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Abstract. Static analysers are traditionally used to check various cor-
rectness properties of software. In the face of refactorings that can have
adverse effects on correctness, developers need to analyse the code after
refactoring and possibly revert their changes. Here, we take a different
approach: we capture the effect of the Hide Delegate refactoring on pro-
grams in the ABS modelling language in terms of the base program,
which allows us to predict the correctness of the refactored program. In
particular, we focus on deadlock-detection. The actual check is encoded
with the help of an additional data structure and assertions. Developers
can then attempt to discharge assertions as vacuous with the help of a
theorem prover such as KeY. On the one hand, this means that we do not
require a specific static analyser nor theorem prover, but rather profit
from the strength and advances of modern tool support. On the other
hand, developers can choose to rely on existing tests to confirm that no
assertion is triggered before executing the actual refactoring. Finally, we
argue the correctness of our over-approximation.
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1 Introduction

Refactoring is an important software engineering activity. Current tool support
in IDEs provides a broad selection of well-known refactorings. These refactorings
give no guarantees as to the expected behaviour and have been known to err
in this regard in the past, see [21], beyond hopefully still producing compilable
code afterwards. We follow Fowler’s stipulation that refactorings should preserve
behaviour. This is already difficult to check before executing a refactoring at the
best of times, and complete support for proving needs sophisticated frameworks
such as KeY [1,2,22].

In earlier work, we have introduced assertions during refactoring [9]. These
assertions capture the correctness conditions for a refactoring, and place a lighter
burden on the developers, in that they do not have to provide proofs in unfa-
miliar, advanced, incomplete or even non-existing frameworks, but can use their

⋆ Partially supported by DIKU/CAPES project “Modern Refactoring”.
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tools of the trade such as tests and coverage analysis to judge whether the refac-
tored system has been sufficiently exercised to confirm expected behaviour.

These assertions could of course in principle be discharged with program
provers. In this paper, we make two contributions: first, we focus on a novel
domain of refactoring for active object programs; specifically ABS [14,16]3 pro-
grams, where a direct application of well-known object-oriented refactorings po-
tentially leads to surprising results such as deadlocks [23], and second, we present
an approach where we insert assertions encoding the correctness conditions in the
code before refactoring, such that applicability of a refactoring can be checked
either dynamically (through testing) or statically (through proving).

Although, in general, proofs for these conditions can be quite involved in
non-trivial settings, such as in programs with unbounded concurrency, it is our
standpoint that for easy scenarios, e.g., for a statically known number of objects
with a fixed communication topology, the proof-support should be sufficient.

As a proof of concept, we show how to derive the required assertions for the
Hide Delegate refactoring. We are motivated by a belief that for the above class
of programs we can make use of automated discharging of the assertions (or
counter example derivation). For more involved programs, this should at least
narrow down the scope for further investigation and guide developers to cases
they have to consider before concluding that the refactoring will be correct.

A refactoring is correct and can then safely be applied if all assertions can be
discharged. This approach also has the advantage that any remaining assertions
will be refactored together with the program, should the developers choose to
proceed with applying the refactoring. The assertions then, in the spirit of our
earlier results, still serve as runtime checks: a passing assertion indicates that
the subsequent synchronisation will not deadlock.

The KeY system [1] has been developed for over two decades. It started in
1998 by Hähnle et al. at Karlsruhe Institute of Technology. The original KeY
system supports verification of sequential Java programs. A new version of the
KeY system, i.e., KeY-ABS [7], was introduced in 2015. KeY-ABS supports
symbolic execution, assertion checking and verification of history-based class
invariants for concurrent ABS programs. In this paper, we present a deadlock
detection framework for ABS and discuss why KeY-ABS is a suitable tool to
implement this analysis approach. We also provide directions on where further
effort might be a good investment in the KeY-ABS system.

The remainder of the paper is structured as follows: Section 2 briefly in-
troduces the ABS language and how deadlocks can occur. Section 3 describes
an assertion transformation to detect deadlocks, and Section 4 presents the
approach to deadlock detection for to-be-refactored programs before refactor-
ing. Section 5 discusses how we can use KeY-ABS to reason about the trans-
formed program. Finally, we explore the related work in Section 6, and con-
clude the paper with a discussion on some limitations and future work in Sec-
tion 7. The example presented in this paper is available as a git repository at
https://github.com/selabhvl/stolz-srh60-artefact.

3 https://abs-models.org/

https://github.com/selabhvl/stolz-srh60-artefact
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cn ::= ϵ | fut | object | invoc | cog | cn cn
fut ::= fut(f , val)

object ::= ob(o, a, p, q)
q ::= ϵ | p | q q

invoc ::= invoc(o, f ,m, v)
s ::= s; s | x = rhs | suspend | await g | skip

| if b {s} [ else {s} ] | while b {s} | return e | cont(f )
rhs ::= e | new [local] C [(e)] | e!m(e) | e.m(e) | x .get

cog ::= cog(c, act)
val ::= v | ⊥
a ::= T x v | a, a
p ::= {l | s} | idle
v ::= o | f | b | t

act ::= o | ε

Fig. 1: Runtime syntax of ABS, o, f, c are identifiers of object, future, and cog

2 The ABS language and deadlocks

In this section, we briefly introduce the ABS language [16], the active object
language that the work is based on. We will first present the runtime syntax
and then we show how deadlocks can be introduced by code refactoring in the
language.

2.1 The ABS language

ABS is a modeling language for designing, verifying, and executing concurrent
software. It has a Java-like syntax and actor-based concurrency model [15], which
uses cooperative scheduling of method activations to explicitly control the inter-
nal interleaving of activities inside a concurrent object group (cog). A cog can
be conceptually seen as a processor containing a set of objects. An object may
have a set of processes, triggered by method invocations, to be executed. Inside
a cog, at most one process is active while the others are suspended in the process
pool of the corresponding objects.

Process scheduling is non-deterministic, but is explicitly controlled by the
processor release points in the language. Such a cooperative scheduling ensures
data-race freedom inside a cog. In addition, objects are hidden behind interfaces
and all fields are private to an object. Any non-local read or write to fields
must be performed explicitly through method invocations. Different cogs can
only communicate through asynchronous method calls. Note that a synchronous
method call to objects on a different cog will be translated to an asynchronous
one that is immediately followed by a blocking get operation. Thus, the cog in
which the caller resides will be blocked until the method returns. In contrast,
synchronous calls within the same cog will only lead to transferring the control
of the cog from the caller to the callee, i.e., no cog will be blocked.

The runtime syntax of ABS is presented in Fig. 14, where overlined terms rep-
resent a (possibly empty) lists over the corresponding terms, and square brack-
ets [ ] denote optional elements. A configuration cn either is empty or consists

4 We have adopted the new version of the syntax for object creation instead of the
one presented in [16].
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class Client { ...
...{ ...

d = p.getDept();
m = d.getManager();
...

} ...

(a) Before

class Client { ...
...{ ...

m = p.getManager();
...

} ...

class Person implements PersonI {
PersonI getManager() {

PersonI d=this.getDept();
PersonI tmp=d.getManager();
return tmp;

} ...

(b) After

Fig. 2: Before/after Hide Delegate

of futures, objects, invocation messages and cogs. A future fut(f , v) has an iden-
tifier f and a value v (⊥ if the associated method call has not returned). An
object is a term ob(o, a, p, q) consisting the object’s identifier o, a substitution a
representing the object’s fields, an active process p and a pool of suspended pro-
cesses q, where a substitution is a mapping from variable names to values. A
process p is idle or consists of a substitution of local variables l and a sequence
of statements s, denoted as {l | s}. Most of the statements are standard. The
statement suspend unconditionally suspends the active process and releases the
processor, while the statement await g suspends the active process depending
on the guard g, which is either Boolean conditions b or return tests x? that
evaluate to true if the value of the future variable x can be retrieved; otherwise
false. The statement cont(f ) controls scheduling when local synchronous calls
complete their execution, returning control to the caller.

Right-hand side expressions rhs for assignments include object creation within
the current cog, denoted as new local C(e), and in a new cog, denoted as
new cog C(e), asynchronous and synchronous method calls, and (pure) expres-
sions e. An invocation message invoc(o, f ,m, v) consists of the callee o, the fu-
ture f to which the call returns its result, the method name m, and the actual
parameter values v of the call. Values are object and future identifiers, Boolean
values, and ground terms from the functional subset of the language. For sim-
plicity, classes are not represented explicitly in the semantics, as they may be
seen as static tables.

We do not further detail the syntax and semantics of ABS in this paper, but
refer the readers to [16] for the complete details.

2.2 Deadlocks introduced by refactoring

Fig. 2 presents snippets of ABS code before and after a Hide Delegate refactoring
that may introduce deadlocks in an actor setting, which is described in [23].

The effect of introducing deadlocks by this refactoring can be summarised by
inspecting the difference between the two sequence diagrams in Fig. 3 showing
how synchronous calls change, and by considering the possible assignment of
objects to cogs shown in Fig. 4.

Fig. 3a shows that a Client is first communicating with Person, then with Dept,
while Fig. 3b shows that the Client in the refactored program delegates invoking
getManager() to Person. Assume that we have a set of at least three objects
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c:Client p:Person d:Dept.

getDept()

getManager()

(a) Before

c:Client p:Person d:Dept.

getManager()

getManager()

(b) After

Fig. 3: Effect of Hide Delegate refactoring

{c, d, p, . . .} all placed in some cogs. We represent this information by a mapping
of object identifiers to cog identifiers. A placement that is without deadlocks

cog1 cog2

c

active

d

p

active

getManager()

getManager()

...

...

...

Fig. 4: A deadlock

before, but with a deadlock after refactoring
is {c 7→ 1, d 7→ 1, p 7→ 2, . . .}, i.e., objects c
and d reside in a cog with identifier 1, while
object p is located in a cog with identifier 2.

Fig. 4 depicts this placement, under which
these three objects can be deadlocked. We ob-
serve that object c is blocking cog1 while it is
waiting for object p in cog2 to complete pro-
cessing getManager(), where object p in turn
invokes getManager() on object d in cog1. Since cog1 is blocked by object c, ob-
ject d will not be able to execute the method. Consequently, object p will never
finish executing getManager().

2.3 A wait-for relation between cogs

Fig. 5: A deadlocking call chain

Consider the arbitrary call chain shown in
Fig. 5 and imagine traversing through the ex-
ecution path resulting in this chain. Although
we cannot yet determine if there exists a dead-
lock after the first call in the chain, we know
that a synchronous call to an object on an-
other cog will block the cog of the caller, i.e.,
no other object residing in the same cog can
proceed. The cog of the caller will remain
blocked until the called method returns. Af-
ter the first call in the chain, we say that the caller cog and the callee cog are in
a wait-for relation, i.e., the caller cog is waiting for the callee cog. We generalize
the wait-for relation to also any blocking operation including the waiting for
futures to be resolved. Thus, if an object requests the value of a future using the
blocking get operation, we say its cog and the cog in which the future will be
resolved are in a wait-for relation. This may be an over-approximation in the
case where an await statement precedes the get operation.
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Wait-for relation and deadlocks. For each configuration of a given ABS
program, we can derive the current wait-for relation indicating if a cog is waiting
for another one. A cycle in this relation indicates that there exists a deadlock
involving the cogs that form the cycle. Any detection of a cycle can be done prior
to any program points that contain a blocking or possibly blocking operation,
which are:

– Blocking: Synchronous method calls x = o.f(e) where the caller this and the
callee o reside in different cogs.

– Possibly blocking: At any statement x = f.get irrespective of whether the
caller this and the future f are in different cogs.

Note that although synchronous calls within the same cog in ABS do not lead
to deadlocks, an asynchronous call to an object o residing in the same cog as the
caller may lead to a deadlock, e.g., Fut<Unit> f = o!m(); x = f.get. Our analysis
will correctly detect this deadlock prior to the get operation. However, in the case
where an await statement precedes the get operation, e.g., Fut<Unit> f = o!m();
await f; x = f.get, our analysis will give rise to a false positive (see the next
section for the details).

3 Program transformation for deadlock checking

In this section, we introduce a general transformation mechanism to inject as-
sertions into the program to detect deadlocks at runtime based on the wait-for
relation.

3.1 Assertion transformation

To perform deadlock checking on a program based on the wait-for relation in the
form of runtime assertions, the relation needs to be updated along any possible
call chain. Such an update requires information about the cog placement of each
object, which is not explicitly available in an ABS program, but can be inferred
by slightly transforming the program. Fig. 6 captures such a transformation,
which enables the construction of the wait-for relation in the form of a data
structure (w4) and subsequently the detection of deadlocks. In the figure, we
have taken some liberties for a denser presentation. We use a pseudo-syntax,
e.g., class C(T e) { { } } refers to a pattern matching any class where C
corresponds to a class name. We explain in the following how the transformation
is performed.

Any object creation performed through new will place the object in a new
cog, whereas new local will place the object in the same cog as the one execut-
ing the constructor call. Thus, to associate every object with a cog, we modify
every constructor declaration, class C(T e) , such that it is parametrised with
a cog identifier and a map that links object references to cog identifiers i.e.,
class C(CogId id, CogMap cogs, T e) , as shown in Fig. 6a. Additionally, in the
init block of each class, we inject code to update the cog map to link any class
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class C(T e) { { } } class C (CogId id, CogMap cogs, T e} {
{ cogs.add(this,id); } }

(a) Class declaration

module M;
{ }

module M;
{ CogMap cogs = new CogMap();
Rel w4 = set[];
CogId id = cogs.fresh(); }

(b) The init block

T f(p) T f(Rel w4, p)

(c) Method signatures/declarations

x = new C(e); CogId fresh = cogs.fresh();
x = new C (fresh, cogs, e);

(d) Object creation in a new cog

x = new local C(e); x = new local C(id, cogs, e);

(e) Object creation in the cog local to the creator object

x = o.g(e); w4 = add(w4,Cog(this),Cog(o));
assert cyclefree(w4);
x = o.g (w4, e);
w4 = remove(w4,Cog(this),Cog(o));

(f) Synchronous calls

Fut<T> f = o!g(e); w4 = add(w4,Cog(this),Cog(o));
Fut<T> f = o!g(w4, e);
cogs.add(f,Cog(o));

(g) Asynchronous calls

x = f.get; w4 = addGet(w4,Cog(this),Cog(f ));
assert cyclefree(w4);
x = f.get;
w4 = remove(w4,Cog(this),Cog(f ));

(h) Get

Fig. 6: The assertion transformation, the notation is a wildcard match for the
expected syntactic entity at its position.
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instance to the cog identifier it receives as constructor parameter, as shown in
Fig. 6b, where cogs.fresh() is a function returning a fresh cog identity. Note that
the cog map is one single object in the program that all other objects, or scopes
in the case of the program main block, has a reference to. As such it can dispense
of the freshness requirement through also being able to emit fresh identifiers. An
empty wait-for relation is also created in the init block of the program, where
w4 a functional data structure capturing the wait-for relation on cog identifiers,
which can be a set containing pairs of cog identifiers.

Naturally, we must modify every constructor invocation to reflect our change
to constructors (see Figs. 6d and 6e). We either record a fresh cog identifier
for the case of a constructor invocation starting with new, or the identifier of
the cog where the object invokes new local. With our change to the constructor
parameters of all classes, we ensure that there is a reference to the cog map in
every scope for any updates to the wait-for relation (w4).

The signature of all method definitions is transformed to receive w4 as one of
the parameter (see Fig. 6c). Correspondingly, all method invocations are trans-
formed to receive the current value of w4 as the first parameter, as shown in
Figs. 6f and 6g Statements are also added to update the wait-for relation. Fig. 6f
presents the transformation for synchronous calls. We first add the call chain in-
formation, represented as a pair of cog identifier ⟨Cog(this),Cog(o)⟩, to w4 before
the synchronous call to object o is invoked, where the function Cog(o) returns
the identifier of the cog in which the object o is residing. This pair is removed af-
ter the call is made and returns. The update mechanism maintains an irreflexive
invariant for the wait-for relation for synchronous calls by never adding a pair
where Cog(o1 ) = Cog(o2 ). The wait-for relation is handled similarly for asyn-
chronous calls, as shown in Fig. 6g. For each statement Fut<T> f = o!g(e), we
register the future variable f in the cog map with the function cogs.add(f,Cog(o)),
such that the get rule (see Fig. 6h) can later retrieve this information. Note that
although the call chain information is added to w4 prior to the method invoca-
tion, this information is not removed because it is unclear when the call returns.

On any retrieval of values in futures, i.e., f.get, in Fig. 6h, we first update w4
with addGet to indicate that the current cog is waiting for the cog in which the
object that will resolve the future f resides. As opposed to add, addGet does not
maintain any irreflexive invariant. Once the value of the future is retrieved, the
corresponding chain information is removed from w4 to indicate that the wait
is over. We do not have to change the wait-for relation we are carrying forward
if we encounter an await statement; any of our callers are still blocked and we
would have a deadlock if we call back to them.

Finally, we insert the the assertion assert cyclefree(w4) prior to every syn-
chronous call or blocking get expression. This assertion checks whether or not
a directed graph (a possible representation of w4) is a directed acyclic graph
(DAG); if not, the assertion will be triggered. We remark that the statement
assert e in ABS is equivalent to skip when e evaluates to true; otherwise they
are equivalent to throwing an exception. This is a pitfall for us as exceptions
may be caught by already present exception handling and thus interfering with
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1 w4 = add(w4,Cog(this),Cog(p));
2 assert cyclefree(w4);
3 m = p.getManager(w4);
4 w4 = remove(w4,Cog(this),Cog(p));

(a) Assertion at call site

1 class Person(CogId id, CogMap cogs, ...)
2 implements PersonI {
3 ...
4 PersonI getManager(Rel w4) {
5 PersonI d = this.getDept(w4);
6 w4 = add(w4,Cog(this),Cog(d));
7 assert cyclefree(w4);
8 PersonI tmp = d.getManager(w4);
9 w4 = remove(w4,Cog(this),Cog(d));

10 return tmp;
11 }

(b) Assertion in added method

Fig. 7: After applying the assertion transformation to Fig. 3b

deadlock detection. Our intended semantics on an assert statement that fails is
to indicate that a deadlock will occur on further execution of the program. A
complete transformation of a program by the rules shown in Fig. 6 is performed
by repetition of any rule that matches on the original program.

Note that our treatment of asynchronous calls gives rise to false positives:
we propagate the current call chain into an asynchronous call, although the
previously recorded chain may no longer be current by the time the callee calls
back into the chain (if at all). The objects in the call chain that led up to this
asynchronous call may long since have become fully available again through
termination of the current computation, or partially available due to an await
statement.

3.2 Example

In this section, we are going to show the assertion transformation applied to a
program resulting from a Hide Delegate refactoring and make some observations
about when the assertions would detect deadlocks.

Applying the assertion transformation described in Fig. 6 to a refactored
program as shown in Fig. 3b results in the code shown in Figs. 7a and 7b. Next,
we are going to observe the wait-for relation in the additional method in Fig. 7b
invoked through the call site seen in Fig. 7a. Let us first assume the call site is

contained in an object c. Consider the sequence of calls c
getManager−−−−−−−−→ p

getDept−−−−−→ d
where if we are at line 7 in Fig. 7b, the first call has occurred and the last call is
about to occur on execution of line 8. We can see that the w4 relation at line 7
in Fig. 7b may contain the two pairs ⟨Cog(c),Cog(p)⟩ and ⟨Cog(p),Cog(d)⟩.
The case where w4 is a singleton set or an empty set refers to the circumstances
in which an object calls either itself or another object residing in the same cog
because a cog never waits for itself. If we observe the w4 relation we see that
Cog(c) ̸= Cog(d) must be satisfied; otherwise we have a deadlock. This will also
ensure that the assertion in line 7 will not be triggered. An important take-away
from this example is not so much the former equation, but that we can record the
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1 ...
2 d = p.getDept();
3 m = d.getManager();
4 ...

Match

1 ...
2 m = p.getManager();
3 ...

1 PersonI getManager() {
2 PersonI d = this.getDept();
3 PersonI tmp = d.getManager();
4 return tmp;
5 }

1 PersonI getManager(Rel w4) {
2 PersonI d = this.getDept(w4);
3 w4 = add(w4,Cog(this),Cog(d));
4 assert cyclefree(w4);
5 PersonI tmp = d.getManager(w4);
6 w4 = remove(w4,Cog(this),Cog(d));
7 return tmp;
8 }

1 ...
2 w4 = add(w4,Cog(this),Cog(p));
3 assert cyclefree(w4);
4 m = p.getManager(w4);
5 w4 = remove(w4,Cog(this),Cog(p));
6 ...

1 ...
2 w4 = add(w4,Cog(this),Cog(p));
3 assert cyclefree(w4);
4 PersonI d = p.getDept(w4);
5 w4 = add(w4,Cog(p),Cog(d));
6 assert cyclefree(w4);
7 m = d.getManager(w4);
8 w4 = remove(w4,Cog(p),Cog(d));
9 w4 = remove(w4,Cog(this),Cog(p));

10 ...

Replacement

refactor match

assertion transform

inline method

extract method

assertion transform

Fig. 8: Clairvoyant Assertion construction

sequence of updates to the w4 relation. For a detailed discussion of all possible
object-to-cog allocations for this example see [23].

4 Clairvoyant assertions

Instead of checking if a program may deadlock using the assertion transforma-
tion after applying a Hide Delegate refactoring, we can produce a clairvoyant
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P PA PHD PA◦HD PCA

C.m(...) {

.

.

.
x = y.f();
z = x.g();

.

.

.
}

C.m(...) {

.

.

.
w4=add(w4,this,y);
assert cf(w4);
x=y.f(w4);
w4=rem(w4,this,y);
w4=add(w4,this,x);
assert cf(w4);
z=x.g(w4);
w4=rem(w4,this,x);

.

.

.
}

C.m(...) {

.

.

.
z=y.g();

.

.

.
}

C’.g() {
x=this.f();
t=x.g();
return t;

}

C.m(...)

.

.

.
w4=add(w4,this,y);

assert cf(w4)
z=y.g(w4);
w4=rem(w4,this,y);

.

.

.
}

C’.g() {
x = this.f(w4);
w4=add(w4,this,x);

assert cf(w4);
t = x.g(w4);
w4=rem(w4,this,x);
return t;

}

C.m(...) {

.

.

.
w4=add(w4,this,y);

assert cf(w4);
x = y.f(w4)
w4=add(w4,y,x);

assert cf(w4);
z = x.g(w4);
w4=rem(w4,y,x);

w4=rem(w4,this,y);

.

.

.
}

Fig. 9: Effects of the different transformations on P

assertion transformation for Hide Delegate. It constructs assertions and a mod-
ification of the wait-for relation such that it predicts occurrences of deadlocks
in a refactored program. We define a clairvoyant assertion transformation that
is almost identical to the assertion transformation from Fig. 6 with one excep-
tion: Instead of applying Hide Delegate refactoring, the method calls in Fig. 8
are handled differently. Normally, the call would be transformed into the code
shown in Fig. 7a by rule 6f, but it is instead transformed into the replacement
code shown at the end of the derivation shown in Fig. 8. This clairvoyant asser-
tion transformation will introduce an assertion that predicts whether the Hide
Delegate refactoring when applied to the program will introduce a deadlock.

Fig. 9 shows the effect of the different transformations, where P refers to
a program admissible for the Hide Delegate refactoring, PA the program after
the assertion transformation is applied to P , PHD the refactored version of P ,
PA◦HD the program after the assertion transformation is applied to PHD , and
PCA the program after the clairvoyant assertion transformation is applied to P .
Names have been shortened, e.g., cf is the cyclefree function.

Equivalence between PA◦HD and PCA. In the following, we informally argue
that the effects in PA◦HD and in PCA wrt the injected assertions are the same,
by showing that the wait-for relation is the same at the end of the execution in
both programs. Different allocations of objects to cogs will give rise to differ-
ent executions in a program. In the particular execution shown in Fig. 10, the
synchronous calls in PCA (and hence P ) are always remote (every synchronous
call will be translated into an asynchronous call followed by a blocking get op-
eration [16]), i.e., the caller and the callee are always residing in different cogs.
This implies that we are in one of two possible scenarios: all three objects are in
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PA◦HD : cn0

cnafter−f

cnx

cnt

cnz

w4+ ⟨Cog(this : oc),Cog(y : oy)⟩

z = y.g()

futz = y!g() [oc → oy]

x = y.f()

. . .

return [oy ← oy]

w4+ ⟨Cog(y : oy),Cog(x : ox )⟩

t = x.g()

fut t = x!g() [oy → ox]

. . .

return [oy ← ox]

t = get fut t

w4− ⟨Cog(this : oy),Cog(x : ox )⟩

return [oc ← oy]

z = get futz

w4− ⟨Cog(this : oc),Cog(y : oy)⟩

oy

ox

PCA : cn0

cnafter-f

cnx

cnt

w4+ ⟨Cog(this : oc),Cog(y : oy)⟩

x = y.f()

futx = y!f() [oc → oy]

. . .

return [oc ← oy]

x = futx

w4+ ⟨Cog(y : oy),Cog(x : ox )⟩

z = x.g()

futz = x!g() [oc → ox]

. . .

return [oc ← ox]

z = get futz

w4− ⟨Cog(y : oy),Cog(x : ox )⟩

w4− ⟨Cog(this : oc),Cog(y : oy)⟩

oy

ox

Fig. 10: Equivalence between PA◦HD and PCA (one execution).

their own cogs, or ox and oy are in the same cog. As the execution in PCA uses
a remote call from oy to ox, it becomes clear that they must be in different cogs,
and we find ourselves in the first of the above two possibilities.

We show on the left an execution from the program PA◦HD and on the
right a corresponding execution of the PCA, where the executions start from
some state cn0. Note that for simplicity, the transitions with respect to method
binding and object scheduling are not shown in the figure. Due to the strong
concurrent semantics of ABS, we also do not have to consider any interleavings.
In the figure, we use the operators + and − to manipulate the wait-for relation
(w4), where + denotes the addition of a pair of cog identifiers to w4, while −
denotes the removal. We also use var : o to indicate in the manipulations the
object identity o to which a variable var refers. For method calls, we annotate
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the caller and callee objects using [ocaller → ocallee ]; whereas for returns, we
use [ocaller ← ocallee ] to represent that the method call on the called object
terminates and returns back to the caller. Additionally, we indicate the object
context the former implies graphically.

This diagram allows us to give the proof idea outlining why the assertions in
PCA will always coincide with those in PA◦HD . If we can show that the actual
parameters of all w4-manipulations are identical, and that the states of our con-
figurations are equivalent at the end of the refactored code, since the expressions
for each pair of assertions are identical, we know that they will give identical
results. Although the execution of the refactored program can be different, in a
very restricted manner, from that of the original one, they behave equivalently
wrt to the w4-relation, which will allow us to draw the necessary conclusions.

As an induction hypothesis, we assume that we have equivalent initial states;
and we will see that the same holds for the final states in the end. We note
that this is essentially part of the proof that establishes that the equivalence
relation ≡R between configurations [23] holds between the original program and
the refactored program after applying Hide Delegate.

Assuming this, it is obvious that the first assertion checking after the w4-
manipulation (or w4-test) uses identical arguments in the respective cn0-configu-
rations. When both executions reach their respective cnafter-f, it is obvious that
either has only exactly executed the method f() in object oy. Hence, when they
reach cnx, the variables x in object oy and the one in object oc have the same
value. From this, we conclude that the next (light gray) w4-test again receives
identical objects. Next, either program executes method g() on object ox. Cor-
respondingly, in configurations cnt, local variables z and t refer to the same
value. As x and y remain unchanged, identical information is removed from w4
in either case (light gray). When control returns in PA◦HD to oc, z has the same
value as t before, and hence as z in PCA. That means the object states have
evolved identically in either execution. The final manipulation of w4 (dark gray)
is therefor also identical.

5 KeY-ABS

KeY-ABS [7] is a deductive verification system for the concurrent modelling lan-
guage ABS [16,14]. It is based on the KeY theorem prover [1,2]. KeY-ABS pro-
vides an interactive theorem proving environment and allows one to prove prop-
erties of object-oriented and concurrent ABS models. The concurrency model
of ABS has been carefully engineered to admit a proof system that is modular
and permits to reduce correctness of concurrent programs to reasoning about se-
quential ones [4,8]. The deductive component of KeY-ABS is an axiomatisation
of the operational semantics of ABS in the form of a sequent calculus for first-
order dynamic logic for ABS (ABSDL). The rules of the calculus that axiomatise
program formulae define a symbolic execution engine for ABS.

Specification and verification of ABS models is done in KeY-ABS dynamic
logic (ABSDL). ABSDL is a typed first-order logic plus a box modality: For a
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sequence of executable ABS statements s and ABSDL formulae P and Q, the
formula P → [s]Q expresses: If the execution of s starts in a state where the
assertion P holds and the program terminates normally, the assertion Q holds in
the final state. Verification of an ABSDL formula proceeds by symbolic execution
of s, where state modifications are handled by the update mechanism [2]. An
expression of the form {u} is called an update application, in which u can be an
elementary update of the form a := t which assigns the value of the term t to
the program variable a, it can also be a parallel update u1 ∥ u2 that executes the
subupdates u1 and u2 in parallel. The semantics of {u}x is that an expression x
is to be evaluated in the state produced by the update u (the expression x can
be a term, a formula, or another update). Given an ABS method m with body
mb and a class invariant I, the ABSDL formula I → [mb]I expresses that the
method m preserves the class invariant. Note that the method body mb may
contain assert statements. KeY-ABS is able to discharge assertions as vacuous
(never fire) or show the open proof at such assertion statements. In ABS, the
later one is equivalent to throwing an exception. If the proof can be closed at all
assert statements, it shows that none of the assertions can be violated.

In this work, we focus on deadlock detection. assert statements are added
before each of the synchronous calls and are used to predict if the refactored ver-
sion may cause deadlock while the corresponding synchronous calls are invoked.
Since each synchronous call has its own call cycle, it is more suitable to express
deadlock cycle in assertion conditions than in class invariants. Consequently, we
do not consider the use of class invariants in this setting but assertions. Since
the assertion depends on the concrete value of the additional w4 parameter to
each method, the required reasoning propagates backwards to call-sites. Even-
tually this propagation or a proof attempt can result in a contradiction, which
indicates a concrete deadlock, although this may be on an infeasible program
path. It is then the task of the user to prove this infeasibility, or accept the risk
and, for example, resort to testing.

Below is the proof rule for assert statement in KeY-ABS.

Γ =⇒ {u}e = true Γ, {u}e = true =⇒ {u}[s]ϕ,∆
Γ =⇒ {u}[assert e; s]ϕ,∆

where Γ and ∆ stand for (possibly empty) sets of side formulae. The expression e
in the assert statement is evaluated according to the update u. The remaining
program s can only be verified when the assertion is evaluated to true, i.e., the
assertion is not fired. The predicate ϕ is the postcondition of the method and
should be proven upon method termination.

6 Related Work

Using theorem provers to discharge assertions is not new. We rely on this existing
feature of KeY-ABS, and other comparable tools such as ESC/Java [10,5] deal
with them similarly with varying degrees of automation. An alternative to KeY
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is Crowbar [18]. Also here we would have to rely on being able to evaluate
circularity-queries in the functional fragment of ABS as part of the proof as just
like JML the Behavioral Program Logic is not expressive enough to treat them
on the level of specifications.

Our encoding in additional data that is only relevant on the specification
level is an instance of model variables [6] that model data that goes beyond
abstracting the current state. Here, we have introduced data into the program
that is intended to be primarily used for reasoning purposes, although they
double as concrete program variables for the purpose of runtime checking (a
failing assertion indicates an upcoming potential deadlock).

Encoding a static analysis within a theorem proving framework has, to the
best of our knowledge, only been done as a proof of concept by Gedell [11]. While
his approach also targets the KeY system, the encoding is not in the form of
additional data (and properties) thereof in the original program, but as a data
structure within the KeY system and an extension of the proof rules for the
various syntactic constructs of Java supported by KeY. This has the advantage
that no modification of the code is necessary, but requires deeper understanding
of the prover framework for the development of the corresponding tactlets. An
advantage of our approach is that we are independent from the prover as we
embed ourselves within the target language.

That static analysis can in general benefit from relying on theorem provers
has already been observed by Manolios and Vroon in [19]. They invoke the
ACL2 theorem prover in a controlled manner such that it can be used as a
black box when analysing termination. A timeout from the prover gives rise to
over-approximation in the static analysis.

The work by Giachino et al. [12] uses an inference algorithm to extract
abstract descriptions of methods to detect deadlocks in Core ABS programs,
whereas our work captures the potential circular dependencies between cogs
by means of a wait-for relation, indicating which method invocations may con-
tribute to deadlock behaviour. Similar to our work, Giachino’s approach also
over-approximates the occurrence of deadlocks. Albert et al. [3] have developed
a comprehensive static analysis based on a may-happen-in-parallel analysis for
a very similar language that does not support object groups but treats each
object as a singleton member in its own group. They later combined this with a
dynamic testing technique that reduces false positives [13].

The work of Kamburjan [17] presents a notion of deadlock for synchroni-
sation on arbitrary boolean conditions in ABS. It supports deadlock detection
on condition synchronisation and synchronisation on futures, but it does not
consider the cases caused by synchronous method calls as targeted in our work.

Quan et al. formalize refactorings by encoding them as refinement laws in
the calculus of refinement of component and object-oriented systems (rCOS) and
prove these correct [20], however they do not use a theorem prover and they do
not consider concurrent programs.
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7 Conclusion

In this paper, we introduce a dynamic deadlock detection mechanism through a
program transformation that uses a dependency relation such that assertions can
discern deadlocks through inspection of the relation. From the aforementioned
transformation we derive a new transformation that manipulates the dependency
relation to introduce clairvoyant assertions; they predict whether a Hide Delegate
refactoring will introduce deadlocks. We argue that in principle our dynamic
deadlock detection could be statically discharged by a deductive verification
system through resolving the proof goals generated by showing that no assertions
trigger.

Discussion and Future Work

While the encoding is certainly useful for runtime checks, using the proof strate-
gies of KeY-ABS to discharge the assertion can be more effective as the proofs
cover all the possible execution paths at once.

As a language with interface-based inheritance, it should be clear from the
fragments of the transformed ABS programs in Fig. 9 that for every method call
there is uncertainty as to which class we are calling into, if the declared type
of the callee has more than one implementation. If the classes implementing the
same interface have incompatible behaviour, and e.g., only one of the classes will
be used at run time, it is again up to the user to provide evidence to the theorem
prover that this is the case (and hence eliminate the other classes at this call
site). This is however not a particular issue of our approach, but a recurring
theme in use of the KeY system, both for ABS and for Java.

We also note that the current version of KeY-ABS does not support new local,
which is not a problem for the proof, since we explicitly encode the mapping from
objects to cogs in the program.

The ABS language does not support object mobility. Integrating this poses
a major challenge, since this operation is essentially a side-effect which would
mean we would have to give up our model of the deadlock-relation as a purely
functional structure. The same will be true for correctly accounting for await
calls that allow other objects in the same group to make progress concurrently.

To address the shortcoming of false positives (we cannot complete a proof,
yet all counterexamples are spurious) in the case where we would need a static
analysis to propagate information about the subsequent code backwards into
asynchronous calls, we plan to investigate an encoding that uses an oracle in
the target language, which ressembles the equivalent encoding of a more pre-
cise static analysis in the domain of the prover. It is our goal to remain firmly
independant from any particular prover to do our part on encouraging a lively
competition between provers.

Clearly working with the code augmented by our assertions has disadvan-
tages for developer in terms of readability. Ideally, such manipulation should be
done behind the scenes, preferably in a different view of the model. A natural
combination would be to use existing static and dynamic techniques in a first
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phase, and discharge any assertions that e.g. are not part of a deadlock-cycle
reported by this tools.

The clairvoyant assertions introduced here are specific to the Hide Delegate
refactoring. Variations will be necessary to predict negative effects of other refac-
torings, such as other constellations of deadlocks [23]. We have as yet to im-
plement an automated assertion generation to try out our idea and gauge the
currently feasible amount of automation.
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tion. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) Formal
Methods for Components and Objects - 11th International Symposium, FMCO
2012. Lecture Notes in Computer Science, vol. 7866, pp. 1–37. Springer (2012),
https://doi.org/10.1007/978-3-642-40615-7_1

15. Hewitt, C., Bishop, P., Steiger, R.: A Universal Modular ACTOR Formalism
for Artificial Intelligence. In: Proc. of the Intl. Joint Conf. on Artificial Intelli-
gence. pp. 235–245. Morgan Kaufmann Publishers Inc. (1973), http://dl.acm.
org/citation.cfm?id=1624775.1624804
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