
UNIVERSITY OF BERGEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS

Generative Adversarial Networks for
Annotating Images of Otoliths

Author:

Emir Zamwa

Supervisor:

Dr. Troels Arnfred Bojesen

January 30, 2023

iii

UNIVERSITY OF BERGEN

Abstract
Faculty of Mathematics and Natural Sciences

Department of Informatics: Machine Learning

Master of Informatics

Generative Adversarial Networks for Annotating Images of Otoliths

by Emir Zamwa

This thesis explores the use of generative adversarial networks (GANs) for annotat-
ing images of otoliths to determine the age of fish. The proposed solution not only
provides accurate age determinations, but also visual representations of the otolith
images with growth rings marked with dots, making it applicable as explainable ar-
tificial intelligence. The convolutional neural network models I propose are based
on Pix2Pix GANs and Wasserstein GANs, with the latter showing the success in my
experiments. The successful models achieve an accuracy of 82.8% and 81.5% in age
determination, including an offset of ±2 from the real ages of the dataset.

HTTP://WWW.UIB.NO
https://www.uib.no/en/studies/MAMN-INF
https://www.uib.no/en/studies/MAMN-INF/MA

v

Acknowledgements
“I would first and foremost express gratitude towards my fellow master’s students who be-
came good friends of mine during my period of studying at the University of Bergen. This
includes Knut Holager, Mathias Madslien, Halvor Barndon and Hans Martin Johansen, in
addition to John Isak Fjellvang and Johanna Jøsang. We have been through ups and downs,
struggles and joyful moments, endless goals and ambitions of how much we can put in our
lunch sandwiches, and let us not forget; the Covid-19 pandemic, together.

I had to postpone my thesis a whole semester because of an acting job in Oslo for the TV
series Blodsbrødre / Gangs of Oslo (TV 2 Norway and Netflix globally). This resulted in me
finishing one semester after you guys, and the comparison of being and not being in your
company was like night and day. So a big thanks goes to you guys.

I want to say a huge thanks to my advisor Dr. Troels Arnfred Bojesen, for his amazing avail-
ability, feedbacks, support and humor. Him just as the person he is, occasionally surprising
us with his delicious carrot cakes, was alone a big motivation for me. I want to thank Ketil
Malde, who provided the topic of this thesis. I also thank Dr. Côme Denechaud for giving me
access to his database of images and annotations on otoliths, and providing his knowledge on
the topic. Without these, there would be no thesis.

I want to thank my mom as well, for all the support she gives me on everything I do on this
planet named Earth that flies through the universe.

And last but not least, I want to thank me.
I want to thank me for believing in me.
I want to thank me for doing all this hard work.
I want to thank me for never quitting.
And I want to thank me for just being me at all times.”

- Emir Zamwa
January 30, 2023

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Overview . 1
1.2 The Otolith . 2

1.2.1 Growth Rings . 3
1.3 Computer Vision Assisted Age Determination 4

1.3.1 The Current Technology Sought To Further Expand Upon . . . 4
1.3.2 Envisioned Solution . 5

1.4 The Research Question . 6
1.5 The Chapters of the Thesis . 6

2 Theoretical Background 9
2.1 Discriminative vs. Generative Models 9
2.2 Generative Adversarial Networks . 10

2.2.1 Introduction . 10
2.2.2 General Architecture . 12
2.2.3 Conditional GAN . 12
2.2.4 Image-to-Image Translation . 13

2.3 Artificial Neural Networks . 14
2.3.1 Perceptron . 15
2.3.2 Multi-Layered Perceptron . 15
2.3.3 Activation Functions . 16

ReLU and LeakyReLU . 17
Sigmoid and Tanh . 18

2.4 Convolutional Neural Networks . 18
2.4.1 The Convolutional Layer . 19

Padding . 21
2.4.2 The Pooling Layer . 22
2.4.3 Convolution instead of Pooling 22
2.4.4 The Fully-Connected Layer . 23

Fully-Connected Layer as a Convolutional Layer 23
2.4.5 Transposed Convolutions . 23

2.5 Gradient-based Optimization . 24
2.5.1 Mini-batch Stochastic Gradient Descent 24

Momentum . 25
Adam Optimizer . 25

2.5.2 Vanishing Gradient Problem . 26
2.6 Pix2Pix GAN . 27

2.6.1 U-Net Generator . 27
2.6.2 PatchGAN Discriminator . 28

viii

2.7 Training Generative Adversarial Networks 29
2.7.1 Challenges when Training GANs 32
2.7.2 Alternative GAN Loss Functions 33

Pix2Pix Loss . 33
Wasserstein Loss . 34
Wasserstein Loss with Gradient Penalty 34

2.8 Overfitting vs. Underfitting . 35
2.8.1 Regularization . 36

Batch Normalization . 36
Instance Normalization . 37
Dropout . 37
Data Augmentation . 38

2.8.2 Training-Validation-Testing Split 38

3 Related Works 41
3.1 Deep Learning Applications on Fish Age Determination 41
3.2 GAN Applications for Annotation and Segmentation 42

4 Materials and Methods 43
4.1 Otolith Extraction, Image and Data Acquisition Process 43

4.1.1 Step 1 of the process: . 43
4.1.2 Step 2, 3 and 4 of the process . 44
4.1.3 Step 5 of the process . 44
4.1.4 Step 6 of the process . 45

4.2 Further Data Preprocessing . 46
4.2.1 Annotations Data Feature Extraction 46
4.2.2 Image Preprocessing . 46

4.3 Main Experiment . 48
4.3.1 Image-to-Image Data Preparation 48
4.3.2 GAN Architecture . 50
4.3.3 Experiment Settings . 51

Data Augmentation . 51
Hyperparameters . 52
Training Scheme . 53

4.4 Dot Counting Algorithm . 53
4.5 Other Ideas and Experiments . 54

4.5.1 Tabular GAN . 54
4.5.2 Wasserstein GAN . 55

4.6 Hardware Availability . 56
4.7 Summary of Relevant Experiment Runs 57

5 Results 59
5.1 Main Experiment: Pix2Pix GAN . 59

5.1.1 Training and Testing Pix2Pix GAN with the Smaller Dataset . . 59
Training . 59
Testing on Unseen Data . 60

5.1.2 Training and Testing Pix2Pix with the Bigger Dataset 61
Training . 61
Testing on Unseen Data . 62

5.2 Last Experiment: Wasserstein GAN . 64
5.2.1 Training Results . 64

ix

5.2.2 Testing Results . 66
5.2.3 Issues in the Results of WGAN 70

5.3 Bonus Experiment: Using an Image of a Tree Stump 71

6 Discussion and Future Works 73
6.1 Interpretations . 73

6.1.1 The Experiment Models in General 73
6.1.2 Mode Collapse . 74
6.1.3 Patch vs. non-patch Architecture in the Discriminator/Critic . . 75
6.1.4 Quality of the Generated Dots using Wasserstein GAN 77

6.2 Limitations and Future Works . 78

7 Conclusion 81

A CNN Architectures 83

B Testing Results 89

Bibliography 97

xi

List of Figures

1.1 Location of the ear bone/otolith. 2
1.2 Atlantic cod, Gadus morhua. 2
1.3 Otolith sagittae pairs. 3
1.4 Visual growth rings on an otolith. 4
1.5 Simplified DeepOtolith architecture. 5
1.6 Envisioned GAN solution. 6

2.1 Simple example of the GAN concept in a case of cat images. 11
2.2 Simple example of a GANs training process. 11
2.3 Standard GAN architecture, consisting of a generator and a discrimi-

nator. 12
2.4 CGAN architecture, where both the inputs of the generator and the

discriminator are conditioned with additional information, seen as
the yellow box. 13

2.5 Image-to-image translation example. 14
2.6 Typical neuron in a brain . 14
2.7 Artificial neuron, also called perceptron. 15
2.8 Simple example of an MLP. 16
2.9 The activation functions used in the thesis. 17
2.10 A typical CNN consisting of five layers. 19
2.11 Convolution with stride = 1 and kernel = 3 × 3 on input image of

4 × 4 pixels. 20
2.12 Visual example of a convolution. 21
2.13 Zero-padding added to a 4 × 4 image. 21
2.14 Pooling operations with 2 × 2 layer of stride = 2. 22
2.15 First four transposed convolution operations. 23
2.16 Example of a transposed convolution. 24
2.17 Original U-Net architecture. 27
2.18 Standard discriminator vs. PatchGAN discriminator. 28
2.19 The process of training traditional GANs. 31
2.20 Bias-Variance Trade-off. 35
2.21 Dropout regularization. 37
2.22 Image Data Augmentations used in the thesis. 38

4.1 First step of processing otoliths. 44
4.2 Step 2, 3 and 4 of processing otoliths. 44
4.3 Step 5 of processing otoliths. 45
4.4 An example of an otolith image from the original dataset. 47
4.5 Two samples of otolith images, differing in resolution. 48
4.6 An example of an otolith image with dots on annuli. 49
4.7 A pair of an otolith image and its dot image. 50
4.8 The GAN of the main experiment. 51
4.9 The dot counting algorithm. 54

xii

4.10 The Tabular GAN idea. 55
4.11 The Wasserstein GAN of the last experiment. 56

5.1 Results from the training with images from the smaller dataset (Pix2Pix
GAN). 59

5.2 Plot over the losses of the generator and the discriminator in the ex-
periment using the smaller dataset (Pix2Pix GAN). 60

5.3 Results from the testing with the smaller dataset (Pix2Pix GAN) using
the test data. 60

5.4 First epoch of training with the bigger dataset (Pix2Pix GAN). 61
5.5 Last epoch of training with the bigger dataset (Pix2Pix GAN). 61
5.6 Plot over the losses of the generator and the discriminator in the ex-

periment using the bigger dataset (Pix2Pix GAN). 62
5.7 Results from the testing with the bigger dataset (Pix2Pix GAN) using

the test data. 62
5.8 Results from the testing with the bigger dataset (Pix2Pix GAN). 63
5.9 First epoch. Results from the training with Wasserstein GAN with

512 × 512 images, where the models are tested on the validation data. . 64
5.10 Last epoch of training with images of 512 × 512 (Wasserstein GAN). . 64
5.11 First epoch of training with images of 128 × 128 (Wasserstein GAN). . 65
5.12 Last epoch of training with images of 128 × 128 (Wasserstein GAN). . 65
5.13 Plot over the losses of the generator and the critic using 512 × 512

images (Wasserstein GAN). 66
5.14 Plot over the losses of the generator and the critic using 128 × 128

images (Wasserstein GAN). 66
5.15 Results from the testing with images of 512 × 512 (Wasserstein GAN). 67
5.16 Results from the testing with images of 128 × 128 (Wasserstein GAN). 68
5.17 Histograms over the resulting age data from the testing with 512× 512

images (Wasserstein GAN). 69
5.18 Histograms over the resulting age data from the testing with 128× 128

images (Wasserstein GAN). 69
5.19 An example of an issue where the generator does not produce any

dots, resulting in 0 in age. 70
5.20 Example of an issue where the generation of dots occurs on multiple

places on the otolith. 70
5.21 Result of the bonus experiment, where the trained Wasserstein GAN

model is tested on an image of a tree stump. 71

6.1 Information-comparison of images. 76

A.1 Pix2Pix GAN CNN Architecture for experiment 1 in Table 4.6. 84
A.2 Pix2Pix GAN CNN Architecture for experiment 2 in Table 4.6. 85
A.3 Wasserstein GAN CNN Architecture for experiment 3 in Table 4.6. . . 86
A.4 Wasserstein GAN CNN Architecture for experiment 4 in Table 4.6. . . 87

B.1 Additional results from the successful experiments. 96

xiii

List of Tables

4.1 Table of annotations data of processed otoliths. 45
4.2 The ages of the fish in the dataset and their occurrences. 46
4.3 Extracted features in a prepared dataset. 46
4.4 Table of data augmentation details of training samples. 52
4.5 Hyperparameters used in the experiments. 52
4.6 Summary of relevant runs for different experiments. 57

xv

List of Abbreviations

AI Artificial Intelligence
ML Machine Learning
GAN Generative Adversarial Network
CGAN Conditional Generative Adversarial Network
ANN Artificial Neural Network
CNN Convolutional Neural Network
MLP Multi Layered Perceptron
ReLU Rectified Linear Unit
Sigmoid/σ Logistic Activation Function
Tanh Hyperbolic Tangent
RGB Red Green Blue
Conv Convolutional
FC Fully-Connected
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN with Gradient Penalty
GD Gradient Descent
SGD Stochastic Gradient Descent
BCE Binary Cross Entropy
BatchNorm Batch Normalization
InstanceNorm Instance Normalization

1

Chapter 1

Introduction

1.1 Overview

ARTIFICIAL INTELLIGENCE (AI) has been able to carry out an increasing num-
ber of human tasks over the past ten years thanks to Big Data, algorithm im-
provements, and the continuous advancement of computing power. Using

deep learning, which is a subfield of machine learning (ML), has allowed for abilities
like pattern-recognition, generalization, and experience-based learning [14]. While
deep learning have become advanced in finding patterns and recognizing things, it
was not good at creating them ten years ago. Since then, there has been many ad-
vancements in generative techniques. A few examples that have gained massive me-
dia attention in 2022 include DALL-E [65, 19] and ChatGPT [80, 46], in addition to
Midjourney [43]. The increased popularity and interest of generative techniques orig-
inally began to grow after the introduction of generative adversarial networks (GANs),
presented in 2014 by Goodfellow et al. [31]. This is because GANs gave machines
"The gift of imagination" [28].

The idea introduced by GANs represents a competition between two artificial neural
networks. These methods have enabled researchers to produce wholly computer-
generated images of everything from people’s faces to art that look realistic. Addi-
tionally, they have also allowed for the creation of contentious "deepfake" media [26,
74]. GANs can be used to mimic any data distribution whether it is images, texts,
videoes or sounds. In this thesis specifically, we will look at the possibility of using
GANs to help marine researchers determine the age of fish.

Many studies are conducted on fish to help understand how the species popula-
tion react to environmental stressors such as climate change, human exploitation
and how the population develops as a reaction to commercial and recreational fish-
ing [16, 23]. The studies are conducted on different aspects of a fish’s life such as
growth, mortality and maturity. Scientists specifically look at the fish’s age and rates
of growth. This can be done by studying the ear bones called the otoliths, which are
located in the ear of all fish except for sharks, rays and lampreys [12].

The technique involve counting natural growth rings on otoliths. As the fish
grows, new rings are developed on their otoliths as a result, dependent on seasonal
changes and their access to nutrition. Counting these rings on the extracted otolith
results in the approximate age of the fish. This technique is very similar to aging
trees by counting growth rings on the tree stump.

The growth rings on otoliths are today mostly counted manually by hand under mi-
croscopes after they are processed, which can be tedious and slow. The goal of this
thesis is to research the possibility of using GANs to analyze images of processed

2 Chapter 1. Introduction

otoliths and visually annotate where these rings are located automatically – poten-
tially skipping the laboring manual process.

By using the proposed GANs of this thesis for annotations, not only can the age
of the fish be determined, but the method will in addition also allow us to compre-
hend and potentially trust the results created by the machine learning model, which
can be referred to as an explainable AI [77] – making it possible for marine researchers
to determine if the results are reasonable.

1.2 The Otolith

Otoliths are calcium carbonate crystals located in the ear stone or ear bone of a fish
as shown in Figure 1.1 as H.

Figure 1.1: Location of the ear bone/otolith (H). Figure
taken from Marrabbio2 [47].

It allows fish to hear and
sense vibrations in their sur-
roundings, and helps them to
perceive directional indicators
such as balance, gravity and
movement. The size and shape
of otoliths varies greatly be-
tween fish species. In fact, most
species can be distinguished
from one another just by their
otoliths [24]. A few different
shapes are shown in Figure 1.3.
In this thesis however, we will
study otoliths from the North-
east Arctic cod (Gadus morhua)
shown in Figure 1.2.

Figure 1.2: Atlantic cod, Gadus morhua. Figure taken from Boulart
[7].

As explained by Canada [12], there are three pairs of otoliths in each fish, including
one large pair (the sagittae) and two small pairs (the lapilli and the asteriscii). The
smaller pairs are about the size of the tip of a pin. The otoliths shown in Figure 1.3

1.2. The Otolith 3

are the larger sagittae pairs, which are usually used for determining age. These are
the ones we will be focusing on in this thesis.

Figure 1.3: Otolith sagittae pairs (two per individual fish) from an as-
sortment of Bering Sea fish species. Walleye pollock (top left) and Pa-
cific cod (top right) are among the species shown in the figure. Note:
otolith sizes are not on a relative scale. Figure taken from Fisheries

[25].

1.2.1 Growth Rings

Otoliths exhibit both periods of low growth (winter) and high growth (summer) as
they develop along with the rest of the fish (spring to autumn). Darker "narrow
bands" called checks and lighter "wide bands" are produced by this pattern as shown
in Figure 1.4.

4 Chapter 1. Introduction

Figure 1.4: Visual growth rings on an otolith. Otoliths are usually
sliced into thin crosswise sections with a low-speed saw for better
visibility of the pattern of the bands. Red dots indicating each annuli.

Figure taken from Brazier [8].

Checks are regarded as one winter’s worth of growth. Annuli is the collective term
for a narrow and a wide band together which represent one year’s growth. These
are counted to determine the fish’s overall age.

According to Brazier [9], using otoliths is in most cases the most accurate way
to determine the age of a fish, but this technique require the fish to be dead which
sometimes is not preferable in scientific studies. For more details, see “Fish Hearing”
[9] where Brazier explains the otoliths to a greater depth.

1.3 Computer Vision Assisted Age Determination

Computer vision is a field of AI and computer science that focuses on the ability
of computers to interpret and understand visual data from the world around them.
This involves developing specialized algorithms and machine learning models that
can automatically detect, recognize, and track objects, faces, and other features in
images and videos, as well as understand the context and meaning of the visual
data [63]. Deep learning is widely used in computer vision to analyze images.

1.3.1 The Current Technology Sought To Further Expand Upon

In the field of age determination of fish, computer vision is already experimented
with, and applied by marine researchers. An example is a program called DeepO-
tolith (http://otoliths.ath.hcmr.gr/) [58]. DeepOtolith takes an image of an otolith
as input, then the ML model performs its algorithm on the image, and outputs the
age prediction. This is done by using artificial neural networks to extract features
from the input. A simple figure of the program is visualized in Figure 1.5.

http://otoliths.ath.hcmr.gr/

1.3. Computer Vision Assisted Age Determination 5

10Black Box

Image of otolith

Convolutional
Neural Network

Age

OutputInput

Figure 1.5: Simplified DeepOtolith architecture. Otolith image is used
as input. A convolutional neural network then analyzes the image
and outputs an age prediction. Otolith example used is for the pur-

pose of visualization.

The goal of DeepOtolith is to predict the age of the fish from the input image by
training the model in a supervised learning1 fashion, where a dataset of otolith images
and their respective ages are used for training. The problem is, the only way to
determine if the results of the trained model are correct is by inspecting the otoliths
manually.

The program itself applies a convolutional neural network that analyzes the input
image and predicts an age as output, but everything else that happens in the pro-
gram, including calculations and processes, happens under the hood without any
transparency or explanation to the user. This can be referred to as a black box.

The question that arises is how does the program conclude an age for a specific
otolith, like it has determined the age 10 for the otolith in Figure 1.5? Is there a sim-
pler way to visualize the results instead of manually inspecting each otolith under a
microscope or otolith image by hand for double-checking purposes?

1.3.2 Envisioned Solution

The goal of my thesis is to utilize a GAN to visually annotate where growth rings are
located on otoliths. By using GAN as a tool to train a generative model, I will research
the possibility of copying the manual by-hand process of marking dots on otolith
growth rings for age determination by replacing this labor with machine learning.
The GAN’s generator (the generative model) will instead present a visualization of
where each growth ring is located on the otolith image by marking them with dots
as an explainable AI.

The training will utilize a dataset containing processed otolith images and their
respective annotations’ data. The GAN’s generator will be trained to output dots by
trying to fool the GAN’s discriminator (the discriminative model), making it believe
these dots are real when compared to images and human annotations. When the
GAN training is complete, the generator trained by using the discriminator as a

1Supervised Learning is when a model receives guidance while learning from a labeled dataset.
Unsupervised Learning is in contrast when the model is trained using unlabeled data without any
supervision.

6 Chapter 1. Introduction

tool, will then be used to annotate unseen otolith images. The envisioned solution is
visualized in Figure 1.6.

Generator of
the GAN

Input
Output

Image of
otolith

Convolutional
Neural Network

Annotated image of
the same otolith

Figure 1.6: Envisioned solution where a GAN’s generator annotates
growth rings on an otolith. Otolith image as input. Dots on annuli as
output. By counting these dots either manually or with an algorithm,
the approximate age will be determined. Note: image sizes are not to

scale, and only different for the purpose of visualization.

As seen in Figure 1.6, an otolith image is used as input to the generator, and the
envisioned output is visual dots on where the annuli are located on the otolith. With
this solution, such a program can be used to annotate each growth ring otoliths,
giving the researchers a way to visually see dots on each annuli without marking
them manually. By using an algorithm to count the generated dots, the program
will also provide the age determination of the fish as well. In addition to the age
determinations, the resulting images can also be used to determine growth rates
of fish by looking at the distance between each growth ring, potentially providing
marine researchers more valuable information with this solution.

1.4 The Research Question

"What is the potential of using generative adversarial networks in develop-
ing a generative machine learning model for accurately annotating images of
otoliths?"

1.5 The Chapters of the Thesis

• Chapter 2 - Theoretical Background: This chapter presents the technical back-
ground theory related to generative adversarial networks, where I will de-
scribe the concepts used in this thesis.

• Chapter 3 - Related Works: Where I will give a brief review of relevant liter-
ature to the study, and describe the basis work for which this thesis seeks to
further expand upon.

• Chapter 4 - Materials and Methods: This chapter will explain the materials,
methodical approach and considerations taken throughout the work.

• Chapter 5 - Results: Where I will provide the results of the experiments.

1.5. The Chapters of the Thesis 7

• Chapter 6 - Discussion and Future Works: Where I will analyze the results
and discusses their implication. I will interpret the findings and address the
limitations of the work, and describe the actions that can be done further in
light of this research.

• Chapter 7 - Conclusion: Lastly, I will summarize how the main findings an-
swered the research question.

9

Chapter 2

Theoretical Background

This chapter presents the theoretical background of GANs and their deep learning
fundamentals and concepts.

2.1 Discriminative vs. Generative Models

In the field of machine learning, discriminative models and generative models are two
broad classes of algorithms that can be used to learn the underlying structure of
a given dataset [32]. These compute classifiers using various methods with varying
degrees of statistical modeling. Following Jebara [39], we can define them as follows:

• A discriminative model is a model of the conditional probability P(Y|X = x)
of the target Y, given an observation x.

• A generative model is a statistical model of the joint probability distribution
P(X, Y) on given observable variable X and target variable Y. Can also be
written as P(X|Y = y), or P(X) if there are no labels.

Generative models attempt to learn the probability distribution of a dataset, in order
to generate new samples that are similar to the ones in the original dataset. This is
typically done by learning the underlying patterns and relationships within the data
and using that information to create new samples.

Discriminative models, on the other hand, learns to make predictions about the
class or category of a given input by directly modeling the relationship between
the input and the output. This means that they focus on learning the boundary
between different classes in the data, rather than learning the underlying probability
distribution of the data.

A generative model could for example learn to generate images of cats that look like
real photos of cats, while the discriminative model could learn to tell a photo of a cat
from a photo of a dog.

More formally, we want to move from an observation x to a label y in the context
of classification, or probability distribution on labels. Without using a probability
distribution, we can compute this directly using a distribution-free classifier. We
can estimate the likelihood of a label given an observation, P(Y|X = x) (using a
discriminative model), and then base classification on that. Or, we can estimate
the joint distribution, P(X, Y) (using a generative model), compute the conditional
probability P(Y|X = x), and then base classification on that. These are more indirect,
but more probabilistic, allowing for the application of more domain knowledge and
probability theory [83]. Depending on the specific problem, different approaches are
used in practice, and hybrids can combine the best aspects of several approaches.

10 Chapter 2. Theoretical Background

Some examples of popular discriminative models are [32]:

• Logistic Regression

• Scalar Vector Machine

• Nearest Neighbor Search

• Conditional Random Fields

• Decision Trees and Random Forest

• Discriminator of GAN

Some examples of popular generative models are [64]:

• Naïve Bayes

• Bayesian Networks

• Markov Random Fields

• Hidden Markov Models

• Latent Dirichlet Allocation

• Generator of GAN

Both generative and discriminative models can be effective for different types of
learning tasks, and which one is more appropriate for a given problem will depend
on the specific characteristics of the data and the goals of the model.

2.2 Generative Adversarial Networks

The power of GANs lies in the competition between two artificial neural networks
– one being generative and one being discriminative. It mimics the back-and-forth
between two characters who are constantly attempting to outwit one another – a
generator and a discriminator. The same set of data is used to train both networks,
where the discriminator in addition use generated data from the generator.

2.2.1 Introduction

The generator is tasked with creating as real, data-like artificial outputs as possible.
The discriminator attempts to distinguish between real and generated data from its
knowledge gained when trained with authentic data from the original dataset. The
generator modifies its parameters for producing new data in light of those findings.
This competition continues until the discriminator is unable to distinguish between
the authentic, real data and the ones created by the generator. An example case can
be the creation of cat images as shown in Figure 2.1.

2.2. Generative Adversarial Networks 11

Figure 2.1: Simple example of the GAN concept in a case of cat im-
ages. Generator as "The Artist" in this case. Discriminator as "The Art

Critic". Figure taken from TensorFlow [72].

Here, the generator will generate fake images of cats, while the discriminator decides
whether they are real or fake. During training, the discriminator gets better at telling
them apart as the attempts progresses, while the generator gets better at producing
realistic-looking images of cats. When the discriminator no longer can distinguish
between real and fake images of cats, the process has reached equilibrium as shown
in Figure 2.2.

Figure 2.2: Simple example of a GAN’s training process. Generator
at the top creating fake images of cats. Discriminator at the bottom
deciding if they are real or fake. Figure taken from TensorFlow [73].

12 Chapter 2. Theoretical Background

2.2.2 General Architecture

To further describe the GAN in more general terms, we can visualize the standard
architecture as shown in Figure 2.3:

INPUT

GENERATOR output outputinput

DISCRIMINATOR either getting
REAL IMAGE as input OR

Generator OUTPUT IMAGE
as input

input

Generator and Discriminator LOSS

DISCRIMINATOR
Generator
OUTPUT
IMAGE

REAL
IMAGE

REAL
or

FAKE

Figure 2.3: Standard GAN architecture, consisting of a generator and
a discriminator. The generator has an arbitrary input, for example
noise. "REAL IMAGE" are images from the original dataset that the
discriminator has as input (if not "Generator OUTPUT IMAGE" is
used, which is the generated image from the generator, different from
its input). Discriminator output "REAL" or "FAKE" denotes whether
the "Generator OUTPUT IMAGE" or the "REAL IMAGE" is real or
fake, further used for backpropagation in the generator and the dis-

criminator.

The generator must have an input. This input is usually random noise in general
GANs, but it can for example also be an image (subsection 2.2.4). As visualized in
Figure 2.3, the generator begins to generate data from this input. This generated
data is then sent to the discriminator as its input, where it is analyzed to determine
how close it is to being classified as real. After this classification, a generator loss
is calculated, that is sent back to the generator using backpropagation (section 2.5)
where the model readjusts its features to be able to generate better outputs. The
same goes for the discriminator, receiving discriminator loss so that it can get better
at classification.

The discriminator then receives this newly generated data once more, and the
process continues. This process keeps repeating as long as the discriminator keeps
labeling the generated data as fakes, because each time data is labeled as fake and
with each backpropagation, the quality of the generated data keeps improving. Even-
tually, the generator will become so accurate that it will be difficult for the discrim-
inator to tell the difference between data generated by the generator and real data.
This training process is further described in section 2.7.

2.2.3 Conditional GAN

The inability to regulate the kinds of images produced by standard GANs presents a
difficulty. The generator simply begins with random noise and repeatedly produces
images that eventually start to resemble the training images.

2.2. Generative Adversarial Networks 13

This is resolved by a conditional GAN (CGAN), which makes use of additional
information like labeled data or class labels. This may lead to faster or more stable
training while also possibly improving the quality of the generated images. For
instance, a CGAN can be trained to generate and discriminate numbers when given
images and labels of various integers between 0 − 9. An image of number 1 with its
label "one", 2 with its label "two" and so on. Either the generator or the discriminator,
or both, can have its inputs conditioned with a class label. This gives the generator
or the discriminator the ability to know what they respectively are generating or
discriminating. A standard GAN (also known as an unconditional GAN) relies solely
on mapping the data in the latent space to that of the generated images in the absence
of such a condition [37]. Compared to Figure 2.3, a CGAN can be visualized as
shown in Figure 2.4.

INPUT

Condition

GENERATOR output outputinput

input

Generator and Discriminator LOSS

DISCRIMINATOR
Generator
OUTPUT
IMAGE

REAL
IMAGE

REAL
or

FAKE

Figure 2.4: CGAN architecture, where both the inputs of the gener-
ator and the discriminator are conditioned with additional informa-

tion, seen as the yellow box.

2.2.4 Image-to-Image Translation

My research question resolves around using GANs to produce images with annota-
tions on where an annuli is located on an otolith, as visualized in Figure 1.6. The fun-
damental concept in the approach towards a solution was the use of image-to-image
translation in my experiments. This technique is a conditional generation framework
that translates an input image into a different output image, like for example in-
putting a grayscale image and outputting the same image in colors. The generation
of the output image is dependent on an input, in this case, a source image. When
given a source image and a conditioned target image, the discriminator must decide
whether the generated image is a plausible transformation of the source image by
comparing them to the target, real images. The architecture is shown in Figure 2.5.

14 Chapter 2. Theoretical Background

GENERATOR output outputinput

input

Generator and Discriminator LOSS

DISCRIMINATOR
Generator
OUTPUT
IMAGE

SOURCE
IMAGE

REAL
or

FAKE

REAL
IMAGE

input

input

Figure 2.5: Image-to-image translation example, where the inputs are
conditioned with a source image shown as the yellow box. Note that
the "REAL IMAGE" and the "Generator OUTPUT IMAGE" are differ-

ent from the "SOURCE IMAGE".

There are many ways of building an image-to-image GAN. This framework was
originally presented by Isola et al. [38] called Pix2Pix, where the generator con-
sists of a U-Net and the discriminator being a PatchGAN. We will further describe
Pix2Pix in section 2.6, but before we can do that, we have to understand the build-
ing blocks of the generator and the discriminator. They consist of artificial neural
networks, more specifically convolutional neural networks. These two concepts will be
further described in the next two sections (section 2.3 and section 2.4).

2.3 Artificial Neural Networks

Image your brain, this incredible organ and all the amazing and advanced opera-
tions it is capable of doing. Artificial neural networks (ANNs) are a digital represen-
tation that is inspired by the same theoretical concepts of biological neural networks
of a brain.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath
Axon

Nucleus

Figure 2.6: Typical neuron in a brain.
Figure taken from Dhp1080 [17].

Our brains consist of billions of neurons,
interconnected and linked together to form
a highly complex network where information
travels. Each neuron takes up new informa-
tion, processes it, and then transmits electrical
and chemical signals to other neurons through-
out this network – resulting in our intelligence.
A typical neuron is shown in Figure 2.6.

Now imagine that each of these neurons,
these cells in your brain, instead is a function,
that takes in the outputs of other functions, and
sends out its signal as numbers. This digital representation of an artificial neuron is
shown in Figure 2.7, and is also called a perceptron.

2.3. Artificial Neural Networks 15

Figure 2.7: Artificial neuron, also called perceptron. [x0, x1, . . . , xn]
denoting the inputs with their corresponding weights
[w0, w1, . . . , wn]. b denoting the bias, f the activation function
and y the output. Figure taken from MartinThoma [48], and edited.

2.3.1 Perceptron

The perceptron is the fundamental block of an ANN. As seen in Figure 2.7, the per-
ceptron has inputs [x0, x1, . . . , xn]. Each input xi has its weight wi. Every input scaled
by corresponding weight, wixi, goes into the neuron where some calculations hap-
pen, before the final number goes out as an output y, formulated in the following
way for every perceptron [60]:

y = f (
n

∑
i=1

wixi + b), (2.1)

where b is the bias and n is the number of the dimension of the input space. The
output value y, called the activation, is the weighted sum of the input and weights
plus the bias, transformed by f – the activation function (subsection 2.3.3).

Now one perceptron alone cannot solve complex tasks however, but connecting
many perceptrons together in layers forming an ANN can. This forms a network
called multi-layered perceptron (MLP).

2.3.2 Multi-Layered Perceptron

Simple MLP networks can consist of just a few layers, but having many layers forms
a deeper neural network. This is where the term deep learning originated from. A
visualization of a simple MLP is shown in Figure 2.8.

16 Chapter 2. Theoretical Background

Direction of
informationflow

Figure 2.8: Simple example of an MLP. This feed-forward MLP has
four inputs (x) in the input layer, two hidden layers (h(1) and h(2)),

and three outputs in the output layer (ŷ).

This MLP shows a standard ANN architecture – consisting of an input layer and an
output layer, with user-defined amount of hidden layers in-between [60], also called
fully-connected layers (subsection 2.4.4). Because the data flows from the input to
the output layer, and each layer is a function of the previous layer, an MLP is a
type of network known as a feed-forward neural network. Depending on the input,
different neurons in the MLP will activate at varying intensities, producing various
outputs. We can express the MLP in Figure 2.8 as follows [30]:

h(1) = f (1)(W(1)Tx + b(1)), (2.2)

h(2) = f (2)(W(2)Th(1) + b(2)), (2.3)

ŷ = f (3)(W(3)Th(2) + b(3)), (2.4)

where each hidden layer h is a vector of non-linear activations, meaning the y’s from
Equation 2.1. WT is a transposed matrix of the weights (necessary in order for the
dot product to be possible), f is an activation function applied element-wise, b is a
vector of biases, and ŷ is a vector of the outputs. Let us now understand what these
activation functions are.

2.3.3 Activation Functions

Any MLP made up only of linear functions would only represent a linear mapping of
input to output, regardless of the depth. As a result, activation functions are used to
add non-linearity to the neuron outputs and give the MLP the ability to approximate
more challenging functions. A network cannot represent non-linear functions if the
hidden layers do not have any activation functions, but thanks to them, it can.

2.3. Artificial Neural Networks 17

There are many kinds of activation functions in use [5], but depending on the task
at hand, low computational cost, differentiability, and zero-centeredness are gener-
ally desired properties. Rectified linear unit (ReLU), the logistic activation function
(sigmoid), and the hyperbolic tangent (tanh) are the three most popular and widely
used activation functions and also the ones I use in my experiments, in addition to
LeakyReLU. These are shown in Figure 2.9.

(a) ReLU (b) LeakyReLU

(c) Sigmoid/σ

ta
nh
(x
)

(d) Tanh

Figure 2.9: The activation functions used in the thesis.

ReLU and LeakyReLU

ReLU, as shown in Figure 2.9a, is a piecewise linear function that, if the input is
positive, outputs the input directly; if not, it deactivates the neurons and outputs
zero, formulated as follows for input x:

ReLU(x) = max(0, x). (2.5)

Because of this, the ReLU function results in being computationally efficient when
compared to sigmoid or tanh. In addition to the advantage of being computation-
ally efficient, ReLU also overcomes the vanishing gradient problem (subsection 2.5.2),
which describes a situation where a deeper MLP is unable to propagate useful gradi-
ent information of the output end of the model back to the layers near the input end
[11]. Since it is simpler to train and frequently results in better performance, it has
evolved into the standard activation function for many types of neural networks.

The negative side of ReLU however, is the occasional instance of the dying ReLU

18 Chapter 2. Theoretical Background

problem, where during the backpropagation process, biases and weights for the neu-
rons that are not above zero never get updated. This can create dead neurons that
never contribute to the result, hence the term dying ReLU problem. To solve this is-
sue, there is an improved version of ReLU called the LeakyReLU function, as shown
in Figure 2.9b, formulated as follows:

LeakyReLU(x) = max(0.1x, x). (2.6)

Here, there is a tiny positive slope in the negative area of the function so that all
neurons, instead of being either completely activated or deactivated, rather are more
or less activated. This can be a safer choice in regard to dead neurons.

Sigmoid and Tanh

The sigmoid (σ) function, as shown in Figure 2.9c, accepts any real values as an input
and produces output values between 0 and 1, formulated as follows:

σ(x) =
1

(1 + e−x)
. (2.7)

The balancing feature of this activation function is that the output value will be
closer to 1 the larger (more positive) the input value, and closer to 0 the smaller (more
negative) the input value. σ is mostly used where predicting the probability in the
output is the goal, since probability is in the range of 0 to 1. Therefore, it is commonly
used in the output layer of a neural network.

An advantage of σ is that it provides a smooth gradient because of the function
being differentiable. It prevents jumps in the output values [5].

The tanh function as shown in Figure 2.9d, is very similar to the σ function – having
the same shape. The only difference between them is that tanh has the range of −1
to 1 compared to σ’s 0 to 1, formulated as follows:

tanh(x) =
(ex − e−x)

(ex + e−x)
. (2.8)

The advantage here is that tanh is zero-centered, making it easy to interpret the
output values as strongly positive, neutral or strongly negative.

The simple ANN I have presented in this chapter describe the basic concepts and
how machine learning architectures are made. In computer-vision, these networks
are further expanded, where the architecture is made up of convolutional neural net-
works. These deep learning networks are built using the same concepts, but their
building blocks and layers are different. Now that the fundamentals are presented,
I will in the next section move on to describe convolutional neural networks to give
an understanding of the building blocks of the GANs used in this thesis.

2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a subset of ANNs that are primarily
employed in image-related machine learning tasks [79]. Images are after all just a

2.4. Convolutional Neural Networks 19

collection of numbers indicating the brightness for each pixel, where the amount of
pixels becomes the input vector in an MLP. A black and white (grayscale) image of
resolution 1024 × 1024 would require 1 × 1024 × 1024 = 1048576 weights per pixel
in the first hidden layer of the MLP containing one neuron. If the same image was to
be colored, it would have three times as many weights for that one neuron because
of the red-green-blue (RGB) color channels.

Now imagine having multiple neurons and multiple hidden layers, and a larger
input image; when a neural network has more layers, the number of parameters in-
crease quickly, hogging the resources and memory of even a modern computer to
the point where training would not be possible [68]. Therefore, it is highly recom-
mended in computer vision or image recognition tasks to use CNNs [27].

Another advantage with using CNNs, is that we utilize the equivariant informa-
tion in the image, meaning that the pattern of a cat is the same whether it is in the
center of the image or in the corner. In addition to this, we assume that the data
shows some form of locality, meaning that pixels that are near each other typically
are stronger correlated than the pixels further away from each other. By utilizing
these assumptions, much fewer parameters are needed and learning may become
easier, more stable and faster compared to the MLP example.

The modern CNN is constructed around three main parts, but can still be a CNN
by only using the first: a convolutional layer, a pooling layer, in conjunction with a
fully-connected layer. These layers used together address the MLP problem and
gives fewer learnable parameters. A CNN example is shown in Figure 2.10.

Kernel
Pooling Pooling

Figure 2.10: A typical CNN consisting of five layers. Two convolu-
tional layers, two pooling layers and one fully-connected layer. Fig-

ure taken from Aphex34 [2].

2.4.1 The Convolutional Layer

The convolutional (Conv) layer is the fundamental building block of a CNN. The
conv layer is responsible for extracting features from the input image and reduc-
ing the dimensionality of the data by creating a condensed representation of the
input. They are an essential component of CNNs, which enables CNNs to achieve
state-of-the-art performance on a variety of tasks such as image classification, object
detection, and semantic segmentation (chapter 3).

Conv layers are composed of a set of filters, also known as kernels. Each kernel
is a small matrix of weights that is applied to a local region of the input image,
known as the receptive field. The use of kernels allows conv layers to learn spatial
hierarchies of features, with lower-level kernels learning basic patterns such as edges
and corners, and higher-level kernels learning more complex patterns such as shapes
and objects. By using convolutions, we can possibly be able to detect each annuli of

20 Chapter 2. Theoretical Background

an otolith. The output of the convolutional layer is also typically down-sampled, or
reduced in resolution, which helps to further reduce the dimensionality of the data
and improve the robustness of the model to small variations in the input.

The convolution operation involves element-wise multiplication of the weights
in the kernel with the corresponding input pixels, followed by summation of the
results to produce a single output value for each receptive field. This process is re-
peated for every receptive field in the input image, producing a set of output values
that form a feature map. If the input image is a 2-dimensional image I(x, y), for
example like the robot in Figure 2.10, a convolution operation can be expressed as
follows [30]:

(I ∗ K)(x, y) =
n

∑
i=1

n

∑
j=1

I(i, j)K(x − i, y − j), (2.9)

where n is the size of the convolutional kernel and I(i, j) and K(x − i, x − j) repre-
sent the input pixels and kernel weights at position (i, j), respectively. Note that the
kernel does not have to be quadratic. The output from the convolution operation
is then usually fed through an activation function like ReLU, discussed in subsec-
tion 2.3.3. The number of horizontal positions the kernel moves in the input between
each calculation is represented by a value called stride. If the kernel cannot move any
further horizontally, starting from the left for example, it will, if possible, move ver-
tically down equal to the stride value, and start over. This operation is visualized in
Figure 2.11, but in practice can be done in no particular order or in parallel:

(a) 1st operation (b) 2nd operation (c) 3rd operation (d) 4th operation

Figure 2.11: Convolution with stride = 1 and kernel = 3 × 3 on input
image of 4 × 4 pixels. Figures taken from Dumoulin and Visin [20].

An example of the calculation is visualized in Figure 2.12, with a vertical edge de-
tection kernel:

2.4. Convolutional Neural Networks 21

Image

10
10
10
10
10
101010

1010

6 x 6

3 x 3
4 x 4

1010
1010
1010
1010

Filter/
Kernel

Feature
map

1
1
1* =-1

-1
-1

0
0
0
0
0

0
0
0
0

0
0

30
30
30
30

30
30
30
30

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Figure 2.12: Example of a convolution. The kernel is applied repeat-
edly across the input image, in the same manner as Figure 2.11 with
stride = 1. The figures at the bottom shows the image, kernel and out-
put (feature map, activation) as color-gradings. Example taken from

Ng [51] and edited.

One key advantage of conv layers is that they are highly efficient and can learn to
recognize patterns in images using relatively little data. This is because the same
set of weights is applied to every receptive field in the input image, allowing the
network to learn local patterns without having to store separate weights for each
individual input pixel. This also allows conv layers to generalize to new inputs.

Padding

2

0
0
0
0
0
0 0 0 0 0

0 0 0 0
2

2
2

4

4

4

4

6
6

8
81
1

3

3

0
0
0
0
0
0

Figure 2.13: Zero-padding added to
a 4 × 4 image. The resolution with
padding equals 6× 6. Blue box is the

image, gray is the padded border.

Padding refers to the amount of extra pixels that
is added to an image when it is processed by the
kernel in a convolution. The padding value can
be set by the user, but usually is set to zero. In
Figure 2.13, we see an example of an image zero-
padded with one pixel, adding an extra border.

Padding is an important concept in CNNs, as
it allows for the preservation of spatial informa-
tion and helps to ensure that the output feature
map has the same dimensions as the input im-
age. This can be useful for maintaining the spa-
tial structure of the data and for ensuring that
the output of a conv layer easily can be fed into
subsequent layers in the network.

Furthermore, padding can be added to a
CNN-processed image for more precise image
analysis [15], like for example if the edge of
the image contains important details, padding is
recommended.

22 Chapter 2. Theoretical Background

2.4.2 The Pooling Layer

To further reduce the feature maps’ parameters, pooling layers are introduced. Pool-
ing layers summarize the features generated by the conv layers. Reduced parameter
feature maps are created as a result, and they are also more resistant to changes in
spatial location in earlier layers [45]. In simple terms, the pooling layer reduces the
height and width of its input.

Convolution operations are learned, whereas pooling is a fixed function. Aver-
age pooling and max pooling, which, respectively, compute the average or maximum
values of all patches in the given feature map. They are two of the most frequently
used pooling operations. They are visualized in Figure 2.14:

2

2

2
2

4

4

4

4

6
6

8
81

1

3

3

8
8 4

4

Input

Output after
pooling

(a) Max Pooling

2

2

2
2

4

4

4

4

6
6

8
81

1

3

3

5

5

Input

Output after
pooling

3

3
(b) Average Pooling

Figure 2.14: Pooling operations with 2 × 2 layer of stride = 2.

Pooling operations are mainly used to decrease computational costs of CNNs, but
this again can be at the cost of potentially loosing important features or details of
the input. By using pooling, we reduce the spatial resolution and can lose a feature’s
exact position if not techniques to preserve these are used to compensate. Most
commonly used, is a pooling layer of 2 × 2 with a stride = 2, applied in Figure 2.14.

Average pooling adds a small amount of translation invariance, which means
that changing the image by a small amount has little impact on the values of the
majority of pooled outputs. Max pooling extracts more pronounced features, like
edges, whereas average pooling extracts features more smoothly.

2.4.3 Convolution instead of Pooling

As stated in subsection 2.4.2, pooling operations are mainly used to decrease compu-
tational costs of CNNs, at the cost of loosing detail of inputs. To negate this problem,

2.4. Convolutional Neural Networks 23

pooling layers can be replaced by conv layers. The advantage of the conv layer is
that it can learn certain properties when downscaling its input that pooling layers
cannot. The fixed operation of pooling can instead be learned by the strided convo-
lution, with the only downside being increased number of parameters. The paper
Striving for Simplicity: The All Convolutional Net by Springenberg et al. [69] demon-
strates this by building their network of only conv layers, improving the overall
accuracy of a model with the same width and depth. They state that "when pool-
ing is replaced by an additional convolutional layer with stride r = 2, performance
stabilizes and even improves on the base model" [69].

2.4.4 The Fully-Connected Layer

The fully-connected (FC) layer "flattens" the output of the preceding layers into a
single vector that can be used as an input for the following layer. In essence, the
FC layer is learning a non-linear function in the meaningful, low-dimensional, and
somewhat invariant feature space that the conv layers have provided. Connecting
multiple FC layers in a neural network will simply just become a standard feed-
forward network as the neural network visualized in Figure 2.8. FC layers are usu-
ally used in the last few layers of a CNN towards the output in classification.

Fully-Connected Layer as a Convolutional Layer

One advantage of using a conv layer instead of an FC layer is that it can handle arbi-
trary input sizes, which means that it can work with inputs of different dimensions,
such as images of different sizes. This allows the CNN to automatically adapt to
the size of the input, without the need to specify the input size in advance, like we
have to in an FC layer. Converting the FC layers into conv layers makes the network
scalable. Therefore, designing a CNN by substituting all FC layers with conv layers
will result in a more flexible network architecture [13].

2.4.5 Transposed Convolutions

A transposed convolution is a similar operation to a standard convolution, but rather
than mapping the input to a lower resolution output, the transposed convolution
does the opposite – mapping the input to a higher resolution output. The strided
kernel that slides over the input, similar to Figure 2.11, is shown in Figure 2.15:

(a) 1st operation (b) 2nd operation (c) 3rd operation (d) 4th operation

Figure 2.15: First four transposed convolution operations with
stride = 1 and kernel = 3 × 3 on input image of 2 × 2 pixels. Empty
cells in the figure are zero-padded in a temporary matrix. Figures

taken from Dumoulin and Visin [21].

24 Chapter 2. Theoretical Background

An example of the transposed convolution is visualized in Figure 2.16:

Transposed
Convolution

0 1
2 3

0 1
2 3

Input Kernel

Output
2 x 2 2 x 2

3 x 3

0

0 0
= =0 0

0 1 1
0 0

0 0
02 2

4
4

4
3 3

6 6
6
99 12

+++

Figure 2.16: Example of a transposed convolution. The kernel is ap-
plied repeatedly across the input image, in the same manner as Fig-
ure 2.15 with stride = 1. Figure taken from Zhang et al. [91], and

edited.

In a standard CNN, the input is downsampled and features are extracted towards
the output like for classification. But in my GAN case however, we want to generate
a new image from the input image in addition to extracting important features. That
is where transposed convolutions comes into play. These layers are used when we
want to upsample the previous layers after they are downsampled. And by building
a network consisting of only conv layers, replacing pooling layers and fc layers, the
GANs of the experiments become flexible.

Now that we understand the building blocks of the GANs used in this thesis, we
will in the next section move on to describe how the parameters of neural networks
are updated.

2.5 Gradient-based Optimization

Gradient-based optimization is a widely used method for training machine learning
models by minimizing a given loss function. In order to efficiently compute the gra-
dients of a network, we use an algorithm called backpropagation. It uses the chain rule
of calculus and works by computing the error at the output layer and then propa-
gating it backwards through the network to compute gradients with respect to each
weight in the network. By propagating the error backwards, it allows the algorithm
to be efficient and handle large neural networks [42]. Optimization algorithms such
as mini-batch stochastic gradient descent (SGD) and Adam employ backpropagation to
find the optimal set of model parameters that minimize the loss function.

2.5.1 Mini-batch Stochastic Gradient Descent

SGD is one of the most popular optimization algorithms used in practice [31]. It is
a variant of standard gradient descent (GD) in which the model parameters are up-
dated based on a small subset of the training data, rather than the entire dataset. This
is known as a mini-batch. Using one mini-batch, we modify the network’s parame-
ters and then repeat on a fresh mini-batch. When we have completed this process
on all the data, we refer to it as an epoch, and then start over [30]. By sampling the

2.5. Gradient-based Optimization 25

training data randomly, noise is also added to the optimization process, providing
regularization (subsection 2.8.1).

The update of the parameters is controlled by a variable called the learning rate.
The learning rate, which is typically between 0 and 1, determines how much the
optimizing algorithm will scale a parameter. A high learning rate will take large
steps towards the optimal solution, but it may overshoot or oscillate. On the other
hand, a low learning rate will take smaller steps, but it may converge slowly or get
stuck in local minima. The update rule for mini-batch SGD is given by [91]:

wt+1 = wt − η∇Lbt(wt), (2.10)

where wt is the weight vector at iteration t, η is the learning rate, ∇Lbt(wt) is the
gradient of the loss function L with respect to the weights w evaluated on a random
subset (mini-batch) bt of the training data at iteration t.

With the approach of SGD, not only the time per iteration is basically a constant,
but the memory needed to compute the gradient is also constant [53]. So while each
iteration of the SGD is less accurate than the standard GD, the fact that each iteration
is cheap, allows us to do more of them. The resulting efficiency and frequent model
parameter updates of SGD makes it more scalable than a standard GD, making it a
good choice when working with larger datasets.

Momentum

A popular technique that can be used to improve the convergence of mini-batch SGD
is momentum, which involves adding a velocity to the update step [71]. This term is
based on the past weight updates and helps to smooth out the optimization process
by incorporating a moving average of the gradients so that the update will step in
the direction of the velocities rather than just the gradient currently in effect. It al-
lows the optimization to move smoothly through the valleys and ravines of the loss
function. This can help the model to escape from local minima and improve conver-
gence on noisy or ill-conditioned datasets. Adding momentum to Equation 2.10 can
be formulated as follows [49]:

Vt+1 = γVt + η∇Lbt(wt),
wt+1 = wt − Vt+1,

(2.11)

where Vt is the velocity vector at iteration t and γ is the momentum hyperparameter
(a user-defined value between 0 and 1). The velocity term keeps track of the past
gradients and helps to smooth out the movement of the weight vector. When the
momentum parameter is set to a high value, the previous gradients have a greater
influence on the current update and the model is less sensitive to the noise in the
gradients computed on the mini-batch.

Adam Optimizer

One of the disadvantages of mini-batch SGD, with or without momentum, is that it
is sensitive to the learning rate, which can lead to slow convergence or divergence
of the algorithm, depending on the value. The learning rate is often set through

26 Chapter 2. Theoretical Background

trial and error, which can be time-consuming and may not lead to optimal perfor-
mance. Furthermore, traditional SGD can have difficulty dealing with sparse gradi-
ents, which are common in large-scale machine learning problems [40]. Addition-
ally, the algorithm does not have an automatic balancing feature of the gradients,
causing it to become sensitive to their scales, affecting performance.

To overcome these limitations, an optimization algorithm called Adam was pro-
posed [41]. Adam, which stands for Adaptive Moment Estimation, is an extension
of SGD that uses moving averages of the gradient and squared gradient to adapt
the learning rate. It is similar in concept to momentum, but not exactly the same.
Whereas momentum described in section 2.5.1 can be seen as a ball running down a
slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima
in the error surface [34]. This helps to stabilize the learning process and improve the
model’s generalization ability, in addition to being more resistant to the vanishing
gradient problem (subsection 2.5.2). The moving averages are formulated as follows
[62]:

mt = β1mt−1 + (1 − β1)∇Lbt(wt),

vt = β2vt−1 + (1 − β2)(∇Lbt(wt))
⊙2,

(2.12)

where mt and vt are estimates of the first moment and the second moment (the mean
and the uncentered variance, respectively), and ⊙2 denotes that the squaring of the
gradient is done element-wise. The parameters β1 and β2 of the algorithm regulate
the decay rates of these moving averages. These two terms are similar to the momen-
tum term in the sense that it is a way to give more importance to recent gradients.
Using Equation 2.12, the final update rule for the Adam optimizer is given by [62]:

wt+1 = wt −
η√

vt + ϵ
mt, (2.13)

where ϵ is a smoothing term to avoid division by zero.

2.5.2 Vanishing Gradient Problem

The vanishing gradient problem refers to the difficulty in training deep neural net-
works when the gradients of the weights with respect to the loss function have very
small values. This can occur when the weights are updated using the backpropa-
gation algorithm, as the gradients are multiplied by the weights on the way back
through the network. If the gradients are small, the weights will be updated by only
a small amount, and the network may not learn effectively. It can also make the
training process very slow or even prevent it from converging.

Gradient-based optimization is essential in the training of machine learning mod-
els, with the algorithms mentioned being popularly adopted in practice. In this
thesis, mini-batch SGD in conjunction with Adam optimizer is employed in all the
experiments.

2.6. Pix2Pix GAN 27

2.6 Pix2Pix GAN

Pix2Pix is an image-to-image translation CGAN that learns a mapping from input
images to output images. The framework was presented by Isola et al. [38] in 2016,
consisting of a U-Net generator and a PatchGAN discriminator.

2.6.1 U-Net Generator

For the generator in a GAN to be able to produce new images from input images as
an image-to-image translator, its architecture is made of a network called U-Net. U-
Net was initially developed by Ronneberger, Fischer, and Brox [61] for biomedical
image analysis. The developed U-Net is shown in Figure 2.17. The generators of the
GANs in my experiments uses a modified version of this fundamental architecture.

Figure 2.17: U-Net architecture (example for 32x32 pixels in the low-
est resolution). Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different oper-

ations. Figure taken from Olaf Ronneberger [52].

The U-Net architecture is composed of two parts: a contracting path and an expand-
ing path (encoder, decoder). The contracting path is a series of convolutional and
max pooling layers that reduce the spatial resolution of the input image, while the
expanding path is a series of convolutional and transposed convolutional layers that
increase the spatial resolution of the output. The two paths are connected by skip con-
nections, which concatenate activations from the contracting path to the expanding
path at corresponding spatial resolution levels. This architecture allows for extract-
ing features as the input image is encoded/downsampled, and then creating a new
image based on the features as it is decoded/upsampled.

28 Chapter 2. Theoretical Background

The use of skip connections (seen as "copy and crop" in Figure 2.17) allows the U-
Net to propagate information from shallower layers of the network to deeper layers,
which helps the network to learn more complex and detailed features of the input
image. This is particularly useful for tasks such as image segmentation, where it
is important to preserve the spatial resolution of the input image and maintain the
fine-grained details of the image. Skip connections can also help the network to
learn more efficiently and to avoid the vanishing gradient problem. Skip connections
provide an additional pathway for the gradients to flow back through the network,
which can help to stabilize the training process and improve the network’s ability to
learn [61].

Another key feature of the U-Net is its ability to use relatively small convolu-
tional filters, which helps to reduce the number of trainable parameters in the net-
work and make it more efficient. This is particularly useful for tasks such as medical
image analysis (section 3.2), where the amount of available training data is often
limited.

By using U-Net in the GANs of the experiments, not only will we be able to ex-
tract important features of the otolith images efficiently, but also be able to generate
new, transformed images as a result of the learned complex and detailed features of
the input otolith images.

2.6.2 PatchGAN Discriminator

When using image-to-image translation with a U-Net generator, the discriminator
can also be modified into a PatchGAN as presented by Isola et al. [38], which instead
of deciding that its input image is real of fake for the whole image, it can instead
decide that it is real or fake for different patches of that image. It compares two
images, one from the source domain (the conditioned image which the generator
also has as input in my case) and one from the target domain (either the generated
image or a real image), and estimates the likelihood that the latter image is a fake
reproduction of the former. The discriminator output is visualized in Figure 2.18.

outputDISCRIMINATOR
REAL

or
FAKE

output

PatchGAN
DISCRIMINATOR

Real Labels
1
1
1

1
1
1

1
1
1

Fake Labels
0
0
0

0
0
0

0
0
0

Real Label

Fake Label

1

0

Figure 2.18: PatchGAN Discriminator. Standard discriminator to the
left. PatchGAN discriminator to the right, where the discriminator
output is a matrix of real/fake determinations for different patches
of the input image instead of determining real/fake for the whole

image.

2.7. Training Generative Adversarial Networks 29

The PatchGAN discriminator has several advantages over other types of discrimi-
nators. One advantage is that it can capture fine-grained details in the input image,
which is important for tasks such as image synthesis where it is important to gener-
ate realistic-looking images. Another advantage is that it can handle input images of
varying sizes, which is useful for tasks where the input images may have different
dimensions.

To use a PatchGAN discriminator, the input image is first divided into a grid of
overlapping patches. The patches are then processed independently by the discrim-
inator network, which outputs a probability from its σ activation in the last layer
for each patch indicating whether the patch is real or fake. These patch-level prob-
abilities are then combined by averaging all the responses and to produce a final
image-level probability that indicates whether the entire input image is real or fake
[38].

PatchGAN discriminator uses an n × m output vector rather than a scalar output
to provide probabilities of "real or fake" outcomes. The n × m size can vary depend-
ing on the size of the input image, but each output vector represents a region of the
input image that is for example 70 × 70 pixels in size (not the entire input size), and
this size is a fixed representation depending on how architecture is built. This results
in the discriminator giving more feedback to the generator during training.

The Pix2Pix architecture with PatchGAN discriminator is one way of developing
an image-to-image translation GAN. It was used in my main experiments of this
thesis, but because of a few problems in the results which I will explain in chapter 4,
another version of image-to-image translation architecture has been experimented
with. The architecture is called Wasserstein GAN (WGAN), where instead of using a
PatchGAN discriminator the way it is explained above, a Wasserstein critic is used
that classifies the input image differently. This critic has been experimented both
with a patch architecture and without. When using the patch architecture in the
critic, the combined responses are averaged to the closest real number without the
use of a σ activation function. The WGAN will be further explained in section 2.7.2.

2.7 Training Generative Adversarial Networks

As I introduced in section 2.2, the power of GAN lies in the competition between
the generator and the discriminator that constantly tries to outwit one-another. The
objective of a traditional GAN can be formalized as a two-player minimax game be-
tween the generator and the discriminator. The goal of the generator is to minimize
the probability that the discriminator will correctly classify a generated sample as
fake, while the goal of the discriminator is to maximize the probability of correctly
classifying generated samples as fake.

Following Goodfellow et al. [31], we can define the framework as follows, where
G and D represents the generator and the discriminator, respectively. To learn the
generator’s distribution pg over data y, we define a prior on an input noise variables
px, then represent a mapping to a data space as G(x; θg), where G is a differentiable
function represented by a network with parameters θg. We also define a second net-
work D(y; θd) that outputs a single scalar. D(y) represents the probability that y
came from the training dataset rather than pg. We train D to maximize the proba-
bility of assigning the correct label to both training examples and samples from G.
We simultaneously train G to minimize log(1 − D(G(x))). This GAN loss function

30 Chapter 2. Theoretical Background

can be expressed as the following optimization problem, where G and D plays the
two-player min-max game with value function V(D, G):

min
G

max
D

V(D, G) = Ey∼pdata [log D(y)] + Ex∼px [log(1 − D(G(x)))]. (2.14)

Here, pdata and px are the distributions of the training data and the generator input,
respectively. The input x is usually noise modeled as uniform or Gaussian, but in
my case, x is an otolith image.

This min-max equation is modified if we are using a CGAN, where the only
difference between them would be a conditional probability c used. The training
process here is similar to that of a regular GAN, but with the additional input in-
formation, the condition, incorporated into both the generator and the discriminator
networks. The generator is trained to generate samples that match the given condi-
tion, while the discriminator is trained to distinguish between the generated samples
and real samples that match the condition. The objective function for a CGAN can
be expressed as follows:

min
G

max
D

V(D, G) = Ey∼pdata [log D(y|c)] + Ex∼px [log(1 − D(G(x|c)))]. (2.15)

Here, c represents the condition (e.g. the description of the object to be generated),
and the other variables have the same meanings as in Equation 2.14.

As explained in subsection 2.2.4, the image-to-image CGAN architecture consists
of a source image and a target image. In my experiments, the generator is not con-
ditioned, and the source image x is an otolith image while the target image is y. The
otolith image is also used as the condition for the discriminator. In the context of this
thesis’ experiments, the function of the CGAN can be expressed as follows:

min
G

max
D

V(D, G) = Ex∼pdata [Ey∼pdata [log D(y|x)] + log(1 − D(G(x)))], (2.16)

where the discriminator is conditioned on the same image x as the input image of
the generator. Note that both x and y are now from the distribution pdata because
both the target images and the otolith images comes from the same training dataset.

The training of the model happens in two steps, where either the generator or the
discriminator is fixed while the other performs a gradient step, and then vice-versa.
This is described in the following way using Equation 2.16 [67]:

Step 1: Fix, or freeze, the generator and perform a gradient step to maximize the
probability of assigning the correct label to both training examples and samples from
the generator, with respect to the discriminator:

Ex∼pdata [Ey∼pdata [log D(y|x)] + log(1 − D(G(x)))]. (2.17)

Step 2: Fix the discriminator and perform a gradient step to:

2.7. Training Generative Adversarial Networks 31

(in theory)
min

G
Ex∼pdata [log(1 − D(G(x)))], (2.18)

(in practice)
max

G
Ex∼pdata [log D(G(x))]. (2.19)

Goodfellow et al. [31] states that in practice, Equation 2.14 may not provide sufficient
gradients for G to learn well. This also applies to Equation 2.15 and Equation 2.16.
Early in learning, when G is poor, D can reject samples with high confidence be-
cause they are clearly different from the training data. In this case, log(1− D(G(x)))
saturates. Rather than training G to minimize log(1 − D(G(x))), we can train G to
maximize log D(G(x)). This objective function results in the same fixed point of the
dynamics of G and D but provides much stronger gradients early in learning. The
training process of traditional GANs is visualized in Figure 2.19.

y

x

Figure 2.19: The process of training traditional GANs. Black dot-
ted line denoting the data distribution pdata, green solid line denot-
ing generative distribution (data made from the generator) pg, blue
dashed line denoting discriminative distribution (outputs from the
discriminator) D(y). The lower horizontal line is the domain from
which x is sampled. The horizontal line above is part of the domain
of y. The upward arrows show how the mapping y = G(x) imposes
the non-uniform distribution pg on transformed samples. Figures (a)
through (d) showing the process of training in the beginning towards

the end. Figure taken from Goodfellow et al. [31] and edited.

As seen in Figure 2.19, the goal is to make pdata and pg equal. This figure by Good-
fellow et al. [31] shows an example of an adversarial pair near convergence, where
px is similar to pdata in Figure 2.19a, and D is a partially accurate classifier. In Fig-
ure 2.19b, D is further trained to discriminate samples from the data, converging
to:

D∗(y) =
pdata(y)

pdata(y) + pg(x)
. (2.20)

In Figure 2.19c, when the G has been updated, the gradients of D has guided G(x)
to point to regions that are more likely to be classified as real data (as seen by the
arrows). In Figure 2.19d, after many steps of training, if both the G and the D have
enough capacity, they will reach the goal of pdata = pg, where both cannot improve

32 Chapter 2. Theoretical Background

any further. The discriminator is unable to differentiate between the two distribu-
tions, i.e. D(y) = 0.5. Goodfellow et al. describes this in further detail in reference
[31].

2.7.1 Challenges when Training GANs

Many GAN models have a few major problems they suffer from during training. A
few examples of these are presented below:

• Unstable Convergence or Non-Convergence: The parameters of the model
may oscillate when training so that they destabilize and never converge. This
can make it challenging to tune the network hyperparameters and achieve
good performance.

• Mode Collapse: Where the model fails to generalize properly, missing entire
modes (variety of samples) from the input data, rather than producing a di-
verse range of outputs. This can lead to the generated samples being less re-
alistic and less useful. This may occur, for example, if the generator learns
more quickly than the discriminator. The best generator would only produce
elements of Equation 2.19 if the discriminator D were held constant. There-
fore, for instance, if we are training a GAN with the MNIST Dataset1 [85], the
discriminator somehow favors the digit 0 slightly more than other digits, the
generator may take advantage of the opportunity to generate only the digit 0,
then be unable to escape the local minimum after the discriminator improves.

• Vanishing Gradient: When using GANs, the vanishing gradient problem can
occur in both the generator and the discriminator networks. In the genera-
tor network, the vanishing gradient problem can prevent the network from
learning to generate high-quality images, as the gradients may be too small
to effectively update the weights and improve the output. In the discrimina-
tor network, the vanishing gradient problem can prevent the network from
effectively learning to distinguish real and fake images, leading to poor per-
formance.

In contrast to the last bullet point, if the discriminator learns information faster
than the generator, it can be able to distinguish fakes perfectly. In this sce-
nario, the generator gradients would be very close to zero because the gener-
ator might be stuck with a very high loss no matter which way it changes its
parameters. This is an instance of the vanishing gradient problem where the
generator is unable to learn [82].

• Difficulty in Evaluating Performance: GANs are often evaluated using sub-
jective metrics, such as asking human evaluators to compare the generated
samples to real samples. Using the loss as the sole metric performance often
is not accurate. This can make it difficult to compare different GANs and to
know how well a GAN is performing.

• Resource-heavy Procedure: In general, when working with CNNs for image
classification and generation, training requires lots of resources and often takes

1A large database of handwritten digits that is commonly used for training various image process-
ing systems

2.7. Training Generative Adversarial Networks 33

several hours to finish depending on hardware capabilities. Training on a com-
puter with just a CPU would make the training phase last even longer. There-
fore, training GANs on GPU’s is highly recommended – mitigating the time
used in this phase.

2.7.2 Alternative GAN Loss Functions

In the beginning of section 2.7, I introduced the training procedure of the traditional
GAN and its standard min-max loss function in Equation 2.14. In the experiments
of this thesis, alternative GAN loss functions has been used. These are presented
below.

Pix2Pix Loss

In section 2.6, I presented the Pix2Pix GAN, where the generator is a U-Net and
the discriminator is a PatchGAN. The loss function of Pix2Pix is defined as follows,
using a source image x, target image y and condition c:

LCGAN(G, D) = Ey,c[log D(y, c)] + Ey,x,c[log(1 − D(y, G(c, x)))]. (2.21)

In my case, the generator is not conditioned, and the discriminator is conditioned on
the source image:

LCGAN(G, D) = Ey,x[log D(y, x) + log(1 − D(y, G(x)))]. (2.22)

The loss in standard min-max GAN and CGAN is essentially an adversarial loss of
Binary Cross-Entropy (BCE) [29]. In Pix2Pix, the generator is also mixed with L1 loss,
also known as ℓ1 penalty, defined as follows in my case of using x as source image
and y as target image [6]:

Lℓ1(G) = Ex,y[∥y − G(x)∥1]. (2.23)

ℓ1 norm (absolute error), a regularization technique (subsection 2.8.1), is used to
minimize the generator’s error. It measures the distance between the generated im-
ages and the target images, telling how similar the generated images are to the target
images. The generator’s BCE loss function when additionally combined with an ℓ1

penalty enables the generator to create images that are not only close to the truth,
but also trick the discriminator by allowing it to produce structurally similar images
to the target images [66].

This combined with Equation 2.22, the final loss function for the generator is given
as [6]:

G∗ = arg min
G

max
D

LCGAN(G, D) + λLℓ1(G), (2.24)

where LCGAN(G, D) is Equation 2.22 and λ denoting the hyperparameter controlling
the ℓ1 penalty.

34 Chapter 2. Theoretical Background

Wasserstein Loss

To tackle the problem of mode collapse mentioned in subsection 2.7.1, another loss
function has also been tested in the experiments. It is called the Wasserstein loss
(Wasserstein distance), presented by Arjovsky, Chintala, and Bottou in the paper
Wasserstein GAN [3]. The Wasserstein distance, also known as the Earth Mover’s
distance [81], is a measure of the distance between two probability distributions. It is
defined as the minimum amount of work needed to transform one distribution into
the other, where the work is defined as the amount of mass moved multiplied by the
distance it is moved. In WGAN, the generator is trained to minimize the Wasserstein
distance between the distribution of the generated samples and the distribution of
the real samples, while the discriminator is trained to maximize this distance.

In this setting, the discriminator is often called the critic, where instead of directly
discriminating its inputs to tell whether an image is real or fake, the critic instead
scores the realness or the fakeness of its inputs by outputting a real number. This
change can result in more stable training with less sensitivity to model architecture
and configurations of hyperparameters [10]. The loss relates more on the quality of
the generated images of the generator.

The use of the Wasserstein loss has several advantages over other loss functions
used in GANs. Unlike the cross-entropy loss, the Wasserstein loss is differentiable
with respect to the generator’s inputs. This can improve the stability and conver-
gence of GAN training, and has been shown to produce better results in some tasks
[1]. The Wasserstein loss is more sensitive to the mode collapse problem, resulting
in better variety in sample generation which we will see in the results of the experi-
ments (chapter 5).

In WGANs, there is a requirement called the Lipschitz continuity or 1−Lipschitz
constraint [84]. It refers to a property of a function which states that the function’s
output changes by at most a fixed amount (the Lipschitz constant) for a given change
in the input. A function that is Lipschitz continuous with a Lipschitz constant of 1 is
called a 1−Lipschitz function. The Wasserstein loss is formulated as follows, where
fw is the 1−Lipschitz function and w the weights:

LWGAN = max
w∈W

Ey∼pdata [fw(y)]− Ex∼px [fw(G(x))]. (2.25)

The first part of the equation above represents the real data of the network, while
the second part represents the data generated by the generator. Because it wants the
generated data to be as accurate as possible, the generator network seeks to reduce
the gap between real data and generated data. The max value refers to the constraint
on the critic. Compared to the GANs discussed earlier, the critic of the Wasserstein
GAN does not have a sigmoid layer that limits the values between 0 and 1. Instead,
it returns a real value, a score, that allows it to act less strictly, hence the name critic.
The Wasserstein loss in my case, using the same fw as described above, also being
conditional, is formulated as follows:

LWCGAN = Ex∼pdata [max
w∈W

Ey∼pdata [fw(y|x)]− fw(G(x))]. (2.26)

Wasserstein Loss with Gradient Penalty

The Wasserstein loss may be able to improve training stability, but there are cases
where it results in poor sample generation or fails to converge, or result in vanishing

2.8. Overfitting vs. Underfitting 35

gradients as mentioned in subsection 2.7.1. To tackle these problems, gradient penalty
can be applied. Wasserstein loss with gradient penalty (WGAN-GP) can help to
improve the stability and convergence of the GAN during training [33].

As stated earlier, the critic network in a WGAN is required to be a 1−Lipschitz
function in order to ensure the stability of the training process. This constraint can
be imposed by using a gradient penalty term in the loss function for the critic. The
gradient penalty term is calculated as the mean squared norm of the gradients of the
critic output with respect to the input, multiplied by a weighting factor. This term
is added to the loss function in order to penalize the critic for violating the Lipschitz
constraint. This encourages the critic to be a 1−Lipschitz function and prevent the
training process from becoming unstable, which has been shown to produce bet-
ter results in some tasks [3, 35]. The Wasserstein loss with gradient penalty can be
formulated as:

LWCGAN-GP = LWCGAN + λEy,x[(||∇y,x f (y, x)||2 − 1)2], (2.27)

where LWCGAN is Equation 2.26 and λ is the penalty coefficient that weight the gra-
dient penalty term.

2.8 Overfitting vs. Underfitting

In deep learning, we aim to build a model that have both good accuracy and flex-
ibility. The goal is that it can generalize well, meaning by not either overfitting or
underfitting to the data. Visualization in Figure 2.20 for easier understanding.

(a) High Bias (b) Good Fit (c) High Variance

Figure 2.20: Bias-Variance Trade-off. Blue dots representing samples.
Red line representing the fitness of the model. In Figure 2.20a, we
have an example of a model that has high bias, resulting on under-
fitting. In Figure 2.20c, we have an example of a model that has high

variance, resulting in overfitting.

By generalizing well, it can result a fitness example as Figure 2.20b. Introducing
high bias2 however, will result in a model that pays little attention to training data
and oversimplifies the model by underfitting, as seen in Figure 2.20a. In my GAN
case, this can result in vanishing gradients for the generator as described in subsec-
tion 2.7.1, and can also result in mode collapse.

Introducing high variance3 results in a model that pays too much attention to
2The difference between the average prediction of our model and its target values.
3The variability of model prediction due to changes in training data.

36 Chapter 2. Theoretical Background

training data and overfits to it, therefore cannot perform well on testing data, seen
in Figure 2.20c. In my GAN case, this can result in randomly generated images that
only resembles the samples from the training set.

2.8.1 Regularization

The task of training deep neural networks can be slow and prone to overfitting. As a
result, research in deep learning is constantly looking for ways to solve these issues.
According to Kukačka, Golkov, and Cremers [44], regularization is any additional
technique with the aim of enhancing the model’s generalization performance. In
other words, when a deep learning model is presented with brand-new data from
the problem domain, regularization is a set of strategies that can prevent overfitting
in neural networks and hence increase its performance.

Batch Normalization

One of these techniques is batch normalization, also known as BatchNorm, which is
used in the Pix2Pix experiments. In the field of deep learning, it is currently a widely
used method. It can accelerate neural network learning and prevent overfitting by
decreasing what is known as the internal covariate shift [36]. This refers to the change
in the distribution of the inputs to a layer of a neural network as the parameters
of the network are updated during training. The use of BatchNorm can mitigate
internal covariate shift by normalizing the inputs to a layer using the statistics of the
current mini-batch, rather than the entire training dataset, and enables the network
to shift and adjust the distribution thanks to the two learnable parameters, γ and β.
This helps to keep the inputs to a layer more stable, formulated as follows [56]:

µ =
1
b

b

∑
i=1

x(i),

s2 =
1
b

b

∑
i=1

(x(i) − µ)2,

x(i)new =
x(i) − µ√

s2 + ϵ
,

z(i) = γx(i)new + β,

(2.28)

where µ is the mean over the mini-batch that has b training instances x, s is an esti-
mate of standard deviation, x(i)new is the zero-centered and normalized input x(i), ϵ is
a small number to avoid division by zero, and γ and β are the scaling and shifting
parameters done on the batch normalized activations z(i), respectively.

Equation 2.28, which in practice is done element-wise, is typically applied to the
inputs of a layer, before the activation function is applied. The idea is to standardize
the inputs to have a mean of 0 and a standard deviation of 1, which can help stabilize
the training process and improve the overall performance of the network. This is
done by computing the mean and standard deviation of the inputs for each mini-
batch during training, and using those values to normalize the inputs before they
are passed through the layer. During inference, the mean and standard deviation of
the entire training dataset is used.

2.8. Overfitting vs. Underfitting 37

Instance Normalization

When using BatchNorm, a large mini-batch size is recommended, being greater
than one. When using smaller batch sizes, an introduction of errors may occur in
the training because the mean and variance estimates can become noisy. There-
fore, when using smaller batch sizes, instance normalization (InstanceNorm) is rec-
ommended and can perform better.

In contrast to BatchNorm, InstanceNorm normalizes the inputs to a layer of a
neural network for each individual sample, i.e. it calculates the mean and standard
deviation of the input values for each sample separately, and normalizes the inputs
using these statistics. This allows the network to learn more robustly by normalizing
the inputs for each sample individually, rather than using statistics from the entire
batch. This can be particularly useful when the samples in a batch have different
distributions or scales. In my Wasserstein GAN experiments, all the BatchNorm lay-
ers are replaced with InstanceNorm for the purpose of experimenting with different
types of regularization techniques.

Dropout

Another popular regularization technique used in the experiments, is dropout, which
Srivastava et al. first proposed in 2014 [70]. Dropout provides regularization by tem-
porarily omitting a certain number of neurons for a particular layer during training,
which adds noise to the training process. Dropout is visualized in Figure 2.21.

r

Figure 2.21: Dropout, a regularization technique, where certain num-
bers of neurons in layers are omitted during training. This adds noise
to the training process and can reduce overfitting. Figure taken from

Dyrmann [22].

In each iteration, a group of neurons will be dropped, determined by a probability
called the dropout rate. As a result, neurons will affect the output differently for each
iteration. The capacity of the model will decrease through random sub-sampling of
layer outputs, thereby lowering overfitting. In addition, dropout forces the network
to develop redundancy so that the workload of the network does not only rest on
a few neurons. To ensure accurate and reliable results during testing, however, all
neurons are kept.

38 Chapter 2. Theoretical Background

Data Augmentation

Another regularization technique is data augmentation. This regularization tech-
nique is directly applied to the training dataset by applying transformations to the
data, being images in my case. Often when dealing with smaller datasets, data aug-
mentation is used to expand the amount of samples of the data, resulting in more
data being available for training. More data is acquired by applying these transfor-
mations to the images because we can use both the original images in addition to
the transformed images. This results in another advantage of the technique, which
is that it can help to reduce overfitting and improve the performance of the model
by providing it with more diverse and representative data to learn from. Data aug-
mentation can assist the model in learning more reliable and generalizable features
which can help to increase the model’s ability to generalize to new data, which can
be especially helpful when the original dataset is small.

Many methods of image transformations are available – meaning whatever edits
done to one image sample will expand the number of samples. Two main transfor-
mation techniques are used in my experiments: rotation and vertical flipping, where
each maps every pixel of the images into a new representation. In addition, crop-
ping is also done in some cases. Each of the transformation techniques used are
visualized in Figure 2.22.

(a) Original Image. (b) Rotation. (c) Vertical axis flipping.

Figure 2.22: Transformation techniques done to original image (a).
Image (b) is rotating the image either −90 or 90 degrees. Image (c) is

flipping the image on its vertical axis.

2.8.2 Training-Validation-Testing Split

The lowest generalization error is what we aim for when working with a machine
learning model. This refers to the ability that the models performs well on previ-
ously seen data, but also on new, unforeseen data. It is typical to divide the data
into three portions, the training, validation, and test datasets, and to measure the
models’ performance on each of them.

Let us say the data consists of for example 10000 images. After we have prepared
and processed our images, we must split them into the sets described above. In
this example case, 8000 images will be used for the training set. And the last 2000
images will be divided into 1000 images for validation, and another 1000 images for
testing; resulting in a split of 80% - 10% - 10%. These sets cannot overlap each other,
otherwise when testing our model, the data will be biased.

The training dataset is utilized, as the name implies, when the model is being
trained. The purpose of this dataset is to optimize the parameters of the model
such that it can learn and solve the task at hand. The validation dataset, on the
other hand, is employed for the purpose of providing an unbiased assessment of the
model’s performance. This can be done either during the training phase, or after the

2.8. Overfitting vs. Underfitting 39

training phase has been completed. The validation dataset can also be used to direct
the training process by tuning the hyperparameters of the model. Finally, the test
dataset, which is a set of never-before seen data, is employed when the model has
finished training and all the hyperparameter tuning has been completed. The pur-
pose of using this dataset is to obtain an unbiased estimation of the generalization
error of the trained model [30], in my case being the trained GAN.

41

Chapter 3

Related Works

This section presents a few relevant related works. We will look at applications of
deep learning on fish age determination, and GANs that are used for annotations
and segmentations of images.

3.1 Deep Learning Applications on Fish Age Determination

As presented in subsection 1.3.1, the current technology sought to further expand
upon in this thesis, is DeepOtolith, who Ketil Malde that provided the topic of this
thesis has co-worked on [58]. DeepOtolith use otolith photos and CNNs to auto-
matically estimate fish ages. It currently contains classifiers for three fish species,
Greenland halibut (Reinhardtius hippoglossoides), Atlantic salmon (Salmo salar)
and Greek red mullet (Mullus barbatus). Images of these fish species are used as
input in the program, where the output is the age prediction. Different CNN archi-
tectures has been used to predict age for the species, and the accuracies that was ob-
tained varies. For predicting age on Greenland Halibut, a VGG19 CNN model was
used. The trained model attained a root mean square error of 1.69 years between
age prediction and age read by experts. For the Atlantic salmon, an implementation
of EfficientNetB4 CNN was utilized. The prediction of sea age obtained an accuracy
of 86.99%, while the predictive accuracy of river age was 63.2%. For the Greek Red
Mullet, the Inception v3 CNN model was implemented. The ages predicted correctly
was 64.4%.

Politikos et al. has also investigated the feasibility of using deep learning to provide
an automatic estimation of fish age from otolith images in their paper “Automating
fish age estimation combining otolith images and deep learning: The role of multi-
task learning” [57]. On top of using CNN models, they also proposed an enhanced
multi-task learning1 network to better estimate fish age. According to the paper, the
results showed that the network without multi-task learning predicted fish age cor-
rectly by 64.4%, attaining high performance for younger age groups (ages between
0 and 1). The network with multi-task learning increased the correctness reaching
69.2% and also proved efficient for older age groups (ages between 2 to 5+) [57].

Deep learning-based computer vision algorithms have shown promising results for
age determination applications [54, 50], but despite the increased attention for these
applications, the utilization of deep learning in this field is still relatively untouched.
Especially when it comes to solutions that are applicable as explainable AI’s.

1Multi-task learning is a subfield of machine learning in which multiple learning tasks are solved
at the same time, while exploiting commonalities and differences across tasks. This can result in im-
proved learning efficiency and prediction accuracy for the task-specific models, when compared to
training the models separately [86].

42 Chapter 3. Related Works

3.2 GAN Applications for Annotation and Segmentation

In the field of fish age determination, the use of GANs has not been an approach
towards a solution. But there are a few research studies conducted where GANs has
been implemented for image segmentations and annotations, especially in the med-
ical field.

Dimitrakopoulos, Sfikas, and Nikou has in the paper “ISING-GAN: Annotated Data
Augmentation with a Spatially Constrained Generative Adversarial Network” [18]
utilized Ising-GAN for data augmentation, oriented towards use with medical imag-
ing sets where a localization/segmentation annotation is available. Their model
can produce artificial annotations where tuple generation of synthetic images and
corresponding segmentation masks localizes an object, tissue or organ of interest.
Dimitrakopoulos, Sfikas, and Nikou has compared standard GAN with ResGAN,
Ising-GAN and Ising-ResGAN for their experiments. Their results have shown that
the Ising model-based GANs have the best performance. The Ising-based smoothing
term forces the synthetic annotations and their synthesized image counterpart to be
visually coherent, with numerical and qualitative results validating the usefulness
of the model.

In the paper HistoStarGAN: A Unified Approach to Stain Normalisation, Stain Transfer
and Stain Invariant Segmentation in Renal Histopathology by Vasiljević et al. [78], an ap-
proach towards synthetic generation of virtual stain transfer has been experimented
with in the area of Computational Pathology. They have proposed a HistoStarGAN
model as a framework that performs stain transfer between multiple staining, stain
normalization and stain invariant segmentation. Their HistoStarGAN model builds
upon StarGANv2 in addition to CycleGANs. The results vary in their experiments,
showing promising performance results when compared to UDA-GAN which also
uses CycleGAN models for data augmentation. The paper states that "To illustrate
the capabilities of our approach, as well as the potential risks in the microscopy do-
main, inspired by applications in natural images, we generated KidneyArtPathol-
ogy, a fully annotated artificial image dataset for renal pathology."

Wu, Zou, and Yang has in the paper “U-GAN: Generative Adversarial Networks
with U-Net for Retinal Vessel Segmentation” [90] researched the use of U-Net gener-
ator and several discriminators, one being PatchGAN, for their automatic detection
of retinal diseases. Their use of GAN presents a method that generates a precise map
of retinal blood vessels, with results achieving segmentation accuracy of 96.15%.

Many of these works would have been interesting to apply in regard to my research
question. But due to the lack of time and access to available hardware, I did not have
the opportunity to experiment with these solutions.

43

Chapter 4

Materials and Methods

This chapter describes the steps taken to answer the research question in section 1.4.
In summary, this chapter will first examine the data itself as well as the instruments
and techniques used to prepare it for the training of GANs, and then move on to
further describe the experiments.

4.1 Otolith Extraction, Image and Data Acquisition Process

All images of otoliths used in this thesis, if not referenced otherwise, was personally
provided by Dr. Côme Denechaud, Research Scientist in the Demersal Fish Research
Group at Havforskningsinstituttet (Norway). These images, in addition to their re-
spective data of annuli coordinates, were used for training and testing in my envi-
sioned solution presented in subsection 1.3.2. The dataset was originally developed
for growth chronology analysis in the paper “A century of fish growth in relation
to climate change, population dynamics and exploitation” by Denechaud et al. [16].
The processing of the otoliths, done by Dr. Côme Denechaud, are described below.

4.1.1 Step 1 of the process:

The otoliths were collected from an archive where they were stored in individual dry
envelopes. They were then embedded in black epoxy into a tray fitted to a cutting
machine, with their core (identified as a groove on the surface) aligned along the
cutting axis as shown in Figure 4.1. Then a second layer of epoxy covers the otoliths
before cutting, hence why they need to be aligned beforehand.

44 Chapter 4. Materials and Methods

Figure 4.1: First step of processing otoliths, where they were aligned
and embedded in black epoxy into a tray fitted for a cutting machine.

4.1.2 Step 2, 3 and 4 of the process

The machine cuts thin sections of about 1mm thickness using a double diamond
circular blade following the tray lines under which the otoliths were embedded as
shown in Figure 4.2a. These thin sections were then cleaned and stuck to a micro-
scope glass slide using a drop of clear epoxy, leaving the surface untouched in case
of future sampling of material as shown in Figure 4.2b. The images were acquired
using high-resolution setup composed of a high-end Canon DSLR camera fitted with
a macro lens on a vertical support, and externally adjusted lighting as shown in Fig-
ure 4.2c.

(a) Cutting machine. (b) Otoliths after cutting. (c) Camera setup.

Figure 4.2: Step 2, 3 and 4 of how the otoliths were processed and
taken photographs of. (a) showing the machine that cuts the pro-
cessed otoliths into thin sections. (b) showing the cut and cleaned
sections stuck into microscope glass. (c) showing how the camera is

set up for taking images of the otoliths.

4.1.3 Step 5 of the process

The RAW images were then enhanced using a set of Photoshop macros aimed at
facilitating interpretation by removing color artifacts (conversion to grayscale) and

4.1. Otolith Extraction, Image and Data Acquisition Process 45

enhancing contrast and brightness to better differentiate the winter and summer
growth rings (subsection 1.2.1). Note that this step was applied for easier human
interpretation of the images, and may not be necessary in the context of using ANNs
where the model may be able to differentiate the features of the images regardless.

(a) RAW image of the photographed otolith. (b) Edited image of the photographed otolith.

Figure 4.3: Step 5 of the process, showing the RAW image of the pho-
tographed otoliths in (a), and the edited and enhanced image of that

otolith in (b).

4.1.4 Step 6 of the process

Each image (in total of 4096) was then manually inspected by Dr. Côme Denechaud,
where each otolith and their respective coordinates for annuli locations in addition
to other information were noted in a table as a CSV file, shown in Table 4.1.

Sample Quality Age Cohort Core I Year Increment X Y
N-1953_51 1 10 1943 2274.5 core 2354 2172
N-1953_51 1 10 1943 2274.5 1 1944.0 259.1 2395 2045
N-1953_51 1 10 1943 2274.5 2 1945.0 262.1 2435 1916
N-1953_51 1 10 1943 2274.5 3 1946.0 146.3 2458 1845
N-1953_51 1 10 1943 2274.5 4 1947.0 235.1 2495 1730
N-1953_51 1 10 1943 2274.5 5 1948.0 347.0 2549 1560
N-1953_51 1 10 1943 2274.5 6 1949.0 182.8 2577 1470
N-1953_51 1 10 1943 2274.5 7 1950.0 208.8 2609 1368
N-1953_51 1 10 1943 2274.5 8 1951.0 142.7 2632 1298
N-1953_51 1 10 1943 2274.5 9 1952.0 223.5 2666 1188
N-1953_51 1 10 1943 2274.5 10 1953.0 170.1 2693 1105
N-1953_51 1 10 1943 2274.5 edge 68.3 2704 1072
N-1953_52 1 10 1943 1804.2 core 2114 2126
N-1953_52 1 10 1943 1804.2 1 1944.0 276.3 2135 1986
N-1953_52 1 10 1943 1804.2 2 1945.0 569.5 2177 1696
N-1953_52 1 10 1943 1804.2 3 1946.0 405.0 2207 1490
N-1953_52 1 10 1943 1804.2 4 1947.0 238.7 2225 1369
N-1953_52 1 10 1943 1804.2 5 1948.0 220.9 2242 1256
N-1953_52 1 10 1943 1804.2 6 1949.0 192.4 2256 1159
N-1953_52 1 10 1943 1804.2 7 1950.0 152.2 2268 1081
N-1953_52 1 10 1943 1804.2 8 1951.0 198.1 2282 980
N-1953_52 1 10 1943 1804.2 9 1952.0 151.9 2294 903
N-1953_52 1 10 1943 1804.2 10 1953.0 130.4 2303 837
N-1953_52 1 10 1943 1804.2 edge 60.8 2308 806

...

Table 4.1: Table of annotations data of processed otoliths.

The X and Y denotes the pixel coordinates in the image on where the annuli for the
samples are. Each image has a resolution of 5616× 3744, in addition to a few images

46 Chapter 4. Materials and Methods

with resolution of 5760 × 3600. The different ages and their occurrences are shown
in Table 4.2.

Age 8 9 10 11 7 12 13 14 18 16 19 21 Total:
Occurrences 3023 507 281 136 85 42 11 5 2 1 1 1 4096

Table 4.2: The ages of the fish in the dataset and their occurrences.
Most of the fish in the dataset are 8 years old; only a few has reached

ages past 13.

4.2 Further Data Preprocessing

In order for the annotations data and images to be applicable in the machine learning
experiments, further preprocessing and data preparation was applied.

4.2.1 Annotations Data Feature Extraction

The features extracted from the original data were the sample names (for each image
file), ages and annuli coordinates. These were extracted into a dataset as shown in
Table 4.3.

Sample Age X0 Y0 Z0 X1 Y1 Z1 X2 Y2 Z2 ...
N-1953_51 10 2395 2045 1 2435 1916 1 2458 1845 1 ...
N-1953_52 10 2135 1986 1 2177 1696 1 2207 1490 1 ...
N-1953_53 10 2165 2056 1 2215 1907 1 2255 1787 1 ...
N-1953_01 8 3229 1717 1 3156 1551 1 3110 1444 1 ...
N-1953_02 8 2894 1916 1 2817 1802 1 2770 1733 1 ...
N-1953_03 8 2858 1887 1 2872 1750 1 2886 1616 1 ...
N-1953_04 8 2860 1703 1 2864 1556 1 2867 1456 1 ...
N-1953_05 8 3121 1920 1 3061 1819 1 2999 1714 1 ...
N-1953_06 8 3021 2092 1 2973 1964 1 2928 1840 1 ...

...

Table 4.3: Extracted features in a prepared dataset. X’s denoting the
x-coordinates of annuli and Y’s denoting the y-coordinates of annuli
for each sample. Z’s denoting whether there is a coordinate/annuli

present or not (True = 1, or False = 0).

In order for the GAN to learn effectively, it only required the coordinates’ data of the
annuli, which allowed the GAN to learn where the annuli are located in the images.
The rest of the data in the prepared dataset such as the image sample names and the
age of the fish were only used in further preprocessing, such as allowing each image
to be loaded from the disk and age for visualization purposes.

4.2.2 Image Preprocessing

An example of an otolith image from the original dataset is shown in Figure 4.4.

4.2. Further Data Preprocessing 47

Figure 4.4: An example of an otolith image from the original dataset.

Many preprocessing steps were done to the images provided for the thesis to reduce
memory demands and increase performance of the GANs. These steps are described
below:

1. The entire dataset of 4096 images had a total size of 11.91GB on disk, with each
image averaging around 3.3MB in size. In order to save memory and improve
training speeds, each image was compressed using the Python library Pillow
[88], reducing the total size of the dataset to 1.53GB on disk, with each image
averaging around 348KB in size. The compression did reduce some sharpness
and brightness of the images, but overall did not remove important details.
Due to lack of time and hardware, model performance differences were not
tested on non-compressed images.

2. Most of the images in the dataset had already been converted into grayscale,
but there were a few exceptions. To ensure that all the images were grayscale,
I converted any remaining RGB images (3 channels) into grayscale (1 channel).

3. As previously mentioned, every image in the dataset had dimensions of 5616×
3744 with a few samples of 5760× 3600. These large images are demanding for
CNNs and require significant computational resources to process. Due to the
lack of available resources, two resized versions of the dataset were created.
One "smaller" dataset consisting of images that was downscaled to dimen-
sions of 64 × 96, which were used for initial model development and testing.
And one "bigger" dataset consisting of images that was downscaled to dimen-
sions of 512 × 768, which were used for final model evaluations. A few ex-
periments were also done where the images from the bigger dataset also were
square-cropped to the sizes 512× 512 and 128× 128. The 128× 128 crops were
mostly centered around where the real annuli were located in the dataset, but
the crops did in some cases also crop a few annuli from the images. This will

48 Chapter 4. Materials and Methods

be seen in chapter 5, where the results show that the real age of an otolith is
6, even though, according to Table 4.2, there were no age occurances under 7.
"Bigger" and "smaller" will be the referred names of the datasets with their re-
spective image resolutions further down the thesis, unless specified otherwise.

4. As described in subsection 2.8.2, it is common practice to divide datasets into
three parts: a training set, a validation set, and a testing set. For each of the
two resized datasets described in the previous step, this train-val-test split was
applied. The total of 4096 images were divided into 3277 samples for training,
410 for validation, and 409 samples for testing.

A sample of an image from the smaller dataset and the bigger dataset as described
in step 3 above, are shown in Figure 4.5.

(a) Sample with resolution of 64 × 96 (b) Sample with resolution of 512 × 768

Figure 4.5: Two samples of otolith images. One from the smaller
dataset as seen in Figure 4.5a, and one from the bigger dataset as seen

in Figure 4.5b.

As shown in Figure 4.5a, the images from the smaller dataset did not retain many
details after the downscaling process. The annuli of the otoliths were mostly blurred
out and not visible, making it difficult to determine whether a dot was placed cor-
rectly or not by the GAN. The smaller dataset was mainly utilized for testing the
GAN in an efficient and non-demanding training procedure to assess whether there
was any indication of learning. The images of the bigger dataset, shown in Fig-
ure 4.5b, were downscaled in a way that preserved sufficient details such that the
annuli were visible, while still keeping the computational burden manageable. With
these images, it was possible to evaluate the accuracy of dot placement by the GANs.

4.3 Main Experiment

This section describes how the main experiment was conducted, with its data prepa-
ration, GAN architecture, training settings and performance measures.

4.3.1 Image-to-Image Data Preparation

The final dataset used in the experiments consisted of images and tabular data of
coordinates for the locations of dots on each image. An example of an otolith with
its corresponding annuli coordinates is shown in Figure 4.6, where the coordinates of
the dots were extracted from the tabular dataset, presented in Table 4.3, and drawn
on the image.

4.3. Main Experiment 49

Figure 4.6: An example of an otolith image from the bigger dataset,
where coordinates of dot locations from the tabular dataset in Ta-
ble 4.3 is drawn on the image, showing where the annuli are located.

To ensure that the GAN was strictly image-based, further preparation of the data
was necessary. The objective was to train the GAN’s generator to produce dots based
solely on images, which was achieved by preparing the current data in the following
manner:

1. For each otolith sample, the corresponding dot coordinates were extracted
from the tabular data and concatenated, resulting in each sample being a pair
of an otolith image and its dot coordinates in an array [Otolith image, Dot co-
ordinates], where the first index represented the image and the second index
represented the correct dot coordinates.

2. Each training sample from the smaller and the bigger datasets, consisting of
an otolith image and annuli coordinates, were transformed into tensors1. The
otolith images were normalized and the dot coordinates were corrected to
match the dimensions of the resized otoliths images. These samples were
saved locally to the computer’s disk (0.59MB per smaller sample, 1.6MB per
bigger sample) in order to save time and improve training performance, rather
than having the program load and perform the transformations for each sam-
ple while training. This allowed the program to directly load and use each
sample or mini-batch of samples from the disk during training and testing.

3. The otolith image in each sample served as the source image for training. Its co-
ordinates were used to create the corresponding target image. For each sample,
a new black image of the same dimensions as the otolith image was created as
the target, containing white dots at the coordinates obtained from the sample.
The white dots in the target images had larger extent than only being the size
of 1 pixel each. They were created as squares with an area of 9 pixels each.

1Tensors are simply mathematical objects that can be used to describe physical properties, just like
scalars and vectors [89, 76].

50 Chapter 4. Materials and Methods

A source image and a target image from the bigger dataset is illustrated in
Figure 4.7.

(a) Source: Otolith image sample. (b) Target: Respective dot image.

Figure 4.7: A pair of an otolith image and its dot image from the big-
ger dataset, where the otolith image is the source and the dot image
is the target. The dot image is made in the same dimensions as the
otolith image, where the white dots are drawn according to the sam-
ple coordinates from the dataset. Note that the dots have a larger

extent than only being of a size of 1 pixel each.

Visualizing these pairs on top of each other will result in an otolith image with
dots as shown in Figure 4.6.

4.3.2 GAN Architecture

The goal was to train the GAN’s generator to produce dot images by providing it
with otolith images as input (source). The GAN’s discriminator then used either the
generated dot image from the generator or a real dot image (target) as its input, con-
ditioned on the corresponding otolith image (source). The architecture is visualized
in Figure 4.8.

4.3. Main Experiment 51

U-Net
Generator

PatchGAN
Discriminator

Generator Input:
Otolith Image (source)

[B, C=1, H, W]

Generator Output (fake dot image):
Generated Dot Image

[B, C=1, H, W]

Real Dot Image:
From Dataset

[B, C=1, H, W]

Discriminator Input:
Dot Image (target) and
Otolith Image (source)

[B, C=2, H, W]

Either REAL dot image or FAKE
generated dot image as target

Discriminator Output:
(n x m) patch of 1's or 0's

Generator Loss

Discriminator
Loss

Pix2Pix GAN

Figure 4.8: The GAN of the main experiment. Otolith (source) image
as generator input, where the output is a generated dot image. Same
otolith image (source) and either a real dot image from the dataset or
the fake generated dot image (target) as discriminator input, where
the output is a n × m patch of 1′s or 0′s. B denoting the batch size, C
for channels (2 for discriminator because its input is both the source
and target images concatenated), H and W are the height and width

of the images.

The U-Net generator architecture was similar to that shown in Figure 2.17 in subsec-
tion 2.6.1, with a few modifications to the input and output dimensions. In addition,
all the pooling layers were converted to conv layers, resulting in a fully convolu-
tional architecture. The PatchGAN discriminator used in the experiment was also
similar to the one described in the paper by Isola et al. [38], with a few alterations
such as the conversion to a fully convolutional network and modifications to the
dimensions of the input and output patch. Several patch sizes were tested in the
experiments. A few CNN architectures used in the experiments are shown in Ap-
pendix A.

4.3.3 Experiment Settings

The GAN architectures and all the machine learning code of the experiments were
implemented using the Python library, PyTorch [55].

Data Augmentation

The data augmentations performed on the samples are described in section 2.8.1.
Each sample loaded from the training data had a 50% probability of being trans-
formed. These transformations included rotation or flipping, with probabilities spec-
ified in Table 4.4. The same transformations were applied to both the otolith images
and the dot images. The 50% of samples that were transformed had a new 50%
probability of being vertically flipped and a 50% probability of being rotated by ei-
ther −90 or 90 degrees.

52 Chapter 4. Materials and Methods

Data Augmentation (50% of occurring
upon loading a sample)

Probability of transforms

Rotating the pair 90 degrees or −90 de-
grees

50%

Flipping the pair on their vertical axis 50%

Table 4.4: Table of data augmentation details of training samples.

The table above shows the data augmentations used in the experiments summarized
in Table 4.6. In the general experimentation, multiple distributions and mixtures of
the ones shown in Table 4.4 were tested with.

Hyperparameters

Multiple trainings were performed with different hyperparameter configurations.
All the notable hyperparameters used in the experiments are summarized in Ta-
ble 4.5. In all the experiments, a manual cuda seed [75] of 9 was applied when training
with GPU for reproducibility purposes.

Hyperparameters Values Details

Image Resolutions 64 × 96 or 512 × 768, and
512 × 512 or 128 × 128

From the smaller and bigge datasets.
Also tested square cropping the im-
ages from the bigger dataset to 512×
512 and 128 × 128.

Optimizer Stochastic Gradient De-
scent with Adam β1 = 0.5, β2 = 0.999

Mini-Batch Size 1, 4, 8, 32, 64 Depending on image sizes and re-
source capabilities.

Loss Functions

BCE-Loss and L1-Loss for
Pix2Pix, and Wasserstein
Loss with gradient penalty
for Wasserstein GAN

Both the generator and the discrim-
inator use BCE-loss, where the gen-
erator in addition use L1-loss in
Pix2Pix. The λ, ℓ1 penalty, was set
to 100 or 200. When using Wasser-
stein GAN, the Wasserstein loss was
used with gradient penalty, where
the penalty λ was set to 10.

Learning Rate 0.001, 0.0001, 0.0002, 0.0003
With a learning rate decay of 0.5 ev-
ery 10th, 25th or 50th epoch when
using Pix2Pix.

LeakyReLU Slope: 0.1, 0.2

Patch size of dis-
criminator/critic

512 × 768, 64 × 96, 62 × 94,
13 × 13, 6 × 10, ...

Many patch sizes have been tested,
ranging from close to 1 × 1 to the
whole image for the purpose of ex-
perimentation. The patch sizes var-
ied depending on how deep the dis-
criminator architectures were.

Epochs 50, 100, 150, 200, 500, 750 Number of epochs for the different
training phases.

Table 4.5: Hyperparameters used in the experiments.

4.4. Dot Counting Algorithm 53

Training Scheme

Within the timeframe of when hardware was available (section 4.6), a series of train-
ing experiments were conducted using the same methodology. Both the hyperpa-
rameters in the experiments and the number of layers used in the generator and
discriminator networks varied. A summary of the hyperparameters used are shown
in Table 4.5.

The training was conducted in the following way:

• For every mini-batch, calculate the losses of both the generator and discrimi-
nator. These losses are logged, and printed every user-defined iterations in the
terminal for visualization.

• For every user-defined iterations, run the model on 5 samples from the vali-
dation dataset and save the images, giving a visual representation of how the
model is performing during the training, which can be manually inspected in
a qualitative manner.

• When training is finished, testing phase is initialized, where the final trained
model (which is saved to the disk after training) is loaded and tested on the
unseen test data. For each sample, a visualization image of the otoliths are
saved, where one has real dots drawn on the image, and one has generated
dots on the image. In addition, an algorithm (section 4.4) is applied on the
images, calculating the number of dots in each image, resulting in the age of
the otoliths.

• Plots over losses are also saved on disk.

• Histograms of age determinations (amount of dots) are saved on disk.

4.4 Dot Counting Algorithm

Given the fact that the experiments were strictly image based, a way of counting the
generated dots was applied. When the generated dot images are visualized on top of
the otolith images, as shown in Figure 4.6, these dots had to be counted to determine
the age of the otolith. This was partially done by using the Python package OpenCV
(cv2), which is an open source computer vision library [87].

By using cv2, we can find all the contours of an image, in my case being gener-
ated dots. Then, by calculating the sum of brightness values of all the pixels inside
each contour, we can determine whether one dot is bright enough to be considered
as a dot. Lastly, the sum of the bright, generated dots gives us the count, being the
age. These steps are visualized in a simple way in Figure 4.9.

54 Chapter 4. Materials and Methods

(a) (b) (c)

Figure 4.9: A simple visualization of the dot counting algorithm. In
(a), we see the dot image produced by the generator. In (b), the image
is processed by cv2 to find all contours of the image, shown as red
circles. For each contour, all the pixels inside are used to calculate
the sum of brightness denoting one dot. If this sum is higher than a
brightness threshold, it would then be counted as a dot. In (c), we see
the resulting image where all the contours, except one, are marked to

be bright enough to be counted as dots, shown as green circles.

The max brightness of a white pixel in a grayscale image is 255 (where 0 is com-
pletely black). The area of dots used in the training data was set to 3 pixels, meaning
that the area of one perfect dot was 3 × 3 = 9 pixels. The "dots" were practically
squares in the dot images used in the training. If all the pixels of one dot area of
9 was at its brightest, the sum of brightness would equal 2295. However, the gen-
erated dots were not always perfect, where the areas of the dots varied, and their
brightness varied. Therefore, a threshold of 600 was set, where each dot that had
a sum of brightness larger than 600 was counted as a dot. The value sum of 600
was chosen because this value was the lowest reasonable brightness I personally
thought one dot should have to be counted as a "bright enough" dot when looking
at the images.

4.5 Other Ideas and Experiments

In the quest of implementing a solution to the research question of the thesis, differ-
ent ideas were considered. While the first idea (subsection 4.5.1) was not ultimately
included in the final analysis, it proved to be an interesting experiment during the
brainstorming and trial-and-error phase of the thesis. After this, the main exper-
iment of using Pix2Pix GAN with U-Net generator and PatchGAN discriminator
was pursued to address the research question. After encountering issues with mode
collapse when using Pix2Pix, I began experimenting with Wasserstein GANs, which
ultimately yielded more promising and satisfactory results, ending in being the best
performing model.

4.5.1 Tabular GAN

The initial idea involved using a CGAN to generate tabular data, specifically a nu-
meric table of coordinates. The generator would take an otolith image as input and
generate corresponding coordinates, which the discriminator would then evaluate
as either real or fake based on the same otolith image as input. The architecture of
this GAN is illustrated in Figure 4.10.

4.5. Other Ideas and Experiments 55

Generator

Discriminator

Generator Input:
Otolith Image (source)

[B, C=1, H, W]

Generator Output (fake coordinates):
Generated coordinates

[B, H, W]

Real coordinates:
From Dataset

[B, H, W]

Discriminator Input:
Coordinates (target) and
Otolith Image (source)

Either REAL coordinates or FAKE
generated coordinates as target

Discriminator Output:
1 or 0Generator Loss

Discriminator
Loss

x y z
1
1

...

...

...

...

............
0

156 278

345 392

178 298

x y z
1
1

...

...

...

...

............
0

156 278

345 392

178 298

x y z
1
1

...

...

...

...

............
0

156 278

345 392

178 298

x y z
1
1

...

...

...

...

............
1

156 278

345 392

178 298

Tabular GAN

Figure 4.10: The Tabular GAN idea. Otolith (source) image as gener-
ator input, where the output is a generated table of coordinates. Same
otolith image (source) and either a real coordinates from the dataset or
the fake generated coordinates (target) as discriminator input, where
the output is 1 or 0. B denoting the batch size. H for height and W for

width.

This idea was not trained and tested properly because of architecture difficulties and
hardware availability.

4.5.2 Wasserstein GAN

The WGAN experiment was conducted in a manner similar to the original Pix2Pix
experiments. The architecture was similar, but the discriminator was changed to a
critic that scored the realness or fakeness of its input. The BatchNorm layers were
also replaced with InstanceNorm. This GAN was trained using Wasserstein loss
with gradient penalty, where the generator was updated every five iterations and
the critic was updated each iteration. This design showed promising results in ad-
dressing the mode collapse issues of Pix2Pix, ultimately yielding the best perform-
ing design with more accurate results compared to the original Pix2Pix experiments.
The architecture is shown in Figure 4.11

56 Chapter 4. Materials and Methods

U-Net
Generator

Critic

Generator Input:
Otolith Image (source)

[B, C=1, H, W]

Generator Output (fake dot image):
Generated Dot Image

[B, C=1, H, W]

Real Dot Image:
From Dataset

[B, C=1, H, W]

Discriminator Input:
Dot Image (target) and
Otolith Image (source)

[B, C=2, H, W]

Either REAL dot image or FAKE
generated dot image as target

Critic Output:
Scores of Realness or Fakeness

Generator Loss

Wasserstein GAN

Critic
Loss

Figure 4.11: The Wasserstein GAN of the last experiment. Otolith
(source) image as generator input, where the output is a generated
dot image. Same otolith image (source) and either a real dot image
from the dataset or the fake generated dot image (target) as critic in-
put, where the output is a matrix denoting scores of realness or fake-
ness of the input. B denoting the batch size, C for channels (2 for critic
because its input is both the source and target images concatenated),

H for height and W for width.

Note that the critic of the WGAN is visualized as a patch. This is because it, in
addition to mainly being a non-patch, was also experimented as a patch architecture
similar to the PatchGAN discriminator of Pix2Pix – differing in loss function.

4.6 Hardware Availability

In order to run the models with with their image processing capabilities, strong
hardware was required (subsection 2.7.1). Due to the limitations of my personal
laptop, all experiments were reliant on remote hardware when it was available. The
University of Bergen provided access to two remote servers, named Janus and Bir-
get, with varying levels of availability. Their specifications are detailed below:

• Janus: Partially available between 1. November 2021 – 15. December 2021.
And partially available 22. October 2022 – 10. November 2022.

– CPU: Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz

– GPU: 1× GeForce RTX 2080 Ti 11GB

• Birget: Partially available between 5. November 2022 – 23. December 2022.

– CPU: AMD EPYC 7742 64-Core Processor

– GPU: 8× A100-SXM-80GB (One used when available)

All the experiments were conducted on these servers when available.

4.7. Summary of Relevant Experiment Runs 57

4.7 Summary of Relevant Experiment Runs

ID Settings Details

1

GAN: Pix2Pix
CNN Architectures: Figure A.1
Image Resolution: 64 × 96
Mini-Batch Size: 64
Learning Rate: 0.0003
LeakyReLU Slope: 0.1
Epochs: 200
Patch Size: 6 × 10

No data augmentation was applied.
This experiment was the only exper-
iment out of the four in this table
where the smaller dataset was used.
From the testing with the smaller
dataset, this experiment in particu-
lar gave promising results that made
way to move on to test the GAN on
the bigger dataset.

2

GAN: Pix2Pix
CNN Architectures: Figure A.2
Image Resolution: 512 × 768
Mini-Batch Size: 8
Learning Rate: 0.0003
LeakyReLU Slope: 0.2
Epochs: 500
Patch Size: 62 × 94

With all data augmentations applied.

3

GAN: Wasserstein
CNN Architectures: Figure A.3
Image Resolution: 512 × 512
Mini-Batch Size: 8
Learning Rate: 0.0002
LeakyReLU Slope: 0.2
Epochs: 750
Patch Size: 13 × 13

With all data augmentations. Images
cropped to the size 512 × 512.

4

GAN: Wasserstein
CNN Architectures: Figure A.4
Image Resolution: 128 × 128
Mini-Batch Size: 32
Learning Rate: 0.0002
LeakyReLU Slope: 0.2
Epochs: 750
Patch Size: No patch architecture

With all data augmentations, where
all images were cropped to the size
128 × 128.

Table 4.6: Summary of relevant runs for different experiments.

59

Chapter 5

Results

In this chapter, I present the results of the experiments described in Chapter 4. I
trained several models using different hyperparameter configurations and architec-
tures, as shown in Table 4.5. The candidate models that were selected for this chapter
are listed in Table 4.6. The results shown in this chapter are based on the validation
and test data from both the smaller and bigger datasets (subsection 4.2.2). In chap-
ter 6, I will further discuss the performance of the models and interpret the results.

5.1 Main Experiment: Pix2Pix GAN

The Pix2Pix experiment was initially conducted using the smaller dataset of images
with resolution of 64 × 96. After a learning trend was established using this dataset,
I moved on to using the bigger dataset of images with resolution of 512 × 768.

5.1.1 Training and Testing Pix2Pix GAN with the Smaller Dataset

Training

Experiment 1, shown in Table 4.6, was conducted using the smaller dataset. The fol-
lowing figures show the performance of the model during training, validated using
the validation set. The top row contains the real dot images, the middle row contains
the otolith images, and the bottom row contains the generated dot images produced
by the generator. This format applies to all figures showing results in this chapter,
unless otherwise specified.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

(a) First epoch.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

(b) Last epoch.

Figure 5.1: Results from the training with images from the smaller
dataset (Pix2Pix GAN), where the model is tested on the validation
data. Top row contains the real dot images, middle row the otolith
images, and bottom row the generated dot images from the generator.
Image (a) shows the results from the first epoch. Image (b) shows the

results from the last epoch.

60 Chapter 5. Results

As shown in Figure 5.1, a trend of dot generation can be seen once the model has
been trained. However, as discussed in subsection 4.2.2, the smaller dataset lack the
detail necessary to accurately interpret the placement of the generated dots on the
annuli. Therefore, I did not visualize the generated dots on top of the otoliths. This
experiment was only used in the building phase of the model architecture. The plot
of the losses for the generator and discriminator is shown in Figure 5.2.

Figure 5.2: Plot over the losses of the generator and the discriminator
in the experiment using the smaller dataset (Pix2Pix GAN).

Testing on Unseen Data

The figure below shows the performance of the model on the test set, the unseen
data.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.3: Results from the testing with the smaller dataset (Pix2Pix
GAN) using the test data. Note that these images have a gray tone
and low contrast when compared to the other images of the experi-
ments. This issue was caused during visualization when developing

the architecture, which was later fixed in the experiments.

Once I observed that the model demonstrated evidence of learning and was able
to generate dots, I proceeded to experiment with the architecture using the bigger
dataset containing larger images.

5.1. Main Experiment: Pix2Pix GAN 61

5.1.2 Training and Testing Pix2Pix with the Bigger Dataset

Training

In the following figures, we see the results of experiment 2 from Table 4.6. Figure 5.4
and Figure 5.5 present the results from the first epoch and the final epoch, respec-
tively.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.4: First epoch of training with the bigger dataset (Pix2Pix
GAN).

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.5: Last epoch of training with the bigger dataset (Pix2Pix
GAN).

As shown in Figure 5.5, the generated dots are positioned in multiple locations in the
images. These dots are visualized on top of the otoliths when the model is evaluated
on the test set in section 5.1.2. The plot of the losses is shown in Figure 5.6.

62 Chapter 5. Results

Figure 5.6: Plot over the losses of the generator and the discriminator
in the experiment using the bigger dataset (Pix2Pix GAN).

Testing on Unseen Data

Figure 5.7 displays the results of the Pix2Pix model’s performance on the test data.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.7: Results from the testing with the bigger dataset (Pix2Pix
GAN) using the test data.

Figure 5.8 presents a few results where the dots are overlaid on top of the otoliths.
The images on the left show the real dots from the dataset overlaid on the otoliths,
and the images on the right show the dots generated by the generator on the otoliths,
both from the test data. This format applies to all subsequent results where the dots
are visualized on top of the otoliths, unless otherwise specified.

5.1. Main Experiment: Pix2Pix GAN 63

8

5

Figure 5.8: Results from the testing with the bigger dataset (Pix2Pix
GAN), where the dots are visualized on top of the otoliths. Left im-
ages contain the real dots from the dataset, the right images contain

the dots generated by the generator, both from the testing data.

As seen in Figure 5.8, the initial experiment of using Pix2Pix GANs yielded poor re-
sults, both in the generation of dots and in the results of the dot counting algorithm.
Because of these poor results, no further statistics or visualizations are presented for
the Pix2Pix experiments. The failure of Pix2Pix led to the investigation of alternative
solutions. In the next section, I will present the results of the final experiments using
the Wasserstein GANs.

64 Chapter 5. Results

5.2 Last Experiment: Wasserstein GAN

This section presents the results of experiments 3 and 4, as summarized in Table 4.6.
These experiments were performed using the bigger dataset of images of resolution
512 × 768, which were square-cropped to 512 × 512 and 128 × 128.

5.2.1 Training Results

The results of the training using 512 × 512 images are shown in Figure 5.9 and Fig-
ure 5.10, while the results using 128 × 128 images are shown in Figure 5.11 and
Figure 5.12. These results are derived from the validation data.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.9: First epoch. Results from the training with Wasserstein
GAN with 512 × 512 images, where the models are tested on the val-

idation data.

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.10: Last epoch of training with images of 512 × 512 (Wasser-
stein GAN).

5.2. Last Experiment: Wasserstein GAN 65

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.11: First epoch of training with images of 128× 128 (Wasser-
stein GAN).

G
en

er
at

ed
O

to
lit

h
R
ea

l t
ar

ge
t

Figure 5.12: Last epoch of training with images of 128 × 128 (Wasser-
stein GAN).

The plots over the losses are shown in Figure 5.13 and Figure 5.14.

66 Chapter 5. Results

Critic

Figure 5.13: Plot over the losses of the generator and the critic using
512 × 512 images (Wasserstein GAN).

Critic

Figure 5.14: Plot over the losses of the generator and the critic using
128 × 128 images (Wasserstein GAN).

5.2.2 Testing Results

The following figures show the models’ performance on the testing data, with the
dots overlaid on the otolith images. Figure 5.15 shows the results for the 512 × 512
images, while Figure 5.16 shows the results for the 128 × 128 images.

5.2. Last Experiment: Wasserstein GAN 67

Figure 5.15: Results from the testing with images of 512 × 512
(Wasserstein GAN), where the dots are visualized on top of the

otoliths.

68 Chapter 5. Results

Figure 5.16: Results from the testing with images of 128 × 128
(Wasserstein GAN), where the dots are visualized on top of the

otoliths.

The results using Wasserstein GANs were clearly better than the Pix2Pix GAN re-
sults, as seen in Figure 5.15 and Figure 5.16. Additional results from the experiments
with the Wasserstein GANs can be found in Appendix B. The histograms below dis-
play the age data obtained from the dot counting algorithm described in section 4.4.

5.2. Last Experiment: Wasserstein GAN 69

(a) Real and generated ages distribution. (b) Real and generated ages difference.

Figure 5.17: Histograms over the resulting age data from the testing
with 512 × 512 images (Wasserstein GAN). In Figure 5.17a, we see
the distribution of the real data and the generated data, and their per-
centages of how many samples were within the different ages. Blue
represents the real ages, orange the counted ages from the algorithm.
In Figure 5.17b, we see the age differences between the generated ages
and the real ages, showing us how many years off the generated ages

were from the real ages.

When using images with a resolution of 512 × 512, the results of the dot counting
algorithm appear to be slightly skewed towards positive values. This indicates that
the amount of generated dots were more often higher than the actual ages. Examin-
ing the age differences in Figure 5.17b, 29.4% of the samples were classified correctly.
14.8% were off by −1 year, and 4.9% were off by −2 years, 23.9% were off by +1 year,
9.8% were off by +2 years from the correct ages. Considering differences of ±2 years
from the results, the model’s overall accuracy was 82.8%.

(a) Real and generated ages distribution. (b) Real and generated ages difference.

Figure 5.18: Histograms over the resulting age data from the test-
ing with 128 × 128 images (Wasserstein GAN), similar to Figure 5.17.
Note that in the 128 × 128 images, some age occurrences was the age
6. As seen in Table 4.2, there are no age occurrences under 7 in the
dataset. But these images are the cropped versions of the full-size im-
ages, where in some cases, an annuli was also cropped in the square-
cropping process (subsection 4.2.2). This has also affected the age
distribution between Figure 5.17a and Figure 5.18a given that they

are not equal.

70 Chapter 5. Results

When using images with a resolution of 128× 128, the results of the dot counting al-
gorithm appear to be skewed towards negative values compared to those obtained
using images with a resolution of 512 × 512, as shown in Figure 5.18b. This indi-
cates that the amount of generated dot were more often lower than the actual ages.
The model did correctly predict the dot counts for 25.1% of the samples. 26.9% of
the generated dot counts were −1 year from the correct age, 14.8% were −2 years
from the correct age, and 14.7% were +1 year from the correct age. Considering
differences of ±2 years from the results, the model’s overall accuracy was 81.5%.

However, there were some issues with the results that impacted the accuracy of the
estimated ages. These issues are discussed in the following section, subsection 5.2.3.

5.2.3 Issues in the Results of WGAN

Despite the promising results of the WGANs, as shown in Figure 5.15 and Fig-
ure 5.16, some results exhibited some issues, which will be described in the following
figures.

Figure 5.19: An example of an issue where the generator does not
produce any dots, resulting in 0 in age.

Figure 5.20: Example of an issue where the generation of dots occurs
on multiple places on the otolith. This in itself is not wrong, the dots
are mostly sensibly placed, but the amount of dots representing the
otolith age results in being wrong. This explains why the ages were

skewed more to the right, as shown in Figure 5.17b.

5.3. Bonus Experiment: Using an Image of a Tree Stump 71

I will in chapter 6 further discuss the results.

5.3 Bonus Experiment: Using an Image of a Tree Stump

As a fun side experiment, I wanted to test the trained Wasserstein GAN model on
an image of a tree stump. After a few attempts, the model surprisingly did show
something, in Figure 5.21. I will leave this result and its interpretation to you.

Generated Dots || Count (age): 2

Figure 5.21: Result of the bonus experiment, where the trained
Wasserstein GAN model is tested on an image of a tree stump. Count-
ing the rings of the tree results in 19 years of age. Image of tree taken

from aurorabreakup [4].

73

Chapter 6

Discussion and Future Works

This chapter will discuss the results of the experiments and their implications. The
findings will be interpreted and the limitations of the work will be addressed in
regard to the research question:

"What is the potential of using generative adversarial networks in develop-
ing a generative machine learning model for accurately annotating images of
otoliths?"

Furthermore, the actions that further can be done in light of this research will be
described.

6.1 Interpretations

In the proposed solution to the research question, the goal was to use an image-
to-image translation GAN, specifically a Pix2Pix GAN, as the primary experimen-
tal approach. However, the obtained results using this architecture were not pre-
cise and did not show evidence of well-generated dots. This led to the exploration
of a slightly different image-to-image approach using Wasserstein GAN, where the
loss was changed to Wasserstein loss and the discriminator of the network was re-
placed with a critic. The BatchNorm layers were also changed to InstanceNorm. The
critic was tested both with a patch architecture and without. The performance of the
Wasserstein GANs proved to be better than the Pix2Pix GANs, and more promising
results were obtained with the approach.

6.1.1 The Experiment Models in General

The results obtained using Pix2Pix showed that the discriminators of the models
generally performed well, effectively discriminating fake images from real ones (see
Figure 5.2). In theory, the losses of both the generator and discriminator should be
close to zero after many iterations, but as shown in the loss plots in Figure 5.2 and
Figure 5.6, the generators never managed to reach this point and instead oscillated
throughout training. Despite this, the quality of the generated images improved
over time.

The Pix2Pix model using smaller images showed signs of promising results, as
seen in Figure 5.3. This led to experimentation with larger images, which also exhib-
ited a trend in dot production. However, further analysis revealed that the gener-
ated dots were generally weak, non-existent, or not meaningful. The primary issues
with the Pix2Pix models were mode collapse and lack of variety in dot generation,
as discussed in subsection 2.7.1. The fake dots generated by the Pix2Pix models of-
ten showed the same structure and dot patterns across multiple otolith images, and

74 Chapter 6. Discussion and Future Works

only by chance were they placed accurately on the annuli, as seen in Figure 5.7 and
Figure 5.8.

The mode collapse problem was already evident in the results obtained using
smaller 64 × 96 images, as shown in Figure 5.3. The first four results in the bottom
left row are identical, as are the last four results on the right. There is no sign of vari-
ety. This problem also affected the results using larger images, as seen in Figure 5.7,
where the generated dots are largely the same across all the images.

Despite multiple attempts to improve the Pix2Pix models using different hyper-
parameters and architectures, the results did not improve, continuing to suffer from
mode collapse and inaccurate results. GANs are after all black box models, which
can make it difficult to diagnose and fix problems. The poor results led to the use
of the Wasserstein GAN as a final attempt to achieve the desired solution. The same
GAN architecture as Pix2Pix was used, but the discriminator was replaced with a
critic, BatchNorm layers replaced with InstanceNorm, and the Pix2Pix loss was re-
placed with the Wasserstein loss. The resulting model is shown in Figure 4.11.

The results from the Wasserstein GAN experiments outperformed those of the
Pix2Pix GAN, effectively addressing the issue of mode collapse (see Figure 5.10, Fig-
ure 5.12, Figure 5.15, and Figure 5.16), as the theory states in regards to Wasserstein
GANs (section 2.7.2). When comparing the results of the Wasserstein GAN to those
of the Pix2Pix GAN, it is clear that the Wasserstein GAN produces much better, more
accurate and meaningful dots, without any signs of mode collapse. Each generated
dot image was unique. This was not immediately apparent from the loss plot, as
shown in Figure 5.13 for 512 × 512 images. It was, however, more evident in Fig-
ure 5.14 for 128 × 128 images, where the generator loss starts with large negative
scores, but gradually improves and shows signs of convergence.

In the context of this study, the only way to determine whether the GANs had
learned to produce dots on otoliths was to examine the resulting generated images.
The quality of the generated images can be evaluated based on the accuracy of dot
placement on the annuli, as well as the calculated age of the otoliths based on the
number of dots. The use of loss as the sole performance metric for evaluating the
ability of the GANs to produce high-quality images may not be accurate, as stated in
subsection 2.7.1. This is evident from the loss plots, where a poor-looking loss plot
may be accompanied by good results, and vice versa. Many of the loss plots during
the experiments were hard to interpret and often not useful in regard to analyzing
performance. The trend of learning and quality improvement of the generated im-
ages were clear regardless of the loss plots.

6.1.2 Mode Collapse

It is surprising and interesting that the Wasserstein GAN superiorly outperformed
the Pix2Pix GAN, considering that both CNN architectures were built and imple-
mented very similarly, only differing normalization layers (see subsection 2.8.1). As
stated earlier, the primary issue with the Pix2Pix models was mode collapse, which
was not observed in the results of the Wasserstein models. One potential explana-
tion for this difference in performance is the relative strengths of Pix2Pix GANs as
image-to-image translation frameworks.

Pix2Pix GANs are typically used in situations where the source and target images
are different versions of the same underlying image. Many applications of Pix2Pix
GANs include generating filled-in versions of object outlines, such as buildings. For
example, the source image may be an outline of a building facade, while the tar-
get image is a fully rendered version of that building. In this case, the generator

6.1. Interpretations 75

would learn to produce an accurate image of the building by using the outline of
the building facade as input. Another example is using non-satellite images from
Google Maps as the source, with the corresponding aerial satellite photos as the tar-
get. These examples can be seen in the original paper Image-to-Image Translation with
Conditional Adversarial Networks by Isola et al. [38].

The key point is that Pix2Pix GANs may be best suited for scenarios where the
source and target images are different versions of the same underlying image. In this
study, however, the source images were otolith images, while the target images were
completely different, being black images with white dots. The significant difference
between the source and target images may have made it difficult for the Pix2Pix
model to capture important features in the translation.

Another possible explanation for the superior performance of the Wasserstein
GAN is the implementation of discrimination in the model. In Pix2Pix GANs, the
discriminator classifies patches of the generated images as either true or false, whereas
the critic in the Wasserstein GAN simply scores the quality of the generated images.
Given that the dot images of the dataset were highly similar in structure, this strict
binary classification of the Pix2Pix may have led to the mode collapse. The genera-
tor might learn to produce dots in a manner that is structurally acceptable enough
for the discriminator, resulting in the discriminator often classifying them as correct,
leading the generator to generate images that are largely identical. In contrast, the
generator in the Wasserstein GAN does not have this opportunity, as the critic only
provides a score and does not classify the generated images as strictly true or false.
This way of discriminating the images may have forced the generator to try harder
to produce higher-quality images by getting higher scores, leading to the observed
lack of mode collapse and the generation of unique samples.

6.1.3 Patch vs. non-patch Architecture in the Discriminator/Critic

The performance of Pix2Pix GAN is highly dependent on the PatchGAN discrimi-
nator architecture and patch size. As shown in Table 4.5, a range of patch sizes were
tested during the Pix2Pix experimentation. These included patch sizes close to 1 × 1
as well as patch sizes equal to the input image size. Results with patch sizes closer
to 1× 1 were generally poor, with the only learning signs being generation of darker
or more black images resembling the general look of the target images. Larger patch
sizes, closer to the input image size, resulted in even worse performance, with the
generated images never showing any signs of dots or dark images resembling the
target images. Further experimentation showed that patch sizes generally around
10% to 15% of the input image size produced the best results relative to the peak
performance of the Pix2Pix GAN experiments.

In addition to being dependent on its patch architecture and size in its discrimi-
nator, Pix2Pix is also highly dependent on the source and target images used in the
network. As previously discussed in subsection 6.1.2, the source and target images
are usually different versions of the same underlying image in Pix2Pix applications,
where in my case, the source and target images were completely different. The tar-
get images that the GAN’s generator learned to produce were black images with
white dots, which had a sparse structure. Only the areas with dots contained "im-
portant" information, while most of the image were black and empty, containing
no information. As mentioned in subsection 2.6.2, in Pix2Pix, the input image for
PatchGAN discriminators is divided into overlapping patches, which are processed
independently. The patch-level probabilities are then combined and averaged to
produce a final, image-level probability that indicates whether the image is real or

76 Chapter 6. Discussion and Future Works

fake. Given that the target images in the experiments mostly were "empty", may
have caused issues in the classification, becoming a factor for the poor results of the
Pix2Pix models. I will further explain using Figure 6.1.

(a) An information-rich image. (b) A target, dot image example.

Figure 6.1: Information-comparison of images. Image (a) showing an
image containing several objects and a lot of information, while im-
age (b) shows an example of a target, dot image, being mostly black.
The green squares visualize different patches of the PatchGAN dis-

criminator. Figure 6.1a taken from Rabich [59] and edited.

As seen in Figure 6.1a, the image is rich with information, including a street with
a car, people, and commercial advertisements. Each patch, depicted by the green
squares, contains distinct information making them differ from each other. The
patch-level probabilities of this image are more evenly weighted in the final image-
level probability that indicates whether the whole image is real or fake. In contrast,
when examining Figure 6.1b for comparison, the dot images of the experiments con-
tain valuable information primarily in the center of the images. If we examine the
patches of this image, we can see that the majority of them are simply patches of
"nothing," being black. The patch-level probabilities in this scenario would be bi-
ased towards these black patches as there are more of them, while the few patches
containing white dots would not be as heavily weighted in the total image-level
probability. This may have led the discriminator to conclude that the generated
images were generally correct, given that they were mostly black, resulting in less
attention being paid to the fine-grained details of the dots towards the center. This
means that the generator in this case could easily learn to reproduce these black
patches but may not have been as effective at reproducing the white dots, due to the
unbalanced distribution of unique patches.

In the context of Pix2Pix, it would be an interesting experiment to implement a
discriminator that prioritizes the probabilities of the patches towards the center of its
input images, as this is where most of the information is located, assuming that the
dots are always centered. By weighting these central patches and their probabilities
more heavily than the outer patches, it may have an impact on performance and
result in better generation of dots.

There is another interesting difference to be observed when examining the images in
Figure 6.1. As previously discussed in the context of Figure 6.1a, there are numerous
relevant structures present in the image. Each local patch contains sufficient infor-
mation, structures, and details to the point where each patch in itself can be consid-
ered a standalone image. In this scenario, the Pix2Pix model is able to individually

6.1. Interpretations 77

determine each of these patches locally without necessarily being dependent on the
details of the rest of the image. In contrast, when using Figure 6.1b, the model only
yields satisfactory results when it has a global overview of the entire image when
determining the patches. This is because the entirety of the otolith is necessary for
determining the appropriate number of dots. The importance of a global overview
becomes apparent when considering a scenario in which dots are present in one
patch, maybe these dots are continued into the next patch, but not in the subsequent
patches, even though they could be present (negating the issue shown in Figure 5.20).
This dependency on a global overview of the images may have been overlooked by
the Pix2Pix models, resulting in a factor that impacted its performance. This may
not have been an issue if the presented source and target images were different.

The use of a patch architecture was also investigated in the context of Wasserstein
GANs, to determine its impact on performance. As shown in Table 4.6, experiment
3 used a patch architecture for the critic. During this experimentation, a non-patch
critic was also tested with the same hyperparameters. However, the resulting model
did not show any significant differences in performance. The experiment using the
patch architecture was included in the list of relevant experiments, along with the
final experiment where no patch architecture was used, to demonstrate that the per-
formances of the Wasserstein GAN models were not sensitive to the use of a patch
architecture in the same way that the Pix2Pix GAN models were.

6.1.4 Quality of the Generated Dots using Wasserstein GAN

There are two ways to evaluate the results of the successful experiments. The first
is to assess the number of dots counted in each generated image and determine
whether the generator has produced the correct amount. The second is to examine
the resulting images and determine whether the dots generated by the generator are
accurately placed on the otoliths’ annuli. It is important to note that a correct count
of dots does not necessarily imply accurate placement of those dots. Therefore, a
comprehensive evaluation of the results must consider both the number and the
placement of the dots.

Looking at the results in Figure 5.17 and Figure 5.18, we see that the Wasser-
stein models achieved an accuracy of 82.8% and 81.5%, with a ±2 age difference,
for the 512 × 512 and 128 × 128 images, respectively. These values are strictly from
the algorithm that counts the number of dots and do not account for the quality of
dot placement on the otoliths. To evaluate the accuracy of dot placement, we must
mainly assess the results in a supervised manner by ourselves, unless further tech-
niques are used to determine the accuracy. An example could be assessing the dis-
tance between each dot and determine whether they are placed in a line or in the
same cluster, or other creative metrics that could help to determine the dot place-
ment quality.

Examining the results in Figure 5.15, Figure 5.16 and in Appendix B, we can see
that the majority of dots generated by the Wasserstein GANs are placed reasonably
and accurately on the annuli of the otoliths. However, there are instances where
the model has mistaken a check for an annuli, as shown in Figure B.1c, Figure B.1i
and Figure B.1r. As discussed in subsection 1.2.1, an annuli is composed of both a
narrow (check) and a wide band, and only represents one year’s growth when these
are considered together. The structural similarity between checks and annuli may
have caused the model to place dots on the checks.

78 Chapter 6. Discussion and Future Works

The quality of the dots did in general get better during the training, but even
after the total epochs of the experiments, there were still signs of dot contours in the
dot images that I personally would not count as a dot due to their total brightness.
More training could lead to a model that would generate less non-bright dots and
instead produce higher quality ones.

6.2 Limitations and Future Works

The main limitation of this work has been the access to resources and hardware.
As presented in subsection 2.7.1, when working with GANs for image classification
and generation, training requires lots of resources and often takes several hours to
finish. Many of the training experiments, especially the ones that were run for 750
epochs, took over 25 hours to finish each. Considering the availability of the hard-
ware, as presented in section 4.6, only the timeframes within the availability periods
gave me partial access for experimentation with models. For future works, it is rec-
ommended to have full access to hardware and GPU’s when experimenting. This
way, multiple architectures can be experimented with, and in addition, more hyper-
parameter tuning can be applied. Having more time could lead to experimenting
with even higher resolution images and the use of higher number of epochs to see
whether there would be better convergence in the training.

The dataset used in this thesis consisted of 4096 samples, where these were split
into training, validation and testing sets. In machine learning, the amount of data
is important. The more, the better. In my case, to provide the models with extra
samples, a few data augmentation techniques were applied, mainly including −90
and 90 degree rotations, horizontal flipping and a few tests with cropping. I recom-
mend using even more augmentation techniques in future works. There are many
augmentation techniques that can be applied, i.e. more range in the degrees of rota-
tion, adding noise to the images and random cropping of the images. Implementing
these may give the models more variety in samples, also expanding the samples in
the relatively small dataset.

The dataset of otolith images, and their respective dot coordinates have provided
valuable information for the models of the thesis. As seen in the real images and dot
images, the dots are mostly placed in a straight line for every otoliths. The models
have been able to catch the structural placements of the dots, and the testing results
show that they have learned to place these dots in the same manner as in the original
dataset. However, it would be interesting to see how the models can perform with
a dataset consisting of more variety in dot placement on otoliths. Instead of having
only dots in straight lines from the core to the shortest edge of the otoliths, the dots
could for example be more scattered around the otolith. This way, the resulting dots
could have more variety, and the samples of the dataset could be more dissimilar
to each other. But then again, this could lead to a more difficult interpretation for a
human observer, hence result in a less explainable approach.

The main experiment of the thesis was using Pix2Pix GANs in the pursuit of an-
swering the research question. The results using this architecture did not show
promising results within my timeframe of the thesis. This led to the experimen-
tation of using Wasserstein GANs instead, which outperformed the Pix2Pix results
in a superior way. Because of these results, and the discussion in subsection 6.1.2

6.2. Limitations and Future Works 79

and subsection 6.1.3, I recommend experimenting more using Wasserstein GANs in
future works for these types of problems. The Wasserstein GANs did not struggle
with mode collapse which the Pix2Pix GANs did, being the main problem of the
original idea of using Pix2Pix in the envisioned solution.

81

Chapter 7

Conclusion

The aim of my thesis was to investigate the potential of using GANs to learn a gen-
erative model for annotating images of otoliths and to explore the feasibility of this
approach as an explainable AI. To do this, I trained different GAN architectures on
a dataset of processed otolith images and preprocessed annotations data, and eval-
uated the performance of the trained models on a held-out test set. I also analyzed
the visual annotations produced by the models to understand how they were able
to identify the growth rings in the otolith images.

The results of the experiments indicate that GANs can be applied effectively to im-
age annotation tasks. I was able to develop models that were able to generate dots
that were accurately placed on the annuli of otoliths. In addition, the models were
able to count the dots and provide visual representations of the results, making them
applicable as explainable AI’s.

The experiments showed that Wasserstein GANs outperformed Pix2Pix GANs in
this task, achieving an age accuracy of 82.8% on images of resolution 512 × 512, and
81.5% on images of resolution 128 × 128, including an age offset of ±2. The quality
of dot placement on otoliths was promising, but only human judgement can give the
final accuracy evaluation of the placements.

I hope that this research will provide insights into the potential of GANs for learning
generative models for image annotation tasks and give a better understanding of
their potential as explainable AI’s. By exploring various GAN architectures and
training settings, and evaluating their effectiveness for this task, the research can
contribute to the development of new GAN-based methods for annotating images
of otoliths and other similar image annotation tasks.

83

Appendix A

CNN Architectures

In this appendix, the CNN architectures of the different experiments described in
this thesis (Table 4.6) are shown. The figures show both the generator and the dis-
criminator/critic architectures. The key takeaways are the amount and type of layers
in each architecture, and the output layers of the discriminators/critics. These out-
put layers denote the size of the patches (if used) in the architectures. As seen in
the last experiment (Figure A.4), no patch architecture was used in the experiment.
These figures can also be used as a source for reproducibility purposes.

84 Appendix A. CNN Architectures

(a) Generator (b) Discriminator

Figure A.1: Pix2Pix GAN CNN Architecture for experiment 1 in Ta-
ble 4.6.

Appendix A. CNN Architectures 85

(a) Generator (b) Discriminator

Figure A.2: Pix2Pix GAN CNN Architecture for experiment 2 in Ta-
ble 4.6.

86 Appendix A. CNN Architectures

(a) Generator (b) Critic

Figure A.3: Wasserstein GAN CNN Architecture for experiment 3 in
Table 4.6.

Appendix A. CNN Architectures 87

(a) Generator (b) Critic

Figure A.4: Wasserstein GAN CNN Architecture for experiment 4 in
Table 4.6.

89

Appendix B

Testing Results

In this appendix, additional results from the last two successful experiments from
Table 4.6 are shown. The last nine figures also includes the raw generated dot im-
ages in the middle column.

(a)

(b)

90 Appendix B. Testing Results

(c) Example of a result where a dot is placed on a check, as seen as the first dot counting from the core
of the otolith.

(d)

(e)

Appendix B. Testing Results 91

(f)

(g)

(h)

92 Appendix B. Testing Results

(i) Example of a result where a dot is placed on a check, as seen as the first dot counting from the core
of the otolith.

(j)

(k) Example of a result where no dots are placed on the otolith.

Appendix B. Testing Results 93

(l)

(m)

(n)

94 Appendix B. Testing Results

(o)

(p)

(q)

Appendix B. Testing Results 95

(r) Example of a result where a dot is placed on a check, as seen as the second dot counting from the
core of the otolith. We also see that the first dot is barely visible in the dot image, but is still counted
as a dot. It is however, not shown on top of the otolith. This issue might have been caused by having
different thresholds in the visualization of dots overlaid on the otolith vs. the dot counting algorithm.

(s)

(t)

96 Appendix B. Testing Results

(u)

(v)

(w)

Figure B.1: Additional results from the successful experiments.

97

Bibliography

[1] Nikola Adaloglou. “How to stabilize GAN training”. In: Towards Data Science
(2020). URL: https://towardsdatascience.com/wasserstein- distance-
gan-began-and-progressively-growing-gan-7e099f38da96.

[2] Aphex34. Typical cnn. https://upload.wikimedia.org/wikipedia/commons/
6/63/Typical_cnn.png. [Accessed and edited: 8. September 2022] License:
https://creativecommons.org/licenses/by-sa/4.0/deed.en. 2015.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 2017.
DOI: 10.48550/ARXIV.1701.07875. URL: https://arxiv.org/abs/1701.
07875.

[4] aurorabreakup. panoramio (755). https://commons.wikimedia.org/w/index.
php?title=Main_Page&oldid=651894909. [Accessed and edited: 24. Novem-
ber 2022] License: https://creativecommons.org/licenses/by/3.0/deed.
en. 2005.

[5] Pragati Baheti. “Activation Functions in Neural Networks”. In: V7Labs (2022).
URL: https : / / www . v7labs . com / blog / neural - networks - activation -
functions.

[6] Nilesh Barla. “Pix2pix: Key Model Architecture Decisions”. In: Neptune (2022).
URL: https : / / neptune . ai / blog / pix2pix - key - model - architecture -
decisions.

[7] Gervais et Boulart. Gadus morhua Gervais. https://upload.wikimedia.org/
wikipedia / commons / 4 / 4b / Gadus _ morhua _ Gervais . jpg. [Accessed: 19.
September 2022] License: https://creativecommons.org/publicdomain/
mark/1.0/deed.en. 2012.

[8] Bill Brazier. Fish Hearing. https://www.offthescaleangling.ie/wp-content/
uploads/2020/01/Otolith-example-ageing_optimized.jpg. [Accessed: 24.
August 2022] Permission for use granted by author. 2017.

[9] Bill Brazier. “Fish Hearing”. In: Off the Scale Magazine (2017). URL: https://
www.offthescaleangling.ie/the-science-bit/fish-hearing/.

[10] Jason Brownlee. “How to Develop a Wasserstein Generative Adversarial Net-
work (WGAN) From Scratch”. In: Machine Learning Mastery (2019). URL: https:
//machinelearningmastery.com/how-to-code-a-wasserstein-generative-
adversarial-network-wgan-from-scratch/.

[11] Jason Brownlee. “How to Fix the Vanishing Gradients Problem Using the ReLU”.
In: Machine Learning Mastery (2020). URL: https://machinelearningmastery.
com/how-to-fix-vanishing-gradients-using-the-rectified-linear-
activation-function/.

[12] Government of Canada. “Otoliths, removal and ageing”. In: Otolith research
lab, Government of Canada (2018). URL: https://www.dfo-mpo.gc.ca/science/
species-especes/otoliths/students/removal-prelevement-eng.html.

https://towardsdatascience.com/wasserstein-distance-gan-began-and-progressively-growing-gan-7e099f38da96
https://towardsdatascience.com/wasserstein-distance-gan-began-and-progressively-growing-gan-7e099f38da96
https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png
https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://commons.wikimedia.org/w/index.php?title=Main_Page&oldid=651894909
https://commons.wikimedia.org/w/index.php?title=Main_Page&oldid=651894909
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://neptune.ai/blog/pix2pix-key-model-architecture-decisions
https://neptune.ai/blog/pix2pix-key-model-architecture-decisions
https://upload.wikimedia.org/wikipedia/commons/4/4b/Gadus_morhua_Gervais.jpg
https://upload.wikimedia.org/wikipedia/commons/4/4b/Gadus_morhua_Gervais.jpg
https://creativecommons.org/publicdomain/mark/1.0/deed.en
https://creativecommons.org/publicdomain/mark/1.0/deed.en
https://www.offthescaleangling.ie/wp-content/uploads/2020/01/Otolith-example-ageing_optimized.jpg
https://www.offthescaleangling.ie/wp-content/uploads/2020/01/Otolith-example-ageing_optimized.jpg
https://www.offthescaleangling.ie/the-science-bit/fish-hearing/
https://www.offthescaleangling.ie/the-science-bit/fish-hearing/
https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
https://www.dfo-mpo.gc.ca/science/species-especes/otoliths/students/removal-prelevement-eng.html
https://www.dfo-mpo.gc.ca/science/species-especes/otoliths/students/removal-prelevement-eng.html

98 Bibliography

[13] Pau Carré Cardona. “How to convert fully connected layers into equivalent
convolutional ones”. In: HBC Tech (2016). URL: https://tech.hbc.com/2016-
05-18-fully-connected-to-convolutional-conversion.html.

[14] B.J. Copeland. artificial intelligence. https://www.britannica.com/technology/
artificial-intelligence. Encyclopedia Britannica, 2022.

[15] DeepAI. “Padding (Machine Learning)”. In: DeepAI (2022). URL: https : / /
deepai.org/machine-learning-glossary-and-terms/padding.

[16] Côme Denechaud et al. “A century of fish growth in relation to climate change,
population dynamics and exploitation”. In: Global Change Biology 26.10 (2020),
pp. 5661–5678. DOI: https://doi.org/10.1111/gcb.15298. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.15298. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15298.

[17] Dhp1080. Neuron. https://training.seer.cancer.gov/anatomy/nervous/
tissue.html. [Accessed: 24. August 2022] License: https://creativecommons.
org/licenses/by-sa/4.0/deed.en. 2019.

[18] P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “ISING-GAN: Annotated Data
Augmentation with a Spatially Constrained Generative Adversarial Network”.
In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 2020,
pp. 1600–1603. DOI: 10.1109/ISBI45749.2020.9098618.

[19] Jason Dorrier. “OpenAI Says DALL-E Is Generating Over 2 Million Images
a Day—and That’s Just Table Stakes”. In: Singularity hub (2022). URL: https:
//singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-
over-2-million-images-a-day-and-thats-just-table-stakes/.

[20] Vincent Dumoulin and Francesco Visin. Convolution arithmetic - No padding
no strides. https : / / upload . wikimedia . org / wikipedia / commons / 6 / 6c /
Convolution _ arithmetic_ - _No _ padding _ no _ strides . gif. [Accessed: 9.
September 2022] License: https://commons.wikimedia.org/wiki/Category:
Expat/MIT_License. 2016.

[21] Vincent Dumoulin and Francesco Visin. Transposed Convolution arithmetic - No
padding no strides. https://upload.wikimedia.org/wikipedia/commons/0/
07/Convolution_arithmetic_-_No_padding_no_strides_transposed.gif.
[Accessed: 22. September 2022] License: https://commons.wikimedia.org/
wiki/Category:Expat/MIT_License. 2016.

[22] Mads Dyrmann. Neural Network Dropout. https://upload.wikimedia.org/
wikipedia/commons/thumb/6/66/Neural_Network_Dropout.svg/2560px-
Neural_Network_Dropout.svg.png. [Accessed: 31. October 2022] License:
https://creativecommons.org/licenses/by-sa/4.0/deed.en. 2021.

[23] NOAA Fisheries. “Age and Growth”. In: NOAA Fisheries (2020). URL: https:
//www.fisheries.noaa.gov/national/science-data/age-and-growth.

[24] NOAA Fisheries. “Near-Infrared Technology Identifies Fish Species From Otoliths”.
In: NOAA Fisheries (2020). URL: https://www.fisheries.noaa.gov/feature-
story/near-infrared-technology-identifies-fish-species-otoliths.

[25] NOAA Fisheries. Near-Infrared Technology Identifies Fish Species From Otoliths.
https://media.fisheries.noaa.gov/dam-migration-miss/1280_s2kXntXlA241.
png?1593183583. [Accessed: 24. August 2022] Permission for use granted by
author. 2020.

https://tech.hbc.com/2016-05-18-fully-connected-to-convolutional-conversion.html
https://tech.hbc.com/2016-05-18-fully-connected-to-convolutional-conversion.html
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence
https://deepai.org/machine-learning-glossary-and-terms/padding
https://deepai.org/machine-learning-glossary-and-terms/padding
https://doi.org/https://doi.org/10.1111/gcb.15298
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.15298
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.15298
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15298
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15298
https://training.seer.cancer.gov/anatomy/nervous/tissue.html
https://training.seer.cancer.gov/anatomy/nervous/tissue.html
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.1109/ISBI45749.2020.9098618
https://singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-over-2-million-images-a-day-and-thats-just-table-stakes/
https://singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-over-2-million-images-a-day-and-thats-just-table-stakes/
https://singularityhub.com/2022/10/03/openai-says-dall-e-is-generating-over-2-million-images-a-day-and-thats-just-table-stakes/
https://upload.wikimedia.org/wikipedia/commons/6/6c/Convolution_arithmetic_-_No_padding_no_strides.gif
https://upload.wikimedia.org/wikipedia/commons/6/6c/Convolution_arithmetic_-_No_padding_no_strides.gif
https://commons.wikimedia.org/wiki/Category:Expat/MIT_License
https://commons.wikimedia.org/wiki/Category:Expat/MIT_License
https://upload.wikimedia.org/wikipedia/commons/0/07/Convolution_arithmetic_-_No_padding_no_strides_transposed.gif
https://upload.wikimedia.org/wikipedia/commons/0/07/Convolution_arithmetic_-_No_padding_no_strides_transposed.gif
https://commons.wikimedia.org/wiki/Category:Expat/MIT_License
https://commons.wikimedia.org/wiki/Category:Expat/MIT_License
https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Neural_Network_Dropout.svg/2560px-Neural_Network_Dropout.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Neural_Network_Dropout.svg/2560px-Neural_Network_Dropout.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Neural_Network_Dropout.svg/2560px-Neural_Network_Dropout.svg.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.fisheries.noaa.gov/national/science-data/age-and-growth
https://www.fisheries.noaa.gov/national/science-data/age-and-growth
https://www.fisheries.noaa.gov/feature-story/near-infrared-technology-identifies-fish-species-otoliths
https://www.fisheries.noaa.gov/feature-story/near-infrared-technology-identifies-fish-species-otoliths
https://media.fisheries.noaa.gov/dam-migration-miss/1280_s2kXntXlA241.png?1593183583
https://media.fisheries.noaa.gov/dam-migration-miss/1280_s2kXntXlA241.png?1593183583

Bibliography 99

[26] Joseph Foley. “18 deepfake examples that terrified and amused the internet”.
In: Creative Bloq (2022). URL: https://www.creativebloq.com/features/
deepfake-examples.

[27] Yulia Gavrilova. “Convolutional Neural Networks for Beginners”. In: Serokell
(2021). URL: https://serokell.io/blog/introduction-to-convolutional-
neural-networks.

[28] Martin Giles. “The GANfather: The man who’s given machines the gift of
imagination”. In: MIT Tehcnology Review (2018). URL: https://www.technologyreview.
com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-
the-gift-of-imagination/.

[29] Daniel Godoy. “Understanding binary cross-entropy / log loss: a visual expla-
nation”. In: Towards Data Science (2018). URL: https://towardsdatascience.
com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-
a3ac6025181a.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. htttp:
//www.deeplearningbook.org. MIT Press, 2016.

[31] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. DOI: 10.48550/
ARXIV.1406.2661. URL: https://arxiv.org/abs/1406.2661.

[32] Chirag Goyal. “Deep Understanding of Discriminative and Generative Mod-
els in Machine Learning”. In: Analytics Vidhya (2021). URL: https : / / www .
analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-
and-generative-models-in-machine-learning/.

[33] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. 2017. DOI: 10.
48550/ARXIV.1704.00028. URL: https://arxiv.org/abs/1704.00028.

[34] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium”. In: Advances in Neural Information Process-
ing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-
Paper.pdf.

[35] Jonathan Hui. “GAN - Spectral Normalization”. In: Medium (2020). URL: https:
//jonathan-hui.medium.com/gan-spectral-normalization-893b6a4e8f53.

[36] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. 2015. DOI: 10.48550/ARXIV.
1502.03167. URL: https://arxiv.org/abs/1502.03167.

[37] Martin Isaksson. “Five GANs for Better Image Processing”. In: Towards Data
Science (2021). URL: https://towardsdatascience.com/five- gans- for-
better-image-processing-fabab88b370b.

[38] Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Net-
works. 2016. DOI: 10.48550/ARXIV.1611.07004. URL: https://arxiv.org/
abs/1611.07004.

[39] Tony Jebara. Machine Learning: Discriminative and Generative. https://link.
springer.com/book/10.1007/978-1-4419-9011-2. The Springer Interna-
tional Series in Engineering and Computer Science, 2004.

[40] Divakar Kapil. “Stochastic vs Batch Gradient Descent”. In: Towards Data Sci-
ence (2019). URL: https : / / medium . com / @divakar _ 239 / stochastic - vs -
batch-gradient-descent-8820568eada1.

https://www.creativebloq.com/features/deepfake-examples
https://www.creativebloq.com/features/deepfake-examples
https://serokell.io/blog/introduction-to-convolutional-neural-networks
https://serokell.io/blog/introduction-to-convolutional-neural-networks
https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
htttp://www.deeplearningbook.org
htttp://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/
https://doi.org/10.48550/ARXIV.1704.00028
https://doi.org/10.48550/ARXIV.1704.00028
https://arxiv.org/abs/1704.00028
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://jonathan-hui.medium.com/gan-spectral-normalization-893b6a4e8f53
https://jonathan-hui.medium.com/gan-spectral-normalization-893b6a4e8f53
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
https://towardsdatascience.com/five-gans-for-better-image-processing-fabab88b370b
https://towardsdatascience.com/five-gans-for-better-image-processing-fabab88b370b
https://doi.org/10.48550/ARXIV.1611.07004
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
https://link.springer.com/book/10.1007/978-1-4419-9011-2
https://link.springer.com/book/10.1007/978-1-4419-9011-2
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1

100 Bibliography

[41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.org/abs/1412.
6980.

[42] Simeon Kostadinov. “Understanding Backpropagation Algorithm”. In: Towards
Data Science (2019). URL: https://towardsdatascience.com/understanding-
backpropagation-algorithm-7bb3aa2f95fd.

[43] Sri Krishna. “Midjourney founder says "the world needs more imagination"”.
In: VentureBeat (2022). URL: https : / / venturebeat . com / ai / midjourney -
founder-says-the-world-needs-more-imagination/.

[44] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for Deep
Learning: A Taxonomy. 2017. DOI: 10.48550/ARXIV.1710.10686. URL: https:
//arxiv.org/abs/1710.10686.

[45] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. “Convolutional net-
works and applications in vision”. In: International Symposium on Circuits and
Systems (ISCAS 2010), May 30 - June 2, 2010, Paris, France. IEEE, 2010, pp. 253–
256. DOI: 10.1109/ISCAS.2010.5537907. URL: https://doi.org/10.1109/
ISCAS.2010.5537907.

[46] German Lopez. “A Smarter Robot”. In: The New York Times (2022). URL: https:
//www.nytimes.com/2022/12/08/briefing/ai-chatgpt-openai.html.

[47] Marrabbio2. Fish anatomy. https : / / upload . wikimedia . org / wikipedia /
commons / f / f0 / Fish _ anatomy . jpg. [Accessed: 27. August 2022] License:
https://creativecommons.org/publicdomain/zero/1.0/. 2006.

[48] MartinThoma. Perceptron-unit. https://hvidberrrg.github.io/deep_learning/
activation_functions_in_artificial_neural_networks.html. [Accessed
and edited: 24. August 2022] License: https://creativecommons.org/licenses/
by-sa/4.0/deed.en. 2014.

[49] James McCaffrey. “Neural Network Momentum Using Python”. In: Visual Stu-
dio Magazine (2017). URL: https://visualstudiomagazine.com/articles/
2017/08/01/neural-network-momentum.aspx.

[50] B.R. Moore et al. “Development of deep learning approaches for automating
age estimation of hoki and snapper”. In: Fisheries New Zealand (2021). ISSN:
0165-7836. URL: https://docs.niwa.co.nz/library/public/FAR2021-
69.pdf.

[51] Andrew Ng. C4W1L02 Edge Detection Examples. YouTube. 2017. URL: https:
//www.youtube.com/watch?v=XuD4C8vJzEQ.

[52] Thomas Brox Olaf Ronneberger Philipp Fischer. U-Net: Convolutional Networks
for Biomedical Image Segmentation. https://lmb.informatik.uni-freiburg.
de / people / ronneber / u - net / u - net - architecture . png. [Accessed: 15.
September 2022] License: https://creativecommons.org/licenses/by/4.0/.
2015.

[53] Artem Oppermann. “Stochastic-, Batch-, and Mini-Batch Gradient Descent”.
In: Towards Data Science (2020). URL: https : / / towardsdatascience . com /
stochastic - batch - and - mini - batch - gradient - descent - demystified -
8b28978f7f5.

https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://venturebeat.com/ai/midjourney-founder-says-the-world-needs-more-imagination/
https://venturebeat.com/ai/midjourney-founder-says-the-world-needs-more-imagination/
https://doi.org/10.48550/ARXIV.1710.10686
https://arxiv.org/abs/1710.10686
https://arxiv.org/abs/1710.10686
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1109/ISCAS.2010.5537907
https://www.nytimes.com/2022/12/08/briefing/ai-chatgpt-openai.html
https://www.nytimes.com/2022/12/08/briefing/ai-chatgpt-openai.html
https://upload.wikimedia.org/wikipedia/commons/f/f0/Fish_anatomy.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f0/Fish_anatomy.jpg
https://creativecommons.org/publicdomain/zero/1.0/
https://hvidberrrg.github.io/deep_learning/activation_functions_in_artificial_neural_networks.html
https://hvidberrrg.github.io/deep_learning/activation_functions_in_artificial_neural_networks.html
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://visualstudiomagazine.com/articles/2017/08/01/neural-network-momentum.aspx
https://visualstudiomagazine.com/articles/2017/08/01/neural-network-momentum.aspx
https://docs.niwa.co.nz/library/public/FAR2021-69.pdf
https://docs.niwa.co.nz/library/public/FAR2021-69.pdf
https://www.youtube.com/watch?v=XuD4C8vJzEQ
https://www.youtube.com/watch?v=XuD4C8vJzEQ
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/u-net-architecture.png
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/u-net-architecture.png
https://creativecommons.org/licenses/by/4.0/
https://towardsdatascience.com/stochastic-batch-and-mini-batch-gradient-descent-demystified-8b28978f7f5
https://towardsdatascience.com/stochastic-batch-and-mini-batch-gradient-descent-demystified-8b28978f7f5
https://towardsdatascience.com/stochastic-batch-and-mini-batch-gradient-descent-demystified-8b28978f7f5

Bibliography 101

[54] Alba Ordonez et al. “Automatic Fish Age Determination across Different Otolith
Image Labs Using Domain Adaptation”. In: Fishes 7.2 (2022). ISSN: 2410-3888.
DOI: 10.3390/fishes7020071. URL: https://www.mdpi.com/2410-3888/7/2/
71.

[55] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. 2019. DOI: 10.48550/ARXIV.1912.01703. URL: https://arxiv.
org/abs/1912.01703.

[56] Federico Peccia. “Batch normalization: theory and how to use it with Tensor-
flow”. In: Towards Data Science (2018). URL: https://towardsdatascience.
com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-
1892ca0173ad.

[57] Dimitris V. Politikos et al. “Automating fish age estimation combining otolith
images and deep learning: The role of multitask learning”. In: Fisheries Research
242 (2021), p. 106033. ISSN: 0165-7836. DOI: https://doi.org/10.1016/j.
fishres.2021.106033. URL: https://www.sciencedirect.com/science/
article/pii/S0165783621001612.

[58] Dimitris V. Politikos et al. “DeepOtolith v1.0: An Open-Source AI Platform for
Automating Fish Age Reading from Otolith or Scale Images”. In: Fishes 7.3
(2022). ISSN: 2410-3888. DOI: 10.3390/fishes7030121. URL: https://www.
mdpi.com/2410-3888/7/3/121.

[59] Dietmar Rabich. New York City (New York, USA), Times Square-Duffy Square –
2012 – 6380. [Accessed and edited: 5. January 2023] License: https://creativecommons.
org/licenses/by-sa/4.0/deed.en. 2012. URL: https://upload.wikimedia.
org/wikipedia/commons/6/69/New_York_City_%28New_York%2C_USA%29%2C_
Times_Square-Duffy_Square_--_2012_--_6380.jpg.

[60] Saman Razavi. “Deep Learning, Explained: Fundamentals, Explainability, and
Bridgeability to Process-Based Modelling”. In: Environ. Model. Softw. (2021).
URL: https://doi.org/10.1016/j.envsoft.2021.105159.

[61] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. DOI: 10.48550/ARXIV.1505.
04597. URL: https://arxiv.org/abs/1505.04597.

[62] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: Sebastian Ruder (2016). URL: https://ruder.io/optimizing-gradient-
descent/index.html#adam.

[63] Run:AI. “Deep Learning for Computer Vision”. In: Run:AI (2022). URL: https:
//www.run.ai/guides/deep-learning-for-computer-vision.

[64] Deval Shah. “The Complete Guide to Generative Adversarial Networks (GANs)”.
In: V7Labs (2022). URL: https://www.v7labs.com/blog/generative-adversarial-
networks-guide.

[65] Stephen Shankland. “Dall-E Opens Its AI Art Creation Tool to Everyone”. In:
CNET (2022). URL: https://www.cnet.com/tech/computing/dall-e-opens-
its-ai-art-creation-tool-to-everyone/.

[66] Aditya Sharma. “Pix2Pix: Image-to-Image Translation in PyTorch and Tensor-
Flow”. In: LearnOpenCV (2021). URL: https://learnopencv.com/paired-
image-to-image-translation-pix2pix/.

https://doi.org/10.3390/fishes7020071
https://www.mdpi.com/2410-3888/7/2/71
https://www.mdpi.com/2410-3888/7/2/71
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad
https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad
https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad
https://doi.org/https://doi.org/10.1016/j.fishres.2021.106033
https://doi.org/https://doi.org/10.1016/j.fishres.2021.106033
https://www.sciencedirect.com/science/article/pii/S0165783621001612
https://www.sciencedirect.com/science/article/pii/S0165783621001612
https://doi.org/10.3390/fishes7030121
https://www.mdpi.com/2410-3888/7/3/121
https://www.mdpi.com/2410-3888/7/3/121
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/6/69/New_York_City_%28New_York%2C_USA%29%2C_Times_Square-Duffy_Square_--_2012_--_6380.jpg
https://upload.wikimedia.org/wikipedia/commons/6/69/New_York_City_%28New_York%2C_USA%29%2C_Times_Square-Duffy_Square_--_2012_--_6380.jpg
https://upload.wikimedia.org/wikipedia/commons/6/69/New_York_City_%28New_York%2C_USA%29%2C_Times_Square-Duffy_Square_--_2012_--_6380.jpg
https://doi.org/10.1016/j.envsoft.2021.105159
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
https://ruder.io/optimizing-gradient-descent/index.html#adam
https://ruder.io/optimizing-gradient-descent/index.html#adam
https://www.run.ai/guides/deep-learning-for-computer-vision
https://www.run.ai/guides/deep-learning-for-computer-vision
https://www.v7labs.com/blog/generative-adversarial-networks-guide
https://www.v7labs.com/blog/generative-adversarial-networks-guide
https://www.cnet.com/tech/computing/dall-e-opens-its-ai-art-creation-tool-to-everyone/
https://www.cnet.com/tech/computing/dall-e-opens-its-ai-art-creation-tool-to-everyone/
https://learnopencv.com/paired-image-to-image-translation-pix2pix/
https://learnopencv.com/paired-image-to-image-translation-pix2pix/

102 Bibliography

[67] SlideShare. “Tutorial on Theory and Application of Generative Adversarial
Networks”. In: SlideShare, a Scribd company (2017). URL: https://www.slideshare.
net/mlreview/tutorial- on- theory- and- application- of- generative-
adversarial-networks#.

[68] Vikas Solegaonkar. “Convolutional Neural Networks”. In: Towards Data Sci-
ence (2019). URL: https://towardsdatascience.com/convolutional-neural-
networks-e5a6745b2810.

[69] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional Net.
2014. DOI: 10.48550/ARXIV.1412.6806. URL: https://arxiv.org/abs/1412.
6806.

[70] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.

[71] Ilya Sutskever et al. “On the Importance of Initialization and Momentum in
Deep Learning”. In: Proceedings of the 30th International Conference on Interna-
tional Conference on Machine Learning - Volume 28. ICML’13. Atlanta, GA, USA:
JMLR.org, 2013, pp. III-1139-III–1147.

[72] TensorFlow. Deep Convolutional Generative Adversarial Network. https://www.
tensorflow.org/tutorials/generative/images/gan1.png. [Accessed: 1.
September 2022] License: https://creativecommons.org/licenses/by/4.0/.
2022.

[73] TensorFlow. Deep Convolutional Generative Adversarial Network. https://www.
tensorflow.org/tutorials/generative/images/gan2.png. [Accessed: 1.
September 2022] License: https://creativecommons.org/licenses/by/4.0/.
2022.

[74] Rob Toews. “Deepfakes Are Going To Wreak Havoc On Society. We Are Not
Prepared”. In: Forbes (2020). URL: https://www.forbes.com/sites/robtoews/
2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-
not-prepared/.

[75] TORCH.CUDA. https://pytorch.org/docs/stable/cuda.html. [Accessed:
16-January-2023].

[76] TORCH.TENSOR. https://pytorch.org/docs/stable/tensors.html. [Ac-
cessed: 4-January-2023].

[77] V. Turri. What is Explainable AI? Carnegie Mellon University’s Software Engi-
neering Institute Blog. Jan. 2022. URL: http://insights.sei.cmu.edu/blog/
what-is-explainable-ai/.

[78] Jelica Vasiljević et al. HistoStarGAN: A Unified Approach to Stain Normalisation,
Stain Transfer and Stain Invariant Segmentation in Renal Histopathology. 2022. DOI:
10.48550/ARXIV.2210.09798. URL: https://arxiv.org/abs/2210.09798.

[79] Wei Wang et al. “Development of convolutional neural network and its ap-
plication in image classification: a survey”. In: Optical Engineering 58.4 (2019),
p. 040901. DOI: 10.1117/1.OE.58.4.040901. URL: https://doi.org/10.1117/
1.OE.58.4.040901.

[80] Low De Wei. “This AI Chatbot Is Blowing People’s Minds. Here’s What It’s
Been Writing.” In: Bloomberg (2022). URL: https://www.bloomberg.com/news/
articles/2022-12-02/chatgpt-openai-s-new-essay-writing-chatbot-
is-blowing-people-s-minds.

https://www.slideshare.net/mlreview/tutorial-on-theory-and-application-of-generative-adversarial-networks#
https://www.slideshare.net/mlreview/tutorial-on-theory-and-application-of-generative-adversarial-networks#
https://www.slideshare.net/mlreview/tutorial-on-theory-and-application-of-generative-adversarial-networks#
https://towardsdatascience.com/convolutional-neural-networks-e5a6745b2810
https://towardsdatascience.com/convolutional-neural-networks-e5a6745b2810
https://doi.org/10.48550/ARXIV.1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
http://jmlr.org/papers/v15/srivastava14a.html
https://www.tensorflow.org/tutorials/generative/images/gan1.png
https://www.tensorflow.org/tutorials/generative/images/gan1.png
https://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/tutorials/generative/images/gan2.png
https://www.tensorflow.org/tutorials/generative/images/gan2.png
https://creativecommons.org/licenses/by/4.0/
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared/
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared/
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared/
https://pytorch.org/docs/stable/cuda.html
https://pytorch.org/docs/stable/tensors.html
http://insights.sei.cmu.edu/blog/what-is-explainable-ai/
http://insights.sei.cmu.edu/blog/what-is-explainable-ai/
https://doi.org/10.48550/ARXIV.2210.09798
https://arxiv.org/abs/2210.09798
https://doi.org/10.1117/1.OE.58.4.040901
https://doi.org/10.1117/1.OE.58.4.040901
https://doi.org/10.1117/1.OE.58.4.040901
https://www.bloomberg.com/news/articles/2022-12-02/chatgpt-openai-s-new-essay-writing-chatbot-is-blowing-people-s-minds
https://www.bloomberg.com/news/articles/2022-12-02/chatgpt-openai-s-new-essay-writing-chatbot-is-blowing-people-s-minds
https://www.bloomberg.com/news/articles/2022-12-02/chatgpt-openai-s-new-essay-writing-chatbot-is-blowing-people-s-minds

Bibliography 103

[81] Wikipedia contributors. Earth mover’s distance — Wikipedia, The Free Encyclope-
dia. [Online; accessed 16-December-2022]. 2022. URL: https://en.wikipedia.
org/w/index.php?title=Earth_mover%27s_distance&oldid=1121085069.

[82] Wikipedia contributors. Generative adversarial network — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Generative_
adversarial_network&oldid=1113247966. [Online; accessed 3-October-2022].
2022.

[83] Wikipedia contributors. Generative model — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=
1115984959. [Online; accessed 17-October-2022]. 2022.

[84] Wikipedia contributors. Lipschitz continuity — Wikipedia, The Free Encyclopedia.
[Online; accessed 16-December-2022]. 2022. URL: https://en.wikipedia.
org/w/index.php?title=Lipschitz_continuity&oldid=1122347867.

[85] Wikipedia contributors. MNIST database — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=MNIST_database&oldid=
1101449122. [Online; accessed 3-October-2022]. 2022.

[86] Wikipedia contributors. Multi-task learning — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Multi-task_learning&
oldid=1104310342. [Online; accessed 20-October-2022]. 2022.

[87] Wikipedia contributors. OpenCV — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=OpenCV&oldid=1113479408.
[Online; accessed 28-November-2022]. 2022.

[88] Wikipedia contributors. Python Imaging Library — Wikipedia, The Free Encyclope-
dia. [Online; accessed 20-December-2022]. 2022. URL: https://en.wikipedia.
org/w/index.php?title=Python_Imaging_Library&oldid=1104375111.

[89] Wikipedia contributors. Tensor — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 20-December-2022]. 2022. URL: https://en.wikipedia.org/w/index.
php?title=Tensor&oldid=1127664112.

[90] Cong Wu, Yixuan Zou, and Zhi Yang. “U-GAN: Generative Adversarial Net-
works with U-Net for Retinal Vessel Segmentation”. In: 2019 14th International
Conference on Computer Science and Education (ICCSE). 2019, pp. 642–646. DOI:
10.1109/ICCSE.2019.8845397.

[91] Aston Zhang et al. Dive into Deep Learning. 2021. DOI: 10.48550/ARXIV.2106.
11342. URL: https://arxiv.org/abs/2106.11342.

https://en.wikipedia.org/w/index.php?title=Earth_mover%27s_distance&oldid=1121085069
https://en.wikipedia.org/w/index.php?title=Earth_mover%27s_distance&oldid=1121085069
https://en.wikipedia.org/w/index.php?title=Generative_adversarial_network&oldid=1113247966
https://en.wikipedia.org/w/index.php?title=Generative_adversarial_network&oldid=1113247966
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=1115984959
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=1115984959
https://en.wikipedia.org/w/index.php?title=Lipschitz_continuity&oldid=1122347867
https://en.wikipedia.org/w/index.php?title=Lipschitz_continuity&oldid=1122347867
https://en.wikipedia.org/w/index.php?title=MNIST_database&oldid=1101449122
https://en.wikipedia.org/w/index.php?title=MNIST_database&oldid=1101449122
https://en.wikipedia.org/w/index.php?title=Multi-task_learning&oldid=1104310342
https://en.wikipedia.org/w/index.php?title=Multi-task_learning&oldid=1104310342
https://en.wikipedia.org/w/index.php?title=OpenCV&oldid=1113479408
https://en.wikipedia.org/w/index.php?title=OpenCV&oldid=1113479408
https://en.wikipedia.org/w/index.php?title=Python_Imaging_Library&oldid=1104375111
https://en.wikipedia.org/w/index.php?title=Python_Imaging_Library&oldid=1104375111
https://en.wikipedia.org/w/index.php?title=Tensor&oldid=1127664112
https://en.wikipedia.org/w/index.php?title=Tensor&oldid=1127664112
https://doi.org/10.1109/ICCSE.2019.8845397
https://doi.org/10.48550/ARXIV.2106.11342
https://doi.org/10.48550/ARXIV.2106.11342
https://arxiv.org/abs/2106.11342

	Abstract
	Acknowledgements
	Introduction
	Overview
	The Otolith
	Growth Rings

	Computer Vision Assisted Age Determination
	The Current Technology Sought To Further Expand Upon
	Envisioned Solution

	The Research Question
	The Chapters of the Thesis

	Theoretical Background
	Discriminative vs. Generative Models
	Generative Adversarial Networks
	Introduction
	General Architecture
	Conditional GAN
	Image-to-Image Translation

	Artificial Neural Networks
	Perceptron
	Multi-Layered Perceptron
	Activation Functions
	ReLU and LeakyReLU
	Sigmoid and Tanh

	Convolutional Neural Networks
	The Convolutional Layer
	Padding

	The Pooling Layer
	Convolution instead of Pooling
	The Fully-Connected Layer
	Fully-Connected Layer as a Convolutional Layer

	Transposed Convolutions

	Gradient-based Optimization
	Mini-batch Stochastic Gradient Descent
	Momentum
	Adam Optimizer

	Vanishing Gradient Problem

	Pix2Pix GAN
	U-Net Generator
	PatchGAN Discriminator

	Training Generative Adversarial Networks
	Challenges when Training GANs
	Alternative GAN Loss Functions
	Pix2Pix Loss
	Wasserstein Loss
	Wasserstein Loss with Gradient Penalty

	Overfitting vs. Underfitting
	Regularization
	Batch Normalization
	Instance Normalization
	Dropout
	Data Augmentation

	Training-Validation-Testing Split

	Related Works
	Deep Learning Applications on Fish Age Determination
	GAN Applications for Annotation and Segmentation

	Materials and Methods
	Otolith Extraction, Image and Data Acquisition Process
	Step 1 of the process:
	Step 2, 3 and 4 of the process
	Step 5 of the process
	Step 6 of the process

	Further Data Preprocessing
	Annotations Data Feature Extraction
	Image Preprocessing

	Main Experiment
	Image-to-Image Data Preparation
	GAN Architecture
	Experiment Settings
	Data Augmentation
	Hyperparameters
	Training Scheme

	Dot Counting Algorithm
	Other Ideas and Experiments
	Tabular GAN
	Wasserstein GAN

	Hardware Availability
	Summary of Relevant Experiment Runs

	Results
	Main Experiment: Pix2Pix GAN
	Training and Testing Pix2Pix GAN with the Smaller Dataset
	Training
	Testing on Unseen Data

	Training and Testing Pix2Pix with the Bigger Dataset
	Training
	Testing on Unseen Data

	Last Experiment: Wasserstein GAN
	Training Results
	Testing Results
	Issues in the Results of WGAN

	Bonus Experiment: Using an Image of a Tree Stump

	Discussion and Future Works
	Interpretations
	The Experiment Models in General
	Mode Collapse
	Patch vs. non-patch Architecture in the Discriminator/Critic
	Quality of the Generated Dots using Wasserstein GAN

	Limitations and Future Works

	Conclusion
	CNN Architectures
	Testing Results
	Bibliography

