
����������
�������

Citation: Wolter, U. Logics of

Statements in Context-Category

Independent Basics. Mathematics

2022, 10, 1085. https://doi.org/

10.3390/math10071085

Academic Editor: Răzvan Diaconescu

Received: 1 February 2022

Accepted: 18 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Logics of Statements in Context-Category Independent Basics
Uwe Wolter

Department of Informatics, University of Bergen, 5020 Bergen, Norway; uwe.wolter@uib.no

Abstract: Based on a formalization of open formulas as statements in context, the paper presents
a freshly new and abstract view of logics and specification formalisms. Generalizing concepts
like sets of generators in Group Theory, underlying graph of a sketch in Category Theory, sets of
individual names in Description Logic and underlying graph-based structure of a software model in
Software Engineering, we coin an abstract concept of context. We show how to define, in a category
independent way, arbitrary first-order statements in arbitrary contexts. Examples of those statements
are defining relations in Group Theory, commutative, limit and colimit diagrams in Category Theory,
assertional axioms in Description Logic and constraints in Software Engineering. To validate the
appropriateness of the newly proposed abstract framework, we prove that our category independent
definitions and constructions give us a very broad spectrum of Institutions of Statements at hand.
For any Institution of Statements, a specification (presentation) is given by a context together with a
set of first-order statements in that context. Since many of our motivating examples are variants of
sketches, we will simply use the term sketch for those specifications. We investigate exhaustively
different kinds of arrows between sketches and their interrelations. To pave the way for a future
development of category independent deduction calculi for sketches, we define arbitrary first-order
sketch conditions and corresponding sketch constraints as a generalization of graph conditions and
graph constraints, respectively. Sketch constraints are the crucial conceptual tool to describe and
reason about the structure of sketches. We close the paper with some vital observations, insights
and ideas related to future deduction calculi for sketches. Moreover, we outline that our universal
method to define sketch constraints enables us to establish and to work with conceptual hierarchies
of sketches.

Keywords: first-order logic; abstract model theory; institution; sketch; algebraic specification;
description logic; graph conditions; graph constraints; diagram predicate framework

MSC: 03B70; 03C95; 18C30; 68N30; 68Q65

1. Introduction

The impetus towards abstraction is often triggered by the feeling that we do, again
and again, the “same thing”—that there are structural similarities between concepts
and problems in various areas and on different conceptual levels. We experience fac-
ing “similar patterns” when formalizing and reasoning about certain kinds of concepts
and problems.

Once we obtain the strong impression that concepts, constructions, proofs and results
in various areas and on different conceptual levels are somehow related, we may feel the
urge to find out what the commonalities really are and to formalize them in an adequate
mathematical language. Naturally, such a formalization will be a pretty abstract one if it
should cover a broader range of areas.

In light of these remarks, the paper presents the first stage of expansion of a conceptual
framework intended to provide a unified view to a broad range of concepts, constructions
and problems we dealt with in our long-standing research in various areas and on different
conceptual levels in formal specification. The framework should enable us to describe a

Mathematics 2022, 10, 1085. https://doi.org/10.3390/math10071085 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071085
https://doi.org/10.3390/math10071085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7553-9858
https://doi.org/10.3390/math10071085
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071085?type=check_update&version=1

Mathematics 2022, 10, 1085 2 of 65

wide range of specification formalisms (modelling techniques) in a uniform way and thus
to relate them. Since category theory is the mathematical language of choice to describe
and study relations between structures and constructions, we utilize categorical concepts
to describe our framework.

1.1. Background, Motivations, Challenges and Principles

In this subsection, we outline different lines of motivation and challenges encouraging
us to develop our abstract conceptual framework. In particular, we discuss and try to justify
the methodological principles upon which the development of the framework is based.

1.1.1. Universal Algebra and Algebraic Specifications:

We consider a morphism ϕ : (Σ, E)→ (Σ′, E′) between two equational specifications,
i.e., a signature morphism ϕ : Σ → Σ′ such that the set E′ of Σ′-equations entails the set
ϕ(E) of translated Σ-equations. For any (Σ, E)-algebra A there is a (Σ′, E′)-algebra Fϕ(A)
freely generated by A along ϕ. The construction of Fϕ(A) can be described in four steps:
(1) Construct a “syntactic encoding” of A; (2) Translate this syntactic encoding along the
signature morphism ϕ; (3) Use semantic entailment or a deduction calculus to extend the
translated encoding of A to a syntactic encoding of a (Σ′, E′)-algebra; and (4) Transform
the extended encoding into a (Σ′, E′)-algebra Fϕ(A).

There is a widely-used technique to encode a Σ-algebra A syntactically (see, for
example, [1]): The elements of the carrier A of A are added as auxiliary constants to
the signature Σ and the complete behaviour of the operations in A is encoded by a
set RA of ground (Σ + A)-equations. To make the construction of free algebras work,
we have to extend (Σ′, E′) and ϕ, in such a way that we obtain a signature morphisms
ϕA : (Σ + A, E + RA)→ (Σ′ + ϕ(A), E′ + ϕ(RA)) and Fϕ(A) is constructed as a quotient
of the ground (Σ′ + ϕ(A))-term algebra TΣ′+ϕ(A)(∅).

In abstract model theory, this technique is reflected by the idea to define variables by
means of signature extensions. (In this paper, we use the term “model” in two conflicting
meanings: A “software model”, e.g., is a syntactic representation of (certain properties)
of a software system (semantic structure) while a “model” in logic is a semantic structure
conforming to a formal syntactic description). This is the traditional approach in the
theory of institutions (compare [2]). Note that this only works if the signatures in question
comprise the concept of operation!

We perceive the above outlined technique in Universal Algebra as not fully adequate.
The construction of free algebras becomes unnecessarily involved and we are, unfortunately,
forced to work with infinite signatures since there is a kind of circularity in the sense that
signatures have to be defined in such a way that the carrier of any potential Σ-algebra
for any signature Σ can be encoded by a signature extension of Σ. Somehow, the concept
of signature is not a “syntactic” one anymore. In our humble opinion, signatures are (or
should be) located on a conceptual level above carriers of algebras. Following the principle
of separation of concerns, we would therefore formulate the following first requirement for
our framework.

Requirement 1: Define signatures independent of and prior to carriers of algebras.

Adhering to Requirement 1, we will be allowed, for example, to base a specification
formalism on finite or enumerable signatures only! Another observation is that signatures
are always given by sets, thus we have to adhere to Requirement 1 if we want to work with
algebras where the carriers are graphs instead of sets, for example [3].

Generalizing the concept of a group generated by a set of generators and a set of
defining relations the small school on Partial Algebraic Specifications in former East-
Germany [4–7] developed the concept of a partial (Σ, CEE)-algebra F (Σ, CEE, X, R) freely
generated by a set X of variables (generators) and a set R of Σ-equations on X where CEE
is a set of conditional existence Σ-equations. Based on this concept, a fully-fledged theory

Mathematics 2022, 10, 1085 3 of 65

of Partial Algebraic Specifications, including free functor semantics as well as limits and
colimits of signatures, specifications and partial algebras, resp., has been developed [6].

We consider here the case of total algebras. Any (Σ, CE)-algebra A is isomorphic
to F (Σ, CE, A, RA), which, in turn, is isomorphic to F (Σ, ∅, A, RA) since RA also en-
codes the fact that A satisfies all the conditional equations in CE. However, there may
be other, hopefully finite, sets X and R such that A ∼= F (Σ, CE, X, R). For any such
syntactic representation (X, R) of a (Σ, CE)-algebra A and any specification morphism
ϕ : (Σ, CE) → (Σ′, CE′), we can construct the free algebra Fϕ(A) as the Σ′-algebra
F (Σ′, CE′, ϕ(X), ϕ(R)), which is a quotient of the Σ′-term algebra TΣ′(ϕ(X)).

Freely generated algebras also play a crucial role in proving the completeness of the
deduction calculus for conditional equations [6,7]: A deduction rule generates new equations
from a set of given equations. Any conditional equation can be transformed into a deduction
rule and vice versa. Given (X, R), the deduction calculus generates the smallest Σ-congruence
C(Σ, CE, X, R) in TΣ(X) which contains (X, R) and is closed w.r.t. the rules arising from CE.
We consider the quotient Σ-term algebra F (Σ, CE, X, R) = TΣ(X)/C(Σ, CE, X, R). For any
Σ-algebra A we have A ∼= TΣ(A)/ker(id∗A) for the Σ-homomorphism id∗A : TΣ(A) → A,
and it can be shown that A satisfies a set CE of conditional equations if, and only if, the
kernel ker(id∗A) is closed under the deduction rules arising from CE. This insures that
F (Σ, CE, X, R) is a (Σ, CE)-algebra. To show the completeness of the deduction calculus, we
only have to prove that F (Σ, CE, X, R) is indeed freely generated by (X, R). Note that we
work here with a kind of semantic deduction theorem: A set CE of conditional equations
entails a conditional equation (X : R→ t = t′) if, and only if, (t, t′) ∈ C(Σ, CE, X, R).

In the East-German school of Algebraic Specifications, we do have syntactic repre-
sentations (A, RA), (X, R) of Σ-algebras which are well distinguished from signatures
and algebras, respectively. At the same time, deduction means the step-wise generation
of the congruence relations C(Σ, CE, X, R) starting with (X, R). In [7], we describe these
congruence relations, for example, as fixed points of so-called derivation operators de-
scribing the effect of parallel one-step applications of deduction rules. We are convinced
that the definition of any specification formalism would benefit if it includes a separated
“technological layer” where the syntactic representations of semantic structures live and
where we can describe the effects of deduction explicitly and in detail.

Requirement 2: Define a separated technological layer where the syntactic repre-
sentations of semantic structures live and where deduction takes place.

Looking back, we have been left, after all the years, with two related questions:

Question 1: Is there a general principle behind the one-to-one correspondence
between conditional equations and deduction rules?

Question 2: Is there indeed a kind of general semantic deduction theorem behind
the equivalence between entailment of conditional equations and entailment of
equations?

We hope that our framework will enable us to give satisfactory answers.

1.1.2. Categorical Algebra

Due to Lawvere [8], one can construct for any specification (Σ, E) with E a set of
Σ-equations a category FP(Σ,E) with finite products such that the category of all
(Σ, E)-algebras is equivalent to the category of all product preserving functors from FP(Σ,E)
into Set. Analogously, one can construct for any specification (Σ, CE) with CE a set of
conditional Σ-equations a category FL(Σ,CE) with finite limits such that the category of all
(Σ, CE)-algebras is equivalent to the category of all finite limit preserving functors from
FL(Σ,CE) into Set.

Mathematics 2022, 10, 1085 4 of 65

In [9], we generalized this result to many-sorted signatures and partial algebras. We
showed how to construct for any specification (Σ, CEE), with Σ a many-sorted signature
and CEE a set of conditional existence Σ-equations, a category FL(Σ,CEE) with finite limits
such that the category of all partial (Σ, CEE)-algebras is equivalent to the category of
all limit preserving functors from FL(Σ,CEE) into the functor category SetS with S the
corresponding discrete category, i.e., set, of sorts declared in Σ.

The construction of those syntactic categories starts by introducing objects that corre-
spond to declarations of finite sets of variables. After adding for each operation symbol
in Σ a morphism between the appropriate objects, one continues by constructing new
morphisms and an equivalence relation between morphisms. In case of finite product
categories FP(Σ,E), no other objects are generated while in case of the finite limit cate-
gories FL(Σ,CE) and FL(Σ,CEE), resp., we have to introduce new objects (X, R) representing
the set of “solutions” of the set R of (existential) Σ-equations on X, i.e., a corresponding
equalizer. Triggered by this example and supported by later experiences, especially with
diagrammatic specification techniques, we vote for:

Requirement 3: Define variables prior to operation and predicate symbols
and use variables to define the arities of operations and predicates.

In [9], we specified finite limit categories as partial ΣFL-algebras (with ΣFL a signature
declaring two sorts Ob, Mor and operations like source, target, composition, product,
equalizer, subobject, . . .) satisfying a corresponding set CEEFL of conditional existence
equations. The category FL(Σ,CEE) was then constructed as the freely generated partial
(ΣFL, CEEFL)-algebra F (ΣFL, CEEFL, OP + CEE, R) with OP + CEE declaring one variable
of sort Mor for each operation symbol in Σ and one variable of sort Mor for each conditional
existence equation in CEE. R describes source and target of the variables in OP + CEE as
well as the subobject property of the variables in CEE.

Thus, what we did is to reuse the formalism of partial algebras and conditional
existence equations on the higher conceptual level of formalisms to coin a (meta) spec-
ification of the specification formalism “finite limits”. In the process, we downgraded
operations and conditional equations, playing the leading part in Section 1.1.1, to sim-
ple variables (generators). It seems quite natural to require a similar flexibility from our
conceptual framework:

Objective 1: The framework should enable us to describe and to work with
specification formalisms on different conceptual levels in a uniform way.

1.1.3. Sketches in Category Theory

Categories are graphs equipped with identities and composition; thus, a string-based
formalism like algebraic specifications, for example, may be not always the most adequate
tool to describe and reason about categorical structures.

In the 1960s, Charles Ehresmann invented a graph-based specification formalism – the
so-called sketches. Later sketches were promoted for applications in computer science by
Barr and Wells [10] and applied to data modeling problems by Johnson and Rosebrugh [11]
(see [12] for a survey).

A sketch S = (G, D, L, K) consists of a graph G and sets D, L and K of diagrams in
G. In Category Theory, a diagram in a graph G of shape I is a graph homomorphism
δ : I → G. A modelM of a sketch S in a category C is a graph homomorphism from G to
the underlying graph of C that takes every diagram in D to a commutative diagram, every
diagram in L to a limit diagram and every diagram in K to a colimit diagram [10].

We use in this paper the term “diagrammatic” as a synonym for “graph-based” in
a broad sense. We consider, for example, any functor (presheaf) F : C → Set with C a
small category as a “graph-based” structure. Sketches give us a diagrammatic pendant
to algebraic specifications at hand and are, at the same time, more expressive. Equational
specifications can be equivalently described by finite product sketches, i.e., sketches where

Mathematics 2022, 10, 1085 5 of 65

K is empty and L contains only finite product diagrams, while algebraic specification with
conditional equations can be transformed into equivalent finite limit sketches with K empty
and L containing only finite limit diagrams.

Analogous to Section 1.1.2, we can construct for any finite product sketch
S = (G, D, L), for example, a corresponding finite product category freely generated
by S. The methodologically important observation is that the items in the graph G
now play the role of “variables (generators)” while the diagrams in D and L are the
“defining relations”.

1.1.4. Generalized Sketches

Sketches are a very expressive specification formalism but reveal some essential
deficiencies when it comes to the formalization of diagrammatic specification techniques in
Software Engineering, for example (see the discussion in [13]).

We have to deal with other properties than just commutativity, limit or colimit. In addi-
tion, we meet structures that go beyond plain graphs like typed graphs or
E-graphs [14], for example.

Extending the sketch formalism along the two dimensions – properties and/or
structures – we arrive at generalized sketches. Generalized sketches were developed
in the 1990s independently by Makkai, motivated by his work on an abstract formulation
of Completeness Theorems in Logic [15], and a group in Latvia around Diskin, triggered by
their work on data modeling [16,17].

To define a certain generalized sketch formalism, we chose a category Base which
may differ from the category Graph of graphs. We coin for each property we want to deal
with in our formalism a predicate symbol P and define, analogous to the shape graphs
in traditional sketches, the arity of this predicate by an object αP in Base. Analogous to a
diagram in a sketch, we define an atomic statement about an object K in Base by a morphism
δ : αP→ K in Base. A generalized sketch K = (K, StK) is then nothing but an object K in
Base together with a set StK of atomic statements about K (see [13]).

1.1.5. Diagram Predicate Framework (DPF)

Software models and a plethora of modeling artifacts in various scientific and indus-
trial areas are essentially diagrammatic. Traditional string-based formalisms turn out to
be unwieldy and inadequate to define syntax and semantics of diagrammatic modeling
techniques and to formalize diagrammatic reasoning. Instead of trying to emulate diagram-
matic models and reasoning by means of traditional string-based formalisms, we adapted
therefore generalized sketches when we started, around fifteen years ago, to work with
Model Driven Software Engineering (MDSE).

Software models are (or, at least, appear as) graph-based structures complemented
with constraints the modeled software system has to comply with. For us, it was striking
that generalized sketches are the most adequate concept to formalize those artifacts. A
software model can be formalized as a generalized sketch K = (K, StK), where K represents
the underlying graph-based structure of the model and StK the set of constraints in the
model. We further developed the generalized sketch approach as a theoretical foundation
of MDSE [13,18–20] and called it, after a while, the Diagram Predicate Framework (DPF)
since it turned out to be nearly impossible to convince software engineers that a “sketch”
is something precise with a well-defined syntax and semantics. For the same reason,
generalized sketches are called diagrammatic specifications in DPF.

DPF has been applied to a wide range of problems in MDSE with a special focus on
model transformations and meta-modeling [18,21]. Thereby, we restricted ourselves to
categories of graphs or typed graphs, respectively, as the base categories. (To reduce self
citation, we followed the suggestion of the editors and dropped all references to papers
just illustrating applications of DPF but not being relevant for the content of the paper).

While sketches and companions are relegated to a niche existence in all the traditional
formalisms we discussed so far, they take center stage in DPF. The framework, presented

Mathematics 2022, 10, 1085 6 of 65

in this paper, arose to a big extent from the attempt to lift ideas and insights from the
development of the theoretical foundations of DPF to a more general level.

Objective 2: The framework provides a formalization of the general idea of
sketches as syntactic descriptions and/or representations of semantic entities.

Our hope is that this sketch-centered approach enables us to achieve another goal.

Objective 3: The framework allows us to describe, in a uniform way, not only
string-based formalisms, like Algebraic Specifications and First-Order Logic, but
also a wide variety of diagrammatic specification formalisms/techniques.

At present, DPF does have some deficiencies that we will discuss shortly.

Expressiveness of Statements

We utilize in DPF only atomic statements, called “atomic constraints”, i.e., statements
like parent(Anna, Uwe, Gabi) in predicate logic stating that Uwe and Gabi are the parents
of Anna. With those statements, we can not express all relevant constraints for software
systems. String-based languages like the Object Constraint Language (OCL), for example,
are traditionally used to express those constraints. OCL is built upon a fragment of first-
order predicate logic and we want to extend the diagrammatic language of sketches in such
a way that we can work with statements incorporating the usual logical connectives as well
as universal and existential quantification. We want to be able to formulate statements like
(∃x1∃x2∃x3 : parent(Anna, x2, x3) ∧ parent(x1, x2, x3)) in traditional first-order predicate
logic stating that Anna is the sibling of someone.

Our framework obtained its abstract appearance after we realized that our initial ideas
to define such an extension for graph-based sketches would work in arbitrary categories!

Structure of Software Models

There are plenty of different kinds of software models. For each kind, there is a
corresponding description of the required structure of software models of this kind. Those
descriptions are often called meta-models. Adapting the concepts sketch-axiom [15] and
graph constraint [14], we introduced “universal constraints” and “negative universal
constraints”, respectively, to specify the structure of software models (sketches) [18,21].

Universal constraints are, however, not expressive enough to specify all the restric-
tions we want or have to impose on software models. Analogous to arbitrary first-order
statements, to be used as components of sketches, we want to also define therefore arbitrary
first-order sketch constraints to be used to specify the structure of sketches.

To achieve this goal, we have been choosing a more unconventional approach. We
neither wanted to encode traditional first-order logic of binary predicates by graphs [22]
nor to emulate nested graph conditions by traditional first-order formulas [23]. We instead
developed a method to define, in a conservative way, first-order constraints in arbitrary
categories of sketches. By conservative, we mean that the application of our universal
method to different categories of graphs, as in [22–25], for example, allows us to describe
the various corresponding variants of (nested) graph constraints.

To validate the use of the term “first-order”, we have to ensure, in addition, that the
application of our method to the category Set results in constraints comprising essential
features of traditional first-order predicate logic.

Semantics of Diagrammatic Predicates

The advantage of the traditional Ehresmann sketches in Category Theory is that there
are fixed universal definitions (formulated in a language based on the concepts graph,
composition and identity) of the properties commutative, limit and colimit, respectively.
Since these definitions axiomatize the concepts limit and colimit “up to isomorphism”,
we can presuppose a fixed semantics of all corresponding diagrammatic predicates in any
category, i.e., for any fixed interpretation of the concepts graph, composition and identity
complying to the axioms of a category.

Mathematics 2022, 10, 1085 7 of 65

A price we have to pay, moving from Ehresmann sketches to generalized sketches,
is that we have to describe the intended semantics of the predicates we want to include
in a formalism on our own. In some cases, a complete axiomatization of the semantics of
predicates will be not feasible but we should provide, at least, a partial axiomatization.

At present, we do have in DPF only the very simple notion of sketch entailment at
hand to express properties of predicates. We have to extend this notion or find other notions
of “arrows” between sketches that provide more appropriate tools for the axiomatization
of the semantics of predicates.

On the other side, if we find a way to define arbitrary first-order diagrammatic state-
ments, we will also have closed formulas, like (∀x1∃x2∃x3 : parent(x1, x2, x3)), available
for axiomatization purposes.

We intend to develop necessary tools to describe the semantics of diagrammatic
predicates. We want to understand how these tools are related and, especially, find an
answer to the question:

Question 3: How are the concepts specification morphism, universal
constraint and specification entailment in DPF actually related?

Operations and Substitutions

One of the crucial motivations to write this paper was to find an answer to the:

General Question: What mathematical infrastructure we need to
define a formalism enabling us to specify semantic structures with
the full expressive power of first-order predicate logic?

Our answer will be: We need nothing but a category!
We are able to give such a general answer since we use only predicate symbols and

no operation symbols to construct first-order statements in context. This restriction allows
us to realize the translation of first-order statements along context morphisms by simple
composition. In particular, there is no need for any kind of “substitution” to define those
translations and thus to construct first-order formalisms for specification purposes.

For a future development of reasonable deduction calculi within our framework, we
have to rely, however, on “substitutions” and, to have substitutions at hand, we need more
infrastructure than just a simple category. In particular, we will need well-behaved pushout
constructions as it will be shortly demonstrated in the paper.

Makkai’s work [15,26] exemplifies that predicates may be, in principal, quite sufficient
to build reasonable specification formalisms.

However, for applications in Software Engineering, for example, operations are sadly
missed. Therefore, we are also interested in finding out if and how we can define oper-
ations in arbitrary categories. As an initial step, we started to develop a theory of graph
operations [3]. It turns out that the step from traditional set operations to graph operations
is not trivial at all. We are, however, optimistic that it will be possible to lift the concepts
and results of a future comprehensive theory of graph operations, at least, to the level of
arbitrary presheaf topoi.

Deduction

To keep software models readable and feasible, we should not overload them with
unnecessary items and/or information. In particular, we should drop information that can
be derived from the already given information.

To put this principle into practice, we have, however, to rely on mechanisms to derive
information. Applied to DPF, this means, especially, that we need rules enabling us to
deduce statements from given statements and those deduction rules should be sound.

In the paper, we introduce the concept sketch arrow and discuss the utilization of
sketch arrows as deduction rules. The development of a fully fledged deduction calculus
for Logics of Statements has, however, to be left as a topic of future research. We will,

Mathematics 2022, 10, 1085 8 of 65

nevertheless, present and discuss some vital observations, insights and ideas for this future
expansion of our framework.

Category Theory can be seen as a diagrammatic specification formalism since it is
based on the concepts graph, composition and identity. The development of our abstract
framework is also triggered and guided by the quest to put this understanding on a precise
formal ground and to develop a purely diagrammatic presentation of Category Theory
where the properties commutative, limit and colimit are described by first-order statements
on graphs. Most of the diagrammatic pictures in textbooks on Category Theory are nothing
but sketches. The vision is to define concepts and to prove results in Category Theory based
on pure “diagrammatic reasoning” – or, to formulate it differently: Let us present Category
Theory in such a way that “diagram chasing” becomes a precise and well-founded proof
technique. As result of such a project, one would probably end up with something very
much related to the language of diagrams introduced in [27] and used in [28] to present and
define categorical concepts and carry out proofs in a diagrammatic manner. We became
acquainted with this language only in the final stage of writing this paper and will include a
discussion of this language in the future development of a fully fledged deduction calculus
for Logics of Statements.

Meta-Modeling

In DPF, we utilize categories of typed graphs, i.e., slice categories, to define the
semantics of sketches. This enabled us to formalize arbitrary deep modeling hierarchies
in a quite straightforward way. In this paper, we follow the tradition in logic and work
with a Tarskian semantics of sketches, i.e., we work with functor categories instead of slice
categories. This makes the formalization of modeling hierarchies rather involved.

Meta-modeling is a big topic on its own and, at the present stage, we are not capable
of providing a detailed analysis and treatment of meta-modeling in Logics of Statements.
The examples are, however, designed in such a way that we can, at least, point at the
meta-modeling issue. We have to include, nevertheless, meta-modeling is an important
item on our overall wish list:

Objective 4: The framework enables us to address and formalize meta-modeling.

1.1.6. Abstract Model Theory

From our various studies in Abstract Model Theory, the technical report [29] is particu-
larly relevant for the present paper. That time, we proved in detail and in a systematic way
that four specification formalisms are indeed institutions. Our main finding was that the
proof of the satisfaction condition always boiled down to the existence of what we called
corresponding assignments and corresponding evaluations, respectively. This finding has
been integrated later by Pawlowski in his concept of context institutions [30]. One of the
main motivations for context institutions was to incorporate open formulas in the abstract
description of specification formalisms and the term context has been coined as an abstract
pendant for a “set of variables”.

What we call feature expressions in our framework are nothing but a generalization
of open formulas. We differentiate, however, conceptually between variable declarations
and contexts. In some specification formalisms, both concepts may denote the same thing.
In other formalisms, any variable declaration will be also a context but not vice versa. In
addition, there can be formalisms where variable declarations and contexts are kept apart,
as in Description Logic for example. We use the term context as an abstract pendant for
things like a set of generators in Group Theory, an underlying graph of a sketch in Category
Theory, an underlying graph of a software model in Software Engineering, a set of literals
(atomic values) in Logic Programming and a set of individual names in Description Logic,
for example.

Mathematics 2022, 10, 1085 9 of 65

1.2. Content and Structure of the Paper

Section 2 recapitulates some basic concepts and corresponding notational conventions.
We include a short discussion concerning foundations and outline how the tuple notation
is used in this paper to represent (partial) finite maps.

In Section 3, we present a universal mechanism to define first-order statements and
their semantics in arbitrary categories. We show that any choice of the seven parameters we
are going to introduce (see Figure 1) gives us a corresponding Institution of Statements at
hand. The concept of institution [2,31] is a very simple one and lives on the same abstraction
level as categories and functors. We utilize institutions as a very convenient guideline to
present logical formalisms in a uniform and well-organized way. The satisfaction condition
is the only more complicated thing and simply tells us that we designed syntax and
semantics compatible in the way that the translation of sentences corresponds exactly to
model extensions (see [32–34]). Thus, validating the satisfaction condition is a kind of
sanity check for the design of our formalism. At the beginning of the section, we introduce
the five running examples we have chosen to illustrate and validate our definitions and
constructions.

At the present stage, Institutions of Statements do not incorporate operations since we
have not found yet a way to define operations in arbitrary categories. To close, nevertheless,
the circle to the ideas and motivations discussed in the Introduction section 1.1.1, we
recapitulate in Section 4 the traditional concepts of operations on sets and many-sorted
equations. We show that the procedure we developed in Section 3 to construct Institutions of
Statements enables us also to construct corresponding Institutions of Equational Statements.
Substitutions play a central role in Universal Algebra, and this section may also provide
some hints and guidelines for the future development of a more abstract and general
account of substitutions in Logics of Statements.

Any institution gives us a corresponding category of presentations and an extension of
the model functor of the institution to the category of presentations at hand [2,31]. In
Section 5, we outline this construction for Institutions of Statements and Institutions
of Equations, respectively. To distinguish presentations for Institutions of Statements
(Equations) from presentations in general, we will use the term sketch for these specific
presentations. The general theory of institutions [2,31] also provides us with a standard
notion of morphism between sketches (presentations). Those morphisms are of minor
importance in this paper. We introduce and investigate, in addition, sketch arrows and
sketch implications as well as the relationships between these three concepts. As a pendant
to elementary diagrams in traditional first-order logic, we define sketch encodings of
semantic structures and will give a kind of positive answer to Question 4 (p. 39): Is there
any justification to ignore completely the concept of semantic structure (model)?

To describe the syntactic structure of software models and, more generally, the struc-
ture of sketch encodings of semantic structures, we introduce and study in Section 6
arbitrary first-order sketch conditions and sketch constraints, thereby unifying and general-
izing the different concepts of graph conditions and graph constraints in the area of Graph
Transformations. We outline that we can, analogous to the hierarchy of generalized sketches
in [15], also establish a conceptual hierarchy of sketches and sketch constraints. Moreover,
we present some vital observations, insights, concepts and ideas to establish a basis for the
future development of deduction calculi for Institutions of Statements.

We conclude the paper with a discussion of the results, findings and shortcomings of
the paper and highlight future research directions.

The only categorical concepts we actually use in this paper are category, functor,
product, functor category and slice category, and a basic understanding of these concepts is
recommended. Looking up the definition of institutions may not be necessary but helpful.

2. Notations and Preliminaries

CObj denotes the collection of objects of a category C and CMor the collection of mor-
phisms of C, respectively. C(a, b) is the collection of all morphisms from object a to object

Mathematics 2022, 10, 1085 10 of 65

b in C. We use the diagrammatic notation f ; g : a → c for the composition of morphisms
f : a→ b and g : b→ c in C. C v D states that category C is a subcategory of category D. A
category C is small if the collection CMor, and thus also the collection CObj, is a set. Cat is
the category of all small categories. Set denotes the category of all sets and all (total) maps,
while Par is the category of all sets and partial maps. We consider Set as a subcategory of
Par. Cat, Set and Par are not small!

A (directed multi) graph G = (GV , GE, scG, tgG) is given by a collection GV of vertices,
a collection GE of edges and maps scG : GE → GV , tgG : GE → GV assigning to each edge
its source and target vertex, respectively. gr(C) denotes the underlying graph of a category
C, i.e., we have gr(C)V := CObj and gr(C)E := CMor. A graph G is small if GV and GE
are sets. A homomorphism ϕ : G → H between two graphs is given by a pair of maps
ϕV : GV → HV , ϕE : GE → HE such that scG; ϕV = ϕE; scH and tgG; ϕV = ϕE; tgH . Graph
is the category of all small graphs and all graph homomorphims between them.

The category comprising as well finite and small graphs as the underlying graphs of
categories like Cat, Set, Par and Graph, for example, is denoted by GRAPH, while SET is the
category containing all the corresponding collections of vertices and edges, respectively.
Correspondingly, we denote the category with all small categories and categories like Cat,
Set, Par and Graph as objects by CAT.

Remark 1 (Foundations). We rely on Tarski–Grothendieck set theory, which is based on the
concept of Grothendieck universes. That is, we allow ourselves to work, in principal, with open
hierarchies of sets, graphs and categories, respectively. In contrast, many expositions of set theory
and category theory, respectively, rely on a strict two level approach. We cite from [35], page 5:

Is CAT a category in itself? Our answer here is to treat CAT as a regulative idea; which is
an inevitable way of thinking about categories and functors, but not a strictly legitimate
entity. (Compare the self, the universe, and God in Kant “Kritik der Reinen Vernunft”.)

Here, we work with a three-level hierarchy. That is, we also consider SET, GRAPH and CAT
as legitimate entities but take the level above as a “regulative level”.

In view of CAT the category Cat appears in two different roles: First, Cat is an object in
CAT. Second, Cat is a subcategory of CAT. We consider the inclusion functor Cat v CAT as an
anonymous coercion functor which embeds any object C in Cat into the bigger context of CAT
where we can even consider functors between C and Cat, for example. (We use the term coercion
analogous to programming languages where coercion describes the implicit conversion of a value
into another equivalent value of a different data type). If necessary, we will indicate in what role a
small category C appears in a certain situation in CAT, namely as an object in Cat ∈ CATObj (the
default case) or as an element in CATObj, respectively.

Analogously, we assume corresponding anonymous coercion functors Set v SET and Graph v
GRAPH, respectively. Note that the isomorphisms between small categories C and the corresponding
objects in CAT as well as the anonymous coercion functors are not living in CAT! They are located
on our third regulative level. Finally, we assume also implicit coercion from the categories SET,
GRAPH and CAT, respectively, to the regulative level.

In other words, we comply with the following principles: (1) Any item on a certain level of the
hierarchy can be used at any level above but it can not be used at any level below the level where it
has been declared or constructed. (2) Located on a certain level of the hierarchy, we can see, declare
and construct items on this level and on all levels below. (3) We are, however, not allowed to push
an item to a lower level! Instead, we have to declare or construct a “new” item on the lower level
and establish an isomorphism between the given item and the new item. The lowest level, where the
isomorphism could be established, is the level of the given item but sometimes we will be only able to
establish the isomorphism on an even higher level.

To achieve Objective 3 (p. 6), we have to pay a small price. In addition to the conven-
tional interpretation of an n-tuple (a1, . . . , an) as a “list of values of length n”, we will also
work with a more unconventional interpretation. We interpret an n-tuple a = (a1, . . . , an)
with n ≥ 1 and a1, . . . , an ∈ A as a convenient shorthand notation for an “indexed array” of

Mathematics 2022, 10, 1085 11 of 65

length n, i.e., for a set of assignments {1 7→ a1, . . . , n 7→ an} representing a map a : [n]→ A
with [n] := {1, . . . , n} and a(i) = ai. That is, the numbers in [n] indicate the corresponding
position in the tuple. The empty tuple () represents, in such a way, the only map from
[0] := ∅ into A.

Given an [n]-indexed family A1, . . . , An, n ≥ 1 of sets, i.e., a map A : [n]→ SetObj, we
denote the set of all maps a : [n]→ ⋃

i∈[n] Ai with a(i) ∈ Ai for all i ∈ [n] by A1 ⊗ . . .⊗ An,⊗
i∈[n] Ai or simply

⊗
A, respectively. Relying on the assumption that [n] is (implicitly)

equipped with the total irreflexive order 1 < 2 < . . . < n, we can still use the traditional
tuple notation to represent those maps, as discussed in the last paragraph. The traditional
Cartesian product A1 × . . .× An and

⊗
A are isomorphic and both give us a categorical

product of the family A1, . . . , An of objects in Set at hand. If necessary, we will use the
term traditional tuple to indicate the traditional interpretation of a tuple as a simple “list
of values”.

To describe, for example, the concept of a row in Relational Databases (see
Section 3.1.5), we also take the step from indexed arrays to “associative arrays”.

Instead of the standard sets [n] of indexes, we consider arbitrary finite sets I of indexes
(identifiers, names) with n elements. For an I-indexed set A = (A(i) | i ∈ I), i.e., a map
A : I → SetObj, we denote by

⊗
i∈I A(i), or simply

⊗
A, the set of all maps a : I → ⋃

i∈I A(i)
with a(i) ∈ A(i) for all i ∈ I.

⊗
A is a categorical product of the I-indexed family A of

objects in Set where for any i ∈ I the corresponding projection map πi :
⊗

A → A(i) is
simply defined by πi(a) := a(i) for all a ∈ ⊗

A.
Each element a in

⊗
A can be represented by a corresponding associative array, i.e., by

the set {i 7→ a(i) | i ∈ I} of assignments. To be able, however, to utilize the tuple notation
to represent the elements in

⊗
A, we have to equip the set I, explicitly, with a fixed (!) total

order i1 < i2 < . . . < in. Under this assumption, we can then represent each a in
⊗

A by
the tuple (a1, . . . , an) with aj = a(ij) for all 1 ≤ j ≤ n.

In practice, it is often more convenient to work with interpretation categories instead of
functor categories. An interpretation of a graph G in a category C is a graph homomorphism
ϕ from G to gr(C) denoted by ϕ : G → C. A natural transformation µ : ϕ ⇒ ψ between
two interpretations ϕ : G → C and ψ : G → C is a family µv : ϕV(v) → ψV(v), v ∈ GV
of morphism in C such that ϕE(f); µu = µv; ψE(f) for all edges f : v → u in G. All
interpretations of G in C and all natural transformations between them constitute the
interpretation category [G → C] with composition – the vertical composition of natural
transformations. (In [10], interpretations ϕ : G → C are called “models of G in C”, and the
notation Mod(G,C) is used instead of [G → C]. For our purposes, the more neutral and
general term “interpretation” is more convenient, and we do not want to overload the term
“model” too heavily). For convenience and uniformity reasons, we will often consider a set
A as a graph without edges and use the interpretation category [A → C] to represent all
maps from A into CObj. Moreover, we will also use the more compact notations CG and CA

instead of [G → C] or [A→ C], respectively.

3. Institutions of Statements

Before we are going to define Institutions of Statements, we outline the running
examples we have chosen to illustrate and validate our definitions. The reader should
be aware that our framework is very abstract and thus also very flexible. It enables us to
present one and the same specification formalism in various ways. Thus, the way we have
chosen for each single sample formalism may be not the most adequate one and, especially,
not the one preferred by the reader.

3.1. Examples
3.1.1. First-Order Predicate Logic (FOL)

Our category independent framework does not incorporate operations. Therefore,
we examine many-sorted first-order predicate logic without functions. We consider many-
sorted signatures Σ = (S, P, ar : P→ S∗) with S a set of sort symbols, P a set of predicate

Mathematics 2022, 10, 1085 12 of 65

symbols and a map ar : P → S∗ assigning to each predicate symbol its arity. We may
sometimes omit the word ‘symbol’ and simply refer to sort symbols as sorts and to predicate
symbols as predicates. We show that any many-sorted signature can be represented
quite naturally within our framework and therefore gives rise to different institutions of
statements. We will demonstrate this by means of a sample signature.

3.1.2. Description Logic (ALC)

Description logics are a family of formal knowledge representation languages. We
discuss the prototypical description logic Attributive Concept Language with Complements
(ALC) which can be seen as a fragment of unsorted FOL without functions
(see [36]). We include this non-classical example to illustrate that our framework may
be indeed suitable to describe a wide variety of specification formalisms.

This adaption of First-Order Logic to deal with the practical problem of knowledge
representation and the example of DPF demonstrate that contexts and sketches, as they are
defined in our framework, appear quite natural as conceptual building blocks in practical
specification formalisms.

3.1.3. The Formalism “First-Order Predicate Logic” (mFOL)

This example is meant to provide some evidence that our framework lives up to
Objective 1 (p. 4). In the FOL-example, we work within the formalism many-sorted first-
order logic without functions. Here, we move one abstraction level up and intend to
describe this formalism as such. The “m” in “mFOL” stands for meta.

The sketches in the FOL-example are related to concepts like generators and defining
relations in Group Theory and literals and facts in Logic Programming but are not a
common ingredient in traditional expositions of First-Order Logic. The sketches that
appear in this example, however, reconstruct the concept many-sorted signature as we
meet it in the FOL-example. As an example, we reconstruct the sample signature we will
work with in the FOL-example. Thus, the FOL-example and the mFOL-example together
exemplify the topic of meta-modeling.

3.1.4. Category Theory (CT)

Together with the DPF-example, this example should demonstrate the potential
of our framework to support a shift of paradigm from string-based to diagrammatic
specification formalisms.

Located on the same abstraction (modeling) level as the examples FOL and ALC
and reflecting the viewpoint that a category is a graph equipped with composition and
identities, we outline a diagrammatic version of the theory of small categories.

In fact, we take a step back from Ehresmann’s sketches. We restrict ourselves to the
language of graphs, composition and identities and reconstruct the concepts commutative
diagram, limit and colimit, respectively, by means of diagrammatic first-order statements
formulated in this restricted language. The universal properties defining the different
kinds of limits and colimits, respectively, do have a uniform and very simple logical
structure; thus, we need only a very restricted form of first-order statements to express
them. In the light of this observation, our envisioned diagrammatic version of the theory of
small categories goes beyond Ehresmann’s sketches in the sense that we allow for utilizing
arbitrary first-order statements. Even if we do not need the full “first-order power” to define
limits and colimits, this power will be probably useful (or even necessary) to formulate
category theoretic statements and to prove them.

3.1.5. Diagram Predicate Framework (DPF)

Now, we arrive indeed at generalized sketches since we will utilize typed graphs
instead of just plain graphs as in the CT-example. We are on the same abstraction level as
the mFOL-example.

Mathematics 2022, 10, 1085 13 of 65

DPF has been developed to describe and relate, in a uniform and precise formal
way, a wide variety of diagrammatic modeling techniques in Software Engineering. Each
diagrammatic modeling technique, like database schemata, ER diagrams, class diagrams,
workflow diagrams, for example, is characterized by a certain footprint. A sketch for such
a footprint formalizes then nothing but a single software model. As an example, we outline
in this paper a revised and extended version of our diagrammatic Relational Data Model
(RM) [18,21].

In Relational Databases, we do have data types and tables with rows and columns.
In addition, we can declare different kinds of constraints. A table is identified by a name,
and each table has a fixed non-empty set of columns. All columns in a certain table are
identified by a unique name; thus, the order of columns is immaterial. It is allowed to
use the same column name in different tables. All values in a certain column have to
be of the same data type. A table is considered as a set of rows with one cell for each
column. In some cells of a table, there may be no values. A row with no values at all is
not allowed! Let us declare a table with name T, a corresponding set C = {cn1, . . . , cnm}
of column names and a declaration of a data type name dnj for each column name cnj.

T
cn1

~~

cnm

!!
dn1 · · · dnm

We represent this declaration by the graph shown above. To define the semantics
of table T, we first have to fix the semantics of the data type names dnj by assigning to
each data type name dnj a fixed set Ddnj

of data values. This gives us an C-indexed set
D = (Ddnj

| cnj ∈ C) at hand.
Since there may be no values in some of the cells in a row, we generalize the definitions

in Section 2 and describe a row r in table T as a partial map r : C ◦−→ ⋃
D with r(cnj) ∈ Ddnj

as long as r(cnj) is defined. We denote by
⊗p

j∈I Ddnj
, or simply ⊗pD, the set of all those

partial maps except the completely undefined map (empty row). For any cnj ∈ C, we
obtain as projection a partial map πcnj :

⊗p D ◦−→Ddnj
defined for all r ∈ ⊗p D by

πcnj(r) := r(cnj) if r(cnj) is defined. These projections turn
⊗p D into a categorical product

of the C-indexed set D = (Ddnj
| cnj ∈ C) in the category Par of all sets and partial maps.

Reflecting the idea of a row in a table, we can still utilize the tuple notation, discussed
in Section 2, to denote the elements in

⊗p D. We fix a total order cn1 < cn2 < . . . < cnn
on C and represent a partial map r : C ◦−→ ⋃

D by the tuple (r1, . . . , rn) with rj = r(cnj) if
r(cnj) is defined and rj an anonymous indicator “ ” for nothing in all other cases.

The content of table T may change. At any point in time, however, the content
(semantics) of table T is a finite subset of

⊗p D and the semantics of the edges cnj are the
corresponding restrictions of the projections πcnj :

⊗p D ◦−→Ddnj
.

Empl

eid
��

ssn∗

		

name

((

Addr

town
��

street
		

ssn

vv
Int String

To discuss constraints, let us consider a database schema declaring two data types
Int(eger), String and two tables Empl(oyee), Addr(ess) with columns as depicted in the
diagram above.

Since a table is a set (!) of rows, we need a mechanism to identify rows uniquely. These
are the so-called primary keys (pk). For each table, one of the columns has to be declared
as a primary key. In the example, we declare the primary keys eid (employee identity) in
table Empl and ssn (social security number) in table Addr indicated by underlined names.
All values in a primary key have to be distinct and empty cells are not allowed. This means
that the corresponding projection has to be injective and total. To require only injectivity,
we declare a unique constraint and a not null constraint will enforce a total projection. We

Mathematics 2022, 10, 1085 14 of 65

may put both constraints on the column ssn in Empl. This will, however, not turn ssn into
a primary key but only into a candidate key. A primary key is the one of the candidate keys
we have chosen to serve as a primary key!

To store and retrieve information, the tables in a database have to be somehow con-
nected. To find, for example, the address of an employee, we have to consult Table Addr.
Foreign key (fk) constraints are the mechanism to connect tables. In the example, we declare
a foreign key from column ssn in Empl to column ssn in Addr indicated by a star ssn∗. A
column declared as a foreign key may contain empty cells but any value appearing in this
column has to also appear in the column the key refers to. This means, especially, that both
columns are required to have the same data type!

The Blueprint for Constructing Institutions of Statements

In the following subsections, we define Institutions of Statements (IoS). Each Institution
of Statements is characterized by seven parameters that we will introduce step by step. The
reader can keep track of the development consulting the scheme in Figure 1.

(2) Var
constr.+

choice
// (3) Ξ

constr.+

choice
//

��

(6) XE(Ξ) // Stm(K)
OO

|=Kconstr.

��

• choice // (1) Base

choice

99

choice //

choice %%

(7) Cxt
varies // K

88

&&
(4) Carr // Str(Ξ)

choice // (5) Sem(Ξ) // Int(K)

constr.

constr.

constr.

Figure 1. Stepwise construction of an Institution of Statements (IoS).

3.2. Base Category

To define a certain Institution of Statements, we first have to choose a base category
comprising as well the basic syntactic entities as the semantic domains. The base category
fixes, somehow, the linguistic and conceptual universe we intend to work within.

Definition 1 (First parameter: Base Category). The first parameter of an Institution of State-
ments is a chosen base category Base.

Remark 2 (Uniformity). All components of a logic are related with each other; thus, it seems to
be natural to require that they all live in the same category (universe). It turns out, however, that
this uniformity requirement is not as trivial, as it looks like at a first glance. Some effort may be
needed to present known logic’s and formalisms in such a uniform way. One underlying cause
for this kind of additional effort is that we follow the tradition in logic and work here with the
semantics-as-interpretation paradigm (Tarskian semantics) (see Section 3.3.2).

One problem could be that we become obliged to reflect a distinction between different syntactic
entities, like predicate symbols and sort symbols, for example, already on the semantic level. In the
more practical relational data model example, this is quite appropriate while it needs getting used to
in the mFOL-example.

In other words: We take the chance to present the mFOL-example in a more unconventional
way also with the intention to illustrate the flexibility of our framework.

Example 1 (FOL: Base category). There is a particular dependency in many-sorted first-order
signatures. We have first to establish a set of sort symbols before we can define the arity of predicates
(compare Chapter 12 in [2]). We fix a set S ∈ SetObj of sort symbols and consider S as a graph
(without edges) in Graph. Relying on the coercion Graph v GRAPH (see Remark 1), we choose the
interpretation category SetS = [S→ Set] in CAT as base category BaseFOL. We call the objects in
[S→ Set] S-sets and the morphisms S-maps, respectively.

Mathematics 2022, 10, 1085 15 of 65

Example 2 (ALC: Base category). The prototypical description logic Attributive Concept
Language with Complements (ALC) can be seen as a fragment of unsorted FOL without
functions [36], thus the category BaseALC := Set in CAT is our base category of choice.

Example 3 (mFOL: Base category). In this example, we describe the traditional formalism
many-sorted first-order logic without functions as such.

In this formalism, sorts and predicates are the only concepts. Therefore, we use the set
MmF := {S, P} ∈ SetObj of concept symbols. Relying on coercion Set v SET, we define the
base category as a slice category BasemF := SET/MmF. (For any category C and any object T in C
we can define the slice category C/T with objects all pairs (A, ϕ) of an object A and a morphism
ϕ : A → T in C and morphisms f : (A, ϕ) → (B, ψ) given by morphisms f : A → B in C
satisfying the condition ϕ = f ; ψ.) We use the term MmF-typed set for the objects in SET/MmF,
i.e., for pairs (A, τA) of a set A and a typing map τA : A→ MmF.

Example 4 (CT: Base category). Located on the same abstraction (modeling) level as the examples
FOL and ALC and reflecting the viewpoint that a category is a graph equipped with composition
and identities, we outline a diagrammatic version of the theory of small categories; thus, the category
Graph of small graphs is chosen as the base category BaseCT . Note that Graph is isomorphic to the

interpretation category [MCT → Set] with MCT the graph E
sc
((tg 66 V thus we follow somehow

the same pattern as in example FOL.

Example 5 (RM: Base category). The relational data model relies on the concepts table, column

and datatype. Analogously to example mFOL, we use a graph MRM := (T c // D) ∈ GraphObj
of concept symbols and define the base category as a slice category BaseRM := GRAPH/MRM
relying on the coercion Graph v GRAPH. We use the term MRM-typed graph for the objects in
GRAPH/MRM, i.e., for pairs (G, τG) of a graph G and a typing morphism τG : G → MRM.

3.3. Variables, Features and Footprints
3.3.1. Variables, Features and Footprints: Syntax

Traditionally, the construction of syntactic entities in logic, like terms, expressions and
formulas, starts by declaring what variables can be used in the language of a certain logic.
Often, we assume an enumerable set of variables and then any term, expression or formula
is based upon a chosen finite subset of this enumerable set of variables. Moreover, variable
translations can be described by maps between finite sets of variables. Generalizing this
traditional approach, we announce what kind of variables we want to use in our institution.

Definition 2 (Second parameter: Variables). As the second parameter of an Institution of
Statements, we choose a subcategory Var of the base category Base. We refer to the objects in Var as
variable declarations while the morphisms in Var will be called variable translations.

If Base has initial objects, we assume that Var contains exactly one of them denoted by 0.

This is a completely different view on variables compared to the tradition in the theory
of institutions [2], where variables generally depend on the notion of signature.

Example 6 (FOL: Variables). Variable declarations are traditionally just finite S-sets of variables.
We take VarFOL to be the full subcategory of BaseFOL = [S→ Set] given by all finite and disjoint
S-sets X = (Xs | s ∈ S) with Xs a subset of the set {x, x1, x2, . . . , y, y1, y2, . . .} for all s ∈ S.

Example 7 (ALC: Variables). Officially, there are no variables in ALC. To describe ALC as a
fragment of FOL we need, however, variables. As VarALC, we take the subcategory of Set with
objects all finite subsets of the set {x, x1, x2, . . . , y, y1, y2, . . .} and morphisms all injective maps.

Mathematics 2022, 10, 1085 16 of 65

Example 8 (mFOL: Variables). We choose as VarmF the full subcategory of Set/MmF v
BasemF = SET/MmF given by all finite MmF-typed sets (X, τX : X → MmF) such that the
pre-image τ−1

X (S) is a subset of the set {xs, xs1, xs2, . . . , ys, ys1, ys2, . . .} and τ−1
X (P) = {xp}.

Example 9 (CT: Variables). The variable declarations are graphs of variables, i.e., we work
with two kinds of variables: vertex variables and edge variables that are connecting vertex
variables. We choose VarCT to be the full subcategory of BaseCT = Graph given by all finite graphs
X = (XV , XE, scX , tgX) with XV a finite subset of the set {xv, xv1, xv2, . . . , yv, yv1, yv2, . . .} and
XE a finite subset of the set {xe, xe1, xe2, . . . , ye, ye1, ye2, . . .}. “e” stands for edge while “v” refers
to vertex.

Example 10 (RM: Variables). As VarRM, we choose the full subcategory of
Graph/MRM v BaseRM = GRAPH/MRM given by all finite MRM-typed graphs
(X, τX : X → MRM) such that the pre-image τ−1

X (T) is a finite subset of the set
{xt, xt1, xt2, . . . , yt, yt1, yt2, . . .}, τ−1

X (D) is a finite subset of {xd, xd1, xd2, . . . , yd, yd1, yd2, . . .}
and τ−1

X (c) is a finite subset of {xc, xc1, xc2, . . . , yc, yc1, yc2, . . .}, respectively.

Guided by Requirement 3 (p. 4), we introduced variables first and can utilize them
now to define arities.

Definition 3 (Third parameter: Footprint). The third parameter of an Institution of Statements
is a footprint Ξ = (Φ, α) over Var given by a set Φ of feature symbols and a map α : Φ→ VarObj.
For any feature symbol F ∈ Φ, the variable declaration α(F) is called the arity of F. We will often
write αF for α(F).

Remark 3 (Terminology: Footprint vs. signature). In most of our applications of DPF, footprints
occur as meta-signatures, in the sense that each specification formalism (modeling technique) is
characterized by a certain footprint. Each of the formalisms Universal Algebra, Category Theory,
First-Order Logic, ER diagrams, class diagrams is characterized by a certain footprint. The sketch
data model in [11] corresponds to a certain footprint and so on. For the footprint of the modeling
technique class diagrams, we refer to [18,21].

Until today, we used in all our DPF papers the terms signature instead of footprint and
predicate symbol instead of feature symbol (compare [13,21]). This turned out to be a source for
serious misunderstandings and misleading perceptions; thus, we decided to coin new terms.

Remark 4 (Dependencies between features). Extending Makkai’s approach [15], we worked
in [13] with categories ΦΦΦ of feature symbols, instead of just sets of feature symbols, and with arity
functors α : ΦΦΦ → Var, instead of just arity maps. Arrows between feature symbols represent
dependencies between features. This allows us to reflect, already on the level of feature symbols
and thus prior to arities and semantics of features that certain features depend on (are based upon)
other features. As examples, one may express that both concepts pullback and pushout are based
upon the concept commutative square and that the categorical concept inverse image depends on the
concept monomorphism.

Any semantics of feature symbols then has to respect those dependencies. Dependency arrows
are a tool to represent knowledge about and requirements on features prior to and independent of any
kind of logic. Dependency arrows somehow make the framework of generalized sketches conceptual
and structural round.

It may be worth mentioning that the concept of order-sorted algebra is somehow related to
our idea of dependencies since it works with arrows between sort symbols [37].

In this first paper about Logics of Statements, we drop dependency arrows due to, at least,
three reasons: (1) We do not want to deviate too much from the traditional first-order logic setting.
(2) Dependencies trigger an additional theoretical overhead that may be not worth it at the moment.
If we introduce dependencies between feature symbols, we should consequently describe, for example,
to what extent and how they generate dependencies between feature expressions (introduced in

Mathematics 2022, 10, 1085 17 of 65

Section 3.4). On one side, this is technically not fully trivial, if possible at all. On the other side,
such an effort has no relevance for our applications. (3) The requirements expressed by dependency
arrows can be mimicked by the logical tools we are going to introduce later.

Example 11 (FOL: Footprint). We show, first, how an arbitrary traditional many-sorted signature
Σ = (S, P, ar : P→ S∗) can be transformed into a footprint ΞΣ = (ΦΣ, αΣ) and then we present
a sample FOL-footprint to be used in the forthcoming parts of this example.

The set S of sort symbols has been already transformed into the IoS-setting by choosing the base
category [S → Set]. The set ΦΣ of feature symbols is nothing but the set P of predicate symbols.
Thus, it remains to transform each w ∈ S∗ into a corresponding S-set Xw of variables.

The empty sequence ε ∈ S∗ is simply transformed into the empty S-set Xε := (∅ | s ∈ S).
A non-empty sequence w = s1s2 . . . sn gives rise to a list [x1: s1, x2: s2, . . . , xn: sn] of variable
declarations, i.e., to a canonical set {x1, x2, . . . , xn} of variables, equipped with a canonical total
order x1 < x2 < . . . < xn, together with a map from {x1, x2, . . . , xn} into S. Xw is defined by
Xw

s := {xi | si = s} for all s ∈ S. In the examples, we will use lists of variable declarations to
represent S-sets of variables.

To complete the definition of ΞΣ, we simply set αΣ(p) := Xar(p) for all p ∈ ΦΣ = P.
As an example for a FOL-footprint, we chose S = {prs, nat} with sort symbols “prs” for

person and “nat” for natural number, respectively. The sample footprint ΞFOL = (ΦFOL, αFOL)
is then defined by the feature symbols ΦFOL := {parent, male, age, less} with the following
S-sets as arities: αFOL(parent) := ({x1, x2, x3}, ∅) represented by [x1: prs, x2: prs, x3: prs],
αFOL(male) := ({x}, ∅) represented by [x: prs], αFOL(age) := ({x1}, {x2}) represented by
[x1: prs, x2: nat] and αFOL(less) := (∅, {x1, x2}) represented by [x1: nat, x2: nat].

Example 12 (ALC: Footprint). A signature in ALC declares a set NC of concept names
and a disjoint set NR of role names. In view of Definition 3, this means defining a footprint
ΞALC = (ΦALC, αALC) with ΦALC = NC ∪ NR, αALC(F) = {x} for all F ∈ NC and
αALC(F) = {x1, x2} for all F ∈ NR.

A signature in ALC also declares a set NO of individual names (nominals, objects). In our
framework, those sets of individual names are considered as contexts (see Definition 11).

Example 13 (mFOL: Footprint). An mFOL-footprint describes which one of the enumerable many
formal tools n-ary many-sorted predicates we will have at hand. As an example, we consider
an mFOL-footprint ΞmF = (ΦmF, αmF) providing the formal tools unary many-sorted predicates,
binary many-sorted predicates and tertiary many-sorted predicates, respectively.

We have ΦmF := {un, bin, trt} with αmF(un) = (Xun, τXun
: Xun → MmF) given by

Xun := {xp, xs} and τXun
(xp) := P, τXun

(xs) := S. Analogously to Example 11, we represent the
MmF-typed set (Xun, τXun

) by the list [xp: P, xs: S] of variable declarations. (Xbin, τXbin
) is defined

by [xp: P, xs1: S, xs2: S] while (Xtrt, τXtrt
) is given by [xp: P, xs1: S, xs2: S, xs3: S], respectively.

Keep in mind that, for any set M in Set the interpretation category [M → Set] and the slice
category Set/M are equivalent.

Example 14 (CT: Footprint). Category Theory relies on a language based upon the concepts
object (vertex), morphism (arrow, edge), composition and identity. The concept graph
comprises already the concepts object (vertex) and morphism (arrow, edge); thus, a footprint for our
diagrammatic reconstruction of the theory of small categories only needs to take care of composition
and identity.

We do not have operations in footprints; thus, we have to formalize composition and identity
by means of features (predicates). Therefore, the footprint ΞCT for the formalism Category Theory
declares two feature symbols cmp and id. The arities of the feature symbols in ΦCT := {cmp, id}
are described in Table 1:

Mathematics 2022, 10, 1085 18 of 65

Table 1. CT Footprint.

F Arity αCT(F) F Arity αCT(F)

cmp xv1
xe1 //

xe3

33xv2
xe2 // xv3 id xv

xe
QQ

Example 15 (RM: Footprint). The footprint ΞRM = (ΦRM, αRM) declares features ΦRM :=
{tb(n), pk, fk, tot, inj} for the concepts table with n columns, primary key, foreign key, not
null (total) and unique (injective), respectively. We discussed these concepts in Section 3.1.5 where
we introduced the relational data model example. The arities of the feature symbols in ΦRM are
MRM-typed graphs (G, τG) and are described in Table 2. Analogously to Example 13, we use the
colon-notation “_ : _” to represent the typing morphisms τG : G → MRM.

Table 2. RM Footprint.

F Arity αRM(F)

tb(n)
xt: T

xc1: c

zz

xcn: c

$$
xd1: D • • • xdn: D

fk xt1: T
xc1: c // xd: D oo

xc2: c
xt2: T

pk xt: T xc: c // xd: D

inj xt: T xc: c // xd: D

tot xt: T xc: c // xd: D

Remark 5 (Category of footprints). We indicated the arrow from (2) to (3) in Figure 1 as
construction+choice since we could straightforwardly define a category of footprints on Var while
we decided to consider only one footprint. To also explore categories of footprints goes simply beyond
the scope of this first paper on Logics of Statements. In Remark 20, we will, however, outline, what
has to be done if we want or need to work with a category of footprints.

3.3.2. Variables, Features and Footprints: Semantics

To make things not too complicated and to deviate not too far from traditional logic, we
work here with the semantics-as-interpretation paradigm, also called indexed or Tarskian
semantics. In contrast, we spelled out in [13] the semantics-as-instance paradigm, also
called fibred semantics. To define the semantics of variables and features, we first have to
decide for (potential) carriers of structures.

Definition 4 (Fourth parameter: Carriers). As the fourth parameter of an Institution of State-
ments, we choose a subcategory Carr of Base of (potential) carriers of Ξ-structures.

Example 16 (FOL: Carriers). In this example, we follow the traditional approach and choose
simply CarrFOL := BaseFOL = SetS = [S→ Set].

Example 17 (ALC: Carriers). ALC considers only non-empty sets as potential carriers and
calls them domains (of an interpretation). Thus, we take as CarrALC the full subcategory of
BaseALC = Set given by all non-empty sets.

Example 18 (mFOL: Carriers). A potential carrier of a ΞmF-structure should provide a family
of sets to define the semantics of sort symbols as well as a family of sets to define the semantics of

Mathematics 2022, 10, 1085 19 of 65

predicate symbols. As CarrmF, we choose therefore the full subcategory of BasemF = SET/MmF
given by all MmF-typed sets (C, τC) with C ⊆ SetObj. Note that we consider here SetObj (and thus
also C) as an element in SETObj and not as a subset of SETObj (compare Remark 1).

Example 19 (CT: Carriers). We could choose only those graphs that appear as underlying graphs
of small categories. We will, however, not restrict ourselves and choose, analogous to Example 16,
CarrCT := BaseCT = Graph.

Example 20 (RM: Carriers). Tables are sets of rows and data types are sets of data values while
columns can be formalized as maps assigning to each row in a table the value in the corresponding
column. As discussed in Section 3.1.5, these maps can be partial since there may be no values in
some cells of a table.

Analogous to Example 18, we choose therefore as CarrRM the full subcategory of
BaseRM = GRAPH/MRM given by all MRM-typed graphs (G, τG : G → MRM) with G a
subgraph of gr(Par). We consider here gr(Par) (and thus also G) as an element in GRAPHObj and
not as a subgraph of gr(GRAPH) (compare Remark 1). Be aware that we can have in G only maps
from sets in τ−1

G (T) to sets in τ−1
G (D) since c is the only edge in MRM!

The semantics of a variable declaration X ∈ VarObj relative to a chosen carrier U ∈
Carr is simply the set of all variable assignments (keep in mind that Var v Base and
Carr v Base):

[[X]]U := Base(X, U). (1)

Structures for footprints are defined in full analogy to the definition of structures for
signatures in traditional first-order logic.

Definition 5 (Structures). A Ξ-structure U = (U, ΦU) is given by an object U in Carr, the
carrier of U , and a family ΦU = {[[F]]U | F ∈ Φ} of sets [[F]]U ⊆ Base(αF, U) of valid
interpretations of feature symbols F in U.

Homomorphisms are also defined in the usual way that “truth is preserved”.

Definition 6 (Homomorphisms). A homomorphism ς : U → V between Ξ-structures is given
by a morphism ς : U → V in Carr such that ι ∈ [[F]]U implies ι; ς ∈ [[F]]V for all feature symbols
F in Φ and all interpretations ι : αF → U.

αF
ι∈[[F]]U

~~

ι;ς∈[[F]]V

⇒

U
ς // V

Identities of carriers define identity homomorphisms and composition of homomor-
phisms is inherited from composition in Carr. In such a way, we obtain a category Str(Ξ)
of all available Ξ-structures. We are, however, free to choose only those structures we are
interested in (see Figure 1).

Definition 7 (Fifth parameter: Semantics). As the fifth parameter of an Institution of Statements,
we choose a certain subcategory Sem(Ξ) of the category Str(Ξ) of all Ξ-structures.

Example 21 (FOL: Semantics). In accordance with the traditional approach
Sem(ΞFOL) := Str(ΞFOL) comprises all ΞFOL-structures U , given by an arbitrary S-set U, where
S = {prs, nat} as in Example 11, together with arbitrary subsets
[[parent]]U ⊆ SetS(({x1, x2, x3}, ∅), U), [[male]]U ⊆ SetS(({x}, ∅), U),
[[age]]U ⊆ SetS(({x1}, {x2}), U) and [[less]]U ⊆ SetS((∅, {x1, x2}), U), as well as all ho-
momorphisms between those ΞFOL-structures.

Mathematics 2022, 10, 1085 20 of 65

Example 22 (ALC: Semantics). Any terminological interpretation I in ALC includes the
choice of a non-empty set ∆I , called domain, an interpretation of each concept name in NC
as a subset of ∆I ∼= Set({x}, ∆I) and an interpretation of each role name in NR as a subset
of ∆I × ∆I ∼= Set({x1, x2}, ∆I). Obviously, there is a one-to-one correspondence between a
terminological interpretation and a ΞFOL-structure in the sense of Definition 5. Homomorphisms
are not considered in ALC; thus, Sem(ΞALC) := Str(ΞALC) is a discrete category.

Example 23 (mFOL: Semantics). In contrast to the Examples 21 and 22, we transform any carrier
(U, τU) in CarrmF (see Example 18) into exactly one corresponding ΞmF-structure U with:

[[un]]U := {ι : (Xun, τXun
)→ (U, τU) | ι(xp) ⊆ ι(xs) }

[[bin]]U := {ι : (Xbin, τXbin
)→ (U, τU) | ι(xp) ⊆ ι(xs1)⊗ ι(xs2) }

[[trt]]U := {ι : (Xtrt, τXtrt
)→ (U, τU) | ι(xp) ⊆ ι(xs1)⊗ ι(xs2)⊗ ι(xs3) }

Str(ΞmF) is given by all these ΞmF-structures and all homomorphims between them according
to Definition 6. Note that the homomorphisms in Str(ΞmF) resemble the idea of functors that
preserve finite products and monomorphisms (inclusions).

To cover the traditional approach that a predicate in a first-order structure can be an arbitrary
subset of a corresponding Cartesian product of sorts (compare Example 21), we choose as Sem(ΞmF)
the full subcategory of Str(ΞmF) given by all ΞmF-structures U = ((U, τU), ΦUmF) such that
τ−1

U (P) is the union of all power sets ℘(A), ℘(A⊗ B), ℘(A⊗ B⊗ C) with A, B, C ranging over
all the sets in τ−1

U (S).

Example 24 (Category Theory: Semantics). Analogously to Example 21, Sem(ΞCT) := Str(ΞCT)
comprises all ΞCT-structures U = (U, ΦUCT) given by an arbitrary small graph U together with arbi-
trary subsets [[id]]U ⊆ Graph(αCT(id), U), [[cmp]]U ⊆ Graph(αCT(cmp), U),
[[mon]]U ⊆ Graph(αCT(mon), U) and [[fnl]]U ⊆ Graph(αCT(fnl), U). That is, we also in-
clude structures like categories without identities, categories with partial composition and so on.
Moreover, Sem(ΞCT) includes all homomorphisms between those ΞCT-structures.

Example 25 (RM: Semantics). Analogous to Example 23, we transform any carrier (U, τU) in
CarrRM into exactly one corresponding ΞRM-structure U . We take, however, into account that
tables do have only finitely many rows:

[[tb(n)]]U is the set of all MRM-typed graph homomorphisms ι : αRM(tb(n)) → (U, τU)
such that ι(xt) is a finite (!) subset of

⊗p(ι(xdi) | 1 ≤ i ≤ n) and the partial maps
ι(xci) : ι(xt) ◦−→ ι(xdi) are exactly the corresponding restricted projections.

Reflecting the usual definition of foreign keys, we define [[fk]]U as the set of all MRM-typed
graph homomorphisms ι : αRM(fk) → (U, τU) such that ι(xc1)(ι(xt1)) ⊆ ι(xc2)(ι(xt2)), i.e.,
each value in row xc1 in table xt1 has to appear in row xc2 in table xt2.

[[tot]]U is the set of all ι : αRM(tot) → (U, τU) such that ι(xc) : ι(xt) ◦−→ ι(xd) is total.
[[inj]]U comprises, correspondingly, all cases where ι(xc) is injective and [[pk]]U all cases where
ι(xc) is as well total as injective.

As Sem(ΞRM), we can choose the full subcategory of Str(ΞRM) given by all ΞRM-structures
U = ((U, τU), ΦURM) such that τ−1

U (T) is the union of all power sets ℘ f in(
⊗p(Ai | 1 ≤ i ≤ n)

with 1 ≤ n and the Ai’s ranging over all the sets in τ−1
U (D). We could require, in addition,

that the sets in τ−1
U (D) are restricted to those data types that appear in a certain version of SQL,

for example.

3.4. First-Order Feature Expressions
3.4.1. Syntax of Feature Expressions

By a feature expression, we mean something like a “formula with free variables” in
traditional FOL. However, we do not consider them as formulas, but rather as derived
anonymous features. For us, a formula is, semantically seen, the subject of being “valid or

Mathematics 2022, 10, 1085 21 of 65

not valid” in a given structure, while the semantics of a feature expression, with respect to
a given structure, is the set of all its solutions, i.e., the set of all valid interpretations of the
derived feature in this structure. We experience this perspective as the most adequate one
when formalizing and working with constraints in Model Driven Software Engineering.
Sets of solutions have also been utilized to define the validity of conditional existence
equations in [7,9], for example.

Definition 8 (Feature expressions: Syntax). For a footprint Ξ = (Φ, α) over Var we define
inductively and in parallel a family FE(Ξ) of sets FE(Ξ, X) of (first-order) feature Ξ-expressions
Ex on X, X . Ex in symbols, where X varies over all the objects in Var:

1. Atomic expressions: X . F(β) for any F ∈ Φ and any morphism β : αF → X in Var.
2. Everything: X .> for any object X in Var.
3. Void: X .⊥ for any object X in Var.
4. Conjunction: X . (Ex1 ∧ Ex2) for any expressions X . Ex1 and X . Ex2.
5. Disjunction: X . (Ex1 ∨ Ex2) for any expressions X . Ex1 and X . Ex2.
6. Implication: X . (Ex1 → Ex2) for any expressions X . Ex1 and X . Ex2.
7. Negation: X . ¬Ex for any expression X . Ex.
8. Quantification: X . ∃(ϕ, Y : Ex) and X . ∀(ϕ, Y : Ex) for any expression Y . Ex and any

morphism ϕ : X → Y in Var that is not an isomorphism.

Remark 6 (Notation for expressions). In traditional FOL, X and Y are sets of variables and,
instead of arbitrary maps ϕ : X → Y, only inclusion maps ϕ = inX,Y : X ↪→ Y are considered.
Moreover, only the quantified variables Y \ X are recorded while Y has to be (re)constructed as
the union X ∪ (Y \ X). In other words, our Y lists all (!) variables that are allowed to appear
as free variables in Ex! We record the whole Y for three reasons: (1) Already in Graph (not to
talk about arbitrary presheaf topoi), we do not have complements; (2) We quantify actually over
morphisms with source Y when we define the semantics of quantifications (compare Definition 10);
(3) In contrast to traditional FOL, ϕ : X → Y is allowed to be non-monic.

We allow non-monic morphims ϕ : X → Y to express identifications. In such a way, we can
survive, for the moment, without explicit equations even in cases where Var is a subcategory of a
set-based category. We illustrate this mechanism in the Examples 26 and 29.

If Var is a subcategory of a set-based category, like Set, [S → Set], Set/MmF, Graph or
Graph/MRM, for example, variable declarations X are constituted by single entities; thus, we can
talk about individual "variables". Moreover, inclusions of sets give us corresponding inclusion
morphisms at hand. In case, ϕ = inX,Y : X ↪→ Y is such an inclusion morphism we will drop ϕ
(see Examples 26, 28 and 29).

If ϕ : X → Y is an isomorphism, quantification is obsolete; thus, we excluded those cases.

Remark 7 (Everything and Void). For the definition of sketch conditions in Section 6, we need
another pair of symbols for “true” and “false”; thus, we decided to use for feature expressions the
symbols > and ⊥, respectively.

We consider > and ⊥ not as logical constants but as special feature symbols, inbuilt in
any Institution of Statements (analogously to the equation symbol in Universal Algebra).

To make this statement fully precise, we have to assume that Base, and thus also Var, has
an initial object 0. 0 is then the arity of > and ⊥, while the fixed semantics for any carrier U is
given by the two subsets of the singleton Base(0, U) = {!U : 0 → U}, namely [[⊥]]U = ∅ and
[[>]]U = {!U}. Consequently, we could use then the same notation as for atomic expressions,
namely X .>(!X) and X .⊥(!X) where !X : 0→ X is the unique initial morphism into X.

Remark 8 (Closed expressions: Syntax). If Base has an initial object 0, feature expressions of
the form 0 . Ex will be called closed expressions. Note that quantification will generate closed
expressions only in case X = 0 where ϕ = !Y : 0→ Y is the only choice for ϕ, in this case.

Mathematics 2022, 10, 1085 22 of 65

Example 26 (FOL: Expressions). We intend to illustrate that and how traditional first-order
formulas appear in our framework. First, we consider only those cases where the morphism ϕ in
quantifications is an inclusion morphisms and will be therefore dropped.

In Example 11, we proposed to represent finite S-sorted sets by lists of variable declarations.
The arity αFOL(parent) := ({x1, x2, x3}, ∅) for the feature symbol parent ∈ ΦFOL, for example,
is represented by [x1: prs, x2: prs, x3: prs]. Pursuing the idea to consider a tuple as a convenient
notation for an “associative array”, we can denote the atomic expression parent(β), with β :
αFOL(parent)→ Y an {prs, nat}-map, simply as parent(β(x1), β(x2), β(x3)).

Relying on this notational convention, we obtain, for example, the closed ΞFOL-expression
0 . ∀([x1 : prs, x2 : prs, x3 : prs, y1 : nat, y2 : nat] :

((parent(x1, x2, x3) ∧ age(x1, y1)) ∧ age(x2, y2)) −→ less(y1, y2))
(with 0 the empty S-set) expressing that a child is always younger than a parent.

Our main point, however, is to consider feature expressions as derived features enabling us
to denote properties in an anonymous way. The following feature ΞFOL-expression younger, for
example, gives us the property younger than at hand by hiding the exact age of a person:

[y : prs, x : nat] . ∃([y : prs, x : nat, x1 : nat] : (less(x, x1) ∧ age(y, x1)))

The next feature ΞFOL-expression sbl provides the property being a sibling of someone:

[y : prs] . ∃([y : prs, x1 : prs, x2 : prs, x3 : prs] :
parent(y, x2, x3) ∧ parent(x1, x2, x3) ∧ ¬∃(ϕ, [x : prs, x2 : prs, x3 : prs] : >))

with ϕ : [y : prs, x1 : prs, x2 : prs, x3 : prs]→ [x : prs, x2 : prs, x3 : prs] defined by the assign-
ments y, x1 7→ x; x2 7→ x2; x3 7→ x3. Note that the ΞFOL-expression
¬∃(ϕ, [x : prs, x2 : prs, x3 : prs] : >) on [y : prs, x1 : prs, x2 : prs, x3 : prs] encodes the
inequality ¬(y = x1).

For convenience, we could introduce an auxiliary feature symbol sibling with arity [y : prs]
and use sibling(y) as a shorthand (macro) for this derived feature expression. The conjunction
(male(y) ∧ sibling(y)) would then represent a unary property being brother of someone. To
ensure that then any feature expression X . Ex, containing the auxiliary feature symbol sibling,
can be expanded into an equivalent feature expression X . Ex′, containing only the original feature
symbols male and parent, we need a corresponding substitution mechanism.

Remark 9 (Substitution). Fortunately, we do not need substitution mechanisms to define Insti-
tutions of Statements and to utilize them for specifications purposes. We need, essentially, only a
category as we show and demonstrate it in this paper. To develop, however, fully fledged and practical
Logics of Statements and, especially, corresponding deduction calculi, we will need appropriate
substitution mechanisms.

An exhaustive and systematic study on what additional categorical infrastructure we have
to presuppose to have handy substitution mechanisms at hand is out of range for this paper. In
Appendix A, we present, nevertheless, some first observations, definitions and constructions.

Example 27 (ALC: Expressions). ALC focuses on derived concepts, i.e., in our view, on feature
expressions with X a singleton. To describe, however, all derived concepts as feature expressions,
we have to use arbitrary finite sets of variables and inclusions between them. We outline the
standard encoding of ALC in FOL. Using our notational conventions, the ALC construct “universal
restriction ∀R.C for any role R ∈ NR, any (derived) concept C”, can be described as follows: For
any role R in NR, any expression {y} . C and any variables x1, x2, not appearing in C, we have:
{x1} . ∀({x1, x2} : R(x1, x2)→ Cψ(x2)) where ψ : {y} → {x1, x2} is given by ψ(y) = x2 and
the expression {x1, x2} . Cψ(x2) is obtained by substituting each occurrence of y in C by x2 and
by extending each variable declaration Y in C by the “fresh variable” x1 (compare Appendix A).
Analogously, the ALC construct “the existential restriction ∃R.C of a concept C by a role R ∈ NR”
can be described by existential quantification: For any role R in NR, any expression {y} . C and any
variables x1, x2, not appearing in C, we have: {x1} . ∃({x1, x2} : R(x1, x2) ∧ Cψ(x2)).

Mathematics 2022, 10, 1085 23 of 65

Example 28 (mFOL: Expressions). This is an example where we do not need the full first-order
power. Actually, we only need atomic feature ΞmF-expressions to state that a set is the subset of a
unary, binary or tertiary product of other sets.

Example 29 (CT: Expressions). To support the shift of paradigm from string-based to diagram-
matic logic was one of our main motivations to develop our framework. Therefore, we will spend a
bit more space and put some more effort on this example.

Representation and visualization of graph homomorphisms: For a finite graph A, we can
represent and visualize a graph homomorphism ϕ : A → B by means of the corresponding
graph of assignments Aϕ = (Aϕ

V , Aϕ
E, scAϕ

, tgAϕ
) with Aϕ

V := {(v, ϕV(v)) | v ∈ AV},
Aϕ

E := {(e, ϕE(e)) | e ∈ AE} where scAϕ
and tgAϕ

are defined for all e ∈ AE by
scAϕ

(e, ϕE(e)) = (scA(e), ϕV(scA(e))) and tgAϕ
(e, ϕE(e)) = (tgA(e), ϕV(tgA(e))), respec-

tively. The graphs A and Aϕ are isomorphic by construction. Note that we actually simply lift the
idea of “tuples as associative arrays” to graphs instead of sets of indexes.

We consider the graph Y, visualized below on the left. For the graph morphism
ϕ : α(cmp) → Y, defined by the assignments xv1 7→ yv3, xv2 7→ yv2, xv3 7→ yv4, xe1 7→ ye5,
xe2 7→ ye4, xe3 7→ ye3, the corresponding graph of assignments α(cmp)ϕ is visualized below in the
middle. In many cases, we can fortunately use for α(cmp)ϕ the shorthand graph, on the right,
without causing unambiguities.

yv1
ye1 //

ye2

��

yv2

ye4

��
yv3

ye3 //

ye5
<<

yv4

(xv2, yv2)

(xe2,ye4)

��
(xv1, yv3)

(xe3,ye3)//

(xe1,ye5)
88

(xv3, yv4)

yv2

ye4

��
yv3

ye3 //

ye5
<<

yv4

As proposed in [3], we can also work with a sequential representation of the shorthand graph
(compare also Example 26): We can represent finite graphs by a list of edges plus a list of vertexes,
respectively. Pursuing the idea of tuples as associative arrays, a graph homomorphism ϕ : A→ B
is then denoted by a list of image edges and a list of image vertexes in graph B.

yv2

ye4

��
yv3

ye3 //

ye5
<<

cmp

yv4

In such a way, we can visualize the atomic ΞCT-expression cmp(ϕ) by the graph above
and represent it also by the string cmp(ye5, ye4, ye3; yv3, yv2, yv4). Since α(cmp) has no isolated
vertexes, ϕ : α(cmp)→ Y is uniquely determined by the edge-assignments; thus, we could even use
the shorthand notation cmp(ye5, ye4, ye3) instead.

ΞCT-Expressions: The local property composition is defined for a certain pair of edges
can be formalized by the following feature ΞCT-expression:

lec = xv2
xe2

""
xv1

xe1

OO

xv3

. ∃(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: xv2
xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

)

Universal quantification transforms this property into a general property composition is
always defined formalized by the following feature ΞCT-expression, where 0 is the empty graph:

gec = 0 . ∀(xv2
xe2

""
xv1

xe1

OO

xv3

: ∃(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: xv2
xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

))

The general property composition is always unique is given by the expression guc:

Mathematics 2022, 10, 1085 24 of 65

guc = 0 . ∀(xv2
xe2

""
xv1 xe4

11
xe3 --

xe1

OO

xv3

: (xv2
xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

∧ xv2
xe2

""
cmp

xv1
xe4 //

xe1

OO

xv3

→ ∃(ϕ, xv2
xe2

""

: >

xv1
xe //

xe1

OO

xv3

)))

where ϕ simply maps xe3 and xe4 to xe. Analogously, we can also represent the other axioms of
categories – existence and uniqueness of identity morphisms, both identity laws and the associativity
law – by means of feature ΞCT-expressions. In addition, feature expressions are a handy tool to hide
auxiliary items in diagrammatic specifications. The property commutative square, for example,
is given by the feature ΞCT-expression csq, where we hide the diagonal:

csq = xv2
xe3 // xv4

xv1

xe1

OO

xe2 // xv3

xe4

OO . ∃(xv2
xe3 // xv4

xv1

xe1

OO

xe2 //

xe5
<<

xv3

xe4

OO : xv2
xe3 // xv4

xv1

xe1

OO

xe5

<<
cmp

∧ xv4

xv1
xe2 //

xe5
<<

cmp

xv3

xe4

OO)

That concepts and constructions are defined by universal properties is the crucial character-
istic of Category Theory as a modeling technique. The concept monomorphism, for example, is
defined by the feature ΞCT-expression mon:

mon = xv1

xe
��

xv2

. ∀(xv1

xe
��

xv3
xe3 //

xe2

@@
xe1

99

xv2

: xv1

xe
��

cmp

xv3
xe3 //

xe1

<<

xv2

∧ xv1

xe
��

cmp

xv3
xe3 //

xe2

<<

xv2

→ ∃(ϕ, xv1

xe
��

xv3
xe3 //

xe4

<<

xv2

: >))

where ϕ maps xe1 and xe2 to xe4. In most cases, however, a universal property is the conjunction of
a universally quantified existence assertion and a universally quantified uniqueness assertion (see
Remark 10). The concept final object, for example, is defined by the feature ΞCT-expression f nl
where ϕ maps xe1 and xe2 to xe:

f nl = xv . ∀(xv1 xv : ∃(xv1
xe−→ xv : >)) ∧ ∀(xv1 xe2

11
xe1 -- xv : ∃(ϕ, xv1

xe−→ xv : >))

In case, we want to work with an explicit property two parallel morphisms are equal, we
are free to utilize the ΞCT-expression [=] where ϕ maps xe1 and xe2 to xe:

[=] = xv1 xe2
11

xe1 -- xv2 . ∃(ϕ, xv1
xe−→ xv2 : >)

Remark 10 (Limits and Colimits). The fact that the universal properties in Category Theory do
have a uniform and relatively simple logical structure shaped the theory of generalized sketches
in [15]. The main ingredients of the definition of (co)limits are categorical diagrams, i.e., graph
homomorphisms, thus we can beneficially use feature ΞCT-expressions to characterize the logical
structure of the concept (co)limit.

The universal property, defining a finite (co)limit, is a conjunction of two assertions – ex-
istence of mediators and uniqueness of mediators. We can express those assertions by feature
ΞCT-expressions with the following structure (compare the definition of the concept final object in
Example 29):

existI := CI . ∀(CI + C′I : Ex1 −→ ∃(CI
→
+ C′I : Ex2))

uniqueI := CI . ∀(CI
⇒
+ C′I : Ex3 −→ ∃(ϕ, CI

→
+ C′I : >))

I is the shape graph of the (co)limit, i.e., the empty graph in the case of final objects. CI adds to I the
shape of a (co)cone with base I while CI + C′I extends CI with the shape of a second (co)cone with
base I. Ex1 is the conjunction of all atomic cmp-expressions on CI + C′I turning both (co)cones into

commutative ones. CI
→
+ C′I extends CI + C′I by a single mediator while Ex2 is the conjunction

of all atomic cmp-expressions on CI
→
+ C′I expressing the commutativity requirements for the

mediator. CI
⇒
+ C′I extends CI + C′I by two parallel mediators and Ex3 is the conjunction of all

Mathematics 2022, 10, 1085 25 of 65

atomic cmp-expressions on CI
⇒
+ C′I expressing the commutativity requirements for both mediators.

ϕ : CI
⇒
+ C′I −→ CI

→
+ C′I simply identifies the two mediators in CI

⇒
+ C′I .

Example 30 (RM: Expressions). To formalize declarations of tables and data base schemes, re-
spectively, we need only atomic feature ΞRM-expressions; thus, we consider in this example only
atomic ΞRM-expressions. To deal also with so-called business rules, we would need, however, the
full spectrum of first-order ΞRM-expressions.

As seen in the examples, there are cases where we need only a restricted selection of
first-order feature expressions. The freedom to select only the feature expressions we are
interested in establishes a new parameter (see Figure 1).

Definition 9 (Sixth parameter: Choice of expressions). As the sixth parameter of an Institution
of Statements, we choose an VarObj-indexed family XE(Ξ) of subsets XE(Ξ, X) ⊆ FE(Ξ, X) of
first-order Ξ-expressions on X ∈ VarObj.

Despite the fact that the family FE(Ξ, X), X ∈ VarObj of sets of first-order feature
expressions is defined by mutual induction, there is no explicit relationship between the
different sets FE(Ξ, X) since we do not base the definition of our framework on transla-
tion maps induced by variables translations, i.e., morphisms in Var (see Definition A1 in
Appendix A). Therefore, the choice of XE(Ξ, X) for a certain X can be made independently
from all the other choices! However, if we also incorporate later translation maps, it will
be reasonable to require that the choices of the different XE(Ξ, X) are compatible with
translation maps!

What are natural choices? We could simply choose all first-order feature expressions,
i.e., XE(Ξ, X) = FE(Ξ, X) for all X ∈ VarObj, as we will do it in the FOL-example as well as
in the CT-example. The other extreme case is to forget about “first-order” and to restrict
ourselves to atomic feature expressions. This we have done in [13] and in DPF [18,21] since
first-order feature expressions have not been available. For the mFOL-example and the
RM-example, it is sufficient to use atomic expressions only.

Besides these two extreme cases, we could, for example, exclude negation or we could
choose a minimal set of logical connectives and so on. In the ALC-example, we choose only
the first-order feature expressions necessary to encode ALC in first-order logic (compare
Example 27).

If Base has an initial object, we could restrict ourselves to closed expressions only (see
Remark 8). In this case, we are back to traditional institutions since we do not need contexts
to utilize closed formulas for specification purposes. The definition of closed formulas and
of the satisfaction relation for closed formulas goes, however, always via open formulas
and therefore any deduction calculus for closed formulas is based on a manipulation of
open formulas. In other words: We are convinced that the concept of a context, defined in
Definition 11, is relevant and beneficial for any logic beyond propositional logic even for
traditional first-order predicate logic!

3.4.2. Semantics of Feature Expressions

Due to Definition 5, a Ξ-structure U = (U, ΦU) fixes for each feature symbol F ∈ Φ its
semantics in U as a set [[F]]U ⊆ Base(αF, U) of all valid interpretations of F in U.

Relying on the inductive definition of first-order feature expressions, we can extend
the semantics of feature symbols and define the semantics of a feature expression X . Ex
in a Ξ-structure U as a set [[Ex]]UX of all valid interpretations (solutions) of X . Ex in U .
This semantics is a restriction of the semantics of X relative to the carrier U as defined by
Equation (1), i.e., [[Ex]]UX ⊆ [[X]]U = Base(X, U). For interpretations ι : X → U, we will
use, instead of ι ∈ [[Ex]]UX , also the more traditional notation ι |=U X . Ex .

Given a morphism ϕ : X → Y in Var, we say that an interpretation $: Y → U is an
expansion of an interpretation ι : X → U via ϕ if, and only if, ϕ; $ = ι.

Mathematics 2022, 10, 1085 26 of 65

X
ϕ //

ι
��

=

Y

$
��

U

Definition 10 (Feature expressions: Semantics). The semantics of feature Ξ-expressions in an
arbitrary, but fixed, Ξ-structure U = (U, ΦU) is defined inductively:

1. Atomic expressions: ι ∈ [[F(β)]]UX iff β; ι ∈ [[F]]U

αF
β //

β;ι

=

X

ι
��

U
2. Everything: [[>]]UX := [[X]]U = Base(X, U)

3. Void: [[⊥]]UX := ∅
4. Conjunction: [[(Ex1 ∧ Ex2)]]

U
X := [[Ex1]]

U
X ∩ [[Ex2]]

U
X

5. Disjunction: [[(Ex1 ∨ Ex2)]]
U
X := [[Ex1]]

U
X ∪ [[Ex2]]

U
X

6. Implication: ι ∈ [[Ex1 → Ex2]]
U
X iff ι ∈ [[Ex1]]

U
X implies ι ∈ [[Ex2]]

U
X

7. Negation: [[¬Ex]]UX := Base(X, U) \ [[Ex]]UX
8. Existential quantification: ι ∈ [[∃(ϕ, Y : Ex)]]UX iff there exists an expansion $ of ι via ϕ

such that $ ∈ [[Ex]]UY .

X
ϕ //

ι
��

=

Y

$ |=UY.Ex
��

U
Universal quantification: ι ∈ [[∀(ϕ, Y : Ex)]]UX iff for all expansions $ of ι via ϕ we have
$ ∈ [[Ex]]UY .

Remark 11 (Feature expressions: Semantics). Every feature symbol F in Φ reappears as the
Ξ-expression αF . F(idαF) and Definition 10 ensures [[F(idαF)]]

U
αF = [[F]]U .

The universal quantification X . ∀(ϕ, Y : Ex) is trivially valid if there is no expansion of ι via
ϕ at all, while the existential quantification X . ∃(ϕ, Y : Ex) is not valid, in this case.

Two expressions X . Ex1 and X . Ex2 are semantical equivalent, X . Ex1 ≡ Ex2 in
symbols, if, and only if, [[Ex2]]

U
X = [[Ex2]]

U
X for all Ξ-structures U in Sem(Ξ). Definition 10

ensures that we do have the usual semantic equivalences available. In particular, conjunction and
disjunction are associative; thus we can drop, for convenience, the corresponding parenthesis as we
have done already at some places in the examples.

Remark 12 (Closed expressions: Semantics). For a closed expression 0 . Ex (see Remark 8),
[[0]]U = Base(0, U) is a singleton with the initial morphism !U : 0→ U as the only element. In
such a way, we have either [[Ex]]U0 = [[>]]U0 = {!U}, i.e., !U |=U 0 . Ex, or [[Ex]]U0 = [[⊥]]U0 = ∅,
i.e., !U 2U 0 . Ex.

3.5. Institutions of Statements

Generalizing concepts like set of generators in Group Theory, underlying graph of a
sketch in Category Theory, set of individual names in Description Logics and underlying
graph of a model in Software Engineering, we introduce in this section the concept of
a context as one of our main conceptual and methodological proposals. Furthermore,
we introduce the concept statement (in a context) in generalizing the corresponding con-
cepts defining relation in Group Theory, diagram in a sketch in Category Theory, con-
cept/role assertion in Description Logic and constraint in Software Engineering. We use
institutions [2,31] as a methodological guideline to define and present the formalisms build
upon these new concepts.

Mathematics 2022, 10, 1085 27 of 65

3.5.1. Category of Contexts and Sentence Functor

As abstract signatures in an Institution of Statements, we introduce contexts.

Definition 11 (Seventh parameter: Contexts). As the seventh parameter of an Institution of
Statements, we choose another subcategory Cxt of Base. The objects in Cxt are called contexts
while we refer to the morphisms in Cxt as context morphisms.

If Base has initial objects, we assume that Cxt contains, at least, one of them denoted by 0.

Even if Cxt is called the “seventh parameter”, the choice of Cxt relies only on the
chosen Base and does not depend on all the other parameters we introduced (see Figure 1)!

Remark 13 (Variables vs. context vs. carrier). Introducing contexts, we establish a technological
layer independent of “pure syntax” (variables) and “pure semantics” (carriers of structures) as we
postulated it in Requirement 2 (p. 3). We prefer to consider variable declarations as something finite
or enumerable while contexts can be arbitrary.

In case Var is a subcategory of Cxt, we perceive the inclusion Var v Cxt as a change of roles:
Variables are essentially syntactic items but can also serve as generators of structures, like groups
and (term) algebras, for example.

If we are interested in completeness proofs and corresponding freely generated structures, we
have to suppose Carr v Cxt. Coming back to the discussion in Section 1.1.1, the introduction of
contexts allows us to keep syntax and semantics separated and to avoid, in such a way, certain kinds
of circularity in the definition of formalisms.

Example 31 (FOL: Context). PROLOG distinguishes between atomic values (literals) and
(logical) variables. Literals can be either number literals or symbolic literals.

Our choice of contexts reflects this line of tradition. We define CxtFOL as the subcategory of
CarrFOL = BaseFOL = SetS given by all S-sets K = (Ks | s ∈ S) with Ks a finite set of literals
and logical variables for all s ∈ S.

For the sample footprint ΞFOL = (ΦFOL, αFOL) with S = {prs, nat} (see Example 11),
we consider a sample context K with Knat the set of all natural numbers from 0 to 200 and
Kprs = {Anna, Michael, Dora, Heinz, Sorin, Gabi, Uwe}.

Example 32 (ALC: Context). This example has been chosen since it works explicitly with contexts
in our sense. ALC uses the term individual name instead of symbolic literal and contexts in
ALC are sets NO of individual names.

Example 33 (mFOL: Context). In this example, we describe the traditional formalism many-
sorted first-order logic without functions as such; thus, a context should declare finite sets of
sort and predicate symbols, respectively.

Analogously to the definition of VarmF in Example 8, we assume an enumerable set PSym
of admissible predicate symbols and an enumerable set SSym of admissible sort symbols. CxtmF
is then the full subcategory of Set/MmF given by all finite MmF-typed sets (K, τK : K → MmF)
such that τ−1

K (S) ⊆ SSym and τ−1
K (P) ⊆ PSym.

To be able to reconstruct the sample FOL-footprint ΞFOL = (ΦFOL, αFOL) (see Example 11),
we choose for the sample mFOL-footprint ΞmF = (ΦmF, αmF) in Example 13 the sample context
(K, τK : K → MmF) with τ−1

K (S) := {prs, nat} and τ−1
K (P) := {parent, male, age, less}.

Example 34 (CT: Context). We simply choose CxtCT := CarrCT = BaseCT = Graph. As an
example, we consider the following finite graph G.

2
b

��

4
d

��
1

a
@@

e
**f 44 3

c
@@

g // 5

Mathematics 2022, 10, 1085 28 of 65

Example 35 (RM: Context). A context in this example declares the items in a database schema,
i.e., a finite graph with table identifiers, datatype identifiers, and column identifiers, respectively.
Analogously to Example 33, we assume an enumerable sets TId of admissible table identifiers, DId
of admissible datatype identifiers and CId of admissible column identifiers, respectively.

As CxtRM, we choose the full subcategory of Graph/MRM given by all finite MRM-typed
graphs (K, τK : K → MRM) such that τ−1

K (T) ⊆ TId, τ−1
K (D) ⊆ DId and τ−1

K (c) ⊆ CId.
We intend to formalize the database schema, discussed in Section 3.1.5, and consider the sample
RM-context (K, τK) as depicted in the following diagram.

Empl : T

eid:c
��

E.ssn:c
		

name:c

))

Addr : T

town:c
��

street:c
		

A.ssn:c

uu
Int : D String : D

Note that both tables do have a column with name ssn; thus, we distinguish between them by
means of the table identifiers.

Feature expressions can be utilized to make statements in a certain context. Those
statements in context are the sentences in an Institution of Statements.

Definition 12 (Statement). An XE(Ξ)-statement (X, Ex, γ) in context K ∈ CxtObj is given by
a feature Ξ-expression X . Ex in XE(Ξ, X) and a binding morphism γ : X → K in Base.

By Stm(K), we denote the set of all XE(Ξ)-statements in K.

Statements are part of sketches and examples of sketches are presented in Section 5.

Remark 14 (Atomic statements). For a feature symbol F ∈ Φ and a context K there can be
different variable declarations X, X′, morphisms β : αF → X, β′ : αF → X′ and binding
morphisms γ : X → K, γ′ : X′ → K such that β; γ = β′; γ′. That is, the distinct statement
expressions (X, F(β), γ) and (X′, F(β′), γ′) represent somehow the “same statement” in K.

We choose therefore a kind of normal form to define the concept atomic statement: Atomic
statements in context K are statements of the form (αF, F(idαF), γ), γ : αF → K. For any context
K we denote by At(K) the set of all atomic statements in K.

In abuse of notation, we will sometimes use for atomic statements the same notation F(γ) as
for atomic expressions. Thus, we can, in the examples, take advantage of our notational conventions
based on the idea of “associative arrays”.

Remark 15 (General statements and closed formulas). If Base has an initial object 0, there is
for any closed expression 0 . Ex (see Remarks 8 and 12) a unique initial morphism γ =!K : 0→ K;
thus, we have (0, Ex, !K) ∈ Stm(K) for any context K and all the closed expressions 0 . Ex in
XE(Ξ, 0). We call (0, Ex, !K) a general statement in K.

The general statements in Stm(0), i.e., statements of the form (0, Ex, id0) are the precise formal
counterpart of traditional closed formulas within our framework. Be aware that there may be
statements (X, Ex, γ : X → 0) in Stm(0) with X non-initial.

Remark 16 (Expression vs. statement). The idea behind our definition of statements is to en-
capsulate the relatively intricate construction of first-order syntactic entities and do it once and
for all. In such a way, we achieve the following objectives: (1) There is no need to lift arbitrary
“semantic entities”, like elements in the carrier of a structure, to the syntactic level. (2) We can
define and work with first-order statements in arbitrary base categories. (3) We do not depend
on translation maps (compare Definition A1 in Appendix A) to translate first-order statements.
(4) The translation of first-order statements is simply performed by composition in the
category Base!

This encapsulation trick we have seen in [31] where it is used for “initial/free constraints”.

Mathematics 2022, 10, 1085 29 of 65

Any morphism ϕ : K → G in Cxt induces a map Stm(ϕ) : Stm(K) → Stm(G) defined
by simple post-composition for all statements (X, Ex, γ) in K:

Stm(ϕ)(X, Ex, γ) := (X, Ex, γ; ϕ) (2)

X . Ex
γ

{{

γ;ϕ

##
K

ϕ
// G

w CC

It is easy to show that the assignments K 7→ Stm(K) and ϕ 7→ Stm(ϕ) provide a functor
Stm : Cxt→ Set. This is the sentence functor of an Institution of Statements.

3.5.2. Model Functor

Interpretations of contexts are the models in an Institution of Statements.

Definition 13 (Context interpretations). An interpretation (ι,U) of a context K ∈ CxtObj is
given by a Ξ-structure U = (U, ΦU) in Sem(Ξ) and a morphism ι : K → U in Base.

A morphism ς : (ι,U) → ($,V) between two interpretations of K is given by a morphism
ς : U → V in Sem(Ξ) such that ι; ς = $ for the underlying morphism ς : U → V in Carr.

K
ι

��

$

��
=

U
ς // V

For any context K in Cxt we denote by Int(K) the category of all interpretations of K and all
morphisms between them and by ΠK : Int(K)→ Sem(Ξ) the obvious projection functor.

Note that, for an initial object K = 0, the projection functor Π0 : Int(0)→ Sem(Ξ) is
an isomorphism.

For any Ξ-structure U in Sem(Ξ), the corresponding fiber over U , i.e., the subcategory
of Int(K) given by all interpretations of K in U , is a discrete category representing the
hom-set Base(K, U).

Remark 17 (Functorial semantics). We present in this paper an abstract and general definition of
Institutions of Statements covering a brought range of applications. Therefore, we are not assuming
any structure on the hom-sets Base(K, U).

In examples, following the path of Functorial Semantics, Sem(Ξ) will be constituted by Ξ-
structures U = (U, ΦU) where U is provided by a category like Set or Par, for example. In those
cases, Base(K, U) will be a category with morphisms reflecting the idea of natural transformations.

For those special cases, we can vary Definition 13 in such a way that a morphism between the
two interpretations of K is given by a morphism ς : U → V in Carr and a morphism in Base(K, V)
from ι; ς to $. We are convinced that all the following constructions and results can be transferred,
more or less straightforwardly, to this extended version of morphisms between interpretations. We
let this as a topic of future research.

Any context morphism ϕ : K → G induces a functor Int(ϕ) : Int(G)→ Int(K) with:

Int(ϕ); ΠK = ΠG : Int(G)→ Sem(Ξ) (3)

defined by simple pre-composition: Int(ϕ)($,V) := (ϕ; $,V) for all interpretations ($,V)
of G, and for any morphism ς : (ι,U) → ($,V) between two interpretations of G the
same underlying morphism ς : U → V in Carr establishes a morphism Int(ϕ)(ς) := ς :
(ϕ; ι,U)→ (ϕ; $,V) between the corresponding two interpretations of K.

Mathematics 2022, 10, 1085 30 of 65

K
ϕ //

ϕ;$
��

G

$
��

K
ϕ //

ϕ;ι

��
ϕ;$

%%

G

$

��
ι

yy

Int(K)

ΠK %%

=

Int(G)
Int(ϕ)oo

ΠGyy
V U

ς // V Sem(Ξ)

�}}

It is straightforward to validate that the assignments K 7→ Int(K) and ϕ 7→ Int(ϕ) de-
fine a functor Int : Cxtop → Cat. This is the model functor of an Institution of Statements.

3.5.3. Satisfaction Relation and Satisfaction Condition

The last two steps, in establishing an institution, are the definition of satisfaction
relations and the proof of the so-called satisfaction condition. The satisfaction relations are
simply given by the semantics of features expressions, as described in Definition 10.

Definition 14 (Satisfaction relation). For any context K ∈ Cxt, any XE(Ξ)-statement (X, Ex, γ)
in K and any interpretation (ι,U) of context K we define:

(ι,U) |=K (X, Ex, γ) iff γ; ι |=U X . Ex (i.e. γ; ι ∈ [[Ex]]UX) (4)

K
ι

��
U X . Ex

γ
cc

γ;ι
oo

Remark 18 (Validity of Closed Formulas). In case X = K = 0, we do have for any Ξ-structure
U = (U, ΦU) in Sem(Ξ) exactly one interpretation (!U ,U) thus for any closed formula (0, Ex, id0)
(see Remark 15) (!U ,U) |=0 (0, Ex, id0) means nothing but that the closed formula (0, Ex, id0)
is valid in U in the traditional sense. Therefore, we will also write U |= (0, Ex, id0) instead of
(!U ,U) |=0 (0, Ex, id0).

Moreover, the validity of closed formulas is context independent in the following sense: For
any context K and any closed expressions 0 . Ex, we have:

(ι,U) |=K (0, Ex, !K) iff !K; ι =!U |=U 0 . Ex iff [[Ex]]U0 = {!U} iff U |= (0, Ex, id0)

After we developed everything in a systematic modular way, we obtain the satisfaction
condition nearly “for free”.

Corollary 1 (Satisfaction condition). For any morphism ϕ : K → G in Cxt, any XE(Ξ)-statement
(X, Ex, γ) in K and any interpretation ($,U) of context G we have:

Int(ϕ)($,U) |=K (X, Ex, γ) iff ($,U) |=G Stm(ϕ)(X, Ex, γ). (5)

K

ϕ

��

(ϕ; $,U) |=K (X, Ex, γ)
_

Stm(ϕ)

��

K

ϕ

��

ϕ;$

��
U X . Ex

γ
bb

γ;ϕ
||

G ($,U) |=G

_

Int(ϕ)

OO

(X, Ex, γ; ϕ) G
$

__

Proof. Due to the definition of the functors Int : Cxtop → Cat and Stm : Cxt → Set, we
obtain the commutative diagram, above on the right, thus the satisfaction condition follows
immediately from Definition 14.

Mathematics 2022, 10, 1085 31 of 65

Remark 19 (Satisfaction Condition). As mentioned in the introductory Section 1.1.6, the finding
of corresponding assignments and corresponding evaluations enabled us to prove in [29] the
satisfaction condition for four formalisms in a systematic, uniform and straightforward way. The
proof of Corollary 1 mirrors the essence of this uniform and straightforward way at a very high
abstraction level.

Summarizing all definitions and results, we obtain the main result of this section:

Theorem 1 (Institution of Statements). Any choice of a category Base, of subcategories Var,
Cxt, Carr of Base, of a footprint Ξ over Var, of a category Sem(Ξ) of Ξ-structures and of an
VarObj-indexed family XE(Ξ) of first-order Ξ-expressions establishes a corresponding Institution
of Statements IS = (Cxt, Stm, Int, |=).

Remark 20 (Indexed institutions). We come back to the discussion in Remark 5. If we consider a
category of footprints over Var we will obtain, due to Theorem 1, for each footprint a corresponding
institution of statements. To lift morphisms between footprints to corresponding morphisms between
institutions of statements, we have, however, to coordinate somehow the construction of the different
institutions (consult Figure 1).

All institutions should share, besides Base and Var also the same categories Carr and Cxt.
We have to show that this assumption ensures that the assignments Ξ 7→ Str(Ξ) can be lifted to a
functor Str. Analogously, the assignments Ξ 7→ FE(Ξ) should also provide a functor FE. Finally,
the choices of Sem(Ξ) and XE(Ξ) have to be aligned in such a way that we obtain corresponding
restrictions of the functors Str and FE, respectively.

Under these assumptions, we will hopefully be able to establish a category of institutions of
statements indexed by the category of footprints; thus, we can benefit from all the nice results and
constructions in [2]. In particular, the construction of the corresponding Grothendieck institution
will surely become relevant.

4. Institutions of Equations

With this section about Institutions of Equational Statements, or short Institutions
of Equations, we start to close the circle to the ideas and motivations discussed in the
introductory Section 1.1.1 Universal Algebra and Algebraic Specifications. In these areas,
substitutions play a central role and, analyzing the situation in these areas, we may obtain
also some hints and guidelines for the future development of a more abstract and general
account of substitutions in Logics of Statements.

Equations are the main conceptual tool in Universal Algebra. To define equational
statements, we could again apply the encapsulation trick we have used in the last sub-
sections to define statements for footprints with feature symbols only. That is, we could
introduce atomic equations X . t1 = t2, define atomic equational statements (X, t1 = t2, γ)
in contexts K with γ : X → K and translate atomic equational statements along context
morphisms by simple post-composition.

This idea works fine as long as we are only interested in formalisms to describe and
specify algebraic structures. The encapsulation approach seems to be not appropriate,
however, to describe and work with instances of equations w.r.t. substitutions of variables
by terms. The construction of those instances is a crucial tool in any deduction calculus in
Universal Algebra; thus, we decided to work instead of the encapsulation-based two-step
approach with a one-step approach defining directly equations K . t1 = t2 in contexts K.

This means that we adapt for Institutions of Equations the construction scheme in
Figure 1 in the following way: We have Str(Ξ) = Sem(Ξ). Step (6) is dropped and
we construct directly Stm(K) as a set of equations in context K. Correspondingly, the
satisfaction relations |=K are defined by means of the evaluation of terms in algebras.

As a complement to the FOL-example, we consider many-sorted total algebras and
conditional equations. In this section, we define corresponding Institutions of Equations
while conditional equations are formalized and discussed in Section 5.3.

Mathematics 2022, 10, 1085 32 of 65

In accordance with the FOL-example, we fix a finite set S ∈ SetObj of sort symbols
and choose as BaseEQ the interpretation category SetS = [S → Set]. VarEQ is the full
subcategory of BaseEQ given by all finite and disjoint S-sets X = (Xs | s ∈ S) with Xs a
subset of the set {x, x1, x2, . . . , y, y1, y2, . . .} for all s ∈ S.

4.1. Signatures, Algebras and Contexts

Signatures Σ = (Ω, in, out) correspond to traditional many-sorted algebraic signatures
and are given by a set Ω of operation symbols, a map in assigning to each operation symbol
ω ∈ Ω an object in(ω) in VarEQ, its arity, and a map out : Ω → S. For convenience,
we assume that

⋃
in(ω) = {x1, x2, . . . , xn}, n ≥ 0; thus, we can represent in(ω) as a list

[x1: s1, x2: s2, . . . , xn: sn] of variable declarations (compare Example 11).
We have CarrEQ := BaseEQ. As structures, we consider Σ- algebrasA = (A, ΩA) with

an S-set A = (As | s ∈ S) and a family ΩA of operations ωA : Ain(ω) → Aout(ω), ω ∈ Ω,
where Ain(ω) is a shorthand for the set SetS(in(ω), A) of all S-maps from in(ω) into A.

A homomorphism ς : A → B between Σ-algebras A and B is given by an S-map
ς = (ςs | s ∈ S) : A → B such that ωA; ςs = ςin(ω); ωB for all ω ∈ Ω where the map
ςin(ω) : Ain(ω) → Bin(ω) is defined by ςin(ω)(τ) := τ; ς for all S-maps τ ∈ Ain(ω).

Ain(ω)

ςin(ω)

��

ωA //

=

As

ςs

��
Bin(ω) ωA // Bs

Alg(Σ) is the category of all Σ-algebras and all homomorphisms between them.
We choose CxtEQ := CarrEQ = BaseEQ = SetS. The model functor of an Institution of

Equations is defined in full analogy to Institutions of Statements.
An interpretation (ι,A) of a context K in CxtEQ, i.e., of an S-set K, is given by a

Σ-algebra A = (A, ΩA) and an S-map ι : K → A.
A morphism ς : (ι,A) → ($,B) between two interpretations of K is given by a

homomorphism ς : A → B such that ι; ς = $ for the underlying S-map ς : A→ B.

K
ι

��

$

��
=

A
ς // B

For any context K in CxtEQ, Int(K) denotes the category of all interpretations of K and
all morphisms between them and ΠK : Int(K)→ Alg(Σ) is the corresponding projection
functor. The fiber over a Σ-algebra A represents the semantics of a context K in A, i.e., the
set AK := SetS(K, A) of all S-maps from K into the carrier of A.

Note that, in the case of the empty S-set K = 0 = (∅ | s ∈ S) the projection functor
Π0 : Int(0)→ Alg(Σ) is an isomorphism.

Any S-map ϕ : K → G induces a functor Int(ϕ) : Int(G)→ Int(K) with:

Int(ϕ); ΠK = ΠG : Int(G)→ Alg(Σ) (6)

defined by simple pre-composition: Int(ϕ)($,B) := (ϕ; $,B) for all interpretations ($,B)
of G, and for any morphism ς : (ι,A)→ ($,B) between two interpretations of G the same
underlying S-map ς : A→ B establishes a morphism Int(ϕ)(ς) := ς : (ϕ; ι,A)→ (ϕ; $,B)
between the corresponding two interpretations of K.

K
ϕ //

ϕ;$
��

G

$
��

K
ϕ //

ϕ;ι

��
ϕ;$

%%

G

$

��
ι

yy

Int(K)

ΠK $$

=

Int(G)
Int(ϕ)oo

ΠGzz
B A

ς // B Alg(Σ)

�}}

Mathematics 2022, 10, 1085 33 of 65

The assignments K 7→ Int(K) and ϕ 7→ Int(ϕ) define a functor Int : Cxtop
EQ → Cat.

This is the model functor of an Institution of Equations.

4.2. Terms and Equations

To define equations, we need terms! For any S-set K the S-set TΣ(K) of all Σ-terms on
K is defined inductively as the smallest S-set such that:

1. K ⊆ TΣ(K)
2. ω〈〉 ∈ TΣ(K)out(ω) for all ω ∈ Ω with in(ω) the empty S-set 0 = (∅ | s ∈ S).
3. ω〈τs1(x1), . . . , τsn(xn)〉 ∈ TΣ(K)out(ω) for all ω ∈ Ω with in(ω) non-empty and all

S-maps τ : in(ω)→ TΣ(K) where [x1: s1, x2: s2, . . . , xn: sn] is the assumed representa-
tion of in(ω) as a list of variable declarations.

A Σ-equation (K, t1 = t2) in K is given by two Σ-terms t1, t2 ∈ TΣ(K)s for some
s ∈ S and Eq(K) denotes the set of all Σ-equations (K, t1 = t2) in K. In the usual way, the
inductive definition of Σ-terms allows us to extend any S-map ϕ : K → G between S-sets
to an S-map ϕ∗ : TΣ(K) → TΣ(G) such that ⊆; ϕ∗ = ϕ;⊆ thus ϕ : K → G induces a map
Eq(ϕ) : Eq(K)→ Eq(G) with:

Eq(ϕ)(K, t1 = t2) := (G, ϕ∗(t1) = ϕ∗(t2)) (7)

for all Σ-equations (K, t1 = t2) in K.

TΣ(K)
ϕ∗ // TΣ(G)

K
ϕ //

⊆
OO

G

⊆
OO

Since id∗K = idTΣ(K) and (ϕ; ψ)∗ = ϕ∗; ψ∗ for all ϕ : K → G, ψ : G → H, the assignments
K 7→ Eq(K) and ϕ 7→ Eq(ϕ) define a functor Eq : CxtEQ → Set. This is the sentence functor
of an Institution of Equations.

The semantics of terms is based on the evaluation of terms in algebras: Due to the
inductive definition of Σ-terms, we can extend any interpretation ι : K → A of a context K
in a Σ-algebra A = (A, ΩA) to an S-map ι◦ : TΣ(K)→ A such that:

⊆; ι◦ = ι. (8)

K
⊆ //

ι
""

TΣ(K)

ι◦
��

A
In such a way, we can define the semantics tA of a Σ-term t ∈ TΣ(K), s ∈ S in a Σ-algebraA
as a map tA : AK → As defined by tA(ι) := ι◦(t) for all ι : K → A. Thus, feature expressions
represent derived properties while terms represent derived operations!

4.3. Satisfaction Relation and Satisfaction Condition

Definition 15 (Satisfaction relation for equations). For any context K ∈ CxtEQ, any
Σ-equation (K, t1 = t2) in K and any interpretation (ι,A) of context K in a Σ-algebra A =
(A, ΩA), we define:

(ι,A) |=K (K, t1 = t2) iff ι◦(t1) = ι◦(t2) (i.e. tA1 (ι) = tA2 (ι)) (9)

K
ι

��

⊆ // TΣ(K)

ι◦
vvA

Mathematics 2022, 10, 1085 34 of 65

The satisfaction condition is ensured by the well-behaved interplay of translations of
terms along context morphisms and evaluations of terms.

Proposition 1 (Satisfaction condition for equations). For any morphism ϕ : K → G in CxtEQ,
any Σ-equation (K, t1 = t2) in K and any interpretation ($,A) of context G in a Σ-algebra
A = (A, ΩA), we have:

Int(ϕ)($,A) |=K (K, t1 = t2) iff ($,A) |=G Eq(ϕ)(K, t1 = t2). (10)

K

ϕ

��

(ϕ; $,A) |=K (K, t1 = t2)_

Eq(ϕ)

��

K

ϕ

��

ϕ;$

��

⊆ // TΣ(K)

(ϕ;$)◦

vv
ϕ∗

��

A

G ($,A) |=G

_

Int(ϕ)

OO

(G, ϕ∗(t1) = ϕ∗(t2)) G
$

__

⊆ // TΣ(G)

$◦

hh

Proof. Due to the definition of the functors Int : Cxtop
EQ → Cat, Eq : CxtEQ → Set and the

fact that (ϕ; $)◦ = ϕ∗; $◦, we obtain the commutative diagram, above on the right, thus the
satisfaction condition follows immediately from Definition 15.

Summarizing all definitions and results, we obtain the main result in this section:

Proposition 2 (Institution of Equations). Any choice of a finite set S and a signature Σ =
(Ω, in, out) establishes a corresponding Institution of Equations IE = (CxtEQ, Eq, Int, |=).

5. Sketches

Any institution gives us a corresponding category of presentations and an extension
of the model functor of the institution to the category of presentations at hand [2,31]. We
outline this construction for Institutions of Statements and Institutions of Equations.

We would like to use a specific term to distinguish presentations for Institutions of
Statements or Equations, resp., from presentations in general. Since many of our motivating
examples are variants of sketches, we will simply use the term sketch. In Sections 5.1 and
5.2, we concentrate on sketches for Institutions of Statements while Section 5.3 outlines the
corresponding variations for Institutions of Equations.

5.1. Sketches of Statements: Syntax and Semantics

To be prepared for the topics in Section 6, we introduce a very abstract and semantics-
independent concept of sketch.

Definition 16 (Sketch). Let us have a category Ct of contexts and a functor St : Ct → Set,
assigning to each K ∈ CtObj a set St(K) of all statements in context K.

An St- sketch K = (K, StK) is given by a context K ∈ CtObj and a set StK ⊆ St(K) of
statements in context K.

In this subsection, we consider the case Ct = Cxt, St = Stm with IS = (Cxt, Stm, Int, |=)
an arbitrary Institution of Statements according to Theorem 1.

All definitions and constructions are, however, institution-independent; thus, they
apply analogously to the case Ct = CxtEQ, St = Eq with IE = (CxtEQ, Eq, Int, |=) an
arbitrary Institution of Equations according to Proposition 2.

Example 36 (FOL: Sketches). We extend the sample context K in Example 31 to an StmFOL-sketch
K with the atomic statements (facts) parent(Anna, Uwe, Gabi), parent(Uwe, Heinz, Dora),
male(Michael) and the proper first-order statements ([y : prs], sbl, (y 7→ Michael)),

Mathematics 2022, 10, 1085 35 of 65

([y : prs], sbl, (y 7→ Uwe)), ([y : prs, x : nat], younger, (y 7→ Michael, x 7→ 12)),
([y : prs], sbl, (y 7→ Gabi)). The expression [y : prs] . sbl, representing the property being
sibling of someone, and the expression [y : prs, x : nat] . younger, representing the property
younger than, are defined in Example 26.

Example 37 (ALC: Sketches). Contexts in ALC are sets NO of individual names as already
mentioned in Example 32. A concept assertion in ALC, i.e., a statement of the form a : C with
a ∈ NO and C a (derived) concept, can be seen as a statement ({x1}, C(x1), (x1 7→ a)) in NO where
the assignment (x1 7→ a) defines a binding β : {x1} → NO with β(x1) = a.

A role assertion, i.e., a statement of the form (a, b) : R where a, b ∈ NO and R is a role, can be
seen as a statement ({x1, x2}, R(x1, x2), (x1 7→ a, x2 7→ b)) in NO. An ABox in ALC is a finite
set of assertional axioms. Thus, a pair (NO,A) of a set NO of individual names and an ABox
A of assertional axioms in NO is just an StmALC-sketch in our sense.

Example 38 (mFOL: Sketches). We extend the context (K, τK : K → MmF) in Example 33 to
an StmmF-sketch with the atomic statements un(male : P, prs : S), bin(less : P, nat : S, nat : S),
bin(age : P, prs : S, nat : S) and trt(parent : P, prs : S, prs : S, prs : S).

Obviously, this StmmF-sketch describes exactly the sample footprint ΞFOL in Example 11!
Actually, we can describe all FOL-footprints, declaring only unary, binary or tertiary predicate
symbols, as StmmF-sketches. This fact confirms that the mFOL-example establishes indeed a meta-
level for the FOL-example.

We have to be aware, however, that not all StmmF-sketches correspond to FOL-footprints. For
each predicate symbol in a FOL-footprint, we have to declare an arity, and this arity should be
unique! Therefore, only those StmmF-sketches, with exactly one atomic statement for each element
in τ−1

K (P) correspond to FOL-footprints. To describe those requirements concerning the structure
of sketches, we can utilize sketch implications, introduced in the next subsection, and/or sketch
constraints introduced in Section 6.

Example 39 (CT: Sketches). These are just the sketches, as we know them from Category Theory,
with the essential difference that we are not restricting ourselves to commutative, limit and colimit
statements only. We do not need to encode, for example, the concept monomorphism by means of
pullbacks but can define it directly as a property of edges utilizing the ΞCT-expressions we discussed
in Example 29.

2

b
��

mon

2×cmp

4
d

��
cmp

1

a
@@

e
**

f
44 3

c
@@

g mon //
f nl

5

As an example, we consider the context G from Example 34 and extend it to an StmCT-sketch
G = (G, StG) visualized above. StG contains the atomic statements cmp(a, b, e), cmp(a, b, f),
cmp(c, d, g) and the proper first-order statements:

(xv, f nl, (xv 7→ 3)), (xv1
xe→ xv2, mon, (xe 7→ b)), (xv1

xe→ xv2, mon, (xe 7→ g)).

Example 40 (RM: Sketches). We extend the sample context (K, τK) from Example 35 to an
StmRM-sketch K = (K, StK). First, we declare two tables, i.e., StK contains two atomic statements
tb(3)(γ1), tb(3)(γ2) with bindings γ1 and γ2 visualized by the following typed graphs:

Empl: T
eid: c

zz
E.ssn: c
��

name: c

%%
Int: D Int: D String: D

Addr: T
A.ssn: c
yy

town: c
��

street: c
&&

Int: D String: D String: D

Mathematics 2022, 10, 1085 36 of 65

Then, we declare for each table a primary key, i.e., we add two atomic statements pk(γ3), pk(γ4)

with bindings γ3, γ4 given by Empl: T eid: c // Int: D and Addr: T A.ssn: c// Int: D . Moreover, we

declare a foreign key fk(γ5) with γ5 depicted by Empl: T E.ssn: c// Int: D ooA.ssn: cxt2: T .
We could also require that each employee has a name and add an atomic statement tot(γ6)

with γ6 given by Empl: T name: c// String: D .
Analogously to the requirements in Example 38, we do have the requirement that a table

identifier can only appear once in a tb(n)-statement. There are, however, other database specific
requirements: Any table should have exactly one primary key, a foreign key has to refer to a primary
key, and others. As said before, to describe those kinds of structural requirements, we need sketch
implications and/or sketch constraints.

For any context K in Cxt, any set S ⊆ Stm(K) of statements in K and any interpretation
(ι,U) of context K in a Ξ-structure U we define, relying on Definition 14:

(ι,U) |=K S iff (ι,U) |=K (X, Ex, γ) for all (X, Ex, γ) ∈ S. (11)

Be aware that the statements in S may have different variable declarations X.

Definition 17 (Interpretation of sketch). A valid interpretation (model) of an Stm-sketch
K = (K, StK) is an interpretation (ι,U) of context K such that (ι,U) |=K StK.

We denote by Int(K) the full subcategory of Int(K) determined by all valid interpretations
of K and by ΠK : Int(K) → Sem(Ξ) we denote the corresponding restriction of the projection
functor ΠK : Int(K)→ Sem(Ξ).

Remark 21 (Traditional presentations). If Base has an initial object 0, we can consider sketches
(0, St) with St only containing closed formulas, i.e., statements of the form (0, Ex, id0) (see
Remark 15). As discussed before, the projection functor Π0 : Int(0) → Sem(Ξ), due to
Definition 13, is an isomorphism. In such a way, (0, St) is not only determining the interpre-
tation subcategory Int(0, St) v Int(0) but can also be seen as a presentation (specification) of
the corresponding full subcategory Sem(Ξ, (0, St)) := Π0(Int(0, St)) of Sem(Ξ) isomorphic to
Int(0, St).

In other words: due to Remark 18, we can describe Sem(Ξ, (0, St)) as the full subcategory
of Sem(Ξ) given by all Ξ-structures U = (U, ΦU) in Sem(Ξ) such that U |= (0, Ex, id0) for all
closed formulas (0, Ex, id0) in St.

Example 41 (FOL: Interpretations). If we interpret the symbolic literals in Kprs = {Anna,
Michael, Dora, Heinz, Sorin, Gabi, Uwe} by the real persons in our family in December 2021, we
will not obtain a valid interpretation of the StmFOL-sketch K in Example 36 since the statement
([y : prs], sbl, (y 7→ Gabi)) is not satisfied by this interpretation. If we use, however, the statement
([y : prs],¬sbl, (y 7→ Gabi)) instead, the interpretation becomes valid.

Note that the statement ([y : prs], sbl, (y 7→ Uwe)) is satisfied by the interpretation even if
there is no witness for this statement in the context. Uwe’s only sister Brita is not present in the
context K!

Example 42 (mFOL: Interpretations). An interpretation of the sample context (K, τK) assigns to
each element in τ−1

K (S) := {prs, nat} and τ−1
K (P) := {parent, male, age, less}, respectively,

a set. Since BasemF is the slice category SET/MmF, a certain set can either serve as a sort or as
a predicate.

Our choice of Sem(ΞmF) in Example 23 ensures, in addition, that the valid interpretations of
the sample StmmF-sketch from Example 38 are in one-to-one correspondence to the ΞFOL-structures
in Sem(ΞFOL) = Str(ΞFOL). We do have such a semantical one-to-one correspondence for any
FOL-footprint, declaring only unary, binary or tertiary predicate symbols, and the corresponding

Mathematics 2022, 10, 1085 37 of 65

StmmF-sketch. This confirms that the mFOL-example establishes a meta-level for the FOL-example
also w.r.t. semantics.

It is maybe worth mentioning that any StmmF-sketch with two different atomic statements for,
at least, one element in τ−1

K (P) has no valid interpretation at all in Sem(ΞmF).

Example 43 (Category Theory: Interpretations). Since we defined in Example 24 a very lib-
eral semantics, we do have interpretations (ι,U), U = (U, ΦUCT) of the sample StmCT-sketch
G = (G, StG) in Example 39, where the graph homomorphism ι : G → U maps the edges e and f
to different edges in U even if both are declared as the composition of a and b.

If we would have also included into the sketch G the general statement (0, guc, !G) with
the closed expression 0 . guc expressing the property composititon is always unique (see
Example 29), (ι,U) could be only a valid interpretation of G if ι identifies e and f .

Example 44 (RM: Interpretations). Analogously to Example 42, our choice of Sem(ΞRM) in
Example 25 ensures that the valid interpretations of “well-formed” StmRM-sketches, i.e., StmRM-
sketches representing database schemata, formalize exactly the traditional semantics of database
schemata as outlined in Subsection 3.1.5.

Morphisms between sketches are defined by means of semantic entailment in a certain
Institution of Statements IS = (Cxt, Stm, Int, |=).

Definition 18 (Statement entailment). For any context K in Cxt and any sets S, T ⊆ Stm(K) of
statements in K, we say that S entails T in a Ξ- structure U , S UK T in symbols, if, and only if,
for all interpretations (ι,U) of K in U : (ι,U) |=K S implies (ι,U) |=K T.

S entails T, S K T in symbols, if, and only if, S UK T for all Ξ-structures U in Sem(Ξ).

Definition 19 (Sketch morphism). An IS-morphism ϕ : K 99K G between two Stm-sketches
K = (K, StK), G = (G, StG) is a morphism ϕ : K → G in Cxt such that StG G Stm(ϕ)(StK).
An IS-morphism ϕ : K 99K G is called strict if StG ⊇ Stm(ϕ)(StK).

Sk(IS)m denotes the category of all Stm-sketches and all IS-morphisms between them. Its
subcategory of all Stm-sketches and all strict IS-morphisms is denoted by Sk(IS)m

s .

We will consider three different kinds of directed relationships between sketches
distinguished by three different kinds of arrow-symbols. We choose the arrow-symbol
“99K” for sketch morphisms since it is the kind of directed relationship we will mention the
least.

If IS is clear from the context, we will also use the shorthand notations Skm and Skm
s

instead of Sk(IS)m and Sk(IS)m
s , respectively.

IS-morphisms ϕ : K 99K G with K = G and ϕ = idK simply reflect statement
entailments. For any IS-morphism ϕ : K 99K G, the condition StG G Stm(ϕ)(StK)
ensures, due to the satisfaction condition that the functor Int(ϕ) : Int(G) → Int(K)
restricts to a functor from Int(G) into Int(K). In such a way, the assignments K 7→ Int(K)
extend to a functor IntSk : (Skm)op → Cat.

According to well-known general results (see Corollary 4.3 in [2]), we know that Skm

has whatever limits or colimits the category Cxt has since limits and colimits in the category
Skm of Stm-sketches and IS-morphisms are constructed by means of limits and colimits
in the category Cxt, respectively (compare Propositions 5 and 6). This ensures also that
we do have amalgamation [1,2,38]: IntSk : (Skm)op → Cat maps all colimits in Cxt that are
preserved by the inclusion Cxt v Base, to limits in Cat.

The Theory of Institutions gives us “for free” Stm-sketches, IS-morphisms, the cate-
gory Skm as well as the extended model functor IntSk : (Skm)op → Cat.

However, to employ sketches as a specification formalism and to develop deduction
calculi for sketches, we need a number of other concepts, constructions and results.

Mathematics 2022, 10, 1085 38 of 65

5.2. Sketches of Statements vs. Structures

In the Introduction, we discussed, among other things, two central motivations for the
development of our framework: (1) We want to be able to give a general abstract account
of the concept of free structures generalizing concepts like a group generated by a set of
generators and a set of defining relations. (2) We want to provide an alternative general
mechanism to encode structures “syntactically” that avoids the kind of circularity inherent
to the technique of “signature extensions”.

In the remaining part of this section, we outline proposals to meet these objectives.

5.2.1. Freely Generated Structures

To reconstruct the concept of a group generated by a set of generators and a set of
defining relations, we need operations only. Those cases of free algebras are discussed in
Section 5.3.1.

First, We Consider Structures Freely Generated in Sem(Ξ)

A Ξ-structure F = (F, ΦF) is freely generated in Sem(Ξ) by an Stm-sketch G =
(G, StG) if, and only if, F is in Sem(Ξ) and there is a valid interpretation (ηG,F) of G in F
that is universal relative to Sem(Ξ). That is, for all Ξ-structures U = (U, ΦU) in Sem(Ξ) and
all valid interpretations (ι,U) of G in U there exists a unique morphism ι∗ : F → U in
Sem(Ξ) such that ηG; ι∗ = ι in Base, i.e., such that ι∗ establishes an interpretation morphism
ι∗ : (ηG,F)→ (ι,U) in Int(G) v Int(G) according to Definition 13.

Int(G) G
(ηG,F)|=GStG //

(ι,U)|=GStG
%%

F

ι∗

��

F = (F, ΦF)

ι∗
��

Sem(Ξ)

U U = (U, ΦU)

A Ξ-structure, freely generated in Sem(Ξ) by an Stm-sketch G = (G, StG), is obviously
uniquely determined “up to isomorphism in Sem(Ξ)” if it exists.

The universal property of (ηG,F) entails that (ηG,F) is initial in Int(G), thus the
projection functor ΠG : Int(G) → Sem(Ξ) establishes a functor from Int(G) into the
co-slice category F/Sem(Ξ).

In the case that StG contains only atomic statements, the definition of morphisms
between Ξ-structures ensures (ηG; $,U) |=G StG for any morphism $: F → U in Sem(Ξ);
thus, the assignments ($: F → U) 7→ (ηG; $,U) establish a functor from F/Sem(Ξ) into
Int(G). Due to the universal property of (ηG,F), we obtain (ηG; $)∗ = $. Together with
the equation ηG; ι∗ = ι, this ensures that the two functors establish an isomorphism between
Int(G) and F/Sem(Ξ) (compare Proposition 4.10 in [2]). This justifies that we can call, in
this atomic case, the pair (G, ηG) a sketch representation of F .

Note that the Ξ-structure (G, Φ∅) with Φ∅ a Φ-indexed family of empty sets is trivially
freely generated in Sem(Ξ) by G = (G, ∅).

Second, We Consider Structures Freely Generated Relative to a Subcategory D:

Let D be an arbitrary full subcategory of Sem(Ξ). A Ξ-structure F = (F, ΦF) is freely
generated in D by an Stm-sketch G = (G, StG) if, and only if, F is an object in D and there
is a valid interpretation (ηG,F) of G in F that is universal relative to D. That is, for all
Ξ-structures U = (U, ΦU) in D and all valid interpretations (ι,U) of G in U there exists a
unique morphism ι∗ : F → U in D such that ηG; ι∗ = ι in Base, i.e., such that ι∗ establishes
an interpretation morphism ι∗ : (ηG,F)→ (ι,U) in Int(G) v Int(G).

Int(G) ↓ D G
(ηG,F)|=GStG //

(ι,U)|=GStG
%%

F

ι∗

��

F = (F, ΦF)

ι∗
��

D

U U = (U, ΦU)

Mathematics 2022, 10, 1085 39 of 65

A Ξ-structure, freely generated in D by an Stm-sketch G = (G, StG) is, obviously,
uniquely determined “up to isomorphism in D” if it exists. In this case, the universal
property of (ηG,F) entails that (ηG,F) is initial in the subcategory Int(G) ↓ D := Π−1

G (D)
of all valid interpretations of G in Ξ-structures in D. Analogous to the case D = Sem(Ξ),
we obtain, moreover, an isomorphism between Int(G) ↓ D and the co-slice category F/D
if StG contains only atomic statements.

Third, We Consider Subcategories Described by Logical Means

One logical means to describe subcategories of Sem(Ξ) are Stm-sketches (0, St) with
St only containing closed formulas, i.e., statements of the form (0, Ex, id0). As discussed
in Remark 21, those sketches can be seen as presentations in the traditional sense of the
Theory of Institutions specifying subcategories Sem(Ξ, (0, St)) of Sem(Ξ).

As another logical means to describe subcategories of Sem(Ξ), we will introduce
sketch implications in Section 5.2.3 (see Remark 27).

5.2.2. Elementary Diagrams

To establish sketch-based mechanisms to encode structures “syntactically”, we have
to assume an Institution of Statements IS = (Cxt, Stm, Int, |=) with Carr v Cxt and
At(K) ⊆ Stm(K) for all contexts K in Cxt, i.e., Stm(K) contains all atomic statements in K.

There are two canonical ways to transform a Ξ-structure U = (U, ΦU) into an
Stm-sketch. The atomic variant SUΦ = (U, StUΦ) encodes only the semantics of feature
symbols and uses therefore only atomic statements:

StUΦ := {(αF, F(idαF), γ) | F ∈ Φ, γ ∈ [[F]]U} ⊆ At(U). (12)

The full variant SU = (U, StU) is available if XE(Ξ, X) = FE(Ξ, X) for all X ∈ VarObj
and encodes the semantics of all feature expressions:

StU := {(X, Ex, γ) | X ∈ VarObj, Ex ∈ FE(Ξ, X), γ ∈ [[Ex]]UX} ⊆ Stm(U). (13)

We obviously have StUΦ ⊂ StU . For any statement (X, Ex, γ) in U we obtain, according
to (13) and the definition of satisfaction relations in Definition 14,

(X, Ex, γ) ∈ StU iff γ; idU = γ ∈ [[Ex]]UX iff (idU ,U) |=U (X, Ex, γ). (14)

thus (idU ,U) is a valid interpretation of SUΦ as well as of SU .
In traditional First-Order Logic, we meet the full variant in the form of elementary

diagrams [39]. The difference to our encoding is that the carrier of a first-order structure is
not considered as a context. Instead, each element of the carrier is added as a constant to
the signature. The encoding of structures as sketches avoids this kind of circularity. The
“signature extension trick” works only for first-order signatures with constants symbols
and, more critically, it requires that the carriers of first-order structures are sets! It looks
like the sketch encoding mechanism is much more flexible and general.

The elementary diagrams in [2] give an abstract account of the signature extension
approach but are based on an atomic variant of encoding.

There are no structures at all in [15] only atomic sketches! In [13], we followed Makkai
and have not considered structures either. Instead, we worked, directly, with the atomic
sketch encodings SUΦ of structures.

To validate, in retrospective, the approaches in [13,15], a noticeable portion of the
remaining part of the paper, will be spent to answer the following question:

Question 4: Is there any justification to ignore completely
the concept of semantic structure (model)?

By construction, any Ξ-structure U = (U, ΦU) in Sem(Ξ) is freely generated in Sem(Ξ) by
the Stm-sketch SUΦ = (U, StUΦ) with the universal interpretation (idU ,U). StUΦ contains only

Mathematics 2022, 10, 1085 40 of 65

atomic statements thus (SUΦ, idU) becomes a sketch representation of U in the sense of the
last subsection. In particular, there is an isomorphism between Int(SUΦ) and U/Sem(Ξ).

The crucial observation is, however, that the assignments U 7→ SUΦ define an embed-
ding Enc : Str(Ξ)→ Sk(Stm)a of Str(Ξ) into the category Sk(Stm)a of all Stm-sketches and
all Stm-sketch arrows defined in the next subsection in Definition 20. This embedding
establishes, moreover, an isomorphism between Str(Ξ) and the subcategory atSk(Stm)a

s of
Sk(Stm)a given by all atomic Stm-sketches and all strict Stm-sketch arrows between them.
An Stm-sketch K = (K, StK) is atomic if StK ⊆ At(K) (see Remark 14).

The concepts (atomic) Stm-sketch and (strict) Stm-sketch arrow concern only the
“structure” of sketches and are completely semantics-independent. That is, the transi-
tion along the encoding functor Enc from the category Str(Ξ) to the isomorphic category
atSk(Stm)a

s implements an abstraction from the concept semantic structure (model) to
the concept atomic sketch. In case Sem(Ξ) = Str(Ξ), this abstraction is exhaustive. In
case Sem(Ξ)Obj (Str(Ξ)Obj, however, we need an additional semantics-independent,
purely structural characterization identifying exactly all those atomic Stm-sketches SUΦ in
atSk(Stm)a

s with U in Sem(Ξ), to make the abstraction complete (see Remark 29).
A sketch is constituted by a context and a set of statements. The informal term

“structure of a sketch” takes into account the context; for each statement, the syntactic
structure of the corresponding expression and its “location”, i.e., its binding morphism, the
set of statements as such and the “distribution” of the statements over the context.

5.2.3. Sketch Arrows and Sketch Implications

We can not only transform Ξ-structures U into the Stm-sketches SUΦ and SU . We can
even encode the validity of certain classes of “closed formulas” in U by means of semantics-
independent, pure structural closedness properties of SUΦ or SU , respectively. To see this,
we need some preparations.

First, we have to take a step back and consider a very simple, semantics-independent
relationship between sketches. To be prepared for Section 6, we define this relationship on
the same level of abstraction as Definition 16 (Sketch).

Definition 20 (Sketch Arrow). Let us be given a category Ct and a functor St : Ct→ Set. An
arrow ϕ : K → G between two St-sketches K = (K, StK), G = (G, StG) is given by a context
morphism ϕ : K → G. ϕ : K→ G is called strict if StG ⊇ St(ϕ)(StK).

Sk(St)a denotes the category of all St-sketches and all St-sketch arrows between them. Its
subcategory of all St-sketches and all strict St-sketch arrows is denoted by Sk(St)a

s .

If St is clear from the context, we will also use the shorthand notations Ska and Ska
s

instead of Sk(St)a and Sk(St)a
s , respectively. If K = G and ϕ = idK, we will also just

write K → G instead of ϕ : K → G. We consider the case Ct = Cxt, St = Stm with
IS = (Cxt, Stm, Int, |=) an Institution of Statements.

Remark 22 (Sketch Morphisms vs. Sketch Arrows). An IS-morphism ϕ : K 99K G is a Stm-
sketch arrow ϕ : K→ G satisfying the semantical morphism condition StG G Stm(ϕ)(StK).
Not every Stm-sketch arrow ϕ : K → G provides an IS-morphism ϕ : K 99K G, but each
IS-morphism ϕ : K 99K G has an underlying Stm-sketch arrow ϕ : K→ G.

Any strict Stm-sketch arrow ϕ : K → G satisfies, trivially, the morphism condition and
provides, in such a way, a strict IS-morphism ϕ : K 99K G due to Definition 19.

There is, however, another semantical condition that is kind of dual to the morphism
condition. We call this condition the implication condition and, as a “terminological sleight
of hand”, we introduce the concept of a “sketch implication”, simply indicating that a
sketch arrow is intended to be the subject of this dual semantical condition.

Mathematics 2022, 10, 1085 41 of 65

Definition 21 (Sketch implication). An IS- implication P
ϕ⇒ C is given by two Stm-sketches

P = (P, StP), C = (C, StC) and a context morphism ϕ : P→ C.
An IS-implication P

ϕ⇒ C is called strict if StC ⊇ Stm(ϕ)(StP).
Sk(IS)i denotes the category of all Stm-sketches and all IS-implications between them. Its

subcategory of all Stm-sketches and all strict IS-implications is denoted by Sk(IS)i
s.

If IS is clear from the context, we will also use the shorthand notations Ski and Ski
s

instead of Sk(IS)i and Sk(IS)i
s, respectively. If P = C and ϕ = idP, we will also simply

write P⇒ C instead of P idP=⇒ C.
What we call the implication condition is nothing but the usual condition that an

implication is valid if each “solution” of the premise gives rise to a “solution” of the
conclusion.

Definition 22 (Validity of Sketch Implications). Let us be given an IS-implication P
ϕ⇒ C

between two Stm-sketches P = (P, StP) and C = (C, StC).
An interpretation (ι,U) of context P in a Ξ-structure U satisfies P

ϕ⇒ C, (ι,U) |= P
ϕ⇒ C

in symbols, if, and only if, (ι,U) |=P StP implies that there exists an interpretation ($,U) of context
C in U with ϕ; $ = ι such that ($,U) |=C StC.

P
ϕ⇒ C is valid in a Ξ- structure U , U |= P

ϕ⇒ C in symbols, if, and only if, we have
(ι,U) |= P

ϕ⇒ C for all interpretations (ι,U) of P in U .

P
ϕ //

(ι,U)|=PStP
��

=

C

∃($,U)|=CStC
��

U
P

ϕ⇒ C is valid (in IS), |= P
ϕ⇒ C in symbols, if, and only if, U |= P

ϕ⇒ C for all
Ξ-structures U in Sem(Ξ).

Remark 23 (Subcategories of valid Sketch Implications). For any Ξ-structure U and any Stm-

sketch P we have U |= P idP⇒ P. Moreover, U |= A
ϕ⇒ B and U |= B

ψ⇒ C implies U |= A
ϕ;ψ
=⇒ C.

In such a way, the collection of all IS-implications, valid in a Ξ-structure U , defines a corresponding
subcategory of Ski with the same objects as Ski.

Intersecting all those subcategories for all Ξ-structures U in Sem(Ξ), we obtain the subcategory
Ski(Sem(Ξ)) of Ski given by all IS-implications valid in IS .

Remark 24 (Sketch Implications vs. Sketch Arrows). An IS-implication P
ϕ⇒ C is simply

another notation for a Stm-sketch arrow ϕ : P→ C. The only difference is that we allow P
ϕ⇒ C to

be the subject of semantical implication conditions, like U |= P
ϕ⇒ C, while the corresponding

Stm-sketch arrow ϕ : P → C is considered as a pure structural entity without any semantical
significance.

In contrast to IS-morphisms (compare Remark 22), a strict Stm-sketch arrow ϕ : P→ C does
not give, trivially, rise to an IS-implication P

ϕ⇒ C satisfying semantical implication conditions.
For any Stm-sketch arrow ϕ : P→ C, we can construct a respective strict Stm-sketch arrow

ϕ : P → Cϕ with Cϕ := (C, StC ∪ Stm(ϕ)(StP)). The satisfaction condition ensures that the
corresponding IS-implications P

ϕ⇒ C and P
ϕ⇒ Cϕ are semantically equivalent: U |= P

ϕ⇒ C if,
and only if, U |= P

ϕ⇒ Cϕ for all Ξ-structures U .

Remark 25 (Sketch Implications vs. Sketch Morphisms). The concepts sketch morphism and
sketch implication are skewed but kind of dual. Sketch morphisms talk about “reducts of models”
while sketch implications state the existence of “model extensions”.

Mathematics 2022, 10, 1085 42 of 65

In case P = C and ϕ = idP, a Stm-sketch arrow ϕ : P → C provides an IS-morphism
idP : P 99K C if, and only if, StC P StP while the validity in IS of the corresponding
IS-implication P⇒ C means semantic entailment exactly in the opposite direction StP P StC!

Remark 26 (Deduction Rules). Attention, the exposition in the following remarks and examples,
relies implicitly on the observation that sketch arrows can be utilized as deduction rules. A
deduction rule, given by a Stm-sketch arrow ϕ : P → C, is sound for a certain Institution of
Statements IS = (Cxt, Stm, Int, |=) if, and only if, the respective IS-implication P

ϕ⇒ C is valid
in IS!

The utilization of sketch arrows as deduction rules is triggered by Definition 23 as well
as Proposition 3 and Corollary 2 at the end of this subsection and will be discussed shortly in
Remark 32.

Remark 27 (Valid Sketch Implications and Axioms). There are IS-implications (or, more pre-
cisely, IS-implication schemata) that are universal in the sense that they are valid in any Institu-
tion of Statements IS = (Cxt, Stm, Int, |=), since they reflect the structure and semantics of feature
expressions. In particular, the introduction and elimination rules for logical connectives can be de-
scribed by those universal sketch implications. In case of conjunction ∧, for example, we do have the
two Stm-sketches L = (X, {(X, Ex1 ∧ Ex2, idX)}) and R = (X, {(X, Ex1, idX), (X, Ex2, idX)}).
In addition, the “elimination rule” L ⇒ R as the “introduction rule” R ⇒ L are universal
sketch implications.

For existential quantification, we do also have a kind of modus ponens at hand described
by the following universal sketch implication:

(X, {(X, Ex1, idX), (X, Ex1 → ∃(ϕ, Y : Ex), idX)})
ϕ

=⇒ (Y, {(Y, Ex2, idY)}). (15)

The validity of other IS-implications may only depend on the chosen base category Base of
an Institution of Statements. As long as Base is a presheaf topos, we do have, for example, IS-
implications at hand expressing reflexivity, symmetry and transitivity of equality, i.e., reflecting
the properties of identifications of entities by means of maps (compare the definition of the ΞCT-
expression [=] in Example 29).

Besides universal IS-implications, we do also have IS-implications that are valid in all
Ξ-structures U , and we have chosen to be in Sem(Ξ). In case Sem(Ξ)Obj (Str(Ξ)Obj, we may
be able to axiomatize Sem(Ξ) in the sense that there is a set SEM of IS-implications such that
Sem(Ξ) = Str(Ξ, SEM) where Str(Ξ, SEM) is the full subcategory of Str(Ξ) given by all those
Ξ-structures U such that U |= P

ϕ⇒ C for all IS-implications P
ϕ⇒ C in SEM.

In the same way, we can utilize any set IMP of IS-implications as a set of axioms describing
the full subcategory Sem(Ξ, IMP) of Sem(Ξ) given by all those Ξ-structures U in Sem(Ξ) such
that U |= P

ϕ⇒ C for all IS-implications P
ϕ⇒ C in IMP.

At the end of Section 5.2.1, we described a mechanism to define subcategories of Sem(Ξ) by
means of axioms in the traditional Hilbert-style, i.e., by Stm-sketches (0, St) with St only containing
closed formulas, i.e., statements of the form (0, Ex, id0). This mechanism can be integrated in the
sketch implication based axiomatization mechanism, in a trivial way, by simply adding to IMP a
corresponding introduction rule (0, ∅) ⇒ (0, St). For certain classes of closed formulas, there
exist more elaborated transformations of Hilbert-style axioms into sketch implication based axioms,
as discussed in Section 5.2.4.

Example 45 (FOL: Sketch implications). Horn clauses are defined and utilized in PROLOG,
in a way that it seems to be appropriate to consider them as sketch implications rather than
universally quantified implications. That is, we consider a Horn clause not as a closed formula
(0, ∀(X : Ex → Ex′), id0) with Ex a finite conjunction of atomic expressions
X . Fi(βi), βi : αFi → X with 1 ≤ i ≤ n and an atomic expression X . Ex′ = F(β),
β : αF → X, but rather as the corresponding IS-implication P ⇒ C with P = (X, StP),
StP = {(αFi, Fi(idαFi), βi) | 1 ≤ i ≤ n} and C = (X, StC), StC = {(αFi, F(idαF), β)}.

Mathematics 2022, 10, 1085 43 of 65

Example 46 (ALC: Sketch implications). A so-called TBox in ALC is a finite set of termino-
logical axioms, i.e., of general concept inclusions C v D. For the way the semantics of general
concept inclusions is defined in ALC, they correspond, analogous to Horn clauses, rather to sketch
implications (than to closed formulas):

({p1}, {({p1}, C(p1), id{p1})}) =⇒ ({p1}, {({p1}, D(p1), id{p1})})

Example 47 (Category Theory: Sketch implications). There are, at least, three ways to axioma-
tize that all vertices do have an identity. First, we can require, due to Remark 18:

U |= (0, ∀(X : ∃(in, αCT(id) : id(idαCT(id)
))), id0)

where graph X consists only of a vertex xv and in : X → αCT(id) is the inclusion of X into
αCT(id) (see Examples 14 and 29). As proposed in Remark 27, we can equivalently add the
introduction rule:

(0, ∅) =⇒ (0, {(0, ∀(X : ∃(in, αCT(id) : id(idαCT(id)
))), id0)})

to our axioms. According to a general pattern, discussed in the next Section 5.2.4, we can use,
instead, the equivalent rule:

(X, ∅) =⇒ (X, {(X, ∃(in, αCT(id) : id(idαCT(id)
)), idX)}).

In turn, this second rule can be composed with a simple variant of the modus ponens rule (15), and
we obtain a third equivalent rule:

(X, ∅)
in
=⇒ (αCT(id), {(αCT(id), id(idαCT(id)

)), idαCT(id)
)})

Example 48 (RM: Sketch implication). In DPF, we worked, until now, only with atomic state-
ments and atomic sketch implications called universal constraint. In [18,21], the reader can find
many examples of those sketch implications expressing properties like: any table should have exactly
one primary key, a foreign key has to refer to a primary key, and many, many others. In Remark 28,
we will relate the present DPF-terminology to the concepts introduced in this paper.

In the remaining part of the subsection, we demonstrate how to encode the validity of
sketch implications by a semantics-independent, pure structural closedness property of the
sketch encodings SU = (U, StU) of Ξ-structures U as defined in (13).

For any context P any statement (X, Ex, β) in P and any interpretation (ι,U) of P in
a Ξ-structure U , we have Stm(ι)(X, Ex, β) = (X, Ex, β; ι), due to (2), thus the satisfaction
condition and the equivalences in (14) provide the following equivalence of statements:

(ι,U) |=P (X, Ex, β) iff (idU ,U) |=U (X, Ex, β; ι) iff Stm(ι)(X, Ex, β) ∈ StU (16)

P

ι

��

ι

��
U X . Ex

β
cc

β;ι{{
U

idU

__

To be prepared for Section 6, we define the closedness property on the same level of
abstraction as Definition 16 (Sketch) and Definition 20 (Sketch Arrow).

Definition 23 (Closedness). Let us be given a category Ct and a functor St : Ct → Set. A
St-sketch K = (K, StK) is closed w.r.t. a St- sketch arrow ϕ : P → C relative to a strict

Mathematics 2022, 10, 1085 44 of 65

St- sketch arrow ι : P→ K if, and only if, there exists a strict St-sketch arrow $: C→ K such
that ι = ϕ; $.

P
ϕ //

ι : St(ι)(StP)⊆StK

��

=

C

∃$: St($)(StC)⊆StK

��
K

A St-sketch K is closed w.r.t. a St- sketch arrow ϕ : P → C if, and only if, it is closed
w.r.t. ϕ : P→ C relative to each strict St-sketch arrow ι : P→ K.

We consider the case Ct = Cxt, St = Stm with IS = (Cxt, Stm, Int, |=) an Institution
of Statements. From Definition 22, Definition 23 and Equation (16), we obtain immediately:

Proposition 3 (Validity ∼= Closedness). For any Stm-sketch arrow ϕ : P → C, the following
two statements are equivalent for any Ξ-structure U :

1. The corresponding IS-implication P
ϕ⇒ C is valid in U , i.e., U |= P

ϕ⇒ C.
2. The Stm-sketch SU = (U, StU), defined by (13), is closed w.r.t. ϕ : P→ C.

P
ϕ //

(ι,U)|=PStP
��

=

C

∃($,U)|=CStC
��

U

P
ϕ //

ι : Stm(ι)(StP)⊆StU
��

=

C

∃$: Stm($)(StC)⊆StU
��

U

In case of arrows between atomic sketches, we can obviously replace SU by SUΦ.

Corollary 2 (Validity ∼= Closedness). For any Stm-sketch arrow ϕ : P → C with P and C
atomic, the following two statements are equivalent for any Ξ-structure U :

1. The corresponding IS-implication P
ϕ⇒ C is valid in U , i.e., U |= P

ϕ⇒ C.
2. The atomic Stm-sketch SUΦ = (U, StU), defined by Equation (13), is closed w.r.t. ϕ : P→ C.

Remark 28 (DPF – Answer to Question 3). In DPF, we worked, until now, only with atomic
statements and we have not considered sketch arrows [18,21]. Having now the concept sketch
arrow explicitly at hand, we can gain a better understanding of the present situation in DPF and
are able to answer Question 3 (p. 7).

The “specification morphisms” in DPF are strict sketch morphisms in the sense of
Definition 19. “Specification entailments” in DPF are sketch implications in the sense of Def-

inition 21 but only of the special kind P idP=⇒ C, i.e., we have, especially, P = C. The valid-
ity of specification entailments is defined analogously to the validity of sketch implications in
Definition 22.

“Universal constraints” in DPF correspond to strict sketch arrows in the sense of
Definition 20, and we defined the semantics of universal constraints in accordance with
Definition 23. The crucial flaw is that we used, unfortunately and inadequately, the concept
specification morphism to define universal constraints and the closedness property. Effectively,
we utilized only the pure structural “strict sketch arrow feature” of DPF specification morphisms for
this purpose. However, because of the semantic denotation of the concept specification morphism,
this was wrong and caused confusion.

We touched upon the construction of strict sketch arrows ϕ : P → Cϕ, as discussed in
Remark 24, but only in the skewed understanding that “each specification entailment gives rise to
a universal constraint”. Besides this, we have been aware and utilized the observation that “each
universal constraint gives rise to a transformation rule” (compare Remarks 26 and 32).

5.2.4. Sketch Implications, Closed Formulas and Makkai’s Generalized Sketches

A closer look at the definition of validity of sketch implications in Definition 22 and at
the definition of the semantics of feature expressions in Definition 10 makes, straightfor-

Mathematics 2022, 10, 1085 45 of 65

wardly, it apparent that the definition of the satisfaction relation in Definition 14 establishes
an equivalence between finite sketch implications and universally quantified conditional
existence statements (see also Remark 18).

Proposition 4 (Sketch Implications ∼= Closed Formulas). For any Ξ-structure U and any
closed expression 0 . ∀(X : Ex → ∃(ϕ, Y : Ex′)), the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(X, Ex, idX)})
ϕ

=⇒ (Y, {(Y, Ex′, idY)})

In the case that Ex and Ex′ are conjunctions, we can be even more specific.

Corollary 3 (Sketch Implications ∼= Closed Formulas). For any Ξ-structure U and any
closed expression 0 . ∀(X : Ex → ∃(ϕ, Y : Ex′)) with Ex = Ex1 ∧ . . . ∧ Exn 1 ≤ n and
Ex′ = Ex′1 ∧ . . . ∧ Ex′m 1 ≤ m, the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(X, Ex1, idX), . . . , (X, Exn, idX)})
ϕ

=⇒ (Y, {(Y, Ex′1, idY), . . . , (X, Ex′m, idX)})

Finally, we can specialize the equivalence to conjunctions of atomic statements.

Corollary 4 (Sketch Implications ∼= Closed Formulas: Atomic-case). For any Ξ-structure U
and any closed expression 0 . ∀(X : Ex → ∃(ϕ, Y : Ex′)) with Ex a finite conjunction of atomic
expressions X . Fi(βi), βi : αFi → X, 1 ≤ i ≤ n and Ex′ a finite conjunction of atomic expressions
Y . F′i (β′i), β′i : αF′i → Y, 1 ≤ i ≤ m, the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(αFi, Fi(idαFi), βi) | 1 ≤ i ≤ n}) ϕ
=⇒ (Y, {(αF′i , F′i (idαF′i

), β′i) | 1 ≤ i ≤ m})

Now we are sufficiently prepared to give a reasonable answer to Question 4 (p. 39).

Remark 29 (Answer to Question 4). We discussed in Section 5.2.2 that the assignments U 7→ SUΦ
establish an isomorphism between Str(Ξ) and the subcategory atSk(Stm)a

s of Sk(Stm)a given by all
atomic Stm-sketches and all strict Stm-sketch arrows between them.

A sufficient condition to complete the abstraction from structures to atomic sketches is the
existence of a set SEM of atomic (!) IS-implications such that Sem(Ξ) = Str(Ξ, SEM) (see
Remark 27). The “purely structural characterization of exactly all those atomic Stm-sketches SUΦ
in atSk(Stm)a

s with U in Sem(Ξ)”, we have been asking for in Section 5.2.2, is then provided by
Corollary 2 and is nothing but the closedness of an atomic Stm-sketch w.r.t. all the Stm-sketch arrows
underlying the atomic IS-implications in SEM.

If we are only interested in those subcategories Sem(Ξ, IMP) = Str(Ξ, SEM ∪ IMP) of
Sem(Ξ) which can be axiomatized by a set IMP of atomic (!) IS-implications, we can indeed
completely forget about structures and can be content with the “universe of atomic sketches”.

This is exactly Makkai’s approach in [15]. He does not consider Ξ-structures at all. He relies,
instead, on categories atSk(Stm)a

s of atomic Stm-sketches and strict Stm-sketch arrows between
them. He uses the term sketch entailment for those strict sketch arrows which are utilized
for specification purposes. Note that the restriction to strict sketch arrows means that he works
exclusively with sketch entailments of the form ϕ : P→ Cϕ (see Remark 24).

In the terminology of Institutions of Statements, Makkai’s approach can be characterized by the
choices Base = Var = Cxt and Stm(K) = At(K) for all objects K in Cxt. In particular, he focuses
on presheaf topoi, i.e., functor categories Base = [C→ Set], as base categories.

The structure of limit and colimit statements (see Remark 10) is strongly related to the
structure of those closed formulas that can be equivalently described by atomic sketch implications
(see Corollary 4). We guess that this is one of the underlying reasons that Makkai contents himself
with atomic sketches and sketch arrows between them?

Mathematics 2022, 10, 1085 46 of 65

We should mention, however, that Makkai uses an additional mechanism to be able to reside in
the “universe of atomic sketches”. This mechanism (also known in Category Theory as the collage
or the cograph of a distributor/profunctor) transforms atomic multi sketches for a presheaf topos
Base = [C→ Set] and a certain footprint Ξ = (Φ, α) on Base into plain contexts, i.e., into objects
in another presheaf topos Base’=Cxt’=[Φ~αC→ Set] with Φ~αC a category constructed out of C and
Ξ. We explain and exemplify this construction in Remark 41 in Section 6.

In cases where atomic sketch implications (and thus the corresponding universally quantified
conditional existence statements in Corollary 3) are not expressive enough to axiomatize the
structures U , we are interested in, and where we need more expressive first-order statements, to do
the job, we can utilize the general first-order sketch constraints, introduced in Section 6, for a pure
structural characterization of the respective atomic sketch encodings SUΦ (see Corollary 7).

5.2.5. A Semantic Deduction Theorem

We consider semantic entailment between sketch implications.

Definition 24 (Entailment of Sketch Implications). A set IMP of IS-implications entails

an IS- implication P
ϕ⇒ C semantically, IMP P

ϕ⇒ C in symbols, if, and only if, for all
Ξ-structures U in Sem(Ξ), it holds that U |= IMP, i.e., U |= K

ϕ⇒ G for all K
ϕ⇒ G in IMP,

implies U |= P
ϕ⇒ C.

Any Stm-sketch arrow ϕ : P→ C can be factorized, i.e., can be obtained by composing
the Stm-sketch arrows ϕ : P→ Cϕ and idC : Cϕ → C, where Cϕ := (C, Stm(ϕ)(StP)).

Due to Definition 22, for any interpretation (ι,U) of context P in a Ξ-structure U
the statement (ι,U) |= P

ϕ⇒ Cϕ means nothing but simply the existence of a morphism

$: C → U in Base such that ϕ; $ = ι. That is, we have, especially, IMP P
ϕ⇒ Cϕ if, and

only if, ∅ P
ϕ⇒ Cϕ if, and only if, |= P

ϕ⇒ Cϕ. Moreover, this allows for reformulating the
validity of sketch implications.

Lemma 1 (Factorization of Sketch Implications). For any set IMP of IS-implications and any
IS-implication P

ϕ⇒ C, the following two statements are equivalent:

1. IMP P
ϕ⇒ C

2. ∅ P
ϕ⇒ Cϕ and IMP Cϕ ⇒ C

Lemma 1 means, in practice, that we can restrict ourselves to IS- implications of the
form K⇒ G to specify (axiomatize) subcategories Sem(Ξ, IMP) of Sem(Ξ). By coincidence,
we even have a semantic deduction theorem available for those special kinds of sketch
implications.

Theorem 2 (Semantic Deduction Theorm). For any set IMP of IS-implications of the form
K⇒ G and any IS-implication P⇒ C, the following two statements are equivalent:

1. IMP P⇒ C
2. For all Ξ-structures U in Sem(Ξ) and all interpretations (ι,U) of context P = C in U :

U |= IMP and (ι,U) |=P StP implies (ι,U) |=P StC.

Theorem 2 guarantees that it is a reasonable idea to describe the deduction of sketch
implications, which are semantically entailed by a given set IMP of sketch implications, by
means of deduction calculi generating new sketches (P, StC) from a given sketch (P, StP)
based on a utilization of the sketch implications in IMP as deduction rules. To deduce all
(!) semantically entailed sketch implications, it may be necessary to also include deduction
rules related to a set SEM of sketch implications representing the choice of Base, Ξ and
Sem(Ξ), respectively (compare Remarks 27 and 29). This is exactly the approach in [6,7].

Mathematics 2022, 10, 1085 47 of 65

In [7], we also presented a deduction calculus which constructs directly sketch implica-
tions from a set of given sketch implications. Besides the composition of sketch implications,
as mentioned in Remark 23, we could choose parallel composition and instantiation as the
other basic constructions for such a deduction calculus:

• Parallel composition: IMP (P, St1)⇒ (P, St′1) and IMP (P, St2)⇒ (P, St′2) implies
IMP (P, St1 ∪ St2)⇒ (P, St′1 ∪ St′2)

• Instantiation: For any context morphism µ : P→ R: IMP (P, St)⇒ (P, St′) implies
IMP (R, Stm(µ)(St))⇒ (R, Stm(µ)(St′)) .

Of course, we could also use, instead, more specialized and sophisticated constructions
analogously to resolution in PROLOG or parallel resolution in [7], for example.

Remark 30 (Resolution in PROLOG). In Example 45, we argued that Horn clauses in PROLOG
should be rather considered as sketch implications than universally quantified implications.

Concerning resolution, there is also a discrepancy between the theoretical justification and the
actual effect of the resolution procedure in PROLOG. Resolution is explained as a special case of
the general principle of “proof by refutation” [40]. Actually, PROLOG computes, however, (in a
constructive way!) a Horn clause that is semantically entailed by the Horn clauses and the facts in
the given PROLOG program (compare the Semantic Deduction Theorem 2).

5.3. Sketches of Equations

For an Institutions of Equations IE = (CxtEQ, Eq, Int, |=) an Eq-sketch E = (X, E)
is given by a context X in CxtEQ, i.e., an S-set X, and a set E of Σ-equations in X. A
valid interpretation of E = (X, E) is an interpretation (ι,A) of context X in a Σ-algebra
A = (A, ΩA) such that (ι,A) |=X E, i.e., (ι,A) |=X (X, t1 = t2) for all Σ-equations
(X, t1 = t2) in E according to (9).

Based on these definitions, we can define IE -morphisms, Eq-sketch arrows and IE -
implications, respectively, exactly in the same way as we have done it for Institutions of
Statements IS = (Cxt, Stm, Int, |=) in Sections 5.1 and 5.2. Moreover, we have, obviously,
for Institutions of Equations also corresponding variants of Definition 22 (Validity of Sketch
Implications), Definition 24 (Entailment of Sketch Implications), Lemma 1 (Factorization of
Sketch Implications) and Theorem 2 (Semantic Deduction Theorem) available.

Abstract and Universal Algebra have been developed independent of First-Order
Logic and conditional Σ-equations are usually not introduced as “universally quantified
implications”. They are rather described as IE -implications (Y, Prem) ⇒ (Y, Conc), in
the sense of Definition 21 where Prem represents the set of equations in the premise of a
conditional Σ-equation and Conc the single equation in the conclusion. In particular, the
validity of conditional Σ-equations in Σ-algebras A is defined in perfect accordance with
Definition 22 (Validity of Sketch Implications) (compare [6,7,41]). Therefore, we will also
use the term conditional Σ-equation for IE -implications (Y, Prem) ⇒ (Y, Conc) with Y,
Prem finite and Conc a singleton.

Finally, we reached the point where we can give an answer to Question 2 (p. 3): Yes,
Theorem 2 is the general Semantic Deduction Theorem, we have been looking for and the
equivalence, mentioned in the question, corresponds to the specialization of the general
Semantic Deduction Theorem for conditional Σ-equations.

5.3.1. Freely Generated Algebras

The footprints in Institutions of Equations are algebraic signatures Σ = (Ω, in, out)
and we have Str(Σ) = Sem(Σ) := Alg(Σ). Conditional Σ-equations are the traditional
means to specify subcategories of Alg(Σ). Given a set CE of Conditional Σ-equations, we
denote by Alg(Σ, CE) the subcategory of Alg(Σ) given by all those Σ-algebras A such that
A |= CE, i.e., A |= P ⇒ C (as defined in Definition 22) for all conditional Σ-equations
P⇒ C in CE (compare Remark 27).

In case P = (Y, ∅), we may call P ⇒ C a conditional Σ-equation with an empty
premise. Note that there is a simply but crucial conceptual difference between a Σ-equation

Mathematics 2022, 10, 1085 48 of 65

(Y, t1 = t2) and the corresponding conditional Σ-equation (Y, ∅) ⇒ (Y, {(Y, t1 = t2)})
with an empty premise. (Y, t1 = t2) is just a simple statement in context Y while (Y, ∅)⇒
(Y, {(Y, t1 = t2)}) is a tool to make statements about Σ-algebras. Being not aware of this
difference is often a source of confusion!

First, We Consider Σ-Algebras Freely Generated in Alg(Σ)

A Σ-algebra F = (F, ΩF) is freely generated by an Eq-sketch G = (X, R) if, and only
if, there is a valid interpretation (ηG,F) of G in F that is universal relative to Alg(Σ). That
is, for all Σ-algebras A = (A, ΩA) and all valid interpretations (ι,A) of G in A there exists
a unique morphism ι◦ : F → A such that ηG; ι◦ = ι in BaseEQ, i.e., such that ι◦ establishes
an interpretation morphism ι◦ : (ηG,F)→ (ι,A) in Int(G) v Int(X) (see Section 4.1).

Int(G) X
(ηG,F)|=X R //

(ι,A)|=X R
%%

F

ι◦

��

F = (F, ΩF)

ι◦
��

Alg(Σ)

A A = (A, ΩA)

The universal property of (ηG,F) entails that (ηG,F) is initial in Int(G), thus the
projection functor ΠG : Int(G)→ Alg(Σ) establishes a functor from Int(G) into the co-slice
category F/Alg(Σ).

In contrast to Institutions of Statements, we have for arbitrary (!)
Eq-sketches G = (X, R) (and not only for atomic Eq-sketches) that the definition of ho-
momorphisms between Σ-algebras ensures (ηG; $,A) |=X R for any homomorphism
$: F → A in Alg(Σ) thus the assignments ($: F → A) 7→ (ηG; $,A) establish a func-
tor from F/Alg(Σ) into Int(G). Due to the universal property of (ηG,F), we obtain
(ηG; $)◦ = $. Together with the equation ηG; ι◦ = ι, this ensures that the two functors
establish an isomorphism between Int(G) and F/Alg(Σ) (compare Proposition 4.10 in [2]).
This justifies that we can call the pair (G, ηG) = ((X, R), ηG) a sketch representation of F .

For arbitrary Eq-sketches G = (X, R), a Σ-algebra F , freely generated by G, exists and
is uniquely determined “up to isomorphism”. In the introductory Subsection 1.1.1, we
used the notation F (Σ, ∅, X, R) to denote those freely generated Σ-algebras.

The Σ-algebra, freely generated by (X, ∅) is nothing but the Σ-term algebra TΣ(X) =
F (Σ, ∅, X, ∅) on X and the unique morphism ι◦ : TΣ(X) → A is simply the evaluation
of terms (see Equation (8)). In general, F (Σ, ∅, X, R) can be constructed as a quotient of
TΣ(X).

Second, We Consider Σ-Algebras Freely Generated Relative to a Subcategory Alg(Σ, CE)

Let CE be a set of conditional Σ-equations. A Σ-algebra F = (F, ΩF) is freely gen-
erated in Alg(Σ, CE) by an Eq-sketch G = (X, R) if, and only if, F |= CE, and there is a
valid interpretation (ηG,F) of G in F that is universal relative to Alg(Σ, CE). That is, for
all Σ-algebras A = (A, ΩA) in Alg(Σ, CE) and all valid interpretations (ι,A) of G in A
there exists a unique morphism ι◦ : F → A such that ηG; ι◦ = ι in BaseEQ, i.e., such that ι◦

establishes an interpretation morphism ι◦ : (ηG,F)→ (ι,A) in Int(G) v Int(X).

Int(G) ↓ Alg(Σ, CE) X
(ηG,F)|=X R //

(ι,A)|=X R
%%

F

ι◦

��

F = (F, ΩF)

ι◦
��

Alg(Σ, CE)

A A = (A, ΩA)

In this case, the universal property of (ηG,F) entails that (ηG,F) is initial in the
subcategory Int(G) ↓ Alg(Σ, CE) = Π−1

G (Alg(Σ, CE)) of Int(G) given by all valid inter-
pretations of G in Σ-algebras in Alg(Σ, CE). Moreover, we obtain an isomorphism between
Int(G) ↓ Alg(Σ, CE) and the co-slice category F/Alg(Σ, CE).

For arbitrary sets CE of conditional Σ-equations and arbitrary Eq-sketches G = (X, R),
a Σ-algebra F , freely generated by G in Alg(Σ, CE), exists and is uniquely determined “up

Mathematics 2022, 10, 1085 49 of 65

to isomorphism”. In the introductory Section 1.1.1, we used the notation F (Σ, CE, X, R) to
denote those freely generated Σ-algebras. F (Σ, CE, X, R) can be constructed as a quotient
of TΣ(X).

In case of groups, CE is a set of conditional Σ-equations with an empty premise,
representing the group axioms, and F (Σ, CE, X, R) is called the group freely generated by
the set of generators X and the set R of defining relations.

5.3.2. Elementary Diagrams for Algebras

For Institutions of Equations, we have chosen CxtEQ = CarrEQ = BaseEQ = SetS. An
atomic Σ-equation in a context K is a Σ-equation of the form:

(K, ω〈k1, . . . , kn〉 = k) with ω ∈ Ω, ki ∈ Ksi , 1 ≤ i ≤ n and k ∈ Kout(ω) (17)

where [x1: s1, x2: s2, . . . , xn: sn] is the assumed representation of in(ω) as a list of vari-
able declarations (see Section 4.2). Note that the usual encoding of n-ary operations by
(n + 1)-ary predicates establishes a one-to-one correlation between the corresponding atomic
equations and atomic statements, respectively.

By At(K), we denote the subset of Eq(K) of all atomic Σ-equation in a context K. The
assignments K 7→ At(K) extend to a functor At : CxtEQ → Set.

In full analogy to Institutions of Statements, there are two canonical ways to transform
a Σ-algebra A = (A, ΩA) into an Eq-sketch. The atomic variant EAΩ = (A, EqAΩ) encodes
only the semantics of the operations in ΩA:

EqAΩ := {(A, ω〈a1, . . . , an〉 = ωA(a1, . . . , an)) | ω ∈ Ω, ai ∈ Asi , 1 ≤ i ≤ n} (18)

The full variant EA = (A, EqA) encodes the semantics of all terms (derived operations):

EqA := {(A, t1 = t2) | t1, t2 ∈ TΣ(A)s, s ∈ S, tA1 (idA) = tA2 (idA)} ⊆ Eq(A). (19)

We have obviously EqAΩ ⊂ EqA and (idA,A) is a valid interpretation of EAΩ as well
as of EA. Any Σ-algebra A = (A, ΩA) is freely generated by the Eq-sketch EAΩ =
(A, EqAΩ) as well as by the Eq-sketch EA = (A, EqA) with the universal interpretation
(idA,A). That is, (EAΩ, idA) as (EA, idA) are sketch representations of A in the sense of the
last subsection.

Conditional Σ-equations are not atomic; thus, we have to rely on the full encodings
of Σ-algebras to have a chance to express the validity of conditional Σ-equations by a
closedness property analogously to Proposition 3.

Fortunately, the assignments A 7→ EA define an embedding of Alg(Σ) into the cate-
gory Sk(Eq)a of all Eq-sketches and all Eq-sketch arrows transforming each homomorphism
between Σ-algebras into a strict Eq-sketch arrow.

5.3.3. Generalized Sketch Arrows and Sketch Implications

To be able to formulate a characterization of the validity of conditional Σ-equations by
means of a closedness property, in the sense of Proposition 3, we have to consider more
general sketch arrows based on the substitution of variables by terms. First, we extend the
category CxtEQ by Kleisli morphisms.

Definition 25 (Generalized Context Morphisms). We consider an Institution of Equations
IE = (CxtEQ, Eq, Int, |=) and a signature Σ = (Ω, in, out) . A Σ- context morphism
ϕ : K → G is given by an S-map ϕ : K → TΣ(G). The composition ϕ; ψ : K → H of two
Σ-context morphisms ϕ : K → G, ψ : G → H is given by the S-map ϕ; ψ∗ : K → TΣ(H)
where ψ∗ : TΣ(G) → TΣ(H) is the usual translation of Σ-terms induced by the substitution
ψ : G → TΣ(H). CxtΣ

EQ denotes the category of all contexts and all Σ-context morphisms.

Mathematics 2022, 10, 1085 50 of 65

By construction, CxtEQ is a subcategory of CxtΣ
EQ for any signature Σ. Second, the

sentence functor Eq : CxtEQ → Set extends to a functor EqΣ : CxtΣ
EQ → Set with:

EqΣ(ϕ)(K, t1 = t2) := (G, ϕ∗(t1) = ϕ∗(t2)) (20)

for all Σ-context morphisms ϕ : K → G, i.e., for all S-maps ϕ : K → TΣ(G), and all
Σ-equations (K, t1 = t2) in K. Since id∗K = idTΣ(K) and (ϕ; ψ∗)∗ = ϕ∗; ψ∗ for all S-maps
ϕ : K → TΣ(G), ψ : G → TΣ(H), this defines indeed a functor.

Remark 31 (Generalized Sketch Implications). We will use, implicitly, strict EqΣ-sketch arrows
to formulate a characterization of the validity of conditional Σ-equations by means of a closedness
property in the sense of Proposition 3.

Besides this, it is very tempting to consider also “generalized sketch implications”, defined by
EqΣ-sketch arrows, and to study validity, entailment and factorization for those generalized sketch
implications. In particular, it would be interesting to clarify the relation between those generalized
sketch implications and the morphisms in the Lawvere theories for partial algebraic specifications we
studied in [9].

For now, we overcome this temptation and postpone the study of generalized sketch impli-
cations to a following paper. We will concentrate on conditional Σ-equations and corresponding
constructions and results.

Before this, we would like to add a short side note: Σ-terms appear on an “internal level”
as constituents of Σ-equations and on an “external level” as constituents of generalized context
morphisms. Our ongoing studies around graph algebras indicate that we will probably need closely
related, but different, concepts for these distinct levels if we want to generalize the idea of operations
to graphs (and other kinds of presheaves).

To avoid headaches, we formulate explicitly the respective instance of Definition 23
for conditional Σ-equations (compare [7]).

Definition 26 (Closedness for Conditional Equations). An Eq-sketch E = (X, E) is closed
w.r.t. the underlying Eq-sketch arrow (Y, Prem)→ (Y, Conc) of a conditional Σ-equation (Y, Prem)⇒
(Y, Conc) if, and only if, for all Σ-context morphisms ι : Y → X, i.e., all substitutions
ι : Y → TΣ(X), it holds that ι∗(Prem) ⊆ E implies ι∗(Conc) ⊆ E.

In addition, here is the respective specialized instance of Proposition 3.

Corollary 5 (Validity ∼= Closedness for Conditional Equations). For any Eq-sketch arrow
(Y, Prem)→ (Y, Conc), the following two statements are equivalent for any Σ-algebra A:

1. The corresponding conditional Σ-equation (Y, Prem)⇒ (Y, Conc) is valid in A, i.e., A |=
(Y, Prem)⇒ (Y, Conc).

2. The Eq-sketch EA = (A, EqA), defined by Equation (19), is closed w.r.t. the Eq-sketch arrow
(Y, Prem)→ (Y, Conc) according to Definition 26.

Remark 32 (Sketch Arrows as Deduction Rules). The most natural thing to do, if a structure is
not closed w.r.t. a certain construction, is to repair this flaw by simply adding the missing parts.
Applying this universal “repairing principle” to the closedness property in Definition 26, means
nothing but to add new Σ-equations to a given set of Σ-equations by deploying Eq-sketch arrows as
deduction rules.

To apply an Eq-sketch arrow (Y, Prem) → (Y, Conc) as a deduction rule, we have, first,
to find a match of the left-hand side (Y, Prem) of the rule in an Eq-sketch E = (X, E), i.e., a
substitution ι : Y → TΣ(X) such that ι∗(Prem) ⊆ E. Second, we apply the rule for this match and
generate the Eq-sketch (X, E ∪ ι∗(Conc)). The resulting commutative square becomes a pushout in
the category of all strict EqΣ-sketch arrows if E ∩ ι∗(Conc \ Prem) = ∅.

Mathematics 2022, 10, 1085 51 of 65

(Y, Prem)
idY //

ι

��
=

(Y, Conc)

τ∗

��
(X, E)

idX // (X, E ∪ ι∗(Conc))

Remark 33 (Answer to Question 1). Based on the concepts sketch, sketch implication, sketch
arrow and the related general definitions and results, we presented so far, we can give a kind of
reasonable answer to Question 1 (p.3):

Each sketch implication has an underlying sketch arrow and, the other way around, each sketch
arrow gives rise to a sketch implication. Due to Proposition 3 (Validity∼= Closedness), the validity of
sketch implications in semantic structures can be, moreover, equivalently expressed by a closedness
property of sketch encodings of semantic structures w.r.t. sketch arrows.

Each sketch arrow of the form P → C can be utilized as a rule allowing us to deduce new
sketches from given sketches (as exemplified in Remark 32). Proposition 3 and Theorem 2 (Semantic
Deduction Theorem) ensure that those deductions are sound and that they allow us, moreover, to
deduce sketch implications semantically entailed by a given set of sketch implications.

6. Sketch Conditions and Constraints

In the preceding sections, we identified two main motivations to develop concepts and
tools, deploying the expressiveness of first-order logic, to describe and reason about the
structure of sketches. First, there is the need for those tools to specify the syntactic structure
of software models. The second, more general, motivation concerns the structure of sketch
encodings of semantic structures. If we use first-order tools to axiomatize the semantic
structures we are interested in, it would be good to have corresponding first-order tools to
axiomatize and reason about the sketch encodings of those semantic structures.

Software models are usually graph-based structures, thus we should not ignore the
concepts and tools, developed in the area of Graph Transformations, to describe and axiom-
atize the structure of graphs. Therefore, we discuss in this section also four representative
first-order based approaches to describe and axiomatize the structure of (different kinds of)
graphs [22–25] . We will present a universal and fully first-order mechanism to describe
the structure of sketches which unifies and generalizes all these approaches.

6.1. Abstract Sketches

In this section, we consider sketches independent of Institutions of Statements or
Institutions of Equations, respectively. That is, we rely on Definition 16 (Sketch) and
assume a category Ct of contexts and a functor St : Ct→ Set assigning to each K ∈ CtObj a
set St(K) of all statements in context K. An St-sketch K = (K, StK) is given by a context K
in Ct and a set StK ⊆ St(K) of statements in context K. For any statement st ∈ St(K), we
will denote the image St(ϕ)(st) ∈ St(G) also simply by ϕ(st).

Guided by Definition 23 (Closedness) and Proposition 3 (Validity ∼= Closedness), we
focus on the category Ska

s of all strict St-sketch arrows according to Definition 20 (Sketch
Arrow). Generalizing the constructions and results in [19], one can prove that Ska

s has
pushouts and pullbacks as long as Ct does.

Proposition 5 (Pushouts). Let B C
µoo $ // A be a span of strict St-sketch morphisms. If

there exists a pushout B
$∗ // D A

µ∗oo of the span B C
µoo $ // A of morphisms in Ct,

then the diagram, below on the left, is a pushout in Ska
s , where:

D := (D, µ∗(StA) ∪ $∗(StB)) (21)
C

$ //

µ

��
PO

A
µ∗

��
B

$∗ // D

D
µ∗ //

$∗
��

PB

A
$

��
B

µ // C

Mathematics 2022, 10, 1085 52 of 65

Proposition 6 (Pullbacks). Let B
µ // C A

$oo be a cospan of strict St-sketch morphisms.

If there exists a pullback B D
$∗oo µ∗ // A of the cospan B

µ // C A
$oo of morphisms

in Ct, then the diagram, above on the right, is a pullback in Ska
s where:

D := (D, {st ∈ St(D) | µ∗(st) ∈ StA, $∗(st) ∈ StB}) (22)

Remark 34 (Adhesiveness). The concept of Adhesive Category has been introduced by Lack
and Sobociński [42] and is based on the so-called Van-Kampen squares (see [14,20,43]). Adhesive
categories are intensively used to present, systematize and generalize concepts, constructions and
results in the area of Graph transformations [14]; thus, it seems to be worth including this remark.

The category Ska
s will be, in general, not adhesive, even if Ct is adhesive, since StD in

Proposition 5 is not constructed by a pushout in Set and in Proposition 6 not by a pullback
in Set either.

To repair this deficiency, we can work with “multi sketches” where statements do have their own
identity. A multi St- sketch K = (K, IK, stK) is given by a context K, a set IK of identifiers and a
map stK : IK → St(K). A strict arrow (ϕ, f) : K→ G between two multi St-sketches K and G
is given by a morphism ϕ : K → G in Ct and a map f : IK → IG such that ϕ(stK(i)) = stG(f (i))
for all i ∈ IK. Pushouts in the category mSka

s of multi St-sketches and strict arrows can always be
constructed by componentwise pushouts of contexts in Ct and of sets of identifiers in Set, respectively.
To ensure that componentwise pullbacks in Ct and Set, respectively, give us a pullback in mSka

s , we
have to assume, however, that the functor St : Ct→ Set preserves pullbacks.

This is the case for the sentence functor Stm : Cxt→ Set in any Institution of Statements as
well as the sentence functor Eq : CxtEQ → Set in any Institution of Equations.

If St preserves pullbacks, the monomorphisms in mSka
s are exactly the componentwise monomor-

phisms and mSka
s becomes adhesive if Ct is adhesive. Note that any topos is adhesive [44], thus

especially the categories CxtEQ = SetS in Institutions of Equations are adhesive.

Example 49 (Category Theory: Sketches (modified)). For didactic reasons, we need for this
section an example of an atomic sketch. We modify therefore the Category Theory example: We

add to ΞCT in Example 14 the feature symbols mon with arity xv1
xe // xv2 and fnl with arity

xv. Correspondingly, we vary the sample StmCT-sketch G = (G, StG) in Example 39 by dropping
the statement (xv, f nl, (xv 7→ 3)) and replacing the statements (xv1

xe→ xv2, mon, (xe 7→ b)),
(xv1

xe→ xv2, mon, (xe 7→ g)) by corresponding atomic statements mon(b) and mon(g), respec-
tively.

2

b
��

mon

2×cmp

4
d

��
cmp

1

a
@@

e
**

f
44 3

c
@@

g mon // 5

Example 50 (GraTra: Sketches). Traditionally, there is no explicit use of “statements” in the area
of Graph Transformations; thus sketches, in our sense, are just plain contexts where different kinds
of graphs are chosen as contexts in the different approaches.

In [23], Cxt is a category of directed, labeled multi graphs and Ref. [24] restricts Cxt to a
category of finite directed, labeled multi graphs. In contrast, Ref. [22] works with directed, labeled
simple graphs in the sense that parallel edges with the same label are not allowed. Ref. [25] uses as
Cxt a category GraphTG of directed, labeled multi graphs typed over a graph TG.

To a certain extent, we can, however, interpret the transition from graphs to labeled/typed
graphs as the utilization of rudimentary forms of “statements”, in our sense, where the choice
of label alphabets or type graphs TG, respectively, corresponds to the choice of footprints. The
encoding of binary relations by means of labeled edges in [22] makes this analogy apparent. In
view of Institutions of Statements, we can reconstruct the concept of graph in [22] in the following
way: Cxt is the subcategory of Set given by all subsets of a “countable universe of nodes Node”

Mathematics 2022, 10, 1085 53 of 65

and Var @ Cxt has a two-element set {x1, x2} ⊂ Node as its only object. The footprint ΞR is
given by a “countable universe Rel” of predicate symbols with α(P) = {x1, x2} for all P ∈ Rel.
An atomic ΞR-statement P(β) in context K ⊆ Node is, in such a way, given by a P ∈ Rel and
a binding β : {x1, x2} → K (see Remark 14 (Atomic Statements)). Relying on the isomorphism
between the Cartesian product K × K and the set K{x1,x2} of maps, it is easy to check that the
category Graph in [22] is isomorphic to the non-adhesive (!) category of all ΞR-sketches and all strict
sketch arrows.

6.2. First-Order Sketch Conditions and Constraints

Generalizing different variants of graph conditions [14,22–25] as well as universal
conditions and negative universal conditions in DPF [18,21], we define general first-order
sketch conditions, which are redundant in the sense that we introduce, for example, as
well existential as universal quantification and as well a symbol T for “true” as the the
empty conjunction

∧
∅. We define fully fledged first-order conditions and do not restrict

ourselves to the traditional approach in Graph Transformations to define tree-like first-order
conditions only (even if we see the practical relevance of those tree-like conditions). We
define first-order sketch conditions in full analogy to the Definition 8 of first-order feature
expressions. We underline, however, that feature expressions are “finitary syntactic entities”
while sketch conditions have rather the flavor of sets of structural requirements!

Definition 27 (Sketch conditions: Syntax). For a category Ct and a functor St : Ct→ Set, we
define inductively and in parallel a family ST(K) of sets of first-order St- sketch conditions in
context K, c ∈ ST(K) or K I c in symbols, where K varies over all objects in Ct:

1. Statements: St(K) ⊂ ST(K) for any context K.
2. True: K I T for any context K.
3. False: K I F for any context K.
4. Conjunction: K I

∧
C for any set C ⊂ ST(K) of conditions in K.

5. Disjunction: K I
∨

C for any set C ⊂ ST(K) of conditions in K.
6. Implication: K I (c1 → c2) for any conditions K I c1 and K I c2.
7. Negation: K I ¬c for any condition K I c.
8. Quantification: K I ∃(ϕ, M : c) and K I ∀(ϕ, M : c) for any condition M I c and any

morphism ϕ : K → M in Ct that is not an isomorphism.

Remark 35 (Sketch conditions: Syntax). Non-monic morphisms ϕ : K → M are also used
in [22–24] to express identifications.

For sketch conditions, we apply the same notational conventions as described in Remark 6 for
feature expressions.

If 0 is an initial object in Ct, we call 0 I c a closed St- sketch condition.

Remark 36 (GraTra: Conditions). If we drop in Definition 27 the “Implication” rule, we would
obtain tree-like conditions analogously to the conditions in [23–25], where the tree structure is
established by the context morphisms in the “Quantification” rule and the choice of the sets C in the

“Conjunction” and/or “Disjunction” rule, respectively.
To cover also the tree-like conditions in [22], we have, in addition, to replace the “Quantification”

rule by a rule like:

Guarded quantification: K I (c1 → Q(ϕ, M : c2)) for Q ∈ {∃, ∀}, any quantifier free
condition K I c1, any condition M I c2 and any morphism ϕ : K → M in Ct.

Those tree-like conditions can be seen as a generalizing modification of the Q(uantifier)-trees
of the language of diagrams in [28].

In [23,25], only existential quantification ∃(ϕ, M : c) is used and ∀(ϕ, M : c) is encoded by
¬∃(ϕ, M : ¬c). In [24], the symbols “∃” and “∀” are used in a bit unconventional, but consistent,
way: In view of Definition 27, the symbol “∃” in [24] combines “disjunction and existential
quantification” while “∀” combines conjunction and universal quantification. The conditions
in [24] correspond to sketch conditions that can be generated by a single rule like:

Mathematics 2022, 10, 1085 54 of 65

∨
{∃(ϕi, Mi : ci) | i ∈ I},

∧
{∀(ϕi, Mi : ci) | i ∈ I} ∈ ST(K)

for any family {ϕi : K → Mi | i ∈ I} of context morphisms and any conditions ci ∈ ST(Mi),
i ∈ I. T is encoded in [24] by the empty conjunction

∧
∅ and F by the empty disjunction∨

∅, respectively.

Generalizing the traditional approaches [14,22–25] to define a satisfaction relation
between graph morphisms and graph conditions, we can define a satisfaction relation
between context morphisms and sketch conditions.

More precisely, we consider interpretations (τ : K → G,G) of contexts K in St-sketches
G = (G, StG) and define valid interpretations of St-sketch conditions in K.

Definition 28 (Sketch conditions: Satisfaction). We define inductively and in parallel a family
|=K of satisfaction relations between interpretations (τ,G) of contexts K in St-sketches
G = (G, StG) and St-sketch conditions c ∈ ST(K) on K:

1. Statement: For all st ∈ St(K) ⊂ ST(K): (τ,G) |=K st iff St(τ)(st) ∈ StG.
2. True: (τ,G) |=K T
3. False: (τ,G) 6|=K F
4. Conjunction: (τ,G) |=K

∧
C iff (τ,G) |=K c for every c ∈ C.

5. Disjunction: (τ,G) |=K
∨

C iff (τ,G) |=K c for some c ∈ C.
6. Implication: (τ,G) |=K (c1 → c2) iff (τ,G) |=K c1 implies (τ,G) |=K c2
7. Negation: (τ,G) |=K ¬c iff (τ,G) 6|=K c.
8. Existential quantification: (τ,G) |=K ∃(ϕ, M : c) iff there exists a $: Y → G with

ϕ; $ = τ and ($,G) |=M c

K
ϕ //

τ
��

=

M

($,G)|=Mc
~~

G
Universal quantification: (τ,G) |=K ∀(ϕ, M : c) iff for all $: Y → G with ϕ; $ = τ we
have ($,G) |=M c

The satisfaction of graph/sketch conditions by a graph/context morphism is a pow-
erful and practical useful tool to control the application of transformation rules. This
is extensively demonstrated and validated in the Graph Transformation literature as
in [14,22–25], for example. In DPF, we used until now only non-nested negative ap-
plication conditions to control the application of non-deleting model transformation
rules [18,21]. The paper paves the way for utilizing arbitrary first-order conditions to
control model transformations in DPF. In this paper, we will, however, not explore this
promising direction of applying first-order sketch conditions. We rather concentrate on two
other aspects of diagrammatic modeling techniques – namely “syntactic structure” of mod-
els and “deducing information from and reason about models” in a diagrammatic manner.

Developing and applying DPF, we realized that typing mechanisms are not powerful
enough to formalize all relevant restrictions concerning the syntactic structure of models.
To overcome this deficiency, we introduced “universal constraints” and “negative universal
constraints” [18,21] analogous to the non-nested graph constraints in [14].

Fortunately, sketch conditions and their satisfaction, as defined in Definition 28, now
give us also more powerful general first-order sketch constraints at hand to describe the
syntactic structure of models. The simple, but crucial, observation is that an assertion
(τ,G) |=K c can be interpreted as well as an assertion concerning the structure of G.

Definition 29 (Sketch constraints). An St- sketch K- constraint (c, τ) on context G is given
by a context K, a sketch condition K I c in context K and a context morphism τ : K → G.

Mathematics 2022, 10, 1085 55 of 65

An St-sketch G = (G, StG) satisfies the K-constraint (c, τ), G |=K (c, τ) in symbols, if,
and only if, (τ,G) |=K c.

Remark 37 (Attached Statements). Only at this point and a few days before the paper deadline,
we realized that it may be beneficial to apply the “reinterpretation principle” in Definition 29 also
to structures. That is, for any Ξ-structure U = (U, ΦU), context K, morphism ι : K → U and
statement (X, Ex, γ) in K we can define:

U |=K ((X, Ex, γ), ι) iff (ι,U) |=K (X, Ex, γ) (23)

and may call the pair ((X, Ex, γ), ι) a statement attached to U or a statement about U .
To realize this idea, would, however, require a major revision of the paper.

If the sketch condition c does not contain any statements, as it usually the case in the
area of Graph Transformations (compare Example 50), G |=K (c, τ) is just an assertion
about the structure of the context G. In all other cases, G |=K (c, τ) tells us also something
about the presence or non-presence of statements as well as the relations between the
statements in G.

Due to rule “Statement”, all statements reappear as conditions. The following simple
corollary illustrates that the requirement for strict sketch arrows to preserve statements “on
the nose” encodes a structural constraint on the target.

Corollary 6 (Strict Sketch Arrow vs. Sketch Constraint). A context morphism ϕ : K → G
constitutes a strict St-sketch arrow ϕ : K → G between two St-sketches K = (K, StK) and
G = (G, StG) if, and only if, G |=K (

∧
StK, ϕ).

Remark 38 (General constraints). A K-constraint (c, τ) is, in general, only a local constraint,
in the sense that it constrains the structure of G “around the image” of K w.r.t. τ. Thus, in case
K = G and τ = idG, (c, idG) is an assertion about the structure of G as such.

If Ct has an initial object 0, any closed condition 0 I c gives rise to a sketch constraint (c, !G)
with !G : 0 → G the initial morphism into G. (c, !G) is a general constraint, in the sense that
the statement G |=0 (c, !G) can be seen as a characterization of the overall structure of G. In the
Graph Transformation literature, only general constraints have been considered [23,25].

6.3. Statements and Sketch Constraints

In this subsection, we outline that first-order sketch constraints give us indeed the
means at hand to express the validity of statements in semantic structures, in an equiv-
alent way, by structural properties of sketch encodings of those semantic structures
(see Remark 29). In particular, we are interested to extend Makkai’s approach and to
encode the validity of arbitrary first-order statements in semantic structures by structural
properties of atomic sketch encodings.

Thus, we go back to the setting in Section 5.2.2 and assume an Institution of Statements
IS = (Cxt, Stm, Int, |=) with Carr v Cxt, XE(Ξ) = FE(Ξ) and thus At(K) ⊂ Stm(K) for all
contexts K in Cxt, i.e., Stm(K) contains all atomic statements in K.

We consider the instances of Definition 27 and Definition 28, respectively, for the
category Cxt of contexts and the functor At : Cxt→ Set assigning to each context K the set
At(K) of all atomic statements in K as described in Remark 14.

Definition 27 of the syntax of sketch conditions follows exactly the same pattern as
Definition 8 of the syntax of feature expression; thus, it should be possible to translate, for
any context K, the statements in K into At-sketch conditions on K. This is indeed possible!
However, to be able to translate quantifications, we have to assume that Cxt has pushouts
(compare Appendix A).

Definition 30 (From Statements to Sketch conditions). We assume that Cxt has pushouts.
For an arbitrary but fixed choice of pushouts in Cxt we construct inductively and in parallel a

Mathematics 2022, 10, 1085 56 of 65

family of maps trK : Stm(K)→ AT(K), where K varies over all objects in Ct: For arbitry variable
declarations X and arbitrary binding morphism γ : X → K, we define

1. Atomic expr.: trK(X, F(β), γ) := F(β; γ) = (αF, F(idαF), β; γ) ∈ At(K) ⊂ AT(K)
2. Everything: trK(X,>, γ) := T ∈ AT(K)
3. Void: trK(X,⊥, γ) := F ∈ AT(K)
4. Conjunction: trK(X, (Ex1 ∧ Ex2), γ) :=

∧{trK(X, Ex1, γ), trK(X, Ex2, γ)} ∈ AT(K)
5. Disjunction: trK(X, (Ex1 ∨ Ex2), γ) :=

∨{trK(X, Ex1, γ), trK(X, Ex2, γ)} ∈ AT(K)
6. Implication: trK(X, (Ex1 → Ex2), γ) := (trK(X, Ex1, γ)→ trK(X, Ex2, γ)) ∈ AT(K)
7. Negation: trK(X,¬Ex, γ) := ¬ trK(X, Ex, γ) ∈ AT(K)
8. Quantification: trK(X, Q(ϕ, Y : Ex), γ) := Q(ϕ∗, Kϕ

γ : trKϕ
γ
(Ex)) ∈ AT(K)

for Q ∈ {∃, ∀} where K
ϕ∗→ Kϕ

γ
γ∗← Y is the chosen pushout of K

γ← X
ϕ→ Y.

Remark 39 (Translation of Feature Expressions). Every feature expression X . Ex reappears
as the statement (X, Ex, idX), thus we can consider X I trX(X, Ex, idX) as the translation of the
feature expression X . Ex into a At-sketch condition.

Besides syntax, also Definition 10 of the semantics of feature expressions (and thus
Definition 14 of satisfaction of statements) and Definition 28 of satisfaction of sketch
conditions (and thus Definition 29 of satisfaction of sketch constraints) follow exactly the
same pattern. This enables us to prove straightforwardly that the family of translation
maps trK : Stm(K)→ AT(K) establishes an equivalence between first-order statements and
first-order At-sketch conditions. Note that the proposal in Remark 37 would make the
statement in the following proposition even more catchy.

Proposition 7 (Statements ∼= Sketch Constraints). For any Ξ-structure U = (U, ΦU), context
K, morphism ι : K → U and statement (X, Ex, γ) in K we have:

(ι,U) |=K (X, Ex, γ) iff SUΦ |=K (trK(X, Ex, γ), ι),

where SUΦ = (U, StUΦ) is the atomic sketch encoding of structure U as defined by (12).

Instantiating this equivalence for the identity on U gives us exactly what we have
been looking for, namely that the atomic sketch encoding of structures in an Institution of
Statements encodes likewise all properties of structures that can be expressed by first-order
statements and formulas.

Corollary 7 (Statements ∼= Sketch Constraints). For any Ξ-structure U = (U, ΦU) and any
statement (X, Ex, γ) in U we have:

(idU ,U) |=U (X, Ex, γ) iff SUΦ |=K (trK(X, Ex, γ), idU),

where SUΦ = (U, StUΦ) is the atomic sketch encoding of structure U as defined by (12).

The case X = 0, and thus γ =!U , corresponds to closed formulas and, due to
Remark 18 (Validity of Closed Formulas), Corollary 7 ensures that we can detect all closed
formulas that are valid in U , by inspecting the atomic sketch encoding SUΦ.

Proposition 7 and Corollary 7 are very good news for DPF and any other diagrammatic
approach to Software Engineering. They ensure that we can describe both structure and
constraints in the same diagrammatic, modelcentric format. There is, in principle, no need
to combine diagrammatic models with dissimilar descriptions, like OCL code, for example,
even if it comes to first-order properties. We can reason about and deal with a real system
at a higher level of abstraction within one and the same diagrammatic paradigm!

Example 51 (CT: Sketch constraints). Relying on Definition 30 and Remark 39, we can translate
all the sample ΞCT-expressions in Example 29 into corresponding sketch conditions. Concerning the

Mathematics 2022, 10, 1085 57 of 65

visual representation, there is no essential difference between a ΞCT-expression and the corresponding
sketch condition: We replace . by I and > by T . We rewrite (_∧ _) to

∧{_ , _} and so on.
The ΞCT-expressions lec in Example 29 is transformed into the sketch condition

lec = xv2
xe2

""
xv1

xe1

OO

xv3

I ∃(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: xv2
xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

)

and the ΞCT-expressions gec, representing the property composition is always defined, is trans-
formed into the sketch condition:

gec = 0 I ∀(xv2
xe2

""
xv1

xe1

OO

xv3

: ∃(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: xv2
xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

))

For the sample sketch G = (G, StG) in Example 49, we do have G |= (lec, τ1), with τ1 given
by the assignments xe1 7→ a, xe2 7→ b, but G 6|= (lec, τ2), with τ2 given by xe1 7→ b, xe2 7→ c,
thus G 6|= (gec, !G). General constraints imposing uniqueness of composition, independent of
the existence of composition, can be formulated by the closed condition guc:

0 I ∀(xv2
xe2

""
xv1 xe4

11
xe3 --

xe1

OO

xv3

: (
∧{ xv2

xe2

""
cmp

xv1
xe3 //

xe1

OO

xv3

, xv2
xe2

""
cmp

xv1
xe4 //

xe1

OO

xv3

} → ∃(ϕ, xv2
xe2

""

: T

xv1
e //

xe1

OO

xv3

)))

ϕ simply maps xe3 and xe4 to xe. G does not satisfy the constraint (guc, !G) but would satisfy
it if we delete the edge " f ", for example. The remaining requirements – existence and uniqueness of
identities, identity laws and associativity law – can be expressed analogously.

Besides formalizing the "laws of a category", we can also take advantage of our knowledge
about the properties of the features in ΞCT – or to put it the other way around: We can formulate
requirements that any intended semantics of the feature symbols in ΞCT has to comply with. For
example, we can require that, for a final object, all outgoing morphisms are monic:

ct1 := 0 I ∀(xv : (xvfnl −→ ∀(xv xe−→ xv1 : xv e
mon
// xv1)))

We can require that monomorphisms are closed under composition:

ct2 := 0 I ∀(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: (
∧{ xv2

xe2

""
cmp mon

xv1
xe3 //

xe1

OO

mon

xv3

} −→ xv2
xe2

""
xv1

xe3 //
mon

xe1

OO

xv3

))

Note that we use
∧{· · · } because the single triangle between the curly brackets visualizes, actu-

ally, three atomic ΞCT-statements! We can also express our knowledge concerning the decomposition
of monomorphisms:

ct3 := 0 I ∀(xv2
xe2

""
xv1

xe3 //

xe1

OO

xv3

: (
∧{ xv2

xe2

""
cmp

xv1
xe3 //
mon

xe1

OO

xv3

} −→ xv2
xe2

""
xv1

xe3 //

xe1

OO

mon

xv3

))

G |= (ct2, !G) simply because there is no match in G of the triangular context in ct2 satisfying
the premise of the implication in ct2. In contrast, G 6|= (ct3, !G) with the only counterexample
given by the assignments xe1 7→ c, xe2 7→ d, xe3 7→ g.

To be prepared for discussions, later in this section, we consider also the sketch condition mon
defining the concept monomorphism and obtained by transforming the ΞCT-expressions mon in
Example 29:

Mathematics 2022, 10, 1085 58 of 65

mon = xv1

xe
��

xv2

I ∀(xv1

xe
��

xv3
xe3 //

xe2

AA
xe1

88

xv2

:(
∧{ xv1

xe
��

cmp

xv3
xe3 //

xe1

<<

xv2

, xv1

xe
��

cmp

xv3
xe3 //

xe2

<<

xv2

} → ∃(ϕ, xv1

xe
��

xv3
xe3 //

xe4

<<

xv2

: T)))

where ϕ maps xe1 and xe2 to xe4.

6.4. Sketch Arrows, Constraints, Deduction, Meta-Modeling

In this subsection, we present vital observations, insights, concepts and ideas to
establish a basis for the future further development of the “logic dimension” of Institutions
of Statements and, especially of DPF, based on the new concepts and results presented in
this paper.

Constraints in DPF at Present

Following [15] and analogous to [14], we use in DPF until now, instead of sketch
constraints in the sense of Definition 29, only plain sketch arrows ϕ : L→ R and call them
(positive) universal constraints or negative universal constraints, respectively [18,21]. We
define the satisfaction of universal constraints in DPF by means of the closedness property
in Definition 23. That is, a sketch G satisfies the “universal constraint” ϕ : L→ R if, and
only if, for any strict sketch arrow τ : L→ G there is a strict sketch arrow $: R→ G such
that ϕ; $ = τ.

By Proposition 7, we can transfer many findings in Sections 5.2.3 and 5.2.4 into the
sketch constraints setting. Corollary 6 and Definition 28 ensure that the satisfaction of a
universal constraint ϕ : L→ R in a sketch G can be equivalently expressed by the assertion
that G satisfies the general constraint (uc, !G) with (compare Corollary 3):

gc := 0 I ∀(L : (
∧

StL → ∃(ϕ, R :
∧

StR))).

Be aware that the identifier ϕ in gc does not refer to the sketch arrow ϕ : L→ R but
to the underlying context morphism ϕ : L → R. Note further that we can replace StR by
(StR \ ϕ(StL)) without losing the equivalence!

Furthermore, we say that a sketch G satisfies the "negative universal constraint"
ϕ : L→ R if, and only if, for any strict sketch arrow τ : L→ G, there does not exist a strict
sketch arrow $: R→ G such that ϕ; $ = τ. This requirement is equivalent to the statement
that G satisfies the general constraint (ngc, !G) with:

ngc := 0 I ∀(L : (
∧

StL → ¬∃(ϕ, R :
∧

StR)))

What can we do if a sketch G does not satisfy a general constraint (c, !G) for a simple
condition of the form c = 0 I ∀(L : (

∧
St1 → ∃(ϕ, R :

∧
St2))) where St1 is a set of

statements in L and St2 a set of statements in R, respectively?
We can repair this flaw by applying the sketch arrow ϕ : (L, St1)→ (R, St2 ∪ ϕ(St1))

as a transformation rule for all sketch morphisms τ : (L, St1) → G not satisfying the
conclusion in condition c. In other words, a match of the transformation rule is given by
a context morphism τ : L → G such that G |= (

∧
St1, τ) and G |= (¬∃(ϕ, R :

∧
St2), τ).

Note that the negative application condition G |= (¬∃(ϕ, R :
∧

St2), τ) ensures that we do
not apply the rule twice for the same match τ : (L, St1)→ G. Applying the rule ϕ via the
match τ means nothing but to construct a pushout in the category Ska

s of sketches and strict
sketch arrows (compare Remark 32).

(L, St1)
ϕ //

τ

��
PO

(R, St2 ∪ ϕ(St1))

τ∗

��
G

ϕ∗ // H
Depending on the properties of the context morphism ϕ : L → R the pushout con-

struction may have different effects. The context G can be extended and/or factorized and,
if St2 6= ∅, we will add new statements to the statements originating from G.

Mathematics 2022, 10, 1085 59 of 65

In terms of sketch constraints, we can describe the crucial effect of the rule application
as follows: H satisfies the constraint (

∧
St2, τ∗) in addition to the constraint (

∧
St1, τ; ϕ∗)

inherited from G.

Example 52 (Repairing StmCT-sketches). As discussed in Example 51, there is one violation of
the general constraints (guc, !G) uniqueness of composition by the StmCT-sketch G = (G, StG)
in Example 49 and one violation of (ct3, !G) decomposition of monomorphisms. Repairing these
two violations by pushout constructions, as described above, will result in a StmCT-sketch H like the
one visualized below.

2

b
��

cmp

mon
4

d

��
cmp

1

a
@@

{e, f } // 3

c

@@mon

g
mon

// 5

G also does not satisfy the general constraint (gec, !G) definedness of composition and the
general constraint existence of identities that has not been formalized in Example 51. We do not
want to require that any StmCT-sketch satisfies these two general constraints since we do not intend
to use StmCT-sketches just as encodings of categories but rather as (hopefully finite) representations
of (possibly infinite) categories. This is the original purpose of sketches in category theory. See also
the later discussion in Remark 40.

Deduction

Generating new statements from given statements by means of rules is the essence of
deduction in logic. An interesting observation is that the “repairing procedure”, discussed
in the last paragraph, can be also described as a procedure deducing new sketch constraints
from given sketch constraints.

We consider a sketch G together with a set CG of sketch constraints on G. If CG

contains a general constraint (c, !G) with c = 0 I ∀(L : (
∧

St1 → ∃(ϕ, R :
∧

St2))), we
can deduce a local sketch constraint ((

∧
St1 → ∃(ϕ, R :

∧
St2)), τ) on G for any context

morphism τ : L→ G. This step corresponds to the universal elimination rule in classical
first-order logic.

We do have a sound “quasi-propositional” modus ponens rule schemata for sketch
constraints at hand: For all contexts X, all sketch conditions X I c1, X I (c1 → c2) and all
context morphisms µ : X → Y, the sketch constraints (c1, µ) and ((c1 → c2), µ) imply the
sketch constraint (c2, µ).

If there is a constraint (
∧

St1, τ) ∈ CG, we can apply this modus ponens rule and
deduce the sketch constraint (∃(ϕ, R :

∧
St2), τ) on G. Keep in mind that L I ∃(ϕ, R :∧

St2)! The pushout construction generates, finally, the constraint (
∧

St2, τ∗ : R→ H) on
H. This looks very much like an analogon to Skolemization in classical first-order logic.
More precisely, we can consider this pushout construction as a pendant to the introduction
of Skolem constants. This is quite in accordance with the characterization of operations in
graph term algebras by pushouts in [3].

As another example, motivating the use of sketch constraints as “first class citizens”,
we discuss atomic ΞCT-statements, as introduced and discussed in the Examples 39 and 49:
We included now the feature symbols mon and fnl in our sample footprint ΞCT to exemplify,
in a more appropriate way, the use of feature symbols in diagrammatic specifications
in general. In Example 51, we discussed, first, that we can specify known or desired
properties of features by means of sketch conditions. Later, we have shown that we can
even express the universal properties, defining the concepts “monomorphism” and “final
object”, respectively, by means of sketch conditions.

Given a StmCT-sketch G = (G, StG), the sketch condition mon, defining the concept
monomorphism, may help us to deduce from the cmp-statements, present in StGthat two
parallel edges in G have to be identified. We need just a rule which generates for each
atomic ΞCT-statement (α(mon), mon(idα(mon)), β : α(mon) → G) in StG a corresponding
sketch constraint (mon, β) on G. This works so easy, since we designed our examples

Mathematics 2022, 10, 1085 60 of 65

in such a way that the context of mon is just α(mon). In general, any atomic Ξ-statement
(α(mon), mon(idα(mon)), β) (α(P), P(idα(P)), β : α(P) → G) and any condition K I c may
generate a sketch constraint (c, γ; β) for any context morphism γ : K → α(P). Since β binds
all “free variables” in mon, we just need to adapt the three steps (1) universal elimination,
(2) modus ponens and (3) Skolemization, as discussed above for general constraints, to
deduce identifications of parallel edges in G.

To keep ΞCT as small as possible, we have not included in ΞCT feature symbols for
other limits and colimits like equ, pb, po, prod, for example. Employing sketch constraints
we can even avoid to do this! As discussed in Remark 10, any (co)limit of shape I is
axiomatized by the feature ΞCT-expressions existsI and uniqueI .

Analogous to “anonymous functions” in programming, we can use the sketch con-
dition CI I

∧{trCI (existsI), trCI (uniqueI)} as an anonymous feature representing the
(co)limit concept that corresponds to the shape graph I. With anonymous features, we can
not formulate statements, i.e., entities within a sketch G, but constraints,
like (

∧{trCI (existsI), trCI (uniqueI)}, β : CI → G) on the sketch G.
There should be now sufficient evidence that it will be beneficial to work in future

DPF with sketch constraints as first class citizens and our discussion suggests, espe-
cially, to employ pairs of a sketch G = (G, StG) and a set CG of sketch constraints on
G as an appropriate formalization of software models. We call those pairs ((G, StG), CG)
constrained sketches.

Remark 40 (Constrained sketches in MDE). Our approach to use and develop DPF as a theoreti-
cal foundation of MDE is based on the idea that any diagrammatic specification formalism/technique
is characterized by a certain choice of a category Cxt and a footprint Ξ where the corresponding
diagrams/models can be described as Stm-sketches. Sketch conditions and sketch constraints have
been developed to provide the necessary additional means to describe/constrain the syntactic struc-
ture of diagrams/models. In such a way, we can characterize now a diagrammatic specification
formalism not only by a certain category Cxt and a certain footprint Ξ but also by an additional set
of Stm-sketch conditions.

We should, however, distinguish between two kinds of Stm-sketch conditions: The first kind
of conditions is used to formulate those constraints on Stm-sketches G that can be legally used as
elements in CG. For a constrained Stm-sketch (G, CG), the occurrence of a constraint (c, τ) in CG

will certify that G |= (c, τ). Requirements for the relational data model [18,21] like “every table
must have a primary key” and “a foreign key should only refer to a primary key” will be formalized
by conditions of this kind.

Conditions formalizing requirements like “inheritance is transitive” or “a subclass inherits
all attributes of all its superclasses”, however, should not be included in any CG to avoid dia-
grams/models becoming too polluted with redundant information. Those additional conditions are
part of the formalism as a whole and represent the background knowledge and rules that can be
used to deduce for any constrained sketch information from the information given in StG and CG,
respectively, and to repair violations of the constraints in CG.

Conceptual Hierarchy

Introducing constrained sketches teleports us “back to start” but on a higher concep-
tual level: We do have a category Ska

s of sketches. To any sketch G = (G, StG), we can assign
the set Cstr(G) of all sketch constraints (c, τ : K → G) on context G with c a first-order
sketch condition in SC(K) according to Definition 27. Analogously to the translation of
statements in Institutions of Statements, we can define for any sketch morphism ϕ : G→ H
a map Cstr(ϕ) : Cstr(G) → Cstr(H) by simple post-composition with the underlying
context morphism ϕ : G → H: Cstr(ϕ)(c, τ) := (c, τ; ϕ) for all (c, τ) ∈ Cstr(G). This
gives us trivially a functor Cstr : Ska

s → Set at hand.
This situation is, however, just an instance of the abstract pattern we started with in this

section: The category Ska
s can be taken as an instance of Ct and the functor Cstr : Ska

s → Set
as an instance of St : Ct→ Set, respectively. The constrained sketches are then nothing but

Mathematics 2022, 10, 1085 61 of 65

the “abstract sketches” for this instance! We can now consider first-order sketch conditions
and sketch constraints for this new instance and will finally obtain a further instance of the
“abstract pattern”. Potentially, we can even iterate this procedure ad infinitum.

Iterating this procedure is maybe not that relevant for DPF at the moment. We take
it, however, as a good sign that our category independent approach allows us to move
in and furnish the next higher level in the conceptual hierarchy whenever it is necessary
and/or opportune.

Remark 41 (Makkai’s Hierarchy of Sketches). We continue the discussion in Remark 29 and
rise the question: How is our conceptual hierarchy related to the “hierarchy of sketches” in [15]?

Makkai considers only atomic statements and starts with a presheaf topos, i.e., a functor
category Base = Var = Cxt = [C→ Set]. Note that topoi are adhesive [44]! As an example, we
consider the presheaf topos:

Graph ∼= [EidE 99

s
((

t 66 V idVff −→ Set].

Then, he describes an instance of a general construction in Category Theory: For any footprint
Ξ = (Φ, α), α : Φ→ [C→ Set]Obj, there is a category Φ~αC such that the category mSka

s of multi
At-sketches (see Remark 34) is isomorphic to the presheaf topos [Φ~αC→ Set].

Φ~αC can be constructed as follows: We take the disjoint union of Φ (as a discrete category)
and C. For any feature symbol P ∈ Φ, any object C in C, and any c ∈ α(P)(C), we add an arrow
(P, c, C) : P → C. Finally, we define the composition for the new pairs of composable arrows:
(P, c, C); f := (P, α(P)(f)(c), C′) for all f : C → C′ in C.

As an example, we take Φ = {mon, fnl} with arities as in Example 49. The category Φ~αGraph
is visualized below. Composition in Φ~αGraph is defined by the equations xe; s = xv1, xe; t = xv2

and these equations encode the arity xv1
xe→ xv2 of mon! The isomorphism transforms any multi

At-sketch K = (K, IK, stK) into a corresponding functor K : Φ~αGraph→ Set.

mon

xe
��

xv1

��
xv2

""

fnl

xv
��

E
s ,,
t

22 V

K(E
s ,,
t
22 V) represents the graph K. The set K(mon) holds all the identifiers i ∈ IK with

stK(i) = (α(mon), mon(idα(mon)), β) while the maps K(xe), K(xv1), K(xv2) encode all the corre-
sponding bindings β : α(mon) → K. Morphisms in [Φ~αC → Set], i.e., natural transformations,
encode strict At-sketch arrows between multi At-sketches K = (K, IK, stK).

After transforming mSka
s into [Φ~αC→ Set], we can define another footprint Ξ′ = (Φ′, α′),

α′ : Φ′ → [Φ~αC → Set]Obj on this next level of the hierarchy and start again but this time with
atomic Ξ′-statements.

There are no sketch conditions in [15] but any multi At-sketch K = (K, IK, stK) corresponds
to the At-sketch condition K I

∧{stK(i) | i ∈ IK} and any strict At-sketch arrow ϕ : L → R
corresponds to a At-sketch condition of the form 0 I ∀(L : (

∧
StL → ∃(ϕ, R :

∧
StR))). As

we have seen, sketch conditions of this special form, and thus strict At-sketch arrows, allow us to
axiomatize arbitrary limits or colimits, respectively.

In such a way, all the arities α′(P′) in the footprint Ξ′ correspond to very simple At-sketch
conditions that are just conjunctions of At-statements and atomic At′-statements are simply con-
junctions of those conjunctions of At-statements, which are introduced by the arities α′(P′) and
obtained the “label” P’.

As an example, we consider the footprint Ξ = (Φ, α), α : Φ→ GraphObj with Φ = {cmp, id}
and arities as in Example 14. For the footprint Ξ′ = (Φ′, α′), α′ : Φ′ → [Φ~αGraph→ Set]Obj, we
assume that, for any P′ ∈ Φ′, the arity α′(P′) corresponds to an At-sketch that represents one of
the commutative (co)cones described in Remark 10. In such a way, an atomic At’-sketch represents
a graph with a set of commutative (co)cones labelled by feature symbols from Φ’. Strict atomic

Mathematics 2022, 10, 1085 62 of 65

At’-sketch arrows should allow us then to formulate propositions like: If we have binary products
and equalizers, do we also have pullbacks!?

We close this remark with a revision of the concept of graph in [22]: For the footprint ΞR =
(Rel, α) in Example 50, we can consider α as a map α : Rel→ [1→ Set]Obj with V the only object
in 1 and α(P)(V) = {x1, x2} for all P ∈ Rel. Φ~α1 contains then for each P ∈ Rel:

· · · P
(P,x1) ,,

(P,x2)

22 V

an “edge sort” P and [Φ~α1 → Set] is the category of graphs with an Rel-indexed family of
edges. This category is adhesive in contrast to the category of Rel-labelled graphs in [22]!

7. Conclusions

The paper presents an abstract framework allowing us to construct, in a uniform
and universal way, specification formalisms in arbitrary categories enabling us to specify
semantic structures while employing the full expressive power of first-order logic.

The framework is based upon a formalization of “open formulas” as statements in
contexts and offers a freshly new and abstract view of logics and specification formalisms.

Relying on the new framework, we present a general and universal account of “syn-
tactic” encodings and representations of semantic structures generalizing the idea of ele-
mentary diagrams in traditional first-order logic.

Guided by the top-down principle, we consider at this first stage of extension of
our framework just simple categories. To extend a specification formalism to a proper
logic, we also have to develop, however, appropriate deduction calculi. To establish those
deduction calculi, we should have features, like the translation of statements along variable
substitutions, for example, at hand. As exemplified in the paper, we have to assume at least
the existence of pushouts to support those features. We are not logicians, but the extension
of our framework by general deduction calculi will be one of the main topics in our
future work.

Another main topic will be operations. At the present stage, our abstract framework
does not comprise operations since it is not clear for us how to generalize the concept of
operation from set-based structures to semantic structures defined in an arbitrary category.
Already, the step from operations on sets to operations on graphs is not that trivial, and
even the concepts, constructions and results we developed for graph operations in [3] are
not fully satisfactory yet.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: I want to thank the guest editor of this special volume for encouraging me to
write this paper.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Translation of Feature Expressions

For a footprint Ξ and an object X in Var we denote by FE(Ξ, X) the set of all feature Ξ-
expressions on X. In Example 26, we discussed the replacement of auxiliary feature symbols
by feature expressions. To formalize those replacements, we consider footprint morphisms.
A morphism η : Ξ→ Ξ′ between two footprints over the same category Var is given by a
map η assigning to each feature symbol F ∈ Φ a feature Ξ′-expression η(F) ∈ FE(Ξ′, α(F)).
η is called simple if η(F) = F′(idα(F)), with F′ ∈ Φ′ and α′(F′) = α(F), for all F ∈ Φ.

Any footprint morphism η : Ξ → Ξ′ induces an VarObj-indexed family of maps
ηX : FE(Ξ, X) → FE(Ξ′, X). To define these maps for non-simple footprint morphisms,
we have to rely, however, on a mechanism translating feature expressions along variable

Mathematics 2022, 10, 1085 63 of 65

translations. Fortunately, we can establish such a mechanism, if Var has pushouts, and we
fix a choice of pushouts in Var.

Definition A1 (Translation maps). We define inductively and in parallel a family of translation
maps ψΞ : FE(Ξ, X)→ FE(Ξ, Z) with ψ ranging over all variable translations ψ : X → Z:

1. Atomic: ψΞ(X . F(β)) := Z . F(β; ψ).
2. Everything: ψΞ(X .>) := Z .>.
3. Void: ψΞ(X .⊥) := Z .⊥.
4. Conjunction: ψΞ(X . (Ex1 ∧ Ex2)) := Z . (ψΞ(Ex1) ∧ ψΞ(Ex2)).
5. Disjunction: ψΞ(X . (Ex1 ∨ Ex2)) := Z . (ψΞ(Ex1) ∨ ψΞ(Ex2)).
6. Implication: ψΞ(X . (Ex1 → Ex2)) := Z . (ψΞ(Ex1)→ ψΞ(Ex2))
7. Negation: ψΞ(X . ¬Ex) := Z . ¬ψΞ(Ex).
8. Quantification: ψΞ(X . Q(ϕ, Y : Ex)) := Z . Q(ϕ∗, Yϕ

ψ : ψ∗Ξ(Ex))

for Q ∈ {∃, ∀} where Z
ϕ∗→ Yϕ

ψ

ψ∗← Y is the chosen pushout of Z
ψ← X

ϕ→ Y:

Note that the pushout construction formalizes and generalizes the “introduction of

fresh variables” in traditional FOL! If we choose the cospan Z
ψ−1;ϕ−→ Y

idY←− Y, whenever ψ is
an isomorphism, we ensure, especially, that (idX)Ξ becomes the identity map on FE(Ξ, X).
Since the composition of chosen pushouts does not result, in general, in a chosen pushout,
the assignments ψ 7→ ψΞ constitute only a pseudo functor from Var into Set. This may be
a hint to develop future deduction calculi for Institutions of Statements rather in a fibred
setting (compare [45])?

The translation ψΞCT (mon) of the universal property mon of monomorphisms in Ex-
ample 29 along the unique graph morphism ψ : (xv1

xe−→ xv2) → xv xe
ff gives us, for

example, a definition of monic loops at hand.
For any footprint morphism η : Ξ→ Ξ′, we can define inductively and in parallel for

all variable declarations X a substitution map ηX : FE(Ξ, X)→ FE(Ξ′, X) where the only
non-trivial case is the base case :

1. Atomic: ηX(F(β)) := βΞ′(η(F)) for any F ∈ Φ and β : αF → X in Var.

If η is simple, this base case degenerates, according to Definition A1, to a simple
replacement of feature symbols:

1’. Atomic’: ηX(F(β)) := βΞ′(F′(idα(F))) = F′(idα(F); β) = F′(β).

Thus, we do not need to employ translation maps to define substitution maps in case of
simple footprint morphisms!

References
1. Ehrig, H.; Mahr, B. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics; EATCS Monographs on Theoretical

Computer Science; Springer: Berlin, Germany, 1985; Volume 6.
2. Diaconescu, R. Institution-Independent Model Theory; Studies in Universal Logic: Basel, Switzerland, 2008. doi:10.1007/978-3-7643-

8708-2.
3. Wolter, U.; Diskin, Z.; König, H. Graph Operations and Free Graph Algebras. In Graph Transformation, Specifications, and Nets—In

Memory of Hartmut Ehrig; Springer: Cham, Switzerland, 2018; Volume 10800, pp. 313–331. doi:10.1007/978-3-319-75396-6_17.
4. Kaphengst, H.; Reichel, H. Algebraische Algorithmentheorie; WIB 1; VEB Robotron, Zentrum für Forschung und Technik: Dresden,

Germany, 1971.
5. Reichel, H.; Hupbach, U.R.; Kaphengst, H. Initial Algebraic Specification of Data Types, Parameterized Data Types, and Algorithms;

Technical Report 15; VEB Robotron, Zentrum für Forschung und Technik, Dresden: Dresden, Germany, 1980.
6. Reichel, H. Initial Computability, Algebraic Specifications, and Partial Algebras; Oxford University Press: Oxford, UK, 1987.
7. Wolter, U. An Algebraic Approach to Deduction in Equational Partial Horn Theories. J. Inf. Process. Cybern. 1990, 27, 85–128.
8. Lawvere, F.W. Functorial Semantics of Algebraic Theories. Proc. Natl. Acad. Sci. USA 1963, 50, 869–872.
9. Claßen, I.; Große-Rhode, M.; Wolter, U. Categorical concepts for parameterized partial specifications. Math. Struct. in Comp.

Science 1995, 5, 153–188. doi:10.1017/S0960129500000700.
10. Barr, M.; Wells, C. Category Theory for Computing Science; Series in Computer Science; Prentice Hall International: London,

UK, 1990.

https://doi.org/10.1007/978-3-7643-8708-2
https://doi.org/10.1007/978-3-7643-8708-2
https://doi.org/10.1007/978-3-319-75396-6_17
https://doi.org/10.1017/S0960129500000700

Mathematics 2022, 10, 1085 64 of 65

11. Johnson, M.; Rosebrugh, R.; Wood, R. Entity-relationship-attribute designs and sketches. Theory Appl. Categ. 2002, 10, 94–112.
12. Wells, C. Sketches: Outline with References; Addendum 2009; Department of Mathematics, Case Western Reserve University:

Cleveland, UH, USA, 1993.
13. Diskin, Z.; Wolter, U. A Diagrammatic Logic for Object-Oriented Visual Modeling. Electron. Notes Theor. Comput. Sci. 2008,

203/6, 19–41. doi:10.1016/j.entcs.2008.10.041.
14. Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G. Fundamentals of Algebraic Graph Transformations; EATCS Monographs on Theoretical

Computer Science; Springer: Berlin/Heidelberg, Germany, 2006. doi:10.1007/3-540-31188-2.
15. Makkai, M. Generalized Sketches as a Framework for Completeness Theorems. J. Pure Appl. Algebra 1997, 115, 49274.
16. Cadish, B.; Diskin, Z. Heterogeneous view integration via sketches and equations. In Proceedigs of the 9th International

Symposium on Methodologies for Intelligent Systems, Zakopane, Poland, 9–13 June 1996; Springer: Berlin/Heidelberg, Germany,
1996; pp. 603–612. doi:10.1007/3-540-61286-6_184.

17. Diskin, Z. Towards algebraic graph-based model theory for computer science. Bull. Symb. Log. 1997, 3, 144–145.
18. Rutle, A. Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. Thesis, Department of Informatics, University of

Bergen, Bergen, Norway, 2010.
19. Wolter, U.; Mantz, F. The Diagram Predicate Framework in View of Adhesive Categories; Technical Report 358; Department of

Informatics, University of Bergen: Bergen, Norway, 2013.
20. König, H.; Wolter, U. Van Kampen Colimits and Path Uniqueness. Log. Methods Comput. Sci. 2018, 14, 1–27. doi:10.23638/LMCS-

14(2:5)2018.
21. Rutle, A.; Rossini, A.; Lamo, Y.; Wolter, U. A formal approach to the specification and transformation of constraints in MDE. J.

Log. Algebr. Program. 2012, 81/4, 422–457. doi:10.1016/j.jlap.2012.03.006.
22. Rensink, A. Representing first-order logic using graphs. In Proceedings of the Graph Transformations, Second International

Conference, ICGT 2004, Rome, Italy, 28 September–2 October 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3256,
pp. 319–335. doi:0.1007/978-3-540-30203-2_23.

23. Habel, A.; Pennemann, K. Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput.
Sci. 2009, 19, 245–296. doi:10.1017/S0960129508007202.

24. Bruggink, H.J.S.; Cauderlier, R.; Hülsbusch, M.; König, B. Conditional reactive systems. In Proceeding of the IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, Mumbai, India, 12–
14 December 2011; Schloss Dagstuhl–Leibniz-Zentrum für Informatik: Wadern, Germany, 2011, Volume 13, pp. 191–203.
doi:10.4230/LIPIcs.FSTTCS.2011.191.

25. Kosiol, J.; Strüber, D.; Taentzer, G.; Zschaler, S. Graph consistency as a graduated property–consistency–sustaining and-improving
graph transformations. In Proceedings of the 13th International Conference, ICGT 2020, Bergen, Norway, 25–26 June 2020;
Springer: Cham, Switzerland, 2020; Volume 12150, pp. 239–256. doi:10.1007/978-3-030-51372-6_14.

26. Makkai, M. First Order Logic with Dependent Sorts, with Applications to Category Theory. Available online: http://www.math.
mcgill.ca/makkai/ (accessed on 31 January 2022).

27. Freyd, P.J. Properties invariant within equivalence types of categories. In Algebra, Topology and Category Theory: A Collection of
Papers in Honour of Samuel Eilenberg; Heller, A., Tierney, M., Eds.; Academic Press: Cambridge, MA, USA, 1976; pp. 55–61.

28. Freyd, P.J.; Scedrov, A. Categories, Allegories; North-Holland Mathematical Library; North-Holland: Amsterdam, The Netherlands,
1990; Volume 39.

29. Wolter, U.; Klar, M.; Wessäly, R.; Cornelius, F. Four Institutions—A Unified Presentation of Logical Systems for Specification; Technical
Report Bericht-Nr. 94-24; Fachbereich Informatik: Berlin, Germany, 1994.

30. Pawlowski, W. Context institutions. In Proceedings of the 11th COMPASS/ADT Workshop on Specification of Abstract Data
Types Joint with the 8th COMPASS Workshop, Oslo, Norway, 19–23 September 1995; Springer: Cham, Switzerland, 1995;
Volume 1130, pp. 436–457.

31. Goguen, J.A.; Burstall, R.M. Institutions: Abstract Model Theory for Specification and Programming. J. ACM 1992, 39, 95–146.
32. Wolter, U. Institutional frames. In Proceedings of the 10th Workshop on Specification of Abstract Data Types Joint with the

5th COMPASS Workshop, Santa Margherita Ligure, Italy, 30 May–3 June1994; Springer: Cham, Switzerland, 1995; Volume 906,
pp. 469–482. doi:10.1007/BFb0014445.

33. Martini, A.; Wolter, U.; Haeusler, E.H. Fibred and Indexed Categories for Abstract Model Theory. Log. J. IGPL 2007, 15, 707–739.
doi:doi:10.1093/jigpal/jzm045.

34. Wolter, U.; Martini, A.; Haeusler, E.H. Towards a uniform presentation of logical systems by indexed categories and adjoint
situations. J. Log. Comput. Oxf. Univ. Press 2015, 25, 57–93. doi:10.1093/logcom/exs038.

35. McLarty, C. Elementary Categories, Elementary Toposes; Oxford Logic Guides (Book 21); Clarendon Press: Oxford, UK, 1991.
36. Baader, F.; Horrocks, I.; Sattler, U. Chapter 3. Description logics. In Handbook of Knowledge Representation; Elsevier: Amsterdam,

The Netherland, 2007.
37. Goguen, J.A.; Meseguer, J. Order-sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and

Partial Operations. Theor. Comput. Sci. 1992, 105, 217–273. doi:10.1016/0304-3975(92)90302-V.
38. Ehrig, H.; Große-Rhode, M.; Wolter, U. Applications of Category Theory to the Area of Algebraic Specification in Computer

Science. Appl. Categ. Struct. 1998, 6, 1–35. doi:10.1023/A:1008688122154.

https://doi.org/10.1016/j.entcs.2008.10.041
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-61286-6_184
https://doi.org/10.23638/LMCS-14(2:5)2018
https://doi.org/10.23638/LMCS-14(2:5)2018
https://doi.org/10.1016/j.jlap.2012.03.006
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.191
https://doi.org/10.1007/978-3-030-51372-6_14
http://www.math.mcgill.ca/makkai/
http://www.math.mcgill.ca/makkai/
https://doi.org/10.1007/BFb0014445
https://doi.org/doi:10.1093/jigpal/jzm045
https://doi.org/10.1093/logcom/exs038
https://doi.org/10.1016/0304-3975(92)90302-V
https://doi.org/10.1023/A:1008688122154

Mathematics 2022, 10, 1085 65 of 65

39. Chang, C.C.; Keisler, H.J. Model Theory; Studies in Logic and the Foundations of Mathematics; Elsevier: Amsterdam,
The Netherland, 1990.

40. Lloyd, J.W. Foundations of Logic Programming, 2nd ed.; Springer: Cham, Switzerland, 1987.
41. Wechler, W. Universal Algebra for Computer Scientists; EATCS Monographs on Theoretical Computer Science; Springer: Berlin,

Germany, 1992; Volume 25.
42. Lack, S.; Sobociński, P. Adhesive categories. In Proceedings of the FOSSACS 2004 International Conference on Foundations of

Software Science and Computation Structures, Barcelona, Spain, 29 March–2 April 2004; Volume 2987, pp. 273–288.
43. Wolter, U. Indexed vs. fibred structures—A field report. Rom. J. Pure Appl. Math. 2020, 66, 813–830.
44. Lack, S.; Sobocinski, P. Toposes are adhesive. In Proceedings of the Third International Conference, ICGT 2006, Natal, Rio Grande

do Norte, Brazil, 17–23 September 2006; Springer: Cham, Switzerland, 2006; Volume 4178, pp. 184–198. doi:10.1007/11841883_14.
45. Wolter, U.; Martini, A.R.; Haeusler, E.H. Indexed and fibred structures for hoare logic. In Electronic Notes in Theoretical Computer

Science; Elsevier: Amsterdam, The Netherland, 2020; pp. 125–145. doi:10.1016/j.entcs.2020.02.008.

https://doi.org/10.1007/11841883_14
https://doi.org/10.1016/j.entcs.2020.02.008

	Introduction
	Background, Motivations, Challenges and Principles
	Universal Algebra and Algebraic Specifications:
	Categorical Algebra
	Sketches in Category Theory
	Generalized Sketches
	Diagram Predicate Framework (DPF)
	Abstract Model Theory

	Content and Structure of the Paper

	Notations and Preliminaries
	Institutions of Statements
	Examples
	First-Order Predicate Logic (FOL)
	Description Logic (ALC)
	The Formalism ``First-Order Predicate Logic'' (mFOL)
	Category Theory (CT)
	Diagram Predicate Framework (DPF)

	Base Category
	Variables, Features and Footprints
	Variables, Features and Footprints: Syntax
	Variables, Features and Footprints: Semantics

	First-Order Feature Expressions
	Syntax of Feature Expressions
	Semantics of Feature Expressions

	Institutions of Statements
	Category of Contexts and Sentence Functor
	Model Functor
	Satisfaction Relation and Satisfaction Condition

	Institutions of Equations
	Signatures, Algebras and Contexts
	Terms and Equations
	Satisfaction Relation and Satisfaction Condition

	Sketches
	Sketches of Statements: Syntax and Semantics
	Sketches of Statements vs. Structures
	Freely Generated Structures
	Elementary Diagrams
	Sketch Arrows and Sketch Implications
	Sketch Implications, Closed Formulas and Makkai's Generalized Sketches
	A Semantic Deduction Theorem

	Sketches of Equations
	Freely Generated Algebras
	Elementary Diagrams for Algebras
	Generalized Sketch Arrows and Sketch Implications

	Sketch Conditions and Constraints
	Abstract Sketches
	First-Order Sketch Conditions and Constraints
	Statements and Sketch Constraints
	Sketch Arrows, Constraints, Deduction, Meta-Modeling

	Conclusions
	Translation of Feature Expressions
	References

