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A B S T R A C T

We consider a porous medium containing a single fracture, and identify the aperture to length ratio as the small
parameter 𝜀 with the fracture permeability and the fracture porosity scaled as exponents of 𝜀. We consider a
two-phase flow where the flow is governed by the mass balance and the Darcy law. Using formal asymptotic
approach, we derive a catalogue of reduced models as the vanishing limit of 𝜀. Our derivation provides new
models in a hybrid-dimensional setting as well as models which exhibit two-scale behaviour. Several numerical
examples confirm the theoretical derivations and provide additional insight.
1. Introduction

Fractures are in abundance in the subsurface such as soils (National
Research Council et al., 2001; Smith et al., 2003; Watanabe et al.,
1998), in glaciers (Fountain and Walder, 1998), and in many other
types of porous media such as wood and concrete (Carmeliet et al.,
2004). Fractures are discontinuities in the medium that form narrow
zones where the hydraulic properties such as permeability or porosity
are strongly different from the surrounding matrix. The fractures have a
strong influence on flow and transport, either making flow in certain di-
rections several orders of magnitude more rapid than in other directions
or possibly nearly blocking flow in certain directions. In cases where the
fracture is highly permeable it can act as the dominant flow pathway
through a porous matrix where there is almost no flow in the porous
matrix, or in cases with low permeability in the fracture it may act as an
barrier allowing no fluids to pass through (Adler and Thovert, 1999).
Taking them into account therefore is of great interest in a wide variety
of applications. For instance, in the petroleum extraction, a fracture can
lead to enhanced oil production, or in CO2 storage applications it can
act as a leakage pathway. Therefore, the effects of fractures or entire
fracture network need to be incorporated in mathematical models for
fluid flow and transport.

There is a rich literature dealing with fractures and we refer to
textbooks (Bear, 1988; Helmig et al., 1997; Adler et al., 2012) as
standard references and to Berre et al. (2019) for a recent survey. The
fracture has a small aperture to length ratio, and this makes it difficult
to resolve the fluid flow explicitly through brute force computations.
This is evident as the thinner the fracture is, one requires smaller
grid size to resolve it. In most cases, this is also not of much use as
the transverse flow details may not be important in a thin medium.
Given that the resolution of the fracture by discretizing the thin and
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long medium is computationally infeasible, we are left with alternative
approaches to account for their impact. Several approaches exist that
account for this impact and we refer to a recent survey (Berre et al.,
2019) where they describe some of the most known methods.

There are two wider classes in which we can classify the methods
to take the fractures into account. One is the continuum type models
where the effects of fractures are incorporated by suitably modifying
the matrix hydraulic properties (Gerritsen and Durlofsky, 2005; Arbo-
gast et al., 1990), and the second discrete fracture network or mixed
dimensional models where the fractures are embedded as a lower di-
mensional objects in a porous matrix. The second class of methods relies
on explicit representation of fractures but representing them as lower
dimensional geometric objects embedded in a three dimensional porous
matrix. Due to the huge number and a large variation in the shapes
and sizes of the fractures in a real porous medium, it is not possible to
resolve all the fractures. A compromise is achieved by explicitly repre-
senting only the most dominant fractures and incorporating the smaller
ones in terms of effective hydraulic properties as in the continuum
models. The variant of these approaches are known as discrete fracture
matrix model (DFM), Discrete fracture network models (DFN), reduced
models, or more generally as mixed-dimensional models. This has been
widely used (Bastian et al., 2000; Reichenberger et al., 2006; Fumagalli
and Scotti, 2013; Aghili et al., 2019) for a variety of flow models,
and Singh et al. (2014), Girault et al. (2016), Bukac et al. (2016),
Bukač et al. (2015), Andersen and Evje (2016), Brenner et al. (2018)
for multiphysics models including geomechanics and other advanced
physical models. The advantage of this method is a more faithful
representation of the fracture network geometry but the challenges
are in dealing with the amount of geometric complexity contained
within discretized grid block and the effect of strong heterogeneity
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of the fracture-matrix properties, for instance discontinuities in matrix
pressure across the fracture caused by resistance to flow. The setting of
this paper is in the second class of method.

The particularity of our setting is an immiscible two-phase flow
model widely used in the multiphase flow problems where two or more
fluids share the pore-scape. The interplay of capillary, viscous, and
buoyancy forces for the fluids in a complex pore geometry leads to a
nonlinear, possibly degenerate system of partial differential equations
modelling the flow behaviour. Standard textbooks e.g., Bear (1988)
discuss these flow equations and are standard in porous media flow
studies. Our work deals with the effective models that explicitly rep-
resents the fractures and focusses on the effect of heterogeneities in
the fracture-matrix properties. In particular, we use formal asymptotic
approach to provide a rational derivation of the variety of effective
models that result for different regimes of this heterogeneity. The
starting model is an equi-dimensional one for the fracture and the
matrix where the fracture is represented as a thin domain with a non-
zero thickness with the standard two-phase Darcy equations describing
the flow in both the fracture and matrix. The use of standard two-phase
Darcy model for the fracture is premised on the fact that the fracture
is also assumed to be porous though possibly with drastically different
hydraulic properties. Natural interface conditions of the continuity of
pressure and fluxes are imposed at the matrix–fracture interfaces. One
of the new difficulties that comes with a two-phase flow model is the
different relative permeability and the capillary pressure curves for
flow in the fracture and in the matrix. Roughly speaking, our work
here derives effective models as the limit of the thickness of fracture
vanishes leading to reduced order models where the fracture becomes
effectively a lower dimensional geometric object. We focus on the
derivation of these effective models.

This work connects the surrounding matrix which is solved by a flow
equation with a fracture that is solved using a differential equation on
the lower dimensional fracture surface. These fracture can, depending
on their properties, act as barriers, open fracture or something in
between. This suggests that the upscaled models should distinguish
between these cases. The key parameter in our approach is 𝜀, the
atio of the width to the length of the fracture. The porosity and the
ermeability contrast of the fracture-matrix heterogeneity is then taken
s the scale of 𝜀 as follows:
𝜙𝑓
𝜙𝑚

∝ 𝜀𝜅 and �̂�𝑎,𝑓
�̂�𝑎,𝑚

∝ 𝜀𝜆.

Here, 𝜙𝑓 , �̂�𝑎,𝑓 and 𝜙𝑚, �̂�𝑎,𝑚 are the porosities, absolute permeabil-
ities of the fracture and the matrix, respectively. Our assumption for
the starting model is of Darcy type in both the fracture and the matrix.
This corresponds to the situation when the fracture is filled with some
material so that we assume the model equations are of the same type
in both the subdomains. The two parameters 𝜅 and 𝜆 determine the
contrast of hydraulic properties of matrix versus those of the fracture.
Our approach is to derive effective models as 𝜀 goes towards zero for
different values of the parameters 𝜅 and 𝜆. In contrast to the single
phase flow, here the relative permeability and the capillary pressure
curves may be different in the fracture and the matrix. Though we
consider a single fracture, following Formaggia et al. (2014) our work
can be used to provide a hierarchy of reduced models based on the
properties of the fractured networks.

Our approach uses formal asymptotics for the derivation of upscaled
models. These upscaled models are the equations satisfied by the
leading order term in the expansion of the solution variables. Similar
works pertaining to the derivation of upscaling of models for fractured
medium have been followed in Dugstad et al. (2021) and Kumar et al.
(2020). In Dugstad et al. (2021) they explore the effects of polymer in
a fracture case where the permeability of the fracture is scaled with
the width of the fracture. Moreover, the permeability is supposed to be
anisotropic and the effective models are obtained as a result of the scal-
2

ings for the diagonal permeability components. A closer reference to the
present work is Kumar et al. (2020) where similar effective models but
for the Richards equation have been obtained. The similarity is closer
here as in the present case both the porosity and the permeability are
scaled as the exponents of 𝜀. Here, we follow a similar approach but
for an immiscible two-phase flow containing oil and water. The two-
phase flow model is the standard multiphase flow widely used in the
subsurface energy and environmental applications and in the fractured
context, it has also been widely used in the literature, see e.g., (Bastian
et al., 2000; Pruess and Narasimhan, 1982) where they study two-phase
flow in a fractured porous medium. Surprisingly though, there are far
fewer results on the derivation of effective models. The closest to our
situation is Ahmed et al. (2017) where reduced models are derived for
two-phase flow models. However, the approach there is quite distinct
from the ones we follow. Their approach is inspired from the analogous
work in the single phase flow case as performed in Martin et al. (2005).
Our results are consistent with their results in certain regimes of the
permeability. We make this comparison later in the Remark 3.1. In
contrast to a formal approach here, a rigorous mathematical approach
has been widely used in literature. We refer to the works of Morales and
Showalter (2010, 2012), Tunc (2012) for a single phase flow. In case
of the Richards equation we refer to List et al. (2020) where mathe-
matically rigorous convergence results are obtained for a certain range
of parameters. For a study on the transport equation in similar setting
we refer to the work by Pop et al. (2017). Gander et al. (2021) uses
Fourier analysis to obtain coupling conditions between subdomains and
obtain model error estimates when the fracture is represented as a
hypersurface embedded in the surrounded rock matrix. In Neuss-Radu
and Jäger (2007), Gahn et al. (2018, 2016), the authors consider a
thin domain with periodic coefficients for a reactive transport model
and perform a rigorous two-scale homogenization to obtain interface
conditions.

The numerical methods for solving multiphase flow in a fractured
medium has received more attention. We refer to the literature (Hoteit
and Firoozabadi, 2008; Fumagalli and Scotti, 2013; Kim and Deo, 2000;
Fumagalli et al., 2019; Brenner et al., 2015; Angot et al., 2009) and the
recent review of Berre et al. (2019) for a discussion on the numerical
methods for solving the reduced models for two-phase flow. A typical
approach is using domain decomposition and mortar variables for the
fracture variables. In the present work, we will use three different
models which treat the fracture in different ways. One model where
the fracture is treated as a lower dimensional object, one ‘‘two scaled
model’’ where the fracture is rescaled into a separate domain and one
model where the fracture acts as an barrier where there is zero flux
over the fracture

The paper is structured as follows. In Section 2, we introduce our
two-phase flow model where we work with a non-degenerate case.
In Section 3 we give a catalogue of the effective models for different
permeability and porosity in the fracture. In Section 4 we derive our
effective models. Here, we use a formal asymptotic approach and obtain
upscaled models for the different regimes of parameters 𝜅 and 𝜆. In Sec-
tion 5 we introduce our numerical results which illustrate the quality
of our upscaled models and in the last section we state our conclusions
regarding the upscaled models and the numerical simulations.

2. Model equations and scaling

First we formulate the models in a dimensional form. Let �̂� ⊂ R2

be an open, bounded, and convex polygonal domain with boundaries
denoted by 𝜕�̂�. The domain contains a single fracture �̂�𝑓 which divides
�̂� into two subdomains �̂�1 and �̂�2. We get that �̂� = �̂�1 ∪ �̂�2 ∪ �̂�𝑓 ,
and that �̂�∖�̄�𝑓 = �̂�1 ∪ �̂�2. The interfaces between the subdomains are
denoted by 𝛤1 = 𝜕�̂�1∩𝜕�̂�𝑓 and 𝛤2 = 𝜕�̂�2∩𝜕�̂�𝑓 . We reduce the fracture
domain to be a one-dimensional interface between the two domains �̂�1
and �̂� .
2
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Fig. 1. Dimensional domain �̂� and dimensionless domain 𝛺. Both domains have a fracture between two matrix blocks.
2.1. Dimensional model

We simplify the geometry so that the fracture boundaries are
straight lines and the domain �̂� is a rectangle. In terms of coordinates,
matrix block and equi-dimensional and the reduced fracture geometry
are given as It poses no additional difficulty in considering higher
dimensions, say R𝑛, 𝑛 = 3 instead of 𝑛 = 2 here. In case 𝑛 = 3, the
fracture is a two-dimensional surface. To have more generality, we can
consider a non-self-intersecting one-dimensional manifold 𝜏 with the
fracture represented as

�̂�𝑓 = {𝑥 ∈ �̂� ∶ �̂� = �̂� + �̂�𝑛𝜏 , for some �̂� ∈ 𝜏 and |�̂�| < 𝑙
2
}.

Here 𝑙 is the width of the fracture at �̂� in the normal direction, and 𝑛𝜏
is the outward unit normal to 𝜏.

In this system we consider a two-phase flow in �̂�𝑚 governed by
Darcy law and the mass conservation equation where 𝑚 ∈ {𝑚1, 𝑚2, 𝑓}.
Let �̂�𝑤𝑚 denote the pressure of water phase and �̂�𝑜𝑚 the phase pressure
of the oil. The saturation of water is �̂�𝑤𝑚 and that of oil is �̂�𝑜𝑚. It holds
at each point in �̂� and for all 𝑡 ∈ (0, 𝑇 )

𝜕𝑡(𝜙𝑚�̂�𝑤𝑚) + ∇ ⋅ �̂�𝑤𝑚 = 𝑓𝑤𝑚,
𝜕𝑡(𝜙𝑚�̂�𝑜𝑚) + ∇ ⋅ �̂�𝑜𝑚 = 𝑓𝑜𝑚,

�̂�𝑤𝑚 = −
K̂�̂�𝑟𝑤
�̂�𝑤

∇�̂�𝑤𝑚,

�̂�𝑜𝑚 = −
K̂�̂�𝑟𝑜
�̂�𝑜

∇�̂�𝑜𝑚.

(1)

The first two equations are conservation of mass of water and oil
phase, respectively. The next two equations are the Darcy law that
describes the flux as the gradient of the respective phase pressures.
The porosity is denoted by �̂�. The source/sink terms 𝑓𝑖𝑚 on the right
hand side stands for water or oil injections/outflow. Furthermore, �̂� is
the absolute permeability and �̂�𝑟𝑤(�̂�𝑤) and �̂�𝑟𝑜(�̂�𝑜) denote the relative
permeability of water and oil, respectively and are functions of the
respective saturations. Moreover, �̂� and �̂� are dynamic viscosities
3

𝑤 𝑜
of water and oil. For simplicity, the absolute permeability �̂� will be
considered as a scalar quantity and in the matrix blocks this will be
equal to 1. Extension to an anisotropic case is a straight forward. In
the fracture domain the permeability is prescribed as an exponent of
the fracture width 𝜀. Here we have considered the same function �̂�𝑟𝑤
and �̂�𝑟𝑜 in all the three subdomains. However, considering different
functions in the three subdomains possess no additional difficulty, and
can be easily accommodated.

The model needs further equations for its completion. First is the
saturation constraint at each point in space and time in each of the
subdomains,

�̂�𝑤𝑚 + �̂�𝑜𝑚 = 1.

The second is the closure condition where the capillary pressure for
𝑚 ∈ {𝑚1, 𝑚2, 𝑓},

�̂�𝑐𝑚(�̂�𝑤𝑚) = �̂�𝑤𝑚 − �̂�𝑜𝑚,

is a given function of saturation. We make the following assumptions
on the coefficients. For 𝑚 ∈ {𝑚1, 𝑚2, 𝑓},

1. The relative permeability �̂�𝑟𝑤, �̂�𝑟𝑜 is assumed to be strictly pos-
itive. The absolute permeability 𝐊 is a positive tensor bounded
both from above and below by strictly positive constants.

2. The capillary pressure 𝑝𝑐𝑚 ∶ [0, 1] ↦ R is a positive mono-
tonically decreasing smooth function with the −𝑝′𝑐𝑚 ≥ 𝛿 > 0.
Moreover, the inverse function (𝑝𝑐𝑚)−1 ∶ R ↦ [0, 1] exists and is
assumed to be a smooth function.

In short, we are considering a non-degenerate system of equations
with smooth coefficients in each subdomains. Since our approach is
formal, these assumptions are needed to justify the asymptotics. To
complete the description, we need to specify the boundary, interface
conditions, and the initial conditions. For the sake of convenience ho-
mogeneous Dirichlet boundary conditions are considered. The interface
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conditions are the continuity of the pressure and the continuity of flux.
The precise equations will be written below. The initial conditions are
assumed to be given 𝑝𝑤𝑚(𝑡 = 0) = 𝑝0𝑤𝑚, 𝑝𝑜𝑚(𝑡 = 0) = 𝑝0𝑜𝑚. Using
he invertibility of the capillary pressure, this also provides the initial
onditions for the saturations.

.2. Non-dimensionalization

We define 𝜀 ∶= 𝑙
𝐿 , that is the ratio of the fracture width to its length,

and to denote that the parameters are dependent on the size of 𝜀, we
enote them with a subscript 𝜀. Here 𝐿 is the reference length scale,

and the geometry is in the dimensionless form.

𝛺𝜀
1 ∶= (0, 1) × ( 𝜀2 , 1 +

𝜀
2 ), 𝛤 𝜀

1 ∶= (0, 1) × { 𝜀
2 },

𝛺𝜀
2 ∶= (0, 1) × (−1 − 𝜀

2 ,−
𝜀
2 ), 𝛤 𝜀

2 ∶= (0, 1) × {− 𝜀
2 },

𝛺𝜀
𝑓 ∶= (0, 1) × (− 𝜀

2 ,
𝜀
2 ), 𝛤 ∶= (0, 1) × {0}.

(2)

he dimensionless pressure heads are given by 𝑝𝑚𝑗 𝑖 = �̂�𝑚𝑗 𝑖∕𝐿 and
𝑓𝑗 𝑖 = �̂�𝑓𝑗 𝑖∕𝐿. The dimensionless time is set as 𝑡 = 𝑡∕�̄� and the final
ime as 𝑇 = �̂� ∕�̄� where

̄ ∶=
𝜙𝑚𝐿2

�̂�𝑎,𝑚�̄�
=

𝜙𝑚𝐿

�̂�𝑎,𝑚
. (3)

We denote the dimensionless counterparts for �̂�𝑖𝑚, �̂�, and �̂�𝑟𝑖 as 𝑆𝑖𝑚,
𝐊 and 𝐾𝑟𝑖, respectively. We now substitute the Darcy law in the mass
balance from model Eqs. (1), we get

𝜕𝑡(𝜙𝑖𝑆𝜀
𝑖𝑚) − ∇ ⋅

(𝐊𝑚𝐾𝑟𝑖(𝑆𝜀
𝑖𝑚)

𝜇𝑖
∇𝑝𝜀𝑤𝑚

)

= 𝑓 𝜀
𝑚, in 𝛺𝜀

𝑚, (4)

where 𝑖 denotes the phases 𝑜,𝑤 and 𝑚 the matrix blocks 𝑚1 and 𝑚2.
Further we assume that the porosity in the matrix blocks are equal,

𝜙1 = 𝜙2, (5)

and we would like to note the porosity and absolute hydraulic conduc-
tivity scaling in the fracture with respect to that of the surrounding
matrix. As suggested we have assumed the following scaling for the
porosity and hydraulic conductivity in the fracture domain

𝜙𝑓
𝜙𝑚

∝ 𝜀𝜅 ,
𝐾𝑎𝑓
𝐾𝑎𝑛

∝ 𝜀𝜆. (6)

ere, 𝜅 and 𝜆 are scaling parameters. As earlier we use the Darcy law
n the mass balance equation to get the dimensionless equation for the
racture

𝜕𝑡(𝜀𝜅𝑆𝜀
𝑖𝑓 ) − ∇ ⋅

(

𝜀𝜆𝐊𝑓𝐾𝑟𝑖(𝑆𝜀
𝑖𝑓 )

𝜇𝑖
∇𝑝𝜀𝑤𝑓

)

= 𝑓𝑓 in 𝛺𝜀
𝑓 . (7)

We write down the full dimensionless model.

𝜕𝑡(𝜙𝑚𝑆𝜀
𝑖𝑚) − ∇ ⋅

(𝐊𝐾𝑟𝑖(𝑆𝜀
𝑖𝑚)

𝜇𝑖
∇𝑝𝜀𝑖𝑚

)

= 𝑓 𝜀
𝑖𝑚, in 𝛺𝜀

𝑚,

𝜕𝑡(𝜀𝜅𝑆𝜀
𝑖𝑓 ) − ∇ ⋅

(

𝜀𝜆𝐊𝐾𝑟𝑖(𝑆𝜀
𝑖𝑓 )

𝜇𝑖
∇𝑝𝜀𝑖𝑓

)

= 𝑓 𝜀
𝑖𝑓 , in 𝛺𝜀

𝑓 ,

𝑆𝜀
𝑤𝑚 + 𝑆𝜀

𝑜𝑚 = 1, in 𝛺𝜀
𝑚 ∪𝛺𝜀

𝑓 ,
𝑝𝜀𝑐𝑚(𝑆

𝜀
𝑤𝑚) = 𝑝𝜀𝑤𝑚 − 𝑝𝜀𝑜𝑚, in 𝛺𝜀

𝑚 ∪𝛺𝜀
𝑓 ,

𝑝𝜀𝑖𝑚 = 𝑝𝜀𝑖𝑓 , on 𝛤 𝜀
𝑚,

−
𝜀𝜆𝐊𝐾𝑟𝑖

𝜇𝑖
∇𝑝𝜀𝑖𝑓 ⋅ 𝐧 =

𝐊𝐾𝑟𝑖
𝜇𝑖

∇𝑝𝜀𝑖𝑚 ⋅ 𝐧, on 𝛤 𝜀
𝑚,

𝑝𝑤𝑚(𝑡 = 0) = 𝑝0𝑤𝑚, and 𝑝𝑜𝑚(𝑡 = 0) = 𝑝0𝑜𝑚, in 𝛺𝜀
𝑚 ∪𝛺𝜀

𝑓 .

(8)

where 𝑖 = {𝑤, 𝑜}, and 𝑚 = {𝑚1, 𝑚2} and in the third and fourth
equations, 𝑚 holds for {𝑚1, 𝑚2, 𝑓}.

This problem motivates us to see if we can define different models
depending on the permeability of the fracture. We can thus try to
determine different types of upscaled models depending on the values
of 𝜅 and 𝜆 as the fracture width 𝜀 → 0. The scaling parameter 𝜅 is
related to the storage capacity of the fracture, which means that for
4

small 𝜅 (𝜅 < −1) the fracture maintains its ability to store water as the
fracture size tends to zero, and for large 𝜅, 𝜅 > 0, the storage capacity
decreases as the fracture tends to zero. The parameter 𝜆 is connected
to the conductivity of the fracture. Here a small 𝜆, (e.g., 𝜆 < 0) gives
a high conductivity, flow can occur freely, while a high 𝜆 (𝜆 > 1) will
give us that the fracture will behave more as a barrier.

As seen in the above system of equations, we have considered the
interface conditions where the pressures are continuous and the fluxes
are equal at the fracture-matrix interface. In the case of two-phase flow,
this may not hold true due to the presence of different capillary forces
inside the fracture and in the matrix. The presence of entry pressure
may lead to an extended pressure condition at the interface as derived
in van Duijn and De Neef (1998). The difference in entry pressures
causes oil trapping at the interface. Our approach can be used to derive
the effective models in this case as well however, for simplicity, we
disregard these difficulties.

3. Main results: Catalogue of effective models

We identify three classes of effective models. (i) Effective models
I–IV that have continuous pressure across the fracture-matrix interface,
(ii) Effective models V–VI that show a two-scale type behaviour, and
(iii) Effective models VII–X that have fractures acting as barriers and
the pressure across the fracture-matrix interface is disconnected. In case
(ii), the pressure is given by a differential equation inside the fracture
which is coupled to those in the matrix while in case (iii), the ‘‘fracture’’
acts as a barrier and accordingly has zero-flux boundary for the flow
model in the matrix. We provide the effective models for a wide range
of 𝜅 and 𝜆 and make brief remarks of them. The derivation of the
reduced models is postponed to Section 4. In the different upscaled
models we have that with 𝑖 = {𝑤, 𝑜}

[𝑞𝑖𝑚]𝛤 =
(𝐊𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚1

)

⋅ 𝑛1 +
(𝐊𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑥𝑝𝑖𝑚2

)

⋅ 𝑛2, (9)

s the flux difference for water and oil respectively in the two solid
atrix subdomains 𝛺1 and 𝛺2. Note that 𝑛1 = −𝑛2, and that these

ectors are normal to the fracture.

.1. Effective model I

The first four models have continuous pressure. The first model
ives us a two dimensional problem in the surrounding matrix blocks
nd a one dimensional problem in the fracture domain. The model for
= −1, and 𝜆 = −1 with 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − 𝜕𝑥

(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)
𝜇

𝜕𝑥𝑝𝑖𝑚

)

− 𝜕𝑦

(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)
𝜇𝑖

𝜕𝑦𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝜕𝑡𝑆𝑖𝑓 − 𝜕𝑥

(K𝐾𝑟𝑖(𝑆𝑖𝑓 )
𝜇

𝜕𝑥𝑝𝑖𝑓

)

= [𝑞𝑖𝑚]𝛤 on 𝛤 ,

𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,
𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚,
𝑝𝑖𝑓 (0) = 𝑝𝑖𝑓 ,𝐼 on 𝛤 .

Effective model I

The fracture behaves as a one-dimensional domain where [𝑞𝑤𝑚]𝛤 and
[𝑞𝑜𝑚]𝛤 are the flux difference for water and oil respectively in the
two solid matrix subdomains 𝛺1 and 𝛺2. Here, the permeability is
large enough to make the pressure inside the fracture to become 𝑦-
independent. The storage term and the Darcy flow term both survive
and this is taken as the most widely used model for fracture coupling.

3.2. Effective model II

In this case we have that 𝜅 ∈ (−1,∞), 𝜆 = −1. The porosity increase

here with vanishing 𝜀 (vanishing fracture width) is less than linear. We
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get the model: for 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

−𝜕𝑥

(K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )
𝜇

𝜕𝑥𝑝𝑖𝑓

)

= [𝑞𝑖𝑚]𝛤 on 𝛤 ,

𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,
𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model II

As in effective model I, we have that the permeability in the fracture
is large enough to ensure that the fracture pressure equals the traces
of the matrix pressures at the fracture-matrix interfaces and we get a
jump in flux over the fracture. However, the porosity term is sublinear
and thus vanishes in the limit as 𝜅 > −1.

.3. Effective model III

This corresponds to the case 𝜅 = −1, 𝜆 ∈ (−1, 1). We have the
ollowing effective model. For 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝜕𝑡(𝑆𝑖𝑓 ) = [𝑞𝑖𝑚]𝛤 on 𝛤 ,
𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚,
𝑝𝑖𝑓 (0) = 𝑝𝑖𝑓 ,𝐼 on 𝛤 .

Effective model III

Here, only the flux terms vanish in the limit, and the fracture is able
to store and release fluids from the solid matrix. The pressure at the
fracture interfaces are retained, in other words, the fracture interface
conditions for 𝛺1 and 𝛺2 are equal to the pressure inside the fracture.

.4. Effective model IV

This case is for 𝜅 ∈ (−∞,−1), 𝜆 ∈ (−1, 1). It has been partly
overed by previous cases. The pressure and the normal fluxes become
ontinuous at the interface. In practice, the fracture has disappeared as
physical entity and can be ignored in the upscaled model.

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

[𝑞𝑖𝑚]𝛤 = 0 on 𝛤 ,
𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model IV

3.5. Effective model V

This is the first effective model with discontinuous pressure over the
fracture. First we will consider the case where 𝜅 = −1, and 𝜆 = 1.

𝜕𝑥 = 𝜕𝜉 , and 𝜕𝑦 =
1
𝜀 𝜕𝜂 . (10)

Here we have rescaled the fracture subdomain 𝛺𝜀
𝑓 to an 𝜀 independent

subdomain 𝛺𝑓 .

𝑓 ∶= (0, 1) × (−1
2
, 1
2
), (11)

here the (0, 1) term is the rescaling of the 𝑥 coordinates now denoted
s 𝜉, and the (− 1

2 ,
1
2 ) term is the rescaling of the 𝑦 coordinates now

denoted as 𝜂. Notice that the solution in the fracture in both effective
models V and VI depends on 𝜂. The value 𝜂 = 1

2 corresponds to the
boundary bottom boundary of 𝛺𝑚1

(at 𝑦 = 0+). Similarly, 𝜂 = − 1
2

corresponds to the top boundary of 𝛺𝑚2
(𝑦 = 0−). These models will be

eferred to as ‘‘two-scale’’ ’’models and a typical ‘‘two-scale’’ model, has
5

the scaling such that we need to resolve the details of the fracture. In
this sense, representing the fracture as an interface is not fully justified.
The original problem is divided into three coupled subdomains that
are solved separately using boundary conditions from each other. For
𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝑝𝑖𝑚1
(𝑡, 𝜉, 0) = 𝑝𝑖𝑓 (𝑡, 𝜉,

1
2 ) for (𝑡, 𝜉) ∈ 𝑋𝑇 ,

𝑝𝑖𝑚2
(𝑡, 𝜉, 0) = 𝑝𝑖𝑓 (𝑡, 𝜉,−

1
2 ) for (𝑡, 𝜉) ∈ 𝑋𝑇 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model V

Here for each 𝜉 ∈ 𝑋 one determines 𝑝𝑖𝑓 (⋅, 𝜉, ⋅) as the solution to the
parabolic differential equation in one dimensional spatial domain

𝜕𝑡𝑆𝑖𝑓 − 𝜕𝜂

(K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )
𝜇

𝜕𝜂𝑝𝑖𝑓

)

= 0 for (𝑡, 𝜂) ∈ (− 1
2 ,

1
2 ) × (0, 𝑇 ],

(

−
K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )

𝜇
∇𝑝𝑖𝑓

)

(𝑡, 𝜉, 12 ) ⋅ 𝑛 =

(

−
K𝑚1𝐾𝑟𝑖(𝑆𝑖𝑚1 )

𝜇
∇𝑝𝑖𝑚1

)

(𝑡, 𝜉, 0) ⋅ 𝑛 for 𝑡 ∈ (0, 𝑇 ],
(

−
K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )

𝜇
∇𝑝𝑖𝑓

)

(𝑡, 𝜉,− 1
2 ) ⋅ 𝑛 =

(

−
K𝑚2𝐾𝑟𝑖(𝑆𝑖𝑚2 )

𝜇
∇𝑝𝑖𝑚2

)

(𝑡, 𝜉, 0) ⋅ 𝑛 for 𝑡 ∈ (0, 𝑇 ],

𝑝𝑖𝑓 (0) = 𝑝𝑖𝑓 ,𝐼 for 𝜂 ∈ (− 1
2 ,

1
2 ).

Effective model V

3.6. Effective model VI

The same happens for the effective model where 𝜅 > −1. The
effective model remains the same as in the previous case, except for
the storage term, it vanishes. For 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝑝𝑖𝑚1
(𝑡, 𝜉, 0) = 𝑝𝑖𝑓 (𝑡, 𝜉,

1
2 ) for (𝑡, 𝜉) ∈ 𝑋𝑇 ,

𝑝𝑖𝑚2
(𝑡, 𝜉, 0) = 𝑝𝑖𝑓 (𝑡, 𝜉,−

1
2 ) for (𝑡, 𝜉) ∈ 𝑋𝑇 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model VI

For any (𝑡, 𝜉) ∈ 𝑋𝑇 , 𝑝𝑖𝑓 (𝑡, 𝜉, .) solves the one-dimensional elliptic
auxiliary problem

−𝜕𝜂

(K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )
𝜇

𝜕𝜂𝑝𝑖𝑓

)

= 0 for 𝜂 ∈ (− 1
2
, 1
2
),

(

−
K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )

𝜇
∇𝑝𝑖𝑓

)

(𝑡, 𝜉, 1
2
) ⋅ 𝑛 = −

(K𝑚1
𝐾𝑟𝑖(𝑆𝑖𝑚1

)
𝜇

∇𝑝𝑖𝑚1

)

(𝑡, 𝜉, 0) ⋅ 𝑛,

−
K𝑓𝐾𝑟𝑖(𝑆𝑖𝑓 )

𝜇
∇𝑝𝑖𝑓

)

(𝑡, 𝜉,− 1
2
) ⋅ 𝑛 = −

(K𝑚2
𝐾𝑟𝑖(𝑆𝑖𝑚2

)
𝜇

∇𝑝𝑖𝑚2

)

(𝑡, 𝜉, 0) ⋅ 𝑛.

Effective model VI

3.7. Effective model VII

In the case where 𝜆 > 1 and 𝜅 = −1 we get a discontinuous pressure
over the fracture interface. The result is that the fracture flux is zero
and it behaves as a barrier. The two domains 𝛺1 and 𝛺2 can be solved
separately. For 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,
(

−
K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

⋅ 𝑛𝑚 = 0 at 𝛤 𝑇 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚,
𝜕𝑡(𝑆𝑖𝑓 )(𝑡, 𝑥, 𝜂) = 0,

𝑝𝑖𝑓 (0) = 𝑝𝑖𝑓 ,𝐼 .

Effective model VII
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3.8. Effective model VIII

In the case where 𝜆 > 1 and 𝜅 > −1 there is little difference from
ase VII. The only difference is that the storage term in the fracture
rops out in the limit of 𝜀 → 0. For 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2}, we end
p with the model

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

⋅ 𝑛𝑚 = 0 at 𝛤 𝑇 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model VIII

3.9. Effective model IX

The two last effective models are models with spatially constant
pressure in the fracture. The permeability in the fracture is so large
that the pressure in the fracture will be the same short time after a
pressure change. The reduced models will depend only on the time,
𝑝𝑤𝑓 (𝑡, 𝑦) = 𝑝𝑤𝑓 (𝑡) and 𝑝𝑜𝑓 (𝑡, 𝑦) = 𝑝𝑜𝑓 (𝑡). For the models this means that
the fracture endpoints cannot impose different pressures at the fracture
endpoints. The effective model 9 is for the cases where 𝜅 = −1 and
𝜆 < −1. One get for 𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝜕𝑡(𝑆𝑖𝑓 )(𝑡) = ∫ 1
0 [𝑞𝑖𝑚]𝛤 𝑑𝑥 for 𝑡 ∈ (0, 𝑇 ],
𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,

𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚,
𝑝𝑖𝑓 (0) = 𝑝𝑖𝑓 ,𝐼 on 𝛤 .

Effective model IX

The pressure is spatially constant and continuous in the fracture and
herefore, it must be spatially constant at the interfaces as well.

.10. Effective model X

This case is for 𝜅 > −1 and 𝜆 < −1. Here the storage term vanishes.
There is no equation giving the pressure in the fracture and we get for
𝑖 = {𝑤, 𝑜} and 𝑚 = {𝑚1, 𝑚2},

𝜕𝑡𝑆𝑖𝑚 − ∇ ⋅
(K𝑚𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇
∇𝑝𝑖𝑚

)

= 𝑓𝑚 in 𝛺𝑚,

𝑝𝑖𝑚 = 𝑝𝑖𝑓 on 𝛤 ,
𝑝𝑖𝑚(0) = 𝑝𝑖𝑚,𝐼 on 𝛺𝑚.

Effective model X

where for each t∈ (0, 𝑇 ] the time-dependent function 𝑝𝑖𝑓 = 𝑝𝑖𝑓 (𝑡) is
etermined such that ∫ 1

0 [𝑞𝑚]𝛤 𝑑𝑥 = 0.

emark 3.1. We make a brief comparison with the fracture models
hat are widely used in practice (see e.g., Berre et al. (2019)). We refer
o Martin et al. (2005) where similar models are derived for single
hase flow, and to Ahmed et al. (2017) for two-phase flow models.
ur results here are different in these respects: the derivation follows
ifferent arguments and secondly, the final results are consistent in
ertain regimes of the parameters yet not identical.

The derivation in Martin et al. (2005) and in Ahmed et al. (2017)
akes place in three steps. First, the Darcy flow equation along the frac-
ure surface is obtained immediately by considering the flux component
n the tangential direction of the fracture. Second, one integrates the
low equation along the transverse direction in the fracture subdomain.
sing the continuity of fluxes at the matrix/fracture interfaces, this
ields a surface equation with the jump in the matrix flux term as a
6

u

ource term. The third step is a closure relationship by postulating a
pressure profile in the fracture. This is in contrast with our approach.
We assume a scaling of hydraulic properties on 𝜀 and 𝜅 and use a
ormal asymptotic ansatz where we only consider the terms of 𝑂(𝜀) as
his is the leading term. Once the choice of scaling is made, the rest
f the steps follow without any additional assumptions. In particular,
ur approach does not postulate any closure condition on the pressure
nside the fracture as this is part of the solution. Also we mention that in
he references cited, the closure condition introduces a parameter in the
ffective model for the fracture. Here, we have a catalogue of models
nd no additional parameter is necessary. Moreover, for several of the
egimes considered here, the derivation is sustained by mathematically
igorous proofs (see List et al. (2020)).

In terms of the final results, we remark that for certain regimes,
.g., 𝜆 = 1, our approach yields that the fracture flow cannot be
ollapsed on a surface and we must resolve the details of the flow there.
owever, in the references and currently in practice as well, such two-

cale models are not used and instead a mixed dimensional model is
sed irrespective of the parameter range.

emark 3.2. This paper considers a simple geometry for the fracture
mbedded in a porous matrix. Besides, our model is a standard two-
hase flow model with interface conditions across the matrix/fracture
nterface. This is consistent with our objective to illustrate the role
f properties of the fracture in determining the appropriate Discrete
racture Network (DFN) model. The two natural extensions are in the
racture networks and introducing further multiphysics. The former
xtension requires defining models at different scales, e.g., in the
ntersection of the fracture equi-dimensional subdomains. This would
ntroduce more scales for the hydraulic properties in the intersecting
ubdomains and the latter corresponds to reactive multiphase flow,
onlinear interface conditions, or more general models involving ther-
al and mechanical models. Also, differences in the composition of

racture and matrix may cause strong heterogeneities in the constitutive
elations, manifested as capillary barriers and entry pressure effects,
ver the fracture–matrix interface (van Duijn et al., 2007). Depending
n the specific form of relative permeabilities and capillary pressure
unctions, these heterogeneities are known to cause numerical chal-
enges. The formal asymptotic approach used here can be used to
ncorporate these difficulties. For further uses, we mention that this
pproach can be used to provide arguments for the mixed dimensional
odels proposed in Boon et al. (2017) based on physical arguments. In

he same spirit, the reduced models are derived for fracture networks
n Formaggia et al. (2014) building on the work of Martin et al. (2005).
ur work can be used to similarly provide a hierarchy of reduced
odels based on the properties of the fractured networks.

. Formal upscaling and derivation of effective models

We perform a formal upscaling for the above system of equations
o derive the effective equations. For quantities in the subdomain 𝛺𝑖𝑚,
𝑖 ∈{𝑤, 𝑜}, 𝑚 ∈ {𝑚1, 𝑚2, 𝑓}), one makes the following ansatz for the
ressure:

𝜀
𝑖𝑚 = 𝑝𝑖𝑚0 + 𝜀𝑝𝑖𝑚1 + 𝑂(𝜀2), (12)

nd the corresponding ansatz for the saturations

𝜀
𝑖𝑚 = 𝑆𝑖𝑚0 + 𝜀𝑆𝑖𝑚1 + 𝑂(𝜀2). (13)

.1. Interface conditions

Next, we treat the interface conditions. This preparation will be

seful in the derivation of the effective models. We take the interface
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conditions after the formal upscaling

𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1 + 𝑂(𝜀2) = 𝑝𝑤𝑚10 + 𝜀𝑝𝑤𝑚11 + 𝑂(𝜀2), on 𝛤 𝜖
1 ,

𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1 + 𝑂(𝜀2) = 𝑝𝑤𝑚20 + 𝜀𝑝𝑤𝑚21 + 𝑂(𝜀2), on 𝛤 𝜖
2 ,

𝑝𝑜𝑓0 + 𝜀𝑝𝑜𝑓1 + 𝑂(𝜀2) = 𝑝𝑜𝑚10 + 𝜀𝑝𝑜𝑚11 + 𝑂(𝜀2), on 𝛤 𝜖
1 ,

𝑝𝑜𝑓0 + 𝜀𝑝𝑜𝑓1 + 𝑂(𝜀2) = 𝑝𝑜𝑚20 + 𝜀𝑝𝑜𝑚21 + 𝑂(𝜀2), on 𝛤 𝜖
2 ,

(14)

and see that the effective pressure interface conditions up to the leading
order becomes
𝑝𝑤𝑓0 = 𝑝𝑤𝑚10, 𝑝𝑜𝑓0 = 𝑝𝑜𝑚10, on 𝛤 ,
𝑝𝑤𝑓0 = 𝑝𝑤𝑚20, 𝑝𝑜𝑓0 = 𝑝𝑜𝑚20, 𝑜𝑛𝛤 .

(15)

Recalling the scaling introduced in the Effective Model 5 for 𝜉 and
𝜂, the derivatives get transformed to

𝜕𝑥 ↦ 𝜕𝜉 and 𝜕𝑦 ↦
1
𝜀 𝜕𝜂 .

nd the interface conditions at 𝛤1 and 𝛤2 become

𝜀𝜆−1 𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜂𝑝𝜀𝑤𝑓 = 𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝑦𝑝𝜀𝑤𝑚1
on 𝛤 ,

𝜀𝜆−1 𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜂𝑝𝜀𝑜𝑓 = 𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝑦𝑝𝜀𝑜𝑚2
on 𝛤 .

(16)

or 𝑗 = 1, 2.
From the interface conditions in (16), we see that when 𝜆 > 1 for an

→ 0 we have that the left hand side goes towards zero leading to the
ollowing interface conditions for the leading order term for the matrix
ubdomain fluxes

𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝑦𝑝𝑤𝑚10 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝑦𝑝𝑤𝑚20 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝑦𝑝𝑜𝑚10 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝑦𝑝𝑜𝑚20 = 0 on 𝛤 .

(17)

For the case where 𝜆 = 1 the interface conditions become

𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜂𝑝𝑤𝑚𝑓 0 =
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜉𝑝𝑤𝑚10 on 𝛤 ,

𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜂𝑝𝑤𝑚𝑓 0 =
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜉𝑝𝑤𝑚20 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜂𝑝𝑜𝑚𝑓 0 =
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜉𝑝𝑜𝑚10 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜂𝑝𝑜𝑚𝑓 0 =
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜉𝑝𝑜𝑚20 on 𝛤 .

(18)

For 𝜆 < 1, we keep it in the same form. We also state the energy
estimate for the model equations. This will allow us to conclude that
the leading order terms 𝑝𝑤𝑓0, 𝑝𝑜𝑓0 are independent of 𝑦. We multiply the
model Eqs. (8) by 𝑝𝜀𝑤𝑚1

, 𝑝𝜀𝑜𝑚1
, 𝑝𝜀𝑤𝑚2

, 𝑝𝜀𝑜𝑚2
, 𝑝𝜀𝑤𝑓 , 𝑝

𝜀
𝑜𝑓 and integrate over

the respective domains 𝛺𝜀
𝑓 , 𝛺𝜀

1 and 𝛺𝜀
2. Using the Gauss divergence

theorem to transfer the div to the other term and using the boundary
condition, we obtain

∫𝛺𝜀
𝑓

𝜀𝜅𝜕𝑡𝑆
𝜀
𝑜𝑓 (𝑝

𝜀
𝑜𝑓 − 𝑝𝜀𝑤𝑓 )𝑑𝑥 + 𝜀𝜆 ∫𝛺𝜀

𝑓

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑓 )

|

|

|

∇𝑝𝜀𝑤𝑓
|

|

|

2
𝑑𝑥

+ 𝜀𝜆 ∫𝛺𝜀
𝑓

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑓 )

|

|

|

∇𝑝𝜀𝑜𝑓
|

|

|

2
𝑑𝑥+

+ ∫𝛺𝜀
1

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑚1

) ||
|

∇𝑝𝜀𝑜𝑚1

|

|

|

2
𝑑𝑥

+ ∫𝛺𝜀
1

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑚1

) ||
|

∇𝑝𝜀𝑤𝑚1

|

|

|

2
𝑑𝑥 + ∫𝛺𝜀

2

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑚2

) ||
|

∇𝑝𝜀𝑤𝑚2

|

|

|

2
𝑑𝑥

+ ∫𝛺𝜀
2

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑚2

) ||
|

∇𝑝𝜀𝑜𝑚2

|

|

|

2
𝑑𝑥 + ∫𝛺𝜀

1

𝜕𝑡𝑆
𝜀
𝑜𝑚1

(𝑝𝜀𝑜𝑚1
− 𝑝𝜀𝑤𝑚1

)𝑑𝑥

+ ∫𝛺𝜀
𝜕𝑡𝑆

𝜀
𝑜𝑚2

(𝑝𝜀𝑜𝑚2
− 𝑝𝜀𝑤𝑚2

)𝑑𝑥 = 0.
7

2

Integrating over time from 0 to an arbitrary time 𝑡, we obtain

𝜀𝜅 ∫𝛺𝜀
𝑓

𝐵(𝑆𝜀
𝑤𝑓 (𝑡)) + 𝜀𝜆 ∫

𝑡

0 ∫𝛺𝜀
𝑓

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑓 )

|

|

|

∇𝑝𝜀𝑤𝑓
|

|

|

2
𝑑𝑥𝑑𝑡

+ 𝜀𝜆 ∫

𝑡

0 ∫𝛺𝜀
𝑓

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑓 )

|

|

|

∇𝑝𝜀𝑜𝑓
|

|

|

2
𝑑𝑥𝑑𝑡 + ∫

𝑡

0 ∫𝛺𝜀
1

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑚1

) ||
|

∇𝑝𝜀𝑜𝑚1

|

|

|

2
𝑑𝑥𝑑𝑡

+ ∫

𝑡

0 ∫𝛺𝜀
1

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑚1

) ||
|

∇𝑝𝜀𝑤𝑚1

|

|

|

2
𝑑𝑥𝑑𝑡 + ∫

𝑡

0 ∫𝛺𝜀
2

𝐾𝐾𝑟𝑤(𝑆𝜀
𝑤𝑚2

) ||
|

∇𝑝𝜀𝑤𝑚2

|

|

|

2
𝑑𝑥𝑑𝑡

+ ∫

𝑡

0 ∫𝛺𝜀
2

𝐾𝐾𝑟𝑜(𝑆𝜀
𝑜𝑚2

) ||
|

∇𝑝𝜀𝑜𝑚2

|

|

|

2
𝑑𝑥𝑑𝑡∫𝛺𝜀

1

𝐵(𝑆𝜀
𝑤𝑚1

(𝑡)) + ∫𝛺𝜀
𝑓

𝐵(𝑆𝜀
𝑤𝑚2

(𝑡)) ≤ 𝐶.

Here,

𝐵(𝑧) = ∫

𝑧

0
𝑃𝑐 (�̃�)𝑑�̃�,

and is a positive quantity. In the transformed co-ordinates 𝜉 = 𝑥, 𝜂 = 𝑦∕𝜀
inside the fracture region, we get

𝜀𝜆+1

𝜀2 ∫

𝑡

0 ∫

1∕2

−1∕2
𝐾𝐾𝑟𝑤(𝑆𝜀

𝑤𝑓 )
|

|

|

𝜕𝜂𝑝
𝜀
𝑤𝑓

|

|

|

2
𝑑𝜂𝑑𝑡

+ 𝜀𝜆 ∫

𝑡

0 ∫

1

0
𝐾𝐾𝑟𝑤(𝑆𝜀

𝑤𝑓 )
|

|

|

𝜕𝜉𝑝
𝜀
𝑤𝑓

|

|

|

2
𝑑𝜉𝑑𝑡 ≤ 𝐶.

sing non-degeneracy of 𝐾𝑟𝑤,

𝜂𝑝
𝜀
𝑤𝑓 ≤ 𝐶𝜀1−𝜆.

his allows us to conclude that the leading order term 𝑝𝑤𝑓0 in the
xpansion of 𝑝𝜀𝑤𝑓 , for 𝜆 < 1, is independent of the 𝑦− co-ordinate as
ell as the 𝜂 co-ordinate in the re-scaled variables. That is,

𝑤𝑓0 = 𝑝𝑤𝑓0(𝑥). (19)

his implies that for 𝜆 < 1, the leading order approximation for the
ater pressure in the fracture is independent of the 𝑦 direction. The

ame conclusion holds for oil pressure. Thus, for 𝜆 < 1, we have

𝑜𝑓0 = 𝑝𝑜𝑓0(𝑥). (20)

his completes the preparation for deriving the effective equations.
ow we consider the model equations for different regimes for 𝜅 and
.

.2. Derivation of the effective models

We begin with the matrix subdomain equations. The upscaling here
roceeds without much difficulty.

.2.1. Matrix subdomains
Recall the model equation in the matrix subdomain for 𝑖 = {𝑤, 𝑜},

= {𝑚1, 𝑚2}

𝜕𝑡(𝜙𝑚𝑆𝑖𝑚) − ∇ ⋅
(𝐊𝐾𝑟𝑖(𝑆𝑖𝑚)

𝜇𝑖
∇𝑝𝑖𝑚

)

= 𝑓𝑖𝑚 in 𝛺𝜀
𝑚.

Note that in the matrix subdomain, the derivatives do not introduce
any 𝜀 and it gets introduced only in the expansion of the variables.
ubstituting the ansatz for pressure and saturation, we obtain up to
(𝜀2) approximation,

𝜕𝑡(𝜙𝑚(𝑆𝑖𝑚0 + 𝜀𝑆𝑖𝑚1)) − ∇ ⋅
(𝐊𝐾𝑟𝑖(𝑆𝑖𝑚0 + 𝜀𝑆𝑖𝑚1)

𝜇𝑖
∇(𝑝𝑖𝑚0 + 𝜀𝑝𝑖𝑚1)

)

= 𝑓𝑖𝑚 in 𝛺𝜀
𝑚.

Restricting up to leading order, we have that 𝛺𝜀
𝑚 tends to 𝛺𝑚 as 𝜀 tends

to zero,

𝜕𝑡(𝜙𝑚𝑆𝑖𝑚0) − ∇ ⋅
(𝐊𝐾𝑟𝑖(𝑆𝑖𝑚0)

𝜇𝑖
∇𝑝𝑖𝑚0

)

= 𝑓𝑖𝑚 in 𝛺𝑚.

This reflects the stability of the matrix subdomains with respect to
the upscaling. This is expected since the matrix subdomain converges
uniformly to 𝜀− independent subdomain and the coefficients are 𝜀−

independent. This holds true regardless of the value of 𝜆 and 𝜅.
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4.2.2. Fracture subdomain
Next, we consider the fracture equation.

𝜕𝑡(𝜀𝜅𝑆𝑖𝑓 ) − ∇ ⋅

(

𝜀𝜆𝐊𝐾𝑟𝑤(𝑆𝑖𝑓 )
𝜇𝑖

∇𝑝𝑖𝑓

)

= 𝑓𝑖𝑓 in 𝛺𝜀
𝑓 , (21)

nd with the rescaling of the fracture domain, the rescaled equations
n the 𝛺𝑓 become

𝜕𝑡(𝜀𝜅 (𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)) +
1
𝜀2
𝜕𝜂

(

−
𝜀𝜆𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1)

)

+𝜕𝜉

(

−
𝜀𝜆𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1)

)

= 𝑓𝑤𝑓 ,

𝜕𝑡(𝜀𝜅 (𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)) +
1
𝜀2
𝜕𝜂

(

−
𝜀𝜆𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0 + 𝜀𝑝𝑜𝑓1)

)

+𝜕𝜉

(

−
𝜀𝜆𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0 + 𝜀𝑝𝑓𝑜1)

)

= 𝑓𝑜𝑓 .

(22)

4.2.3. Subcases when 𝜆 < 1
Recall that in this case 𝑝𝑤𝑓0 and 𝑝𝑜𝑓0 are independent of 𝜂. By virtue

of this, we conclude that 𝑝𝑐 (𝑆𝑤0) = 𝑝𝑜𝑓0−𝑝𝑤𝑓0 is independent of 𝜂. From
the invertibility of 𝑝𝑐 , we get that 𝑆𝑤𝑓0 is independent of 𝜂 as well. Due
to the saturation constraint, 𝑆𝑜𝑓0 is also independent of 𝜂.

We begin with the case 𝜅 = −1, 𝜆 = −1. Integrating Eq. (22) over
= − 1

2 to 1
2 and multiplying the equation by 𝜀 we have

𝜀1+𝜅 ∫

1∕2

−1∕2
𝜕𝑡(𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)𝑑𝜂

+ 1
𝜀 ∫

1∕2
−1∕2 𝜕𝜂

(

−
𝜀𝜆𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1)

)

𝑑𝜂

+ 𝜀∫

1∕2

−1∕2
𝜕𝜉

(

−
𝜀𝜆𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0 + 𝜀𝑆𝑤𝑓1)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0 + 𝜀𝑝𝑤𝑓1)

)

𝑑𝜂

= ∫

1∕2

−1∕2
𝜀𝑓𝑤𝑓𝑑𝜂,

𝜀1+𝜅 ∫

1∕2

−1∕2
𝜕𝑡(𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)𝑑𝜂

+ 1
𝜀 ∫

1∕2

−1∕2
𝜕𝜂

(

−
𝜀𝜆𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0 + 𝜀𝑝𝑜𝑓1)

)

𝑑𝜂

+ 𝜀∫

1∕2

−1∕2
𝜕𝜉

(

−
𝜀𝜆𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0 + 𝜀𝑆𝑜𝑓1)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0 + 𝜀𝑝𝑓𝑜1)

)

𝑑𝜂

= ∫

1∕2

−1∕2
𝜀𝑓𝑜𝑓𝑑𝜂.

The reason for multiplying by 𝜀 is obvious: this matches the scale
of 𝜀 in the flux interface conditions (16). We take the leading or-
der term and use the independence of these leading order terms
𝑝𝑤𝑓0, 𝑝𝑜𝑓0, 𝑆𝑤𝑓0, 𝑆𝑜𝑓0 of 𝜂. Moreover, the scaled right hand side is
assumed to be independent of 𝜂. With these considerations,

𝜀𝜅+1𝜕𝑡𝑆𝑤𝑓0 + 𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

𝜂= 1
2

− 𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

𝜂=− 1
2

+ 𝜀𝜆+1𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

= 𝜀𝑓𝑤𝑓 ,

𝜀𝜅+1𝜕𝑡𝑆𝑜𝑓0 + 𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

𝜂= 1
2

− 𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

𝜂=− 1
2

+ 𝜀𝜆+1𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0) 𝜕𝜉 (𝑝𝑜𝑓0)

)

= 𝜀𝑓𝑜𝑓 .
8

𝜇𝑜
Using the interface condition for the flux in (16) and restricting up
to the leading order term.

𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

𝜂= 1
2

=
(𝐊𝐾𝑟𝑤

𝜇𝑤
𝜕𝑦𝑝𝑤𝑚10

)

𝑦=0+
,

𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

𝜂=− 1
2

=
(𝐊𝐾𝑟𝑤

𝜇𝑤
𝜕𝑦𝑝𝑤𝑚20

)

𝑦=0−
.

For the oil flux we get a similar expression:

𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

𝜂= 1
2

=
(𝐊𝐾𝑟𝑜

𝜇𝑜
𝜕𝑦𝑝𝑜𝑚10

)

𝑦=0+
,

𝜀𝜆−1
(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

𝜂=− 1
2

=
(𝐊𝐾𝑟𝑜

𝜇𝑜
𝜕𝑦𝑝𝑜𝑚20

)

𝑦=0−
.

Defining the jump in the flux for the water and the oil across the
fracture surface:

[𝑞𝑤0] =
(𝐊𝐾𝑟𝑤

𝜇𝑤
𝜕𝑦𝑝𝑤0

)

𝑦=0+
−
(𝐊𝐾𝑟𝑤

𝜇𝑤
𝜕𝑦𝑝𝑤0

)

𝑦=0−
,

[𝑞𝑜0] =
(𝐊𝐾𝑟𝑜

𝜇𝑜
𝜕𝑦𝑝𝑜0

)

𝑦=0+
−
(𝐊𝐾𝑟𝑜

𝜇𝑜
𝜕𝑦𝑝𝑜0

)

𝑦=0−
.

With these definitions for the jump in the flux on hand, we rewrite the
averaged model as

𝜀𝜅+1𝜕𝑡𝑆𝑤𝑓0 + 𝜀𝜆+1𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

= [𝑞𝑤0] + 𝑓𝑤𝑓 ,

𝜀𝜅+1𝜕𝑡𝑆𝑜𝑓0 + 𝜀𝜆+1𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0)

)

= [𝑞𝑜0] + 𝑓𝑜𝑓 .

(23)

ow in (23), we consider the different regimes of coefficients. For
= −1, 𝜆 = −1, we get

𝜕𝑡𝑆𝑤𝑓0 + 𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

= [𝑞𝑤0] + 𝑓𝑤𝑓 ,

𝜕𝑡𝑆𝑜𝑓0 + 𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0)

)

= [𝑞𝑜0] + 𝑓𝑜𝑓 .
(24)

Next we consider the case when 𝜅 ∈ (−1,∞), 𝜆 = −1. The only change
from the above derivation is the storage term. This term vanishes in
the limit as 𝜀 goes to zero. Indeed, for 𝜅 ∈ (−1,∞), we have

𝜀𝜅+1𝜕𝑡𝑆𝑤𝑓0 → 0

nd
𝜅+1𝜕𝑡𝑆𝑜𝑓0 → 0

s 𝜀 → 0. With the storage term vanishing, on 𝛤 for the coefficients
∈ (−1,∞), 𝜆 = −1, it holds

𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

= [𝑞𝑤0] + 𝑓𝑤𝑓 ,

𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0)

)

= [𝑞𝑜0] + 𝑓𝑜𝑓 .
(25)

In the case when 𝜆 ∈ (−1, 1) on the fracture surface 𝛤 , we have that

𝜀𝜆+1𝜕𝑥(
𝐾𝐾𝑤𝑓

𝜇𝑤
𝜕𝑥𝑝𝑤𝑓0) → 0

as 𝜀 → 0. The averaged equation therefore takes the form of an ODE
since the flux term now drops out. On 𝛤 it holds that

𝜕𝑡𝑆𝑤𝑓0 = [𝑞𝑤0] + 𝑓𝑤𝑓 ,

𝑡𝑆𝑜𝑓0 = [𝑞𝑜0] + 𝑓𝑜𝑓 .

The next effective model is for 𝜅 ∈ (−1,∞), 𝜆 ∈ (−1, 1). Partly, these
intervals have been covered in the previous cases. For 𝜆 ∈ (−1, 1) the
flux term drops out and for 𝜅 ∈ (−1,∞), the storage term vanishes. The
resulting equation therefore takes the form:

[𝑞 ] + 𝑓 = 0,
𝑤0 𝑤𝑓
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[𝑞𝑜0] + 𝑓𝑜𝑓 = 0.

In the absence of any source term, this case shows that the pressure
is continuous over the fracture. The effective model behaves as if the
fracture as a physical entity has disappeared.

4.2.4. Subcases when 𝜆 = 1
This is the critical case of 𝜆 being exactly equal to 1. In contrast

to the previous case when 𝜆 < 1 led to the continuity of pressures
across the fracture interface, this case leads to a discontinuous pressure.
However, the pressures at the two sides of the fracture interfaces are not
independent, rather they are coupled through a differential equation
inside the rescaled fracture subdomain. We have different interface
conditions on the two sides of the fracture, and we define the interfaces
as 𝛤1 = 𝜕𝛺1 ∩ 𝜕𝛺𝑓 and 𝛤2 = 𝜕𝛺2 ∩ 𝜕𝛺𝑓 . Let us first derive the model
equations for this case before discussing more on their structures. The
next case, the fifth case, is for 𝜅 = −1 and 𝜆 = 1 and we have these
interface conditions

−
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜂𝑝𝑤𝑓0 =
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝑦𝑝𝑤𝑚10 on 𝛤1,

−
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝜂𝑝𝑤𝑓0 =
𝐊𝐾𝑟𝑤
𝜇𝑤

𝜕𝑦𝑝𝑤𝑚20 on 𝛤2,

−
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜂𝑝𝑜𝑓0 =
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝑦𝑝𝑜𝑚10 on 𝛤1,

−
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝜂𝑝𝑜𝑓0 =
𝐊𝐾𝑟𝑜
𝜇𝑜

𝜕𝑦𝑝𝑜𝑚20 on 𝛤2

(26)

nd the continuity of the pressure

𝑝𝑤𝑓0(𝑡, 𝑥, 𝜂 = − 1
2 ) = 𝑝𝑤𝑚10(𝑡, 𝑥, 0), 𝑝𝑤𝑓0(𝑡, 𝑥, 𝜂 = 1

2 ) = 𝑝𝑤𝑚20(𝑡, 𝑥, 0),

𝑝𝑜𝑓0(𝑡, 𝑥, 𝜂 = − 1
2 ) = 𝑝𝑜𝑚10(𝑡, 𝑥, 0), 𝑝𝑜𝑓0(𝑡, 𝑥, 𝜂 = 1

2 ) = 𝑝𝑜𝑚20(𝑡, 𝑥, 0).

(27)

We begin again from (22). For 𝜆 = 1 and again multiplying the
equation by 𝜀 and restricting up to leading order terms,

𝜀𝜅+1𝜕𝑡𝑆𝑤𝑓0 + 𝜕𝜂

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

+ 𝜀2𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

= 𝜀𝑓𝑤𝑓 ,

𝜀𝜅+1𝜕𝑡𝑆𝑜𝑓0 + 𝜕𝜂

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

+ 𝜀2𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0)

)

= 𝜀𝑓𝑜𝑓 .

learly,

𝜀2𝜕𝜉

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜉 (𝑝𝑤𝑓0)

)

→ 0, 𝜀2𝜕𝜉

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜉 (𝑝𝑜𝑓0)

)

→ 0,

s well as the source term goes to zero as 𝜀 vanishes. With these
onsiderations, we obtain the following model

𝜀𝜅+1𝜕𝑡𝑆𝑤𝑓0 + 𝜕𝜂

(

−
𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)

𝜇𝑤
𝜕𝜂(𝑝𝑤𝑓0)

)

= 0,

𝜀𝜅+1𝜕𝑡𝑆𝑜𝑓0 + 𝜕𝜂

(

−
𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)

𝜇𝑜
𝜕𝜂(𝑝𝑜𝑓0)

)

= 0.

Now we consider a different regime. For 𝜅 = −1, we obtain the
effective model V. The fracture flow model is given as follows

𝜕𝑡𝑆𝑤𝑓0 − 𝜕𝜂

(𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)
𝜇𝑤

𝜕𝜂𝑝𝑤𝑓0

)

= 0

for 𝜂 ∈ (−1
2
, 1
2
), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 ,

𝜕𝑡𝑆𝑜𝑓0 − 𝜕𝜂

(𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)
𝜇𝑜

𝜕𝜂𝑝𝑜𝑓0

)

= 0

for 𝜂 ∈ (−1 , 1 ), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 .

(28)
9

2 2
he interface conditions and the subdomain equations complete the
odel derivation.

Next case we treat is the case where 𝜅 = (−1,∞), 𝜆 = 1. This case
s almost equal to the previous case, however, the scaling of 𝜅 in the
torage term is different. The interface condition remains the same. For
his range of 𝜅, the storage term vanishes in the limit as 𝜀 goes to zero.
hat is,
𝜅+1𝜕𝑡𝑆𝑤𝑓0 → 0, 𝜀𝜅+1𝜕𝑡𝑆𝑜𝑓0 → 0.

he fracture equations then take the form

−𝜕𝜂

(𝐊𝐾𝑟𝑤(𝑆𝑤𝑓0)
𝜇𝑤

𝜕𝜂𝑝𝑤𝑓0

)

= 0 for 𝜂 ∈ (− 1
2 ,

1
2 ), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 ,

−𝜕𝜂

(𝐊𝐾𝑟𝑜(𝑆𝑜𝑓0)
𝜇𝑜

𝜕𝜂𝑝𝑜𝑓0

)

= 0 for 𝜂 ∈ (− 1
2 ,

1
2 ), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 .

(29)

Together with the interface conditions (26) and (27) and retaining
the subdomain equation, this completes the derivation of the Effective
model VI. The dependency of 𝑝𝑜𝑓0, and 𝑝𝑤𝑓0 on 𝑡 and 𝑦 happens via
the interface conditions. Notice that in the effective models V and VI,
the fracture model does not collapse into reduced dimensional fracture
models and one needs to solve differential equations inside the fracture
subdomain. This is what we will refer to as the two-scaled models
similar to a cell problem in homogenization. This is different from
what happened in the effective models I–IV where one needs to solve
differential equations on the fracture surface.

4.2.5. Subcases when 𝜆 > 1
For the last two models, the permeability in the fracture is suffi-

ciently low such that the fracture acts as a barrier. These cases are
for 𝜅 = −1, 𝜆 ∈ (1,∞) and 𝜅 ∈ (−1,∞), 𝜆 ∈ (1,∞). The difference
between these two cases is the scaling of the storage term, and as we
have seen before, the storage term will not survive in the latter case.
The subdomain equations remain unchanged as before. We then recall
the interface conditions in (17) to deduce the boundary conditions for
the matrix subdomain,

𝐊𝐾𝑟𝑤
𝜇𝑤

∇𝑝𝜀𝑤𝑚10
⋅ 𝐧 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

∇𝑝𝜀𝑜𝑚10
⋅ 𝐧 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑤
𝜇𝑤

∇𝑝𝜀𝑤𝑚20
⋅ 𝐧 = 0 on 𝛤 ,

𝐊𝐾𝑟𝑜
𝜇𝑜

∇𝑝𝜀𝑜𝑚20
⋅ 𝐧 = 0 on 𝛤 .

(30)

The zero-flux boundary condition between the matrix sub domains
leads to a set of subdomains that are independent of each other, and
can be solved separately. The fracture equation becomes irrelevant.
However, for the case when 𝜅 = −1, we can still evaluate the fracture
equation by solving the differential equations,

𝜕𝑡𝑆𝑤𝑓0(𝑡, 𝜂, 𝑥) = 0 for 𝜂 ∈ (− 1
2 ,

1
2 ), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 ,

𝜕𝑡𝑆𝑜𝑓0(𝑡, 𝜂, 𝑥) = 0 for 𝜂 ∈ (− 1
2 ,

1
2 ), (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝛤 ,

(31)

as the flux terms in the fracture drop out. In the case when 𝜅 ∈
(−1,∞), 𝜆 ∈ (1,∞) even the storage term drops out making the fracture
equation irrelevant. Together with retaining the initial condition and
the boundary conditions, we recover the Effective models VII and VIII.

For the last two effective models, IX and X, we have the cases
𝜅 = −1, 𝜆 ∈ (−∞,−1) and 𝜅 ∈ (−1,∞), 𝜆 ∈ (−∞,−1), respectively. The
permeability in this case is large enough so that the pressure becomes
independent of 𝑦. Clearly in this regime, the pressures are independent
of 𝑦, since 𝜆 is less than 1 as seen before. However, in this regime, the
pressure also becomes independent of 𝑥. This implies that the pressure
is constant along the fracture surface. This is possible only when the
boundary conditions are compatible. The difference between IX and
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Fig. 2. Saturation for the whole domain and the reference model where we use Effective model I for the case when 𝜆 = −2 and 𝜅 = −1 (left) and pressure for the domain at fixed
-values for the same values of 𝜅 and 𝜆 (right). The saturations and pressures are compared to the reference solution in dotted lines.
a
a

is that in case IX when 𝜅 = −1 the storage term survives, and the
racture pressure only depends on 𝑡. In X the storage term also drops
ut.

.3. Summary of the effective models

Below we summarize the range of parameters and their correspond-
ng effective models.

𝜅 = −1, 𝜆 = −1: Effective model I
𝜅 ∈ (−1,∞),𝜆 = −1: Effective model II
𝜅 = −1, 𝜆 ∈ (−1, 1): Effective model III
𝜅 ∈ (−1,∞),𝜆 ∈ (−1, 1): Effective model IV
𝜅 = −1, 𝜆 = 1: Effective model V
𝜅 ∈ (−1,∞),𝜆 = 1: Effective model VI
𝜅 − 1, 𝜆 ∈ (−1,−∞):Effective model VII
𝜅 ∈ (−1,∞),𝜆 ∈ (−1,−∞):Effective model VIII
𝜅 = −1, 𝜆 ∈ (1,∞): Effective model IX
𝜅 ∈ (−1,∞),𝜆 ∈ (−∞,−1):Effective model X

5. Numerical examples

In this section we will numerically verify the above upscaling
results. To perform numerical experiments, we use a fully implicit two-
phase oil and water model as implemented in the MATLAB Reservoir
Simulation Toolbox (MRST) (Lie, 2019). We use the standard finite
volume scheme using two-point flux scheme (TPFA) on a static, uni-
form grid with rectangular cells. The geometry is built up by two
smaller rectangular domains separated by a fracture as considered in
the derivation. The two domains 𝛺1 and 𝛺2 consist of 100 × 50 grid
blocks each. The fracture is treated in different ways depending on the
effective model in use. The reference solution is obtained by solving
the two-phase flow model (1) in 𝛺𝜖 = 𝛺𝜖

1 ∪𝛺𝜖
𝑓 ∪𝛺𝜖

2 as shown in Fig. 1.
Here the fracture is solved together with the surrounding matrix using
the TPFA. The domain 𝛺 is fully saturated with oil at 𝑡 = 0. The global
pressure for the boundary conditions are taken to be of Dirichlet type
on all sides with a pressure of 𝑝 = 2 at the bottom and at the left side
of the domain. On the top and right hand side the pressure is 𝑝 = 1. At
the time t=0, we have that the whole domain 𝛺 is fully oil-saturated,
and then we start the water injection. This is done by setting the
saturation of the fluxes at the boundaries as water only. In our reference
model we solve the full model using these boundary conditions on all
the sides. However, for the upscaled models we need some interface
conditions at the fracture interface. These conditions vary depending
on the different effective models we use, and the different models vary
depending on the values of 𝜆 and 𝜅. The easiest case however, is the
10

case where the fracture completely separates the two sub-domains 𝛺1
nd 𝛺2 from each other. Here we can put a zero-flux interface condition
nd just solve the two sub domains 𝛺1 and 𝛺2 separately. We provide

further information on solving each of the three effective models in
the numerical tests below. The capillary pressure is implemented with
a simple linear relationship of the form 𝑝𝑐 (𝑆) = 𝐶(1 − 𝑆) which is
implemented in MRST where 𝐶 is a constant and 𝑆 is the saturation.
In the following simulations, 𝐶 = 0.01. We do also have linear relative
permeabilities for each phase.

Our approach for the validation is as follows. We select certain
values of 𝜖, 𝜅, 𝜆 which determine the reference geometry and the perme-
abilities. We compute the pressure for the full reference model resolving
the fracture thickness, i.e. we solve the equations in (8) with a finite
value of 𝜖 and use this for our reference solution. Depending on the 𝜅
and 𝜆 we pick a suitable upscaled model from the catalogue for these
values. The solution from the upscaled model is then compared to those
from the reference model.

We choose three sets of representative values for 𝜅 and 𝜆. We choose
(i) 𝜆 = −2, 𝜅 = −1, (ii) 𝜆 = 1, 𝜅 = −1, and (iii) 𝜆 = 2, 𝜅 = −1. These three
regimes correspond to permeability being quite large, critical case, and
sufficiently low permeability to act as a barrier case, respectively. For
these three cases, we choose three representative upscaled models from
the catalogue. The three models are selected such that they are the
appropriate models for the above three cases. The first model is the
effective model I which has the model equations collapsed on a surface
with the jump in the flux from the matrix appearing on the right hand
side. The second representative model is the two-scale model, effective
model V, which retains the storage term (time derivative term of
saturation). The effective model VII is chosen from the class that caters
to sufficiently low permeability so that the fracture acts as a barrier.
Effective model I is the appropriate model for case (i) 𝜆 = −2, 𝜅 = −1,
whereas models V and VII are appropriate for (ii) 𝜆 = 1, 𝜅 = −1, and
(iii) 𝜆 = 2, 𝜅 = −1 cases, respectively.

The motivation for setting up these numerical tests is the following.
For a certain parameter range, we find that the corresponding model
from the catalogue is the appropriate one and matches the reference
solution quite closely. Moreover, if we choose one particular model
but then choose the parameters far from their range of validity, the
accuracy decreases. This shows that relying on only one of these models
would not be appropriate for all the range of the parameters.

5.1. Effective model I

We study the effective model I and its quality in solving the models

for the three cases as mentioned above. Note that this is a mixed
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Fig. 3. Saturation for the whole domain and the reference model where the two-scaled model is used for different cases of 𝜅 and 𝜆 (left) and pressure for the domain at fixed
x-values for different 𝜅 and 𝜆 (right). The saturations and pressures are compared to the reference solution in dotted lines.
T
i

dimensional model with the fracture flow model on the fracture surface
coupled to the matrix flow equations. We adopt a domain decompo-
sition procedure consisting of Neumann to Dirichlet and Dirichlet to
Neumann operators for solving the model equations. Here we compute
the fluxes from the matrix 𝛺1 and 𝛺2 at the interfaces, and compute
the jump in the flux term and use this as a source term at the fracture
domain. The equations for the fracture are solved with the boundary
conditions at the fracture boundaries. The pressure calculated using the
model equations in the fracture is used as the new Dirichlet boundary
condition for 𝛺1 and 𝛺2. Then we repeat the procedure until the
solution converges within tolerance.

In Fig. 2 we see that the effective model I gives a good prediction
for the case where the permeability in the fracture is sufficiently large,
𝜆 = −2, 𝜅 = −1. The saturation curves from the upscaled model and the
11
reference model are quite close to each other at each time step. We plot
the pressure with respect to the 𝑦-axis for a fixed 𝑥 coordinate. In the
plot on the right side of Fig. 2, the three lines in the figure represent
different fixed 𝑥-values in our domain 𝛺, and we plot the pressure with
respect to the 𝑦-values. From Fig. 2(b) we see that the pressure curves
from the upscaled model and the reference model overlap perfectly.
However if we had tried this model for cases that are outside their
range of validity 𝜆 and 𝜅, for instance 𝜆 > 0, this model gives unphysical
results. The upscaled models must be carefully selected depending on
the values of 𝜆 and 𝜅. We note that this effective model is derived
under the assumption of high permeability in the fracture (𝜆 < 1).

his forces the pressure to be continuous across the fracture-matrix
nterface. However, for the two cases where 𝜆 = 1 and 𝜆 = 2, the

permeability is small enough that it leads to discontinuity across the
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Fig. 4. Saturation for the whole domain and the reference model where the decoupled model is used for different cases of 𝜅 and 𝜆 (left) and pressure for the domain at fixed
x-values for different 𝜅 and 𝜆 (right). The saturations and pressures are compared to the reference solution in dotted lines.
m
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fracture-matrix interface. This explains why this model is unable to
approximate the solutions in the other two cases.

5.2. Two-scaled model. Effective model V

For the two-scaled model, the solution procedure consists of rescal-
ing the domain and then solve the fracture and the matrix domains
in an implicit manner. Note that the interface conditions across the
fracture-subdomain interface is continuity of pressures and that of
fluxes. This implies that we can solve the fracture and subdomain
unknowns together getting a system of algebraic equations where the
subdomains and the rescaled fracture pressure unknowns are coupled
together. In Fig. 3 we have used the upscaled model for various values
12

v

of 𝜅 and 𝜆. Again we use this model to solve the three cases as
mentioned above.

In Fig. 3 we have plotted the saturation and pressure from our
numerical results. We have used the two-scaled model and solved it
for the three same 𝜆 and 𝜅 values as we have used in the previous

odel. From the previous section we expect the case where 𝜆 = 1 and
= −1 to be the best fit for our model. This is also the case, as seen

n Fig. 3(c), where the saturation curves overlap and we see the same
or the pressure curves in Fig. 3(d). In the two other cases the fit is
ot as good. For the case where 𝜆 = 2 we see that the model does not
atch the jump in pressure over the fracture. The two-scale model has
he advantage that it resolves the flow profile inside the fracture unlike
he other effective models that either take uniform pressure across the
ertical direction or simply decouple the two subdomains. Since there
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is a discontinuity of pressure across the fracture, this model seems to
provide a better approximation for the case of 𝜆 = 2 (when there is also
a discontinuity of pressures) than in the case when 𝜆 = −2 (when there
is a continuity of pressures).

5.3. The decoupled model. Effective model VIII

Here we discuss the results from what we refer to as a decoupled
model. The model is expected to work in cases where the fracture
permeability is sufficiently small and refers to structures such as bar-
riers, or cap rocks. In this upscaled model the two domains 𝛺1 and

2 are solved separately with zero-flux boundaries along the fracture
nterface. In this case, the effective problem decouples completely to
ive two inependent subproblems. Each of the subproblem is a two-
hase model with zero-flux boundary at the fracture interface.. Fig. 4
ives the saturation and pressure curves for the upscaled model for the
hree cases as discussed above.

From Fig. 4 we see that this model gives a good matching for the
aturation curves for cases where the permeability in the fracture is
ufficiently low (𝜆 > 1), Fig. 4(e). For the other cases in Fig. 4(a)
nd Fig. 4(c), we see that the saturation curves from the upscaled
odel and those from the reference solutions do not overlap. The
ressures for our last time steps are shown in the graphs at the right
and side of Fig. 4, and we see the same type of behaviour here. The
ressure curves from the upscaled model overlap with the pressures
rom the reference model for the case where 𝜆 > 1, Fig. 4(f). In the

other cases however there is no overlapping, and the other upscaled
model is therefore not good for predicting the flow in these intervals.
Here, we note that the permeability is quite small obstructing the flow
across the fracture interface and in the limit this leads to discontinuity
of pressures across the matrix–fracture interface. This obstruction of
flow is captured by the zero-flux condition. This explains why this
effective model captures this case quite well but fails in the cases when
the pressure is continuous (case i). Moreover, the critical case when
𝜆 = 1, even though it also leads to discontinuity of pressures, there
is still flow taking place across the fracture surface and the pressures
from the two subdomains sides are not independent rather coupled
via a differential equation that resolves the pressure profile inside the
fracture subdomain. This explains why this effective model is unable to
approximate this case sufficiently well.

An important observation is that the model equations are discontin-
uous with respect to the parameters 𝜆 and 𝜅. In particular, for 𝜆 = 1,
we see that a small perturbation in this value would imply the upscaled
model changes its character quite abruptly. This is not a satisfactory
situation, because in practice we do not know the exact value of 𝜆 and
𝜅. This suggests that higher order terms are needed to obtain the next
order approximation so that the model equations retain the continuity.
This would be the subject of our future investigations. This is also likely
to give a better understanding of the practical use of mixed dimensional
models for all the parameter ranges and using a fitting parameter to
guess the pressure profile inside the fracture.

6. Conclusion

We consider a two-dimensional fractured porous medium where the
fracture has a thickness 𝜖. For our flow model we have considered a
standard fully implicit two-phase oil/water model. This model consists
of combining the mass balance equation with the Darcy equation for
each of the two-phases. We perform an upscaling of the flow model
which is obtained as the limit as 𝜖 tends to zero. The particularity in
our approach is the scaling of the permeabilities of the two-phases and
porosity of the matrix that is taken as exponents of 𝜖 characterized
by two real numbers 𝜆 and 𝜅 respectively. We obtain a catalogue of
models for different values of 𝜆 and 𝜅. In our numerical simulations
we show that we can use 𝜅 and 𝜆 to pick an upscaled model, and that
13

the upscaled models work inside their range of validity. Finally, we
think that the higher order approximations are needed in order to deal
with the discontinuous nature of the upscaled models with respect to
the parameters.
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