hidden, which means that |V (C)\M | ≥ 2α2l(|V (C)∩M |+ |N(C)|) +al

and since |X| ≤ al we get that |V (CR)\M | ≥ 2α2l(|V (C) ∩M | + |N(C)|), so CR is almost

hidden. To show that there are no P3 in G − S∗ we apply Lemma 3.3 to G − S∗ with

U = V (C)\M and U ′ = U\S∗. Then U\U ′ ̸= ∅ by Lemma 6.17 since there is at least one

unmarked vertex in C which is not in S∗. So by Lemma 3.3 G−S∗ does not have a P3 since

36



(G− S∗)− U ′ does not.

Now let C ′ = fS∗(C) and C ′
R = fG′

S∗ (CR). We need to check that the colors of C ′

are balanced but we again only have to check that max(C ′) and min(C ′) are balanced by

Lemma 6.8. We apply a similar argument as above but the only difference is that now at

most |V (C) ∩M ′| + 1 vertecies can be deleted from any color when comparing C with C ′.

So let i and j be max(C ′) and min(C ′) respectively. If we add a vertecies from Colori(C)

and b vertecies from Colorj(C) to C ′
R we get C ′ with respect to these two colors. Also we

see that |Colori(C
′
R)| ≥ |Colorj(C

′
R)| since |S ′ ∩Colori(C)| ≤ α|V (C) ∩M ′|+ 1. So we can

apply Lemma 6.7 which gives us that i and j are balanced in C ′ as well.

To apply the algorithm it should be clear that all the requirements can be checked in O(|V |)
time using count sort for the distance. Then deleting the vertecies is done in time O(|V | +
|E| log |V |) in an adjacency matrix.

The next rule compliments Reduction rule 6.11, and is for the case when the maximum

color distance is small.

(Rule 6.12) If α > 1 and for some C ∈ CI the following conditions are satisfied

� dC(max(C),min(C)) ≤ 2α|V (C) ∩M ′|+ 2a + 3,

� |Colori(C)| ≥ (|V (C)∩M |+2a+3)a
a−b

+ α|V (C) ∩M |+ 2, for all i ∈ [l]

then let v be any vertex in V (C)\M and return (G− {v}, k).

Lemma 6.19. Reduction rule 6.12 is safe and can be applied in time O(|V |+ |E|).

Proof. First assume (G, k) is a YES-instance with solution S∗. We then start by applying

Lemma 6.17 on S∗ to get a new solution S∗. Let C ′ = fS∗(C), CR = C−{v}, C ′
R = fG′

S∗ (CR)

and c = (3α|V (C)∩M ′|+2a+4)a
a−b

. Then by Lemma 6.10 if dC′
R

(max(C ′
R),min(C ′

R)) ≤ c(a−b)
a

=

3α|V (C) ∩M | + 2a + 4 and |Colori(C
′)| ≥ c then C ′

R is balanced. We know by Lemma

6.17 that |S ′ ∩ Colori(C)| ≤ α|V (C) ∩M ′| + 1 for all i. Which means that |Colori(C
′
R)| ≥

|Colori(C)| − (α|V (C) ∩M ′| + 1) ≥ c, so C ′
R must be balanced. There is no P3 in G′ − S∗

since G′ − S∗ ⊂ G− S∗.

Now assume (G′, k) is a YES-instance with solution S∗. Again apply Lemma 6.17 to get

a new solution S∗. Then let C ′ = fS∗(C), CR = C−{v} and C ′
R = fG′

S∗ (CR). We now want to

apply Lemma 6.10 to C ′ which we can since dC′(max(C ′),min(C ′)) ≤ 3α|V (C)∩M |+2a+4

37



by Lemma 6.17. So the argument is the same as above. For any potential P3 in G− S∗ we

observe that v has a twin by Lemma 6.17.

We now want to bound the number of unmarked vertecies in cliques where the second

requirement of Reduction rule 6.12 isn’t satisfied (One color does not have enough unmarked

vertecies).

Observation 6.10. If for any C ∈ CI |Colori(C)| < (|V (C)∩M |+2a+3)a
a−b

+α|V (C)∩M |+ 2 for

some i, then |V (C)| ≤ αl (|V (C)∩M ′|+2a+3)a
a−b

+ α2l|V (C) ∩M |+ 2αl for all j.

Proof. If |Colori(C)| < (|V (C)∩M |+2a+3)a
a−b

+ α|V (C) ∩ M | + 2. Then since C is balanced

|Colorj(C)| ≤ α|Colori(C)| < α (|V (C)∩M ′|+2a+3)a
a−b

+ α2|V (C) ∩M | + 2α. So since we have l

colors, |V (C)| ≤ αl (|V (C)∩M |+2a+3)a
a−b

+ α2l|V (C) ∩M |+ 2αl

Observation 6.11. There are at most 6αa2

a−b
lk2 + (6a

2+9a
a−b

+ 6 + 6α)k2 + (6a
2+9a
a−b

+ 6)k vertecies

in cliques C ∈ CI , where |Colori(C)| < (|V (C)∩M |+2a+3)a
a−b

+ α|V (C) ∩M ′|+ 2 for some i.

Proof. If |Colori(C)| < (|V (C)∩M ′|+2a+3)a
a−b

+α|V (C)∩M ′|+ 2 for some i, then by Observation

6.10 |V (C)| ≤ αl (|V (C)∩M |+2a+3)a
a−b

+ α2l|V (C) ∩M ′|+ 2αl. Then if we let C ′ ⊆ CI be all such

cliques we get.

∑
C∈C′

|V (C)| ≤
∑
C∈C′

αl
(|V (C) ∩M |+ 2a + 3)a

a− b
+ α2l|V (C) ∩M ′|+ 2αl (1)

= αl
∑
C∈C′

(|V (C) ∩M |+ 2a + 3)a

a− b
+ α|V (C) ∩M ′|+ 2 (2)

≤ αl
a

a− b

∑
C∈C′

a|V (C) ∩M |+
∑
C∈C′

2a2 + 3a

a− b
+ 2 + α

∑
C∈C′

|V (C) ∩M |

≤ αa2l6k2

a− b
+ (3k2 + 3k)(

2a2 + 3a

a− b
+ 2) + α6k2 (3)

=
6αa2

a− b
lk2 + (

6a2 + 9a

a− b
+ 6 + 6α)k2 + (

6a2 + 9a

a− b
+ 6)k

Step (1) is using Observation 6.10 and step (2) we just factor out αl. Step 3 is using

Observations 6.1 and 6.2.

Lemma 6.20. Reduction rule 6.13 is safe and can be applied in time O(|V |).

38



Proof. Assume that there are more than 4k unbalanced cliques in C, and that S∗ is a solution

to (G, k). There must be at least one of these unbalanced cliques C ∈ C where fS∗(C) = C.

This is because there at at most 3k vertecies in S and k vertecies in S∗, so at most 4k cliques

can be changed in some way. So this clique C is not balanced, a contradiction. To apply the

Reduction rule we need to go through all the cliques C ∈ C and check whether or not C is

balanced , which can be done in O(|V (C)|) time using count sort.

We now have all we need to bound the number of unmarked vertecies in hidden cliques.

Observation 6.12. There are O(k2l) unmarked vertecies in hidden cliques when α > 1.

Proof. We look what happens when Reduction rules 6.11 and 6.12 can not be applied.

These 2 rules compliment each other. First we deal with the cliques C ∈ CI where

dC(max(C),min(C)) > 2α|V (C) ∩M | + 2a + 2. Then |Colori(C)\M | ≤ a for some i if

the Reduction 6.11 can not be applied. So Observation 6.5 gives us a O(k2l) bound on the

number of unmarked vertecies in such missing cliques.

Then in the case when dC(max(C),min(C)) ≤ 2α|V (C)∩M |+2a+2, if Reduction rule

6.12 can not applied to some C ∈ CI , then |Colori(C)| < (|V (C)∩M |+2a+3)a
a−b

+α|V (C)∩M |+2 for

some i ∈ [l] and there are at most O(k2l) unmarked vertecies in such cliques by Observation

6.11.

Observation 6.13. There are at most O(k2l) unmarked vertecies in linear cliques.

Proof. Connected cliques are bounded by Observation 6.8. For cliques which are not con-

nected then condition (2) is satisfied for hidden clique.s If condition 2 and 3 also are satisfied

then the number of vertecies are bounded by Observation 6.12 since the clique would be hid-

den. If condition 2 is not satisfied then there are at most 4k unbalanced cliques by Reduction

6.13, so there are at most θlk4k = O(k2l)vertecies in such cliques. If condition (3) is not

satisfied then the number of vertecies in such cliques are bounded by Observation 6.9.

The final observation we need is to limit the number of balanced cliques which have few

unmarked vertecies and are not linear.

Observation 6.14. There are at most k balanced cliques where |V (C)\M | < k + al and C

is not linear.

39



Proof. Assume there are more than k such cliques and denote them as C ′ ⊆ C. Then∑
C∈C′

|V (C) ∩M | =
∑
C′

|V (C)| − |V (C)\M |

>
∑
C∈C′

θlk − (k + al) (1)

≥
∑
C∈C′

5alk − k − al (2)

≥
∑
C∈C′

3alk

≥ 3alk2 (3)

≥ 6ak2 (4)

≥ 6k2

In step (1) we use our assumption about that the cliques in C ′ are not linear and that they

have less than k + al unmarked vertecies. In step (2) we simply us the definition of θ and β.

In (3) we use the assumption that |C ′| ≥ k and in (4) we know that l ≥ 2.

So we see that there are to many marked vertecies in these cliques which contradicts Obser-

vation 6.2.

(Rule 6.13) If there are more than 4k unbalanced cliques in C, then return the trivial

NO-instance.

6.8 Proof of Theorem 2

We now prove the part of Theorem 2 when α > 1, we prove the part where α = 1 in chapter

8.

Theorem 2. There is a kernel with O(k2l) vertecies for α−BALANCED CLUSTER VER-

TEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

Proof. Assume α > 1. We first split the cliques C ∈ C up into 2 cases. The first is where

d∗C(min∗(C),max∗(C)) > 2k + 2a. Then one of the following conditions must be true if

Reduction rule 6.6 can not be applied.

� |Colori(C)\M | ≤ a. Then C is a missing cliques which means the number of unmarked

vertecies are bounded by Observation 6.5.

40



� |V (C)\M | < k+al. Then if C is linear, the number of unmarked vertecies are bounded

by Observation 6.13. If C is not linear then there are at most 5k such cliques(k balanced

and 4k unbalanced) by Observation 6.14 and Reduction rule 6.13. So there are at most

5k(k + al) = O(k2l) vertecies in such cliques.

Then the other case is when d∗C(min∗(C),max∗(C)) ≤ 2k + 2a. Then if Reduction rule 6.7

can not be applied then one of the following conditions must be true

� |Color∗i (C)| < βk, then C is a linear clique so bounded by Observation 6.13.

� |V (C)\M | ≤ k + 1, then if C is not linear the number of vertecies are bounded by

Observation 6.14, and if C is linear the number of vertecies are bounded by Observation

6.13.

Each time we apply a reduction rule we delete at least one vertex. Applying algorithm 6.2

is the bottleneck (slowest step, which dominates all the other steps in terms of asymptotic

runtime) for each such application.

41



42



Chapter 7

O(k4) kernel for α−BCVD

We are now going to give a kernel not dependent on l. We do this by presenting a reduction

rule to delete colors from the graph. To do this the algorithm first picks a color j which is

to be deleted. j is chosen such that S contain no vertex with color j. The algorithm then

goes through all the cliques in C ∈ C and finds a color i which vertecies can be removed in

C. This is possible since we find a color i which have no marked vertecies, and where i are

in the ”middle” if we sort the colors by the number of vertecies in C. These vertecies then

gets deleted and the vertecies of color j gets recolored to color i. The result is that there are

no vertecies left with color j in G.

Algorithm 7.1 Delete Color

1: j ← any color such that Colori(S) = ∅
2: for C ∈ C do
3: L← List of all colors i such that Colori(S) = ∅ and Colori(C) ∩M = ∅.
4: Sort L increasingly by the size of Colori(C) for all i ∈ L.
5: i← L[1].
6: G← G− Colori(C).
7: for v ∈ Colorj(C) do
8: c(v) = i
9: return G

(Rule 7.1) If l > 6k2 + 4k + 2, then apply Algorithm 7.1 to get G′, and return (G′, k).

Lemma 7.1. Reduction rule 7.1 is safe and can be applied in time O(|V |2 + |E| log |V |).

Proof. We first observe that for each iteration in the loop in algorithm 7.1, |L| > k+ 2. This

43



is because l > 6k2 + 10k + 2, |M | ≤ 6k2 (By Observation 6.2) and |S| ≤ 3k. So we get

|L| > 6k2 + 4k+ 2− (6k2 + 3k) = k+ 2. Now let G′ be the graph returned by Algorithm 7.1.

First assume that S∗ is a solution to (G, k). Then clearly G′ − S∗ does not have any

P3 since G − S∗ does not. Then for each C ∈ C let C ′ = fS∗(C), CR is the clique C after

applying Algorithm 7.1 and C ′
R = fG′

S∗ (CR). Let i, j be the variables chosen at line 4 and

1 in Algorithm 7.1 respectively. For the color ratios of C ′
R we first see that |Colori(C

′
R)| =

|Colorj(C
′)| and that there is no color j in G′. for any other color k ∈ [l]\{i, j} we see that

|Colork(C ′)| = |Colork(C ′
R)|. So since C ′ is balanced, so is C ′

R, since all the colors of C ′
R

have a corresponding color in C ′ with the same number of vertecies.

Now assume S∗ is a solution to (G′, k). We claim S∗ is a solution to (G, k) as well. For

each C ∈ C, let C ′ = fS∗(C), CR be C after applying Algorithm 7.1 and C ′
R = fG′

S∗ (CR).

Let j, i be the colors chosen at line 1 and 4 respectively in Algorithm 7.1. First for color i

in C ′, there is some color p = L[0] which means that |Colorp(C)| ≤ |Colori(C)|. We know

that S∗ ∩ Colori(C) = ∅ since the vertecies from Colori(C) are not in G′, and we know

that S ∩ Colorp(C) = ∅, we get that |Colorp(C
′)| ≤ |Colori(C

′)|. Also because |L| > k + 2

there must be at least one color h ∈ L, h ̸= p such that S∗ ∩ Colorh(C) = ∅, which mean

|Colorh(C ′)| ≥ |Colori(C
′)|, since |Colorh(C)| ≥ |Colori(C)| and Colori(C) ∩ S = ∅. So

in total we have |Colorr(C
′)| ≤ |Colori(C

′)| ≤ |Colorh(C ′)|, which means that color i is

balanced in C ′ as long as r and h are balanced. For the color j we know that |Colorj(C
′)| =

|Colori(C
′
R)| and for any other color q not i and j we have that |Colorq(C

′)| = |Colorq(C
′
R)|,

so C ′ must be balanced as well.

To apply the Reduction rule we need to run Algorithm 7.1. We first need to compute L

which we can do in O(|V |) time by going through all the vertecies in S and V (C) ∩M and

deleting all the colors we find from L. Then we can sort L in O(V (C)) time by using count

sort. The deletion is then done in O(|V |+ |E| log |V |) time for all the cliques in total. And

the recoloring is done in O(|V |) time in total.

We can now prove theorem 3.

Theorem 3. When α > 1 there is a kernel with O(k4) vertecies for α−BALANCED CLUS-

TER VERTEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

Proof. l ≤ 6k2 + 4k + 2 by Reduction 7.1 so combining this with theorem 2 we get a O(k4)

vertex kernel.

44



Chapter 8

Kernel for α−BCVD when α = 1

We deal with the special case when α = 1. In this case we are able to find a better kernel

than in the general case because we are able to give a better bound on the number of colors.

Assume that α = 1 in this section. We first want to obtain a O(k2l) kernel for the case when

α = 1.

8.1 O(k2l) Kernel

(Rule 8.1) If for some C ∈ C we have

� |Colori(C)\M | > 0 for all i ∈ [l],

� |V (C)\M | > k + l,

then let X ⊆ V (C)\M contain one vertex of each color, and return (G−X, k).

Lemma 8.1. Reduction rule 8.1 is safe and can be applied in time O(|V |+ |E| log |V |).

Proof. Let G′ = G −X. First assume (G, k) is a YES-instance with solution S∗. Then for

any C ∈ C, let C ′ = fS∗(C). We first need to modify S∗ such that S∗ ∩ X = ∅. We do

the following. For each v ∈ X ∩ S∗, where c(v) = i, delete v from S∗ and replace it with

any vertex in Colori(C
′). Denote this new solution by S ′, and let C ′′ = fS∗(C). We did not

change the color ratios of C ′′ compared with C ′. Then let U = V (C)\M and U ′ = S∗\S ′.

We see that U\U ′ ̸= ∅. We have that (G − S ′) − U ′ ⊆ G − S∗ which means (G − S ′) − U ′

does not have a P3 which means that G− S ′ does not have a P3 by Lemma 3.3.

Now let S∗ = S ′ and let C ′ = fS∗(C), CR = C −X and C ′
R = fG′

S∗ (CR).

45



Each color have one less vertex in C ′
R than in C ′. So the colors will be balanced in C ′

R as

well. Also G′ − S∗ will clearly not have a P3 since G− S∗ does not.

Now assume (G′, k) is a YES-instance with solution S∗. Then for any C ∈ C let

C ′ = fS∗(C), CR = C −X and C ′
R = fS∗(CR). Each color in C ′ has one more vertex than in

C ′
R, so all the colors will be balanced in C ′ as well. For any potential P3 we apply Lemma

3.4 with U = (V (C)\M and U ′ = X, then since G′ = (G− U ′), G− S∗ does not have a P3

since G′ − S∗ does not.

We can check the condition for all cliques in O(|V |) time and deleting vertecies is done in

O(|E| log |V |) time.

We will use a similar rule but this one is only for hidden cliques.

(Rule 8.2) If for any C ∈ CI , |Colori(C)\M | > 0 for all i ∈ [l] then let X ⊆ V (C)\M
contain one vertex of each color and return (G−X, k).

Lemma 8.2. Reduction rule 8.2 is safe and can be applied in time O(|V |+ |E| log |V |).

Proof. Let C be the clique the Reduction was applied to.

First assume (G, k) is a YES-instance with solution S∗. Start with applying Lemma

6.17 to S∗ and C. We first construct a solution S∗ where S∗ ∩ X = ∅. Simply replace all

vertecies in S∗ ∩ A with vertecies in C ′ with the same color. This must be possible since

otherwise C ′ is missing a color, so is not balanced. The color ratios stay the same and since

(V (C)\M)\S∗ by Lemma 6.17 all the vertecies in X have a twin in C ′, so no new P3 is

created by Lemma 3.2. Let CR = C − X. S∗ is a solution to (G′, k) as well since fS∗(CR)

have one less of each color, and clearly G′ − S∗ also does not contain a P3.

Now assume (G′, k) is a YES-instance. We apply Lemma 6.17 to get a solution S∗. S∗ is

a solution to (G, k) as well since for any P3 we let U = V (C)\M and U ′ = X. Then the

conditions of Lemma 3.4 are satisfied which means that G − S∗ does not have a P3 since

(G − S∗) − U ′ does not.Also all the vertecies in X (one of each color) will be in the same

clique so that clique will still be balanced.

We can now finish the proof for Theorem 2 for the case when α = 1.

Theorem 2. There is a kernel with O(k2l) vertecies for α−BALANCED CLUSTER VER-

TEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

46



Proof. Assume α = 1. If for some C ∈ C Reduction rule 8.2 can not be applied then C is

either a missing clique so bounded by Observation 6.5 or C is not hidden, which means that

one of the following condition must be true.

� N(C −M) ∩ S ̸= ∅ Then C is a connected clique so bounded by Observation 6.8.

� C not balanced. Then there are at most 4k such cliques by Reduction 6.13. So if

Reduction rule 8.1 can not be applied and C is not a missing clique then |V (C)\M | ≤
k + l. So there are at most 4k(k + l) = O(k2l) unmarked vertecies in such cliques. If

C is a missing clique the number of vertecies are bounded by Observation 6.5.

� |V (C)\M | < 2α2l(|V (C) ∩M |+ |N(C)|) + al then the number of unmarked vertecies

are bounded by Observation 6.9.

8.2 O(k3) Kernel

Our next goal is to give a linear bound on the number of colors. Our strategy here is to

argue that if there are a lot of colors (more than 5k), then most of them have to have the

exact same number of vertecies and we can not delete any vertecies with these colors since

that would mean we would have to delete vertecies from all the other colors as well, which

becomes to many deletions. This allows us to delete the vertecies of one of these colors, since

they must form a module.

For any clique C ∈ C let [i]C be the set of colors j such that |Colorj(C)| = i, and let

[i]∗C be the set of colors j such that |Color∗j (C)| = i. Let [max]∗C = [a]∗C be the largest sets

of all [i]∗C .

If one color is completely missing from the the some clique C and it’s neighborhood

then there is no way to balance C.

(Rule 8.3) If for any clique C ∈ C, |Color∗i (C)| = 0 then return (G− V (C), k − |C|)

Lemma 8.3. Reduction rule 8.3 is safe and can be applied in time O(|V |+ |E|).

Proof. Clearly if a color is missing from the closed neighborhood of a clique then there is no

way to balanced C, so we must delete it. Calculating N [C] for all C ∈ C in total can be done

in O(|V | + |E|) since we already know the vertecies in V (C) and including the vertecies in

S for each v ∈ S we check all it’s edges and add it to the respective neighborhoods. In total

we add these vertecies to at most |E| neighborhoods so this is done in O(|V |+ ||E|).

47



(Rule 8.4) If l > 5k and for some C ∈ C, |[max]∗C | ≤ 4k, then return the trivial

NO-instance.

Lemma 8.4. Reduction rule 8.4 is safe and can be applied in time O(|V |).

Proof. For any solution S∗, let C ′ = fS∗(C). First of all V (C ′) ̸= ∅ because l > 5k and

Reduction rule 8.3. C ′ has to have to have the same number of vertecies with each color.

Assume this number is a. We know that |[a]∗C | ≤ 4k. which means there are more than k

colors i such that |Color∗i (C)| ≠ a. Since |S∗| ≤ k there is at least one of these colors j such

that Color∗j (C) ∩ S∗ = ∅ which contradicts our choice of a.

To apply the algorithm simply count the number of colors in each clique and count how

many colors have the same number of vertecies.

Observation 8.1. If l > 5k and S∗ is a solution to (G, k), then for all C ∈ C, S∗ ∩
Color∗i (C) = ∅ for all i ∈ [max]∗C.

Proof. For any C ∈ C, we know that [max]∗C > 4k by Reduction rule 8.4. So if Color∗i (C) ∩
S∗ ̸= ∅ for some i ∈ [max]∗C , then color i can not be balanced in fS∗(C) because there will

be at least one color j ∈ [max]∗C where Color∗j (C) ∩ S∗ = ∅ and Color∗j (C) ∩ S = ∅.

(Rule 8.5) If l > 5k and for some C ∈ C there is a s ∈ S such that there exist

vertecies u, v ∈ V (C), where c(u), c(v) ∈ [max]∗C , su ∈ E(G) and sv /∈ E(G), then

return (G− s, k − 1).

Lemma 8.5. Reduction rule 8.5 is sound and can be applied in time O(|V |+ |E|).

Proof. Since c(u), c(v) ∈ [max]∗C we know that for any potential solution S∗ to (G, k), u, v /∈
S∗ by Observation 8.1. Now since there exist a P3 suv that means s must be in S∗. To apply

the Reduction rule simply need to go through all vertecies in S and check if it forms a P3

with 2 vertecies with color in [max]∗C . For each vertex s ∈ S check the neighborhood of s

and see if it’s connected to either all or none of the vertecies in C with color inn [max]∗C .

Observation 8.2. If l > 5k, then for any clique C ∈ C the vertecies of C with color in

[max]∗C form a module.

Proof. For any vertecies u, v ∈ C where c(u), c(v) ∈ [max]∗C . If there is some s ∈ S where

su ∈ E(G), sv /∈ E(G) then Reduction rule 8.5 would remove s so this is impossible which

means u and v are twins.

48



We now present an algorithm to bound the number of colors. The algorithm goes

through all cliques C ∈ C one at the time, and finds a color which is in [max]∗C and have no

vertecies in S. It then deletes all the vertecies with this color which are in C. After having

done this for all the cliques the algorithm pick some color j which have no vertecies inn S

and relabels all the vertecies with color j to the deleted color in each clique. The result is

that no vertex in G have color j.

Algorithm 8.1 Delete Color

1: j ← any color such that Colorj(S) = ∅
2: for C ∈ C do
3: i← any color i ∈ [max]∗C where S ∩ Colori(C) = ∅
4: G← G− Colori(C)
5: for v ∈ Colorj(C) do
6: c(v) = i
7: return G

(Rule 8.6) If |[max]∗C | > 4k, then apply algorithm 8.1 to get G′ and return (G′, k).

Lemma 8.6. Reduction rule 8.6 is safe and can be applied in time O(|V |2 + |E| log |V |).

Proof. First we see that there is a color j on line 1 such that Colorj(S) = ∅ since

|[max]∗C | > 4k and |S| ≤ 3k. Also there is an color i on line 3 where i ∈ |[max]∗C | and

Colori(C) = ∅ for the same reason as above.

First assume S∗ is a solution to (G, k). Let C ′ = fS∗(C), CR is the clique C after applying

algorithm 8.1 and C ′
R = fS∗(CR). Let i and j be the colors chosen at line 3 and 1 respectively.

The colors in C ′
R are clearly balanced since it simply has 1 less color and 1 color relabeled.

Since G′ − S∗ ⊂ G− S∗ there are no P3 in G′ − S∗.

Now assume S∗ is a solution to (G′, k). Let C ′ = fS∗(C), CR is the clique C after applying

algorithm 8.1 and C ′
R = fS∗(CR). Let i and j be the colors chosen at line 3 and 1 respec-

tively. It is clear than all colors except for i will be balanced with each other since they

have the same number of vertecies in C ′ and C ′
R, j is simply relabeled. For color i since no

vertecies with color inn [max]∗C can be in S∗ by Observation 8.1. Color i will be balanced

as well. Then for any potential P3 in G − S∗, let C ∈ C and i be the color chosen at line 3

in Algorithm 6.13 for that clique. Then the colors of [max]∗C form a module by Observation

8.2. Then applying Lemma 3.4 with U ′ = Colori(C) and U be all of vertecies in C with

color in [max]∗C . We apply Lemma 3.4 repeatedly for all cliques C ∈ C this way and get that

49



there is no P3 in G− S∗ as well.

To apply the Reduction we first need to run algorithm 8.1. To do this we need to

compute [max]∗C which can be done in O(|V |) time for all the cliques. Then to find a color

which is not in S can also be done in O(|V |) time. finally deleting the vertecies in the end

is done in O(|V |+ |E| log |V |) time.

Observation 8.3. l ≤ 5k

Proof. If l > 5k then |[max]∗C | > 4k by reduction rule 8.4 which is not possible by Reduction

rule 8.6, so l ≤ 5k.

We can now prove the final theorem, Theorem 4.

Theorem 4. When α = 1 there is a kernel with O(k3) vertecies for αBALANCED CLUS-

TER VERTEX DELETION, which can be computed in time O(|V |3(|V |+ |E|)).

Proof. By Observation 8.3 and Theorem 2.

50



Chapter 9

Open Problems

We have in this thesis studied the vertex deletion variant of α−BCVD. But there are also

natural edge modification variants of this problem. We can allow only edge deletions which

lead to the problem called CLUSTER EDGE DELETION this problem should have a O(k2)

vertex kernel following the methods given for example by Steinvik [10]. A more interesting

problem is the problem of CLUSTER EDITING where we are allowed to both add and delete

edges. It is not clear whether this problem even admits a polynomial kernel since we can

not simply delete isolate cliques.

α-Balanced Cluster Editing (α−BCE)
Input: A colored graph (G, c) and integer k.

Output: Does there exist a set X ⊆
(
V (G)
2

)
where |X| ≤ k, so that G△X is an α-

balanced cluster graph.

Open Problem 1. Does α-BCE admit a polynomial kernel?

Even in the easier problem where we are only allowed to add edges it’s not obvious how

do deal with isolated cliques.

α-Balanced Cluster Completion (α−BCC)

Input: A colored graph (G, c) and integer k.

Output: Does there exist a set X ⊆
(
V (G)
2

)
where |X| ≤ k, so that G + X is an α-

balanced cluster graph.

51



Open Problem 2. Does α−BCC admit a polynomial kernel?

The best know kernel for CVD have O(k
5
3 ) vertecies. It is probably possible to follow

the same method used in [8] to obtain this kernel to obtain an O(k
5
3 l2) vertex kernel. A

natural question is then whether we can remove one of the factors l.

Open Problem 3. Does α−BCVD admit a kernel with O(k
5
3 l) vertecies.

52



53



Bibliography

[1] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair

algorithms for clustering. Advances in Neural Information Processing Systems, 32, 2019.

[2] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering

through fairlets. Advances in Neural Information Processing Systems, 30, 2017.

[3] Marek Cygan, Fedor V Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algorithms,

volume 5. Springer.

[4] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:

theory of parameterized preprocessing. Cambridge University Press, 2019.

[5] Michael R Garey and David S Johnson. Computers and intractability. A Guide to the,

1979.

[6] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-

parameter algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):

196–217, 2010.

[7] Tomohiro Koana and André Nichterlein. Detecting and enumerating small induced

subgraphs in c-closed graphs. Discrete Applied Mathematics, 302:198–207, 2021.

[8] Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Ze-

havi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. In Pro-

ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 331–342. SIAM, 2018.

[9] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer imple-

mentations. John Wiley & Sons, Inc., 1990.

54



[10] Andreas Steinvik. Kernelization for balanced graph clustering. 2020.

[11] Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of

Computing Systems, 65(2):323–343, 2021.

55


	Introduction
	Motivation
	Related works
	Our Results
	Thesis Outline

	Preliminaries
	Algorithms
	Problems
	Complexity
	Parameterized Complexity
	Kernelization

	Graphs
	Colored graphs


	Some basic results
	Hardness
	FTP-algorithm for -BCVD
	O(k2l)  kernel for -BCVD 
	Overview
	Marked vertecies
	Main Rules
	Missing cliques
	Linear cliques
	Connected cliques
	Hidden cliques
	Proof of Theorem 2

	O(k4) kernel for -BCVD 
	Kernel for -BCVD when = 1  
	O(k2l) Kernel
	O(k3) Kernel

	Open Problems
	Bibliography

