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The analytic structure of the two flavorful QCD lattice Landau gauge quark propagator is investigated
with Padé approximants applied to its vector and scalar form factors. No poles at complex momentum
are observed for the propagator. Moreover, there is clear evidence of a pole at real on-axis negative
Euclidean momentum, i.e., for a Minkowski type of momentum. This pole occurs at Euclidean momenta
p ∼ −300 MeV and it reproduces typical quark mass values used in phenomenological effective quark
models. The Padé approximant analysis also gives hints on the presence of a branch cut. Our results also
show a clear correlation between the position of this pole, understood as an effective quark mass, and the
pion mass that is compatible with partial conservation of the axial current. Slightly differences between the
poles for the two quark form factors are observed which can be viewed either as a limitation of the method
or as a suggestion that the quark propagator has no spectral representation.
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I. INTRODUCTION AND MOTIVATION

The theory that describes the color interaction between
quarks and gluons, i.e., quantum chromodynamics (QCD)
(see [1–3] for reviews), should also explain hadron phe-
nomenology. However, so far, in what concerns the
experimental evidences for free quarks and gluons [4,5]
there are no positive results. This lack of experimental
evidence suggests that quarks and gluons can only appear
as components of the observed particles, the hadrons, that
are understood as color singlet objects. These negative
results are translated into the confinement hypothesis that
still requires to be proved. Despite the success of QCD as a
fundamental theory, the bridge linking quarks and gluons to
the observed hadrons still needs to be paved. A first
principle approaches to understand the dynamics of the
fundamental quanta of QCD require the knowledge of the
fundamental QCD Green functions such as the propagators
and vertices, as e.g., the quark-gluon vertex and the three-
gluon vertex.
In the functional continuum approach to QCD, the

solution of the Dyson-Schwinger equations for the quark,
the ghost and the gluon propagators are used to feed

Bethe-Salpeter equations, Faddeev equations, etc. to access
the properties of the physical hadronic states. The compu-
tation of the solutions of these equations requires the
knowledge of the propagators in the complex momentum
plane. Therefore, the analytic structure of the propagators
have important roles. Indeed, being able to identify the poles
and branch cuts of the propagators is crucial to the bound-
state problem but also for the comprehension of the confine-
ment mechanism, to the dynamical properties of quarks and
gluons and, ultimately to the understanding of QCD itself.
For the gluon and ghost sectors of QCD, the past twenty

years saw an effort to have reliable descriptions and
interpretations for the propagators. A recent review on
the gluon propagator can be found in [6]. See, also, [7–17]
and references therein for lattice calculations and [18–58]
and references therein for continuum approaches. On the
other hand, the ghost propagator has also been thoroughly
studied, as can be found in e.g., [11,21,32,59–62] and
references therein. Similarly, one can find in the literature
several studies for the quark propagator, see e.g., [63–79],
that include continuum and lattice QCD calculations.
From the good agreement obtained by several groups that
use different techniques, it seems reasonable to claim a fair
understanding of the QCD two-point correlation functions.
However, most nonperturbative computations are done
using the Euclidean formulation of the theory, which
limits the determination of the analytical structure of the
propagators.
The quark propagator has been investigated by several

groups [33,80–87], with the Dyson-Schwinger studies
suggesting the presence of poles at complex momenta.
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However, it is difficult to disentangle if the complex poles
and analytic structure result directly from the truncations
and/or the parametrization of the vertices used to solve the
Dyson-Schwinger equations themselves. Therefore, it is
important to investigate the analytical structure of the QCD
propagators with different methods, different sets of data,
and to confront the outcome of different techniques.
Themain goal of the current work is to address the analytic

structure of the quark propagator by studying a subset of the
Landau gauge lattice data generated in [77], by applying the
techniques basedonPadé approximants considered in [88] for
the pure Yang-Mills gluon and ghost propagators.
In this previous work [88], the study of the analytic

structure of the pure Yang-Mills theory gluon and ghost
propagators used only the absolute value of the residua and
their relative importance. Herein, we take the opportunity to
complement this information and look also at the sign of
the relevant residua. The sign of the residua provides a
naive and clear interpretation of the corresponding poles. In
this respect, for real on-axis momenta (see Fig. 1) some of
the ghost residua are negative and the poles cannot
represent physical particles. For the gluon propagator
and for real on-axis momenta, the interpretation of the
residua is not so clear (see Fig. 2) and no conclusions can
be established firmly. As discussed in [88], the Padé
analysis for the gluon propagator identifies clearly a pair
of complex conjugate poles that are not seen in the ghost
propagator. In [89] the analytical structure of the gluon and
ghost propagators using SU(2) Landau gauge lattice data
was investigated with Padé approximants and the authors
come to similar conclusions to those found in [88].
The analysis of quark propagator data with Padé approx-

imants discussed below shows an analytical structure that
differs from the analytic structure of the gluon and the ghost
propagators. Contrary to the Dyson-Schwinger studies for
complex momenta, no evidence is found for poles at
complex momenta. On the other hand, the Padé analysis

gives indications of a possible branch cut for real on-axis
momenta. Furthermore, the Padé approximant description
of the lattice data finds poles at real on-axis negative
Euclidean momenta around p ∼ −300 MeV, i.e., for
Minkowski momenta, that are correlated with the pion
mass. Indeed, it is observed that the correlation between the
quark mass, understood as the pole mass at the Minkowski
momenta, and the pion mass is compatible with the
predictions of partial conservation of the axial current
(PCAC). Moreover, the residua of these poles for timelike
Euclidean momenta is positive. This seems to indicate that
the quark propagator has a particlelike pole at Minkowski
momenta, at momenta that approximately reproduce typical
values for effective quark masses, and further structures,
that we are not able to disentangle, that must prevent
the quark from being a physical particle. Recall that, for
example, the Dyson-Schwinger studies for the quark
propagator observe positivity violation. Positivity violation
implies that if a Kállën-Lehmann representation of the
propagator exists,1 then its spectral representation is not
positive defined. A spectral representation that is not
positive defined is not compatible with a quantummechani-
cal probabilistic interpretation and single quark state cannot
belong to the set of physical states of QCD. Naively one
could think that the presence of the pole at Minkowsky type
of momenta with a positive residua implies that such type
of pole would correspond to a physical particle but this it
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FIG. 1. Padé estimations for the ghost propagator residua for real on-axis momenta as a function of p2 (left) and a function of the
degree of the Padé approximant (right).

1Strictly speaking the Kállën-Lehmann representation of a
two-point function is an integral representation for this correla-
tion function that introduces a positive defined spectral density
with the usual meaning found in QFT textbooks. When, in the
integral representation of the propagator, the would-be spectral
density ceases to be positive over all its domain, we no longer
have a Kállën-Lehmann representation but, instead, an integral
representation of the Kállën-Lehmann type. Herein, we follow
the usual notation and use the name spectral density or spectral
representation in any case.
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not necessarily true. A counter example can be find in [75],
where the authors provide a quark propagator built from a
toy model that have similar properties as those just
described but do not represent a physical particle. The
pole at the Minkowsky momenta occurs for momenta that
are within typical values for the quark mass used in
effective quark models. In this sense, the results found
herein seem to give some support to the effective quark
models and to the phenomenological values that they use
for the quark mass. A clarification of these questions calls
for an understanding of what are the signs of confinement
in the quark propagator, a complex problem that clear goes
beyond the type of answers that we are able to provide in
the current work.
The paper is organized as follows. In Sec. II the Padé

approximant theory to address the analytical structure of
the propagators is reviewed. Then, the results for the pure
Yang-Mills theory for the ghost and the gluon propagators
are revisited in Secs. III A and III B, respectively. The
analysis of quark propagator data with Padé approximants
is performed in Sec. IV. Finally, in Sec. V we summarize
the results and conclude.

II. PADÉ APPROXIMANTS

The Padé approximant to a function fðxÞ defined in the
interval x ∈ ½a; b� looks for the best approximation to fðxÞ
written as a ratio of polynomials in x. The polynomials
associate zeros and poles to fðxÞ, corresponding to the
zeros of the numerator and denominator, respectively. The
location of these zeros and poles depends on the degree of
the polynomials considered and changing the degrees of the
numerator and denominator polynomials also changes the
position of the zeros and the poles. However, in general,
there is a subset of zeros and poles whose position does not
depend on the Padé approximant used. These zeros and
poles, which are independent of the Padé approximant,
can be associated with the analytic structure of fðxÞ. The
remaining zeros and poles are artifacts of the approxima-
tion. Moreover, a stable structure in the complex plane
formed by a sequence of alternating poles and zeros of the
approximant can represent a branch cut.
For particle propagators in quantum field theory (QFT)

represented, generally, as Dðp2Þ, the Padé approximant of
order ½MjN� to the propagator is given by
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FIG. 2. Padé estimations for the gluon propagator residua for real on-axis momenta for the simulations using the two largest lattice
volumes considered in [88].
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Dðp2Þ ≈ PM
N ðp2Þ ¼ QMðp2Þ

RNðp2Þ ; ð1Þ

with

QMðp2Þ ¼ q0 þ � � � þ qMðp2ÞM and

RNðp2Þ ¼ 1þ � � � þ rNðp2ÞN; ð2Þ
where, by convention, the coefficient of the lowest-order
term in the denominator is set to one.Theproblemof building
a Padé approximant to fðxÞ is reduced to find the set of
coefficients q0; q1;…; r1;… that define the best approxi-
mation to Dðp2Þ according to Eq. (1). Pommerenke’s
Theorem [90] states that for a meromorphic function fðzÞ,
the Padé sequences ½MjM þ k�, with fixed k, converge to
fðzÞ in any compact set of the complex plane. This theorem
gives support to use the Padé approximant sequences in the
investigation of the analytic structure of particle propagators.
In the sequences of Padé approximants ½MjM þ k�,

single poles of fðzÞ appear as stable poles for sufficiently
large values ofM. On the other hand, the Froissart doublets
[91–95] are those poles that depend strongly on the degree of
the polynomials or have nearby zeros. The presence of the
nearby zeros for theFroissart doublets result in residuawhose
absolute value is small. The absolute value of the residua can
then be used to distinguish the meaningful poles from those
that are artifacts of the method. The doublets that appear at
sufficiently large values ofM are artifacts associated with the
use of ratio of polynomials to represent fðxÞ.
It is common practice to use diagonal ½MjM� or near

diagonal ½MjM � 1� Padé approximants in the representa-
tion of fðxÞ. In our analysis of the quark propagator,
motivated by the studied of the pure Yang-Mills gluon and
ghost propagators [88], and also to be closer to the
perturbative description of the propagator that should be
recovered at high momenta, only the sequence ½NjN þ 1�
will be considered.
For the determination of the coefficients of the poly-

nomials that define a given Padé approximant we look at
the absolute minimum of the objective function

χ2 ¼
XNmom

j¼1

�
Dðp2

jÞ −DLatðp2
jÞ

σðp2
jÞ

�2

; ð3Þ

where the sum is over the data points obtained with lattice
QCD simulations, i.e., the number of lattice momentaNmom

accessed in the simulation, Dðp2Þ ¼ PN
Nþ1ðp2Þ, DLatðp2Þ

are the data points for the given function and σðp2Þ are
the associated statistical error with DLatðp2Þ. In the
following we do not take into consideration correlations
between the momenta. In this way, the numerical problem
becomes a nonlinear global optimization problem that is
solved with the help of the global optimization methods
available within Mathematica [96] software package,
i.e., the Mathematica implementations of the differential

evolution (DE) method and of the simulated annealing (SA)
method. We recall the reader that global optimization
problems are nontrivial per se and the comparison of the
two methods is important to have confidence in the results.
Furthermore, we report that in [88] the authors performed a
series of tests to understand the numerical performance of the
numerical method before studying the analytic structure of
the gluon and ghost pure Yang-Mills propagators. We refer
the interested reader to this work for further details concern-
ing numerical experiments, performance, and limitations of
the method.

III. RESUMÉ OF THE QUENCHED ANALYSIS

As a warm up to the analysis of the Landau gauge full
QCD quark propagator, we revisit the results of Padé
approximants analysis for the analytic structure of the pure
gauge gluon and ghost propagators performed in [88],
taking the opportunity to comment on the value of the
residua.

A. The ghost propagator

The analysis of the Landau gauge ghost propagator
analytic structure concluded for the absence of poles at
complex momenta, for the presence of a pole at zero
momenta and found possible evidences for a branch cut at
timelike (Minkowski) momenta. The clear identification of
the branch points is not well established and it requires
further studies, that call for simulations with larger ensem-
bles of gauge configurations and/or larger physical vol-
umes. The analysis of the analytic structure of the
propagator in [88] was centred on the absolute value and
on the relative importance of the absolute value of the
residua.
The Padé estimations of the residua Z for the ghost

propagator for real on-axis monenta are reported in Fig. 1.
For real on-axis momenta, the residua are all real numbers as
required if the propagator is a real function of p2. The data
shows clearly that the largest residua has Z ∼ 3 and is
associated with the pole at zero momentum. This pole
appears for all the N considered in the analysis. The second
highest residuum in absolute value is negative and, therefore,
cannot represent a physical particle. Furthermore, it is
associated with a negative p2 that corresponds to
Minkowsky or timelike momenta. As seen in Fig. 1, there
is a pole at p2 ∼ −0.5 GeV2 that both methods identify only
for small N, and another pole at p2 ¼ −1 GeV2 also with a
negative residuum that is identified for N ≥ 11 and whose
position seems to be independent of the degree of the
approximant.2 As discussed in [88], see their Fig. 18,

2For N ¼ 11 the differential evolution method identifies a pole
at p2 ¼ −0.992 GeV2 with a residuum of Z ¼ −0.4360, while
the simulated annenaling sees a pole at p2 ¼ −0.984 GeV2 with
Z ¼ −0.4307.
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the pole associated with p2 ∼ −0.5 and −1 Gev2 have an
associated close by zero of the numerator that suggests the
presence of a branch point for Minkowski momenta.
As observed in the above cited work, there is another pole
at smaller momentum, that is stable under variation of degree
of the Padé approximant, whose residua is negative and with
no close by zero of the polynomial approximation.3 Its
residuum being real and negative, the pole cannot represent a
physical particle. The remaining observed poles have much
smaller jZj, their position is not stable against the variation
of N and, therefore, we do not consider them as having a
physical meaning. We call the reader’s attention that the
analysis of the infrared region (p2 < 1 GeV2) for the same
ghost propagator data performed in [97], although in a
particular theoretical framework, also encountered a domi-
nant pole at p2 ¼ 0 with a positive residuum and a second
pole at p2 ∼ −0.3 GeV2 with a negative residuum but with
smaller absolute value.

B. The gluon propagator

The Padé analysis of the Landau gauge lattice gluon
propagator identifies a pair of complex conjugate poles at
p2 ∼ −0.28� i0.43 GeV2. No poles or branch cuts are
clearly identified. Indeed, as discussed in [88], there are
indications of a possible branch cut but, as for the ghost
propagator, no firm conclusions were drawn.
The residua for the gluon propagator estimated using

Padé approximants for on-axis momenta are all real
numbers and are reported in Fig. 2 for the two larger
lattice volumes considered previously and using the two
global optimization methods, i.e., differential evolution and
simulated annealing. As can be observed in Fig. 2 there
seems to be stable poles at p2 ∼�1 GeV2 but their residua
are small in absolute value and, for some of the N, they
have close by zeros; see Fig. 14 in [88]. These two features
prevent us to assign a meaning to these poles besides being
possible branch points. Note also that, for on-axis
momenta, the two global optimization methods identify
structures in the same range of momenta but their results
are not fully consistent.

IV. THE QUARK PROPAGATOR

Let us now look at the analysis of the Landau gauge full
quark propagator for a subset of the data published in [77].
In the following, we will investigate the results of the
ensembles simulated at β ¼ 5.29, that corresponds to a
lattice spacing of a ¼ 0.071 fm, and from the available
data only the data for pion masses of 422 MeV, 290 MeV,
and 150 MeV. The first simulation was performed on an

asymmetric 323 × 64 lattice, while the last two simulations
used a 644 lattice. The simulation with an almost physical
pion mass uses about half of the gauge configurations of the
other two cases and, therefore, the associated statistical
errors are larger.
The analysis of the Landau gauge lattice quark propa-

gator assumes that this two-point correlation function is
color diagonal and that its Lorentz-Dirac structure reads,
in momentum space,

SðpÞ ¼ Zðp2Þ pþMðp2Þ
p2 þM2ðp2Þ ¼

Zðp2Þ
Dðp2Þ ðpþMðp2ÞÞ; ð4Þ

where Dðp2Þ ¼ p2 þM2ðp2Þ. In the following, we name

Zðp2Þ
Dðp2Þ and

Zðp2ÞMðp2Þ
Dðp2Þ ð5Þ

as vector and scalar form factors, respectively. The lattice
data for the propagator for the various ensembles can be seen
inFig. 3. Thevector and scalar form factorswere rebuilt from
the original lattice data assuming Gaussian distributions for
the propagation of errors. As see in Fig. 3, the vector and
scalar form factors are enhanced at low momenta and the
enhancement increases as the quark mass, or the pion mass,
decreases. However, for the smaller quark mass, the scalar
form factor drops faster as themomentum increases, with the
form factor becoming smaller than the two heavier pion
masses considered for momenta p≳ 0.5 GeV. The com-
parison of the left and right plots in Fig. 3 reveals a complex
situation that is the result of the dependence of the quark
wave function Zðp2Þ and running quark mass Mðp2Þ with
the quark mass, i.e., with the pion mass.
The lattice data is to be described by a Padé approximant

where the coefficients of the polynomials are determined by
minimizing the corresponding χ̃2 ¼ χ2=d:o:f: The quality
of the minimization can be measured by the value of
χ̃2 ¼ χ2=d:o:f: at the minimum. These values, for the
various sets of data, for the two minimizing algorithms
and for the various N are reported in Fig. 4. In general, the
values of the χ̃2 obtained for the Padé approximants are able
to reproduce well the quark propagator form factors, with
the χ̃2 at the minimum associated with the simulated
annealing method performing slightly worse than for the
differential evolution method. The exception is the scalar
data for the heaviest pion mass Mπ ¼ 422 MeV, whose χ̃2

takes values well above the acceptable. In the following, we
will disregard the data coming from the analysis of the
scalar form factor associated with Mπ ¼ 422 MeV.
The Padé study of the poles, the zeros and the residua

for complex momenta of the Padé approximants shows no
stable structures for momenta jp2j ≤ 2 Gev2. The same
was observed for the pure gauge ghost propagator in [88].
This is illustrated in Fig. 5 for the simulation performed
with Mπ ¼ 290 MeV. Similar plots can be show for the

3For the differential evolution this pole appears firstly for
N ¼ 6 and for p2 ¼ −0.096 GeV2 with a Z ¼ −1.006, while the
simulated annealing returns for N ¼ 6 a p2 ¼ −0.042 Gev2 for a
Z ¼ −0.548.

ANALYTIC STRUCTURE OF THE LANDAU GAUGE QUARK … PHYS. REV. D 106, 114022 (2022)

114022-5



other two data sets. We take these results as an indication
that the quark propagator has no poles for complexmomenta.
This configures a quite different nature for the analytic
structure of the fundamental QCD propagators. If the pure
gauge gluon propagator has poles at complex momenta as
suggest in [88,98] and also by the good agreement found
between the predictions based on the use of the Gribov-
Zwanziger actions [99–101] and the lattice data for the
infrared region [12,13,15,102,103], the Padé analysis sug-
gests that the pure gauge ghost propagator and the quark
propagator are void of poles for complex momenta. If this is
the case, it remains to be understood the mechanism that in
QCD distinguishes the bosonic degrees of freedom from
those whose nature is of the Grassmann type.
Let us turn now our attention to on-axis momenta. The

outcome of the analysis of the form factors for Mπ ¼
422 MeV can be seen in Fig. 6. In what concerns the vector
form factor, the analysis of the results obtained with the
differential evolution method does not have a clear inter-
pretation. On the other hand, the results coming from the
simulated annealing method reveal a pole at timelike
momenta p2 ∼ −0.35 GeV2 whose position is essentially
independent of the degree of Padé approximant considered.
The results for the smallerN where this pole appears, give a
pole position at p2 ¼ −0.275 GeV2 with a residuum Z ¼
1.535 when N ¼ 4 and a pole at p2 ¼ −0.227 GeV2 with
Z ¼ 1.266 for N ¼ 5. The corresponding results obtained
with the differential evolution method are a pole p2 ¼
−0.164 GeV2 and a residuum of Z ¼ 1.087 for N ¼ 4 and
pole at p2 ¼ −0.293 GeV2 with Z ¼ 2.325 for N ¼ 5 are
in the same ballpark as those obtained with the simulated
annealing method. From the data it is difficult to identify
any other structure as, for example, a possible branch point.
As already mentioned, the results coming from the analysis
of the scalar form factor are not so faithful. However,
looking at the bottom plot of Fig. 6, it qualitatively
reproduces the results of the vector form factor with the

poles at slightly smaller values of jp2j. This may suggest
that the poles of the quark propagator do not have to occur
at the same momentum for its vectorial and scalar form
factors. This contrasts with the intuitive picture that is built
from the analysis of the free fermionic propagators as, for
example, is found in QED or other theories where fermions
appear as free particles.
The results of the analysis of the lattice data for the

simulation with an Mπ ¼ 290 MeV are reported in Fig. 7.
For the vector form factor (upper plot), the outcome of the
simulated annealing method is again easier to understand. It
shows a pole at time-like momenta, that is also observed
with the differential evolution method. For the smallest
values of N, the simulated annealing returns a pole at p2 ¼
−0.139 GeV2 and a residuum of Z ¼ 1.174 for N ¼ 2 and
p2 ¼ −0.148 GeV2 with Z ¼ 1.201 for N ¼ 3, while the
results of the differential evolution method return a pole at
p2 ¼ −0.139 GeV2 with Z ¼ 1.174 for N ¼ 2 and p2 ¼
−0.127 GeV2 with Z ¼ 1.203 for N ¼ 4. No further clear
poles or possible branch points are identified from the
analysis of the vector form factor. In what concerns the
results for the scalar form factors, the two optimization
methods give similar results that suggest a branch point at
p2 ∼ −1 GeV2 where there is a proliferation of poles that
have close zeros of the Padé approximants. A precise
determination of a possible branch point would demand for
less scattered data that, in principle, is possible to achieve
with higher statistical simulations. The data for the scalar
form factor shows a clear pole whose location is at p2 ¼
−0.119 GeV2 with a residuum Z ¼ 0.299 for N ¼ 8 and
p2 ¼ −0.223 GeV2 with Z ¼ 0.740 for N ¼ 10 according
to the differential evolution method, and at p2 ¼
−0.205 GeV2 with a residuum Z ¼ 0.727 for N ¼ 4 and
p2 ¼ −0.182 GeV2 with Z ¼ 0.623 for N ¼ 6 by the
simulated annealing method. These results suggest that
the pole of the vector form factor is at p2 ¼ −0.2 GeV2 and
its residuum Z ¼ 1.2, while the pole of the scalar form
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ALEXANDRE F. FALCÃO and ORLANDO OLIVEIRA PHYS. REV. D 106, 114022 (2022)

114022-6



factor occurs at p2 ¼ −0.2 GeV and its residuum is
Z ¼ 0.65. Recall that as for the largest pion mass, the pole
residuum is positive defined and the pole of the vector and
scalar form factors occur for the same timelike momentum.
Finally, the results of the analysis of the lattice data set

withMπ ¼ 150 MeV is reported in Fig. 8. The study of the
vector form factor suggest a branch point at timelike
momenta but at jp2j that are smaller than the branch point
found for the Mπ ¼ 290 MeV data. However, once more,
its precise location is difficult to determine within the
statistical precision of the simulation. On the other hand,

both the differential evolution and the simulated annealing
methods point towards the presence of a pole at p2 ¼
−0.114 GeV2 with Z ¼ 1.170 for N ¼ 2 or p2 ¼
−0.094 GeV2 with Z ¼ 1.268 for N ¼ 4 (differential
evolution), or p2 ¼ −0.114 GeV2 with Z ¼ 1.170 for
N ¼ 2 and p2 ¼ −0.117 GeV2 with Z ¼ 1.179 for
N ¼ 3 (simulated annealing), respectively. In what con-
cerns the analysis of the scalar form factor, the results
suggest the presence of branch point at similar values of
timelike momenta as the found for the vector form factor
data. However, once more, its precise location is hard to

FIG. 4. Minimum of the χ2=d:o:f: achieved by the global optimization methods for each of the lattice data sets. From top to bottom, the
first line of plots refers to theMπ ¼ 150 MeV, the second line toMπ ¼ 290 MeV and the bottom line toMπ ¼ 422 MeV. In each line,
the left plot is the outcome of the minimization of the vector form factor, while the right plot refers to the minima for the scalar form
factor.
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define. This pole occurs for p2 ¼ −0.153 GeV2 with a
Z ¼ 0.468 for N ¼ 8 and p2 ¼ −0.122 GeV2 with
Z ¼ 0.368 for N ¼ 10, according to the differential evo-
lution method, and at p2 ¼ −0.161 GeV2 with Z ¼ 0.463

forN ¼ 4 andp2 ¼ −0.170 GeV2 for Z ¼ 0.522 forN ¼ 5
when using the simulated annealingmethod.Gathering these
results together, one can claim a pole at timelike momenta
p2 ¼ −0.11 GeV2 with a residuum Z ¼ 1.17 from the

FIG. 5. Poles in absolute value of the residua for complex valued momenta for the simulation with a Mπ ¼ 290 MeV. On the upper
plot the data refers to the vector form factor, while the lower plot refers to the analysis of the scalar form factor. Here the poles with
jZj < 0.5 are not shown.
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vector form factor data, and a pole at p2 ¼ −0.15 GeV2 for
Z ¼ 0.45 from the scalar form factor data. Once more, the
residuum of the quark propagator at the pole is positive
defined.

The results just described suggest also that there is a
correlation between the pion mass and the quark mass taken
from the dominant pole, i.e., the pole with the largest
residuum, for real on-axis momenta. Defining the quark

FIG. 6. Poles, zeros, and residua for real on-axis momenta forMπ ¼ 422 MeV. The upper plot reports the results from the analysis of
the vector form factor, while the lower plot reports the results of the analysis of the scalar part form factor. We call the reader attention
that the same data appears twice for different regions of momenta. This procedure is repeated in subsequent figures.
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mass as m2
q ¼ −p2, where p2 is the value of pole position

for real on-axis momenta, this correlation can be used to
check one of the most fundamental relations of QCD,
namely the prediction based on the partial conservation of
the axial current, see e.g., [104], that gives

M2
π ∝ mq: ð6Þ

The function M2
πðmqÞ is reported in Fig. 9 for the various

estimates of mq mentioned previously and it also includes

FIG. 7. The same as Fig. 6 but for the data associated with Mπ ¼ 290 MeV.
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the physical value of the pion mass taken to be 140 MeV.
For the various mq associated with a given Mπ we take the
pole mass for the smaller N in the Padé sequences. There
are two key points that can be read from Fig. 9. The first
being that, despite the large errors, the data reported is

compatible with the predictions of PCAC given in Eq. (6).
The other point being that the pole mass for the scalar and
vector form factors seems to be slightly different, with the
pole position of the scalar form part of the propagator
appearing at slightly higher values of mq.

FIG. 8. The same as Figs. 6 and 7 but for the data associated with Mπ ¼ 150 MeV.
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V. SUMMARY AND CONCLUSIONS

The investigation of the poles and branch cuts using Padé
approximants for the Landau gauge pure Yang-Mills gluon
and ghost lattice propagators and for the full QCD quark
propagator show significant differences between them.
Indeed, only for the gluon case the method clearly identifies
poles at complex momenta. The presence of complex poles
associated with the gluon propagator were already seen in
[12], where the compatibility of the predictions of Gribov-
Zwanziger type of actions, see [105] and references therein,
with the propagators calculated with lattice QCD simu-
lations was investigated. In this sense, the observation of
complex poles for the gluon propagator favors the Gribov-
Zwanziger type of approach to the quantization of non-
Abelian theories but it also rises questions about the
definition of a proper quantum theory for non-Abelian
theories; see e.g., the discussion in [85,86] and references
therein. The absence of complex conjugate poles for the
pure Yang-Millgs ghost and full QCD quark propagators
requires understanding the dynamics of the theory. If only
one of the fundamental QCD propagators has poles at
complex momenta, it implies that a delicate tunning has to
take place that prevents complex poles in the ghost and
quark propagators. Looking at the Dyson-Schwinger equa-
tions for the quark propagator and for the ghost propagtor,
the mechanism responsible for the absence of the complex
poles for these two propagator should translate in some

type of constrains for the full ghost-gluon vertex and the
full quark-gluon vertex. Recall that the aforementioned
Dyson-Schwinger equations involve only these two verti-
ces besides the propagators.
The known solutions of the Dyson-Schwinger equations

for the quark propagator suggest the presence of poles at
complex momenta that the Padé method is unable to
identify. If this is a limitation of using Padé approximants
to look at the analytic structure of the propagators, or it is
due to the statistical precision of the simulations, or a
limitation of the available analysis of the Dyson-Schwinger
gap equation remains to be investigated. It is well known
that the analytical structure predicted by the Dyson-
Schwinger equations for the quark propagator depends,
to some extend, on how the quark-gluon vertex is dressed.
Despite this difference, the quark and the ghost propagators
computed from these equations are in good agreement with
the outcome of the lattice simulations, suggesting that the
description of the fundamental QCD propagators with
continuum functional methods captures the essential of
the dynamics of the theory.
The Padé analysis of the Landau gauge quark propagator

identifies also a pole for Minkowski momentum, i.e., real
on-axis negative Euclidean momentum, with a positive
residuum. The naive interpretation of such a pole translates
into a free asymptotic single-quark state. However, it is
well-known that positive violation occurs for the quark
propagator, i.e., the spectral density of the quark is not
positively defined, and the quark propagator can only be
described by a single pole in addition with other structures
that, overall, prevent the quarks to appear as free particles.
Unfortunately, the method used herein does not provide
information on the structure beyond the single pole of the
fermionic propagator.
The quark propagator pole position in momentum space

can be translated into an effective quark mass. This
effective mass falls is in the range of values that, typically,
are associated with the effective quark mass used in quark
models. As can be seen in Fig. 9, this effective quark mass
is above 300 MeV. Moreover, the same figure suggests
that the pole position can differ for the scalar and vector
form factors, with the scalar form factors favoring
slightly large values for the effective mass. This result is
somehow unexpected and maybe an artifact of the method.
Indeed, assuming that there is a spectral representation for
the quark propagator, then it can be written as (ignoring the
color part)

SðpÞ ¼
Z þ∞

0

dμ
pρ1ðμÞ þmρ2ðμÞ

p2 − μþ iϵ
; ð7Þ

where ρ1ðμÞ and ρ2ðμÞ are the quark spectral functions
[106]. From the above expression it follows that to
accommodate a different pole structure for the vector
and scalar parts of the propagator the functions ρ1ðμÞ
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FIG. 9. Pion mass squared as a function of the pole quark mass
as measured from vector and scalar form factors. The dotted line
refers to the physical pion mass taken as Mπ ¼ 140 MeV. To
highlight the linear dependence of the pion mass squared on the
quark mass we include the solid lines that are built using the
average values of the quark masses for each of the pion mass
values and performing a linear regression (vector form factor in
orange) or going through the data points (scalar form factor in
blue). Note that the errors on the estimation of the “pole quark
mass” are quite large and, therefore, the continuum lines that are
represented try only to illustrate the quark mass dependence and
appear in the figure to guide the eye of the reader.
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and ρ2ðμÞ have to be different. Alternatively, this could be
an indication of the absence of such a type of integral
representation for the propagator. One should also take into
consideration the large uncertainties on the estimation of
the effective mass and that it is not clear on how to estimate
the errors for the effective mass.
The results of the Padé analysis also show a correlation

between the effective quark mass and the corresponding
pion mass. Furthermore, it is shown in Fig. 9 that this
correlation, measured by the curve M2

πðmqÞ, is compatible
with the predictions of partial conservation of the axial
current for QCD.
The work described in the current manuscript and in [88]

for the pure gauge theory propagators shows that one
can rely on Padé approximants combined with global

optimization techniques to access the analytic structure
of the two point correlation functions. The accuracy on the
results depends on the size of the statistical ensemble of
configurations and, certainly, having access to the simu-
lations with larger sets of gauge configurations will clear
the outcome of the analysis.

ACKNOWLEDGMENTS

The authors where supported by national funds from
FCT—Fundação para a Ciência e aTecnologia, I. P., within
the Projects No. UIDB/04564/2020 and No. UIDP/04564/
2020. A. F. F. acknowledges the financial support via
the Starting Grant from Trond Mohn Foundation
(No. BFS2018REK01) and the University of Bergen.

[1] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).
[2] C. S. Fischer, J. Phys. G 32, R253 (2006).
[3] D. Binosi and J. Papavassiliou, Phys. Rep. 479, 1

(2009).
[4] M. L. Perl, E. R. Lee, and D. Loomba, Annu. Rev. Nucl.

Part. Sci. 59, 47 (2009).
[5] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[6] J. Papavassiliou, Chin. Phys. C 46, 112001 (2022).
[7] D. B. Leinweber , J. Ivar Skullerud, A. G. Williams, and C.

Parrinello (UKQCD Collaboration), Phys. Rev. D 60,
094507 (1999); 61, 079901(E) (2000).

[8] D. Becirevic, P. Boucaud, J. P. Leroy, J. Micheli, O. Pene,
J. Rodriguez-Quintero, and C. Roiesnel, Phys. Rev. D 60,
094509 (1999).

[9] D. Becirevic, P. Boucaud, J. P. Leroy, J. Micheli, O. Pene,
J. Rodriguez-Quintero, and C. Roiesnel, Phys. Rev. D 61,
114508 (2000).

[10] A. Cucchieri and T. Mendes, Proc. Sci. LATTICE2007
(2007) 297.

[11] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker,
and A. Sternbeck, Phys. Lett. B 676, 69 (2009).

[12] D. Dudal, O. Oliveira, and N. Vandersickel, Phys. Rev. D
81, 074505 (2010).

[13] A. Cucchieri, D. Dudal, T. Mendes, and N. Vandersickel,
Phys. Rev. D 85, 094513 (2012).

[14] A. Maas, J. M. Pawlowski, L. von Smekal, and D.
Spielmann, Phys. Rev. D 85, 034037 (2012).

[15] D. Dudal, O. Oliveira, and P. J. Silva, Ann. Phys. (N.Y.)
397, 351 (2018).

[16] S. W. Li, P. Lowdon, O. Oliveira, and P. J. Silva, Phys. Lett.
B 803, 135329 (2020).

[17] G. T. R. Catumba, O. Oliveira, and P. J. Silva, Phys. Rev. D
103, 074501 (2021).

[18] P. Boucaud, J. P. Leroy, A. Le Yaouanc, A. Y. Lokhov, J.
Micheli, O. Pene, J. Rodriguez-Quintero, and C. Roiesnel,
J. High Energy Phys. 03 (2007) 076.

[19] M. Q. Huber, R. Alkofer, C. S. Fischer, and K. Schwenzer,
Phys. Lett. B 659, 434 (2008).

[20] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and
H. Verschelde, Phys. Rev. D 78, 125012 (2008).

[21] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev.
D 78, 025010 (2008).

[22] J. Rodriguez-Quintero, J. High Energy Phys. 01 (2011)
105.

[23] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev.
D 81, 125025 (2010).

[24] S. Strauss, C. S. Fischer, and C. Kellermann, Prog. Part.
Nucl. Phys. 67, 239 (2012).

[25] M. Peláez, M. Tissier, and N. Wschebor, Phys. Rev. D 90,
065031 (2014).

[26] A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou,
J. Rodríguez-Quintero, and S. Zafeiropoulos, Eur. Phys. J.
C 80, 154 (2020).

[27] U. Reinosa, J. Serreau, R. C. Terin, and M. Tissier, SciPost
Phys. 10, 035 (2021).

[28] C. S. Fischer and M. Q. Huber, Phys. Rev. D 102, 094005
(2020).

[29] G. Eichmann, J. M. Pawlowski, and J. M. Silva, Phys. Rev.
D 104, 114016 (2021).

[30] M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N.
Wschebor, Rep. Prog. Phys. 84, 124202 (2021).

[31] D. Dudal, D. M. van Egmond, U. Reinosa, and D.
Vercauteren, Phys. Rev. D 106, 054007 (2022).

[32] L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lett.
79, 3591 (1997).

[33] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys.
Rev. D 70, 014014 (2004).

[34] T. R. Morris and O. J. Rosten, Phys. Rev. D 73, 065003
(2006).

[35] T. R. Morris and O. J. Rosten, J. Phys. A 39, 11657 (2006).
[36] P. Boucaud, J. P. Leroy, A. Le Yaouanc, A. Y. Lokhov, J.

Micheli, O. Pene, J. Rodriguez-Quintero, and C. Roiesnel,
Eur. Phys. J. A 31, 750 (2007).

ANALYTIC STRUCTURE OF THE LANDAU GAUGE QUARK … PHYS. REV. D 106, 114022 (2022)

114022-13

https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1146/annurev-nucl-121908-122035
https://doi.org/10.1146/annurev-nucl-121908-122035
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/1674-1137/ac84ca
https://doi.org/10.1103/PhysRevD.60.094507
https://doi.org/10.1103/PhysRevD.60.094507
https://doi.org/10.1103/PhysRevD.61.079901
https://doi.org/10.1103/PhysRevD.60.094509
https://doi.org/10.1103/PhysRevD.60.094509
https://doi.org/10.1103/PhysRevD.61.114508
https://doi.org/10.1103/PhysRevD.61.114508
https://doi.org/10.22323/1.042.0297
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1103/PhysRevD.81.074505
https://doi.org/10.1103/PhysRevD.81.074505
https://doi.org/10.1103/PhysRevD.85.094513
https://doi.org/10.1103/PhysRevD.85.034037
https://doi.org/10.1016/j.aop.2018.08.019
https://doi.org/10.1016/j.aop.2018.08.019
https://doi.org/10.1016/j.physletb.2020.135329
https://doi.org/10.1016/j.physletb.2020.135329
https://doi.org/10.1103/PhysRevD.103.074501
https://doi.org/10.1103/PhysRevD.103.074501
https://doi.org/10.1088/1126-6708/2007/03/076
https://doi.org/10.1016/j.physletb.2007.10.073
https://doi.org/10.1103/PhysRevD.78.125012
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1007/JHEP01(2011)105
https://doi.org/10.1007/JHEP01(2011)105
https://doi.org/10.1103/PhysRevD.81.125025
https://doi.org/10.1103/PhysRevD.81.125025
https://doi.org/10.1016/j.ppnp.2011.12.025
https://doi.org/10.1016/j.ppnp.2011.12.025
https://doi.org/10.1103/PhysRevD.90.065031
https://doi.org/10.1103/PhysRevD.90.065031
https://doi.org/10.1140/epjc/s10052-020-7741-0
https://doi.org/10.1140/epjc/s10052-020-7741-0
https://doi.org/10.21468/SciPostPhys.10.2.035
https://doi.org/10.21468/SciPostPhys.10.2.035
https://doi.org/10.1103/PhysRevD.102.094005
https://doi.org/10.1103/PhysRevD.102.094005
https://doi.org/10.1103/PhysRevD.104.114016
https://doi.org/10.1103/PhysRevD.104.114016
https://doi.org/10.1088/1361-6633/ac36b8
https://doi.org/10.1103/PhysRevD.106.054007
https://doi.org/10.1103/PhysRevLett.79.3591
https://doi.org/10.1103/PhysRevLett.79.3591
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1103/PhysRevD.73.065003
https://doi.org/10.1103/PhysRevD.73.065003
https://doi.org/10.1088/0305-4470/39/37/020
https://doi.org/10.1140/epja/i2006-10295-1


[37] S. Arnone, T. R. Morris, and O. J. Rosten, Eur. Phys. J. C
50, 467 (2007).

[38] D. Zwanziger, Phys. Rev. D 87, 085039 (2013).
[39] P. Allendes, C. Ayala, and G. Cvetič, Phys. Rev. D 89,

054016 (2014).
[40] J. Meyers and E. S. Swanson, Phys. Rev. D 90, 045037

(2014).
[41] F. Siringo, Phys. Rev. D 90, 094021 (2014).
[42] D. Dudal and M. S. Guimaraes, Phys. Rev. D 93, 085010

(2016).
[43] A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N.

Strodthoff, Phys. Rev. D 94, 054005 (2016).
[44] V. Gogokhia and G. G. Barnaföldi, Int. J. Mod. Phys. A 31,

1645027 (2016).
[45] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N.

Strodthoff, Phys. Rev. D 97, 054006 (2018).
[46] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink,

SciPost Phys. 5, 065 (2018).
[47] P. Lowdon, Phys. Lett. B 786, 399 (2018).
[48] F. Siringo and G. Comitini, Phys. Rev. D 98, 034023

(2018).
[49] B. W. Mintz, L. F. Palhares, G. Peruzzo, and S. P. Sorella,

Phys. Rev. D 99, 034002 (2019).
[50] A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, Eur.

Phys. J. C 81, 54 (2021).
[51] M. Q. Huber, Phys. Rev. D 101, 114009 (2020).
[52] M. Napetschnig, R. Alkofer, M. Q. Huber, and J. M.

Pawlowski, Phys. Rev. D 104, 054003 (2021).
[53] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J.

Turnwald, J. M. Urban, N. Wink, and S. Zafeiropoulos,
Phys. Rev. D 105, 036014 (2022).

[54] A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, Phys.
Rev. D 105, 014030 (2022).

[55] J. A. Gracey, Phys. Rev. D 106, 065006 (2022).
[56] J. Horak, F. Ihssen, J. Papavassiliou, J. M. Pawlowski, A.

Weber, and C. Wetterich, SciPost Phys. 13, 042 (2022).
[57] J. Horak, J. M. Pawlowski, andN.Wink, arXiv:2202.09333.
[58] A. C. Aguilar, M. N. Ferreira, B. M. Oliveira, and J.

Papavassiliou, arXiv:2210.07429.
[59] R. Alkofer, C. S. Fischer, H. Reinhardt, and L. von Smekal,

Phys. Rev. D 68, 045003 (2003).
[60] A. G. Duarte, O. Oliveira, and P. J. Silva, Phys. Rev. D 94,

014502 (2016).
[61] P. Boucaud, F. De Soto, J. Rodríguez-Quintero, and S.

Zafeiropoulos, Phys. Rev. D 96, 098501 (2017).
[62] A. G. Duarte, O. Oliveira, and P. J. Silva, Phys. Rev. D 96,

098502 (2017).
[63] G. Krein, C. D. Roberts, and A. G. Williams, Int. J. Mod.

Phys. A 07, 5607 (1992).
[64] P. O. Bowman, U. M. Heller, and A. G. Williams, Phys.

Rev. D 66, 014505 (2002).
[65] P. Boucaud, F. de Soto, J. P. Leroy, A. Le Yaouanc, J.

Micheli, H. Moutarde, O. Pene, and J. Rodriguez-
Quintero, Phys. Lett. B 575, 256 (2003).

[66] C. S. Fischer and M. R. Pennington, Phys. Rev. D 73,
034029 (2006).

[67] S. Furui and H. Nakajima, Phys. Rev. D 73, 094506
(2006).

[68] S. Furui and H. Nakajima, Phys. Rev. D 73, 074503
(2006).

[69] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and
J. Rodriguez-Quintero, Phys. Rev. D 86, 074512
(2012).

[70] G. Burgio, M. Schrock, H. Reinhardt, and M. Quandt,
Phys. Rev. D 86, 014506 (2012).

[71] S. M. Dorkin, L. P. Kaptari, T. Hilger, and B. Kampfer,
Phys. Rev. C 89, 034005 (2014).

[72] S. M. Dorkin, L. P. Kaptari, and B. Kämpfer, Phys. Rev. C
91, 055201 (2015).

[73] H. F. Fu and Q. Wang, Phys. Rev. D 93, 014013 (2016).
[74] A. Windisch, Phys. Rev. C 95, 045204 (2017).
[75] E. L. Solis, C. S. R. Costa, V. V. Luiz, and G. Krein, Few

Body Syst. 60, 49 (2019).
[76] J. R. Lessa, F. E. Serna, B. El-Bennich, A. Bashir, and O.

Oliveira, arXiv:2202.12313.
[77] O. Oliveira, P. J. Silva, J. I. Skullerud, and A. Sternbeck,

Phys. Rev. D 99, 094506 (2019).
[78] G. Comitini, D. Rizzo, M. Battello, and F. Siringo, Phys.

Rev. D 104, 074020 (2021).
[79] A. Virgili, W. Kamleh, and D. Leinweber, arXiv:2209

.14864.
[80] P. Maris, Phys. Rev. D 50, 4189 (1994).
[81] P. Maris, Phys. Rev. D 52, 6087 (1995).
[82] C. J. Burden, Phys. Rev. D 57, 276 (1998).
[83] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C.

Tandy, Phys. Rev. C 68, 015203 (2003).
[84] T. Frederico, D. C. Duarte, W. de Paula, E. Ydrefors, S. Jia,

and P. Maris, arXiv:1905.00703.
[85] Y. Hayashi and K. I. Kondo, Phys. Rev. D 103, L111504

(2021).
[86] Y. Hayashi and K. I. Kondo, Phys. Rev. D 104, 074024

(2021).
[87] V. Sauli, Phys. Rev. D 106, 094022 (2022).
[88] A. F. Falcão, O. Oliveira, and P. J. Silva, Phys. Rev. D 102,

114518 (2020).
[89] D. Boito, A. Cucchieri, C. Y. London, and T. Mendes,

arXiv:2210.10490.
[90] C. Pommerenke, J. Math. Anal. Appl. 41, 775 (1973).
[91] G. A. Baker, Essentials of Padé Approximants (Academic
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