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The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical
oncology have significantly improved the survival of a subset of cancer patients with
metastatic disease previously considered uniformly lethal. However, the low response
rates and the low number of patients with durable clinical responses remain major
concerns and underscore the limited understanding of mechanisms regulating anti-
tumor immunity and tumor immune resistance. There is an urgent unmet need for novel
approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can
accurately predict ICI responders based on the composition of their tumor
microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with
poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL
is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand
GAS6, AXL regulates cell signaling cascades and cellular communication between various
components of the tumor microenvironment, including cancer cells, endothelial cells, and
immune cells. Converging evidence points to AXL as an attractive molecular target to
overcome therapy resistance and immunosuppression, supported by the potential of AXL
inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent
role of AXL in regulating cancer progression, with particular attention to its effects on anti-
tumor immune response and resistance to ICI. We discuss future directions with the aim
to understand better the complex role of AXL and TAM receptors in cancer and the
potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
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1 INTRODUCTION

Receptor tyrosine kinases (RTKs) are classified into families based on
similarities in their amino acid sequence, structural and functional
properties. The TAM (TYRO3, AXL, MERTK) receptor family is
characterized by an intracellular kinase domain and unique
extracellular domains containing pairs of immunoglobulin (Ig)-like
and fibronectin type III (FNIII) domains. AXL (also known as UFO,
TYRO7,ARK)was thefirst clonedmemberof theTAMreceptors (1).
AXL was characterized as a novel transforming gene in chronic
myeloid leukemia cells in 1991 (1, 2), and subsequent cloning of
TYRO3 (3) and MERTK in 1994 revealed their structural and
functional similarities (4). These receptors have critical
physiological functions in innate immunity, central nervous system
development, angiogenesis, and platelet aggregation (5, 6).
Deregulation of TAM receptors has been linked to the
pathogenesis of numerous human diseases, including cancer (6–9).
Due to their proposed role in tumor promotion, the TAM receptor
family has received considerable attention over the past decade (10).

Accumulating evidence reveals a multifaceted role of AXL in
promoting immunosuppression and resistance to anti-tumor
immunity. To escape anti-tumor immunity, cancer cells exploit cell-
intrinsic pathways associatedwith resistance to immune cell-mediated
attackandavoid recognitionbyanti-tumor immunecell types (11–17).
The cancer cells may also enhance immunosuppression of the tumor
microenvironment (TME), and specifically the tumor immune
microenvironment (TIME), regulating the expression or secretion of
immunosuppressive molecules including cytokines and chemokines.
This intercellular communication system allows effective inhibition of
immune effector cells including T-cells, natural killer (NK) cells, and
dendritic cells (DCs) while promoting the functions and/or the
recruitment of immunosuppressive cell populations such as
regulatory T cells (Tregs), tumor-associated macrophages, and
myeloid-derived suppressor cells (MDSCs) (18–20). In this review,
we aim to summarize the current knowledge regarding the regulation
and functionofAXL incancer anddiscussmechanisms involvingAXL
in the escape from anti-tumor immunity. We also present emerging
strategies to target AXL or TAM receptors to improve
immunotherapy efficacy.
2 THE BIOLOGY OF TAMs AND GAS6/AXL
SIGNALING

TAM receptors are expressed by various cell types and activated
by vitamin K-dependent ligands, growth arrest-specific factor 6
(GAS6), and protein S (PROS1), representing the two best-
characterized TAM ligands. TYRO3, AXL, and MERTK exert
multiple functions, and despite the partial overlap, the three
TAM receptors display different expression patterns (8, 9, 21,
22). The TAM receptors also exhibit distinct activation patterns.
PROS1 binds to MERTK and TYRO3 with the highest affinity,
whereas GAS6 can bind to all three TAM receptors with the
highest affinity for AXL. Other putative ligands have been
proposed to activate MERTK and/or TYRO3, such as Tubby
(23) and galectin-3 (24). Genetic deletion of all three TAM
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receptors (Tyro3/Axl/Mertk triple knock-out in mice) is not
embryonically lethal. However, the animals display various
postnatal phenotypes associated with thromboembolic disease,
atherosclerosis, sepsis, inflammatory and autoimmune diseases
(25). These phenotypes may be partly explained by a reduced
ability to clear apoptotic cells observed in several tissues in
association with increased levels of pro-inflammatory cytokines
(e.g., TNF-a, IL-6) (25, 26). Indeed, TAM receptors are
expressed on phagocytic cells, and alteration of TAM-mediated
phagocytosis perturbs the clearance of apoptotic cells. Loss of
AXL has further been shown to increase neuroinflammation (27)
and vascular permeability (28).

Canonical activation of AXL signaling requires its ligand
GAS6 (Figure 1) (29, 30). The 678-amino acid GAS6
protein contains a gamma-carboxyglutamic acid (GLA)
domain in the N-terminus, essential for binding externalized
phosphatidylserine on plasma membranes, four epidermal
growth factor (EGF)-like repeats, and tandem globular (G)
domains in C-terminus [also referred to as sex hormone-
binding globulin (SHBG) or laminin G-like (LG)]. The latter
enables GAS6 binding to the Ig-like domains of AXL (Figure 1).
Moreover, the vitamin K-dependent g-carboxylation of the
TAM ligand GLA domains is essential to elicit full activation
of TAMs (31, 32). On the other hand, the accumulation of
soluble Ig-like TAM domains with antagonist activity can act as
a regulatory mechanism of GAS6/AXL signaling (33, 34). As
revealed by structural analysis, GAS6-AXL complexes can
assemble into a complex with 2:2 stoichiometry, likely leading to
AXL dimerization and activation via trans-autophosphorylation
of tyrosine residues of the intracellular domain (35). Important
tyrosine residues in the intracellular domain include the activation
loop (Tyr698, Tyr702, Tyr703) and the C-terminal domain
(Tyr779, Tyr821, Tyr866), which are necessary for the
recruitment of adaptor proteins mediating signaling cascades
including the adaptor GRB2 leading to the activation of
phosphatidylinositol 3 kinase (PI3K), phospholipase C (PLC), or
SRC kinase. In a cell type- and tissue-dependent context, it triggers
the downstream activation of various signaling pathways,
including PI3K-AKT, NF-KappaB; RAS-MEK-ERK, JAK-STAT,
SRC/FAK (6, 7, 21, 22, 36–38). In addition to the canonical GAS6/
AXL activation pathway, evidence is accumulating that malignant
cells have developed various ways to bypass, at least in part, their
dependence on GAS6 (21, 39–41). Different AXL-mediated
signaling pathways may support cell-autonomous or cell-to-cell
mediated crosstalk during cancer progression. AXL
overexpression and heterodimerization with non-TAM RTK
members such as MET- (42–44), epidermal growth factor
receptor- (EGFR) (43, 45–47), HER2- (44, 48) and HER3-
(49, 50) mediated transactivation of AXL have been reported
in various cancer systems. AXL’s interaction or oligomerization
may also cause accumulation of AXL at the cell surface (44, 48).
In some cases, this crosstalk could diversify RTK signaling in
the cancer cells in a ligand-dependent or independent manner
(43, 44). In ovarian carcinoma cells, upon GAS6 activation,
AXL was reported to co-cluster with and transactivated
MET, EGFR, and HER2, resulting in downstream activation
April 2022 | Volume 13 | Article 869676
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of ERK (44). Additionally, the tumor suppressor OPCML was
found to interact and promote AXL inactivation in cholesterol-
rich, detergent insoluble membrane compartments, where
proximity to another tumor suppressor, PTPRG phosphatase,
resulted in AXL-dephosphorylation, preventing AXL-mediated
Frontiers in Immunology | www.frontiersin.org 3
transactivation of other RTKs (cMET and EGFR) and
downstream signaling (51). There is need to further dissect
the cooperative regulatory events that may be cancer type
specific, heterogenous, and context-dependent, and
generalizations should be avoided.
FIGURE 1 | GA6/AXL structure and downstream signaling pathways. Ligand binding of the AXL receptor tyrosine kinase promotes autophosphorylation and activates
various downstream signaling pathways in a cell- and context-dependent matter, including, but not restricted to p38, NF-kB, PI3K/AKT/mTOR, RAF/MEK/ERK, JAK/
STAT/SOCS1/3, SRC/FAK, TWIST, SNAIL and SLUG signaling pathways. These pathways will lead to multiple phenotypes, including proliferation, survival, migration,
plasticity, and immune suppression. Ligand-independent mechanisms of AXL activation have been proposed but are not detailed here.
April 2022 | Volume 13 | Article 869676
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3 AXL EXPRESSION IN CANCER

Although AXL was first isolated and described as a potential
oncogene in chronic myeloid leukemia (1, 2), it was later found
to be overexpressed in solid tumors and numerous hematological
cancers [reviewed in (6, 7, 52–54)]. In contrast to many other
RTKs associated with cancer, genetic aberrations of AXL are
uncommon. AXL is rather frequently upregulated at the
transcriptional level (55). Overexpression of AXL has been
correlated with disease aggressiveness in many cancers. This
includes cancers of breast (56–58), lung (53, 59–62),
gastrointestinal (63–66), head and neck (67–69), hepatocellular
carcinoma (70–72), renal cell carcinoma (RCC) (73–77),
gynecological carcinoma (78–81), gliomas (82) pancreatic
cancer (83, 84), and thyroid carcinoma (85). Overexpression of
AXL has also been reported in several types of sarcomas (86–89),
in acute myeloid leukemia (AML), and other hematologic
malignancies (52, 90, 91). Some studies have reported AXL as
an independent prognostic marker (56, 62, 68, 70, 72, 73, 78, 82,
83, 87, 90–92). Moreover, soluble forms of AXL resulting from
Frontiers in Immunology | www.frontiersin.org 4
shedding of the receptor have been characterized, with potential
utility for patient monitoring in certain malignancies (73,
93–96).
4 THE REGULATION OF AXL GENE
EXPRESSION

Many intrinsic factors are known to regulate AXL expression
(Figure 2). As demonstrated in non-small cell lung cancer
(NSCLC) cells, AXL is part of a group of genes controlled by
methylation of cytosine nucleotides in their promoter region rich
in GC repeats (97). Mudduluru and colleagues identified a GC-
rich region (-556 to +7) containing specificity protein (SP)-
binding sites sufficient to regulate basal AXL promoter activity
in multiple cancer cell lines. Thus, SP1 and SP3 expression levels
govern AXL promoter activity. The same investigators also
reported on the importance of the Myeloid zinc finger 1
(MZF1) binding to the AXL promoter and regulating its
expression in cervical (HeLa) and colorectal cancer (Rko) cells.
FIGURE 2 | Regulation of AXL expression. Regulation of AXL expression is context-dependent and involves intrinsic and extrinsic factors. Various transcription
factors and epigenetic events such as DNA methylation have been identified to regulate AXL expression. AXL protein synthesis is partly regulated by miRNAs. The
stabilization of AXL can be affected by ligand binding and interactions with other RTKs. Cleavage of AXL extracellular domain into a soluble form by the action of A
Disintegrin And Metalloprotease (ADAM) 7-10. Extrinsic factors, stress, and microenvironmental conditions may also control the different steps. The role of AXL as a
sensor of the environmental cues in specific cancer systems and at various stages of cancer progression remains to be fully elucidated.
April 2022 | Volume 13 | Article 869676
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In AML cells, STAT5 binds and significantly enhances AXL
promoter activity following activation by cytokines (98).
ALKBH5 is a key positive regulator of AXL mRNA stability in
AML cells (99). In leukemia cells, AXL expression is regulated by
the activator protein 1 (AP-1), FOS and JUN heterodimers (100).
AXL expression can be upregulated through MAPK signaling to
JUN. AP-1-mediated regulation of AXL is not restricted to
leukemia cells. In NSCLC and head and neck squamous cell
carcinoma (HNSCC) cells, JUN overexpression coincides with
acquired resistance to cetuximab and is accompanied by
increased expression of AXL (101). Similar regulatory effects
were observed in cell lines resistant to the PI3K inhibitor BYL719
(alpelisib) (102). Epigenetic modifiers, including EZH2, sustain
AXL expression in glioblastoma cells in a manner that seems
independent of histone or DNA methylation (103). YES-
associated protein 1 (YAP1) is another key co-transcriptional
regulator of AXL in various cancer systems. As downstream
effector of the Hippo pathway (104), the functions of YAP1
have been attributed to its interaction with the TEAD
transcription factor, which can bind TEAD-binding domains
present within the AXL promoter to transactivate AXL gene
expression (105–107). Further, ZEB1 overexpression can
enhance AXL gene transcription, presumably through YAP1/
TEAD activation (106).

MicroRNAs such as miR-199a/b, miR-7, and miR-34a (108–
110), as well as long non-coding RNAs (111), have been reported
to negatively regulate AXL translation in cancer cell lines.
Hypoxia-inducible factors HIF-1 and HIF-2 were found to
directly bind to hypoxia-response elements in the AXL
proximal promoter (112). Hypoxia promotes AXL expression
in cancer cells derived from solid and liquid tumors (98, 112). In
RCC cells, pseudo-hypoxia owing to Von Hippel-Lindau (VHL)
deficiency upregulates AXL expression (112). In NSCLC cell
clones exhibiting a mesenchymal phenotype, hypoxia and HIF-1
was shown to mediate maintenance of AXL expression (113). Of
note, hypoxia may not only act on transcriptional regulation of
AXL but also stabilize GAS6/AXL signaling by preventing GAS6-
mediated downregulation of AXL, at least in DU145 and PC3
metastatic prostate cancer cell lines (114). Much remains to be
learned about the exact molecular network and sequence of
events at play in distinct cell-types and various cancer-
dependent contexts.
5 AXL AND THERAPY RESISTANCE

AXL plays a multifaceted role in cancer therapy resistance. In
particular, AXL was recognized as a mediator of drug resistance
in ovarian cancer cell lines that acquired resistance to cisplatin
(115). Since then, AXL has been shown to contribute to
resistance against numerous cytotoxic agents (116), radiation
(117), and various targeted therapies (101) [reviewed in (21, 37,
55, 118–120)]. In an unbiased analysis of 643 human cancer cell
lines, AXL was strongly associated with a drug-resistant
mesenchymal phenotype, and inhibition of AXL displayed a
specifically synergistic effect together with antimitotic drugs such
as docetaxel (121). Furthermore, AXL was shown to play an
Frontiers in Immunology | www.frontiersin.org 5
important role in mediating resistance to EGFR tyrosine kinase
inhibitors in NSCLC. Mutations activating EGFR are prevalent
in NSCLC, but most patients develop acquired resistance to the
EGFR inhibitors (122–126). Second- and third-generation
inhibitors have been developed to overcome therapy resistance.
Still, acquired resistance also occurs against these latest-
generation therapies, and AXL has been implicated in this
setting. For example, AXL expression has been associated with
adverse clinical outcomes upon treatment with the third-
generation EGFR inhibitor Osimertinib, which is also effective
against lung carcinoma cells with secondary T790M mutations
(49, 127). AXL inhibition was further shown to inhibit the
emergence and persistence of cells tolerant to osimertinib
treatment (127). Previous studies found that AXL correlated
with resistance to other targeted therapies in NSCLC, including
therapies directed to ALK (128, 129), PARP (130), and VEGF/
VEGFR (131). In many other cancer types, AXL signaling is a
common resistance mechanism to targeted therapies, including
ERK/MEK inhibitors (132–134), BRAF inhibitors (133–135),
imatinib (136), sunitinib (137), WEE1 inhibitors (138), or
lapatinib (139). Overexpression or hyperactivity of AXL is
frequently observed in cancer in the context of tumor
heterogeneity, plasticity, and the development of therapy-
resistant persister cell populations.
6 AXL AND EPITHELIAL-MESENCHYMAL
PLASTICITY

A novel concept on the prominent role of AXL in cellular
plasticity and as a sensor of the microenvironment that favors
therapy resistance is emerging. Epithelial cells are characterized
by their highly polarized nature and organization into epithelial
sheets with prominent intercellular adherence. Epithelial cells
organized into sheets by strong anchoring junctions constitute
very potent barriers to macromolecules (140, 141). In contrast,
mesenchymal cells exhibit spindle-like morphology, with some
punctate adhesions associated with migratory and invasive
phenotypes. The process by which epithelial cells transform
into mesenchymal-like cells is referred to as the epithelial-to-
mesenchymal transition (EMT) (140–142). At the molecular
level, EMT is characterized by changes in the expression of
multiple proteins including downregulation of epithelial markers
such as E-cadherin (CDH1) and EpCAM (EPCAM) and
upregulation of mesenchymal markers such as N-cadherin
(CDH2) and Vimentin (VIM). Some of the best-known EMT-
associated transcription factors (EMT-aTFs) include SNAIL
(SNAI1), SLUG (SNAI2), Twist family BHLH transcription
factor 1 (TWIST1), Zinc finger E-box binding homeobox 1 and
2 (ZEB1 and ZEB2). However, many other transcription factors
are involved in the regulation of EMT (140–142), and numerous
extracellular triggers converge to induce EMT pathways.
Notably, the process of EMT may also be reversed by the
mesenchymal-to-epithelial transition (MET). EMT is
characterized by a continuum, where cells may transit back
and forth along the EMT spectrum. This ability is frequently
referred to as epithelial-mesenchymal-plasticity (EMP), and
April 2022 | Volume 13 | Article 869676
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serves to generate intermediate EMT phenotypes (also known as
intermediate E/M cells or hybrid cells) (143). Cells of a hybrid or
intermediate E/M phenotype are prone to acquire stemness
properties, and this population is further believed to be an
essential source of therapy-resistant persister-cells (144–146).
While most human cancers are of epithelial origin, i.e.,
carcinomas, it is worth noting that mechanisms similar to
EMT and epithelial plasticity also play a role in cancers of
non-epithelial origin. Under pathological conditions, markers
of EMT have been associated with poor prognosis, metastatic
spread, and therapy resistance, and this knowledge has paved the
way for more effective and durable antitumor treatments (142,
143, 146–148). Epithelial plasticity has recently been proposed as
a hallmark of cancer (145, 146, 149).

The AXL receptor has been closely associated with epithelial
cell plasticity. In an isogenic human mammary epithelial cell
(HMEC) progression series, AXL expression was shown to be
upregulated by specific microenvironmental factors together
with KIT expression (150). This finding highlighted the
molecular link between AXL and increased cell plasticity, and
possibly a key regulatory event for the acquisition of drug-
tolerant phenotypes in tumorigenic cells compared to normal
or immortal cells. It also suggests a remarkable sensing of
microenvironmental cues in the AXL-expressing malignant
cells (150). Indeed, AXL is regulated by microenvironmental
and extracellular matrix components that negatively (e.g.,
laminin-111 and type IV collagen) or positively (e.g., type I
collagen, osteopontin, IL-8, and type VIa3 collagen) impact its
expression in non-malignant and malignant cell lines. Cytokines
released by stromal cells such as IL-3, or GM-CSF, and
thrombopoietin (TPO) can augment AXL expression in AML
cells through STAT5-dependent activation (98). TGF-ß exposure
upregulates AXL expression and induces a mesenchymal-like
phenotype in normal and immortalized human mammary
epithelial cells, breast cancer (BCa) cells, and BCa cancer stem
cells (48, 121, 151). Downregulation of AXL following treatment
with siRNAs or the multi-targeted tyrosine kinase inhibitor
MP470 (amuvatinib) prevented this phenotypic switch,
suggesting a role for AXL in TGF-ß-induced EMT (151). A
plethora of EMT-aTFs regulated by TGF-ß signaling may
upregulate AXL expression in various cancer systems (56, 113).
Lastly, AXL was shown to be involved in murine mammary
gland homeostasis, and repopulation of the ductal tree upon
transplantation to cleared fat pads (150, 152).

Taken together, AXL contribute to epithelial plasticity
programs in mammary stem and progenitor cells, and, when
co-opted, maintains acquired stemness in BCa cells. It is well
documented that AXL is particularly important for persister cells
(119). Shaffer and colleagues demonstrated that human
melanoma cells exhibit profound transcriptional variability at
the single-cell level. Several resistance markers, including AXL,
were expressed at high levels in a tiny percentage of cells, referred
to as pre-existing «jackpot» cells, representing the cells that later
became enriched in resistant disease (135). In sum, the data
published so far point to a critical role for AXL in mediating
normal and cancer cell plasticity in various contexts.
Frontiers in Immunology | www.frontiersin.org 6
7 EVIDENCE FOR AXL-MEDIATED TIME
REMODELING, IMMUNOSUPPRESSION,
AND IMPACT OF TARGETING AXL ON
RESPONSE TO IMMUNE CHECKPOINT
INHIBITION (ICI) IN PRECLINICAL
MODELS

7.1 Influence of AXL on Immune
Cell Functions
AXL can be expressed by various cells in the TME, including
immune cells, fibroblasts, endothelial cells, and platelets (6, 28,
153–155). Thus, AXL should not be generalized or categorized as
a tumor-specific marker. The GAS6/AXL signaling pathway
strongly modulates the TME (30, 156) (Figure 3). Fibroblasts,
tumor-associated macrophages, and endothelial cells are among
the primary sources of GAS6 within the TME (157–160). Not to
mention that malignant cells can educate non-cancer cells to
produce the ligand GAS6 (66, 161). TAM receptors, including
AXL, operate as essential regulators of the innate immune
response. Found on the surface of various immune cells,
including monocytes and phagocytic cells (162, 163), DCs
(164, 165), and NK cells (166–169), they are generally
recognized as having inhibitory functions on activity and/or
maturation of these cell types (169), making the GAS6/AXL
and TAM pathways attractive targets for therapy (170–172). As
mentioned, under physiological conditions, AXL on phagocytic
cells can exert essential functions in apoptotic cell clearance via
binding the “eat-me” signal phosphatidylserine (PS) and
triggering PS-mediated efferocytosis. In cancer, the TAM
receptors, including AXL, promote macrophage polarization
towards an immunosuppressive pro-tumor M2-like phenotype
(156, 173, 174). In response to efferocytosis, macrophages are
further polarized to an M2-like phenotype and secrete increased
levels of immunosuppressive cytokines. Of note, the expression
of TYRO3, AXL, and MERTK, as well as their ligands, can
be dramatically upregulated on immunosuppressive MDSCs
in Braf-V600E/Pten deficient melanoma tumor-bearing C57BL/
6 mice (175). The suppressive capacity of MDSCs was affected
in the different TAM receptor knockout mice bearing
syngeneic Braf-V600E/Pten tumors, or after treatment with a
pan-TAM inhibitor, UNC4241. This latter condition also
increased CD8+ T-cell infiltration and potentiated anti-
programmed cell death protein 1 (PD-1) efficacy. In
another study, AXL was found to affect programmed cell death
ligand 1 (PD-L1) expression in mature DCs (mregDCs)
exhibiting reduced DC immunostimulatory- and enriched
immunoregulatory functions (176).
7.2 Targeting AXL Reveals Its Role in
Regulating the TIME Composition and
Response to ICI
The study by Aguilera and colleagues first reported that
Axl knockout in the murine MMTV-PyMT breast cancer
model perturbed tumor growth while increasing tumor
April 2022 | Volume 13 | Article 869676
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radiosensitivity (177). Most strikingly, loss of Axl was associated
with multiple changes in the TIME composition, including a
more significant proportion of antigen-presenting myeloid DCs
(CD11c+, Major Histocompatibility Complex (MHC) class II+)
and an increase in CD8+ T cell infiltration. These changes
correlated with decreased secretion of myeloid supportive
cytokines (Csf1, encoding macrophage colony-stimulating
factor 1, Csf2, encoding granulocyte-macrophage colony-
stimulating factor, and Csf3), chemoattractants (Ccl3, Ccl4, and
Ccl5), and NF-kappaB target cytokines (Il6, Tnfa, and IL1a).
Anti-PD-1 or anti-PD-1/CTLA-4 treatment alone was not
sufficient to achieve tumor regression in this model, possibly
due to insufficient priming of T cells by myeloid CD206-DCs
and/or the absence of dominant tumor antigens in this system.
However, the combination of radiotherapy with this
immunotherapy regimen resulted in tumor regressions.

A recent study using theHer2+mouse model of BCa provides
clues to understand the complex molecular network mediated by
AXL (178). Using conditional deletion approaches, the
investigators found that AXL expression in tumors enhances
hypoxia in the TIME associated with poor vascularization, which
impacts the activity and composition of immune cells. AXL
creates the optimal conditions for both immunosuppression and
metastatic progression. In agreement with the above study, Axl
KO cells secreted lower amounts of CCL2, CSF1, CXCL1, and
CXCL2, but also altered the secretome of other cell types such as
tumor-associated CD206-macrophages, which were shown to
produce less VEGFA, CXCL1, and CXCL2. Axl KO tumors were
found to be significantly enriched for cytotoxic NK cells, B cells,
and pro-inflammatory macrophage, suggestive of improved
immune responses compared to Axl+/+ derived CD206-
tumors. Conversely, immunosuppressive Tregs and pro-
tumoral CD206+ macrophages were less abundant in Axl KO
compared to Axl+/+ tumors. Another notable finding is that
AXL could promote a hypoxic state in breast carcinoma cells by
Frontiers in Immunology | www.frontiersin.org 7
stabilizing tumoral HIF-1a through AXL-HER2 interaction
(178). This cooperative event greatly contributed to shaping an
immunosuppressed TIME. Furthermore, Axl deletion in these
mouse models led to a more antitumorigenic TIME and
enhanced anti-PD-1 efficacy with significant responses
observed against primary and metastatic lesions. An elegant
work using two immunocompetent syngeneic murine models
of BCa (4T1 and E0771) has investigated how differential
expression of AXL expression on tumor cells and MERTK on
immune host cells could cooperate to promote immune evasion
and immunosuppression (179). Targeting Axl through genetic
means and MERTK by antibodies significantly reduced tumor
growth, metastatic spread, and improved survival of
immunocompetent mice when combined with anti-PD-1. The
effects appeared to be dependent on T cell infiltration/activation
following treatments. Interestingly, targeting MERTK in
immune-host cells proved superior over Axl KO to increase
the quality of the anti-tumor immune infiltrates when
administered with anti-PD-1. In particular, a net increase in
the number of cytotoxic T and NK cells was noted specifically
under anti-MERTK plus anti-PD-1 treatment (179).

Other studies have primarily used pharmacological approaches
to define the therapeutic potential of AXL targeting. In mice bearing
tumors from the ovarian mouse ID8 line, Guo et al., showed that
treatment with the selective AXL inhibitor, bemcentinib, improved
survival outcomes of the animals (180). This treatment led to an
accumulation of tumor-infiltrating effector CD4+ and CD8+ T cells
and CD206-CD103+ cross-presenting DCs. Minor effects were
observed on other immune populations such as Tregs,
monocytes/macrophages, conventional DCs, and NK cells.
The investigators also noted a significant decrease in
immunosuppressive substances such as Arginase 1 (Arg1), Tgf-b1,
Il-10, and monocytic/macrophage chemo-attractants (Ccl2/3/4),
and Ccl5, but an increase in pro-inflammatory chemo-attractants
(Cxcl-9/10/11 and Cxcl-12) (180). Further analysis indicated that
FIGURE 3 | The multifaceted roles of AXL in the tumor-immune microenvironment. AXL signaling regulates cancer cell-intrinsic properties such as 1) Tumor cell
growth and survival, 2) therapy resistance, 3) cancer cell plasticity mediating cancer heterogeneity and 4) increased cell motility. AXL can also mediate cancer cell
immune escape through 5) decreased antigen presentation and by 6) resisting immune cell killing. AXL also mediates remodeling of the tumor microenvironment by
7) secretion of immunosuppressive cytokines and chemoattractants, 8) recruitment of immunosuppressive cells, including MDSCs and Tregs, 9) decreased infiltration
of activated immune cells including cytotoxic T-cells, and 10) M1 to M2 polarization. Ultimately, this leads to tumor immune evasion and poor prognosis.
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AXL inhibition upregulated expression of PD-L1 and MHC I (on
murine tumor cells) and PD-1 (on T cell populations) and that AXL
inhibition, using bemcentinib or SGI-7079, combined with PD-1
blockade resulted in cure of ID8 and 4T1 tumor-bearing mice.
Upregulation of PD-L1 and MHC-I molecules in treated tumors
was consistent with the induction of an adaptive immune response,
coinciding with the production of IFN-g, which could potentiate
anti-PD-1 effects. The work of Jia et al. identified a novel GAS6/AXL
regulatory pathway in the triple-negative breast cancer (TNBC) cell
line, MDA-MB-231, in which GAS6 expression is upregulated by
FBXO7 overexpression controlling SIX1/EYA2-mediated
transcriptional activation of GAS6, and mesenchymal features of
the cells (181). In human MDA-MB-231 tumor-bearing mice,
treatment of the mice with an EYA2 inhibitor, namely
MLS000544460, demonstrated anti-tumor effects. In contrast, in
the syngeneic 4T1 TNBC model, this effect was limited, but anti-
PD-1 efficacy was potentiated, and associated with tumor growth
delays, increased NK and CD8 infiltrates, including IFN-g secreting
cell populations.

Other convincing studies exploiting distinct immunocompetent
mouse tumor models have provided further evidence for a causal
role of AXL in mounting an immunosuppressive TIME (182–184).
A recent study found that mice bearing KPL (Stk11/Kras/Trp53
mutants) lung tumors are refractory to anti-PD-1 (184).
Bemcentinib treatment resulted in significant re-sensitization to
anti-PD-1, and correlated with increased TCF1-expressing CD8 T
cells. Comparable effects were observed in humanized mice
transplanted with human NSCLC cell lines harboring KRAS and
STK11mutations (i.e., A549, H2122). In the syngeneic KPL model,
AXL inhibitor acts primarily onDCs, rather than on carcinoma cells
or macrophages, promoting DC-mediated type I interferon
secretion, infiltration of the TCF1+PD-1+CD8 cells, and response
to anti-PD-1. The tumor specimens of three NSCLC patients
[participants of an ongoing clinical trial (NCT03184571)] with
STK11 mutations were analyzed. Consistent with the preclinical
findings, these patients showed stable disease and partial response to
the pembrolizumab/bemcentinib combination.

AXL inhibition in the Kras/cdKn2a mutated model (KIC) of
pancreatic cancer was accompanied by a reduction in IL-7,
CCL11, IL6, and IL-1ß levels, as well as a net reduction in F4/
80+ tumor-associated macrophages expressing ARG1, a potent
immunosuppressive enzyme (182). The proportion of monocytic
MDSCs (CD11b+Ly6G- Ly6C+) positive for PD-L1 also appears
to be decreased. In syngeneic murine glioblastoma models,
targeting AXL plus PD-1 effectively prolonged the survival of
glioblastoma-bearing mice (183). A recent study has reported
similar results using a new selective AXL/FLT3 inhibitor, SKI-G-
801 in B16F10 melanoma, CT26 colon, and 4T1 BCa models
(185). The results highlight the potential of AXL targeting to
overcome anti-PD-1 therapy resistance. In the study of Ireland
and colleagues, the blockade of GAS6 using warfarin in
pancreatic models further revealed that inhibition of the
GAS6/AXL axis could reduce cancer cell plasticity, activate NK
cells and inhibit pancreatic cancer metastasis (157).

Taken together, these studies performed in numerous models
have identified potential mechanisms of AXL-mediated
Frontiers in Immunology | www.frontiersin.org 8
immunosuppression, such as decreased tumor antigen
presentation, suppression of pro-inflammatory cytokines, and
disruption of immune infiltrates (Figure 3). Mechanistically,
despite some similarities in the reported cytokine profiles, it is
important to note that the immune cells linked to observed
effects may differ between studies due to tumor model-
dependent context, or differences in experimental design. In
summary, the GAS6/AXL signaling may promote macrophage,
monocyte, and MDSC infiltration, decrease tumor abundance of
mature DCs, NK CD4+ and CD8+ T-cells. AXL targeting is
frequently associated with better response to anti-PD-1 in
various syngeneic mouse tumor models.
8 EVIDENCE FOR AXL-MEDIATED
CANCER-CELL INTRINSIC MECHANISMS
OF IMMUNE EVASION: FURTHER
RATIONALE FOR AXL TARGETING TO
ENHANCE ANTI-TUMOR IMMUNE
RESPONSES

8.1 AXL and PD-L1
GAS6/AXL signaling may not simply act as a regulator of
immune stromal cells in the TIME. Recent studies also suggest
that TAM receptors, such as MERTK and AXLmay contribute to
immunosuppression through cancer intrinsic mechanisms
(Figures 3, 4), such as increased PD-L1 expression on tumor
cells (186). PD-L1 and PD-L2 can prevent T cells from killing
tumor target cells through binding to cell surface PD-1 expressed
by T lymphocytes, thereby attenuating the immune response.
Under certain conditions, a functional PD-L1/PD-1 axis may
serve to predict response to anti-PD-1 therapy. However,
generalizations should be avoided, mainly because PD-L1
expression can be controlled by oncogenic events that drive
multiple tumor escape mechanisms. In human carcinoma cells
MDA-MB-231, HeLa, and MCF7, PD-L1 expression was shown
to be upregulated by hyperactive MERTK and AXL signaling.
Activation was potentiated by the presence of PS-presenting
apoptotic cells or PS-derived vesicles in a manner that is partly
dependent on PI3K/AKT signaling (186). In their study,
Boshuizen et al. investigated human melanoma (BLM, SkMel-
147) and lung cancer (LCLC-103H) preclinical models and
found PD-L1 to be highly expressed in all tumors expressing
AXL (187). In the study by Sadahiro et al., tumor expression
profiling of murine glioblastoma tumors indicated that upon
AXL inhibition, Cd274 (PD-L1) was downregulated, whereas
Pdcd1lg2 (PD-L2) was upregulated (183). Another interesting
observation is that PD-L1 was found to be expressed
predominantly by tumor (CD45-) and myeloid (CD45
+/CD11b+) cell subsets. However, it remains to be defined in
this case if AXL targeting impacts PD-L1 expression on myeloid
or CD45- cells.

In the PyMT BCa model, AXL expressing tumors displayed
increased PD-L1 on tumor cells. Recently, immunohistochemistry
(IHC) labeling of AXL in a series of more than 300 clear cell RCC
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(ccRCC) tissues revealed that high AXL expression is associated
with increased expression of PD-L1 on carcinoma cells (188). In
another study, analysis of mRNA profiles in NSCLC datasets
indicated a correlation betweenAXL and CD274 (PD-L1), CXCR4,
and CXCR6 expressions (189). AXL/PD-L1 association was most
pronounced in lung adenocarcinomas with an EGFR-mutated
status, known to be more refractory to anti-PD-1 blockade (190).
Furthermore, in vitro treatment of PC9 and H1975 cells with the
AXL inhibitor bemcentinib inhibited PD-L1, PD-L2, and CXCR6
expression in these cells (189). Collectively, these observations
provide consistent clues supporting an association between AXL
expression and PD-L1 to hinder antitumor immune
responses (Figure 4).

8.2 AXL and MHC Class I Expression
The report by Aguilera and colleagues showed that loss of AXL in
the PyMT BCa model did not only result in altered TIME
composition but also in augmented levels of mouse H-2Kb
MHC class I (MHC I) (177) (Figure 4). Cancer cells typically
Frontiers in Immunology | www.frontiersin.org 9
express tumor-specific antigens or neoantigens presented as
epitopes of 8 to 11 amino acids on MHC I at the cell surface.
Upon cell-cell interactions with CD8+ T cells and binding of
MHC I/epitope complexes to T-cell receptors (TCR), CTL
activity is promoted, triggering cell-mediated lysis by the
perforin/granzyme pathway. Alternative lysis mechanisms
include TNF- FAS- and TRAIL-mediated apoptosis pathways.
Thus, in cases of partial or loss of expression of MHC I, defects in
antigen expression or antigen processing are expected to favor
tumor immune escape. In recent work, we found an association
between lower amounts of MHC I and high AXL expression in
lung carcinoma cell clones (113). However, AXL inhibition did
not result in the upregulation of MHC I in this setting. Yet, we
noted an increase in the levels of genes involved in antigen
processing and presentation, such as TAP1, TAPBP, and ERAP2.

The molecular link between AXL and MHC I expression
previously identified by Aguilera and colleagues in murine
models was highlighted in a recent study analyzing 94
melanoma tumors collected at baseline and PD-1 inhibitor
FIGURE 4 | Schematic model of AXL-mediated mechanisms of immune escape and the various facets of immunosenzitisation induced by targeting AXL. High AXL
expression endows cancer cells with the ability to evade immune-mediated recognition and killing through multiple mechanisms. Cancer cells with active AXL
signaling generally express more PD-L1 but less MHC class I molecules, ICAM-1, and NKG2D ligands than cells with inactive or reduced AXL signaling. These
characteristics are associated with reduced recognition and elimination by cytotoxic lymphocytes. These cells also secrete an array of cytokines that attract
immunosuppressive cell populations or directly inhibit cytotoxic immune cells, further limiting immune responses. Targeting AXL may partially reverse this
phenomenon and sensitize carcinoma cells to immune attacks, while amplifying immune responses through the induction of immunogenic cell death.
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progression (191). This study further reveals that MHC I
downregulation is a hallmark of PD-1 inhibitor resistance-
associated with enrichment of MITFlow/AXLhigh dedifferentiated
cancer cell populations. In addition to demonstrating the AXL/
MHC I association in human tumors, the investigators reported
associations with SNAIL upregulation and cancer-associated
fibroblast signatures. As observed in preclinical studies, TGF-ß
could promote the expansion of AXLhigh tumor cells and interfere
withMHC I expression at baseline or upon exposure to interferon-
g (IFN-g), which in turn may favor immune evasion. These results
are consistent with previous data in prostate (192) and lung cancer
cells suggesting that TGF-ß is a potent repressor of MHC I
expression (193), and that blocking TGF-ß signaling could be
beneficial in overcoming this immunosuppressive roadblock and
enhancing immune responses.

8.3 AXL, Damage-Associated Molecular
Patterns and Immunogenic Cell Death
In another cancer model, we have shown that bemcentinib
abrogates autophagic flux in erlotinib-resistant lung cancer
HCC827 cells, in association with increased cell surface
expression of MHC I molecules, and markers of immunogenic
cell death (ICD) revealed by the release of ATP, in addition to
two other damage-associated molecular patterns (DAMPs);
release of High Mobility Group Box 1 (HMGB1) and cell
surface-exposed calreticulin (126) (Figure 4). ICD has been
shown to promote immune cell infiltration mediated by the
DAMPs released from dying tumor cells. The DAMPs may aid in
attracting antigen-presenting cells to the tumor bed, eliciting a
prominent immune response (194). These results thus highlight
another potential advantage of targeting AXL-expressing cancer
cells, namely to warm up immune-cold tumors and thereby
increase the benefit of ICI. Interestingly, the AXL-targeting
agent, Enapotamab vedotin (EnaV), which is an antibody-drug
conjugate (ADC), was found to stimulate the release of DAMPs
in humanmodels of lung cancer and melanoma (187). Boshuizen
and colleagues demonstrated that EnaV treatment could induce
markers of ICD and inflammatory responses in vitro and in vivo
(187), while promoting the expression of specific immune
checkpoints on cytotoxic T cells (PD-1, CD137). Most
importantly, EnaV was found to enhance tumor-specific CD8+
T-cell immune responses in multiple instances and potentiate
anti-PD-1 efficacy in human tumor xenograft and mice with a
humanized immune system.

8.4 Other Mechanisms Involved in
AXL-Mediated Immune Evasion
Previous work on human NSCLC carcinoma cells from the IGR-
Heu model, also provided an exciting insight into AXL-mediated
molecular mechanisms of tumor immune evasion (113). Among
the cancer clones displaying mesenchymal phenotypes, those
with high AXL expression exhibited pronounced intrinsic
resistance to NK and CTL-mediated lysis. AXL targeting using
bemcentinib reduced their protective advantage (113). Of note,
AXL inhibition using bemcentinib could only partially restore
tumor cell sensitivity to lymphocyte-mediated lysis, suggesting
Frontiers in Immunology | www.frontiersin.org 10
that additional factors mediate immune resistance and evasion of
these carcinoma cells. Mechanistic studies revealed immune
sensitization following AXL targeting involves a complex
molecular network stimulating NF-kappaB pathway with a
concomitant increase in ICAM-1 expression on the one hand,
and on the other hand, inhibiting MAPK coinciding with
upregulation of ULBP1 (113). Intriguingly, bemcentinib did
not appear to uniformly affect the EMT program in this
condition, suggesting that the observed immune sensitization
of tumor cells relied on alterations in AXL signaling, rather than
solely on alterations of the mesenchymal phenotype in this
model. ICAM-1 on target cells binds to its cognate receptor
LFA-1 (ITGAL/ITGB2) on effector lymphocytes (e.g., CTLs and
NK cells), strengthening the interaction between the cytotoxic
killer cells and carcinoma target cells (Figure 4). Similarly,
ULBP1 binds to its cognate receptor NKG2D (KLRK1) on
effector lymphocytes, enhancing the cytolytic activity of
cytotoxic killer cells towards carcinoma target cells.
Furthermore, mRNA expression of ICAM-1/LFA-1 and
ULBP1/NKG2D has been associated with improved survival in
NSCLC datasets suggesting an attractive prognostic value for
these immune-related genes (113). Together, these studies have
led to a better understanding of the mechanisms linking AXL,
immune evasion, and immunogenicity in cancer. The role of
AXL and its dynamic expression remains to be studied in depth
in most malignancies. Another important challenge will be to
integrate multicellular components and physiologically relevant
physico-chemical parameters (e.g., hypoxia, pH, stiffness), as well
as heterogeneity of the TIME into this research.
9 TOWARD STANDARDIZATION OF
AXL-TARGETING AGENTS IN
COMBINATION WITH CANCER
IMMUNOTHERAPY: DREAM OR REALITY?

Due to the pro-tumoral, pro-metastatic, and treatment resistance
roles of AXL, numerous therapeutic interventions targeting AXL
have been designed and investigated. Several investigators have
covered this topic well to which the readers can be referred (7, 21,
22, 30, 36–38, 53, 119, 172, 195).

As discussed, there is now compelling preclinical evidence
denoting the potential of targeting AXL to mediate sensitization
of cancer cells to immune cell-mediated attack and diminish
immunosuppression within the TIME, with beneficial additive or
synergistic effects in combination with ICI. This potential has yet
to be evaluated directly in clinical trials in most instances. Several
ongoing or recruiting studies aim to assess the value of
combining AXL targeting with ICI. While results are still
pending in most cases, we are just at the beginning of an
exciting period of discoveries leading towards better treatments
for patients, even with difficult-to-treat cancers. Here, we discuss
the promising potential for AXL targeting in immuno-oncology.
Therapeutic targeting of AXL is possible via a multitude of
strategies. First, it may be relevant to target the ligand GAS6 or
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its maturation. Secondly, the receptor itself can be targeted by
small-molecule kinase inhibitors or AXL targeting antibodies.

9.1 Selective Targeting of AXL or GAS6
AVB-S6-500 (Aravive/Stanford University) is a soluble receptor
against GAS6 (196, 197). AVB-S6-500 is undergoing Phase I and
II clinical trials in combination with avelumab (anti-PD-L1) in
patients with urothelial carcinoma (phase II, NCT04004442), or
with durvalumab (anti-PD-L1) in platinum-resistant and
recurrent ovarian cancers (phase I/II, NCT04019288).
Interestingly, a phase II study (NCT04300140) is planned to
assess the safety and efficacy of AVB-S6-500 as monotherapy, or
in combination with cabozantinib (a potent RTK inhibitor
including AXL), or cabozantinib/nivolumab (anti-PD-1), in
patients with advanced and metastatic ccRCC (Table 1)

Bemcentinib/BGB324/R428 (BerGenBio ASA/Rigel
Pharmaceuticals) is being tested for different indications.
Bemcentinib is a type 1 inhibitor showing preferential specificity for
AXL compared toMERTK and TYRO3, and high potency to inhibit
both ligand-dependent and ligand-independent AXL signaling. As
mentionedabove, it has beenusedbymany investigators inpreclinical
studies to demonstrate the roles of AXL in tumorigenesis, EMT,
metastatic spread, therapy resistance, and immunosuppression (48,
51, 56, 151, 180, 198, 199). A single-arm study has evaluated the
combination of bemcentinib with pembrolizumab (anti-PD-1) as
second-line treatment inNSCLC (phase II,NCT03184571) (Table 1).
In metastatic melanoma, another study will assess bemcentinib in
combinationwith pembrolizumab or dabrafenib/trametinib (phase I/
II NCT02872259). InMesothelioma, bemcentinib/pembrolizumab is
being compared to other targeted therapies (phase I/II,
NCT03654833). Assessment of bemcentinib/pembrolizumab effects
in refractory TNBC patients (phase II, NCT03184558) was
discontinued as none of the participants achieved a complete or
partial response (n=29). Likewise, a study combining cabozantinib
with nivolumab failed to demonstrate sufficient efficacy in TNBC
(phase II, NCT03316586). Therefore, the most lethal form of breast
cancer remains a clinical challenge, despite converging preclinical
evidence demonstrating the efficacy of AXL/TAM inhibitors
combined with PD-1 blockade in TNBC models. As
pembrolizumab plus neoadjuvant chemotherapy has recently been
established as standard of care for TNBC patients (200), the
combination of bemcentinib with the standard of care chemo-
immunotherapy regimen would be of great interest. Targeting
alternative checkpoints (e.g., CD47, TIM3, CTLA4, adenosine
receptors 2) could provide benefits to emerging therapies targeting
the PI3K, AKT, androgen receptor, CDK4/6 or PARP (201).

Dubermatinib/TP-0903 (Tolero Pharmaceuticals/Sumitomo
Dainippon Pharma) is another reported selective inhibitor of
AXL that may have additional targets such as ALK, Aurora-A,
and -B, FLT3, and MERTK (202–204). Compared to
bemcentinib, it has a more potent cytotoxicity (130, 205).
While it is interesting for specific indications such as in AML,
to our knowledge, its clinical value in combination with
immunotherapy remains to be investigated. In phase I clinical
trial in patients with advanced solid tumors (NCT02729298),
dubermatinib was given to heavily pretreated patients as a single
agent or combined with immunotherapy or a TKI. Subgroup
Frontiers in Immunology | www.frontiersin.org 11
analysis may be informative about the potential efficacy of
this agent.

BA3011/CAB-AXL-ADC (BioAtla) is an antibody-drug
conjugate (ADC) consisting of an AXL-targeting antibody
conjugated to an undisclosed cytotoxic agent. The clinical
safety and efficacy of BA3011, alone or in combination with
PD-(L)1 blockade, is being evaluated in clinical studies involving
patients with NSCLC (Phase II, NCT04681131), ovarian cancers
(Phase II, NCT04918186), solid tumors (Phase I NCT03425279),
and soft tissue and bone sarcomas (Phase II, NCT03425279).

The use of antibody-drug conjugates is considered a
promising strategy in the context of tumor heterogeneity.
Using anti-AXL receptor antibodies as vectors to deliver
cytotoxic agents to the tumor would elicit a cytotoxic agent in
target-expressing cancer subsets. It could also have anti-cancer
effects through bystander killing capacity on surrounding cancer
cell subsets, with low or no target antigen expression.

HuMax-AXL-ADC/Enapotamab Vedotin/AXL-107-MMAE
(Genmab) is another ADC incorporating a potent anti-cancer
microtubule-targeting agent, Monomethyl auristatin E (MMAE)
(206). Preclinical data demonstrated interesting properties of this
ADC (187). HuMax-AXL-ADC has been evaluated in Phase I/II
clinical study (NCT02988817) for patients with advanced solid
tumors of various types. However, Genmab will not advance the
development of this agent. The company has announced some
evidence of clinical activity, and preliminary results have not
reached proof-of-concept (company announcement, Nov 24,
2020 at 4:40 PM CET, https://ir.genmab com)

AXL-CAR-T cells have entered clinical trials (phase I for lung and
solid tumors NCT03198052; NCT04842812, phase I/II refractory
stage IV RCC NCT03393936, and sarcomas NCT05128786).
Chimeric antigen receptor (CAR) T cells directed to AXL emerged
as an attractive immunotherapeutic approach from preclinical
studies (207, 208). Results of various CAR-T studies for the
treatment of solid tumors have been less impressive in terms of
efficacy compared to that observed in hematological cancers (209).
Nevertheless, CAR technology, engineering, and knowledge of CAR-
T biology have expanded rapidly in recent years. CAR-based
therapies may offer new therapeutic solutions in the management
of patients with lethal diseases. One significant remaining challenge is
the tumor heterogeneity and tumor-specificity of targeted antigens.
Because AXL expression is not restricted to malignant cells, AXL-
CAR-T studies must be carefullymonitored for potentially significant
side effects, with a rigorous analysis of the AXL expression profile.

Collectively, these studies will confirm or refute AXL as a
unique and targetable marker of metastasis, therapy resistance,
and immune evasion while providing information on the safety,
tolerability, and efficacy of the combinations relative to
therapeutic standards. It should be noted that there is
evidence, as shown by the example of dubermatinib, that some
inhibitors previously considered selective for AXL may be potent
against other targets and depending on the context (202–204).

9.2 Multi-Kinase Inhibitors With a Proven
Effect on AXL
There is a growing body of preclinical and clinical evidence
suggesting that approaches targeting multiple TAM or AXL and
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TABLE 1 | Summary of agents and clinical trials evaluating AXL-targeting drugs with ICI, or as CAR-T therapy.

Drug Main Target(s) Clinical Trial
No

Phase Cancer Type Combination/Monotherapy Status

Bemcentinib
(BGB324, R428)

AXL NCT03184558 II TNBC +pembrolizumab Terminated

NCT02872259 Ib/II metastatic melanoma ±pembrolizumab; +dabrafenib
and trametinib

Recruiting

NCT03184571 II NSCLC +pembrolizumab Recruiting

NCT03654833 II mesothelioma +pembrolizumab vs
atezolizumab/bevacizumab vs
abemaciclib vs rucaparib vs
dostarlimab/niraparib

Recruiting

AVB-S6-500
(Batiraxcept)

GAS6 NCT04019288 I/II platinum-resistant or recurrent ovarian, fallopian
tube or primary peritoneal cancer

+durvalumab Active

NCT04004442 II urothelial Carcinoma +avelumab Recruiting
NCT04300140 I/II advanced or metastatic RCC ±cabozantinib or

+cabozantinib/nivolumab
Recruiting

Dubermatinib (TP-
0903)

AXL, ALK, Aurora-A/
B, MERTK, FLT3

NCT02729298 I refractory/recurrent NSCLC, melanomas,
colorectal and ovarian carcinoma, pretreated or
treated with immunotherapy or TKI

include groups ±
immunotherapy or TKI

Active

BA3011 (CAB-
AXL-ADC)

AXL NCT03425279 I/II advanced solid tumours (NSCLC, pancreatic
cancer,
melanoma, ewing sarcoma, osteosarcoma,
leiomyosarcoma, synovial sarcoma,
liposarcoma, Soft tissue sarcoma, bone
sarcoma, refractory sarcoma)

±nivolumab Recruiting

NCT04681131 II NSCLC ±PD-1 inhibitor Recruiting

NCT04918186 II ovarian cancer +durvalumab Recruiting

NCT03425279 II soft tissue and bone sarcomas ±PD-1 inhibitor Recruiting

ONO-7475 AXL, MER, TYRO3,
FLT3, PDGFRa,
TRKA/B

NCT03730337 I advanced solid tumours ±nivolumab (ONO-4538) Recruiting

Q702 AXL, MER, CSF1R NA NA esophageal, gastric, hepatocellular, and
cervical cancers

+pembrolizumab Designed

CCT301-38
(CAR-T)

AXL NCT03393936 I/II recurrent or refractory stage IV RCC monotherapy Active

NCT05128786 I relapsed or refractory AXL positive sarcomas monotherapy Recruiting

AXL-anti-PD1/
CTLA4-scFv-PD1
KO-CAR-T)
(among ohers)

AXL NCT03198052 I lung cancer -/+ CART to PSCA, MUC1,
HER2, Mesothelin, GPC3
EGFR, or B7-H3

Recruiting

AXL-CAR-T
(among ohers)

AXL NCT04842812 I advanced and recurrent cancers monotherapy Recruiting

Sitravatinib
(MGCD516)

AXL, MER, MET, KIT,
TRKA/B, DDR2,
VEGFR1/2/3, EPHA3,
TYRO3

NCT03575598 I HNSCC, SCC of mouth, and oral cavity +nivolumab (neoadjuvant) Completed

NCT02954991 II metastatic NSCLC +nivolumab Active

NCT03941873 I/II HCC, gastric/gastroesophageal cancer ±tislelizumab Active

NCT03680521 II ccRCC (locally-advanced) +nivolumab (neoadjuvant) Active

NCT04887870 III advanced or metastatic solid
malignancies

±nivolumab, pembrolizumab,
enfortumab vedotin, ipilimumab

Recruiting

NCT03906071
(SAPPHIRE)

III NSCLC (metastatic non-squamous) +nivolumab vs docetaxel Recruiting

NCT04921358 III recurrent NSCLC +tislelizumab vs docetaxel Recruiting

NCT04518046 I metastatic ccRCC and solid tumors +nivolumab/ipilimumab Recruiting

(Continued)
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TABLE 1 | Continued

Drug Main Target(s) Clinical Trial
No

Phase Cancer Type Combination/Monotherapy Status

NCT04727996 II advanced biliary tract cancer +tislelizumab Recruiting

NCT03606174 II urothelial carcinoma +nivolumab, +pembrolizumab/
enfortumab Vedotin

Recruiting

NCT05104801 II unresectable or metastatic melanoma ±tislelizumab Recruiting

NCT03170960 I/II locally advanced or metastatic solid tumors +atezolizumab Recruiting

NCT04925986 II NSCLC (non-squamous, advanced treatment-
naïve PD-L1+)

+pembrolizumab Not yet
recruiting

NCT04904302 II metastatic or advanced ccRCC +nivolumab Not yet
recruiting

NCT04734262 II recurrent or metastatic TNBC +tislelizumab Not yet
recruiting

NCT05228496 II small cell lung cancer +tislelizumab Not yet
recruiting

Cabozantinib VEGFR2, AXL, MET,
KIT, RET, FLT-3, TIE-
2

NCT03141177
(Checkmate

9ER)

III advanced ccRCC +nivolumab vs sunitinib alone
as first line

Active

NCT03937219
(COSMIC-313)

III advanced ccRCC +nivolumab/ipilimumab vs
nivolumab/ipilimumab

Active

NCT04338269
(CONTACT-03)

III recurrent ccRCC or nccRCC after ICI ±atezolizumab Active

NCT03468985 II advanced NSCLC ±nivolumab vs ±nivolumab/
ipilimumab vs nivolumab

Active

NCT04471428
(CONTACT-01)

III recurrent NSCLC after anti-PD-L1/PD-1 and
chemotherapy

+atezolizumab vs docetaxel Active

NCT03299946 I HCC +nivolumab (neoadjuvant) Active

NCT01658878
(CheckMate040)

I/II HCC +nivolumab vs +nivolumab/
ipilimumab vs nivolumab

Active

NCT02496208 I metastatic genitourinary Tumors +nivolumab/ipilimumab Active

NCT03316586 II cabozantinib for metastatic TNBC +nivolumab Completed

NCT03793166
(PDIGREE)

III recurrent RCC after Nivo/IPI ±nivolumab as second line Recruiting

NCT04322955
(Cyto-KIK)

II ccRCC +nivolumab (neoadjuvant) Recruiting

NCT03635892 II advanced nccRCC ±nivolumab Recruiting

NCT03755791
(COSMIC-312)

III HCC ±atezolizumab vs sorafenib as
first-line

Recruiting

NCT03539822 II advanced gastroesophageal and
gastrointestinal malignancies

+durvalumab or +durvalumab/
tremelimumab (anti-CTLA4)

Recruiting

NCT05007613 II recurrent or metastatic esophageal SCC +atezolizumab Recruiting

NCT04963283 II refractory metastatic colorectal cancer +nivolumab Recruiting

NCT04446117
(CONTACT-02)

III metastatic castration-resistant prostate cancer
(mCRPC)

+atezolizumab vs abiraterone/
enzalutamide/prednisone

Recruiting

NCT04400474 II endocrine and neuroendocrine tumors +atezolizumab Recruiting

NCT04477512 I metastatic hormone sensitive prostate cancer +nivolumab/Abiraterone Recruiting

NCT03866382 II rare genitourinary tumors +nivolumab/ipilimumab Recruiting

(Continued)
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other RTK receptors are particularly well suited to potentiate
the efficacy of ICI. Such agents are attractive due to their
potential to act on a variety of independent mechanisms,
thereby reducing the likelihood of resistance. However, in
some cases, these drugs may suffer from increased toxicity.
Some compounds with a broader range of targets than just AXL
are considered.

9.2.1 Multi-Target Inhibitors Selective for TAMs in
Preclinical/Early-Stage Clinical Development
RXDX-106 (Ignyta) is a selective TAM (TYRO3, AXL, MERTK)
inhibitor that can also inhibit MET and RON kinases (210, 211).
RXDX-106 entered Phase 1 evaluation, but the trial was
terminated (NCT03454243). In the preclinical setting, RXDX-
106 had significant antitumor activity in multiple syngeneic
tumor models (MC38, Renca, EMT-6) acting both on the
tumor and immune cell compartments (210). RXDX-106
administered alone was associated with tumor growth delays
and a significant increase in tumor-infiltrating leukocytes, M1-
polarized intratumoral macrophages, and activation of NK cells,
indicative for mobilization and activation of both innate and
adaptive anti-tumor immunity in treated mice (210). RXDX-106
exhibited effects via direct actions on TAM receptors expressed
on intratumoral macrophages, DCs, and tumor cells. Indirect
effects were also perceived on macrophages, DCs, NK cells,
CD4+ and CD8+ T cells. Interestingly, the investigators noted
variations in AXL and MERTK expression during tumor
progression and treatment exposure. In two murine colorectal
tumor models commonly used in the immuno-oncology field
(CT26 and MC38), RXDX-106 further potentiated the effects of
Frontiers in Immunology | www.frontiersin.org 14
anti-PD-1 therapy, correlating with enhanced antitumor efficacy
and survival of mice (210). Clinical trials are warranted to
confirm the clinical relevance of the findings. As claimed
by the investigators, RXDX-106 may have a more durable
target engagement compared to other agents that are more
advanced in their clinical development (e.g., bemcentinib or
cabozantinib). More work is needed to investigate this
intriguing possibility in appropriate models. Additionally, it
would be interesting to know if this holds true against other
anti-TAM receptor compounds.

INCB081776 (Incyte) is a novel AXL/MERTK inhibitor that
might also inhibit MET. A phase 1 study will explore the safety
and tolerability of INCB081776 in patients with advanced
malignancies (INCB081776). In mice bearing established
MC38 and 4T1 tumors, it showed interesting additive effects
with anti-PD-L1, by reducing tumor growth by 70% and 55%,
respectively (212). Other agents are of interest because of their
selectivity for TAMs, coupled with the fact that they are being
clinically evaluated in phase 1. These include ONO-7475 (Ono
Pharmaceutical Co), selective for AXL, MER, TYRO3, and FLT3
(127), which will be evaluated in AML and solid tumors
(NCT03176277 NCT03730337). Q702 (Qurient Co) has been
reported with selectivity for AXL, MERTK, and CSF1R (213).
Dose escalation and safety profile are evaluated (NCT04648254).
The company also announced the design of a phase 1b/2 trial
evaluating the combination with pembrolizumab. MRX-2843/
UNC2025 (Meryx, Inc) is selective for MERTK, FLT3 with less
activity against AXL and TYRO-3 (214, 215). Phase 1 studies are
enroll ing patients with refractory/advanced NSCLC
(NCT04762199) and solid tumors (NCT03510104).
TABLE 1 | Continued

Drug Main Target(s) Clinical Trial
No

Phase Cancer Type Combination/Monotherapy Status

NCT04289779 II muscle-Invasive bladder cancer +atezolizumab (neoadjuvant) Recruiting

NCT03824691 II advanced and chemotherapy-treated bladder
carcinoma

+durvalumab Recruiting

NCT04514484 I advanced cancers with HIV +nivolumab Recruiting

NCT04230954 II recurrent and metastatic cervical cancer +pembrolizumab Recruiting

NCT03824691 II advanced and chemotherapy-treated bladder
carcinoma

+durvalumab Recruiting

NCT04820179 II recurrent and metastatic pancreatic cancer +atezolizumab Not yet
recruiting

NCT05092958 III metastatic urothelial cancers +avelumab vs avelumab
maintenance

Not yet
recruiting

NCT05039281 II recurrent glioblastoma +atezolizumab Not yet
recruiting

NCT05019703 II recurrent or metastatic osteosarcoma +atezolizumab Not yet
recruiting

NCT05111574 II mucosal melanoma +nivolumab (adjuvant) Not yet
recruiting
April 2022 | Volume 13 | Art
Information was obtained from www.clinicaltrials.gov. Abbreviations: ccRCC, clear cell renal cell carcinoma; nccRCC, non-clear cell renal cell carcinoma; RCC, renal cell carcinoma;
NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer; HCC, Hepatocellular carcinoma; HNSCC, Head and neck squamous cell carcinomas; SCC, Squamous Cell
Carcinoma.
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9.2.2 Multi-Target Inhibitors for AXL, TAM,
and Non-TAM RTKs
Sitravatinib/MGCD516 (Mirati Therapeutics) is a multitargeted
kinase inhibitor that potently enhances the efficacy of anti-PD-1,
as observed in the murine KLN205 lung- as well as in the
murine E0771 breast- cancer models (216). Sitravatinib targets
VEGFR1/2/3, c-KIT, MET, DDR2, and TAM receptors (TYRO3,
AXL, MERTK). In vitro, the investigators used mouse bone
marrow-derived macrophages to show that sitravatinib can
prevent monocytes from polarizing into immunosuppressive
macrophages in cultures containing immunosuppressive
conditioned medium and IL-4. Importantly, MerTK–/–
BMDMs were unaffected by sitravatinib, indicating a central
role for MERTK on macrophage polarization in these conditions.
In tumors derived from the murine KLN205 cancer cells,
sitravatinib significantly reduced the proportion of PD-L1-
expressing-MDSCs and tumor-associated macrophages
among CD11b+ cells and increased T-cell infiltration (CD3+,
CD4+ CD8+, Ki67+ PD-1+ CTLA-4+). The authors suggest
that the observed antitumor activity primarily relates to
microenvironmental changes upon sitravatinib exposure. This
study focused on the role of MERTK. Still, given the distinct and
complex expression patterns of AXL, MERTK, and TYRO3, it
would be interesting to investigate whether sitravatinib can also
target AXL on the different cell subsets.

Sitravatinib has been investigated in combination with anti-PD-
1 in different settings, as neoadjuvant treatment for locally advanced
ccRCC (phase II, NCT03680521) with promising data. The
investigators noted stable disease and partial responses but no
patients with progressive disease while on treatment, suggesting
the clinical activity of this combination. These results appear to
correlate with an increase in tumor immune cell infiltration and
inflammatory signatures (217). In the preoperative setting, the
SNOW study demonstrated that sitravatinib plus nivolumab was
safe and efficacy in oral cavity carcinomas (NCT03575598 (218).
Another study in NSCLC is currently evaluating this combination
in the metastatic setting (NCT02954991). Sitravatinib alone or
combined with tislelizumab has been tested in unresectable
advanced/metastatic hepatocellular carcinoma (HCC) and gastric
cancer (phase I/II, NCT03941873). Other studies are planned
(NCT04904302, NCT04925986 , NCT04734262) , or
recruiting (NCT04518046, NCT04727996, NCT03606174),
including three phase III studies to assess combination therapies
in different settings for advanced/recurrent NSCLC (NCT03906071,
NCT04887870) and various malignancies (NCT04921358).

BMS-777607/ASLAN002 (ASLAN Pharmaceuticals/Bristol-
Myers Squibb) is a MET/RON inhibitor that also inhibits AXL
and TYRO3 (219). The therapeutic potential of the pan-TAM/
MET inhibitor BMS-777607 in combination with anti-PD-1 was
examined in the murine breast cancer E0771 model (219). In this
model, AXL expression is weak in macrophages and high in tumor
and DCs, whereas MERTK and TYRO3 expression is marginal in
carcinoma cells and restricted to macrophages and DCs. BMS-
777607 promoted antitumor, and antimetastatic activity, as well as
host antitumor responses while synergizing with anti-PD-1
therapy. In a Phase I trial (220) (NCT01721148), the drug was
Frontiers in Immunology | www.frontiersin.org 15
considered well-tolerated. It resulted in long-term stable disease
and partial responses in certain tumor types, leading to initiation
of a Phase II trial and results pending (NCT00605618).

Cabozantinib/BMS-907351/Cabometyx/XL184/Cometriq
(Exelixis/Ipsen) is a potent inhibitor of VEGFR2, MET, RET, AXL,
KIT, FLT3, and Tie2 (221). It is approved for various indications,
including first-line and recurrent metastatic RCC and HCC. Often
considered an angiogenesis inhibitor, preclinical studies have also
shown its potential to inhibit EMT (222, 223). The specific effect of
this drug on AXL is an interesting follow-up question that should
be studied further. Additionally, cabozantinib may promote
immunomodulation toward an immune-permissive TME,
supporting the development of cabozantinib in combination
with immunotherapy in various indications (224–226). In solid
tumors, recent clinical trials revealed increased efficacy in
combination with anti-PD(L)-1. The COSMIC-021 is a Phase Ib
non-randomized study of cabozantinib in combination with
atezolizumab in subjects with locally advanced or metastatic
disease (NCT03170960). The trial is enrolling 24 cohorts in 12
tumor types and up to 1,720 patients. Initial results presented at
the Asco meetings showed favorable safety and efficacy profiles for
this combination in patients with various cancer types, including
NSCLC, RCC, urothelial cancer, and castration-resistant
prostate cancers.

In RCC, the phase III Checkmate 9ER study (NCT03141177)
evaluated cabozantinib + nivolumab versus sunitinib as first-line
treatment in patients with advanced ccRCC. The initial
results published by Choueiri and colleagues are encouraging. With
a median follow-up of 18.1 months, nivolumab plus cabozantinib
demonstrated significant superiority over the antiangiogenic agent
sunitinib, in terms of median progression-free survival (PFS)(16.6
months vs 8.3months), overall survival (OS) at 12 (months 85.7% vs
75.6%) and, objective response rate (55.7% vs 27.1%) (227).
Preliminary results from the recently reported phase II trial,
NCT03635892, also indicate a promising safety profile and efficacy
of cabozantinib + nivolumab in advanced RCC with non-clear cell
histology, including papillary RCC [ORR 54% and 36% as of 1st line
or 2nd line, respectively (228)]. The Phase III trial COSMIC-313
(NCT03937219) explores the safety and efficacy of the triplet therapy
(cabozantinib + nivolumab + ipilimumab) versus nivolumab and
ipilimumab for patients with intermediate- or poor- risk advanced
RCC (229). The CONTACT-03 study (III, NCT04338269) is now
active to evaluate cabozantinib alone or in combination with
atezolizumab in metastatic RCC patients who experienced
progression during/after ICI treatment. In the PDIGREE Study
[phase III NCT03793166 (230)] after the first-line treatment with
nivolumaband ipilimumab,patientswithmetastaticRCCwill receive
cabozantinib in the event of progression, nivolumab versus
nivolumab cabozantinib in the event of partial response or with
stable disease, while patients with complete responses (CR) will
receive nivolumab as maintenance therapy. In NSCLC, a phase II
study (NCT03468985)evaluates thebenefit of addingcabozantinib to
nivolumab, or nivolumab plus ipilimumab, versus nivolumab alone
in the treatment of patients with recurrent Stage IV NSCLC. In the
CONTACT-01 study (phase III, NCT04471428), atezolizumab
combined with cabozantinib versus docetaxel is evaluated in
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patients with metastatic NSCLC previously treated with an anti-PD-
L1/PD-1 and platinum-containing chemotherapy. In Hepatocellular
carcinoma (HCC), the COSMIC-312 trial (Phase 3, NCT03755791)
evaluates the safety and efficacy of cabozantinib plus atezolizumab
versus sorafenib, or cabozantinib alone as first-line treatment for
advanced disease (231). Exelixis and the investigators
recently announced encouraging results with significant PFS
benefits compared to single agents and a trend toward improved
OS at the interim analysis (232). The final analysis of OS results is
expected for early 2022. In Phase I/II trial NCT01658878, patients
with advanced liver cancer (CheckMate040) receive nivolumab or
nivolumab in combination with other agents, including nivolumab
plus cabozantinib, and nivolumab plus ipilimumab plus
cabozantinib. In patients with metastatic castration-resistant
prostate cancer, a phase III study (NCT04446117, CONTACT-02)
will evaluate the value of cabozantinib/atezolizumab over
abiraterone/enzalutamide/prednisone treatments. Additional
phase I or II studies are planned, recruiting, or ongoing
to evaluate the safety and efficacy of cabozantinib-based
combinations in numerous malignancies (Table 1).
10 FUTURE CONSIDERATIONS IN THE
USE OF AXL/TAM TARGETING AGENTS

Numerous companies have developed agents preferentially
targeting AXL, TAM receptors, or AXL and related RTKs such
as MET receptor. Some agents have already been discontinued,
while others are in preclinical evaluation or in early phase clinical
trials, with the potential to expand the therapeutic arsenal in the
future as first- or subsequent-lines of therapy for specific
indications. It might be beneficial to use those sequentially or
utilize synergistic combinations to increase effectiveness against
cancer, preventing the emergence of acquired resistance and
compensatory mechanisms (233). With the increasing number of
available agents targeting AXL, it will be essential to learn more
about the extent to which these agents differentiate in terms of
efficacy and toxicity. TAM receptors are expressed by many
different cell types. Thus, one can assume higher toxicity for
anti-TAM agents in case of high potency. It would be interesting
to know if highly potent pan-TAM inhibitors can be beneficial over
more selective inhibitors for AXL, GAS6, MERTK, or TYRO3.
Analysis of clinical and outcome measures in separate studies can
be informative but certainly not sufficient in this regard. Clinical
data comparing the available agents are lacking. The fact that some
completed studies have not reported their results is also
problematic, raising concerns about high toxicity or low efficacy.
A clinical trial design optimized with different dose schedules and
incorporating predictive biomarkers may fulfill some of these
requirements. Molecular markers that may assist in therapeutic
decision-making are needed. Both preclinical and clinical studies
should devote efforts to assess correlations between the target
expression and therapeutic response. Confirmation of AXL
expression or activation is not systematically verified,
augmenting the risks associated with unnecessary treatment,
increased morbidity, and unnecessary costs.
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11 AXL AND RELATED-TIME
COMPONENTS AS PROMISING
BIOMARKERS FOR TREATMENT
DECISIONS

In a recent survey of 316 ccRCC cases, high AXL expression in
tumor cells was associated with a lower response rate to anti-PD-1
therapy in metastatic ccRCC patients who were refractory to anti-
angiogenic agents in the NIVOREN phase II trial (188). High AXL
expression was also associated with increased PD-L1 tumoral
expression, and ccRCC patients with concomitant PD-L1 and
high AXL expression in their tumor specimens had the worst OS.
The effect of AXL on clinical outcomes and PD-L1 expression was
preferentially observed in tumors with loss of the VHL tumor
suppressor, a key regulator of hypoxia through targeting HIF for
proteasomal degradation under normoxia, evoking the hypoxia-
dependent nature of these associations. VHL inactivation, however,
did not seem to influence AXL mRNA or protein expression levels
in this cohort of samples, suggesting that AXL action, rather than
AXL expression level per se, is magnified by hypoxia in this setting.

Hakozaki et al. recently reported a large-scale analysis of
primary and metastatic RCC lesions (234). The investigators
showed that combined GAS6/AXL scoring, obtained from IHC
on tissue microarray (TMA) samples, was an independent marker
of poor prognosis following surgery, proving superior to each
staining alone. The analyzed cohorts may differ from cohorts of
patients currently treated with ICI for advanced and metastatic
disease, and it is yet unproven whether this scoring may predict
resistance to ICI therapy. Beyond showing that AXL combined
with GAS6 immunostaining is predictive for poor prognosis, the
investigators discovered novel associations between a high GAS6/
AXL score and increased CD73, CD47, CSF1R, LAMP2, and IDO-
1 immunostainings in primary lesions, suggestive of an
immunosuppressed TIME in this subset. CD73 and LAMP2
were also strongly associated with a high GAS6/AXL profile in
metastatic lesions, supporting their essential roles in the
progression of these tumors. Intriguingly, among many other
molecules tested, including immune checkpoint receptors (PD-1,
CTLA-4, TIM3) and PD-L1, none was found to be correlated with
GAS6/AXL status, except LAG3 in the metastatic setting. The lack
of correlation with PD-L1 is in contrast with previous preclinical
studies (183, 186, 189), as well as the recent observations of an
association between tumoral expression of AXL and PD-L1 in the
Nivoren RCC Cohort (188). One intriguing possibility is that
GAS6 may interfere with the AXL-PD-L1 association. It would be
interesting to investigate further the potential relationships
between AXL, GAS6, PD-L1, CD73 and their spatial
distribution, since other investigators have found in TNBC
samples a preference of AXL-expressing carcinoma cells to be in
contact with the stroma (58).

Importantly, under some circumstances, hypoxia and
pseudohypoxia may act on transcriptional regulation of AXL or its
protein stabilization (98, 112, 113, 235). AXL was also found to be a
component of the IPRES gene signature alongwith other knownHIF
targeted genes like ROR2, WNT5A, LOXL2 VEGFA, and VEGFC
(236). IPRES stands for “innate PD-1 resistance signature’’ and was
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developed from metastatic melanoma transcriptomic data. The
IPRES signature is characterized by upregulation of EMT-related
factors, including AXL, immunosuppressive cytokines, hypoxia, and
pro-angiogenic factors. Unfortunately, the signature was not
confirmed to be associated with PD-1 inhibitor response in
subsequent studies (237). In melanoma, tumors enriched for
MITFlow/AXLhigh population seemed more likely to be resistant to
PD-1 inhibition (191).

Various signatures have been proposed to predict response to ICI
that have yet to be validated prospectively. This includes signatures
that capture the immune response, such as the 18-gene tumor
inflammation signature (TIS) that measures the expression of
inflammatory genes such IFN-g signature (238), as well as the
cytolytic index (CYT), which is based on the expression of GZMA
(granzymeA) andPRF1 (perforin) expression, that serve as surrogate
markers of T-cell cytotoxic activity (239). In 44 pre-treated
melanoma tumors, the expression of these signatures, as well as
the presence of CD8+ T cell population, did not accurately predict
response to anti-PD-1 (191). This could be explained in part by the
finding that the inflamed/non-inflamed status may exhibit
significant intratumor heterogeneity between biopsies taken
before and after treatment (191). This work highlights the risk of
relying solely on baseline predictive biomarkers to guide a patient’s
treatment trajectory, as they may not capture inherent tumor
heterogeneity, much like the selective pressures evoked by ICI
modifying a tumor’s evolutionary trajectory. Thus, testing of
biopsies from different tumor sites should be incorporated when
validating such biomarkers, and the impact of heterogeneity on
their clinical relevance should be examined. Although ethically
questionable and complicated to implement in clinical practice,
longitudinal sampling would be beneficial to advance our
knowledge in this respect. The TIME is critical to effective
therapy, and although the contribution of AXL or GAS6/AXL-
related signatures in predicting ICI resistance remains unproven
(133, 234), it would be of great interest to study how surrogate
markers of immune response in combination with such signatures
could improve their predictive value. As observed in numerous
cancer systems, associations between AXL, TGF-ß signaling, and
reduced levels of MHC class I deserve to be further investigated.
12 CONCLUDING REMARKS AND
REMAINING CHALLENGES

Despite significant advances in the field of cancer immunotherapy,
to date, survival benefits have been limited to a minority of patients,
and durable clinical responses are rare. It has become clear that the
TIME plays a crucial role inmediating response to treatment. In this
regard, understanding how tumors escape anti-tumor immunity
and characterizing the underlying mechanisms of immunotherapy
resistance is critical. AXL and other TAM receptors are now
recognized to play essential roles in regulating the TIME.
Accumulating evidence indicates that AXL may confer intrinsic
and extrinsic capacities to avoid destruction by immune effector
cells. However, the underlying mechanisms by which AXL
contributes to counteracting anti-tumor defenses are not yet fully
understood and merit further investigation in several malignancies.
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Moreover, the molecular links between tumor cell plasticity, AXL
expression, and resistance to immunotherapy remain unclear. More
studies are required to understand the interactions between the
different cellular components of the TIME, as well as many elements
affecting tumor metabolism such as hypoxia, nutrient depletion, pH
deregulation, oxidative or mechanical stressors, all of which could
regulate AXL expression and/or selection of AXL-expressing cells.
Research is also needed to elucidate the epigenetic determinants of
AXL expression.

Developingpharmacological agents tomodulateAXLactivity or
the GAS6/AXL pathway is attracting attention in the field of
immuno-oncology. These agents hold the potential to act on both
cancer and stromal compartments, thus combining anti-cancer
effects and stromal remodeling towards an immune permissive
TIME and immune sensitization of cancer cells.We are at the dawn
of a new area of discoveries based on an increasingly detailed
knowledge of AXL biology, the development of compounds
targeting AXL, or multiple TAM receptor family members. These
compounds are being evaluated in a wide array of cancer patients
either as monotherapy or in combination clinical trials with
immunotherapies, mainly anti-PD-1 or anti-PD-L1. These
clinical trials will hopefully lead to significantly improved patient
survival, and will also contribute to a better understanding of AXL
biology to set the directions for future basic and translational
research efforts. Integrating biomarker studies will be crucial to
guide and interpret clinical results. We and others assume that
molecular testing and target evaluation on cancer and immune cells
in the TME should accompany these efforts to ultimately increase
the clinical response rates. Finally, novel therapy combinations
incorporating other immune checkpoints (e.g., CD47, TIM3, LAG-
3, TIGIT,CTLA4, adenosine receptors 2) shouldalsobe considered.
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