
Reent Schlegel

Coding for Privacy in Distributed
Computing

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Reent Schlegel

Coding for Privacy in
Distributed Computing

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 21.04.2023

The material in this publication is covered by the provisions of the Copyright Act.

Print:	 Skipnes Kommunikasjon / University of Bergen

© Copyright Reent Schlegel

Name: Reent Schlegel

Title: Coding for Privacy in Distributed Computing

Year: 2023

Acknowledgements

My deepest gratitude goes to my “doctor fathers” Eirik and Àlex. The two of you
are an excellent supervisor team and I count myself very lucky to have had you as
professional and morale support. Special thanks also go to Sidd for the fruitful
discussions and great collaboration.

Lena, your continued patience and support gave me the strength to finish this
thesis.

And to my colleagues at Simula UiB, you made the office not only a place to
work but rather a place to enjoy many fun moments at.

Thank you all!

Reent Schlegel
Bremen, December 2022

ii Acknowledgements

Abstract

In a distributed computing network, multiple devices combine their resources to
solve a problem. Thereby the network can achieve more than the sum of its parts:
cooperationof thedevices can enable thedevices to computemoreefficiently than
each device on its own could and even enable the devices to solve a problem nei-
ther of them could solve on its own. However, devices taking exceptionally long
to finish their tasks can exacerbate the overall latency of the computation. This
so-called straggler effect can arise from random effects such as memory access
and tasks running in the background of the devices. The effect typically stalls
the whole network because most devices must wait for the stragglers to finish.
Furthermore, sharing data and results among devices can severely strain the com-
munication network. Especially in awireless networkwhere devices have to share
a common channel, e.g., in edge computing and federated learning, the commu-
nication links often become the bottleneck. Last but not least, offloading data to
untrusted devices raises privacy concerns. A participant in the distributed com-
puting network might be weary of sharing personal data with other devices with-
out adequately protecting sensitive information.

This thesis analyses how ideas from coding theory can mitigate the straggler
effect, reduce the communication load, and guarantee data privacy in distributed
computing. In particular, Part A gives background on edge computing and fed-
erated learning, two popular instances of distributed computing, linear regres-
sion, a common problem to be solved by distributed computing, and the specific
ideas from coding theory that are proposed to tackle the problems arising in dis-
tributed computing. Part B contains papers on the research performed in the
framework of this thesis. The papers propose schemes that combine the intro-
duced coding theory ideas to minimize the overall latency while preserving data
privacy in edge computing and federated learning. The proposed schemes signif-
icantly outperform state-of-the-art schemes. For example, a scheme from Paper
I achieves an 8% speed-up for edge computing compared to a recently proposed
non-private scheme while guaranteeing data privacy, whereas the schemes from
Paper II achieve a speed-up factor of up to 18 for federated learning compared to
current schemes in the literature for considered scenarios.

Keywords: Coding Theory, Distributed Computing, Privacy, StragglerMitigation

iv Abstract

Abstrakt

I et distribuert datanettverk samarbeider flere enheter for å løse et problem. Slik
kan vi oppnå mer enn summen av delene: samarbeid gjør at problemet kan løses
mer effektivt, og samtidig blir det mulig å løse problemer som hver enkelt enhet
ikke kan løse på egen hånd. På den annen side kan enheter som bruker veldig
lang tid på å fullføre sin oppgave øke den totale beregningstiden betydelig. Denne
såkalte straggler-effekten kan oppstå som følge av tilfeldige hendelser som min-
netilgang og oppgaver som kjører i bakgrunnen på de ulike enhetene. Straggler-
problemet blokkerer vanligvis hele beregningen siden alle enhetene må vente på
at de treigeste enhetene blir ferdige. Videre kan deling av data og delberegninger
mellom de ulike enhetene belaste kommunikasjonsnettverket betydelig. Spesielt
i et trådløst nettverk hvor enhetene må dele en enkelt kommunikasjonskanal, for
eksempel ved beregninger langs kanten av et nettverk (såkalte kantberegninger)
og ved føderert læring, blir kommunikasjonen ofte flaskehalsen. Sist men ikke
minst gir deling av data med upålitelige enheter økt bekymring for personvernet.
En som ønsker å bruke et distribuert datanettverk kan være skeptisk til å dele per-
sonlige data med andre enheter uten å beskytte sensitiv informasjon tilstrekkelig.

Denneavhandlingenstudererhvordan ideer frakodeteori kandempestraggler-
problemet, øke effektiviteten til kommunikasjonen og garantere datavern i dis-
tribuert databehandling. Spesielt gir del A en innføring i kantberegning og føder-
ert læring, to populære instanser av distribuert databehandling, lineær regresjon,
et vanlig problem som kan løses ved distribuert databehandling, og relevante
ideer fra kodeteori. Del B består av forskningsartikler skrevet innenfor rammen
av denne avhandlingen. Artiklene presenterer metoder som utnytter ideer fra
kodeteori for å redusere beregningstiden samtidig som datavernet ivaretas ved
kantberegninger og ved føderert læring. De foreslåtte metodene gir betydelige
forbedringer sammenlignet med tidligere metoder i litteraturen. For eksempel
oppnår en metode fra artikkel I en 8%-hastighetsforbedring for kantberegninger
sammenlignetmed en nylig foreslåttmetode. Samtidig ivaretarvårmetodedatav-
ernet, mens den metoden som vi sammenligner med ikke gjør det. Artikkel II
presenterer en metode som for noen brukstilfeller er opp til 18 ganger raskere for
føderert læring sammenlignet med tidligere metoder i litteraturen.

Søkeord: Distribuert databehandling, kodeteori, personvern, straggler-demping

vi Abstrakt

List of Papers

This thesis is based on the following publications:

Paper I
R. Schlegel, S. Kumar, E. Rosnes, A. Graell i Amat, Privacy-Preserving Coded Mo-
bile Edge Computing for Low-Latency Distributed Inference, IEEE Journal on Se-
lected Areas in Communications, vol. 40, no. 3, pp. 788-799, March 2022.

Paper II
R. Schlegel, S. Kumar, E. Rosnes, A. Graell i Amat, CodedPaddedFL and Coded-
SecAgg: Straggler Mitigation and Secure Aggregation in Federated Learning, sub-
mitted to IEEE Transactions on Communications (revised Septemberand Decem-
ber 2022).

Other publications by the author which are not included in this thesis, but are
included within the papers of the thesis, are:

• R. Schlegel, S. Kumar, E. Rosnes, A. Graell i Amat, Private Edge Computing
for Linear Inference Based on Secret Sharing, in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Taipei, Taiwan, December 2020.

• S. Kumar, R. Schlegel, E. Rosnes, A. Graell i Amat, Coding for Straggler Mit-
igation in Federated Learning, in Proc. IEEE Int. Conf. Commun. (ICC),
Seoul, South Korea, May 2022.

• R. Schlegel, S. Kumar, E. Rosnes, A. Graell i Amat, Straggler-Resilient Secure
Aggregation for Federated Learning, in Proc. Eur. Sign. Process. Conf. (EU-
SIPCO), Belgrade, Serbia, August/September 2022.

viii List of Papers

Contents

Acknowledgements i

Abstract iii

Abstrakt v

List of Papers vii

List of Figures xiii

A Overview 1

1 Background 3
1.1 Introduction . 3
1.2 Outline . 6
1.3 Notation . 6

2 Edge Computing and Federated Learning 9
2.1 Straggler Problem . 10
2.2 Communication Bottleneck . 10
2.3 Privacy . 11

3 Linear Regression 13
3.1 Background . 14
3.2 Obtaining the Model . 14
3.3 Gradient Descent . 15
3.4 Application to Non-Linear Problems 16

4 Mitigation Techniques 19
4.1 Reed-Solomon Codes . 20

4.1.1 Decoding . 20
4.1.2 Application to Distributed Computations 21

4.2 Gradient Codes . 21
4.2.1 Application to Distributed Gradient Descent 22

4.3 Multiuser Multiple Input Multiple Output Transmission (MIMO) . 23
4.3.1 Multiplexing Gain . 23
4.3.2 Application to Distributed Computations 24

4.4 Shamir’s Secret Sharing Scheme . 24

x CONTENTS

4.4.1 One-Time Padding . 24
4.4.2 Shamir’s Scheme . 25
4.4.3 Application to Distributed Computations 27

4.5 Fixed-Point Arithmetic . 27
4.5.1 Application to Distributed Computations 28

5 Paper Overview 29
5.1 Paper I . 30
5.2 Paper II . 30

6 Conclusion 31

Bibliography 36

B Papers 37

I Privacy-PreservingCodedMobileEdgeComputing forLow-Latency
Distributed Inference 39
1 Introduction . 41
2 System Model . 43

2.1 Computation Runtime Model 43
2.2 Communication . 44
2.3 Privacy and Problem Formulation 45

3 Private Distributed Linear Inference 45
3.1 Secret Sharing . 45
3.2 Assignment of 𝑾 to the Edge Nodes 47
3.3 Assignment of Shares to the Edge Nodes 48

4 Communication and Computation Scheduling, and Private Coding
Scheme Optimization . 49
4.1 Upload and Computation 50
4.2 Download . 51
4.3 Decoding Latency . 52
4.4 Private Coding Scheme Optimization 53

5 Variants . 53
5.1 Priority Queue . 54
5.2 Additional Coding on the Network-Side Matrix𝑾 54

6 Numerical Results . 57
7 Conclusion . 61
A Proof of Theorem 1 . 61
B Proof of Theorem 2 . 61
References . 65

II CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Se-
cure Aggregation in Federated Learning 67
1 Introduction . 69
2 Preliminaries . 72

2.1 Notation . 72

CONTENTS xi

2.2 Fixed-Point Numbers . 72
2.3 Cyclic Gradient Codes . 72
2.4 Shamir’s Secret Sharing Scheme 73

3 System Model . 73
3.1 Federated Gradient Descent 74
3.2 Computation and Communication Latency 75
3.3 Threat Model and Goal . 76

4 Privacy-Preserving Operations on Fixed-Point Numbers 76
5 Coded Federated Learning . 77

5.1 Phase 1: Data Sharing . 77
5.2 Phase 2: Coded Gradient Descent 79
5.3 Communication Latency of the Data Sharing Phase 80
5.4 Complexity . 81
5.5 Grouping . 82

6 Coded Secure Aggregation . 82
6.1 Phase 1: Data Sharing . 83
6.2 Phase 2: Securely Aggregated Gradient Descent 83
6.3 Complexity . 85
6.4 Grouping for Coded Secure Aggregation 85

7 Comparison of CodedPaddedFL and CodedSecAgg 88
8 Numerical Results . 89

8.1 Coded Federated Learning 89
8.2 Client Drift . 91
8.3 Grouping . 92
8.4 Coded Secure Aggregation 92

9 Conclusion . 94
References . 98

xii CONTENTS

List of Figures

1 Background 3

1.1 A mobile EC network applied to autonomous driving. 4

4.1 An example MIMO communication system with 𝑁𝑡 = 3 transmit
antennas and 𝑁𝑟 = 2 receive antennas. 23

4.2 Example of Shamir’s (𝑛, 𝑘 = 3) SSS. 26

I Privacy-PreservingCodedMobileEdgeComputing forLow-Latency
Distributed Inference 39

I.1 A mobile edge computing network with two users and three ENs. . 44

I.2 Scheduling of the upload and computing phases. For each EN, the
upload normalized times 𝑟𝛾 are shown in blue, the random setup
times in red, the times𝑝𝑚/𝑒 tocompute𝑝 IRs ingreen, and possible
idle times in yellow. 51

I.3 Expected overall normalized latency as a function of 𝛾 for different
privacy levels 𝑧 of the proposed scheme (Scheme 1) compared to the
nonprivate scheme in [17]. Theparameters are𝜇 = 2/3, 𝜏 = 0.0005,
𝜂 = 0.5, 𝑒max = 9, 𝑚 = 600, 𝑟 = 50, and 𝛿 = 3. 57

I.4 Expected overall normalized latency as a function of 𝛾 for different
privacy levels 𝑧 of the proposed scheme (Scheme 1) compared to
the priority queue variant (Scheme 2) and the nonprivate scheme
in [17]. The parameters are 𝜇 = 2/3, 𝜏 = 0.0005, 𝜂 = 0.5, 𝑒max = 9,
𝑚 = 600, 𝑟 = 50, and 𝛿 = 3. 59

I.5 Expected overall normalized latency as a function of 𝛾 for different
privacy levels 𝑧of thepriorityqueuevariant (Scheme 2), thepriority
queue with coding on 𝑾 variant (Scheme 3), and the nonprivate
scheme in [17]. The parameters are 𝜇 = 2/3, 𝜏 = 0.0005, 𝜂 = 0.5,
𝑒max = 9, 𝑚 = 600, 𝑟 = 50, and 𝛿 = 3. 60

I.6 The probability of meeting a given deadline for the private scheme
(Scheme 1) and its variants (Schemes 2 and 3) with 𝑧 = 1 for differ-
ent values of 𝛾. 60

II CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Se-
cure Aggregation in Federated Learning 67

xiv LIST OF FIGURES

II.7 An example showcasing the systemmodel aswell as an epoch of the
proposed CodedPaddedFL. The system consists of 𝑛 = 3 devices
and a central server. The devices share 𝜳𝑖 and 𝜱𝑖. During the 𝑒-
th epoch, the central server sends 𝝐(𝑒) to the devices. The devices
compute coded gradients using an (𝛼 = 2, 𝑛) gradient code, and
send them to the central server, which decodes them to compute
the model update. 80

II.8 Anexample showcasing anepochof CodedSecAgg. Thesystemcon-
sists of 𝑛 = 3 devices and a central server. Each device has access to
one share of the global dataset. 84

II.9 An example of the inter-group communication for a network with
𝑁 = 8 groups. Different layers correspond to the ⌈log2(𝑁)⌉ = 3

communication steps, while the label of each node is the group
identifier. A solid line between node 𝑖 and node 𝑗 represents a
physical transmission from devices in group 𝑖 to devices in group
𝑗, whereas dashed lines represent data already available at the end
node. 87

II.10 Training time for the proposed CodedPaddedFL with different val-
ues of 𝛼, the coded FL scheme in [40], and conventional FL. 90

II.11 Training time for the proposed CodedPaddedFL with 𝛼 = 23 and
conventional FL with a subset of the fastest devices. 91

II.12 Training on the MNIST dataset with CodedPaddedFL, with and
without grouping the 𝑛 = 120 devices. 92

II.13 Training on the MNIST dataset with CodedPaddedFL and Coded-
SecAgg with grouping in comparison to LightSecAgg for 𝑛 = 120

(left plot) and 𝑛 = 1000 (right plot) devices. 93

Part A

Overview

Chapter 1

Background

1.1 Introduction

The increase in data throughout all aspects of everyday life ignited a move to
decentralized data processing. A single traditional computing device would be
overwhelmed by the amount of data that needs to be processed by modern ap-
plications. Therefore, distributed computing architectures were proposed, e.g.,
Google’s patented MapReduce [1], that lead to powerful computing entities such
as warehouse-scale computers (WSCs) [2]. These WSCs are a crucial enabler of
modern cloud computing services.

While WSCs provide the computation power needed by many of nowadays’s
applications, they are not the ultimate solution to all data processing problems.
Sendingmassiveamountsof data forprocessing to farawaycomputing centers can
entail a prohibitive amount of latency or be unfeasible due to network limitations
altogether. To mitigate the huge latency and reduce network traffic, the compu-
tational resources need to be moved closer to the devices generating the data that
needs to be processed. Edge computing (EC) and federated learning (FL) are two
distributed computing paradigms that process data close to the source. EC has
become one of the pillars of the 5G mobile communication standard [3], whereas
FL is used by industry-leading companies such as Google [4] and IBM [5].

In an EC network, the nodes at the network edge, e.g., the base stations in a
cellular network, are equipped with computational resources. As a result, these
so-called edge nodes (ENs) can provide additional services to customers, such as
mobile phones in a cellular network and vehicles. For example, EC is a crucial
enabler for autonomous driving which is depicted in Fig. 1.1. Data from multiple
vehicles can be collected at the network edge for processing. Instead of perform-
ing computations locally on the vehicles with limited information, the compu-
tationally powerful ENs can gather information from all vehicles in the vicinity
and perform computations to make recommendations for the vehicles in the net-
work. Here, decisions on breaking and lane switching are highly delay critical and
prohibit an offloading of the tasks to far away cloud computing centers. Similarly,
cloud gaming is a latency-critical anddata-intensiveapplication thatdoes notper-
mit outsourcing to remote servers. On the other hand, remote sensing might not
necessarily be latency critical; however, preprocessing sensor results can signifi-
cantly reduce network traffic.

4 Background

EN

µ

user

Figure 1.1: A mobile EC network applied to autonomous driving.

FL is a distributed learning framework in which multiple devices collabora-
tively train a global model on local data. Each device computes model updates
on its local data and sends the computed updates to a central server. The cen-
tral server aggregates the results from the devices and updates the global model.
This process is iterated several times until the model converges. As a result, FL
enables devices to jointly train a model without exchanging their local data. This
keeping of local data makes FL especially attractive when several entities wish to
infer amodel on sensitive or private data. For example, newdiseasemodels can be
trained in the healthcare sectorwithout exchanging patients’ data. Similarly, in fi-
nance, multiple businesses can jointly train amodelwithout exchanging company
confidential data.

While decentralization provides many benefits, as shown above, it also im-
poses new challenges. Load assignment and scheduling are non-trivial problems;
however, in this work, I will focus on the straggler problem, the communication
bottleneck, and privacy. Every computation incurs a randomdelaydue tomemory
access and other tasks running in the background. This random delay can make
waiting for the last device to finish its computation highly inefficient [6]. When
the number of devices in a network becomes large, a few devices will take an ex-
ceptionally long time to finish their tasks, while the other devices will have towait
idly. This so-called straggler effect significantly impacts the overall latency of a
distributed computing system.

Furthermore, offloading vast amounts of data, as could be the case in EC, can
lead to network congestion. One of the main benefits of EC and FL is that there
is no need to transmit massive amounts of data over long distances. Nevertheless,
the (possibly wireless) links between the user devices and the ENs will become
contested if no intelligent way of transmitting the data is utilized.

Lastly, offloading data for processing to possibly untrusted servers entails pri-
vacy concerns. Even in FL, where no private data is directly shared with anyone,
the local model updates can contain information about the dataset used for train-

1.1 Introduction 5

ing.
Erasure channel coding proved to be a successful tool in mitigating the strag-

gler problem in distributed computing [7]. Introducing redundancy on the data
prior to distributing it to the workers, i.e., the computing entities in a distributed
computing scenario, enables the master, i.e., the entity offloading the computa-
tions to the distributed computing cluster, to recover the desired computation
result from the results of a subset of the workers. Thereby, straggling workers can
be ignored as it is sufficient to contact only the fastest workers. This ability to ig-
nore slow workers is traded off with a slightly increased computational load for
each worker. This idea has successfully been applied to matrix-vector and matrix-
matrix multiplication [8–12], distributed learning [13], distributed optimization
[14], as well as general polynomial computations [15]. In these works, maximum
distance separable (MDS) codes are especially prominent candidates. They allow
the master to recover the result by contacting any 𝑘 out of 𝑛 workers. However,
the decoding complexity is often neglected. It was shown that the high decod-
ing complexity of MDS codes, which usually scales quadratically with the code
length, can nullify any benefit obtained through straggler mitigation if they are
applied naively [31]. Rateless codes are a suitable alternative due to their low de-
coding complexity [16]. Furthermore, while they lack the MDS property, i.e., it is
not necessarily sufficient to contact any 𝑘 out of 𝑛 workers, their ability to utilize
subtasks from even the slow workers helps mitigate the straggler effect [17].

To avoid the communication bottleneck in the download of EC, [18, 19] pro-
posed replicating tasks across different ENs. Thereby, the spatial diversity in the
network is increased, and the ENs can utilize beamforming to servemultiple users
simultaneously. [20–22] extended this idea by combining task replication for spa-
tial diversity with MDS codes for straggler mitigation, again neglecting decoding
complexity. [23] proposes a scheme combining a rateless code with irregular rep-
etition which significantly reduces latency compared to the schemes in [20–22].

Privacy of users’ data becomes an issue when naively offloading tasks to un-
trustedworkers, such as in EC. To preventworkers from inferring private informa-
tion, [24–27] propose schemes that secretly share the users’ data among thework-
ers such that any subset of 𝑧 colluding workers cannot infer information about
the users’ datawhilemitigating the straggler effect. [24, 25] propose new schemes
for linear computations, a flexible MDS like construction [24] and a combination
of a rateless code with random padding [25], whereas [15, 27] consider non-linear
computations by using Lagrange [15] and polynomial codes [27].

Moreover, even though no private data leaves the user devices in FL, model
inversion attacks by the central server can leak information [28, 29]. The model
updates at the devices reveal information about the local dataset used to train the
model. When thecentral servercollects sufficientupdates throughout theepochs,
it can use those to infer information about the local data at the user devices. To
preventmodel inversion attacks, secure aggregation protocolswere proposed [30–
42]. In secure aggregation, the central server only learns the aggregated model
updateof thedevicesand nosingle localmodel update. Thereby, thecentral server
cannot infer information about any of the local datasets but rather only about
the global dataset across all devices. The inferring of the global dataset by the
central server is considered anacceptable level of privacy, as thereusuallyaremany

6 Background

devices in an FL scenario and the contribution of any single user is well hidden
among the masses.

In this thesis, I will present schemes highlighting the advantage coding pro-
vides in reducing the latency in both EC and FL. For EC, the scheme combines
a product code for straggler mitigation with repetition for spatial diversity and
Shamir’s secret sharing [43] for user data privacy. Due to its lower decoding com-
plexity, the scheme outperforms a previous non-private scheme from [20]. For
FL, the first proposed scheme, CodedPaddedFL, combines gradient codes [13] for
straggler mitigation with one-time padding for data privacy. It is the first scheme
to apply coding to FLwithout leaking additional information to the central server.
Furthermore, the second scheme for FL, CodedSecAgg, extends the ideas of Cod-
edPaddedFL to secure aggregation to prevent the central server from launching
a model inversion attack. CodedSecAgg outperforms state-of-the-art secure ag-
gregation schemes such as [35] in terms of latency due to its straggler mitigation
capabilities.

1.2 Outline

This chapter concludes with the notation’s description. Chapter 2 introduces the
particular problems both EC and FL face. In particular, the straggler effect is ex-
plained in detail, the communication bottleneck is addressed and why traditional
multiple access strategies might be insufficient, and the particular privacy con-
cerns are highlighted. In Chapter 3, linear regression is discussed. Linear regres-
sion is the central application of the schemes in this thesis. In the FL framework,
we focus on the generation and learning of the model, whereas in the EC frame-
work, we focus on the application of the learnedmodel. Mitigation techniques for
the problemsoutlined in Chapter 2 are explained in detail in Chapter 4. Chapter 5
gives a brief overview of the two papers considered in this thesis. The previously
introduced ideas are put into context for each paper, and themain results are sum-
marized. Lastly, Chapter 6 concludes Part A of the thesis. Part B includes the two
papers “Privacy-Preserving Coded Mobile Edge Computing for Low-Latency Dis-
tributed Inference” and “CodedPaddedFL and CodedSecAgg: Straggler Mitigation
and Secure Aggregation in Federated Learning” that are part of this thesis.

1.3 Notation

Weuseuppercaseand lowercase bold letters formatrices and vectors, respectively,
italics for sets, and sans-serif letters for random variables (RVs), e.g., 𝑿, 𝒙, 𝒳, and

X represent a matrix, a vector, a set, and an RV, respectively. An exception is X̂
in Section 3.4 which is a vector of RVs. Vectors are represented as row vectors
throughout the chapter. For natural numbers𝑚 and 𝑛, 𝟎𝑚×𝑛 denotes the all-zero
matrix of size𝑚×𝑛, 𝟏 denotes the all-one matrix, and 𝑰 denotes the identity ma-
trix. The conjugate transpose of amatrix𝑿 is denoted as𝑿H (or𝑿⊤ when𝑿 is over
the reals). Furthermore, we represent the Euclidean norm of a vector 𝒙 by ‖𝒙‖2,
while the absolute value of a number 𝑥 is |𝑥|. Pr{X = 𝑥} is the probability that a

1.3 Notation 7

realization of the RV X has the value 𝑥, while Pr{X = 𝑥|Y = 𝑦} is the conditional
probability and 𝔼[X] is the expected value of X. I(⋅; ⋅) denotesmutual information
and H(⋅) and H(⋅|⋅) are the entropy and the conditional entropy, respectively. The
gradient of a function 𝑓(𝑿) with respect to 𝑿 is denoted by ∇𝑿𝑓(𝑿). For a pos-
itive integer 𝑚, [𝑚] denotes the set {1, … ,𝑚} and for a real number 𝑟, ⌊𝑟⌋ is the
largest integer less than or equal to 𝑟. The binomial coefficient is represented by
binom{𝑛, 𝑘}. The finite field of size 𝑞 is denoted by 𝔽𝑞, whereas ℝ and ℂ denote
the field of real numbers and complex numbers, respectively.

8 Background

Chapter 2

Edge Computing and Federated Learning

EC and FL are distributed computing frameworks for wireless networks. As such,
they havemany similarities, including thechallenges they face in theirefficient ex-
ecution. In this chapter, I will focus on threemain challenges both EC and FL face.
These are the straggler effect, the communication bottleneck, and guaranteeing
users’ data privacy.

10 Edge Computing and Federated Learning

2.1 Straggler Problem

Thecomputation times incurred by theworkers toperform their tasksare random.
Memory access and tasks running in the background have a non-deterministic ef-
fect on the runtime. Usually, the computation times are modeled by a shifted
randomly distributed RV. The shift represents the deterministic part of perform-
ing calculations in the circuitry, whereas the exponential tail in the distribution
pertains to random events such as memory access and background tasks. When a
large computation is naively distributed across multipleworkers, themastermust
wait for the result of all workers—including the slowestworker—toobtain thede-
sired result. As a result, the waiting time at the master when distributing the task
across 𝑛 workers is the 𝑛-th order statistic of a sample of 𝑛 shifted exponentially
distributed RVs. Let us assume the workers’ computation times 𝜆𝑖 are indepen-
dent and identically distributed and let us view the shifted exponential variable
as the sum of a deterministic real value 𝑠 and an exponentially distributed RV 𝜆′

𝑖
with parameter 𝜂, i.e., 𝜆𝑖 = 𝑠 + 𝜆′

𝑖
with 𝔼{𝜆′

𝑖
} = 1/𝜂. Then, the 𝑛-th order statistic

𝜆(𝑛) of {𝜆𝑖} is equal to 𝜆(𝑛) = 𝑠 + 𝜆′
(𝑛)

, where 𝜆′
(𝑛)

is the 𝑛-th order statistic of {𝜆′
𝑖
}.

Alfréd Rényi derived the general expression for the 𝑘-th order statistic 𝜆(𝑘) of an

𝑛-sized sample of exponentially distributed RVs in [44]:

𝜆(𝑘) =
1

𝜂
�

𝑘

�

𝑗=1

𝑍𝑗

𝑛 − 𝑗 + 1
� , (2.1)

where the 𝑍𝑗s are standard exponential RVs. As a result, we have

𝔼{𝜆(𝑘)} =
1

𝜂
�

𝑘

�

𝑗=1

1

𝑛 − 𝑗 + 1
� . (2.2)

To highlight this so-called straggler effect, I will use the following example. Let
𝑠 = 0 and 𝜂 = 1, i.e., let the computation times at theworkers be purely exponen-
tiallydistributedwithexpected value1, and let there be𝑛 = 10workers. Although
the expected computation time of each worker is only 1 time unit, the expected
computation time of the slowest out of the 10 workers is approximately 2.93, al-
most 3 times slower than the average computation time. We can see that even
for a small number of workers, the straggler effect severely impacts the master’s
waiting time.

2.2 Communication Bottleneck

Both in EC and FL, we have multiple devices communicating with each other si-
multaneously through a shared wireless channel. Without proper access control,
the devices will interfere with each other, rendering all communication impos-
sible. Traditionally, different devices are assigned different time slots, so-called
timedivisionmultiple access (TDMA), ordifferent frequency bands, so-called fre-
quencydivisionmultiple access (FDMA) toguarantee thatdifferentdevicesdo not

2.3 Privacy 11

interfere with each other. In TDMA, the channel is used by only one device at any
given time, whereas in FDMA, all devices can transmit simultaneously, and the
receiver can recover the desired transmission through the use of an appropriate
bandpass filter. A combination of TDMA and FDMA is also possible. However,
as the number of devices increases, these access techniques are no longer suited.
The need for guard intervals, both in time and frequency, leaves no usable time
slots or frequency bands as the number of needed slots/bands increases.

Space (SDMA) and codedivisionmultipleaccess (CDMA) arealternativeaccess
techniques. In SDMA, the network is spatially partitioned into smaller networks.
This partitioning allows the reuse of time slots and frequency bands in spatially
separated parts of the network. However, SDMA requires directional antennas to
prevent interference across different spatial partitions. In practice, the direction-
ality of reasonably priced antennas is limited, which leads to only a small number
of different partitions. In cellular networks, for example, each base station parti-
tions theassigned space into three sectorswith a single120° antennaeach. CDMA
assigns a code 𝒄𝑖 to device 𝑖 for each device in the network. These codes are or-
thonormal, meaning that we have ⟨𝒄𝑖, 𝒄𝑖⟩ = 1 and ⟨𝒄𝑖, 𝒄𝑗⟩ = 0 for 𝑖 ≠ 𝑗. Device 𝑖
transmits the product of the message 𝑚𝑖 it wants to send and the assigned code
𝒄𝑖, i.e., device 𝑖 transmits 𝒙𝑖 = 𝑚𝑖𝒄𝑖. In a noiseless channel, the receiver observes
𝒚 = ∑𝑖 𝒙𝑖, the superposition of all transmittedmessages. The receiver recovers the
desired message𝑚𝑗 as𝑚𝑗 = ⟨𝒚, 𝒄𝑗⟩. The cost of CDMA is a bandwidth expansion
due to the need to accommodate many orthonormal codes.

All four traditional access technologies haveworkedwell in the past but are not
suited foravery large numberof devices in a network. The need forguard bands in
TDMA and FDMA renders those techniques inefficient for a huge number of de-
vices, whereas SDMAhas hardware limitations that hinder unlimited partitioning
of the network, and CDMA suffers from a considerable bandwidth expansion for
a large number of devices. This means new techniques are needed to facilitate a
huge number of devices that simultaneously want to communicate, as is the case
in EC and FL.

2.3 Privacy

Offloading data for processing to untrusted devices entails huge risks to data pri-
vacy. In EC, users need tooffload theirdata to servers at the network’s edge. While
users may or may not trust these ENs’ provider(s), untrusted malicious third par-
ties might compromise the servers. Due to the distributed nature in all kinds of
environments, it is virtually impossible to guarantee the cyber and physical secu-
rity of the ENs. As a result, an adversary might gain access to several servers be-
longing to the (maybe trusted) service providers. Consequently, even when users
are willing to reveal their personal data to a service provider, there is no guaran-
tee that their data remains only visible to the provider. Hence, there is a need
for a privacy-preserving protocol to process users’ data that is resilient against an
adversary with access to several servers.

In FL, the devices process their own data locally, thereby seemingly retaining
the privacy of their data. However, the local model updates contain information

12 Edge Computing and Federated Learning

about the local datasets used to train them. Hence, by observing the model up-
dates, the central server can infer information about the local data. In the worst
case, the model updates can reveal the whole dataset. Therefore, it is vital to pre-
vent these model inversion attacks. Furthermore, as we will see later, it can be
beneficial to introduce data redundancy across different devices to mitigate the
straggler effect. Naively introducing this redundancy will leak information about
the devices’ private data to other untrusted devices.

Chapter 3

Linear Regression

Linear models play an essential role in many facets of life. Trend lines, for exam-
ple, are commonly used to predict or analyze markets and populations, whereas
the capital asset pricing model is a widely used linear model in finance and the
linear regression algorithm is one of the fundamental building blocks in machine
learning. In this chapter, I will introduce the background for linear regression and
how to obtain a model from sampled data.

14 Linear Regression

3.1 Background

Linear regression models a linear dependence of a set of RVs 𝒴 on another set of
RVs𝒳. Let |𝒳| = 𝑛 and |𝒴| = 𝑚 and let 𝑥𝑖 ∈ 𝕄 and 𝑦𝑗 ∈ 𝕄 for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚]

be realizations of the RVs X𝑖 ∈ 𝒳 and Y𝑗 ∈ 𝒴 over some measurable space𝕄. In
this work, we restrict𝕄 to be a ring as we are interested in the linear dependence
of 𝒴 on 𝒳, i.e., we need 𝕄 to be closed under additions and multiplications. We
collect {𝑥𝑖|𝑖 ∈ [𝑛]} and {𝑦𝑗|𝑗 ∈ [𝑚]} in the 𝑛-dimensional row vector 𝒙 ∈ 𝕄𝑛 and
𝑚-dimensional row vector 𝒚 ∈ 𝕄𝑚. We can then represent the linear dependence
through a matrix 𝜣 ∈ 𝕄𝑛×𝑚 as

𝒚 = 𝒙𝜣.

The matrix 𝜣 is often referred to as the model. Given the model 𝜣, one can now
predict the outcome of the RVs in𝒴 by observing the RVs in𝒳. This makes linear
regression such a powerful tool. What remains to be shown is how to obtain the
model 𝜣 from possibly noisy observations of 𝒳 and 𝒴.

3.2 Obtaining the Model

To determine the model 𝜣, one has to sample the RVs in 𝒳 and simultaneously
observe the RVs in 𝒴. In practice, the observations might be corrupted by noise.
Let {𝒙̂𝑖|𝑖 ∈ [𝑠]} be the sample of size 𝑠 of the RVs in 𝒳 and {𝒚̂𝑖|𝑖 ∈ [𝑠]} be the
corresponding observations of the RVs in 𝒴. We can then express 𝒚̂𝑖 as

𝒚̂𝑖 = 𝒙̂𝑖𝜣+ 𝒏𝑖,

where𝒏𝑖 is themeasurementnoisewhileobserving 𝒚̂𝑖. Wecancollect the samples,
observations, and noise as matrices

𝑿̂ = �

𝒙̂1
⋮

𝒙̂𝑠

� , 𝒀̂ = �

𝒚̂1
⋮

𝒚̂𝑠

� , and 𝑵 = �

𝒏1
⋮

𝒏𝑠

�

such that we can express their dependence as

𝒀̂ = 𝑿̂𝜣 + 𝑵.

A common estimate 𝜣̂LS of the true model 𝜣 is obtained by minimizing the
squared error. For example, when 𝒏𝑖 contains independent and identically dis-
tributed Gaussian RVs, the least squared error (LSE) estimator is equivalent to the
maximum likelihood (ML) estimator. Note that 𝒏𝑖 = 𝒚̂𝑖 − 𝒙̂𝑖𝜣. Therefore, the
estimate minimizing the LSE is given as

𝜣̂LS = argmin
𝜣̃

1

2𝑠

𝑠

�

𝑖=1

‖𝒏𝑖‖
2
2 = argmin

𝜣̃

1

2𝑠

𝑠

�

𝑖=1

‖𝒚̂𝑖 − 𝒙̂𝑖𝜣̃‖
2
2. (3.1)

The estimate 𝜣̂LS minimizes the squared error of a particular observation �𝑿̂, 𝒀̂�.
This can be a desired characteristic when one typically observes similar realiza-
tions of the RVs in𝒳 to the ones observed in 𝑿̂ and a tight fit of the model to the

3.3 Gradient Descent 15

sample 𝑿̂ is helpful. However, this high dependence on the specific realization 𝑿̂
and overfitting of the model can be detrimental when one expects to observe new
data in the future and tries to extrapolate to make predictions with samples that
are not contained in the 𝑿̂ thatwas used to derive themodel 𝜣̂LS. From a Bayesian
point of view, this is equivalent to the fact that the ML estimator is not optimal.
Instead, one should include a prior model distribution to obtain a maximum a
posteriori (MAP) estimator. Different objective functions for the model estima-
tion arise depending on the a priori distribution that is used. The normal and
Laplace distributions are the most widely used a priori distributions, leading to
the so-called ridge regression and lasso regression estimates. The corresponding
model estimations 𝜣̂RR and 𝜣̂LASSO are given as

𝜣̂RR = argmin
𝜣̃

1

2𝑠

𝑠

�

𝑖=1

‖𝒚̂𝑖 − 𝒙̂𝑖𝜣̃‖
2
2 + 𝜆

𝑛

�

𝑖=1

𝑚

�

𝑗=1

𝜃̃2
𝑖𝑗

(3.2)

and

𝜣̂LASSO = argmin
𝜣̃

1

2𝑠

𝑠

�

𝑖=1

‖𝒚̂𝑖 − 𝒙̂𝑖𝜣̃‖
2
2 + 𝜆

𝑛

�

𝑖=1

𝑚

�

𝑗=1

|𝜃̃𝑖𝑗|. (3.3)

We can view (3.2) to be the Lagrangian form of the optimization problem of the
LSE estimator in (3.1) with the additional constrained that the 2-norm of the
model 𝜣̂RR is less than a threshold 𝑡, where the relationship between 𝑡 and 𝜆 de-
pends on thedata. Similarly, (3.3) is equivalent to (3.1) with the constraint that the
1-norm of 𝜣̂LASSO is less than a threshold 𝑡.

The benefit of the ridge regression estimate is that it reasonably assumes that
the apriori distributionof themodel is a normal distribution rather than themore
exotic Laplace distribution. This makes ridge regression a suited candidate for a
wide range of applications. However, the hypercubic shape of the constraint in
LASSO leads to more coefficients in 𝜣̂Lasso being equal to zero. That means a
model estimate obtained through (3.3) selects a subset of the RVs in 𝒳 that have
a non-negligible influence on the prediction of 𝒴. This can lead to significantly
simplified models asmany of the RVs in𝒳might be ignored for predicting𝒴. The
model 𝜣̂Lasso will automatically discard the negligible values of 𝒳 whereas 𝜣̂RR
most likely will consider a small but non-zero influence of these RVs.

It remains to be shown how to solve the optimization problems in (3.1) to (3.3).

3.3 Gradient Descent

There can exist closed-form solutions to the optimization problems for themodel

estimations. For example, the closed form solution to (3.1) is 𝜣̂LS = �𝑿̂⊤𝑿̂�
−1
𝑿̂⊤𝒀̂.

However, the inverse might not exist, and when it does, it is expensive to compute
andnumericallyunstable. Therefore, inmostpractical applications, theoptimiza-
tion problems are solved via gradient descent. The gradient ∇𝒙𝑓(𝒑) at a point 𝒑
of a multivariate differentiable function 𝑓(𝒙) points in the direction of steepest
ascend of 𝑓 around 𝒑. Given an initial point 𝒙0, taking a small step in the oppo-
site direction of the gradient, i.e., in the direction of the steepest descent of 𝑓 at

16 Linear Regression

𝒙0, yields a new point 𝒙1 that will have a lower value 𝑓(𝒙1) than the initial value
𝑓(𝒙0). More precisely, for

𝒙1 = 𝒙0 − 𝜇 ⋅ ∇𝒙𝑓(𝒙0)

with a sufficiently small step size 𝜇, we have

𝑓(𝒙1) ≤ 𝑓(𝒙0).

Given an initial guess 𝒙0 of a local minimum, one can iteratively update the guess
to find points that yield smaller and smaller values of the function 𝑓. When 𝑓 ful-
fills certain criteria, for example, when 𝑓 is convex, and the step size 𝜇 is chosen
appropriately at each iteration, for example, through the line search algorithm,
the gradient descent algorithm is guaranteed to converge to a local minimum.
Furthermore, in the case where 𝑓 is convex, every local minimum is the global
minimum, i.e., for a convex and differentiable function 𝑓(𝒙), the gradient descent
algorithm with appropriately chosen step size 𝜇 is guaranteed to converge to the
global minimum.

Each of the objective functions in (3.1) to (3.3) is convex and differentiable,
except (3.3) at 𝜣 = 𝟎. This means we can use gradient descent to solve each opti-
mizationproblemas long aswedonotgo through𝜣 = 𝟎 for theLASSO regression.
For example, in the case of ridge regression, we have

∇𝜣𝑓(𝜣) =
1

𝑚
𝑿⊤𝑿𝜣 − 𝑿⊤𝒀 + 2𝜆𝜣.

Given an initial guess 𝜣0 of the model, we can iteratively update 𝜣𝑖 at iteration 𝑖

as
𝜣𝑖 = 𝜣𝑖−1 − 𝜇𝑖 ⋅ ∇𝜣𝑓(𝜣𝑖−1),

where 𝜇𝑖 is the step size at iteration 𝑖. For a properly chosen 𝜇𝑖 we are guaranteed

that lim𝑖→∞𝜣𝑖 = 𝜣̂RR.
This gives acomputationally efficientwayof finding agoodmodel for the linear

dependence of 𝒴 on 𝒳. Next, we will discuss ways to apply linear regression to
non-linear problems.

3.4 Application to Non-Linear Problems

Linear regression is very attractive due to its low computational complexity for
obtaining the model. However, many problems, i.e., relations between 𝒴 and 𝒳,
are not linear. In some cases, a transformation of the input 𝒳 can convert the
problem into a linear relation between 𝒴 and the transformed 𝒳̂. For example,
suppose we have a relation 𝑦 = 𝑓(𝑥) = 𝑓𝑑𝑥

𝑑 + 𝑓𝑑−1𝑥
𝑑−1 + ⋯ + 𝑓1𝑥 + 𝑓0 where

𝑓(⋅) is a polynomial of degree 𝑑. For 𝑑 > 1 this represents a non-linear relation.

Nevertheless, taking ̂X = (X𝑑,X𝑑−1, ⋯ ,X, 1)⊤ and 𝒇 = (𝑓𝑑, 𝑓𝑑−1, ⋯ , 𝑓1, 𝑓0)
⊤ lets us

express 𝑦 as 𝑦 = 𝒇⊤𝒙̂. Consequently, by transforming X we turned the non-linear

dependency of Y on X into a linear dependency of Y on ̂X. This transformation
lets us apply the above-described techniques to infer 𝒇 and consequently 𝑓(⋅).

3.4 Application to Non-Linear Problems 17

This particular example applies only to polynomial models. However, some
transformations linearize general non-linear problems. One such transformation
is kernel embedding. Kernel methods rely on the fact that any positive definite
function 𝑘 ∶ 𝕄𝑛 ×𝕄𝑛 ↦ ℝ implicitly defines a mapping 𝜙 ∶ 𝕄𝑛 ↦ ℋ to a Hilbert
spaceℋ such that 𝑘(𝒙, 𝒙′) = �𝜙(𝒙), 𝜙(𝒙′)�, the so-called kernel trick. Thatmeans
we can apply models that only depend on the inner products of input arguments,
i.e., linear models, to possibly highly non-linear functions 𝑘(𝒙, 𝒙′) by previously
applying 𝜙 to the inputs. Note that𝜙 can have large, possibly infinite, dimension-
ality compared to 𝕄𝑛. This high dimensionality can render kernel methods im-
practical during themodel’s training in practice. Furthermore, a possiblymore ef-
ficient pre-computation/sampling of 𝑘(𝒙, 𝒙′) for all pairs (𝒙, 𝒙′) quickly becomes
impractical for large datasets as the complexity scales quadratically in the number
of distinct data points.

The authors in [45] propose to use an explicit randomized mapping 𝒛(𝒙) to a
low-dimensional Euclidean space instead of the implicit mapping 𝜙. The authors
show that inner products of 𝒛 approximate the kernel evaluation 𝑘. In particular,
the authors show that

𝑘(𝒙, 𝒙′) = �𝜙(𝒙), 𝜙(𝒙′)� ≈ 𝒛(𝒙)⊤𝒛(𝒙′).

Due to the low dimensionality of 𝒛, fast linear models can be used to approximate
the non-linear behavior of 𝑘. Themethod in [45] enjoys such high popularity that
it was implemented in Python’s sklearn package, and we utilize it in Paper II to
apply linear regression to a non-linear classification problem.

18 Linear Regression

Chapter 4

Mitigation Techniques

In this chapter, I will introduce techniques to mitigate or solve the problems out-
lined in Chapter 2, i.e., the straggler effect, communication bottleneck, and pri-
vacy concerns.

20 Mitigation Techniques

4.1 Reed-Solomon Codes

Reed-Solomon (RS) codes are a class of cyclic block codes introduced in 1960 [46].
RS codes encode a length 𝑘 message with symbols from the finite field 𝔽𝑞 of size
𝑞 into a length 𝑛 codeword. In particular, an (𝑛, 𝑘, 𝑞) RS code with 𝑘 ≤ 𝑛 ≤ 𝑞

encodes a message 𝒎 = (𝑚1, … ,𝑚𝑘) ∈ 𝔽𝑘𝑞 into a codeword 𝒄 = (𝑐1, … , 𝑐𝑛) ∈ 𝔽𝑛𝑞.
There are many ways to map from the set of all messages to the set of codewords,
i.e., the encoding procedure is not unique. Here, wewill focus on themap initially
proposed by Reed and Solomon. This map constructs a degree 𝑘 − 1 polynomial
over 𝔽𝑞 with coefficients given by 𝒎, which is evaluated at 𝑛 distinct points to
obtain the 𝑛 codeword symbols. More precisely, we define

𝑝𝒎(𝑥) =

𝑘

�

𝑖=1

𝑚𝑖𝑥
𝑖−1 = 𝑚1 +𝑚2𝑥 + 𝑚3𝑥

2 +⋯+𝑚𝑘𝑥
𝑘−1 (4.1)

and evaluate 𝑝𝒎(𝑥) at 𝑛 distinct points. For example, let 𝛼 be a primitive element
of 𝔽𝑞. We can then evaluate 𝑝𝒎(𝑥) at points {0, 1, 𝛼, 𝛼2, …}, or, when 𝑛 < 𝑞, at

points {1, 𝛼, 𝛼2, …}. In this work, I will focus on the case with 𝑛 < 𝑞, for which the
reason will become clear later. We can then obtain the codeword as

𝒄 = (𝑝𝒎(𝛼
0), 𝑝𝒎(𝛼

1), … , 𝑝𝒎(𝛼
𝑛−1)). (4.2)

Being a linear transformation of 𝒎, the map in (4.2) can be represented with an
encoding matrix 𝑮. In particular, for

𝑮 =
⎛
⎜

⎝

1 1 ⋯ 1

1 𝛼1 ⋯ 𝛼𝑛−1

1 (𝛼1)2 ⋯ (𝛼𝑛−1)2

⋮ ⋮ ⋱ ⋮

1 (𝛼1)𝑘−1 ⋯ (𝛼𝑛−1)𝑘−1

⎞
⎟

⎠

(4.3)

we have 𝒄 = 𝒎𝑮. Notice that 𝑮 is (the transpose of) a Vandermonde matrix,
meaning thatany𝑘×𝑘 submatrixof 𝑮 has full rank. Therefore, any𝑘×𝑘 submatrix
of 𝑮 is invertible, leading to the MDS property of RS codes.

4.1.1 Decoding

Any 𝑘 correctly received codeword symbols 𝑐𝑖 are sufficient to recover 𝒎. Re-
call that 𝑝𝒎(𝑥) is a degree 𝑘 − 1 polynomial, uniquely defined by any 𝑘 points.
This means that for any ℐ ⊆ [𝑛] with |ℐ| ≥ 𝑘 the elements of the set {𝑐𝑖|𝑖 ∈

ℐ} = {𝑝𝒎(𝛼
𝑖−1)|𝑖 ∈ ℐ} can be used in a polynomial interpolation to recover 𝑝𝒎(𝑥)

which gives𝒎. For example, using the Lagrange polynomial for interpolation and
restricting |ℐ| = 𝑘 one gets

𝑝𝒎(𝑥) =�

𝑖∈ℐ

𝑐𝑖 ∗ �

𝑗∈ℐ,𝑗≠𝑖

𝑥 − 𝛼𝑗−1

𝛼𝑖−1 − 𝛼𝑗−1
.

4.2 Gradient Codes 21

Determiningwhether a coded symbol is error-free is straightforward at the output
of an erasure channel. The symbols are either received correctly or lost. Conse-
quently, every available symbol at the decoder is a correctly received symbol. Gen-
erally, when the channel introduces errors, it is more complicated. In this case,
the decoder first has to determine which symbols are affected by errors (usually
by computing an error locator polynomial); however, this is out of scope for this
work as we will focus on the erasure channel.

4.1.2 Application to Distributed Computations

Suppose a master wants to compute the matrix-vector multiplication 𝑨𝒙with the
help of three workers. The master can interpret 𝑨 as 𝑨 = [𝑨⊤1 , 𝑨

⊤
2 , 𝑨

⊤
3]

⊤ and dis-
tribute one 𝑨𝑖 to each of the three workers. Each worker then computes 𝑨𝑖𝒙 and
the master can recover the result 𝑨𝒙 = [(𝑨1𝒙)

⊤, (𝑨2𝒙)
⊤, (𝑨3𝒙)

⊤]⊤ from the local
results of all three workers. In this case, each worker performs one-third of the
total computation load.

Alternatively, the master can interpret 𝑨 as 𝑨 = [𝑨̃⊤1 , 𝑨̃
⊤
2]

⊤ and apply a (3, 2)
RS code on the submatrices prior to distributing them. In particular, one worker
gets 𝑨̃1+ 𝑨̃2, another 𝑨̃1+2𝑨̃2, and the last worker 𝑨̃1+3𝑨̃2. Again, each worker
multiplies its assigned matrix by 𝒙. This time, however, the master will be able to
recover thedesired result from the local results of any 2 of theworkers. Thedown-
side of this approach is that each worker has to perform computations equivalent
to half the overall computation load.

This idea is easily extended to the case for general 𝑛 and 𝑘. For 𝑛 workers,
splitting𝑨 into𝑘 submatricesandapplying an (𝑛, 𝑘)RScoderesults ineachworker
performing tasks of size 1/𝑘 of the total computation load while the master has
to wait for only the fastest 𝑘 out of the 𝑛 workers.

4.2 Gradient Codes

Gradient codes [13] are a particular class of codes in that they are tailored for dis-
tributed gradient descent. In distributed gradient descent, a master wishes to
compute gradients on a dataset with the help of multiple devices. Themaster dis-
tributes the dataset across the devices, which in turn compute local gradients on
the assigned part of the data. The master can then aggregate the local gradients
to obtain the global gradient and perform a model update for the next iteration.
Like any other distributed computation, distributed gradient descent suffers from
the straggler effect. To mitigate the straggling problem, the master can apply gra-
dient codes to introduce redundancy such that a subset of the devices’ results is
sufficient for the master to achieve its goal.

In contrast to traditional codes such as RS codes described above, using gradi-
ent codes does not necessarily allow the recovery of the initial uncoded gradients.
In the case of distributed gradient descent, for example, using an (𝑛, 𝑘) RS code,
themaster could recover 𝑘 local gradients from the result of any 𝑘 out of 𝑛 devices.
On the other hand, the master has no guarantee to recover any local gradient us-
ing gradient codes. However, the master is not interested in the local gradients.

22 Mitigation Techniques

Themaster’s goal is to obtain the global gradient to update the model for the next
iteration. Gradient codes enable the master to do precisely that.

Gradient codes are defined by two matrices, an encoding matrix 𝑩 ∈ ℝ𝑛×𝑛

and a decoding matrix 𝑨 ∈ ℝ𝑠×𝑛, where 𝑛 is the number of workers taking part
in the gradient computation, and 𝑠 is the number of straggling patterns that the
code is designed to handle. For example, suppose themasterwishes to recover the
global gradient by contacting any 𝑘 out of the 𝑛 workers, then 𝑠 = binom{𝑛, 𝑘}.
Furthermore, each row of 𝑨 contains at most 𝑘 non-zero elements, whereas each
row of 𝑩 contains at least 𝑛 − 𝑘 + 1 non-zero elements. There are multiple ways
to construct 𝑨 and 𝑩; however, all have the following requirement in common:

𝑨𝑩 = 𝟏. (4.4)

This requirement means that the span of any 𝑘 rows of 𝑩 contains the all-one
vector and 𝑨 contains the coefficients of the linear combination of any 𝑘 rows of
𝑩 to obtain the all-one vector.

4.2.1 Application to Distributed Gradient Descent

In a network with 𝑛 workers a master wishes to perform distributed gradient de-
scent on a global dataset𝒳. The master can divide𝒳 into 𝑛 parts𝒳1, ⋯ ,𝒳𝑛 each
with their own partial gradient 𝒈𝑖. In uncoded distributed gradient descent, each
worker computes one partial gradient𝒈𝑖 on its assigned partition𝒳𝑖 and themas-
ter has towait for all workers to finish their computation before obtaining the sum
of all gradients ∑𝑖 𝒈𝑖.

Using gradient codes, it is sufficient for the master to wait for the result of the
𝑘 fastest workers out of the 𝑛 available workers. This benefit comes at the cost
of each worker having to compute multiple gradients. In particular, 𝑨 and 𝑩 are
constructed with parameters 𝑛 and 𝑘 as shown in [13]. Then, worker 𝑖 computes
the gradients𝒈𝑗 given by the indices 𝑗 of the nonzero elements in row 𝑖 of 𝑩. After
finishing theassigned gradient computations, eachworker 𝑖 encodes thegradients
by taking a linearcombinationwith coefficientsgiven by row 𝑖of𝑩. After receiving
the first 𝑘 gradients, the master uses the row of 𝑨 with the non-zero coefficients
corresponding to the 𝑘 fastest workers and takes another linear combination of
the received coded gradients given by the row of 𝑨. From (4.4) it follows that the
master indeed obtained the sum of all gradients ∑𝑖 𝒈𝑖.

In case the partial gradient computation is linear in the corresponding partial
dataset, the workers can also encode the 𝑛 − 𝑘 + 1 assigned datasets using their
row of 𝑩 and compute the encoded gradient on the encoded dataset. Due to the
linearity of the gradient codes and the gradient computation the resulting coded
gradients will be equivalent. In this case, the workers do not have to compute
several gradients in each iteration but rather just one. This is traded off by the
workers having to perform the encoding on the datasets once prior to the iterative
gradient computations.

4.3 MultiuserMultiple Input Multiple Output Transmission (MIMO) 23

EN 1

EN 2

EN 3

User 2

User 1

ℎ1,1

ℎ
2,1

ℎ1,2

ℎ2,2ℎ1,3

ℎ2,3

Figure 4.1: An example MIMO communication system with 𝑁𝑡 = 3 transmit antennas
and 𝑁𝑟 = 2 receive antennas.

4.3 Multiuser Multiple Input Multiple Output Transmission

(MIMO)

4.3.1 Multiplexing Gain

We consider a narrow-band communication system with 𝑁𝑡 transmit antennas
and𝑁𝑟 receiver antennas. Assuming each of the antennas is sufficiently far spaced
apart (about half of the wavelength for omnidirectional antennas in a uniform
scattering environment), the paths from each of the transmitter to each of the
receiver antennas experience independent fading, and the whole transmission
through the channel can be modeled as

𝒚 = 𝑯𝒙 + 𝒏,

where 𝑯 ∈ ℂ𝑁𝑟×𝑁𝑡 is the channel gain matrix, 𝒙 is the transmitted signal, with 𝑥𝑖
being transmitted on antenna 𝑖, 𝒏 the additive white Gaussian noise (AWGN) at
the receiver, and 𝒚 ∈ ℂ𝑁𝑟 the received signal with 𝑦𝑖 being the signal received at
antenna 𝑖. The entry ℎ𝑖,𝑗 in the channel gainmatrix𝑯 pertains to the channel gain
from transmit antenna 𝑗 to receiver antenna 𝑖. An example is depicted in Fig. 4.1.

We assume that 𝑯 is known both at the receiver and transmitter. When the
channel stays constant sufficiently long, the receivercaneasilyobtain𝑯 byobserv-
ing known pilots sent by the transmitter. Subsequently, the receiver can forward
𝑯 through a feedback channel to the transmitter. Once𝑯 is known at transmitter
and receiver, the channel can be decomposed into 𝑟 orthogonal virtual channels
with 𝑟 = rank(𝑯) as follows.

Let
𝑯 = 𝑼𝜮𝑽H

be a singular value decomposition of 𝑯, where 𝑼 ∈ ℂ𝑁𝑟×𝑁𝑟 and 𝑽 ∈ ℂ𝑁𝑡×𝑁𝑡 are
unitary matrices1 and

𝜮 = �
𝑺 𝟎𝑟×(𝑁𝑡−𝑟)

𝟎(𝑁𝑟−𝑟)×𝑟
𝟎(𝑁𝑟−𝑟)×(𝑁𝑡−𝑟)

� ,

1Aunitary transformation preserves the inner product of vectors. It follows for thematrix𝑼 of a unitary
transformation that 𝑼H𝑼 = 𝑰.

24 Mitigation Techniques

with 𝑺 ∈ ℝ𝑟×𝑟 a diagonal matrix with the 𝑟 nonzero singular values {𝜎1, … , 𝜎𝑟} on
the main diagonal. Instead of sending 𝒙 directly, the transmitter computes and
sends 𝒙̃ = 𝑽𝒙. Once the receiver observes the channel output 𝒚̃ = 𝑯𝒙̃ + 𝒏, it
computes 𝒚 = 𝑼H𝒚̃. As a result, the receiver obtains

𝒚 = 𝑼H𝒚̃ = 𝑼H (𝑯𝒙̃ + 𝒏) = 𝑼H𝑯𝑽𝒙 + 𝑼H𝒏 = 𝑼H𝑼𝜮𝑽H𝑽𝒙 + 𝑼H𝒏 = 𝜮𝒙 + 𝑼H𝒏.

Let 𝒏̃ = 𝑼H𝒏 be the transformed noise. Notice that because 𝑼 is unitary, 𝒏̃ and
𝒏 have the same distribution,2 i.e., the multiplication of 𝒚̃ by 𝑼H has no effect

on the perceived noise at the receiver. With 𝒚 = �𝒚H
1 , 𝒚

H
2 �

H
, 𝒙 = �𝒙H

1 , 𝒙
H
2 �

H
, and

𝒏̃ = �𝒏̃H
1 , 𝒏̃

H
2 �

H
, where 𝒚1, 𝒙1, 𝒏̃1 ∈ ℂ𝑟, we can see that 𝒚1 = 𝑺𝒙1 + 𝒏̃1, i.e., 𝑦𝑖 =

𝜎𝑖𝑥𝑖 + 𝑛̃𝑖, ∀𝑖 ∈ [𝑟]. We thereby effectively turned the MIMO channel with 𝑁𝑡
transmit antennas and 𝑁𝑟 receive antennas into 𝑟 independent single input single
output channels with channel gains {𝜎1, … , 𝜎𝑟} and noise levels equivalent to the
initial noise at the receiver.

4.3.2 Application to Distributed Computations

Spatial diversity can help reduce the communication latency in distributed com-
puting systems with wireless communication links. For example, by repeating
tasks across multiple ENs, the ENs can pool their antennas and utilize the mul-
tiplexing gain to serve multiple users simultaneously. In order to compute the
relevant element of 𝒙̃, every participating EN needs access to the whole 𝒙, which
is the reason for replicating tasks across the ENs.

4.4 Shamir's Secret Sharing Scheme

Shamir’s (𝑛, 𝑘) secret sharing scheme (SSS) [43] encodes a secret 𝜎 from the finite
field 𝔽𝑞 of size 𝑞 into 𝑛 shares such that any 𝑘 ≤ 𝑛 shares can be used to recover 𝜎
while any 𝑘 − 1 shares or less do not reveal any information about 𝜎. To properly
understand how Shamir’s SSS works, it is necessary to know the principle of one-
time padding.

4.4.1 One-Time Padding

One-time padding is a mechanism to hide an 𝑥 ∈ 𝔽𝑞. In particular, let X be an RV
over𝔽𝑞with realization𝑥 andarbitraryprobabilitymass function (PMF) Pr{X = 𝑥}

and let R be a uniformly distributed RVover𝔽𝑞 with PMF Pr{R = 𝑟} =
1

𝑞
. We then

have for Y = X + R that I(Y;X) = 0, i.e., the mutual information between X and
X + R is zero.

To show this result, we first have to show thatY is uniformlydistributed aswell:

2Any RV with rotationally symmetric distribution is unaffected by a unitary transformation. Since
AWGN is rotationally symmetric, 𝒏̃ and 𝒏 have the same distribution.

4.4 Shamir’s Secret Sharing Scheme 25

Pr{Y = 𝑦}
(𝑎)
= �

𝑥

Pr{Y = 𝑦|X = 𝑥} ⋅ Pr{X = 𝑥}

(𝑏)
= �

𝑥

Pr{R = 𝑦 − 𝑥|X = 𝑥} ⋅ Pr{X = 𝑥}

(𝑐)
= �

𝑥

1

𝑞
⋅ Pr{X = 𝑥}

=
1

𝑞
⋅�

𝑥

Pr{X = 𝑥}

=
1

𝑞
,

where (𝑎) follows from the lawof total probability, (𝑏) follows fromY = X+R, and

(𝑐) follows from the independence of R and X and substituting Pr{R = 𝑟} =
1

𝑞
.

Next, we can show that X and Y are conditionally independent, i.e., that the
entropy about X is unaffected by observing Y:

H(X,Y) = H(X|Y) +H(Y) = H(Y|X) +H(X)
⇒

H(X|Y) = H(Y|X) +H(X) −H(Y)
= H(X + R|X) +H(X) −H(Y)
= H(R) +H(X) −H(Y)
(𝑎)
= H(X),

where (𝑎) follows fromH(R) = H(Y) due to Y and R being identically distributed.
Lastly, it follows that the mutual information between X and Y is zero:

I(Y;X) = H(X) −H(X|Y) = 0.

As a result, Y does not reveal any information about X, i.e., knowing 𝑦 does not
help determine 𝑥. Also, R does not reveal any information about X because they
are independent. However, knowing both 𝑦 and 𝑟 it is possible to recover 𝑥 as
𝑥 = 𝑦 − 𝑟.

4.4.2 Shamir's Scheme

Shamir’s SSS extends the idea of one-time padding to themore general casewhere
knowing any 𝑘 outof 𝑛 realizations is sufficient to recover the secret𝜎whereas any
𝑘 − 1 or fewer realizations do not help in determining 𝜎. In principle, the map
𝑥 ↦ {𝑦, 𝑟} from the one-time padding can be seen as a (2, 2) SSSwith 𝜎 = 𝑥, albeit
Shamir’s SSS resulting in a different map, as described next.

In Shamir’s (𝑛, 𝑘) SSS, the secret Σ (with realization 𝜎) is encoded together
with 𝑘 − 1 independent and uniformly distributed (i.u.d.) RVs {R1,R2, … ,R𝑘−1}

26 Mitigation Techniques

𝑥

𝑝𝒎(𝑥)

(a) Twoevaluationsdonot suffice todetermine

𝑝𝒎(𝑥).

𝑥

𝑝𝒎(𝑥)

(b) Three evaluations suffice to determine

𝑝𝒎(𝑥) and thereby the secret 𝜎 = 𝑝𝒎(0) (in

white).

Figure 4.2: Example of Shamir’s (𝑛, 𝑘 = 3) SSS.

using a non-systematic Reed-Solomon code as described in Section 4.1 resulting
in 𝑛 shares {S1, S2, … , S𝑛}. In particular, we have

𝒔 = 𝒎𝑮, (4.5)

with 𝒔 = (𝑠1, 𝑠2, … , 𝑠𝑛), 𝒎 = (𝜎, 𝑟1, 𝑟2, … , 𝑟𝑘−1), and 𝑮 as in (4.3). (4.5) results in

𝑠𝑖 = 𝜎 +

𝑘−1

�

𝑗=1

𝑟𝑗 ⋅ (𝛼
𝑖−1)𝑗. (4.6)

Each share 𝑠𝑖 is a padded version of the secret 𝜎. It also becomes clear now why
we abstain from evaluating 𝑝𝒎(𝑥) in (4.1) at 0, i.e., whywe focus on the case 𝑛 < 𝑞

such that we can afford to evaluate 𝑝𝒎(𝑥) at 𝑛 distinct points without 0. If we
would evaluate at 0, we would get 𝑠𝑗 = 𝜎 for some 𝑗, i.e., we would leak the secret
𝜎.

In Fig. 4.2 we can see an example of an (𝑛, 𝑘 = 3) scheme. In this case, 𝑝𝒎(𝑥)
is a degree two polynomial, i.e., a parabola. In Fig. 4.2(a) we have two evaluations
of 𝑝𝒎(𝑥) represented by the black points. We can see that there are many (𝑞 to
be precise) polynomials that intersect these two points. Consequently, we are
not able to uniquely determine either 𝑝𝒎(𝑥) or 𝑝𝒎(0). In Fig. 4.2(b) we have a
third evaluation which allows us to uniquely determine 𝑝𝒎(𝑥) and thereby also
the secret 𝜎 = 𝑝𝒎(0) which is represented by the white point.

It remains to show that for general 𝑛 and 𝑘, any 𝑘 shares are indeed sufficient
to recover 𝜎 and that any 𝑘 − 1 shares do not leak any information about 𝜎. More
formally, for any 𝒜 ⊆ {S1, … , S𝑛} with |𝒜| ≥ 𝑘 we have H(Σ|𝒜) = 0 and for any
ℬ ⊆ {S1, … , S𝑛} with |ℬ| < 𝑘 we have I(Σ; ℬ) = 0. The first condition, H(Σ|𝒜) =

0, follows directly from the MDS property of RS codes. Any 𝑘 error-free coded
symbols are sufficient to recover themessage𝒎, which includes the secret 𝜎. That
the second condition, I(Σ; ℬ) = 0, is met is not as obvious.

4.5 Fixed-Point Arithmetic 27

To reiterate the result from one-time padding, adding an i.u.d. RV R to an arbi-
trarilydistributed secret Σ fromafinite fieldmasks the secret. It is straight forward
to see that for two i.u.d. RVs R1 and R2 the set {Y1 = Σ + R1,Y2 = Σ + R2} still
masks Σ:

I(Σ;Y1,Y2) = I(Σ;Y1) + I(Σ;Y2|Y1)

(𝑎)
= I(Σ;Y1) + I(Σ;Y2)

(𝑏)
= 0 + 0 = 0,

where (𝑎) follows from the fact that Y1 is independent of both Σ (due to one-time
padding) and Y2 (asY2 is aone-timepadded versionof Y1withY2 = Y1+R′where
R′ = R2 − R1 is uniformly distributed). Furthermore, (𝑏) follows from one-time
padding. This result is easily extended to more than two i.u.d. padded versions of
Σ.

With (4.6) inmind, showing thatℛ = {∑𝑘−1
𝑗=1

𝑟𝑗 ⋅(𝛼
𝑖−1)𝑗|𝑖 ∈ ℐ ⊂ [𝑛], |ℐ| = 𝑘−1}

is a set of 𝑘 − 1 i.u.d. RVs is sufficient to prove that I(Σ; ℬ) = 0. Suppose the
elements in ℛ are i.u.d. In that case, the shares in ℬ are 𝑘 − 1 one-time padded
versionsof 𝜎, and as shownpreviously (indetail for the case𝑘−1 = 2), theydonot
reveal anything about Σ. With 𝒓 = (𝑟1, 𝑟2, … , 𝑟𝑘−1) we can write 𝒓′, the vector with
elements fromℛ, as 𝒓′ = 𝒓𝑮′ where𝑮′ is a (𝑘−1)×(𝑘−1) submatrix of 𝑮 in (4.3).
Because 𝑮′ is a submatrix of the Vandermonde matrix 𝑮, all 𝑘 − 1 rows of 𝑮′ are
linearly independent, and as such, they form a basis for the (𝑘 − 1)-dimensional
vector space over𝔽𝑞. Consequently, there is a one-to-onemapping between 𝒓 and
𝒓′, and their distributions are identical. Hence, the elements inℛ are indeed 𝑘−1
i.u.d. RVs and we have proven that I(Σ; ℬ) = 0.

4.4.3 Application to Distributed Computations

A master might not trust the workers with its private data. When it is reason-
able to assume that not all workers collude, for example, when utilizing workers
from different service providers, the master can apply secret sharing on its data
before distributing it to prevent theworkers from inferring information. The idea
is similar to Section 4.1.2. Themaster can encode amatrix𝑨 togetherwith random
matrices using an (𝑛, 𝑘) code as described above and distribute one coded matrix
to each of the 𝑛workers. Consequently, any fewer than 𝑘workers cannot infer any
information about 𝑨, whereas the master will be able to recover the result after
collecting sufficient local results.

4.5 Fixed-Point Arithmetic

While RS codes can be defined over general fields, one-time padding and hence
Shamir’s SSS require the existence of a uniform distribution over the used field.
Consequently, Shamir’s SSS is only defined over finite fields. However, many real-
world problems are defined over the reals. As a result, we need a way to repre-
sent real numbers in a finite field. Naturally, representing an uncountably infinite

28 Mitigation Techniques

amount of numbers with a finite amount of field elements will result in only a
limited range and precision of representable numbers.

Fixed-point numbers are an efficient way to represent an interval of real num-
bers as integers, which in turn are efficiently represented and computed on by
computers. To this end, fixed-point numbers allocate a specific amount of bits
for the fractional part of the real number. In particular, a fixed-point number 𝑥̃
of length ℓ bits with 𝑓 bits reserved for the fractional part is given as 𝑥̃ = 𝑥̄ ⋅ 2−𝑓,
where 𝑥̄ is an integer from {−2ℓ−1, … , 2ℓ−1 − 1}. Consequently, for any real num-
ber 𝑥 ∈ [−2ℓ−𝑓−1, … , 2ℓ−𝑓−1 − 2−𝑓] there exists a fixed-point number 𝑥̃ of length
ℓ and resolution 𝑓 such that |𝑥 − 𝑥̃| ≤ 2−𝑓−1. That means, for sufficiently large ℓ
and 𝑓, we can represent any finite interval of real numbers by fixed-point numbers
with a negligible error.

For a fixed resolution 𝑓, any fixed-point number 𝑥̃ is equally represented by
its integer part 𝑥̄. Consequently, we can conveniently store 𝑥̃ as an integer. What
remains to be shown is that we can also perform additions and multiplications
using the integer part of the fixed-point numbers. Let 𝑎̃ and 𝑏̃ be two fixed-point
numbers with 𝑎̃ = 𝑎̄2−𝑓 and 𝑏̃ = 𝑏̄2−𝑓. For 𝑐̃ = 𝑎̃ + 𝑏̃, with 𝑐̃ = 𝑐̄2−𝑓, we have
𝑐̄ = 𝑎̄+𝑏̄, i.e., additionof fixed-point numberscanbeperformedvia simple integer
addition. Note that in case 𝑐̄ > 2ℓ−1 we get an overflow, meaning that the result of
𝑎̃ + 𝑏̃ can not be properly represented in the sense one might expect from adding
two real numbers 𝑎 and 𝑏. To avoid an undefined behavior, wewrap 𝑐̄ around such
that it is guaranteed to lie in the interval {−2ℓ−1, … , 2ℓ−1−1}. However, this leads
to maybe unexpected effects, such as the sum of two positive numbers possibly
being negative.

For 𝑑̃ = 𝑎̃ ⋅ 𝑏̃, with 𝑑̃ = 𝑑̄2−𝑓, we have 𝑑̄ = ⌊𝑎̄ ⋅ 𝑏̄ ⋅2−𝑓⌋, where 𝑑̄ is againwrapped
around in case an overflow occurs. In other words, multiplication of fixed-point
numbers can be computed by an integer multiplication with subsequent scaling
by 2−𝑓 to retain the initial resolution of 𝑓 bits.3

4.5.1 Application to Distributed Computations

We have seen that fixed-point numbers enable us to represent real numbers by
integers and compute on real numbers through simple integer operations. Fur-
thermore, for any prime number 𝑞 ≥ 2ℓ the finite field 𝔽𝑞 of size 𝑞 can rep-

resent the integers in the set {−2ℓ−1, … , 2ℓ−1 − 1}. In particular, the integers
0, 1, … , 2ℓ−1−1 are represented by thefield elements0, 1, … , 2ℓ−1−1, whereas inte-
gers−1,−2,… ,−2ℓ−1 are represented by the field elements 𝑞−1, 𝑞−2, ..., 𝑞−2ℓ−1.
Furthermore, as long as there are no overflows beyond 2ℓ−1 − 1 or −2ℓ−1 during
the integeroperations, the integeroperationscanequally beperformed in𝔽𝑞. This
analogymeans thatwe can represent an interval of real numberswith a finite field
through fixed-point numbers. Consequently, we can apply the ideas from Sec-
tion 4.4.3 to problems over the reals, albeit only with finite precision.

3Scaling, i.e., multiplying, a binary integer by a power of 2 can be performed via simple bit shift opera-
tions. For example, multiplying by 2−𝑓 can be done by right-shifting all bits 𝑓 positions.

Chapter 5

Paper Overview

In this chapter, I will summarize the two papers “Privacy-Preserving CodedMobile
Edge Computing for Low-Latency Distributed Inference” and “CodedPaddedFL and
CodedSecAgg: StragglerMitigation and Secure Aggregation in Federated Learning”
that are part of this thesis.

30 Paper Overview

5.1 Paper I

The paper “Privacy-Preserving Coded Mobile Edge Computing for Low-Latency
Distributed Inference” applies ideas from coding theory, multiuserMIMO, and se-
cret sharing to EC in order to mitigate the effect of straggling servers, reduce the
communication load in the network, and guarantee user data privacy. The inter-
play of MDS codes for straggler mitigation and task replication to turn a single
antenna network into a MIMO systemwas already studied in [20]. The novelty of
Paper I lies in the tradeoff of task replication and secret sharing, two conflicting
approaches. While replications help reduce the network’s communication load,
they are detrimental to the privacy guarantee of the underlying SSS.

For the desired privacy level, i.e., the number of ENs that are allowed to col-
lude to infer private user information, the parameters of the proposed scheme are
optimized to reduce the overall latency consisting of upload and download times
to and from the edge servers, computation times at the edge servers, and decoding
time at the devices. Furthermore, multiple scheme variations are proposed that
further reduce the overall latency. An additional layer of coding at the edge server
side helps when the computation time at the edge servers is comparatively high
compared to the upload and download times because the resulting product code
provides enhanced straggler mitigation capabilities. On the other hand, utilizing
apriorityqueue in thedownload reduces theoverall latencywhencommunication
times are high compared to the computation times.

Considering decoding in the overall latency, the proposed scheme, in fact, out-
performs the scheme in [20] while providing user data privacy against a single EN.

5.2 Paper II

Thepaper “CodedPaddedFLandCodedSecAgg: StragglerMitigation and SecureAg-
gregation in Federated Learning” proposes twoschemes thatutilize ideas fromcod-
ing theory to mitigate the straggler effect in FL while retaining the privacy level of
conventional FL through one-time padding and preventing model inversion at-
tacks through secure aggregation via secret sharing, respectively. The core idea
in both schemes is to introduce redundancy on the training data through codes,
while CodedPaddedFL prevents information leakage from the sharing through
one-time padding, and CodedSecAgg allows for secure aggregation.

The two schemes are tailored to linear regression; however, both schemes are
applied to non-linear classification problems on the MNIST and Fashion-MNIST
datasets through kernel embedding. For a considered scenario with 120 devices,
CodedPaddedFL achieves a speedup factor of 18 compared to conventional FL to
achieve 95% accuracy on the MNIST dataset and entails similar latency as the
existing scheme [47] without a loss in user data privacy. For the same scenario,
CodedSecAgg achieves a speedup factor of 6.6 − 18.7 compared to LightSecAgg
[35].

Chapter 6

Conclusion

This chapter concludes the first part of the thesis. The thesis introduced the gen-
eral background of EC and FL, two emerging distributed computing frameworks.
In particular, we looked at the characteristic problems both EC and FL face: the
straggler effect, communication bottleneck, and privacy concerns. We then dis-
cussed linear regression, a typical application for both EC and FL. Next, possible
approaches to mitigate the mentioned problemswere explained in detail. Finally,
the mitigation techniques were put in context in the form of a brief overview of
the twopapers “Privacy-PreservingCodedMobile EdgeComputing for Low-Latency
Distributed Inference” and “CodedPaddedFL and CodedSecAgg: Straggler Mitiga-
tion and Secure Aggregation in Federated Learning” that are part of this thesis. For
more details, the two papers can be found in Part B.

We saw that coding can help to significantly speed up both conventional EC
and conventional FLwhile additionally providing userdata privacy against several
colluding adversaries.

Future Work

The presented straggler mitigation and privacy preservation strategies rely on the
computations to be linear in the data. While linear operations are a prevalent
part of various practical problems, many relevant non-linear problems exist. It is
not straightforward to apply the schemes proposed in Paper I and Paper II to non-
linearproblems. Futureworkmight includeanalysis and incorporationof existing
approaches to adapt the proposed schemes to non-linear problems, e.g., through
Lagrange encoding [15] or pice-wise linear approximations.

Furthermore, the proposed schemes are rigid in their construction. The pa-
rametersarederived fromanexpected numberof stragglers in thenetworkand the
schemes do not adapt to the actual straggler situation at hand. Futureworkmight
investigate the application of rateless codes to the scenarios such as in [21, 39] or
the possibility to utilize intermediate results from all non-stragglers as in [20].

Last but not least, the schemes in Paper II are tailored to federated stochastic
gradient descent (FedSGD). A widely adopted alternative to FedSGD is federated
averaging (FedAvg) where multiple local training epochs are performed prior to
aggregating the local model updates at the central server. Future work might ex-
amine how to adapt the schemes in Paper II to FedAvg.

32 Conclusion

Bibliography

[1] J. Dean and S. Ghemawat, U.S. Patent 7,650,331, Jan., 2010.

[2] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan & Clay-
pool, 2013.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing–a key technology towards 5G,” ETSI white paper, no. 11, pp. 1–16,
Sep. 2015.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Ar-
cas, “Communication-efficient learningof deepnetworks fromdecentralized
data,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Fort Lauderdale,
FL, USA, Apr. 2017.

[5] H. Ludwig et al., “IBM federated learning: An enterprise framework white
paper v0. 1,” arXiv:2007.10987, Jul. 2020.

[6] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2,
pp. 74–80, Feb. 2013.

[7] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework
for distributed computing with straggling servers,” in Proc. IEEE Globecom
Workshops (GCWkshps), Washington, DC, USA, Dec. 2016, pp. 1–6.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an opti-
mal design for high-dimensional coded matrix multiplication,” in Proc. Neu-
ral Inf. Process. Syst. (NIPS), Long Beach, CA, USA, Dec. 2017, pp. 4403–4413.

[9] K. Lee, M. Lam, R. Pedersani, D. Papailiopoulos, and K. Ramachandran,
“Speedingupdistributedmachine learningusing codes,” IEEETrans. Inf.The-
ory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[10] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded com-
putation over heterogeneous clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4227–4242, Jul. 2019.

[11] S. Dutta, V. Cadambe, and P. Grover, ““Short-Dot”: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

34 Conclusion

[12] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” IEEE
Trans. Inf. Theory, vol. 66, no. 1, pp. 278–301, Jan. 2020.

[13] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding:
Avoiding stragglers in distributed learning,” in Proc. Int. Conf. Mach. Learn.
(ICML), Sydney, Australia, Aug. 2017, pp. 3368–3376.

[14] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in dis-
tributed optimization through data encoding,” in Proc. Neural Inf. Process.
Syst. (NIPS), Long Beach, CA, USA, Dec. 2017, pp. 5440–5448.

[15] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S. Aves-
timehr, “Lagrange coded computing: Optimal design for resiliency, security,
and privacy,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Okinawa,
Japan, Apr. 2019, pp. 1215–1225.

[16] A. Severinson, A. Graell i Amat, E. Rosnes, F. Lázaro, and G. Liva, “A droplet
approach based on Raptor codes for distributed computing with straggling
servers,” in Proc. 10th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC),
Hong Kong, China, Dec. 2018.

[17] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi, “Rateless
codes for near-perfect load balancing in distributed matrix-vector multipli-
cation,” Proc. ACMMeas. Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019.

[18] K. Li, M. Tao, and Z. Chen, “Exploiting computation replication for mo-
bile edge computing: A fundamental computation-communication tradeoff
study,” IEEETrans.Wireless Commun., vol. 19, no. 7, pp. 4563–4578, Jul. 2020.

[19] ——, “A computation-communication tradeoff study for mobile edge com-
puting networks,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 2019, pp. 2639–2643.

[20] J. Zhang and O. Simeone, “On model coding for distributed inference and
transmission in mobile edge computing systems,” IEEE Commun. Lett.,
vol. 23, no. 6, pp. 1065–1068, Jun. 2019.

[21] K. Li, M. Tao, J. Zhang, and O. Simeone, “Multi-cell mobile edge coded com-
puting: Trading communication and computing for distributed matrix mul-
tiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), LosAngeles, CA, USA,
Jun. 2020, pp. 215–220.

[22] K. Li, M. Tao, J. Zhang, and O. Simeone, “Coded computing and coopera-
tive transmission forwireless distributed matrix multiplication,” IEEE Trans.
Commun., vol. 69, no. 4, pp. 2224–2239, Apr. 2021.

[23] A. Frigård, S. Kumar, E. Rosnes, and A. Graell i Amat, “Low-latency dis-
tributed inference at the network edge using rateless codes,” in Proc. Int.
Symp. Wireless Commun. Syst. (ISWCS), Berlin, Germany, Sep. 2021.

BIBLIOGRAPHY 35

[24] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure coded
computing using secret sharing via staircase codes,” IEEE Trans. Commun.,
vol. 68, no. 8, pp. 4609–4619, Aug. 2020.

[25] R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. El Rouayheb, and H. Sefer-
oglu, “Prac: Private and rateless adaptive coded computation at the edge,” in
Proc. SPIE Defense + Commercial Sensing, Baltimore, MD, USA, May 2019.

[26] Q. Yu, S. Li, N. Raviv, S.M.M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr,
“Lagrange coded computing: Optimal design for resiliency, security, and pri-
vacy,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Naha, Japan, Apr.
2019, pp. 1215–1225.

[27] H. Yang and J. Lee, “Secure distributed computing with straggling servers
using polynomial codes,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 1, pp.
141–150, Jan. 2019.

[28] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that ex-
ploit confidence information and basic countermeasures,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), Denver, CO, USA, Oct. 2015,
pp. 1322–1333.

[29] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring
class representatives: User-level privacy leakage from federated learning,” in
Proc. IEEE Int. Conf. Comp. Commun. (INFOCOM), Paris, France, Apr./May
2019, pp. 2512–2520.

[30] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preservingmachine learning,” inProc.ACMSIGSACConf. Comput. Commun.
Secur. (CCS), Dallas, TX, USA, Oct./Nov. 2017, pp. 1175–1191.

[31] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramachandran, “Fast-
SecAgg: Scalable secure aggregation for privacy-preserving federated learn-
ing,” in Int. Workshop Fed. Learn. User Privacy Data Confidentiality, Vienna,
Austria, Jul. 2020.

[32] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel. Ar-
eas Inf. Theory, vol. 2, no. 1, pp. 479–489, Mar. 2021.

[33] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Se-
cure single-server aggregation with (poly)logarithmic overhead,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), online, Nov. 2020, pp.
1253–1269.

[34] A. R. Elkordy and A. S. Avestimehr, “HeteroSAg: Secure aggregation with
heterogeneous quantization in federated learning,” IEEE Trans. Commun.,
vol. 70, no. 4, pp. 2372–2386, Apr. 2022.

36 Conclusion

[35] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E. Ali, B. Güler, and S. Avestimehr,
“LightSecAgg: a lightweight and versatile design for secure aggregation in
federated learning,” in Proc. Mach. Learn. Syst. (MLSys), Santa Clara, CA,
USA, Aug./Sep. 2022.

[36] Y. Zhao and H. Sun, “Information theoretic secure aggregation with user
dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Melbourne, Australia,
Jul. 2021, pp. 1124–1129.

[37] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and verifiable fed-
erated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 911–926, 2020.

[38] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “Swif-
tAgg: Communication-efficient and dropout-resistant secure aggregation
for federated learning with worst-case security guarantees,” Feb. 2022,
arXiv:2202.04169.

[39] A. R. Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “EIFFeL: Ensuring
integrity for federated learning,” Dec. 2021, arXiv:2112.12727.

[40] T. Jahani-Nezhad, M. A.Maddah-Ali, S. Li, and G. Caire, “SwiftAgg+: Achiev-
ing asymptotically optimal communication load in secure aggregation for
federated learning,” Mar. 2022, arXiv:2203.13060.

[41] J. So, R. E. Ali, B. Güler, andA. S. Avestimehr, “Secureaggregation forbuffered
asynchronous federated learning,” in 1st NeurIPS Workshop New Frontiers
Fed. Learn. (NFFL), online, Dec. 2021.

[42] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggregation,” in
Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), online, Mar. 2022, pp.
3581–3607.

[43] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979.

[44] A. Rényi, “On the theory of order statistics,” Acta Mathematica Academiae
Scientiarum Hungaricae, vol. 4, nos. 3–4, pp. 191–231, 1953.

[45] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,”
in Proc. Neural Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, Dec. 2007,
pp. 1177–1184.

[46] I. S. Reed and G. Solomon, “Polynomial codesovercertain finite fields,” J. Soc.
Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[47] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr, and
N. Himayat, “Coded computing for low-latency federated learning overwire-
less edge networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 233–250,
Jan. 2021.

Part B

Papers

PAPER I

Privacy-Preserving CodedMobile EdgeComputing for Low-Latency

Distributed Inference

Reent Schlegel, Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat

IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 788-799,
March 2022.

Parts of this paper were presented at the IEEE Global Communications Conference
(GLOBECOM), Taipei, Taiwan, December 2020.

The layout has been revised.

1 Introduction 41

Abstract

Weconsider amobile edge computing scenariowhere a num-
ber of devices want to perform a linear inference𝑾𝒙 on some
local data 𝒙 given a network-side matrix 𝑾. The compu-
tation is performed at the network edge over a number of
edge servers. We propose a coding scheme that provides
information-theoretic privacy against 𝑧 colluding (honest-
but-curious) edge servers, while minimizing the overall la-
tency—comprising upload, computation, download, and de-
coding latency—in the presence of straggling servers. The
proposed scheme exploits Shamir’s secret sharing to yield
data privacy and straggler mitigation, combined with repli-
cation to provide spatial diversity for the download. We also
propose two variants of the scheme that further reduce la-
tency. For a considered scenario with 9 edge servers, the pro-
posed scheme reduces the latency by 8% compared to the
nonprivate scheme recently introduced by Zhang and Sime-
one, while providing privacy against an honest-but-curious
edge server.

1 Introduction

Mobile edge computing is a key enabler of delay-critical internet-of-things appli-
cations that relyon largedatacomputing services [1], and has becomeapillarof the
5G mobile network [2]. Offloading computations to far-away cloud services can
be infeasible due to bandwidth constraints on the backhaul network and possi-
bly large communication latency [1]. To circumvent these shortcomings, the edge
computing paradigm moves the computation power closer to the devices generat-
ing the data.

Distributing computations over a number of servers at the edge of the wire-
less network leads to major challenges, among them the presence of straggling
servers—the computation latency is dominated by the slowest server. The strag-
gler problem has been addressed in the neighboring field of distributed comput-
ing in data centers bymeans of coding [3–13]. The key idea in distributed comput-
ing is to introduce redundant computations across servers via an erasure correct-
ing code such that the results from a subset of the servers is sufficient to recover
(decode) the desired computation. Hence, the latency is no longer dominated by
the slowest servers. Maximum distance separable (MDS) codes have been shown
toprovideexcellent straggler resiliency [3, 4]. Mostworksoncoded computing ne-
glect the impact of the decoding complexity on the latency. An exception is [5, 6],
where it was shown that the decoding latency may severely impact the overall la-
tency. Long MDS codes, in particular, entail a high decoding complexity, which
may impair the overall latency.

In edge computing, besides the straggler problem, the incurred latency of up-
loading and downloading data through the wireless links is a genuine problem.
To reduce the communication latency, in [14, 15] subtasks are replicated across

42 PAPER I

edge servers to introduce spatial diversity such that the edge servers can utilize
zero-forcing precoding and serve multiple users simultaneously. More recently,
the authors in [16–18] proposed to combine subtask replication for spatial diver-
sity with an MDS code for straggler mitigation, borrowing the coding ideas from
distributed computing. Theseworks, however, neglect the latency entailed by the
decoding operation. In [39], a scheme combining rateless codes with irregular
repetition was proposed, yielding significantly lower latency (comprising the de-
coding latency) than the scheme in [16–18].

Performing computations over possibly untrustworthy edge servers raises also
privacy concerns. The problem of user data privacy in the context of distributed
computing in data centers in the presence of stragglers has been addressed in,
e.g., [20–23]. The underlying idea in these works is to utilize some form of se-
cret sharing, i.e., encode the confidential user data together with random data
such that small subsets of servers do not gain information about the confidential
data. we consider a similar scenario to the one in [17, 39] where multiple users
wish to perform a linear inference 𝑾𝒙 on some local data 𝒙 given a network-
side matrix 𝑾. Such operations arise in, e.g., recommender systems based on
collaborative filtering, like a shopping center application providing product rec-
ommendations and corresponding price offers[24]. Each customer has its prefer-
ences, which are encoded by an attribute vector 𝒙. Based on a customer’s prefer-
ences, the application recommends products by mapping from a customer’s pref-
erence (vector 𝒙) to the likelihood that he/she would enjoy a given product via
the system matrix𝑾. For this scenario, we present a coding scheme that guaran-
tees information-theoretic user data privacy against 𝑧 compromised (honest-but-
curious) edge servers that collaborate to infer users’ data, while minimizing the
incurred overall latency—comprising upload, computation, download, and de-
coding latency. The proposed scheme is based on Shamir’s secret sharing (SSS)
scheme [47] toachievedataprivacyaswell as stragglermitigation—thereby reduc-
ing computation latency—combined with replication of subtasks across multiple
edge servers to allow for spatial diversity and joint beamforming (by means of
zero-forcing precoding) in the download to reduce communication latency. A key
feature of the proposed scheme is that, unlike the existing (nonprivate) schemes
for straggler mitigation in edge computing [16–18], redundancy is introduced on
theusers’ data—whichenables privacy—instead of on the network-sidematrix𝑾.

Wealso introduce twovariants of the scheme that further reduce latency. First,
we note that the download phase can be performed simultaneously to the compu-
tationphaseonce theuploadphase iscompleted,which reduces theoverall latency
especially when the communication cost is relatively high compared to the com-
putation cost. Toexploit this, we introduceapriorityqueue todetermine theorder
in which partial results should be downloaded from the edge servers. Second, we
introduce an additional level of coding on 𝑾. We show that the combination of
the SSS code and the code on 𝑾 results in a product code over intermediate re-
sults. Decoding can then be performed iteratively, iterating between the row and
column component decoders.

The proposed scheme entails an inherent tradeoff between computation la-
tency due to straggling servers, communication latency, and user data privacy.
Interestingly, for a considered scenario with 9 edge servers, the proposed scheme

2 SystemModel 43

reduces the latency by 8% compared to the nonprivate scheme in [17], while pro-
viding privacy against a single edge server. This somewhat surprising result is ex-
plained by the high decoding complexity of the scheme in [17] due to the use of a
long MDS code (on𝑾), while the proposed schemes rely on short codes over both
users’ data and𝑾. Higher privacy levels can be achieved at the expense of higher
latency. Furthermore, the additional coding on 𝑾 significantly reduces the vari-
ance of the latency, which, for a scenario where the linear inference needs to be
performed within a deadline, increases the probability of meeting the deadline.

Notation: Vectors and matrices are written in lowercase and uppercase bold
letters, respectively, e.g., 𝒂 and 𝑨, and all vectors are represented as column vec-
tors. The transpose of vectors and matrices is denoted by (⋅)⊤. GF(𝑞) denotes the
finite field of order 𝑞 and ℕ denotes the positive integers. We use the notation [𝑎]
to represent the set of integers {1, 2, … , 𝑎}. Furthermore, ⌈𝑎/𝑏⌉ is the smallest in-
teger larger than or equal to 𝑎/𝑏 and ⌊𝑎/𝑏⌋ is the largest integer smaller than or
equal to 𝑎/𝑏. We represent permutations in cycle notation, e.g., the permutation
𝜋 = (1 3 2 4) maps 1 ↦ 3, 3 ↦ 2, 2 ↦ 4, and 4 ↦ 1. In addition, 𝜋(𝑖) is the
image of 𝑖 under 𝜋, e.g., 𝜋(1) = 3. Applying 𝜋 recursively 𝑖 times is denoted by
𝜋𝑖, e.g., 𝜋2(3) = 4, and 𝜋0 is an identity, e.g., 𝜋0(2) = 2. The expected value of a
random variable 𝑋 is denoted by 𝔼[𝑋].

2 SystemModel

We consider a scenario with 𝑢 single-antenna users, u1, … , u𝑢, each wanting to
compute the linear inference operation 𝒚𝑖 = 𝑾𝒙𝑖 on its local and private data
𝒙𝑖 = (𝑥𝑖,1, … , 𝑥𝑖,𝑟)

⊤ ∈ GF(𝑞)𝑟 for some network-side publicmatrix𝑾 ∈ GF(𝑞)𝑚×𝑟.
The operation is offloaded to the edge and is performed in a distributed fashion
over a number of edge servers—hereafter referred to as edge nodes (ENs). We
assume that there are 𝑒max ENs available at the network edge, and that the linear
inference is performed over 𝑒 ≤ 𝑒max ENs, where 𝑒 can be optimized. The 𝑒 ENs
that perform the computation tasks are denoted e1, … , e𝑒. Each EN has a storage
capacity 𝜇, 0 < 𝜇 ≤ 1, which is the fraction of 𝑾 each EN can store, i.e., each EN
can store up to 𝜇𝑚𝑟 elements from GF(𝑞). We assume that𝑾 stays constant over
a sufficient amount of time so that it can be stored on the ENs offline. The system
model is depicted in Fig. I.1.

2.1 Computation Runtime Model

The ENs are in general multi-task nodes, may run several applications in parallel,
and need to serve many users. As a result, they may straggle. We model this
behaviorwith a random setup time 𝜆𝑗 for each EN e𝑗. The setup time is the time it
takes an EN to start the computation after it received all the necessary data. Here,
we assume the widely-adopted model in which the setup times are independent
and identically distributed (i.i.d.) and modeled by an exponential distribution
with parameter 𝜂, such that 𝔼[𝜆𝑗] = 1/𝜂 [13, 17, 26]. Once set up, an EN needs
𝜏 time units to compute an inner product in GF(𝑞)𝑟 for each of the users, i.e., it
takes an EN 𝜏 time units to do 𝑟 multiplications and 𝑟 − 1 additions for all users.

44 PAPER I

EN

µ

user

unicast

Figure I.1: A mobile edge computing network with two users and three ENs.

Consequently, to compute 𝑑 inner products for each user (𝑢𝑑 inner products in
total), EN e𝑗 incurs a latency of

𝜆𝑗 + 𝑑𝜏 .

We define the normalized computation latency of EN e𝑗 (normalized by 𝜏) as

Lcomp
𝑗

=
𝜆𝑗

𝜏
+ 𝑑 .

The ENs have superior computing capabilities compared to the users. In par-
ticular, we assume that the users need 𝛿 normalized time units to perform 𝑟mul-
tiplications and 𝑟 − 1 additions.

2.2 Communication

The users have to upload their data to the ENs as well as download the results of
the computations from the ENs. We denote by 𝛾 the normalized time it takes for
both upload and download to unicast a symbol 𝛼 ∈ GF(𝑞)𝑢 (i.e., an element from
GF(𝑞) for each user). Consequently, the normalized time incurred by all users
uploading their data (i.e., 𝑢 vectors in GF(𝑞)𝑟) to a single EN is

Lcomm,up = 𝛾𝑟 .

For the upload of the private data {𝒙𝑖} from the 𝑢 users to the 𝑒 ENs, we as-
sume that transmission occurs sequentially, i.e., we consider time-division mul-
tiple access, whereas in the download the ENs can transmit simultaneously to
multiple users by utilizing joint beamforming based on zero-forcing precoding
[14–17, 27, 28]. More precisely, a symbol available at 𝜌 ENs can be transmitted
simultaneously to min{𝜌, 𝑢} users with a normalized communication latency of

3 Private Distributed Linear Inference 45

𝛾/min{𝜌, 𝑢} in the high signal-to-noise (SNR) regime. The normalized commu-
nication latency in the download (in the high SNR regime) incurred by transmit-
ting 𝑣 symbols 𝛼1, … , 𝛼𝑣 in GF(𝑞)𝑢, one element from GF(𝑞) for each user, where
symbol 𝛼𝑖 is available at 𝜌𝑖 ENs, is

Lcomm,down = 𝛾

𝑣

�

𝑖=1

1

min{𝜌𝑖, 𝑢}
.

The communication latency is then

Lcomm = Lcomm,up + Lcomm,down .

2.3 Privacy and Problem Formulation

The ENs may not be trustworthy or may be compromised. Further, the compro-
mised ENs may collaborate to infer the data of the users. In this paper, we assume
that up to 𝑧 ENs may be compromised and may collude. Our goal is to perform
the inference problem over 𝑒 ENs privately (so that the compromised ENs gain
no information in an information-theoretic sense about the private data) while
minimizing the overall latency,

L = Lcomp + Lcomm + Ldec ,

encompassing the computation and communication latency, aswell as the latency
incurred by the decoding operation, denoted by Ldec and discussed in Section 4.3.

3 Private Distributed Linear Inference

In this section, we present a privacy-preserving coded scheme that allows 𝑢 users
to perform the linear inference {𝑾𝒙𝑖} over 𝑒 ENs without revealing any informa-
tion to any subset of 𝑧 colluding ENs. A distinguishing feature of the proposed
scheme is that, unlike the (nonprivate) scheme in [17], which yields straggler mit-
igation by introducing redundancy onmatrix𝑾, it introduces redundancy on the
users’ data, by means of secret sharing according to [47], which allows to achieve
straggler mitigation while guaranteeing user data privacy simultaneously.

3.1 Secret Sharing

Weconsider the SSS scheme toyield privacy. An (𝑛, 𝑘) SSS schemedivides a secret
into 𝑛 pieces, referred to as shares, such that any 𝑘 or more shares are sufficient
to recover the data, while less than 𝑘 shares do not reveal any information about
data.

The proposed scheme is as follows. Each user u𝑖 uses an (𝑛, 𝑘) SSS scheme
to compute 𝑛 shares of its private data 𝒙𝑖 = (𝑥𝑖,1, … , 𝑥𝑖,𝑟)

⊤. In particular, user
u𝑖 encodes each data entry 𝑥𝑖,𝑙 along with 𝑘 − 1 i.i.d. uniform random symbols

𝑟
(1)

𝑖,𝑙
, … , 𝑟

(𝑘−1)

𝑖,𝑙
from GF(𝑞) using a nonsystematic (𝑛, 𝑘) Reed-Solomon (RS) code

46 PAPER I

over GF(𝑞) to obtain 𝑛 coded symbols 𝑠
(1)

𝑖,𝑙
, … , 𝑠

(𝑛)

𝑖,𝑙
. Let {𝒓

(𝜅)

𝑖
= (𝑟

(𝜅)

𝑖,1
, … , 𝑟

(𝜅)

𝑖,𝑟
)⊤ ∣

𝜅 ∈ [𝑘 − 1]} be the set of vectors of uniform random symbols used by user u𝑖. For
each ℎ ∈ [𝑛], the ℎ-th share of user u𝑖 is

𝒔
(ℎ)

𝑖
= �𝑠

(ℎ)

𝑖,1
, … , 𝑠

(ℎ)

𝑖,𝑟
�
⊤
.

We collect the ℎ-th share of all users in the matrix

𝑺(ℎ) = �𝒔
(ℎ)

1 , 𝒔
(ℎ)

2 , … , 𝒔
(ℎ)
𝑢 � ∈ GF(𝑞)𝑟×𝑢 . (I.1)

The following theorem proves that the linear inference operations {𝒚𝑖 = 𝑾𝒙𝑖}

can be computed for all users from a given set of computations based on the ma-
trices of shares 𝑺(1), … , 𝑺(𝑛), while providing privacy against up to 𝑘 − 1 colluding
ENs—which collectively have access to up to 𝑘 − 1 distinct matrices of shares.

Theorem 1. Consider 𝑢 users with their respective private data 𝒙𝑖 ∈ GF(𝑞)𝑟,
𝑖 ∈ [𝑢]. Use an (𝑛, 𝑘) SSS scheme on each 𝒙𝑖 to obtain the matrices of shares
𝑺(1), … , 𝑺(𝑛) in (I.1). Let 𝑾 ∈ GF(𝑞)𝑚×𝑟 be a public matrix and ℐ ⊆ [𝑛] a set of
indices with cardinality |ℐ| = 𝑘. Then, the set of computations {𝑾𝑺(ℎ) ∣ ℎ ∈ ℐ} al-
lows to recover the computations {𝑾𝒙𝑖} of all users. Moreover, for any set 𝒥 ⊆ [𝑛]

with |𝒥| < 𝑘, {𝑾𝑺(ℎ) ∣ ℎ ∈ 𝒥} reveals no information about {𝑾𝒙𝑖}.

The proof is given in Appendix A. The following corollary gives a sufficient
condition to recover the private computations {𝑾𝒙𝑖}.

Corollary 1 (Sufficient recovery condition). Consider an edge computing scenario
where the publicmatrix𝑾 is partitioned row-wise into 𝑏 disjoint submatrices𝑾ℓ ∈

GF(𝑞)
𝑚

𝑏
×𝑟, ℓ ∈ [𝑏], and the private data is {𝒙𝑖}. Then, the private computations

{𝑾𝒙𝑖} can be recovered from the computations in the sets

𝒮ℓ ≜ {𝑾ℓ𝑺
(ℎ) ∣ ℎ ∈ ℐ}, ℓ ∈ [𝑏] , (I.2)

for any fixed set ℐ ⊆ [𝑛] with cardinality |ℐ| = 𝑘.

Proof. From Theorem 1, for a given ℓ ∈ [𝑏], the computations in the set {𝑾ℓ𝒙𝑖}

can be recovered from the computations in the set 𝒮ℓ. Then, we obtain

𝑾𝒙𝑖 = �(𝑾1𝒙𝑖)
⊤, (𝑾2𝒙𝑖)

⊤, … , (𝑾𝑏𝒙𝑖)
⊤�

⊤
, ∀𝑖 ∈ [𝑢] .

Given the SSS scheme, the proposed scheme can be reduced to two combina-
torial problems: the assignment of submatrices {𝑾ℓ} to the ENs such that no EN
storesmore than a fraction 𝜇 of𝑾, and the assignment of matrices of shares {𝑺(ℎ)}
to the ENs such that no 𝑧 colluding ENs gain any information about the data {𝒙𝑖}.
We require that the combination of the assignments guarantees the users to ob-
tain the compuations in (I.2), such that the users have access to sufficient data to
recover {𝑾𝒙𝑖}. In the following two subsections, we describe the assignment of
{𝑾ℓ} and {𝑺

(ℎ)} to the ENs.

3 Private Distributed Linear Inference 47

3.2 Assignment of𝑾 to the Edge Nodes

To create joint beamforming opportunities in the download, we allow for replica-
tions of the same𝑾ℓ across different ENs. Submatrices are assigned to the ENs as
follows. In order to satisfy the storage constraint, i.e., no EN can store more than
a fraction 𝜇 of 𝑾, we select 𝑝 ∈ ℕ such that 𝑝/𝑒 ≤ 𝜇 and partition 𝑾 row-wise
into 𝑒 submatrices as

𝑾 = �𝑾⊤
1 ,𝑾

⊤
2 , … ,𝑾⊤

𝑒 �
⊤
.

Wethenassign𝑝 submatrices toeachof the𝑒ENs. To this scope,wedefineamatrix
of indices 𝑰w, of dimensions 𝑝×𝑒, which prescribes the assignmentof submatrices
to the ENs. The assignment has the following combinatorial structure. Consider
a cyclic permutation group of order 𝑒 with generator 𝜋. We construct 𝑰w as

𝑰w = �

𝜋0(1) 𝜋0(2) ⋯ 𝜋0(𝑒)

𝜋1(1) 𝜋1(2) ⋯ 𝜋1(𝑒)

⋮ ⋮ ⋱ ⋮

𝜋𝑝−1(1) 𝜋𝑝−1(2) ⋯ 𝜋𝑝−1(𝑒)

� (I.3)

and define the set of indices

ℐw
𝑗
= {𝜋0(𝑗), … , 𝜋𝑝−1(𝑗)} (I.4)

for 𝑗 ∈ [𝑒] as the set containing the entries in column 𝑗 of 𝑰w. Then, we assign the
submatrices {𝑾ℓ ∣ ℓ ∈ ℐw

𝑗
} to EN e𝑗, i.e., e𝑗 is assigned the submatrices {𝑾ℓ} with

indices ℓ in the 𝑗-th column of 𝑰w. For example, if 𝜋 = (1 𝑒 𝑒 − 1 ⋯ 2), we have

𝑰w = �

1 2 ⋯ 𝑒

𝑒 1 ⋯ 𝑒 − 1

⋮ ⋮ ⋱ ⋮

𝑒 − 𝑝 + 2 𝑒 − 𝑝 + 3 ⋯ 𝑒 − 𝑝 + 1

� ,

and EN e2 stores𝑾2,𝑾1,𝑾𝑒, … ,𝑾𝑒−𝑝+3.
This assignmentof submatrices to ENs bears some resemblancewith fractional

repetition (FR) codes [29]. FR codes were proposed in the context of distributed
storage systems and yield the property that any 𝜁 storage nodes have access to at
least 𝜓 distinct symbols/packets of a 𝜓-dimensional MDS code such that users
can recover the data by decoding the MDS code after contacting 𝜁 storage nodes.
By guaranteeing that all pairs of storage nodes share exactly 𝜃 packets (utilizing
Steiner systems such as the Fano plane), the authors can derive lower bounds on
the number of distinct packets across 𝜁 storage nodes. From this lower bound, the
above-mentioned property (i.e., that any 𝜁 storage nodes have access to at least 𝜓
distinct symbols/packets) follows. In contrast, our goal is to achieve significant
replication of submatrices𝑾ℓ at the ENs, which we achieve by a cyclic structure.
Wedonothave the requirement thatany twoENsshareexactly𝜃packets. Further-
more, one of our proposed schemes (introduced in Section 5.2) allows for irregu-
lar repetition of packets across ENs, while an essential requirement of FR codes is
that packets are repeated the same amount of times across nodes. To summarize,

48 PAPER I

both our assignment of submatrices and FR codes are combinatorial designs, but
servedifferent purposes. Notably, our assignment ismuch less structured than FR
codes.

The ENs process the assigned submatrices of 𝑾 in the same order as their in-
dices appear in the rows of 𝑰w. We define 𝜙w

𝑗
(ℓ′) for ℓ′ ∈ [𝑝] to be the map from

ℓ′ to the index of the ℓ′-th assigned submatrix of EN e𝑗.

3.3 Assignment of Shares to the Edge Nodes

On the basis of the assignment of the submatrices of 𝑾, to guarantee privacy, we
now have to define the assignment of matrices of shares such that no 𝑧 colluding
ENs have access to 𝑘 or more distinct matrices of shares, while the users should
be guaranteed to obtain the computations in (I.2). Here, we restrict the number
of shares 𝑛 to be at most equal to the number of ENs, i.e., we require 𝑛 ≤ 𝑒. As
with the submatrices of 𝑾, we allow replicating shares across ENs to exploit joint
beamforming opportunities in the download. However, this may lead to multiple
shares being assigned to a single EN, which presents difficulties in the design of
a private scheme, because having multiple shares available at a single EN results
in a privacy level 𝑧 lower than that of the SSS scheme (𝑘). For example, if all ENs
have access to two matrices of shares, the scheme only provides privacy against
any 𝑧 = ⌊(𝑘 − 1)/2⌋ colluding ENs.

Alike to 𝑰w, let 𝑰s be the indexmatrix thatprescribes theassignmentof matrices
of shares to the ENs—theusers upload their shares to the ENs according to 𝑰s. The
assignment has the following structure. Given the generator 𝜋 used to assign the
submatrices of 𝑾 to the ENs, we construct the (𝛽 + 1) × 𝑒 index matrix 𝑰s as

𝑰s = ⎛

⎝

𝜋0(1) 𝜋0(2) ⋯ 𝜋0(𝑒)

𝜋𝑒−𝑝(1) 𝜋𝑒−𝑝(2) ⋯ 𝜋𝑒−𝑝(𝑒)

⋮ ⋮ ⋱ ⋮

𝜋𝛽(𝑒−𝑝)(1) 𝜋𝛽(𝑒−𝑝)(2) ⋯ 𝜋𝛽(𝑒−𝑝)(𝑒)

⎞

⎠

, (I.5)

where 𝛽 = ⌈𝑒/𝑝⌉ − 1. Define the set of indices

ℐs
𝑗
= {𝜋0(𝑗), … , 𝜋𝛽(𝑒−𝑝)(𝑗)}\{𝑛 + 1, 𝑛 + 2,… , 𝑒} (I.6)

as the subset of entries in column 𝑗 of 𝑰s that are in [𝑛]. We have

|ℐs
𝑗
| = ⌈⌈𝑒/𝑝⌉ ⋅ 𝑛/𝑒⌉ ≜ 𝑎 , (I.7)

as we keep only a fraction ⌈𝑛/𝑒⌉ of the shares corresponding to the 𝛽 + 1 = ⌈𝑒/𝑝⌉

used permutations in 𝑰s. Then, user u𝑖 transmits the shares {𝒔
(ℎ)

𝑖
∣ ℎ ∈ ℐs

𝑗
} to EN e𝑗,

i.e., EN e𝑗 is assigned 𝑎matrices of shares {𝑺(ℎ)}with indices ℎ in the 𝑗-th column
of 𝑰s that are in [𝑛]. Consequently, 𝑧 colluding ENs have access to 𝑎𝑧 possibly
distinct matrices of shares. To guarantee user data privacy against any subset of 𝑧
colluding ENs, we have to impose the constraint 𝑘 ≥ 𝑎𝑧 + 1.

Similar to thesubmatricesof𝑾, thesharesareprocessed by theENs in thesame
order as their indices appear in the rows of 𝑰s. We define 𝜙s

𝑗
(ℎ′) for ℎ′ ∈ [𝑎] to be

4 Communication and Computation Scheduling, and Private Coding Scheme
Optimization 49

the map from ℎ′ to the index of the ℎ′-th assigned matrix of shares of EN e𝑗. For

all ℓ′ ∈ [𝑝], EN e𝑗 computes 𝑾𝜙w
𝑗
(ℓ′)𝑺

(𝜙s
𝑗
(ℎ′))

before moving on to the next matrix

of shares 𝑺
(𝜙s

𝑗
(ℎ′+1))

. The following theorem shows that the combined assignment
of submatrices and shares to the ENs allow each user u𝑖 to obtain its desired result
𝑾𝒙𝑖 while preserving privacy against up to 𝑧 colluding ENs.

Theorem 2. Consider an edge computing network consisting of 𝑢 users and 𝑒 ENs,
each with a storage capacity corresponding to a fraction 𝜇, 0 < 𝜇 ≤ 1, of𝑾, and
an (𝑛, 𝑘 ≥ 𝑎𝑧 + 1) SSS scheme, with 𝑛 ≤ 𝑒 and 𝑎 given in (I.7). For 𝑗 ∈ [𝑒], EN
e𝑗 stores the submatrices of𝑾 from the set {𝑾ℓ ∣ ℓ ∈ ℐw

𝑗
} with ℐw

𝑗
defined in (I.4).

Furthermore, it receives the matrices of shares from the set {𝑺(ℎ) ∣ ℎ ∈ ℐs
𝑗
} with ℐs

𝑗

defined in (I.6), and computes and returns the set {𝑾ℓ𝑺
(ℎ) ∣ ℓ ∈ ℐw

𝑗
, ℎ ∈ ℐs

𝑗
} to the

users. Then, all users can recover their desired computations {𝑾𝒙𝑖} and the scheme
preserves privacy against any set of 𝑧 colluding ENs.

The proof of Theorem 2 is given in Appendix B.Weprovide a sense of the proof
with the following example.

Example 1. Consider 𝑒 = 𝑛 = 5, 𝑝 = 3, and 𝜋 = (1 4 2 5 3), the generator of a
cyclic permutation group of order 5. From (I.3) and (I.5), we have

𝑰w = �

1 2 3 4 5

4 5 1 2 3

2 3 4 5 1
� and 𝑰s = �

1 2 3 4 5

2 3 4 5 1
� .

We focus on the matrix of shares 𝑺(1). It is assigned to EN e1 and gets multiplied
with the submatrices of𝑾 indexed by the elements in the set

ℐw
1 = {𝜋0(1), 𝜋(1), 𝜋2(1)} = {1, 4, 2} .

Note that the set ℐw
1 contains three recursively 𝜋-permuted integers of 1 (𝜋0(1),

𝜋1(1), and 𝜋2(1)). Now, consider EN e5, which is also assigned thematrix of shares
𝑺(1). We have

ℐw
5 = {𝜋0(5), 𝜋(5), 𝜋2(5)} = {5, 3, 1} .

Notice that 𝜋0(5) = 𝜋3(1) = 5 is the fourth (including 𝜋0) recursively 𝜋-permuted
integer of 1. Hence, the set ℐw

1 ∪ ℐw
5 contains in total six recursively 𝜋-permuted

integers of 1, which is sufficient to give the set [5], since the group generated by 𝜋
is transitive. In a similar way, it can be shown that the same property holds for all
other matrices of shares. Each matrix of shares is multiplied with all submatrices
of𝑾, and the sets in (I.2) are obtained.

4 Communication and Computation Scheduling, and Private

Coding Scheme Optimization

In this section, we describe the scheduling of the proposed scheme. This encom-
passes the upload of the shares to the ENs, the order of the computations per-
formed at the ENs, the download of a sufficient subset of {𝑾ℓ𝑺

(ℎ) ∣ ℓ ∈ ℐw
𝑗
, ℎ ∈

50 PAPER I

ℐs
𝑗
, 𝑗 ∈ [𝑒]}, and the decoding of this subset such that each user u𝑖 obtains the

desired result 𝒚𝑖 = 𝑾𝒙𝑖. In the following, we refer to a product 𝑾ℓ𝑺
(ℎ) as an in-

termediate result (IR).

4.1 Upload and Computation

Our scheme starts with the users uploading their shares to the ENs. As 𝑾 stays
constantovera long periodof time,weassume that it can bestored at theENsprior
to the beginning of the online phase. The users start by sequentially unicasting
their shares to the 𝑒 ENs. Note that, unlike in the nonprivate scheme in [17], the
users cannot broadcast their data in the clear—to attain privacy, it needs to be
ensured that any 𝑧 potentially compromised ENs do not gain access to more than
𝑘 − 1 distinct shares of the users’ private data. Recall that transmission of one
element of GF(𝑞) from each user takes 𝛾 normalized time units (see Section 2.2).
Consequently, it takes 𝛾𝑟 time units until an EN receives a matrix of shares 𝑺(ℎ).
The upload schedule is depicted in blue in Fig. I.2. The users first upload their
first matrix of shares to EN e1 and continue with e2, e3, … sequentially until each
EN has received its first matrix of shares. The users then transmit their second
matrix of shares to the 𝑒 ENs, starting with e1. This continues until each EN has
received 𝑎matrices of shares; EN e𝑗 receives {𝑺(ℎ) ∣ ℎ ∈ ℐs

𝑗
}. Hence, EN e𝑗 receives

its ℎ′-th matrix of shares, 𝑺
(𝜙s

𝑗
(ℎ′))

, at normalized time

Lup,ℎ′
𝑗

= 𝛾𝑟(𝑒(ℎ′ − 1) + 𝑗) ,

and the total normalized upload latency of the private scheme becomes

Lup
P = 𝛾 ⋅ 𝑟 ⋅ 𝑒 ⋅ 𝑎 .

The computation phase at an EN starts as soon as the EN receives the first
matrix of shares from the users. Recall from Section 2.1 that the random setup
time for EN e𝑗 is 𝜆𝑗, i.e., EN e𝑗 starts the computation 𝜆𝑗/𝜏 normalized time units
after receiving its first matrix of shares. The setup times are illustrated in red in
Fig. I.2. In total, 𝑝 IRs of the form𝑾ℓ𝑺

(ℎ) have to be computed for each assigned
matrix of shares 𝑺(ℎ) by EN e𝑗, 𝑗 ∈ [𝑒], where ℓ ∈ ℐw

𝑗
and ℎ ∈ ℐs

𝑗
. This incurs a

normalized latency of 𝑝 ⋅𝑚/𝑒, because each𝑾ℓ has𝑚/𝑒 rows, and hence the ENs
compute 𝑢 ⋅ 𝑚/𝑒 inner products for each of the 𝑝 IRs.

It can happen that an EN has not received the next matrix of shares when it
finished the computation on the current matrix of shares. In this case, the EN
remains idle until the users upload the next matrix of shares. We depict this in
yellow in Fig. I.2. For ℎ′ ∈ [𝑎], the normalized time at which EN e𝑗 starts to

compute on the ℎ′-th assigned matrix of shares, i.e., on 𝑺
(𝜙s

𝑗
(ℎ′))

, is

Lstart,ℎ′
𝑗

= max �Lstart,ℎ′−1
𝑗

+ 𝑝
𝑚

𝑒
, Lup,ℎ′

𝑗 � , for ℎ′ > 1 ,

and

Lstart,1
𝑗

=
𝜆𝑗

𝜏
+ Lup,1

𝑗
.

4 Communication and Computation Scheduling, and Private Coding Scheme
Optimization 51

rγ pm/e

rγ λ2/τ

rγ

L = 0

EN e1

EN e2

EN e3

latencyLstart,11 Lstart,21

Figure I.2: Scheduling of the upload and computing phases. For each EN, the upload
normalized times 𝑟𝛾 are shown in blue, the random setup times in red, the times 𝑝𝑚/𝑒
to compute 𝑝 IRs in green, and possible idle times in yellow.

The computation phase continues at least until the computations in (I.2) are
obtained, i.e., until there are at least 𝑘 distinct IRs of the form 𝑾ℓ𝑺

(ℎ) for each
ℓ ∈ [𝑒]. This ensures that user u𝑖 can recover 𝑾𝒙𝑖. We remark that it can be
beneficial to continue computing products to reduce the communication latency
in the download phase, as we discuss next.

4.2 Download

For the download, we exploit zero-forcing precoding to serve multiple users si-
multaneously and hence reduce the communication latency. An IR 𝑾ℓ𝑺

(ℎ) that
is available at 𝜌ℓ,ℎ ENs incurs a normalized communication latency of (𝑚/𝑒) ⋅
𝛾/min{𝜌ℓ,ℎ, 𝑢} (see Section 2.2). Consequently, a high multiplicity of an IR re-
duces its corresponding communication latency. However, a highmultiplicity im-
plies that the same IR has to be computed multiple times at different ENs, thereby
increasing the computation latency. There is therefore a tradeoff between com-
munication latency and computation latency, which can be optimized to reduce
the overall latency. Assume the optimum is reached after EN e𝑗∗ has computed

the IR 𝑾𝜙w
𝑗∗
(ℓ∗)𝑺

(𝜙s
𝑗∗
(ℎ∗))

. This gives a normalized computation latency of

Lcomp = Lstart,ℎ∗
𝑗∗

+ ℓ∗
𝑚

𝑒
.

Subsequently, the ENs jointly transmit a subset of the computed IRs {𝑾ℓ𝑺
(ℎ)}

tomultipleusers simultaneously indescendingorderof theirmultiplicity𝜌ℓ,ℎ until
enough results are available to theusers such that the sufficient recovery condition
in Corollary 1 is met. More precisely, for each 𝑾ℓ the ENs send the 𝑘 IRs with
highest multiplicity to the users, thereby ensuring that each user u𝑖 can recover

52 PAPER I

the desired result𝑾𝒙𝑖. For a fixed ℓ, let

ℋmax
ℓ

= arg max
𝒜⊆[𝑛],|𝒜|=𝑘

�

ℎ∈𝒜

𝜌ℓ,ℎ

be the set of indices ℎ of the 𝑘 largest 𝜌ℓ,ℎ. Then, the aforementioned download
strategy results in a normalized communication latency of

Lcomm = 𝛾
𝑚

𝑒

𝑒

�

ℓ=1

�

ℎ∈ℋmax
ℓ

1

min{𝜌ℓ,ℎ, 𝑢}
.

4.3 Decoding Latency

After theusers havedownloaded a sufficient numberof IRs (𝑘 IRs foreach𝑾ℓ), the
users need to decode the SSS scheme to obtain their desired results {𝒚𝑖 = 𝑾𝒙𝑖}.
Decoding the SSS scheme means decoding the corresponding RS code. Here, we
assume decoding via the Berlekamp-Massey algorithm, which, for an (𝑛, 𝑘) RS
code, entails 𝑛(𝑛 − 𝑘) multiplications and 𝑛(𝑛 − 𝑘 − 1) additions [30], plus an
additional discrete Fourier transformation that involves 𝑛/2(⌈log2(𝑛)⌉−1)multi-
plications and 𝑛⌈log2(𝑛)⌉ additions [31, Eq. (8)]. We assume that it takes the same
time to perform one addition and one multiplication, i.e., both operations take
the same amount of clock cycles. This assumption is reasonable, as both opera-
tions can be performed using either a look-up table or, in case 𝑞 is a prime, integer
arithmetic in the arithmetic and logic units of the user devices’ processors. We
make this assumption because it significantly simplifies the analysis. Recall that
a user requires 𝛿 normalized time units to compute an inner product in GF(𝑞)𝑟,
which comprises 𝑟 multiplications and 𝑟 − 1 additions in GF(𝑞). The latency of
performing an addition or a multiplication is hence 𝛿/(2𝑟 − 1). With this, the
decoding latency for each user can be written in closed-form as

Ldec =
𝛿

2𝑟 − 1
𝑚𝑛�2(𝑛 − 𝑘) +

3

2
⌈log2(𝑛)⌉ −

3

2
� ,

since the users have to perform

𝑚

𝑒
⋅ 𝑒 ⋅ 𝑛 �2(𝑛 − 𝑘) +

3

2
⌈log2(𝑛)⌉ −

3

2
�

operations in GF(𝑞) (one RS decoding per row) for each of the 𝑒 matrices {𝑾ℓ}

while needing 𝛿/(2𝑟 − 1) normalized times units per operation.
The overall normalized latency becomes

L = Lcomp + Lcomm + Ldec

= Lstart,ℎ∗
𝑗∗

+ ℓ∗
𝑚

𝑒
+ 𝛾

𝑚

𝑒

𝑒

�

ℓ=1

�

ℎ∈ℋmax
ℓ

1

min{𝜌ℓ,ℎ, 𝑢}

+
𝛿

2𝑟 − 1
𝑚𝑛�2(𝑛 − 𝑘) +

3

2
⌈log2(𝑛)⌉ −

3

2
� . (I.8)

5 Variants 53

4.4 Private Coding Scheme Optimization

The system design includes the SSS code, which we denote by 𝒞SSS, the assign-
ment matrices 𝑰w and 𝑰s, the number of ENs over which the users offload the lin-
ear inference operation, 𝑒 ≤ 𝑒max, and the privacy level 𝑧. To construct matrices
𝑰w and 𝑰s, we require a permutation group generator 𝜋 and the parameter 𝑝. Fur-
ther, to determine a good stopping point for the computation phase, we introduce
the parameter 𝑡, defined as the number of (not necessarily distinct) IRs for each
𝑾ℓ computed across all ENs to wait for before the download phase starts. Note
that 𝑡 should be such that the ENs have collected enough distinct IRs so that the
users can decode to recover {𝒚𝑖 = 𝑾𝑖𝒙𝑖}. However, it might be useful to collect
more IRs than the minimum necessary to reduce the communication latency. As
soon as there are 𝑡 (not necessarily distinct) IRs computed across all ENs for each
submatrix of 𝑾, the ENs stop the computation and begin the download phase.

We refer to the tuple (𝒞SSS, 𝑒, 𝜋, 𝑝, 𝑡, 𝑧) as the private coding scheme. The goal
is then to optimize the private coding scheme, i.e., the above-mentioned tuple, in
order to minimize L in (I.8) for a given privacy level 𝑧.

Note that 𝑒 ≤ 𝑒max (it may be beneficial to contact less ENs than the ones
available). Furthermore, even for the lowest level of privacy, 𝑧 = 1, the users need
to contact at least 2 ENs, i.e., 2 ≤ 𝑒 ≤ 𝑒max. Additionally, 1 ≤ 𝑝 ≤ ⌊𝜇𝑒⌋; each
EN needs to be assigned at least one partition of 𝑾 and it may be beneficial that
the ENs do not utilize their whole storage capacity, because storing fewer than
⌊𝜇𝑒⌋ submatrices of 𝑾 leads to the ENs performing computations on the later
shares sooner. Lastly, there are some constraints on the parameters 𝑛 and 𝑘 of
the SSS code 𝒞SSS. From the SSS code, it follows that 𝑛 ≥ 𝑘, whereas from the
combinatorial design 𝑛 ≤ 𝑒. The value of 𝑘 depends on the desired privacy level
𝑧 and the number of matrices of shares each EN has access to, 𝑎 (which follows
from 𝑒, 𝑝, and 𝑛, see (I.7)). In the worst case, 𝑧 ENs have access to 𝑎𝑧 distinct
shares. Therefore, we need 𝑘 ≥ 𝑎𝑧 + 1 to ensure privacy. Consequently, we get
𝑎𝑧 + 1 ≤ 𝑛 ≤ 𝑒. Note that there is no reason to select 𝑘 > 𝑎𝑧 + 1 as this leads to
reduced straggler mitigation and increased computational load.

5 Variants

In this section, we introduce two variants to the private scheme proposed in Sec-
tions 3 and 4. First, we notice thatwe can reduce theoverall latency by starting the
download as soon as the upload phase is completed, i.e., the download phase and
the computation phase can be performed simultaneously. We propose to use a
priority queue that determines the order in which computed IRs should be down-
loaded. Secondly, we introduce an additional layer of coding to the scheme by
encoding the network-side matrix𝑾 prior to storing it over the ENs. We also re-
lax some of the constraints on the system parameters.

54 PAPER I

5.1 Priority Queue

Instead of waiting for the computation phase to finish, IRs can be downloaded
as soon as they are available and the channel is idle, i.e., when the upload phase
is completed and no other IR is being downloaded. To determine which IR to
send, we equip the ENs with a shared priority queue in which the pairs of indices
that identify the IRs, (ℓ, ℎ) (where ℓ identifies the partition of 𝑾, 𝑾ℓ, and ℎ the
matrix of shares, 𝑺(ℎ)), are queued. A priority queue is a data structure in which
each element has an associated priority. Elements with high priority will leave
the queue before elements with low priority. Particularly, we consider a priority
queue in which the priority is given by the multiplicity of an IR. After an EN has
finished the computation of an IR, it either adds the corresponding pair of indices
(ℓ, ℎ) to the queue or increments its multiplicity (priority) if it already exists in
the queue. Anytime the channel is available and there are index pairs left in the
queue, the ENs cooperatively send the corresponding IR with the highest priority
(i.e., highest multiplicity) to the users. This ensures that at any time the ENs send
the IR with the lowest associated communication cost to the users. In contrast to
the scheme in Sections 3 and 4, there is no optimization needed to determine 𝑡, as
thedownload starts as soon as the upload phase finishes. Hence, the optimization
is over (𝒞SSS, 𝑒, 𝜋, 𝑝, 𝑧) for a given value of 𝑧. Further, the ENs have to keep track
of the queue and its complete history. This way, already downloaded IRs do not
need to be computed again.

5.2 Additional Coding on the Network-Side Matrix𝑾

The straggler resiliency of the scheme proposed in the previous sections can be
increased by introducing an additional layer of coding on thematrix𝑾. In partic-
ular, we partition 𝑾 row-wise into 𝑘′ submatrices and encode it using an (𝑛′, 𝑘′)

RS code, denoted by 𝒞w. We denote by 𝑪 = �𝑪⊤1 , 𝑪
⊤
2 , … , 𝑪⊤

𝑛′�
⊤ the resulting coded

matrix, comprising 𝑛′ submatrices. The 𝑛′ coded submatrices of 𝑪 are then as-
signed to the ENs. Compared to the uncoded case, we relax the condition that
the number of submatrices equals the number of ENs 𝑒. For 𝑛′ = 𝑒, the same as-
signment of submatrices to ENs as the one used in Section 3.2 for the uncoded
matrix 𝑾 can be used. For 𝑛′ ≠ 𝑒, however, we need to modify the assignment.
For 𝑛′ ≥ 𝑒, we simply take a cyclic permutation group 𝜋c of order 𝑛′ to fill the in-
dex matrix 𝑰c that determines the assignment of submatrices {𝑪ℓ} to ENs (i.e., 𝑰c
is the counterpart of 𝑰w for the uncoded case and 𝜋c is the counterpart of 𝜋, see
Section 3.2). Using the same approach for 𝑛′ < 𝑒 works, but it leads to a nonuni-
form distribution of indices in 𝑰c. This would lead to higher multiplicity for some
IRs, which is suboptimal in terms of download latency. Increasing the multiplic-
ity of IRs has diminishing returns; increasing the multiplicity from 1 to 2 reduces
the communication latency by 50%, whereas increasing themultiplicity from 2 to
3 yields a decrease of only 33.3%. This means that the highest gains are obtained
by increasing the multiplicity simultaneously across IRs, i.e., we are interested in
obtaining a distribution of indices in 𝑰c as close as possible to a uniform distribu-
tion. To accomplish that, we propose the following index assignment for 𝑛′ < 𝑒.

5 Variants 55

We start by cyclically filling 𝑰c with indices in [𝑛′],

𝑰c = �

1 2 ⋯ 𝑛′ ? ? ⋯ ?

? 1 2 ⋯ 𝑛′ ? ⋯ ?

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

? ⋯ ? 1 2 ⋯ 𝑛′ ?

� . (I.9)

The left-out entriesmarkedwith ? are filled such that thedistribution of indices in
𝑰c is as close to uniformas possiblewhile not repeating indices in the samecolumn
of 𝑰c, as this assignment does not favor a specific submatrix of 𝑪 and prevents the
samesubmatrix beingassigned twice tooneEN.Note that (I.9) isonlyoneexample
of how 𝑰c can look like. Depending on 𝑒, 𝑝, and 𝑛′ there might be wrap-arounds
of indices.

We can also relax the condition that the number of secret shares has to be less
than or equal to the number of ENs, i.e., we allow 𝑛 > 𝑒, and simply consider a
permutation group 𝜋s of ordermax(𝑛, 𝑒) and construct 𝑰s as in (I.5) (with 𝜋 = 𝜋s).

Remark 1. By allowing 𝑛′ ≠ 𝑒 and 𝑛 > 𝑒, it becomes difficult to prove a similar
result as in Corollary 1 for the uncoded case on a sufficient condition on the car-
dinality of ℐ and 𝒥 such that the linear inference can be completed from the IRs
{𝑪ℓ𝑺

(ℎ) ∣ ℎ ∈ ℐ, ℓ ∈ 𝒥}. However, our numerical results reveal that encoding 𝑾
and relaxing the constraints 𝑛′ = 𝑒 and 𝑛 ≤ 𝑒 allows to reduce the overall latency
compared to the scheme in Sections 3 and 4.

For each user u𝑖—with its private data 𝒙𝑖 and set of random vectors

{𝒓
(1)

𝑖
, … , 𝒓

(𝑘−1)

𝑖
}—thecombinationof the (𝑛, 𝑘)RS codeon {𝒙𝑖, 𝒓

(1)

𝑖
, … , 𝒓

(𝑘−1)

𝑖
}used

in the SSS scheme and the (𝑛′, 𝑘′) RS code on {𝑾1, … ,𝑾𝑘′} can be seen as an
(𝑛𝑛′, 𝑘𝑘′) product code (with nonsystematic component codes) over {𝑾ℓ𝒙𝑖|ℓ ∈

[𝑘′]} (i.e., the desired inference𝑾𝒙𝑖) and {𝑾ℓ𝒓
(𝜅)

𝑖
|ℓ ∈ [𝑘′], 𝜅 ∈ [𝑘 − 1]}. To show

this, we arrange the elements of {𝑪ℓ𝒔
(ℎ)

𝑖
} in the 𝑛′ × 𝑛 two-dimensional array

⎡
⎢
⎢
⎢
⎣

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖
⋯ 𝑪1𝒔

(𝑛)

𝑖

𝑪2𝒔
(1)

𝑖
𝑪2𝒔

(2)

𝑖
⋯ 𝑪2𝒔

(𝑛)

𝑖

⋮ ⋯ ⋱ ⋮

𝑪𝑛′𝒔
(1)

𝑖
𝑪𝑛′𝒔

(2)

𝑖
⋯ 𝑪𝑛′𝒔

(𝑛)

𝑖

⎤
⎥
⎥
⎥
⎦

.

It is easy to see that each row of the array is a codeword of an (𝑛, 𝑘) code and

each column is a codeword of an (𝑛′, 𝑘′) code. More precisely, (𝒔
(1)

𝑖
, … , 𝒔

(𝑛)

𝑖
) is the

codeword corresponding to the encoding of (𝒙𝑖, 𝒓
(1)

𝑖
, … , 𝒓

(𝑘−1)

𝑖
) via the SSS (𝑛, 𝑘)

RS code. Since the RS code is linear, (𝑪ℓ𝒔
(1)

𝑖
, … , 𝑪ℓ𝒔

(𝑛)

𝑖
) is also a codeword of an

(𝑛, 𝑘)RS code, whichwould result fromencoding (𝑪ℓ𝒙𝑖, 𝑪ℓ𝒓
(1)

𝑖
, … , 𝑪ℓ𝒓

(𝑘−1)

𝑖
). Like-

wise, (𝑪1, … , 𝑪𝑛′) is the codeword corresponding to the encoding of (𝑾1, … ,𝑾𝑘′)

via the (𝑛′, 𝑘′) RS code on 𝑾, and (𝑪1𝒔
(ℎ)

𝑖
, … , 𝑪𝑛′𝒔

(ℎ)

𝑖
) is a codeword of an (𝑛′, 𝑘′)

RS code corresponding to the encoding of (𝑾1𝒔
(ℎ)

𝑖
, … ,𝑾𝑘′𝒔

(ℎ)

𝑖
).

The product code structure allows the users to iteratively decode the received
results, which provides more flexibility regarding the decodable patterns; there

56 PAPER I

are sets of IRs that allow to complete the linear inference operation by iterating
between row and column decoders, while either component code would fail to
decode on its own. To illustrate the iterative decoding procedure, we provide the
following example.

Example 2. Consider the SSS (𝑛, 𝑘) = (4, 3) RS code and an (𝑛′, 𝑘′) = (3, 2) RS

code on𝑾. Encode𝑾 into a matrix 𝑪 and arrange all {𝑪ℓ𝒔
(ℎ)

𝑖
|ℓ ∈ [3], ℎ ∈ [4]} in

an array of dimensions 3 × 4 to show the product code structure,

�

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖
𝑪1𝒔

(3)

𝑖
𝑪1𝒔

(4)

𝑖

𝑪2𝒔
(1)

𝑖
𝑪2𝒔

(2)

𝑖
𝑪2𝒔

(3)

𝑖
𝑪2𝒔

(4)

𝑖

𝑪3𝒔
(1)

𝑖
𝑪3𝒔

(2)

𝑖
𝑪3𝒔

(3)

𝑖
𝑪3𝒔

(4)

𝑖

� .

Each row of the array is a codeword of a (4, 3) RS code and each column is a code-
word of a (3, 2) RS code.

Assume that the users have the following IRs available,

�

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖

𝑪2𝒔
(2)

𝑖
𝑪2𝒔

(3)

𝑖

𝑪3𝒔
(1)

𝑖
𝑪3𝒔

(4)

𝑖

� .

As we can see, there are no 𝑘 = 3 IRs available for any 𝑪ℓ. Therefore, the users
would not be able to decode any SSS scheme. However, we have 𝑘′ = 2 IRs available
in the first and second column. The users can then decode the column RS code for

columns one and two to obtain 𝑪2𝒔
(1)

𝑖
and 𝑪3𝒔

(2)

𝑖
,

�

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖

𝑪2𝒔
(1)

𝑖
𝑪2𝒔

(2)

𝑖
𝑪2𝒔

(3)

𝑖

𝑪3𝒔
(1)

𝑖
𝑪3𝒔

(2)

𝑖
𝑪3𝒔

(4)

𝑖

� .

Now, there are 𝑘 = 3 IRs available in the second and third row, hence the users can

decode the corresponding row codes to obtain 𝑪2𝒔
(4)

𝑖
and 𝑪3𝒔

(3)

𝑖
,

�

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖

𝑪2𝒔
(1)

𝑖
𝑪2𝒔

(2)

𝑖
𝑪2𝒔

(3)

𝑖
𝑪2𝒔

(4)

𝑖

𝑪3𝒔
(1)

𝑖
𝑪3𝒔

(2)

𝑖
𝑪3𝒔

(3)

𝑖
𝑪3𝒔

(4)

𝑖

� .

Lastly, the users can switch to column decoding again as now there are 𝑘′ = 2 IRs
available in the third and fourth column, and the whole code array can be recovered,

�

𝑪1𝒔
(1)

𝑖
𝑪1𝒔

(2)

𝑖
𝑪1𝒔

(3)

𝑖
𝑪1𝒔

(4)

𝑖

𝑪2𝒔
(1)

𝑖
𝑪2𝒔

(2)

𝑖
𝑪2𝒔

(3)

𝑖
𝑪2𝒔

(4)

𝑖

𝑪3𝒔
(1)

𝑖
𝑪3𝒔

(2)

𝑖
𝑪3𝒔

(3)

𝑖
𝑪3𝒔

(4)

𝑖

� .

At last, the users are able to recover all IRs and thereby the computations {𝑾𝒙𝑖}.
For this particular example, this would not have been possible without the redun-
dancy on the submatrices of𝑾.

Theprivate coding schemewith coding over𝑾 and priority queue is defined by
the tuple (𝒞SSS,𝒞w, 𝑒, 𝜋c, 𝜋s, 𝑝, 𝑧), which should be properly optimized for a given
privacy level 𝑧.

6 Numerical Results 57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·104

γ

O
ve
ra
ll
n
or
m
al
iz
ed

la
te
n
cy

Scheme in [17]

Scheme 1, z = 1

Scheme 1, z = 2

Scheme 1, z = 3

Scheme 1, z = 4

Figure I.3: Expected overall normalized latency as a function of 𝛾 for different privacy
levels 𝑧 of the proposed scheme (Scheme 1) compared to the nonprivate scheme in [17].
The parameters are 𝜇 = 2/3, 𝜏 = 0.0005, 𝜂 = 0.5, 𝑒max = 9, 𝑚 = 600, 𝑟 = 50, and
𝛿 = 3.

6 Numerical Results

In this section, we compare the performance of the proposed private scheme in
Sections 3 and 4, and its variants in Section 5, with that of the nonprivate scheme
in [17]. Forconvenience,wewill refer to thescheme in Sections 3 and 4as Scheme 1,
and to the two variants in Section 5 as Scheme 2 (Scheme 1 augmented with a
priority queue) and Scheme 3 (Scheme 2 augmented with coding over𝑾).

For all numerical results, themaximumnumber of ENs is 𝑒max = 9, the storage
capacity is 𝜇 = 2/3, 𝑾 has dimensions 600 × 50, the computation time is 𝜏 =

0.0005, and the straggling parameter is 𝜂 = 0.5. Lastly, we assume that the users
are 𝛿 = 3 times slower than the ENs. Note that due to the normalization by 𝜏, the
number of users is inconsequential on the normalized overall latency L as long as
𝑢 ≥ maxℓ,ℎ 𝜌ℓ,ℎ, e.g., if 𝑢 ≥ 𝑒. In the simulations we consider 𝑢 ≥ 𝑒, which is
usually the case in practice.

For the optimization of the coding schemes, we fix the generator of the cyclic
permutation group to 𝜋 = (1 𝑒 𝑒 − 1 ⋯ 2) for Schemes 1 and 2 whereas for
Scheme 3 we vary 𝑛′ and assign the submatrices 𝑪ℓ as described in Section 5.2.
For Scheme 3, we use 𝜋s = (1 max(𝑛, 𝑒) max(𝑛, 𝑒)−1 ⋯ 2) and if 𝑛′ ≥ 𝑒, we use
𝜋c = (1 𝑛′ 𝑛′−1 ⋯ 2). We thenoptimize theotherparameters foragiven privacy
level 𝑧. Particularly, we perform an exhaustive search over all feasible parameter
values. For each set of parameters, unless otherwise stated, we generated 104

instances of the random setup times {𝜆𝑗} and simulated the scheme. We then

select theparameters thatyield the best expected overall latencyover the104 runs.
In Fig. I.3, weplot theexpectedoverall latency𝔼[L] (given by (I.8)) as a function

of 𝛾 for Scheme 1 with different values of 𝑧 and compare its performance to that of

58 PAPER I

the nonprivate scheme in [17]. We remark that in [17] both the upload latency and
the decoding latency are neglected, while we consider them here. For the scheme
in [17], we assume as in [17] that the users can broadcast their local data to all
ENs simultaneously. However, in general, broadcasting amessage to 𝑒 receivers is
more expensive than transmitting a single unicast message to one receiver. As in
[4], we assume that broadcasting to 𝑒 receivers is a factor log(𝑒) more expensive
in terms of latency than a single unicast. Recall that the normalized latency of
unicasting 𝑢 vectors from GF(𝑞)𝑟 is 𝛾𝑟. Hence, for the nonprivate scheme in [17],
the normalized latency of every user broadcasting its local data to all 𝑒 ENs is
Lup

NP = 𝛾 ⋅ 𝑟 ⋅ log(𝑒).
Toyield privacy, theproposed scheme involvesmore communication and com-

putation at the ENs than the nonprivate scheme, as there are multiple shares to
be transmitted and computed on instead of a single vector 𝒙𝑖 per user. As a re-
sult, the proposed scheme has a higher latency. As expected, the expected overall
latency increases with the privacy level 𝑧. For 𝛾 = 0, the latency of the private
scheme increases by a factor 1.7, 2.8, 4.0, and 4.5 for 𝑧 = 1, 2, 3, and 4, respec-
tively, compared to the nonprivate scheme, whereas for 𝛾 = 5 the factors are 2.3,
3.7, 5.0, and 8.0, respectively. The relative increase in latency increases with 𝛾

(i.e., increases with the relative communication costs) due to the aforementioned
higher communication load of the proposed scheme. We also notice that the pro-
posed scheme does not always utilize all available ENs. For example, for 𝑧 = 1

and 𝛾 = 2.5, Scheme 1 has the lowest expected overall latency when contacting
only 𝑒 = 6 ENs. The parameter 𝑒 influences not only the upload cost, but also the
numberof submatrices of𝑾, which in turn influences the number of submatrices
stored at each EN, 𝑝, which effects the multiplicity of IRs. This complex interplay
of dependencies on 𝑒 makes it difficult to predict the optimal value of 𝑒. For ex-
ample, for 𝑧 = 1, the optimal 𝑒 increaseswith 𝛾 (we have 𝑒 = 8 for 𝛾 ≥ 4) whereas
for 𝑧 = 2, 𝑒 decreases with 𝛾 (from 𝑒 = 9 for 𝛾 ≤ 1.5 to 𝑒 = 8 for 𝛾 ≥ 2).

In Fig. I.4, we compare the performance of Scheme 1 with that of Scheme 2
and the nonprivate scheme in [17]. The use of a priority queue reduces the ex-
pected overall latency, especially for high values of 𝛾, i.e., when communication
is comparatively expensive. As a result, for 𝑧 = 1, Scheme 2 performs similar to
the nonprivate scheme, while providing privacy against one honest-but-curious
server.

In Fig. I.5, we plot the expected overall latency 𝔼[L] versus 𝛾 for Scheme 2,
Scheme 3, and the scheme in [17]. The higher flexibility offered by adding re-
dundancy on𝑾 allows to further reduce the expected overall latencywith respect
to Scheme 2 for low values of 𝛾, for which the computation times dominate and
straggler mitigation is important. Interestingly, this improvement allows the pri-
vate scheme to outperform the nonprivate scheme for 𝑧 = 1. This is explained by
the high decoding cost of the scheme in [17] compared to the proposed scheme.
Indeed, the RS code used in the SSS scheme has very small length and dimension,
whereas the MDS code used in [17] has much higher length and dimension. For
example, for 𝛾 = 1 with Scheme 3 and 𝑧 = 1 we have (𝑛′, 𝑘′) = (4, 3) and for the
nonprivate scheme the code length and dimension are in the order of𝑚 (𝑚 = 600

in this scenario). Therefore, the nonprivate scheme suffers from higher decoding
latency, which significantly penalizes the expected overall latency. For high values

6 Numerical Results 59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
·104

γ

O
ve
ra
ll
n
or
m
al
iz
ed

la
te
n
cy

Scheme in [17]

Scheme 1, z = 1

Scheme 2, z = 1

Scheme 1, z = 2

Scheme 2, z = 2

Scheme 1, z = 3

Scheme 2, z = 3

Figure I.4: Expected overall normalized latency as a function of 𝛾 for different privacy
levels 𝑧 of the proposed scheme (Scheme 1) compared to the priority queue variant
(Scheme 2) and the nonprivate scheme in [17]. The parameters are 𝜇 = 2/3, 𝜏 = 0.0005,
𝜂 = 0.5, 𝑒max = 9, 𝑚 = 600, 𝑟 = 50, and 𝛿 = 3.

of 𝛾, i.e., when the communication latency becomes more critical, it is beneficial
to use as much replication as possible to increase the multiplicities of the IRs to
reduce the communication latency in the download. This means that small 𝑛 and
𝑛′ are beneficial to reduce the number of distinct IRs. As a consequence, coding
on𝑾 brings almost no improvement for high 𝛾, aswe have 𝑛 = 𝑘 and 𝑛′ = 𝑘′ (i.e.,
no RS coding) for as low 𝑘 and 𝑘′ as possible.

For some applications, the expected overall latency may not be the most
relevant performance metric. In Fig. I.6, we consider edge computing under
a deadline, where we are interested in completing the linear inference within
some overall latency. Particularly, we plot the probability that the linear infer-
ence is not completed within a deadline L, for 𝑧 = 1 and 𝛾 = 1 and 4.5. To
this end, for a given probability, we optimize over (a subset of) the parameters
(𝒞SSS,𝒞w, 𝑒, 𝜋, 𝜋c, 𝜋s, 𝑝, 𝑡, 𝑧) for 𝜋 = (1 𝑒 𝑒 − 1 ⋯ 2), 𝜋c = (1 𝑛′ 𝑛′ − 1 ⋯ 2),
𝜋s = (1 max(𝑛, 𝑒) max(𝑛, 𝑒) − 1 ⋯ 2), and 𝑧 = 1 to minimize L. The number of
samples of {𝜆𝑗} is increased to 106 to get reliable results for probabilities down to

10−4.

For 𝛾 = 4.5 and a deadline L = 104, the probability of exceeding the deadline
is 4.0 ⋅ 10−1 for Scheme 1, while it decreases to 3.9 ⋅ 10−3 for Scheme 2, i.e., two
orders of magnitude lower. Introducing coding over 𝑾 does not bring further
gains. For 𝛾 = 1 and a deadline L = 104, the probability of exceeding the deadline
is 7.2 ⋅ 10−2 for Scheme 1, while it decreases to 4.5 ⋅ 10−4 for Scheme 2. Again, we
see an improvement of about two orders of magnitude. Furthermore, for this low
value of 𝛾, introducing coding over𝑾 reduces the probability of not meeting the
deadline further to 9.7 ⋅ 10−5.

60 PAPER I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
·104

γ

O
ve
ra
ll
n
or
m
al
iz
ed

la
te
n
cy

Scheme in [17]

Scheme 2, z = 1

Scheme 3, z = 1

Scheme 2, z = 2

Scheme 3, z = 2

Figure I.5: Expected overall normalized latency as a function of 𝛾 for different privacy
levels 𝑧 of the priority queue variant (Scheme 2), the priority queue with coding on 𝑾

variant (Scheme 3), and the nonprivate scheme in [17]. The parameters are 𝜇 = 2/3,
𝜏 = 0.0005, 𝜂 = 0.5, 𝑒max = 9, 𝑚 = 600, 𝑟 = 50, and 𝛿 = 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

10−4

10−3

10−2

10−1

100

L

P
r(
L
at
en
cy

>
L
)

Scheme 1, γ = 1

Scheme 2, γ = 1

Scheme 3, γ = 1

Scheme 1, γ = 4.5

Scheme 2, γ = 4.5

Scheme 3, γ = 4.5

Figure I.6: The probability of meeting a given deadline for the private scheme (Scheme 1)
and its variants (Schemes 2 and 3) with 𝑧 = 1 for different values of 𝛾.

7 Conclusion 61

7 Conclusion

We introduced three coded edge computing schemes for linear inference at the
network edge that provide privacy against up to 𝑧 colluding edge servers while
minimizing the overall latency encompassing upload, computation, download,
and decoding latency. The proposed schemes combine secret sharing to provide
privacy and straggler resiliency, possibly coding over the network model matrix
for further straggler mitigation, and replication of subtasks across edge servers to
create cooperation opportunities between edge servers to reduce the download
communication latency. Numerical results show that, for a considered scenario
with 9 edge servers, the proposed schemeyields a 8% latency reduction compared
to the nonprivate scheme by Zhang and Simeone while providing privacy against
one honest-but-curious edge server. The privacy level can be enhanced at the
expense of a higher latency.

Appendix

A Proof of Theorem 1

Let 𝒞SSS be the (𝑛, 𝑘) RS code used in the SSS scheme. For each ℎ ∈ [𝑛], the

entries of the rows of 𝑺(ℎ) are code symbols in position ℎ of codewords from 𝒞SSS
pertaining to different users. More precisely, for each user u𝑖, each row of the

matrix �𝒔
(1)

𝑖
, 𝒔

(2)

𝑖
, … , 𝒔

(𝑛)

𝑖 � of all 𝑛 shares of u𝑖 is a codeword from 𝒞SSS. Since 𝒞SSS
is a linear code, each of the𝑚 rows of the matrix

𝑾�𝒔
(1)

𝑖
, 𝒔

(2)

𝑖
, … , 𝒔

(𝑛)

𝑖
�

is a codeword of 𝒞SSS. Furthermore, the messages obtained by decoding these
codewords are the rows of

�𝑾𝒙𝑖,𝑾𝒓
(1)

𝑖
, … ,𝑾𝒓

(𝑘−1)

𝑖 � .

Then, decoding the vectors in the set {𝑾𝒔
(ℎ)

𝑖
∣ ℎ ∈ ℐ} gives𝑾𝒙𝑖, and it follows that

{𝑾𝑺(ℎ) ∣ ℎ ∈ ℐ} gives {𝑾𝒙𝑖}.
From the properties of the SSS scheme, it follows that the mutual information

between {𝑺(ℎ) ∣ ℎ ∈ 𝒥} and {𝒙𝑖} is zero. Subsequently, from the data processing
inequality, it follows that {𝑾𝑺(ℎ) ∣ ℎ ∈ 𝒥} reveals no information about {𝒙𝑖}.

B Proof of Theorem 2

The proof makes heavy use of combinatorics. For readers unfamiliar with this
field, especially the nomenclature of blocks and points, we recommend [32]. We
define a map (𝑥)𝑒 that maps an integer 𝑥 onto the set [𝑒] by successively adding
or subtracting 𝑒 to 𝑥 until the result lies in [𝑒]. For example, for 𝑒 = 5, we have
(3)5 = 3, (−2)5 = 3, and (7)5 = 2. In contrast to taking a modulo 𝑒, we have

62 PAPER I

(𝑒)𝑒 = 𝑒, whereas 𝑒 mod 𝑒 = 0. The rationale for introducing thismap instead of
theconventionalmoduloarithmetic is that the indicesof matrix rowsandcolumns
run from 1, and not from 0.

We start by proving the recovery ability. 𝑰w is a combinatorial design 𝔇 with
𝑒 blocks—the 𝑒 sets with entries from the 𝑒 columns of 𝑰w—and 𝑒 points—each
point is the index ℓ pertaining to the submatrix𝑾ℓ. In particular, block 𝑗 of 𝔇 is

ℬ
(𝔇)

𝑗
= ℐw

𝑗
. Furthermore, each row 𝑖 of 𝑰s combined with 𝑰w represents a combi-

natorial design𝔇𝑖, where its blocks are a permutation 𝜋−(𝑖−1)(𝑒−𝑝) of the blocks in
𝔇. More precisely, we have block 𝑗 of 𝔇𝑖 as

ℬ
(𝔇𝑖)

𝑗
= ℬ

(𝔇)

𝜋−(𝑖−1)(𝑒−𝑝)(𝑗)
.

Consider𝜟(𝔇𝑖) to be an incidencematrix, of dimensions 𝑒×𝑒, where the incidence

relation is between the set of points, [𝑒], and the set of blocks, {ℬ
(𝔇𝑖)

𝑗
∣ 𝑗 ∈ [𝑒]}.

Then, to prove the recovery ability, we need to show that for

𝜟 =

𝛽+1

�

𝑖=1

𝜟(𝔇𝑖) ,

we have

𝛿𝑖𝑗 ≥ 1, ∀𝑖 ∈ [𝑒], 𝑗 ∈ [𝑒] , (I.10)

where 𝛿𝑖𝑗 is the element in the 𝑖-th row and 𝑗-th column of 𝜟.
We will now show that (I.10) holds. In the construction of 𝑰w and 𝑰s in (I.3)

and (I.5), respectively, we consider a cyclic permutation group of order 𝑒with ele-
ments

𝜋0, 𝜋, 𝜋2, … , 𝜋𝑒−1 ,

where 𝜋 is the generator and 𝜋0 is the identity element of the group. The set

{𝜋0(𝑗), 𝜋(𝑗), 𝜋2(𝑗), … , 𝜋𝑒−1(𝑗)} = [𝑒] ,

since 𝜋 is the generator of the group, and the group is transitive. Let 𝛼 be the
number of cyclic shifts between two consecutive rows of 𝑰w. Then,

𝜋𝑖(𝑗) = (𝑗 + 𝑖(𝑒 − 𝛼))𝑒 = (𝑗 − 𝑖𝛼)𝑒 ,

where 𝑖 ∈ [𝑒]. Note that the blocks of 𝔇 are

ℬ
(𝔇)

𝑗
= {𝜋0(𝑗), 𝜋(𝑗), … , 𝜋𝑝−1(𝑗)} .

We see that block 𝑗 consists of 𝑝 consecutive permutations of 𝑗. Furthermore, for
𝑑 ∈ [𝛽],

𝜋−𝑑(𝑒−𝑝)(𝑗) = (𝑗 − 𝑑(𝑒 − 𝛼)(𝑒 − 𝑝))𝑒
= (𝑗 − 𝑑𝑝𝛼)𝑒 .

REFERENCES 63

In other words, 𝜋−𝑑(𝑒−𝑝) = 𝜋𝑑𝑝. Thus, for some 𝑗 ∈ [𝑒], we have

ℬ
(𝔇)

𝜋−𝑑(𝑒−𝑝)(𝑗)
= {𝜋𝑑𝑝(𝑗), 𝜋𝑑𝑝+1(𝑗), … , 𝜋(𝑑+1)𝑝−1(𝑗)} ,

form which it follows that

ℬ
(𝔇)

𝑗
∪ �

𝛽

�

𝑑=1

ℬ
(𝔇)

𝜋−𝑑(𝑒−𝑝)(𝑗)
� = [𝑒] .

Notice that ℬ
(𝔇)

𝜋−𝑑(𝑒−𝑝)(𝑗)
is the support of 𝜹

(𝔇𝑑+1)

𝑗
, the 𝑗-th column of 𝜟(𝔇𝑑+1). Thus,

(I.10) holds.
The privacy of the scheme follows straightforwardly. Any 𝑧 colluding ENs have

access toatmost𝑎𝑧distinctmatricesof shares. Sincewehave𝑘 ≥ 𝑎𝑧+1, it follows
from Theorem 1 that the user data privacy is guaranteed.

References

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp.
1628–1656, Mar. 2017.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing–a key technology towards 5G,” ETSI white paper, no. 11, pp. 1–16,
Sep. 2015.

[3] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework
for distributed computing with straggling servers,” in Proc. IEEE Globecom
Workshops (GCWkshps), Washington, DC, USA, Dec. 2016, pp. 1–6.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speedingupdistributedmachine learningusing codes,” IEEETrans. Inf.The-
ory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[5] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal and LT codes
for distributed computing with straggling servers,” IEEE Trans. Commun.,
vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[6] A. Severinson, A. Graell i Amat, E. Rosnes, F. Lázaro, and G. Liva, “A droplet
approach based on Raptor codes for distributed computing with straggling
servers,” in Proc. 10th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC),
Hong Kong, China, Dec. 2018.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an opti-
mal design for high-dimensional coded matrix multiplication,” in Proc. Neu-
ral Inf. Process. Syst. (NIPS), Long Beach, CA, USA, Dec. 2017, pp. 4403–4413.

[8] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded com-
putation over heterogeneous clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4227–4242, Jul. 2019.

64 PAPER I

[9] S. Dutta, V. Cadambe, and P. Grover, ““Short-Dot”: Computing large linear
transforms distributedly using coded short dot products,” IEEE Trans. Inf.
Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

[10] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On
the optimal recovery threshold of coded matrix multiplication,” IEEE Trans.
Inf. Theory, vol. 66, no. 1, pp. 278–301, Jan. 2020.

[11] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding:
Avoiding stragglers in distributed learning,” in Proc. Int. Conf. Mach. Learn.
(ICML), Sydney, Australia, Aug. 2017, pp. 3368–3376.

[12] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in dis-
tributed optimization through data encoding,” in Proc. Neural Inf. Process.
Syst. (NIPS), Long Beach, CA, USA, Dec. 2017, pp. 5440–5448.

[13] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi, “Rateless
codes for near-perfect load balancing in distributed matrix-vector multipli-
cation,” Proc. ACM Meas. Anal. Comput. Syst., vol. 3, no. 3, pp. 58:1–58:40,
Dec. 2019.

[14] K. Li, M. Tao, and Z. Chen, “Exploiting computation replication for mo-
bile edge computing: A fundamental computation-communication tradeoff
study,” IEEETrans.Wireless Commun., vol. 19, no. 7, pp. 4563–4578, Jul. 2020.

[15] K. Li, M. Tao, and Z. Chen, “A computation-communication tradeoff study
for mobile edge computing networks,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Paris, France, Jul. 2019, pp. 2639–2643.

[16] K. Li, M. Tao, J. Zhang, and O. Simeone, “Multi-cell mobile edge coded com-
puting: Trading communication and computing for distributed matrix mul-
tiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), LosAngeles, CA, USA,
Jun. 2020, pp. 215–220.

[17] J. Zhang and O. Simeone, “On model coding for distributed inference and
transmission in mobile edge computing systems,” IEEE Commun. Lett.,
vol. 23, no. 6, pp. 1065–1068, Jun. 2019.

[18] K. Li, M. Tao, J. Zhang, and O. Simeone, “Coded computing and coopera-
tive transmission forwireless distributed matrix multiplication,” IEEE Trans.
Commun., vol. 69, no. 4, pp. 2224–2239, Apr. 2021.

[19] A. Frigård, S. Kumar, E. Rosnes, and A. Graell i Amat, “Low-latency dis-
tributed inference at the network edge using rateless codes,” in Proc. Int.
Symp. Wireless Commun. Syst. (ISWCS), Berlin, Germany, Sep. 2021.

[20] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure coded
computing using secret sharing via staircase codes,” IEEE Trans. Commun.,
vol. 68, no. 8, pp. 4609–4619, Aug. 2020.

REFERENCES 65

[21] R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. El Rouayheb, and H. Sefer-
oglu, “Prac: Private and rateless adaptive coded computation at the edge,” in
Proc. SPIE Defense + Commercial Sensing, Baltimore, MD, USA, May 2019.

[22] Q. Yu, S. Li, N. Raviv, S.M.M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr,
“Lagrange coded computing: Optimal design for resiliency, security, and pri-
vacy,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Naha, Japan, Apr.
2019, pp. 1215–1225.

[23] H. Yang and J. Lee, “Secure distributed computing with straggling servers
using polynomial codes,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 1, pp.
141–150, Jan. 2019.

[24] A. Felfernig, S. Polat-Erdeniz, C. Uran, S. Reiterer, M. Atas, T. N. T. Tran,
P. Azzoni, C. Kiraly, and K. Dolui, “An overview of recommender systems in
the internetof things,” J. Intell. Inf. Syst., vol. 52, no. 2, pp. 285–309, Apr. 2019.

[25] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979.

[26] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2,
pp. 74–80, Feb. 2013.

[27] J. Zhang and O. Simeone, “Fundamental limits of cloud and cache-aided
interference management with multi-antenna edge nodes,” IEEE Trans. Inf.
Theory, vol. 65, no. 8, pp. 5197–5214, Aug. 2019.

[28] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental
limits of cache-aided interferencemanagement,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Barcelona, Spain, Jul. 2016, pp. 2044–2048.

[29] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for repair
indistributed storagesystems,” inProc. 48thAnnualAllertonConf. Commun.,
Control, Comput., Monticello, IL, USA, Sep. 2010, pp. 1510–1517.

[30] G. Garrammone, “On decoding complexity of Reed-Solomon codes on the
packet erasure channel,” IEEE Commun. Lett., vol. 17, no. 4, pp. 773–776, Apr.
2013.

[31] R. Yavne, “An economical method for calculating the discrete Fourier trans-
form,” in Proc. Joint Comput. Conf., San Francisco, CA, USA, Dec. 1968, pp.
115–125.

[32] D. R. Hughes and F. Piper,DesignTheory. CambridgeUniversity Press, U.K.,
1985.

66 PAPER I

PAPER II

CodedPaddedFL and CodedSecAgg: StragglerMitigation and Se-

cure Aggregation in Federated Learning

Reent Schlegel, Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat

Submitted to IEEE Transactions on Communications.

Parts of this paper were presented at the IEEE International Conference on Com-
munications (ICC), Seoul, South Korea, May 2022, and at the European Signal Pro-
cessing Conference (EUSIPCO), Belgrade, Serbia, August/September 2022.

The layout has been revised.

1 Introduction 69

Abstract

We present two novel federated learning (FL) schemes that
mitigate theeffectof straggling devices by introducing redun-
dancy on the devices’ data across the network. Compared to
other schemes in the literature, which deal with stragglers or
device dropouts by ignoring their contribution, the proposed
schemes do not suffer from the client drift problem. The
first scheme, CodedPaddedFL, mitigates the effect of strag-
glers while retaining the privacy level of conventional FL. It
combines one-time padding for user data privacy with gradi-
ent codes to yield straggler resiliency. The second scheme,
CodedSecAgg, provides straggler resiliency and robustness
against model inversion attacks and is based on Shamir’s se-
cret sharing. We apply CodedPaddedFL and CodedSecAgg
to a classification problem. For a scenario with 120 devices,
CodedPaddedFL achieves a speed-up factor of 18 for an accu-
racy of 95% on the MNIST dataset compared to conventional
FL. Furthermore, it yields similar performance in terms of la-
tency compared to a recently proposed scheme by Prakash
et al. without the shortcoming of additional leakage of pri-
vate data. CodedSecAgg outperforms the state-of-the-art se-
cure aggregation scheme LightSecAgg by a speed-up factor of
6.6–18.7 for the MNIST dataset for an accuracy of 95%.

1 Introduction

Federated learning (FL) [1–3] is adistributed learning paradigmthat trainsanalgo-
rithm across multiple devices without exchanging the training data directly, thus
limiting the privacy leakage and reducing the communication load. More pre-
cisely, FL enables multiple devices to collaboratively learn a global model under
the coordination of a central server. At each epoch, the devices train a local model
on their local data and send the locally-trained models to the central server. The
central server aggregates the local models to update the global model, which is
sent to the devices for the next epoch of the training. FL has been used in real-
world applications, e.g., for medical data [4], text predictions on mobile devices
[5], or by Apple to personalize Siri.

Training overmany heterogeneous devices can bedetrimental to the overall la-
tency due to the effect of so-called stragglers, i.e., devices that take exceptionally
long to finish their tasks due to random phenomena such as processes running in
the background and memory access. Dropouts, which can be seen as an extreme
case of straggling, may also occur. One of the most common ways to address the
straggling/dropout problem in FL is to ignore the result of the slowest devices,
such as in federated averaging [1]. However, while this approach has only a small
impact on the training accuracywhen the data is homogeneous across devices, ig-
noring updates from the slowest devices can lead to the client drift problemwhen
the data is not identically distributed across devices[6, 7]—the global model will

70 PAPER II

tend toward local solutions of the fastest devices, which impairs the overall accu-
racyof thescheme. In [7–12], asynchronousschemeshavebeenproposed forstrag-
gler mitigation with non-identically distributed data in which the central server
utilizes stale gradients from straggling devices. However, these schemes do not in
general converge to the global optimum[7].

FL is also prone to model inversion attacks [13, 14], which allow the central
server to infer informationabout the local datasets through the local gradients col-
lected in each epoch. To prevent such attacks and preserve users’ data privacy, se-
cure aggregation protocols have been proposed [15–27] inwhich the central server
only obtains the sumof all the local model updates instead of the local updates di-
rectly. The schemes in [15–27] provide security against inversion attacks by hiding
devices’ local models via masking. The masks have an additive structure so that
they can be removed when aggregated at the central server. To provide resiliency
against stragglers/dropouts, secret sharing of the random seeds that generate the
masks between the devices is performed, so that the central server can cancel the
masks belonging to dropped devices. Among these schemes, LightSecAgg [20] is
one of the most efficient. The schemes [15–25] ignore the contribution of strag-
gling and dropped devices. However, ignoring straggling (or dropped) devices
makes these schemes sensitive to the client drift problem. The schemes in [26, 27]
are asynchronous straggler-resilient schemes that do not in general converge to
the global optimum.

The straggler problem has been addressed in the neighboring area of dis-
tributed computing using tools from coding theory. The key idea is to introduce
redundancy on the data via an erasure correcting code before distributing it to
the servers so that the computations of a subset of the servers are sufficient to
complete the global computation, i.e., the computations of straggling servers can
be ignored without loss of information. Coded distributed computing has been
proposed for matrix-vector and matrix-matrix multiplication [28–34], distributed
gradient descent [35], and distributed optimization [36].

Coding for straggler mitigation has also been proposed for edge computing
[37–39] and FL[40]. The scheme in [40] lets each device generate parity data on its
local data and share it with the central server. This allows the central server to re-
coverpartof the information corresponding to the local gradientsof the straggling
devices without waiting for their result in every epoch. However, sharing parity
data with the central server leaks information and hence the scheme provides a
lower privacy level than conventional FL.

In this paper, borrowing tools from coded distributed computing and edge
computing, we propose two novel FL schemes, referred to as CodedPaddedFL
and CodedSecAgg, that provide resiliency against straggling devices (and hence
dropouts) by introducing redundancy on the devices’ local data. Both schemes
can be divided into two phases. In the first phase, the devices share an encoded
version of their data with other devices. In the second phase, the devices and
the central server iteratively and collaboratively train a global model. The pro-
posed schemes achieve significantly lower training latency than state-of-the-art
schemes.

1 Introduction 71

Our main contributions are summarized as follows.

• We present CodedPaddedFL, an FL scheme that provides resiliency against
straggling devices while retaining the same level of privacy as conventional
FL. CodedPaddedFL combines one-timepadding to yield privacywith gradi-
ent codes [35] toprovide straggler resilience. Compared to the recent scheme
in [40], which also exploits erasure correcting codes to yield straggler re-
siliency, the proposed scheme does not leak additional information.

• We present CodedSecAgg, a secure aggregation scheme that provides strag-
gler resiliency by introducing redundancy on the devices’ local data via
Shamir’s secret sharing. CodedSecAgg provides information-theoretic se-
curity against model inversion up to a given number of colluding malicious
agents (including the central server). CodedPaddedFL and CodedSecAgg
provide convergence to the true global optimum and hence do not suffer
from the client drift phenomenon.

• For both schemes, we introduce a strategy for grouping the devices that sig-
nificantly reduces the initial latency due to the sharing of the data as well
as the decoding complexity at the central server at the expense of a slightly
reduced straggler mitigation capability.

• Neither one-time padding nor secret sharing can be applied to real-valued
data. To circumvent this problem, the proposed schemes are based on
a fixed-point arithmetic representation of the real data and subsequently
fixed-point arithmetic operations.

To the best of our knowledge, our work is the first to apply coding ideas to
mitigate the effect of stragglers in FL without leaking additional information.

The proposed schemes are tailored to linear regression.1 However, they can
also be applied to nonlinear problems via kernel embedding. We apply Coded-
PaddedFL and CodedSecAgg to a classification problem on the MNIST[45] and
Fashion-MNIST[46] datasets. For a scenario with 120 devices, CodedPaddedFL
achieves a speed-up factor of 18 on the MNIST dataset for an accuracy of 95%
compared to conventional FL, while it shows similar performance in terms of la-
tency compared to the scheme in [40] without leaking additional data. Coded-
SecAgg achieves a speed-up factor of 6.6 for 60 colluding agents and up to 18.7
for a single malicious agent compared to LightSecAgg for an accuracy of 95% on
the MNIST dataset. Our numerical results include the impact of the decoding in
the overall latency, which is often neglected in the literature (thus making com-
parisons unfair as the decoding complexity may have a significant impact on the
global latency [31]).

1Linear regression plays an important role for example to obtain trend lines, and linear models have
gained more attention in the literature recently in light of the explainability of machine learning models,
see, e.g., [41, 42], albeit linear models not being exclusive to explainability [43]. For more information on
the importance of linear regression, see, e.g., [44].

72 PAPER II

2 Preliminaries

2.1 Notation

Weuseuppercaseand lowercase bold letters formatrices and vectors, respectively,
italics for sets, and sans-serif letters for random variables, e.g., 𝑿, 𝒙,𝒳, and X rep-
resent a matrix, a vector, a set, and a random variable, respectively. An exception
to this rule is 𝝐, which will denote a matrix. Vectors are represented as row vec-
tors throughout the paper. For natural numbers 𝑐 and 𝑑, 𝟏𝑐×𝑑 denotes an all-one
matrix of size 𝑐 × 𝑑. The transpose of a matrix 𝑿 is denoted as 𝑿⊤. The support
of a vector 𝒙 is denoted by supp(𝒙), while the gradient of a function 𝑓(𝑿)with re-
spect to 𝑿 is denoted by ∇𝑿𝑓(𝑿). Furthermore, we represent the Euclidean norm
of a vector 𝒙 by ‖𝒙‖, while the Frobenius norm of a matrix 𝑿 is denoted by ‖𝑿‖F.
Given integers 𝑎, 𝑏 ∈ ℤ, 𝑎 < 𝑏, we define [𝑎, 𝑏] ≜ {𝑎,… , 𝑏}, where ℤ is the set of
integers, and [𝑎] ≜ {1,… , 𝑎} for a positive integer 𝑎. Additionally, we use (𝑎)𝑏 as
a shorthand notation for 𝑎 mod 𝑏. For a real number 𝑒, ⌊𝑒⌋ is the largest integer
less than or equal to 𝑒 and ⌈𝑒⌉ is the smallest integer larger than or equal to 𝑒. The
expectation of a random variable is denoted by 𝔼[], and we write ∼ geo(1 − 𝑝)

to denote that follows a geometric distribution with failure probability 𝑝. I(⋅; ⋅)
denotes the mutual information and H(⋅|⋅) the conditional entropy.

2.2 Fixed-Point Numbers

Fixed-point numbers are rational numbers with a fixed-length integer part and a
fixed-length fractional part. A fixed-point number with length ℓ bits and resolu-
tion 𝑓 bits can be seen as an integer from ℤ⟨ℓ⟩ = [−2ℓ−1, 2ℓ−1 − 1] scaled by 2−𝑓.

In particular, for fixed-point number 𝑥̃ it holds that 𝑥̃ = 𝑥̄ ⋅ 2−𝑓 for some 𝑥̄ ∈ ℤ⟨ℓ⟩.
We define the set of all fixed-point numbers with length ℓ and resolution 𝑓 as
ℚ⟨ℓ,𝑓⟩ ≜ {𝑥̃ = 𝑥̄2−𝑓, 𝑥̄ ∈ ℤ⟨ℓ⟩}. The set ℚ⟨ℓ,𝑓⟩ is used to represent real numbers in

the interval between −2ℓ−𝑓−1 and 2ℓ−𝑓−1 with a finite amount of, i.e. ℓ, bits.

2.3 Cyclic Gradient Codes

Gradient codes[35] are a class of codes that have been suggested for straggler mit-
igation in distributed learning and work as follows. A central server encodes par-
titions of training data via a gradient code. These coded partitions are assigned
to servers which perform gradient computations on the assigned coded data. The
central server is then able to decode the sum of the gradients of all partitions by
contacting only a subset of the servers. In particular, a gradient code that can
tolerate 𝛽 − 1 stragglers in a scenario with 𝛾 servers and 𝛾 partitions encodes 𝛾
partitions into 𝛾 codewords, one for each server, such that a linear combination
of any 𝛾 − 𝛽 + 1 codewords yields the sum of all gradients of all partitions. We
will refer to such a code as a (𝛽, 𝛾) gradient code. A (𝛽, 𝛾) gradient code overℚ⟨ℓ,𝑓⟩

consists of an encoding matrix 𝑩 ∈ ℚ
𝛾×𝛾

⟨ℓ,𝑓⟩
and a decoding matrix 𝑨 ∈ ℚ

𝑆×𝛾

⟨ℓ,𝑓⟩
, where

𝑆 is the number of straggling patterns the central server can decode. The encod-
ing matrix 𝑩 has a cyclic structure and the support of each row is of size 𝛽, while

3 SystemModel 73

the the support of each row of the decoding matrix 𝑨 is of size 𝛾−𝛽+1. The sup-
port of the 𝑖-th row of 𝑩 dictates which partitions are included in the codeword at
server 𝑖, and the entries of the 𝑖-row are the coefficients of the linear combination
of the corresponding partitions at server 𝑖. Let 𝒈1, … , 𝒈𝛾 be the gradients on par-
tition 1,… , 𝛾. Then, the gradient computed by server 𝑖 is given by the 𝑖-th row of

𝑩�𝒈⊤
1 , … , 𝒈⊤

𝛾�
⊤. The central server waits for the gradients of the 𝛾 − 𝛽 + 1 fastest

servers to decode. Let 𝒜 be the index set of these fastest devices. The central
server picks the rowof 𝑨with support𝒜 and applies the linear combination given
by this row on the received gradients. In order for the central server to receive
∑𝑖 𝒈𝑖, the requirements on 𝑨 and 𝑩 are

𝑨𝑩 = 𝟏𝑆×𝛾 . (II.11)

The construction of 𝑨 and 𝑩 can be found in [35, Alg. 1] and [35, Alg. 2], respec-
tively.

2.4 Shamir's Secret Sharing Scheme

Shamir’s secret sharing scheme (SSS)[47] over some field 𝔽with parameters (𝑛, 𝑘)
encodes a secret 𝑥 ∈ 𝔽 into 𝑛 shares 𝑠1, … , 𝑠𝑛 such that the mutual information
between 𝑥 and any set of less than 𝑘 shares is zero, while any set of 𝑘 or more
shares contain sufficient information to reconstruct the secret 𝑥. More precisely,
for any ℐ ⊂ {𝑠1, … , 𝑠𝑛} with |ℐ| < 𝑘 and any 𝒥 ⊆ {𝑠1, … , 𝑠𝑛} with |𝒥| ≥ 𝑘, we have
I(𝑥; ℐ) = 0 and H(𝑥|𝒥) = 0.

Shamir’s SSS achieves these twoproperties byencoding 𝑥 togetherwith𝑘−1 in-
dependent and uniformly randomsamples r1, … , r𝑘−1 using a nonsystematic (𝑛, 𝑘)
Reed-Solomon code. As a result, any subset of Reed-Solomon encoded symbols,
i.e., shares, of size less than 𝑘 is independently and uniformly distributed. This
means that these shares do not reveal any information about 𝑥, i.e., I(𝑥; ℐ) = 0.
On the other hand, the maximum distance separable property of Reed-Solomon
codesguarantees that any𝑘 coded symbols are sufficient to recover the initial mes-
sage, i.e., H(𝑥|𝒥) = 0, where 𝒥 denotes the set of the 𝑘 coded symbols.

3 SystemModel

In this paper, we consider a network of 𝑛 devices and a central server. Each device

𝑖 owns local data 𝒟𝑖 = �(𝒙
(𝑖)

𝑗
, 𝒚

(𝑖)

𝑗
) ∣ 𝑗 ∈ [𝑛𝑖]� consisting of 𝑛𝑖 points with feature

vectors 𝒙
(𝑖)

𝑗
and labels 𝒚

(𝑖)

𝑗
. The deviceswish to collaboratively train a global linear

model 𝜣 with the help of the central server on everyone’s data, consisting of 𝑚 =

∑𝑖 𝑛𝑖 points in total. The model 𝜣 can be used to predict a label 𝒚 corresponding
to a given feature vector 𝒙 as 𝒚 = 𝒙𝜣. Our proposed schemes rely on one-time
padding and secret sharing, both of which can not be applied on real-valued data.
To circumvent this shortcoming we use a fixed-point representation of the data.

In particular, we assume 𝒙
(𝑖)

𝑗
∈ ℚ𝑑

⟨ℓ,𝑓⟩
and 𝒚

(𝑖)

𝑗
∈ ℚ𝑐

⟨ℓ,𝑓⟩
, where 𝑑 is the size of the

feature space and 𝑐 the dimension of the label. Note that practical systems often

74 PAPER II

operate infixed-point representation, henceourschemesdonot incur ina limiting
assumption.

We represent the data in matrix form as

𝑿(𝑖) = �𝒙
(𝑖)⊤

1 , … , 𝒙
(𝑖)⊤
𝑛𝑖

�
⊤

and 𝒀(𝑖) = �𝒚
(𝑖)⊤

1 , … , 𝒚
(𝑖)⊤
𝑛𝑖

�
⊤
.

The devices try to infer the global model 𝜣 using federated gradient descent,
which we describe next.

3.1 Federated Gradient Descent

For convenience, we collect the whole data (consisting of 𝑚 data points) in matri-
ces 𝑿 and 𝒀 as

𝑿 = �

𝒙1
⋮

𝒙𝑚

� = �

𝑿(1)

⋮

𝑿(𝑛)
� and 𝒀 = �

𝒚1
⋮

𝒚𝑚

� = �

𝒀(1)

⋮

𝒀(𝑛)
� ,

where 𝑿 is of size𝑚 × 𝑑 and 𝒀 of size𝑚 × 𝑐. The global model 𝜣 can be found as
the solution of the following minimization problem:

𝜣 = argmin
𝜣′

𝑓(𝜣′) ,

where 𝑓(𝜣) is the global loss function

𝑓(𝜣) ≜
1

2𝑚

𝑚

�

𝑙=1

�𝒙𝑙𝜣− 𝒚𝑙�
2
+
𝜆

2
‖𝜣‖2

F
, (II.12)

where 𝜆 is the regularization parameter.
Let

𝑓𝑖(𝜣) =
1

2𝑛𝑖

𝑛𝑖

�

𝑗=1

‖𝒙
(𝑖)

𝑗
𝜣− 𝒚

(𝑖)

𝑗
‖2

be the local loss function at device 𝑖. We can thenwrite the global loss function in
(II.12) as

𝑓(𝜣) =

𝑛

�

𝑖=1

𝑛𝑖

𝑚
𝑓𝑖(𝜣) +

𝜆

2
‖𝜣‖2

F
.

In federated gradient descent, the model 𝜣 is trained iteratively over multiple
epochs on the local data at each device. At each epoch, the devices compute the
gradient on the local loss function of the current model and send it to the central
server. Thecentral server thenaggregates the local gradients toobtainaglobal gra-
dient which is used to update the model. More precisely, during the 𝑒-th epoch,
device 𝑖 computes the gradient

𝑮
(𝑒)

𝑖
= 𝑛𝑖∇𝜣𝑓𝑖(𝜣

(𝑒)) = 𝑿(𝑖)⊤𝑿(𝑖)𝜣(𝑒) − 𝑿(𝑖)⊤𝒀(𝑖) , (II.13)

3 SystemModel 75

where𝜣(𝑒) denotes the current model estimate. Upon reception of the gradients,

the central serveraggregates themas𝑮(𝑒) = ∑𝑖 𝑮
(𝑒)

𝑖
to update themodel according

to

∇𝜣𝑓(𝜣
(𝑒)) =

1

𝑚
𝑮(𝑒) + 𝜆𝜣(𝑒) , (II.14)

𝜣(𝑒+1) = 𝜣(𝑒) − 𝜇∇𝜣𝑓(𝜣
(𝑒)) , (II.15)

where 𝜇 is the learning rate. The updated model 𝜣(𝑒+1) is then sent back to
the devices, and (II.13) to (II.15) are iterated 𝐸 times until convergence, i.e., un-
til 𝜣(𝐸+1) ≈ 𝜣(𝐸).

3.2 Computation and Communication Latency

Wemodel the computation times of thedevices as randomvariableswith a shifted
exponential distribution, as is common in the literature [38]. This means that
the computation times comprise a deterministic time corresponding to the time
a device takes to finish a computation in its processing unit and a random setup
time due to unforseen delays such as memory access and other tasks running in
the background. Let Tcomp

𝑖
be the time it takes device 𝑖 to perform 𝜌𝑖 multiply and

accumulate (MAC) operations. We then have

Tcomp
𝑖

=
𝜌𝑖

𝜏𝑖
+ 𝑖 ,

with 𝜏𝑖 being the deterministic number of MAC operations device 𝑖 performs per
second and 𝑖 the random exponentially distributed setup time with 𝔼[𝑖] = 1/𝜂𝑖.

The devices communicate with the central server through a secured, i.e., au-
thenticated and encrypted, wireless link. This communication link is unreliable
and may fail. In case a packet is lost, the sender retransmits until a successful
transmission occurs. Let Nu

𝑖
∼ geo (1 − 𝑝𝑖) and Nd

𝑖
∼ geo (1 − 𝑝𝑖) be the num-

ber of tries until device 𝑖 successfully uploads and downloads a packet to or from
the central server, and let 𝛾u and 𝛾d be the transmission rates in the upload and
download. Then, the time it takes device 𝑖 to upload or download 𝑏 bits is

Tu
𝑖
=

Nu
𝑖

𝛾u 𝑏 and Td
𝑖
=

Nd
𝑖

𝛾d 𝑏 ,

respectively. Furthermore, we assume that the devices feature full-duplex trans-
mission capabilities, as per the LTE Cat 1 standard for Internet of Things (IoT)
devices, and have access to orthogonal channels to the central server. This means
that devices can simultaneously transmit and receive messages to and from the
central server without interference from the other devices.2

Last but not least, all device-to-device (D2D) communication is authenticated
and encrypted and is routed through the central server. This enables efficientD2D
communication, because the routing through the central server guarantees that

2Theproposed schemes applydirectly to the half-duplex case aswell. However, the full-duplex assump-
tion allows to reduce the latency and simplifies its analysis.

76 PAPER II

any two devices in the network can communicate with each other evenwhen they
are spatially separated, and the authentication and encryption prohibit man-in-
the-middle attacks and eavesdropping.

3.3 Threat Model and Goal

We assume a scenario where the central server and the devices are honest-but-
curious. The goal of CodedPaddedFL is to provide straggler resiliency while
achieving the same level of privacy as conventional FL, i.e., the central server does
not gain additional information compared to conventional FL, and (colluding)
devices do not gain any information on the data shared by other devices. For the
secure aggregation scheme, CodedSecAgg, we assume that up to 𝑧 agents (includ-
ing the central server) may collude to infer information about the local datasets
of other devices. The goal is to ensure device data privacy against the 𝑧 collud-
ing agentswhile providing stragglermitigation. Privacy in this setting means that
malicious devices do not gain any information about the local datasets of other
devices and that the central server only learns the aggregate of all local gradients
to prevent a model inversion attack.

4 Privacy-Preserving Operations on Fixed-Point Numbers

CodedPaddedFL, introduced in the next section, is based on one-time padding
to provide data privacy, while CodedSecAgg, introduced in Section 6, is based on
Shamir’s SSS. As mentioned before, neither one-time padding nor secret sharing
can be applied over real-valued data. Hence, we resort to using a fixed-point rep-
resentation of the data. In this section, we explain how to perform elementary
operations on fixed-point numbers.

Using fixed-point representation of data for privacy-preserving computations
was first introduced in [48] in the context of multi-party computation. The idea is
touse the integer 𝑥̄ to represent thefixed-pointnumber 𝑥̃ = 𝑥̄⋅2−𝑓. To thisend, the
integer 𝑥̄ is mapped into a finite field and can then be secretly shared with other
devices toperformsecureoperations suchasaddition,multiplication, anddivision
with other secretly shared values. In CodedPaddedFL and CodedSecAgg we will
use a similar approach. However, weonly need tomultiply a known numberwith a
padded numberand not twopadded numberswith eachother, which significantly
simplifies the operations.

Consider the fixed-point datatype ℚ⟨ℓ,𝑓⟩ (see Section 2.2). Secure addition on
ℚ⟨ℓ,𝑓⟩ can be performed via simple integer addition with an additional modulo
operation. Let (⋅)ℤ⟨ℓ⟩ be the map from the integers onto the set ℤ⟨ℓ⟩ given by the

modulo operation. Furthermore, let 𝑎̃, 𝑏̃ ∈ ℚ⟨ℓ,𝑓⟩, with 𝑎̃ = 𝑎̄2−𝑓 and 𝑏̃ = 𝑏̄2−𝑓.

For 𝑐̃ = 𝑎̃ + 𝑏̃, with 𝑐̃ = 𝑐̄2−𝑓, we have 𝑐̄ = (𝑎̄ + 𝑏̄)ℤ⟨ℓ⟩.

Multiplication on ℚ⟨ℓ,𝑓⟩ is performed via integer multiplication with scaling
over the reals in order to retain the precision of the datatype and an additional
modulo operation. For 𝑑̃ = 𝑎̃ ⋅ 𝑏̃, with 𝑑̃ = 𝑑̄2−𝑓, we have 𝑑̄ = (⌊𝑎̄ ⋅ 𝑏̄ ⋅ 2−𝑓⌋)ℤ⟨ℓ⟩.

5 Coded Federated Learning 77

Proposition 1 (Perfect privacy). Consider a secret 𝑥̃ ∈ ℚ⟨ℓ,𝑓⟩ and a one-time pad
𝑟̃ ∈ ℚ⟨ℓ,𝑓⟩ that is picked uniformly at random. Then, 𝑥̃ + 𝑟̃ is uniformly distributed
in ℚ⟨ℓ,𝑓⟩, i.e., 𝑥̃ + 𝑟̃ does not reveal any information about 𝑥̃.

Proposition 1 is an application of a one-time pad, which was proven secure
by Shannon in [49]. It follows that given that an adversary (having unbounded
computational power) obtains the sum of the secret and the pad, 𝑥̃ + 𝑟̃, and does
not know the pad 𝑟̃, it cannot determine the secret 𝑥̃.

Proposition 2 (Retrieval). Consider a public fixed-point number 𝑐̃ ∈ ℚ⟨ℓ,𝑓⟩, a se-
cret 𝑥̃ ∈ ℚ⟨ℓ,𝑓⟩, and a one-time pad 𝑟̃ ∈ ℚ⟨ℓ,𝑓⟩ that is picked uniformly at random.
Suppose we have the weighted sum 𝑐̃(𝑥̃ + 𝑟̃) and the one-time pad. Then, we can
retrieve 𝑐̃𝑥̃ = 𝑐̃(𝑥̃ + 𝑟̃) − 𝑐̃𝑟̃ + 𝑂(2−𝑓).

The above proposition tells us that, given 𝑐̃, 𝑐̃(𝑥̃ + 𝑟̃), and 𝑟̃, it is possible to
obtain an approximation of 𝑐̃𝑥̃. Moreover, if we choose a sufficiently large 𝑓, then
we can retrieve 𝑐̃𝑥̃ with negligible error.

5 Coded Federated Learning

In this section, we introduce our first proposed scheme, named CodedPaddedFL.
Toyield stragglermitigation, CodedPaddedFL is basedon theuseof gradientcodes
(see Section 2.3). More precisely, each device computes the gradient on a linear
combination of the data of a subset of the devices. In contrast to distributed com-
puting, however, where a user willing to perform a computation has all the data
available, in an FL scenario the data is inherently distributed across devices and
hence gradient codes cannot be applied directly. Thus, to enable the use of gradi-
ent codes, we first need to share data between devices. To preserve data privacy,
in CodedPaddedFL, our scheme one-time pads the data prior to sharing it.

CodedPaddedFL comprises two phases. In the first phase, devices share data
to enable the use of gradient codes. In the second phase, coded gradient descent
is applied on the padded data.3 In the following, we describe both phases.

5.1 Phase 1: Data Sharing

In the first phase of CodedPaddedFL, the devices share a one-time padded version
of their data with other devices. We explain next how the devices pad their data.

Each device 𝑖 generates a pair of uniformly random one-time pads RG
𝑖
∈ ℤ𝑑×𝑐

⟨ℓ⟩

and RX
𝑖
∈ ℤ𝑑×𝑑

⟨ℓ⟩
, with RX

𝑖
= RX

𝑖

⊤
. Then, device 𝑖 sends these one-time pads to

the central server. Furthermore, using the one-time pads and its data, device 𝑖
computes

𝜳𝑖 = 𝑮
(1)

𝑖
+ RG

𝑖
, (II.16)

𝜱𝑖 = 𝑿(𝑖)⊤𝑿(𝑖) + RX
𝑖
, (II.17)

3We remark that our proposed scheme deviates slightly from standard federated gradient descent as
described in Section 3.1 by trading off a pre-computation of the data for more efficient computations at
each epoch, as explained in Section 5.2.

78 PAPER II

where 𝑮
(1)

𝑖
is the gradient of device 𝑖 in the first epoch (see (II.13)). Matrices 𝜳𝑖

and 𝜱𝑖 are one-time padded versions of the first gradient and the transformed
data. As a result, the mutual information between them and the data at device 𝑖
is zero. The reason for padding the gradient of the first epoch in (II.16) and the
transformation of the dataset in (II.17) will become clear in Section 5.2.

Devices then share the padded matrices𝜳𝑖 and𝜱𝑖 with 𝛼 − 1 other devices to
introduce redundancy in the network and enable coded gradient descent in the
second phase. Particularly, as described in Section 5.2, each device computes the
gradientona linearcombinationof a subsetof {𝜳1, … ,𝜳𝑛} and {𝜱1, … ,𝜱𝑛}, where
the linear combination is determined by an (𝛼, 𝑛) gradient code. Let 𝑨 and 𝑩 be
the decoding matrix and the encoding matrix of the gradient code, respectively.
Each row and column of 𝑩 has exactly 𝛼 nonzero elements. The support of row 𝑖

determines the subset of {𝜳1, … ,𝜳𝑛} and {𝜱1, … ,𝜱𝑛} onwhich device 𝑖will com-
pute the gradient. Correspondingly, the support of column 𝑗 dictates the subset
of devices with which device 𝑗 has to share its padded data𝜳𝑗 and 𝜱𝑗. The cyclic
structure of 𝑩 guarantees that each device will utilize its own data, which is why
each device shares its data with only 𝛼 − 1 other devices while we have 𝛼 nonzero
elements in each column.

The sharing of data between devices is specified by an 𝛼 × 𝑛 assignment ma-
trix 𝜴 whose 𝑖-th column corresponds to the support of the 𝑖-th row of matrix 𝑩.
Matrix 𝜴 is given by

𝜴 = �

1 2 ⋯ 𝑛

2 3 ⋯ 1

⋮ ⋮ ⋱ ⋮

(𝛼 − 1)𝐷 + 1 (𝛼)𝐷 + 1 ⋯ (𝛼 − 2)𝐷 + 1

� .

The entry at row 𝑖 and column 𝑗 of 𝜴, 𝜔𝑖𝑗, identifies a device sharing its padded
data with device 𝑗, e.g., 𝜔⋅,𝑎 = 𝑏 means that device 𝑏 shares its data with device 𝑎.

Example 3. Consider 𝑛 = 3 devices and 𝛼 = 2. We have the transmission matrix

𝜴 = �
1 2 3

2 3 1
�, where, for instance,𝜔21 = 2 denotes that device 2 shares its padded

gradient and data, 𝜳2 and 𝜱2, with device 1. The first row says that each device
should share its data with itself, making communication superfluous, whereas the
second row says that devices 2, 3, and 1 should share their padded gradients and
data with devices 1, 2, and 3, respectively.

After the sharing of the padded data, the devices locally encode the local data
and the received data using the gradient code. Let {𝑏𝑖,𝑗} be the entries of the en-
coding matrix 𝑩. Device 𝑖 then computes

𝑪𝑖 = �𝑏𝑖,𝜔1𝑖
, … , 𝑏𝑖,𝜔𝛼𝑖

� �𝜳⊤
𝜔1𝑖
, … ,𝜳⊤

𝜔𝛼𝑖
�
⊤
, (II.18)

𝑪̄𝑖 = �𝑏𝑖,𝜔1𝑖
, … , 𝑏𝑖,𝜔𝛼𝑖

� �𝜱⊤
𝜔1𝑖
, … ,𝜱⊤

𝜔𝛼𝑖
�
⊤
, (II.19)

where (II.18) corresponds to the encoding, via the gradient code, of the padded
gradient of device 𝑖 at epoch 1 and the padded gradients (at epoch 1) received
from the𝛼−1 otherdevices, and (II.19) corresponds to theencoding of thepadded
data of device 𝑖 as well as the padded data received from the other devices. This
concludes the sharing phase of CodedPaddedFL.

5 Coded Federated Learning 79

5.2 Phase 2: Coded Gradient Descent

In the second phase of CodedPaddedFL, the devices and the central server collab-
oratively and iteratively train the global model 𝜣. As the training is an iterative
process, the model changes in each epoch. Let 𝜣(𝑒) be the model at epoch 𝑒. We
can write 𝜣(𝑒) as

𝜣(𝑒) = 𝜣(1) + 𝝐(𝑒) , (II.20)

where 𝝐(𝑒) is an update matrix and 𝜣(1) is the initial model estimate in the first
epoch. In contrast to the standard approach in gradientdescent, where the central
server sends 𝜣(𝑒) to the devices in every epoch, we will use the update matrix 𝝐(𝑒)

instead.
When device 𝑖 receives 𝝐(𝑒), it computes the gradient 𝑮̃

(𝑒)

𝑖
on the encoded data

𝑪𝑖 and 𝑪̄𝑖. More precisely, in epoch 𝑒 device 𝑖 computes

𝑮̃
(𝑒)

𝑖
= 𝑪𝑖 + 𝑪̄𝑖𝝐

(𝑒) (II.21)

(𝑎)
=

𝛼

�

𝑗=1

𝑏𝑖,𝜔𝑗𝑖
�𝑮

(1)
𝜔𝑗𝑖

+ RG
𝜔𝑗𝑖
� +

𝛼

�

𝑗=1

𝑏𝑖,𝜔𝑗𝑖
�𝑿(𝜔𝑗𝑖)⊤𝑿(𝜔𝑗𝑖) + RX

𝜔𝑗𝑖
�𝝐(𝑒)

(𝑏)
=

𝛼

�

𝑗=1

𝑏𝑖,𝜔𝑗𝑖
�𝑮

(1)
𝜔𝑗𝑖

+ 𝑿(𝜔𝑗𝑖)⊤𝑿(𝜔𝑗𝑖)𝝐(𝑒)� +

𝛼

�

𝑗=1

𝑏𝑖,𝜔𝑗𝑖
�RG

𝜔𝑗𝑖
+ RX

𝜔𝑗𝑖
𝝐(𝑒)�

(𝑐)
=

𝛼

�

𝑗=1

𝑏𝑖,𝜔𝑗𝑖
�𝑮

(𝑒)
𝜔𝑗𝑖

+ RX
𝜔𝑗𝑖
𝝐(𝑒) + RG

𝜔𝑗𝑖
� ,

where (𝑎) follows (II.18) and (II.19) together with (II.16) and (II.17), (𝑏) is a re-
ordering, and (𝑐) follows (II.13) and (II.20). Subsequently, device 𝑖 sends the gra-

dient 𝑮̃
(𝑒)

𝑖
to the central server. The central server waits for the gradients from

the 𝑛 − 𝛼 + 1 fastest devices before it starts the decoding process, i.e., the cen-
tral server ignores the results from the 𝛼 − 1 slowest devices, which guarantees
resiliency against up to 𝛼 − 1 stragglers. The decoding is based on the decod-
ing matrix 𝑨. Let 𝒜 ⊆ [𝑛], with |𝒜| = 𝑛 − 𝛼 + 1, be the set of the 𝑛 − 𝛼 + 1

fastest devices. The central server, knowing all one-time pads and 𝝐(𝑒), removes

the pads from 𝑮̃
(𝑒)

𝑖
, ∀𝑖 ∈ 𝒜, and obtains 𝑷

(𝑒)

𝑖
≜ ∑𝛼

𝑗=1
𝑏𝑖,𝜔𝑗𝑖

𝑮
(𝑒)
𝜔𝑗𝑖

. The next step is

standard gradient code decoding. Let 𝒂𝑠 = (𝑎𝑠,1, … , 𝑎𝑠,𝑛) be row 𝑠 from 𝑨 such
that supp(𝒂𝑠) = 𝒜, i.e., row 𝑠 is used to decode the straggling pattern [𝑛]\𝒜.
Then,

�

𝑖∈𝒜

𝑎𝑠,𝑖𝑷
(𝑒)

𝑖

(𝑎)
= 𝑮(𝑒)

(𝑏)
= 𝑚�∇𝜣𝑓(𝜣

(𝑒)) − 𝜆𝜣(𝑒)� , (II.22)

where (𝑎) follows the property of gradient codes in (II.11) and (𝑏) follows (II.14).
Lastly, 𝜣(𝑒+1) is obtained according to (II.15) for the next epoch.

The proposed CodedPaddedFL is schematized in Fig. II.7. It is easy to see that
our scheme achieves the global optimum.

Proposition 3. The proposed CodedPaddedFLwith parameters (𝛼, 𝑛) is resilient to
𝛼−1 stragglers, and achieves the global optimum, i.e., the optimal model obtained
through gradient descent computed over the devices’ datasets for linear regression.

80 PAPER II

Central server

D1 D2 D3

Ψ1,Φ1,Ψ2,Φ2 Ψ2,Φ2,Ψ3,Φ3 Ψ3,Φ3,Ψ1,Φ1

1

2
(Ψ1 +Φ1ε

(e))

+Ψ2 +Φ2ε
(e)

Ψ2 +Φ2ε
(e)

− (Ψ3 +Φ3ε
(e))

1

2
(Ψ1 +Φ1ε

(e))

+Ψ3 +Φ3ε
(e)

Θ(e) = Θ(1) + ε(e)

Figure II.7: An example showcasing the systemmodel aswell as an epochof the proposed
CodedPaddedFL. The system consists of 𝑛 = 3 devices and a central server. The devices
share𝜳𝑖 and𝜱𝑖. During the 𝑒-th epoch, the central server sends 𝝐(𝑒) to the devices. The
devices compute coded gradients using an (𝛼 = 2, 𝑛) gradient code, and send them to
the central server, which decodes them to compute the model update.

Proof: From (II.22), we see that during each epoch, 𝑒, the central server
obtains

∇𝜣𝑓(𝜣
(𝑒)) =

1

𝑚
𝑮(𝑒) + 𝜆𝜣(𝑒) =

1

𝑚
𝑿⊤(𝑿𝜣(𝑒) − 𝒀) + 𝜆𝜣(𝑒)

using the coded data obtained from the 𝑛−𝛼+1 fastest devices. It further obtains
an updated linearmodel using (II.15), which is exactly the update rule for gradient
descent.

5.3 Communication Latency of the Data Sharing Phase

Asmentioned in Section 3.2, weassume thatdevices areequippedwith full-duplex
technology and that simultaneous transmission between the 𝑛 devices and the
central server via orthogonal channels is possible. Thus, the sharing of data be-
tween devices according to𝜴 requires 𝛼−1 successive transmissions consisting of
upload and download. In particular, the first row of 𝜴 encompasses no transmis-
sion as each device already has access to its own data. For the other rows of 𝜴, the
communication corresponding to the data sharing specified by any given row can
be performed simultaneously, as the devices can communicate in full-duplexwith
the central server, and each device has a dedicated channel without interference
from the other devices. As a result, all data sharing as defined by 𝜴 is completed
after 𝛼−1 successive uploads and downloads. Considering Example 3, we can see
that 𝛼 − 1 = 1 transmission is enough.

Remark 2. Note that because both𝑿(𝑖)⊤𝑿(𝑖) andRX
𝑖
are symmetric,𝜱𝑖 is symmetric

as well. As a result, device 𝑖 only has to transmit the upper half of 𝜱𝑖 to the other
devices.

5 Coded Federated Learning 81

Weassume the communication cost of transmitting the one-time pads RG
𝑖
and

RX
𝑖
to the central server to be negligible as in practice thepadswill begenerated us-

ing a pseudorandom number generator such that it is sufficient to send the much
smaller seed of the pseudorandom number generator instead of the whole one-
time pads.

5.4 Complexity

We analyze the complexity of the two phases of CodedPaddedFL.

In the sharing phase, when 𝛼 > 1, device 𝑖 has to upload𝜱𝑖 and𝜳𝑖 to the cen-
tral server and download 𝛼−1 different𝜱𝑗 and𝜳𝑗 from other devices as given by

the encoding matrix 𝑩. As a result, the sharing comprises uploading 𝑑 �
𝑑+1

2
+ 𝑐�

and downloading (𝛼 − 1) 𝑑 �
𝑑+1

2
+ 𝑐� elements fromℚ⟨ℓ,𝑓⟩. The encoding encom-

passes linearly combining 𝛼matrices two times (both𝜱𝑖 and𝜳𝑖). Therefore, each

device has to perform (𝛼 − 1) 𝑑 �
𝑑+1

2
+ 𝑐� MAC operations. In the case of 𝛼 = 1,

no sharing of data and encoding takes place.

In the learning phase, devices have to compute a matrix multiplication with
a subsequent matrix addition. This requires 𝑑2𝑐 MAC operations. Subsequently,
the devices transmit their model updates, consisting of 𝑑𝑐 elements from ℚ⟨ℓ,𝑓⟩.

Remark 3. During the learning phase, the complexity of CodedPaddedFL is equiva-
lent to the complexity of conventional FL at the devices. The computations in (II.21)
are as complex as in (II.13) given a pre-computation of 𝑿(𝑖)⊤𝑿(𝑖) and 𝑿(𝑖)⊤𝒀(𝑖) and
the model updates have the same dimensions.

At each epoch, the central server has todecode the gradient code. Recall that𝑨
contains all the necessary information for decoding in the event of each straggling
pattern the code is designed for. The central server simply has to pick the row
of 𝑨 with support equal to the indices of the nonstraggling devices and take a
linear combination of the local results with coefficients from the given row of 𝑨.
This linear combination entails (𝑛 − 𝛼 + 1) 𝑑𝑐 MAC operations. In contrast, for
conventional FL, the master has to sum up 𝑛 local gradients, which entails 𝑛𝑑𝑐
additions.

The sizes of the coded data 𝑪̄𝑖 and the coded gradient𝑪𝑖 are equal to the sizes of

𝑿(𝑖)⊤𝑿(𝑖) and 𝑮
(1)

𝑖
, respectively. The encoding comprises just a linear combination

of multiple 𝑿(𝑖)⊤𝑿(𝑖) and 𝑮
(1)

𝑖
, which in turn have the same size as each 𝑿(𝑖)⊤𝑿(𝑖)

and𝑮
(1)

𝑖
. Each incoming𝑿(𝑖)⊤𝑿(𝑖) and𝑮

(1)

𝑖
at thedevices candirectly be scaled and

added to theexisting intermediate results to avoid a buffering of multiple𝑿(𝑖)⊤𝑿(𝑖)

and 𝑮
(1)

𝑖
. Furthermore, when 𝑛𝑖 > 𝑑, which is usually the case, 𝑿(𝑖)⊤𝑿(𝑖) requires

less storage space than 𝑿(𝑖), and 𝑮
(1)

𝑖
requires less space than 𝒀(𝑖), which means

that CodedPaddedFL might in fact require less storage space than conventional
FL when training is performed directly on 𝑿(𝑖).

82 PAPER II

5.5 Grouping

Toyield privacy, ourproposed schemeentails a relatively highcommunicationcost
in the sharing phase and a decoding cost at the central server, which grow with
increasing values of 𝛼. Aswe show in Section 8, values of 𝛼 close to themaximum,
i.e., 𝑛, yield the lowest overall latency, due to the strong stragglermitigation a high
𝛼 facilitates. To reduce latency further, one should reduce 𝛼while retaining a high
level of stragglermitigation. To achieve this, we partition the set of all devices into
𝑁 smaller disjoint groups and locally apply CodedPaddedFL in each group. It is
most efficient to distribute the devices among all 𝑁 groups as equally as possible,
as each group will experience the same latency. However, it is not necessary that
𝑁 divides 𝑛.

The central server decodes the aggregated gradients from each group of de-
vices first and obtains the global aggregate as the sum of the individual group
aggregates.

Example 4. Assume that there are 𝑛 = 25 devices and the central server waits for
the 10 fastest devices to finish their computation. This would result in 𝛼 = 16 as
in CodedPaddedFL the central server has to wait for the 𝑛 − 𝛼 + 1 fastest devices.
By grouping the devices into 𝑁 = 5 groups of 𝑛/𝑁 = 5 devices each, 𝛼 = 4 would
be sufficient as the central server has to wait for the 𝑛/𝑁 − 𝛼 + 1 = 5 − 4 + 1 = 2

fastest devices in each group, i.e., 10 devices in total.

Note that in the previous example the 2 fastest devices in each group are not
necessarily among the 10 fastest devices globally. This means that the straggler
mitigation capability of CodedPaddedFLwith grouping may be lower than that of
CodedPaddedFL with no grouping. As we will show numerically in Section 8,
the trade-off of slightly reduced straggler mitigation for much lower values of
𝛼—therebymuch lower initial communication load and lowerdecoding complex-
ity at the central server—can reduce the overall latency.

6 Coded Secure Aggregation

In this section, we present a coding scheme, referred to as CodedSecAgg, for miti-
gating theeffectof stragglers in FL that increases theprivacy level of traditional FL
schemes and CodedPaddedFL by preventing the central server from launching a
model inversion attack. The higher level of privacy compared to CodedPaddedFL
is achieved at the expense of a higher training time.

As with CodedPaddedFL, CodedSecAgg can be divided into two phases. First,
thedevices use Shamir’s SSS (see Section 2.4) with parameters (𝑛, 𝑘) to share their
local data with other devices in the network. This introduces redundancy of the
data which can be leveraged for straggler mitigation. At the same time, Shamir’s
SSS guarantees that any subsetof less than 𝑘devicesdoes not learnanything about
the local datasets of other devices. In the second phase, the devices perform gra-
dient descent on the SSS encoded data and send their results to the central server.
The central server can decode the received results from any 𝑘 devices to obtain the
aggregated gradient, thereby providing resiliency against up to 𝑛 − 𝑘 stragglers.

6 Coded Secure Aggregation 83

At the same time, the central server does not gain access to any local gradient and
a model inversion attack is prevented.

6.1 Phase 1: Data Sharing

The devices use Shamir’s SSS with parameters (𝑛, 𝑘) to encode both 𝑮
(1)

𝑖
and

𝑿(𝑖)⊤𝑿(𝑖) into 𝑛 shares. Let �RG
𝑖,1
, … ,RG

𝑖,𝑘−1� and �RX
𝑖,1
, … ,RX

𝑖,𝑘−1� be two sets of

𝑘 − 1 independent and uniformly distributed matrices. Device 𝑖 encodes 𝑮
(1)

𝑖

together with �RG
𝑖,1
, … ,RG

𝑖,𝑘−1� into 𝑛 shares �𝜳
(1)

𝑖
, … ,𝜳

(𝑛)

𝑖 � and 𝑿(𝑖)⊤𝑿(𝑖) together

with �RX
𝑖,1
, … ,RX

𝑖,𝑘−1� into 𝑛 shares �𝜱
(1)

𝑖
, … ,𝜱

(𝑛)

𝑖 � using a nonsystematic (𝑛, 𝑘)

Reed-Solomon code. Subsequently, each device sends one share of each encod-

ing to each of the other 𝑛−1 devices. More precisely, device 𝑖 sends𝜳
(𝑗)

𝑖
and𝜱

(𝑗)

𝑖
to device 𝑗.

Once thedatasharing iscompleted, device 𝑖has �𝜳
(𝑖)

1 , … ,𝜳
(𝑖)

𝐷 �and �𝜱
(𝑖)

1 , … ,𝜱
(𝑖)

𝐷 �.

Device 𝑖 then computes𝜳(𝑖) = ∑𝑛
𝑗=1

𝜳
(𝑖)

𝑗
and𝜱(𝑖) = ∑𝑛

𝑗=1
𝜱
(𝑖)

𝑗
. It is easy to see that

�𝜳(1), … ,𝜳(𝑛)� and �𝜱(1), … ,𝜱(𝑛)� correspond to applying Shamir’s SSS with pa-

rameters (𝑛, 𝑘) to �∑𝑖 𝑮
(1)

𝑖
, ∑𝑖 RG

𝑖,1
, … , ∑𝑖 RG

𝑖,𝑘−1�and �∑𝑖𝑿
(𝑖)⊤𝑿(𝑖), ∑𝑖 RX

𝑖,1
, … , ∑𝑖 RX

𝑖,𝑘−1�.

Hence, due to the linearity of Shamir’s SSS, the devices now obtained successfully
a secret share of 𝑮(1) and 𝑿⊤𝑿, the first aggregated global gradient and the global
dataset. This concludes the first phase.

6.2 Phase 2: Securely Aggregated Gradient Descent

The second phase is an iterative learning phase, in which the devices continue to
exploit the linearity of Shamir’s SSS by computing the gradient updates on their
shares 𝜱(𝑖) and 𝜳(𝑖). They thereby obtain a share of the new gradient in each
epoch. More precisely, in each epoch 𝑒, the devices compute

𝑮̃
(𝑒)

𝑖
= 𝜳(𝑖) +𝜱(𝑖)𝝐(𝑒) . (II.23)

In epoch 𝑒, the 𝑘 fastest devices to finish their computation send their com-

puted update 𝑮̃
(𝑒)

𝑖
to the central server, which can decode the SSS to obtain the

aggregated gradient 𝑮(𝑒) for that epoch. At the same time, the aggregated gradi-
ent is the only information the central server—and any set of less than 𝑘 colluding
devices—obtains. In the first phase, the local datasets are protected by the SSS
from any inference, and in the second phase, only shares of the aggregated gra-
dients are collected, which do not leak any information that the central server
was not supposed to learn—the central server is supposed to learn the aggregated
gradient in each epoch and there is no additional information the central server
learns. We illustrate CodedSecAgg in Fig. II.8.

Remark 4. In order to guarantee that the central server obtains the correct model
update after decoding the SSS, the devices have tomodify themultiplication of fixed-
point numbers: in the SSS, we interpret the fixed-point numbers as integers from

84 PAPER II

Central server

D1 D2 D3

Ψ(1),Φ(1) Ψ(2),Φ(2) Ψ(3),Φ(3)

Ψ(1) +Φ(1)ε(e) Ψ(2) +Φ(2)ε(e) Ψ(3) +Φ(3)ε(e)

Θ(e) = Θ(1) + ε(e)

Figure II.8: An example showcasing an epoch of CodedSecAgg. The system consists of
𝑛 = 3 devices and a central server. Each device has access to one share of the global
dataset.

ℤ⟨ℓ⟩. As described in Section 4, multiplying two fixed-point numbers involves an in-
teger multiplication with subsequent scaling to retain the precision of the datatype.
However, it is not guaranteed that the decoding algorithm of the SSS will yield
the desired result when the devices apply scaling after the integer multiplication.
Whenever a wrap-around happens, i.e., the result of an integer operation exceeds
2ℓ−1 or−2ℓ−1, which is expected to happen during the encoding of the SSS, the sub-
sequent scaling distorts the arithmetic of the SSS. To circumvent this phenomenon
and guarantee correct decoding of the global aggregate, we postpone the scaling
and apply it after the decoding of the SSS at the central server. To this end, the
range of integers we can represent has to be increased in accordance with the num-
ber of fractional bits used, i.e., the devices have to perform integer operations in
ℤ⟨ℓ+𝑓⟩, to guarantee that no overflows occur due to the postponed scaling. This en-

tails an increase in computation and communication complexity of a factor ℓ+𝑓

ℓ

compared to the case where no secret sharing is used. Furthermore, (II.23) involves
the addition of the result of a multiplication and a standalone matrix 𝜳(𝑖). In or-
der to perform a correct scaling after the decoding, we have to artificially multiply
the standalone matrix𝜳(𝑖) with the identity matrix. This can be done efficiently by

multiplying 𝑮
(1)

𝑖
with 2𝑓 prior to encoding it into {𝜳

(1)

𝑖
, … ,𝜳

(𝑛)

𝑖
}.

Reed-Solomon codes are defined over finite fields. Thus, the operations in Cod-
edSecAgg need to be performed over a finite field. To this end, for a fixed-point rep-
resentation using ℓ bits (see Section 2.2), we consider a finite field of order 𝑞 > 2ℓ+𝑓,
where 𝑞 is a prime number. Themapping between the integers corresponding to the
ℓ-bit fixed-point representation is done as follows: we map integers 0 to 2ℓ+𝑓−1−1

to the first 2ℓ+𝑓−1 elements of the finite field and −1 ↦ 𝑞 − 1, −2 ↦ 𝑞 − 2, and so
on.

Bymapping the integers to finite field elements in this way, operations in the one
domain directly translate to the other domain, i.e., additions and multiplications

6 Coded Secure Aggregation 85

of two elements from the finite field directly relate to additions and multiplications
of the corresponding integers. The map from finite field elements back to the in-
tegers is straightforward and is given by the inverse of the map given above. But,
since 𝑞 > 2ℓ+𝑓, there are some finite field elements with no corresponding integer
in ℤ⟨ℓ+𝑓⟩. However, we will only encounter these elements when the result of the

performed operations exceeds 2ℓ+𝑓−1 − 1 or −2ℓ+𝑓−1, in which case we expect un-
desired behavior anyway. In other words, we have to choose ℓ large enough so that
no overflows occur.

6.3 Complexity

The complexity analysis of CodedSecAgg is almost equivalent to that of Coded-
PaddedFL (see Section 5.4). In particular, the complexity of CodedSecAgg’s learn-
ing phase at the devices is identical to that of CodedPaddedFL and conventional
FL. We consider now the sharing phase. In the sharing phase, device 𝑖 has to

upload its 2 (𝑛 − 1) shares {𝜳
(𝑗)

𝑖
|𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖} and {𝜱

(𝑗)

𝑖
|𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖} and down-

load the 2 (𝑛 − 1) shares {𝜳
(𝑖)

𝑗
|𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖} and {𝜱

(𝑖)

𝑗
|𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖}. Further-

more, each device has to add 𝑛 matrices twice. Therefore, each device uploads

and downloads (𝑛 − 1) 𝑑 �
𝑑+1

2
+ 𝑐� elements from the finite field and performs

(𝑛 − 1) 𝑑 �
𝑑+1

2
+ 𝑐� additions (MAC operations where one of the factors is set to

1).
At each epoch, the central server has to decode Shamir’s SSS. This is equivalent

to decoding the underlying (𝑛, 𝑘) Reed-Solomon code. Because the central server
has to only recover erasures and has to correct no errors, the coefficients for any
straggling pattern can be pre-computed as was the casewith the gradient code for
CodedPaddedFL. Alternatively, the coefficients can be computed online via, e.g.,
polynomial interpolation. In any case, the central server has to compute a linear
combination of 𝑘 gradients which comprises 𝑘𝑑𝑐MAC operations.

Aswith CodedPaddedFL, the storage cost for CodedSecAgg is equal to the cost

of storing 𝑿(𝑖)⊤𝑿(𝑖) and 𝑮
(1)

𝑖
, which in turn require less space than 𝑿(𝑖) and 𝒀(𝑖)

when 𝑛𝑖 > 𝑑.

6.4 Grouping for Coded Secure Aggregation

For the proposed CodedSecAgg, the communication cost entailed by the sharing
phase and the decoding cost at the central server increase with the number of de-
vices 𝑛. Similar to CodedPaddedFL, we can reduce these costs while preserving
straggler mitigation and secure aggregation by grouping the devices into groups
and applying CodedSecAgg in each group. However, applying directly the above-
described CodedSecAgg locally in each group would leak information about the
data of subsets of devices. In particular, the central server would learn the aggre-
gated gradients in each group instead of only the global gradient. To circumvent
this problem, we introduce a hierarchical structure on the groups. Specifically,
onlyonegroup, referred to as themastergroup, sends updates to the central server
directly. This group collects themodel updates of the other groups and aggregates

86 PAPER II

them before passing the global aggregate to the central server. To prevent a com-
munication bottleneck at the master group, we avoid all devices sending updates
directly to this group by dividing the communication into multiple hierarchical
steps. At each step, we collect intermediate aggregates at fewer and fewer groups
until all group updates are aggregated at the master group.

The proposed algorithm is as follows. We groupdevices into𝑁 disjoint groups.
Contrary to CodedPaddedFL, where the groups may be of different size, here we
require equally-sized groups, i.e., 𝑁 divides 𝑛, as the inter-group communication
requires each device in a group communicating with a unique device in another
group and no twodevices communicating with the same device. Furthermore, we
require the number of devices in each group to be at least 𝑘. For notational pur-
poses, we assign each group an identifier 𝑗 ∈ [𝑁], and each device in a group is
assigned an identifier 𝑖 ∈ [𝑛/𝑁] which is used to determine which shares each
device receives from the other devices in its group in phase one of the algorithm.

Let 𝑮
(1)

𝑗,𝑖
be the first gradient of device 𝑖 in group 𝑗 and 𝑿(𝑗,𝑖)⊤𝑿(𝑗,𝑖) its data. Sim-

ilar to the above-described scheme, device 𝑖 in group 𝑗 applies Shamir’s (𝑛/𝑁, 𝑘)

SSS on 𝑮
(1)

𝑗,𝑖
and 𝑿(𝑗,𝑖)⊤𝑿(𝑗,𝑖) to obtain 𝑛/𝑁 shares �𝜳

(1)

𝑗,𝑖
, … ,𝜳

(𝑛/𝑁)

𝑗,𝑖 � and 𝑛/𝑁 shares

�𝜱
(1)

𝑗,𝑖
, … ,𝜱

(𝑛/𝑁)

𝑗,𝑖 �, respectively. Device 𝑖 sends shares𝜳
(𝑖′)

𝑗,𝑖
and𝜱

(𝑖′)

𝑗,𝑖
to all other de-

vices 𝑖′ ∈ [𝑛/𝑁]\𝑖 in the group. Device 𝑖′ then computes𝜳
(𝑖′)

𝑗
= ∑𝑖∈[𝑛/𝑁]𝜳

(𝑖′)

𝑗,𝑖
and

𝜱
(𝑖′)

𝑗
= ∑𝑖∈[𝑛/𝑁]𝜱

(𝑖′)

𝑗,𝑖
.

Let 𝑮̃
(𝑒)

𝑗,𝑖
= 𝜳

(𝑖)

𝑗
+ 𝜱

(𝑖)

𝑗
𝝐(𝑒), 𝑗 ∈ [𝑁], 𝑖 ∈ [𝑛/𝑁], be the model update of de-

vice 𝑖 in group 𝑗 at epoch 𝑒 equivalently to (II.23) and 𝑮̄
(𝑒)

𝑗
the aggregated gradi-

ent of group 𝑗 in epoch 𝑒. Similar to the above-described CodedSecAgg scheme,

�𝑮̃
(𝑒)

𝑗,1
, … , 𝑮̃

(𝑒)

𝑗,𝑛/𝑁� is the result of applying Shamir’s (𝑛/𝑁, 𝑘) SSS on 𝑮̄
(𝑒)

𝑗
. In order

to prevent the central server from learning 𝑮̄
(𝑒)

𝑗
for any 𝑗, the key idea is to com-

pute 𝑛/𝑁 shares of 𝑮(𝑒) = ∑𝑗∈[𝑁] 𝑮̄
(𝑒)

𝑗
in the master group. Devices in the master

group can then send their shares of 𝑮(𝑒) to the central server, which can decode
the SSS from any 𝑘 shares to obtain 𝑮(𝑒). Note that wewant to prevent the central

server inferring any of the individual 𝑮̄
(𝑒)

𝑗
. We can achieve this by letting device 𝑖

in themaster group compute∑𝑗 𝑮̃
(𝑒)

𝑗,𝑖
. As each 𝑮̃

(𝑒)

𝑗,𝑖
is one out of 𝑛/𝑁 shares of 𝑮̄

(𝑒)

𝑗
,

�∑𝑗 𝑮̃
(𝑒)

𝑗,1
, … , ∑𝑗 𝑮̃

(𝑒)

𝑗,𝑛/𝑁� is the result of applying Shamir’s SSS on ∑𝑗∈[𝑁] 𝑮̄
(𝑒)

𝑗
= 𝑮(𝑒).

If the central server would aggregate ∑𝑗 𝑮̃
(𝑒)

𝑗,𝑖
, share 𝑖 of the global gradient 𝑮(𝑒), it

could infer informationabout the local gradients in eachgroup 𝑗, therebyviolating
the privacy guarantee of secure aggregation.

Themodel updates 𝑮̃
(𝑒)

𝑗,𝑖
are not sent directly to device 𝑖 in the master group, to

avoid a communication bottleneck in the master group. In particular, we divide
thecommunication round intomultiple steps. Assume for simplicity, andwithout
loss of generality, that the master group is group one. We proceed as follows. In

the first step, each device 𝑖 in group 𝑗 ∈ {𝑗′ ∈ [𝑁] | 𝑗′ mod 2 = 0} sends 𝑮̃
(𝑒)

𝑗,𝑖
to

device 𝑖 in group 𝑗 − 1, which adds its own share and the received one, i.e., the

6 Coded Secure Aggregation 87

Ḡ
(e)
1

1

Ḡ
(e)
2

2

Ḡ
(e)
3

3

Ḡ
(e)
4

4

Ḡ
(e)
5

5

Ḡ
(e)
6

6

Ḡ
(e)
7

7

Ḡ
(e)
8

8

I

II

III

Ḡ
(e)
1 + Ḡ

(e)
2

1

Ḡ
(e)
3 + Ḡ

(e)
4

3

Ḡ
(e)
5 + Ḡ

(e)
6

5

Ḡ
(e)
7 + Ḡ

(e)
8

7

Ḡ
(e)
1 + · · ·+ Ḡ

(e)
4

1

Ḡ
(e)
5 + · · ·+ Ḡ

(e)
8

5

G(e) = Ḡ
(e)
1 + · · ·+ Ḡ

(e)
8

1

Figure II.9: An example of the inter-group communication for a network with 𝑁 = 8

groups. Different layers correspond to the ⌈log2(𝑁)⌉ = 3 communication steps, while
the label of each node is the group identifier. A solid line between node 𝑖 and node 𝑗
represents a physical transmission from devices in group 𝑖 to devices in group 𝑗, whereas
dashed lines represent data already available at the end node.

devices in group 𝑗−1 obtain a share of 𝑮̄
(𝑒)

𝑗−1
+𝑮̄

(𝑒)

𝑗
. In the second step, each device

𝑖 in group 𝑗 ∈ {𝑗′ ∈ [𝑁] | 𝑗′ mod 4 = 3} sends 𝐺̃
(𝑒)

𝑗,𝑖
+𝐺̃

(𝑒)

𝑗+1,𝑖
to device 𝑖 in group 𝑗−2

which again aggregates the received shares and its own. Devices in group 𝑗 − 2

now have obtained a share of 𝑮̄
(𝑒)

𝑗−2
+ 𝑮̄

(𝑒)

𝑗−1
+ 𝑮̄

(𝑒)

𝑗
+ 𝑮̄

(𝑒)

𝑗+1
. Generally, in step 𝑠, each

device 𝑖 in group

𝑗 ∈ {𝑗′ ∈ [𝑁] | 𝑗′ mod 2𝑠 = 2𝑠−1 + 1 mod 2𝑠} (II.24)

sends
min{𝑗+2𝑠−1−1,𝑁}

�

𝑗′=𝑗

𝑮̃
(𝑒)

𝑗′,𝑖
(II.25)

to device 𝑖 in group 𝑗 − 2𝑠−1. We continue this process until the devices in group

one (themaster group) have obtained shares of the global gradient𝑮(𝑒) = ∑𝑗 𝑮̄
(𝑒)

𝑗
.

In total, ⌈log2(𝑁)⌉ steps are needed to reach this goal. If the devices in each group
would directly send their results to the devices in the first group, the communica-
tion latency would be linear in 𝑁 instead of logarithmic, as 𝑁 − 1 results would
have to be communicated to the devices in the first group sequentially.

We illustrate the inter-group communication with the following example.

Example 5. Consider a network with 𝑁 = 8 groups as depicted in Fig. II.9, where
the groups are numbered 1 to 8 and represented by squares. In the first step, devices

in group 2 send their shares of 𝑮̄
(𝑒)

2 to devices in group 1, devices in group 4 their

shares of 𝑮̄
(𝑒)

4 to group 3, devices in group 6 their shares of 𝑮̄
(𝑒)

6 to group 5, and

devices in group 8 their shares of 𝑮̄
(𝑒)

8 to group 7, which is illustrated by the solid

88 PAPER II

lines. After the first step, each device in group 1 has access to a share of 𝑮̄
(𝑒)

1 +𝑮̄
(𝑒)

2 ,

devices in group 3 have shares of 𝑮̄
(𝑒)

3 +𝑮̄
(𝑒)

4 , and so forth. In the second step, devices

from group 3 send their shares of 𝑮̄
(𝑒)

3 +𝑮̄
(𝑒)

4 to devices in group 1 and devices from

group 7 their shares of 𝑮̄
(𝑒)

7 + 𝑮̄
(𝑒)

8 to group 5. In the last step, the devices in group

5 send their shares of 𝑮̄
(𝑒)

5 + 𝑮̄
(𝑒)

6 + 𝑮̄
(𝑒)

7 + 𝑮̄
(𝑒)

8 to the devices in group 1 which now

have a share of the global aggregate 𝑮(𝑒).
Notice that there is at most one solid incoming and outgoing edge at each node.

This means that at any step devices receive at most one message and send at most
one message to devices in another group. This way we avoid a congestion of the
network and can collect the shares of the aggregates efficiently in group 1. Further-
more, although we picked 𝑁 to be a power of 2, (II.24) and (II.25) hold for any 𝑁
that divides 𝑛.

At any step, each device has access to at most one share of any 𝑮̄
(𝑒)

𝑗
. Note that

shares from different groups encode different gradients and can not be used to-
gether to extract any information. As a result, the privacy is not impaired by the
grouping as we still need 𝑘 colluding devices to decode any SSS, while the central
server is only able to decode the global aggregate.

Both the grouping and the inter-group communication are detrimental to
straggler mitigation compared to CodedSecAgg with only one group. However,
aswe show in the next section, the reduced decoding cost at the central server and
the reduced communication cost in the first phase compensate for the reduced
straggler mitigation.

7 Comparison of CodedPaddedFL and CodedSecAgg

The core idea behind CodedPaddedFL and CodedSecAgg is to introduce re-
dundancy on the devices’ datasets in FL without leaking additional information
about the data to other devices. Subsequently, the redundancy can be leveraged
at the central server to mitigate the straggler effect on the overall latency. How-
ever, the privacy goals of the two schemes are different. CodedPaddedFL retains
the privacy level of conventional FL, meaning that i) no device gains information
about other devices’ datasets beyond what can be obtained from the global gra-
dient, and ii) the central server only learns the local gradients at each device. On
the other hand, CodedSecAgg has a much higher privacy goal. In particular, any
set of at most 𝑧 agents, including the central server, cannot infer any information
about the datasets and local gradients pertaining to devices outside of the set.

CodedPaddedFL introduces redundancy via gradient codes and uses one-time
padding to retain the privacy. To use gradient codes, each device needs access to 𝛼
(1 ≤ 𝛼 ≤ 𝑛) datasets, which entails downloading 𝛼 − 1 other (one-time padded)
datasets. In contrast, CodedSecAgg utilizes Shamir’s SSS, i.e., a combination of
Reed-Solomon codes and padding, to introduce redundancy and retain the pri-
vacy. Here, each device needs to download 𝑛 − 1 other datasets. This means that
theadditional privacyof thedevices’ datasets is tradedoffwithapotentially higher
communication load in the sharing phase. Furthermore, the necessity to prevent

8 Numerical Results 89

the central server from learning any local gradient puts additional limitations on
the grouping in CodedSecAgg. In CodedPaddedFL, the central server can simply
apply the scheme in each group separately and aggregate the gradients from all
groups directly whereas in CodedSecAgg we need an evolved protocol to aggre-
gate the gradients from different groups that involves multiple communication
rounds.

In conclusion, when model inversion attacks are of no concern, e.g., when the
central server is trusted, CodedPaddedFL is the most efficient scheme. However,
when the central server shall be prevented from learning local gradients, Coded-
SecAgg provides this additional privacy at a slightly higher communication cost.

8 Numerical Results

We simulate an FL network in which devices want to collaboratively train on the
MNIST [45] and Fashion-MNIST [46] datasets, i.e., we consider the application
of the proposed schemes to a classification problem. To do so, we preprocess the
datasets using kernel embedding via Python’s radial basis function sampler of the
sklearn package (with 5 as kernel parameter and 2000 features). We divide the
datasets into training and test sets. Furthermore, the training set is sorted accord-
ing to the labels to simulate non-identically distributed data before it is divided
into 𝑛 equally-sized batches which are assigned without repetition to the 𝑛 de-
vices. We use ℓ = 48 bits to represent fixed-point numbers with a resolution of
𝑓 = 24 bits in CodedPaddedFL and CodedSecAgg, whereas we use 32-bit floating
point numbers to represent the data for the schemes we compare with, i.e., con-
ventional FL, the scheme in [40], and LightSecAgg. For our proposed schemes,
we assume that the computation of the first local gradient and 𝑿(𝑖)⊤𝑿(𝑖) happens
offline because no interaction is required by the devices to compute those. We
sample the setup times 𝑖 at each epoch and assume that they have an expected
value of 50% of the deterministic computation time. In particular, device 𝑖 per-

forming 𝜌𝑖 MAC operations at each epoch yields 𝜂𝑖 =
2𝜏𝑖

𝜌𝑖
. For the communication

between the central server and the devices, we assume they use the LTE Cat 1 stan-
dard for IoT applications, which means that the corresponding rates are 𝛾d = 10

Mbit/s and 𝛾u = 5 Mbit/s. The probability of transmission failure is 𝑝𝑖 = 0.1 and
we add a 10% header overhead to all transmissions. For the learning, we use a reg-
ularization parameter 𝜆 = 9 × 10−6 and an initial learning rate of 𝜇 = 6.0, which
is updated as 𝜇 ← 0.8𝜇 at epochs 200 and 350.

8.1 Coded Federated Learning

We first consider a network with 𝑛 = 25 devices. We model the heterogeneity by
varying the MAC rates 𝜏𝑖 across devices. In particular, we have 10 devices with a
MAC rate of 25 ⋅ 106 MAC/s, 5 devices with 5 ⋅ 106, 5 with 2.5 ⋅ 106, and the last
5with 1.25 ⋅ 106, whereas the central server has a MAC rate of 8.24 ⋅ 1012 MAC/s.
These MAC rates are chosen in accordance with the performance that can be ex-
pected fromdeviceswith chips from theTexas Instruments TI MSP430 family[50].
For the conventional FL training, we perform mini-batch gradient descent where
weuse a fifth of the data at each epoch. Wechose themini-batch size as a compro-

90 PAPER II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL, no grouping, α = 6
CodedPaddedFL, no grouping, α = 16
CodedPaddedFL, no grouping, α = 23
CodedPaddedFL, no grouping, α = 25
Conventional FL

Coded FL [40], redundancy = 0.8

Coded FL [40], redundancy = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.7

0.8

0.9

Training time (h)

A
cc
u
ra
cy

conventional FL

Coded FL [24], redundancy = 0.8

Coded FL [24], redundancy = 0.1
α = 6
α = 16
α = 23
α = 25

(a) MNIST dataset

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.5

0.6

0.7

0.8

0.85

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL, no grouping, α = 6
CodedPaddedFL, no grouping, α = 16
CodedPaddedFL, no grouping, α = 23
CodedPaddedFL, no grouping, α = 25
Conventional FL

Coded FL [40], redundancy = 0.8

Coded FL [40], redundancy = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.5

0.6

0.7

0.8

0.85

Training time (h)

A
cc
u
ra
cy

Coded FL [24], redundancy = 0.8

Coded FL [24], redundancy = 0.1
α = 6
α = 16
α = 23
α = 25

(b) Fashion-MNIST dataset

Figure II.10: Training time for the proposed CodedPaddedFL with different values of 𝛼,
the coded FL scheme in [40], and conventional FL.

mise between the extreme cases: a low mini-batch size does not allow for much
parallelizationwhereas a largemini-batch sizemight be exceeding the paralleliza-
tion capabilities of the devices and thereby slow the training down. Note that for
CodedPaddedFL, we train on 𝑿(𝑖)⊤𝑿(𝑖) for which it does not give any benefits to
train on mini-batches. Training on smaller batches can significantly speed up the
gradient computation when the complexity depends on the dataset size as is the
case for conventional FL. However, the pre-computation of 𝑿(𝑖)⊤𝑿(𝑖) renders the
gradient computation independent of the dataset size in CodedPaddedFL. The
simulation implementation code is available at [51].

In Fig. II.10a, we plot the accuracy over the training time on theMNIST dataset
for the proposed CodedPaddedFL with no grouping, i.e., for 𝑁 = 1, for different
values of 𝛼 ∈ {6, 16, 23, 25}, conventional FL, and the scheme in [40]. Note that
𝛼 = 25 corresponds to a replication scheme where all devices share their padded
data with all other devices. By the initial offsets in the plot, we can see that the
encoding and sharing, i.e., phase one, takes longer with increasing values of 𝛼.
However, the higher straggler mitigation capabilities of high values of 𝛼 result in
steep curves. Our numerical results show that the optimal value of 𝛼 depends on
the target accuracy. For the considered scenario, 𝛼 = 23 reaches an accuracy of
95% the fastest. Conventional FL has no initial sharing phase, so the training can
start right away. However, the lack of straggler mitigation capabilities result in
a slow increase of accuracy over time. For an accuracy of 95%, CodedPaddedFL
yields a speed-up factor of 6.6 compared to conventional FL. For levels of accuracy
below 90%, conventional FL performs best and there are also some 𝛼, such as 𝛼 =

6, where theperformanceof CodedPaddedFL is never better than forconventional
FL.

The scheme in [40] achieves speed-ups in training timeby trading off theusers’
data privacy. In short, in this scheme devices offload computations to the central
server through the parity data to reduce their own epoch times. The more a de-
vice is expected to straggle, the more it offloads to the central server. To quantify

8 Numerical Results 91

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL, no grouping, α = 23
Conventional FL, 0 drops
Conventional FL, 5 drops, average
Conventional FL, 10 drops, average
Conventional FL, 5 drops, worst case
Conventional FL, 10 drops, worst case

(a) MNIST dataset

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.4

0.5

0.6

0.7

0.8

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL, no grouping, α = 23
Conventional FL, 0 drops
Conventional FL, 5 drops, average
Conventional FL, 10 drops, average
Conventional FL, 5 drops, worst case
Conventional FL, 10 drops, worst case

(b) Fashion-MNIST dataset

Figure II.11: Training time for the proposed CodedPaddedFL with 𝛼 = 23 and conven-
tional FL with a subset of the fastest devices.

howmuchdata is offloaded, the authors introduce a parameter called redundancy
which lies between 0 and 1. A low value of redundancy means little data is of-
floaded and thereby leaked, whereas a high value of redundancy means that the
central server does almost all of the computations and results in a high informa-
tion leakage. We consider two levels of redundancy for our comparison, 0.1 and
0.8. We can see that for a redundancy of 0.1 our scheme outperforms the scheme
in [40] for significant levels of accuracy whereas CodedPaddedFL is only slightly
slower for a redundancy of 0.8. Note, however, that a redundancy of 0.8 means
that the devices offload almost all of the data to the central server, which not only
leaks thedata but also transforms the FLproblem intoa centralized learning prob-
lem.

In Fig. II.10b, we plot the accuracy over training time for the Fashion-MNIST
dataset with no grouping, i.e., for 𝑁 = 1. We observe a similar qualitative perfor-
mance. In this case, 𝛼 = 25 is thevalue forwhichCodedPaddedFLachieves fastest
an accuracy of 85%, yielding a speed-up factor of 9.2 compared to conventional
FL. For a target accuracy between 80% and 85%, CodedPaddedFL with different
𝛼 < 25 performs best.

8.2 Client Drift

In Figs. II.11a and II.11b, we compare the performance of CodedPaddedFL with
𝑁 = 1 (i.e., no grouping) for 𝛼 = 23 with that of conventional FL where the 5 or
10 slowest devices are dropped at each epoch for the MNIST and Fashion-MNIST
datasets, respectively. For conventional FL, we plot the average performance and
the worst-case performance. Dropping devices in a heterogeneous network with
strongly non-identically distributed data can have a big impact on the accuracy.
This is highlighted in the figures; while dropping devices causes a limited loss in
accuracy on average, in some cases the loss is significant. For the MNIST dataset,
in the worst simulated case, the accuracy reduces to 82.4% for 5 dropped devices

92 PAPER II

0 0.5 1 1.5 2 2.5 3
0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL, no grouping
CodedPaddedFL, grouping
Conventional FL

Figure II.12: Training on the MNIST dataset with CodedPaddedFL, with and without
grouping the 𝑛 = 120 devices.

and to 72.1% for 10 dropped devices (see Fig. II.11a), underscoring the client drift
phenomenon. For the Fashion-MNISTdataset, the accuracy reduces to 82.7%and
61.5% for 5 and 10 dropped devices, respectively (see Fig. II.11b). The proposed
CodedPaddedFL outperforms conventional FL in all cases; CodedPaddedFL has
the benefit of dropping the slow devices in each epoch while not suffering from a
loss in accuracy due to the redundancy of the data across the devices (see Propo-
sition 3).

8.3 Grouping

The advantages of grouping the devices when training on the MNIST dataset are
demonstrated in Fig. II.12. We now consider a network with 𝑛 = 120 devices and
draw their MAC rates uniformly at random from the set of available rates (25, 5,
2.5, and 1.25 ⋅ 106 MAC/s). For a given target accuracy, we minimize the training
timeoverall values of 𝛼 and numberof groups𝑁with the constraint that𝑁 divides
𝑛 to limit the search space. For the baselinewithout grouping, we fix𝑁 = 1. Aswe
can see, grouping significantly reduces the initial communication load of Coded-
PaddedFL. This is traded off with a shallower slope due to slightly longer average
epoch times because of the reduced stragglermitigation capabilities when group-
ing devices. Nevertheless, the gains from the reduced time spent in phase one
are too significant, and grouping the devices reduces the overall latency signifi-
cantly for 𝑛 = 120 devices. As a result, CodedPaddedFL with grouping achieves
a speed-up factor of 18 compared to conventional FL for a target accuracy of 95%
in a network with 𝑛 = 120 devices.

8.4 Coded Secure Aggregation

In Fig. II.13 (leftplot), weplot the trainingover time forourproposedCodedSecAgg
and compare it with LightSecAgg for different number of colluding agents 𝑧when
training on the MNIST dataset. We consider a network with 𝑛 = 120 devices.
As with CodedPaddedFL, our proposed scheme again distinguishes itself by the
initial offset due to the sharing of data in phase one which quickly is made up for

8 Numerical Results 93

0 0.5 1 1.5 2 2.5 3
0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL
CodedSecAgg, z = 1
LightSecAgg, z = 1
CodedSecAgg, z = 5
LightSecAgg, z = 5
CodedSecAgg, z = 10
LightSecAgg, z = 10
CodedSecAgg, z = 20
LightSecAgg, z = 20
CodedSecAgg, z = 30
LightSecAgg, z = 30
CodedSecAgg, z = 60
LightSecAgg, z = 60

0 5 10 15 20 25 30
0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedPaddedFL
CodedSecAgg, z = 1
LightSecAgg, z = 1
CodedSecAgg, z = 50
LightSecAgg, z = 50
CodedSecAgg, z = 100
LightSecAgg, z = 100
CodedSecAgg, z = 200
LightSecAgg, z = 200
CodedSecAgg, z = 300
LightSecAgg, z = 300
CodedSecAgg, z = 600
LightSecAgg, z = 600

Figure II.13: Trainingon theMNISTdatasetwithCodedPaddedFLandCodedSecAggwith
grouping in comparison to LightSecAgg for 𝑛 = 120 (left plot) and 𝑛 = 1000 (right plot)
devices.

by a much reduced average epoch time due to the straggler mitigation in phase
two. As a result, our proposed CodedSecAgg achieves a speed-up factor of 18.7
compared to LightSecAgg for a target accuracy of 95% when providing security
against a single malicious agent.

We notice that CodedSecAgg is more sensitive to an increase in the security
level 𝑧 whereas LightSecAgg is almost unaffected regardless whether one desires
to be secure against a single malicious agent or 60 colluding agents. A reason why
our proposed scheme is more affected lies in the grouping: we require 𝑘 > 𝑧, i.e.,
we requiremore than 𝑧 devices in each group. As a result, a high valueof 𝑧 restricts
theflexibility in grouping thedevices. Nevertheless, evenwhenweallow60 agents
to collude, i.e., half of the devices, our scheme achieves a speed-up factor of 6.6.
Note that for 𝑧 = 60, CodedSecAgg requires at least 61 devices per group. Given
that there are only 120 devices in total andwe require each group to have the same
size, there is only one group of devices, i.e., no grouping, for 𝑧 = 60.

Wecanalsoquantify theadditional cost in termsof latency that secureaggrega-
tion imposes compared to CodedPaddedFLwhere the central servermay learn the
local models. For an accuracy of 95% on the MNIST dataset, to prevent a model
inversion attack CodedSecAgg incurs a moderate additional 34% of latency com-
pared to CodedPaddedFL.

In Fig. II.13 (right plot), we increase the number of devices in the network to
𝑛 = 1000. Qualitatively little changes compared to the scenario in the left plot,
which highlights the great scalability with the number of devices of our proposed
scheme. However, we seeadecrease in theadditional relative latencydue to secure
aggregation. CodedSecAgg with a privacy level of 𝑧 = 1 now needs only 15%
more latency compared to CodedPaddedFL. The higher cost of the sharing phase
of CodedSecAggcompared toCodedPaddedFLbecomesnegligible in the long run.
Due to the large number of devices, the straggler effect becomes more severe and
the epoch times become longer. In comparison, the slightly longer sharing phase
of CodedSecAgg is barely noticeable. Compared to LightSecAgg, CodedSecAgg
achieves a speed-up factor of 10.4 for 600 colluding agents, whereas the speed-up
factor increases to 38.9 for a single malicious agent in the network.

We observe similar performance of CodedSecAgg on the Fashion-MNIST
dataset, both compared to LightSecAgg and CodedPaddedFL.

94 PAPER II

9 Conclusion

Weproposed two new federated learning schemes schemes, referred to as Coded-
PaddedFL and CodedSecAgg, that mitigate the effect of stragglers. The proposed
schemes borrow concepts from coded distributed computing to introduce redun-
dancyacross the network, which is leveragedduring the iterative learning phase to
provide straggler resiliency—the central server can update the global model based
on the responses of a subset of the devices.

CodedPaddedFL and CodedSecAgg yield significant speed-up factors com-
pared to conventional federated learning and the state-of-the-art secure aggrega-
tion scheme LightSecAgg, respectively. Further, they converge to the global opti-
mumanddonot suffer from theclientdrift problem. While theproposed schemes
are tailored to linear regression, they can be applied to nonlinear problems such
as classification through kernel embedding.

An interesting topic for future work is to investigate how to adapt Coded-
PaddedFL and CodedSecAgg to nonlinear problems, e.g., through the use of La-
grange coding [52] and pice-wise linear functions. Furthermore, investigating
ways to perform multiple local gradient updates in CodedPaddedFL and Coded-
SecAgg before aggregating the local gradients at the central server to reduce the
communication load in the network is another interesting direction to pursue.

References

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Ar-
cas, “Communication-efficient learningof deepnetworks fromdecentralized
data,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Fort Lauderdale,
FL, Apr. 2017, pp. 1273–1282.

[2] J. Konec̆ný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,”
in NIPS Workshop Private Multi-Party Mach. Learn. (PMPML), Barcelona,
Spain, Dec. 2016.

[3] T. Li, A. K. Sahu, A. Talwalkar, andV. Smith, “Federated learning: Challenges,
methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp.
50–60, May 2020.

[4] A. Jochems et al., “Developing and validating a survival prediction model
for NSCLC patients through distributed learning across 3 countries,” Int. J.
Radiat. Oncol. Biol. Phys., vol. 99, no. 2, pp. 344–352, Oct. 2017.

[5] K. Bonawitz et al., “Towards federated learning at scale: System design,” in
Proc. Mach. Learn. Syst. (MLSys), Stanford, CA, Mar./Apr. 2019, pp. 374–388.

[6] Z. Charles and J. Konec̆ný, “On the outsized importance of learning rates in
local update methods,” Jul. 2020, arXiv:2007.00878.

REFERENCES 95

[7] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani, “Linear convergence in
federated learning: Tackling client heterogeneity and sparse gradients,” in
Proc.Neural Inf. Process. Syst. (NeurIPS), online, Dec. 2021, pp. 14 606–14 619.

[8] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” Mar.
2019, arXiv:1903.03934.

[9] Y. Li, S. Yang, X. Ren, and C. Zhao, “Asynchronous federated learning with
differential privacy for edge intelligence,” Dec. 2019, arXiv:1912.07902.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Fed-
erated optimization for heterogeneous networks,” in Proc. ICML Workshop
Adaptive Multitask Learn. (AMTL), Long Beach, CA, Jun. 2019.

[11] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objec-
tive inconsistency problem in heterogeneous federated optimization,” in
Proc. Neural Inf. Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2020, pp.
7611–7623.

[12] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: A semi-
asynchronous protocol for fast federated learning with low overhead,” IEEE
Trans. Comput., vol. 70, no. 5, pp. 655–668, May 2021.

[13] M. Fredrikson, S. Jha, andT. Ristenpart, “Model inversionattacks that exploit
confidence information and basic countermeasures,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), Denver, CO, Oct. 2015, pp. 1322–1333.

[14] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring
class representatives: User-level privacy leakage from federated learning,” in
Proc. IEEE Int. Conf. Comp. Commun. (INFOCOM), Paris, France, Apr./May
2019, pp. 2512–2520.

[15] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preservingmachine learning,” inProc.ACMSIGSACConf. Comput. Commun.
Secur. (CCS), Dallas, TX, Oct./Nov. 2017, pp. 1175–1191.

[16] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramachandran, “Fast-
SecAgg: Scalable secure aggregation for privacy-preserving federated learn-
ing,” in Int. Workshop Fed. Learn. User Privacy Data Confidentiality, Vienna,
Austria, Jul. 2020.

[17] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel. Ar-
eas Inf. Theory, vol. 2, no. 1, pp. 479–489, Mar. 2021.

[18] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Se-
cure single-server aggregation with (poly)logarithmic overhead,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), online, Nov. 2020, pp.
1253–1269.

96 PAPER II

[19] A. R. Elkordy and A. S. Avestimehr, “HeteroSAg: Secure aggregation with
heterogeneous quantization in federated learning,” IEEE Trans. Commun.,
vol. 70, no. 4, pp. 2372–2386, Apr. 2022.

[20] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E. Ali, B. Güler, and S. Avestimehr,
“LightSecAgg: a lightweight and versatile design for secure aggregation in
federated learning,” in Proc. Mach. Learn. Syst. (MLSys), Santa Clara, CA,
Aug./Sep. 2022.

[21] Y. Zhao and H. Sun, “Information theoretic secure aggregation with user
dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Melbourne, Australia,
Jul. 2021, pp. 1124–1129.

[22] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and verifiable fed-
erated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 911–926, 2020.

[23] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “Swif-
tAgg: Communication-efficient and dropout-resistant secure aggregation
for federated learning with worst-case security guarantees,” Feb. 2022,
arXiv:2202.04169.

[24] A. R. Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “EIFFeL: Ensuring
integrity for federated learning,” Dec. 2021, arXiv:2112.12727.

[25] T. Jahani-Nezhad, M. A.Maddah-Ali, S. Li, and G. Caire, “SwiftAgg+: Achiev-
ing asymptotically optimal communication load in secure aggregation for
federated learning,” Mar. 2022, arXiv:2203.13060.

[26] J. So, R. E. Ali, B. Güler, andA. S. Avestimehr, “Secureaggregation forbuffered
asynchronous federated learning,” in 1st NeurIPS Workshop New Frontiers
Fed. Learn. (NFFL), online, Dec. 2021.

[27] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggregation,” in
Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), online, Mar. 2022, pp.
3581–3607.

[28] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework
for distributed computing with straggling servers,” in Proc. IEEE Globecom
Workshops (GCWkshps), Washington, DC, Dec. 2016.

[29] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an opti-
mal design for high-dimensional coded matrix multiplication,” in Proc. Neu-
ral Inf. Process. Syst. (NIPS), Long Beach, CA, Dec. 2017, pp. 4403–4413.

[30] K. Lee, M. Lam, R. Pedersani, D. Papailiopoulos, and K. Ramachandran,
“Speedingupdistributedmachine learningusing codes,” IEEETrans. Inf.The-
ory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[31] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal and LT codes
for distributed computing with straggling servers,” IEEE Trans. Commun.,
vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

REFERENCES 97

[32] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded com-
putation over heterogeneous clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4227–4242, Jul. 2019.

[33] S. Dutta, V. Cadambe, and P. Grover, ““Short-Dot”: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

[34] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” IEEE
Trans. Inf. Theory, vol. 66, no. 1, pp. 278–301, Jan. 2020.

[35] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding:
Avoiding stragglers in distributed learning,” in Proc. Int. Conf. Mach. Learn.
(ICML), Sydney, Australia, Aug. 2017, pp. 3368–3376.

[36] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in dis-
tributed optimization through data encoding,” in Proc. Neural Inf. Process.
Syst. (NIPS), Long Beach, CA, Dec. 2017, pp. 5440–5448.

[37] R. Schlegel, S. Kumar, E. Rosnes, and A. Graell i Amat, “Privacy-preserving
coded mobile edge computing for low-latency distributed inference,” IEEE J.
Sel. Areas Commun., vol. 40, no. 3, pp. 788–799, Mar. 2022.

[38] J. Zhang and O. Simeone, “On model coding for distributed inference and
transmission in mobile edge computing systems,” IEEE Commun. Lett.,
vol. 23, no. 6, pp. 1065–1068, Jun. 2019.

[39] A. Frigård, S. Kumar, E. Rosnes, and A. Graell i Amat, “Low-latency dis-
tributed inference at the network edge using rateless codes,” in Proc. Int.
Symp. Wireless Commun. Syst. (ISWCS), Berlin, Germany, Sep. 2021.

[40] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr, and
N. Himayat, “Coded computing for low-latency federated learning overwire-
less edge networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 233–250,
Jan. 2021.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?” Explain-
ing the predictions of any classifier,” in Proc. 22nd ACM SIGKDD Int. Conf.
Knowledge Discovery Data Mining (KDD), San Francisco, CA, Aug. 2016, pp.
1135–1144.

[42] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proc. Int. Conf. Mach. Learn.
(ICML), Sydney, Australia, Aug. 2017, pp. 3145–3153.

[43] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (XAI):
Toward medical XAI,” IEEE Trans. Neural Network Learn. Syst., vol. 32, no. 11,
pp. 4793–4813, Nov. 2021.

98 PAPER II

[44] IBM. (2022). [Online]. Available: https://www.ibm.com/se-en/topics/
linear-regression

[45] Y. LeCun, C. Cortes, and C. J. C. Burges, “TheMNISTdatabaseof handwritten
digits.” [Online]. Available: http://yann.lecun.com/exdb/mnist

[46] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel imagedataset for
benchmarking machine learning algorithms,” Aug. 2017, arXiv:1708.07747.
[Online]. Available: https://research.zalando.com/project/fashion_mnist/
fashion_mnist

[47] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979.

[48] O. Catrina and A. Saxena, “Secure computation with fixed-point numbers,”
in Proc. Int. Conf. Financial Crypto. Data Secur. (FC), Tenerife, Spain, Jan.
2010, pp. 35–50.

[49] C. E. Shannon, “Communication theory of secrecy systems,” The Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.

[50] Texas Instruments. MSP430 microcontrollers. [Online].
Available: https://www.ti.com/microcontrollers-mcus-processors/
microcontrollers/msp430-micrcontrollers/overview.html

[51] R. Schlegel. (2022). [Online]. Available: https://github.com/ReentSchlegel/
CodedPaddedFL-and-CodedSecAgg-Straggler-Mitigation-and-Secure-
Aggregation-in-Federated-Learning

[52] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S. Aves-
timehr, “Lagrange coded computing: Optimal design for resiliency, security,
and privacy,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS), Okinawa,
Japan, Apr. 2019, pp. 1215–1225.

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230860120 (print)
9788230859469 (PDF)

	108335 Reent Schlegel_Elektronisk
	108335 Reent Schlegel_korrekturfil
	108335 Reent Schlegel_innmat
	108335 Reent SchlegelElektronsk_bakside
	108335 Reent SchlegelElektronsk_bakside

