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Samandrag

Med utviklinga av avanserte datainnsamlingsteknikkar og digitalisering,
har omfanget av tilgjengelig data i ulike fagfelt auka enormt. Det blir
difor stadig viktigare med e�ektive og nøyaktige algoritmar innan statistisk
modellering, og denne avhandlinga inneheld bidrag til dette. Bidraga kan
kategoriserast i to hovudtema: glisne (sparse) Bayesianske metodar og
statistiske levetidsmodellar.

Glisne Bayesianske metodar har fått auka interesse dei siste åra, mel-
lom anna på grunn av at dei produserer modellar som generaliserer godt og
som er robuste mot data som inneheld mykje støy. Det �nst mange ulike
variantar av Bayesianske metodar, som til dømes metodar som brukar
Markov Chain Monte Carlo. Denne avhandlinga fokuserer på den em-
pirisk Bayesianske tilnærminga. Avhandlinga undersøker både nye glisne
Bayesianske modellar og ein ny generell løysingsstrategi for desse model-
lane. I den nye løysingsstrategien brukar ein R-pakken, Template Model
Builder (TMB), til å optimere modellparametrane ved å bruke automa-
tisk derivasjon. Ein algoritme som forbetrar kjøretida for estimering av
dei latente variablene i TMB, vert også presentert. Ved å bruke denne
algoritmen oppnår ein tilnærma lik tidsbruk ved å bruke TMB som dei
orginale algoritmane for desse Bayesianske modellane. Løysingsstrategien
gjer det enkelt å justere modellane utan å måtte utleie nye komplekse algo-
ritmar, og dette blir demonstrert ved å bruke den på nye glisne Bayesianske
modellar. I tillegg til modellane som er utleia i det nye løysingsrammever-
ket, inneheld avhandlinga også ei analytisk løysing til ein ny modell som
er relatert til Bayesiansk lasso. I motsetning til Bayesiansk lasso, gir den
nye modellen glisne løysingar og kan også bli brukt til å løyse ikkje-lineære
regresjonsproblem.

Det andre temaet for denne avhandlinga er statistiske levetidsmodel-
lar. Her blir det presenterer ei ny multivariat fordeling for å modellere
avhengige levetider, som blir kalla søskenfordelinga. Fordelinga blir de-
�nert ut frå levetida for søsken, der avhengighetsstrukturen blir indusert
gjennom felles mor. Søskenfordelinga blir konstruert slik at komponen-
tane som er knytt til mor er inkludert som latente variablar, og ein treng
difor ingen informasjon om henne. Sjølv om fordelinga vert presentert
som ei fordeling av leveår, kan den bli nytta meir generelt på avhengige
komponentar. Vi beviser at den bivariate søskenfordelinga med konstante
rater er Multivariate Totally Positive of order two (MTP2), som er ein
sterk avhengig eigenskap og indikerer mellom anna ein positiv kovarians.
Modellparametrane er fødsels- og dødsratene, i tillegg til dei individuelle
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tidspunkta for død. Estimering av desse tidspunkta kan ikkje gjerast ved
å bruke klassiske estimeringsprosedyrar, då rimelegheitsfunksjonen ikkje
er deriverbar med hensyn til desse parametrane. For å løyse dette prob-
lemet blir ein iterativ estimeringsalgoritme utvikla, som gjev estimat på
alle modellparametrar. Algoritmen blir testa både på simulerte og ekte
data. Resultata viser at estimerte verdiar ligg tett opptil dei sanne ver-
diane ved testing på simulerte data.
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Abstract

With the development of advanced data collection techniques and dig-
italization, the amount of available data in various �elds has increased
tremendously. The need for e�cient and accurate algorithms for statisti-
cal modelling is therefore becoming more and more important, and this
thesis contains contributions towards more e�cient models. The contri-
butions can be characterized in two main topics; sparse Bayesian learning
methods and statistical survival models.

Sparse Bayesian learning methods have gained increased interest the
recent years due to the favourable properties that they provide sparse
models that generalize well and that they are robust to noisy datasets.
While there are many approaches to Bayesian learning, such as Markov
Chain Monte Carlo methods, this thesis focuses on the empirical Bayes
approach. The thesis investigates both new sparse Bayesian models, and a
new general solution strategy for these models. In the new solution strat-
egy an R package, the Template Model Builder (TMB), is used to optimize
the model parameters by applying automatic di�erentiation. An algorithm
that speeds up the estimation procedure of the latent variables in TMB
is also presented. Applying this algorithm obtains similar runtimes using
TMB as compared to tailored algorithms of the sparse Bayesian models.
The solution framework makes it easy to adjust the models without deriva-
tion of new complex algorithms, which is demonstrated by applying it to
new sparse Bayesian models. In addition to the models derived in the new
solution framework, the thesis also includes an analytical solution to a new
model that is related to the Bayesian lasso. Opposed to the Bayesian lasso,
the new model provides sparse solutions and can also be applied to solve
nonlinear regression problems.

In the second topic of this thesis, a new multivariate distribution for
modelling continuous lifetimes with positive dependence, named the sib-
ling distribution, is presented. The distribution is de�ned in terms of the
survival of siblings, where the dependency structure is induced through
their shared mother. The sibling distribution is constructed such that the
components related to the mother are included as latent variables, hence,
no knowledge about the mother is required. Although it is presented as
a distribution of lifetimes, it may be applied to any set of nonnegative
components with positive dependence. We prove that the bivariate sibling
distribution with constant rates is Multivariate Totally Positive of order
two (MTP2), which is a strong dependence property and implies among
others things a positive covariance. The model parameters are the birth
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and death rates, in addition to the individual death time points of the
siblings. Estimates of the time points can however not be obtained by
applying classical estimation procedures, as the likelihood is not di�eren-
tiable with respect to these parameters. In order to solve this problem, an
iterative estimation algorithm is derived, which provides estimates of all
model parameters. The estimation algorithm is tested on both simulated
and real data. The results show that the estimated values were close to
the true values, when testing on simulated data.
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Chapter 1

Introduction

One of the earliest applications of statistics was in the �eld of demogra-
phy, which analyses the size, changes and structures of populations. A
major contribution to modern demography was the discovery that the age
distribution of populations with time-independent birth and death rates
was stable, and from this result stable population models could be de-
rived [1, 2, 3]. While Euler introduced the concept of a stable population
model as early as 1760 [4], the practical use was not discovered at that
point due to the limited data, which did not indicate stability. From the
1970s models with more general population dynamics were developed [5,
6, 7, 8], and Carr [9] extended the stable population model from a closed
population model to a model that handles multi-regional populations and
the emigration between regions. This was an important contribution that
takes heterogeneity of populations into account. Today, the stable popula-
tion model is not only relevant within demography [10, 11, 12, 13], but is
also a central topic in population biology [14] and epidemiology [15]. This
thesis builds on stable population theory and derives a new distribution
that describes the life expectancy of siblings.

Statistical analysis is often applied with the aim of describing or es-
timating a population from information of limited samples. The term
population need not only refer to people, but has a much broader mean-
ing; population in statistics is the entire group we want to study and can
be any set of similar items or events such as objects, organizations, house
prices, etc. The term population may therefore be used within many dif-
ferent subjects. However, no matter which subject, in order to obtain good
statistical analysis, access to data is paramount.

Statistical data analysis has often been divided into two di�erent ap-
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4 Chapter 1. Introduction

proaches: the frequentist and the Bayesian. The main di�erence of the
traditional frequentist and the Bayesian approach is how the parameters
in the model are treated. In the frequentist approach, the parameters
are non-random but unknown quantities. A common procedure to ob-
tain estimates of the parameters in this framework is maximum likelihood
estimation. The maximum likelihood estimation �nds the values of the
parameters that maximize a likelihood function. The method of maximum
likelihood estimation is explained in more detail in Section 3.2. In the
Bayesian approach the parameters are assumed to be random variables,
and inference is mainly based on the posterior distribution of the param-
eters. The posterior distribution is the probability distribution of the pa-
rameters given the data. Bayesian ideas were presented by Thomas Bayes
during the 18th century, however, the foundation for the modern Bayesian
statistics was to a large extent developed a Century later by Pierre Simon
Laplace [16, 17]. An introduction to the Bayesian framework is presented
in Chapter 4.

Bayesian statistics has also seen an extensive development in the more
recent years, and it has been used with great success to solve problems in
various �elds, such as, genetics where it has been used to discover the re-
lationship between genetic variants and diseases [18, 19, 20], and machine
learning with the development of Bayesian neural networks [21, 22, 23].
A challenge with the Bayesian framework is that the posterior distribu-
tion of the parameters may not be possible to calculate analytically as it
often requires calculations of high-dimensional integrals. A class of popu-
lar simulation algorithms called Markov Chain Monte Carlo (MCMC) [24]
has been developed to overcome this problem. These algorithms provide
a sample from the posterior distribution, instead of computing integrals.
MCMCmethods have, however, some well known drawbacks, such as, often
being time consuming and computationally costly.

The last decades, the amount of available data has increased exponen-
tially in many �elds, and in order to handle the large amount of data and
extract the most important information, new sparse methods have been de-
rived. An option which has gained increased attention is Sparse Bayesian
Learning (SBL) [25]. Examples of these methods include the Relevance
Vector Machine (RVM) [26, 27], the incremental relevance sample-feature
machine [28] and the probabilistic feature selection and classi�cation vector
machine [29]. These methods can provide fast algorithms by approximat-
ing the posterior distribution by the empirical Bayes approach which is
presented in Section 4.4. The SBL algorithms are in general faster than
the MCMC methods and they produce sparse models where only a small
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fraction of the model parameters are nonzero. Sparse models reduce the
possibility of over�tting data and thereby achieve good generalization prop-
erties [30, 27]. The faster approximation and the sparsity of the models
have resulted in successful applications of SBL in many di�erent areas
including image classi�cation [31, 32, 33] and time series prediction [34,
35]. The SBL methods are particularly relevant within the �eld of com-
pressive sensing [36, 37] where the signal has a low-rank representation,
which favours sparse and noise robust models, and they have been used
frequently in recent research in this �eld [38, 39, 40, 41].

1.1 Main contributions

The main contributions of this thesis are:

A new multivariate distribution for continuous lifetimes. The
distribution, named the sibling distribution, is derived to model the
life expectancy of siblings with a common mother. The distribution
is presented in Paper A where the distribution is validated on both
simulated and real data. When the birth and death rates are constants,
we prove that the bivariate sibling distribution is MTP2. This property
implies that there is a strong dependency between the lifetimes of the
siblings. We also show how the sibling distribution reduces to the Block-
Basu class of distributions [42] under certain assumptions.

Novel applications of the open source R package, the Tem-
plate Model Builder (TMB). In Paper C the focus is on applying
the TMB [43] to sparse Bayesian models. While TMB has been very
popular, it has to the best of our knowledge never been applied to solve
these types of problems. A reason might be due to the large number
of hyperparameters that makes the estimation procedure slow. One of
the main contributions of Paper C is a tailored algorithm that speeds
up the estimation procedures by orders of magnitude, making TMB a
viable option to solve these type of problems. The TMB package is also
applied in Paper A, where a challenge of the sibling distribution is to
obtain estimates of the parameters, due to the unregularity of the distri-
bution. By designing an iterative algorithm that utilize TMB we show
how this issue can be overcome.

New sparse Bayesian models. The Bayesian lasso [44] is extended
in Paper B to a new model that can be applied to more general non-
linear regression problems and, in addition, provides sparse solutions.
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The new model in Paper B, called BLS (Bayesian Lasso Sparse), is com-
pared to other well known sparse Bayesian models like the Relevance
Vector Machine (RVM) by Tipping [26] and the Fast Laplace (FLAP)
by Babacan et al. [45]. The methods studied in Paper B can, however,
only achieve sparsity with respect to either the samples or the dimen-
sion, but not both simultaneously. On the other hand, sparse Bayesian
methods that can do both sample and dimension reduction are studied in
Paper C. This paper shows how we can modify sparse Bayesian models,
in a simple manner, without having to write an extensive new algorithm
by taking advantage of the simple structure of the TMB package. This is
exempli�ed by presenting a novel extension of the original RVM method
that can also perform dimension reduction.

1.2 Outline

This thesis consists of two parts. The �rst part provides an introduction
to the statistical framework, methods and models that are used in Part II.
Part II presents the main scienti�c contributions which consists of three
papers. The reminder of Part I has the following structure:

Chapter 2 gives a brief introduction to mathematical demography and
the stable population model.

Chapter 3 presents the concept of supervised learning and the extended
linear regression framework.

Chapter 4 presents the Bayesian framework, and gives an introduction
to sparse Bayesian learning models.

Chapter 5 introduces new theory for extending the BLS method to a
classi�cation setting.

Chapter 6 gives a summary of Papers A, B, and C.



Chapter 2

Mathematical demography

This chapter presents theory and relevant background for the sibling distri-
bution which is developed in Paper A. The sibling distribution is a multi-
variate distribution that models the lifetimes of siblings. The distribution
is derived by assuming a stable population model, which is characterised by
an age distribution that is stable and independent of the time. The deriva-
tion of the sibling distribution requires a framework that de�nes vital rates
and speci�cation of the underlying population model. The following sec-
tions present an excerpt from the stable population theory and classical
results from mathematical demography, which lay the mathematical foun-
dation for the sibling distribution developed in Paper A.

Mathematical demography is a wide research area that originates from
many di�erent �elds such as biology, mathematics, statistics and actuarial
science [4, 46, 2]. A central topic in mathematical demography is how
to analyse the dynamics of a population, such as population growth and
decline.

2.1 Malthusian population theory

There exist a variety of di�erent population models. One of the earliest
and most well known models was presented in 1789 in An Essay on the

Principle of Population where Malthus claimed that populations grow geo-
metrically [47]. The model by Malthus is a simple, yet powerful population
model, which is useful for introducing the basic concepts of demographic
processes. The changes in a population is described by the time-dependent
growth rate, which we denote by rt. The changes in the population at time

7



8 Chapter 2. Mathematical demography

t is then given by

dNt

dt
= rtNt, (2.1)

where Nt is the population size at time t. It is assumed that Nt is a con-
tinuous function of the time. Continuous populations models are realistic
assumptions for populations that are su�ciently large and who reproduce
continuously in time [46]. Assuming a constant growth rate r, the solution
of Equation (2.1) is an exponential function:

Nt = N0e
rt,

where N0 denotes the population size at time t = 0. This Malthusian
population model assumes that there is no lack of resources, as the model
allows an unlimited growth of the population when the growth rate is
positive. While this may seem like an unrealistic model, the model can
often capture the initial growth of a population well.

2.2 Birth and death rates

The random variables in the sibling distribution, presented in Paper A,
are the life times of the siblings. In order to model the life span of the
siblings, we therefore need theory from survival analysis, which we explore
in this section. In the sibling distribution, we also account for the fertility
and mortality of the mother. The individual birth and death rates are
consequently the main components of the sibling distribution.

Two central concepts in survival theory are the survival function and
the hazard rate. In general, the survival function gives the probability that
the event of interest has not yet happened by time t. Thus, the survival
function is not exclusively applied to situations related to survival or death,
but can also be applied to a much larger set of situations. The survival
function is given by

l(t) = P (T > t), (2.2)

where the random variable T represents the survival time. The survival
function is closely connected to the hazard rate, denoted by h(t). Given
that T is a continuous random variable, one assumes the probability that
the event of interest occurs in a small time interval, [t, t + dt), to be
h(t)dt [48]. The hazard rate can be de�ned as a limit by using conditional
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probabilities:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
, (2.3)

and can in general be any nonnegative function opposed to the survival
function which starts at 1 and usually declines toward zero [4].

For the sibling distribution, the survival function in Equation (2.2) will
be interpreted as a function of age and not time. Assume that A is a
random variable that denotes the age of death. The survival time for a
given individual in the population is then given by l(a) = P (A > a).

The age-speci�c death rate is de�ned as the instantaneous death rate at
age a and will be denoted by ϕ(a). The death rate can be de�ned from the
hazard rate in Equation (2.3) where the event of interest is the occurrence
of death [4]. The death rate and its relation to the survival function l(a)
can be expressed by

ϕ(a) = lim
∆a→0

P (a ≤ A < a+∆a|A ≥ a)

∆a

= lim
∆a→0

l(a)− l(a+∆a)

l(a)∆a

= − l′(a)
l(a)

.

Thus, using the initial condition that l(0) = 1 one obtain

− log l(a) =

∫ a

0

ϕ(u) du,

and it follows that an expression for the survival function can be given as

l(a) = e−
∫ a
0

ϕ(u) du. (2.4)

Notice that when the death rate is age-independent, i.e. ϕ(a) = ϕ, the
conditional probability of living at least x additional years is found from
Equation (2.4) as l(a+ x)/l(a) = exp(−ϕx).

The age speci�c birth rate is de�ned such that an average individual
produces β(a) da children during the age interval [a, a + da) per unit of
time. Since the event of giving birth may occur more than once, a common
approach is to express the birth process by a Poisson process [4]. Let
M be the random variable that represents the total number of o�spring,
and M(a) the number of o�spring obtained at age a. The probability
of a birth in the time interval [a, a + h) is given by β(a)h + o(h) and the
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probability that more than one birth occur is given by o(h). For simplicity,
let Pm(a) = P (M(a) = m), that is the probability of having m o�spring
at age a. The birth process can then be expressed by the inhomogeneous
Poisson process:

dP0(a)

da
= −β(a)P0(a), (2.5)

dPm(a)

da
= −β(a)Pm(a) + β(a)Pm−1(a), m ≥ 1. (2.6)

The probability of having no o�spring at age zero is P0(0) = 1 and the
probability of having m o�spring at age zero is Pm(0) = 0. By using these
initial conditions, the solution of the system of di�erential Equations (2.5)-
(2.6) is

Pm(a) =
e−

∫ a
0

β(u) du

m!

[∫ a

0

β(u) du

]m

, (2.7)

which gives the probability of havingm children at age a [4]. Equation (2.7)
is used in the sibling distribution to include the probability that the mother
had m o�spring during her lifetime.

2.3 The stable age distribution

This section presents the stable age distribution for continuous population
models. The stable theory has also been extended to discrete population
models by Caswell [49]. This is not presented here as the sibling distri-
bution assumes a continuous population model. The stable population
theory provides a convenient mathematical framework for studying the ef-
fect of �xed rates on population dynamics, estimating rates or compose
new models like we have done for the sibling distribution.

A stable age distribution exists when the age-speci�c birth and death
rates do not depend on the time or have been constant over a considerable
time period. A population that obtains constant birth and death rates will
converge to a stable age distribution over time, although it is not necessary
stable at the current time point [46]. One of the �rst theories on stable
population dynamics was derived by Lotka [1, 2] and Lotka and Sharpe [3]
at the start of the 20th century. The theory assumed a closed population
de�ned as a population with no immigration nor emigration. The growth
rate is then determined solely by the birth and death processes.
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Lotka and Sharpe [3] derived the theory for the stable population model
by �rst considering a model for the total number of births at time t, denoted
by B(t), known as the �renewal equation�

B(t) = G(t) +

∫ t

0

B(t− a)l(a)β(a) da. (2.8)

The renewal equation consists of two components. The �rst component,
G(t), represents the births of females who were alive at time t = 0. The
second component is the number of births of females who were born after
time t = 0. The number of females of age a that were born after time
t = 0 can be found from the number of all newborns at time t−a, given by
B(t− a). Among the total number of newborns, the number that survives
to time t and reaches the age a is given by B(t− a)l(a). Taking the birth
rate β(a) into account, results in the number of births of females of age a,
that were born after time t = 0. The number of births of females that were
born after time t = 0 is therefore found from the integral of B(t − a)l(a)
between a = 0 and a = t, which is the second component of Equation (2.8).

The solution of Equation (2.8), when omitting the �rst term G(t), is
known as the characteristic equation or the Euler-Lotka equation [46]. As
t → ∞ the term G(t) → 0 since the females that contribute to G(t)
will no longer be alive. Lotka and Sharpe [3] studied the solution of this
simpler problem by assuming constant exponential growth for the births:
B(t) = ert, from which it follows that B(t − a) = er(t−a). Equation (2.8)
is then equal to

1 =

∫ ∞

0

e−ral(a)β(a) da,

which is called the characteristic equation for the growth rate r. The char-
acteristic equation has exactly one real solution for r, which is determined
by the survival function and the age-speci�c birth rate [see 46].

By using the assumption that births grow exponentially at a constant
rate, it follows that the number of females of age a at time t is given by
B(t − a)l(a) = er(t−a)l(a). The integral of this component is the total
population at time t, and dividing by this component gives the proportion
of the population of age a+da. This results in the stable age distribution:

f(a) =
e−ral(a)∫∞

0
e−ral(a) da

. (2.9)

Equation (2.9) is independent of the time t and the proportion of the
individuals of age a + da will therefore remain constant as long as the
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growth rate, r, does not change. The sibling distribution, presented in
Paper A, assumes that the age of the mother is given by the stable age
distribution in Equation (2.9).

From the stable population theory it also follows that the average birth
rate, β, is given by

β =

[ ∫ ∞

0

e−ral(a) da

]−1

,

thus the stable age distribution in Equation (2.9) can also be expressed
as f(a) = exp(−ra)βl(a). It can be shown that the growth rate can be
calculated from r = β − ϕ, where ϕ is the average death rate [4].

2.4 The sibling distribution

It is the framework of the stable population model and survival theory
that makes it possible to specify the sibling distribution. The survival of
the siblings can be estimated from the survival function in Equation (2.4)
given the death rate ϕ(a). The individual survival times alone are however
not su�cient to describe the sibling distribution, as the dependency of the
lifetimes is related to their common mother. The sibling distribution is
constructed such that no information is required about the mother. The
only thing we know is that she must have been alive at a certain time point
and that she had m o�spring during her lifespan. The unknown time point
when the mother must have been alive is taken to be the reference time
point of the distribution where we set the time t = 0 (see Figure 2.1).
The mother's age at t = 0 is denoted by the random variable A0 and the
assumption is that she is randomly selected among all females alive at
t = 0, such that the density of A0 is given by the stable age distribution
in Equation (2.9). The birth and death time points of the mother are
latent variables in this distribution. The birth time of the mother can
be expressed by Y0 = −A0 and the time of death, T0, can be modelled
from the survival function in Equation (2.4). Conditioning on A0 and T0,
the length of the mother's lifespan is x0 = a0 + t0. The probability of
having M o�spring during the life span is found from Equation (2.7) by
setting a = x0. The death time points of the siblings t1:m ∈ Rm are the
parameters of this distribution, in addition to the birth and death rates.

The main components of the sibling distribution can therefore be de-
rived from Equations (2.4), (2.7) and (2.9). The general expression for the
multivariate sibling distribution is formulated in terms of the age-speci�c
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time

a0 xi

y0 0 tit0yi

Figure 2.1: Birth and death times of the mother (y0, t0), and corresponding
times for the i'th o�spring (yi and ti). The age of the mother at the reference
point t = 0 is denoted by a0.

birth and death rates. The explicit expression for the bivariate sibling
density in Paper A is, however, calculated by assuming constant birth
and death rates, i.e. β(a) = β and ϕ(a) = ϕ. Figure 2.2 shows di�erent
scenarios of the bivariate sibling density where ϕ = 1 and where β varies.

Figure 2.2: The bivariate sibling density f(x1, x2|t1, t2) with parameters ϕ = 1,
β = 0.8, 1.0, 1.2 (left to right) and (t1, t2) = (4, 4). The red dots show the
expected value. The white curve shows the contour c(x1, x2) = 1 de�ned in
Equation (3.15) in Paper A, which is a local dependency measure between X1

and X2.



14 Chapter 2. Mathematical demography



Chapter 3

Supervised learning and

regression

In this chapter we start by brie�y introducing supervised learning and the
extended linear regression framework, which is a natural starting point for
the methods that are developed and studied in Papers B and C. The chap-
ter also includes a short introduction to maximum likelihood estimation
and regularization in the frequentist framework.

3.1 Supervised learning

Statistical learning problems are often divided into two main categories;
supervised and unsupervised learning problems. Supervised learning re-
quires a labelled training dataset that comprises observations of the input
variables along with their corresponding output variables. The training
set is used to learn a function that maps an input variable to an output
variable. The goal is to learn a function that also generalizes well, that is,
a function that maps new unseen input variables to reasonable outputs.
The two main categories of supervised learning are regression [50] and
classi�cation [51]. Unsupervised learning, on the other hand, is used on
unlabelled data and attempts learn the underlying structure based solely
on the data, as there are no corresponding output observations. Exam-
ples of popular unsupervised learning methods are Principal Components
Analysis (PCA) [52] and clustering [53]. In this thesis, only supervised
learning problems are treated.

15
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Assume that we have a set of training data that consists of N obser-
vations, {xi, yi}Ni=1, where the input variable consists of D predictors (or
features), xi ∈ RD, and the output variable is one-dimensional, yi ∈ R.
In general, one may have more than one output variable, but in this the-
sis we assume that the yi's are one-dimensional. The general assumption
in supervised learning is that there is a relationship between the output
variable and the input variable, which can be modelled by

yi = f(xi) + ϵi, (3.1)

where ϵi is a random error term. The function f is a �xed, but in general
unknown function of xi. The learning task is to �nd an estimate f̂ by
using the training data. When searching for a function f̂ , we are mainly
interested in how well the estimated function predicts future observations
that are not used to train the model. Thus, given a new test observation
(y∗,x∗), we commonly seek to �nd a function that minimizes

E(y∗ − f̂(x∗))2, (3.2)

where E denotes the expectation. Equation (3.2) is the expected test
Mean Squared Error (MSE), where a squared loss function is a measure of
the distance between the test observation y∗ and the estimated prediction
f̂(x∗). It can be shown that Equation (3.2) can be decomposed as

E(y∗ − f̂(x∗))2 = Var(f̂(x∗)) +
[
Bias(f̂(x∗))

]2
+ σ2,

where σ2 = Var(ϵ∗) is known as the irreducible error [54]. The �rst term
describes how sensitive the function is to changes in the training data. A
function with high variance will change signi�cantly if it is estimated from
a di�erent training set, i.e., the function is over�tting the training data. On
the contrary, if the function is not �exible enough to capture the general
trend from the training data it will obtain a high bias. When choosing
a predictive function, f̂ , it is therefore a trade-o� between minimizing
the variance and minimizing the bias term. A classical example of the
bias-variance trade-o� is to let f̂ be a polynomial function of order q.
Increasing the order will in general reduce the bias, however it will increase
the variance term, Var(f̂(x∗)), and potentially over�t the data. The goal
is therefore to search for a function that obtains both low variance and
bias.
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3.2 Maximum likelihood estimation

Maximum Likelihood Estimation (MLE) is a common approach for deriv-
ing estimators, and it can be applied when searching for an estimate of f in
Equation (3.1). Assume that we have a set of training data where the out-
put vector y = y1, . . . , yN contains independent samples that come from
a parametric distribution with density p(y|θ), where θ denotes the vector
containing the total set of parameters. The frequentist approach assumes
that the parameters in θ are �xed, but unknown quantities that can be
estimated from the data. MLE estimates the parameters by maximizing
the likelihood function that is de�ned as

L(θ|y) = p(y|θ) =
N∏

i=1

p(yi|θ), (3.3)

where the last equality follows because of the independence of the data. A
maximum likelihood estimate of the parameters in θ are the values where
L(θ|y) reaches its maximum as a function of θ. Thus, MLE is a sensible
estimator because it �nds the estimate for which the observed sample is
most likely.

In most cases, it is easier to �nd the maximum of the natural logarithm
of L(θ|y), denoted by l(θ|y). The logarithm is a strictly increasing func-
tion, and therefore has the same solution to the maximization problem.
The maximum of l(θ|y) can be found by �rst calculate its derivative with
respect to each parameter and solve ∂

∂θi
l(θ|y) = 0.

3.3 Extended linear regression

Maybe the most well known supervised learning method is obtained by
assuming that the function f(x) in Equation (3.1) is linear:

f(x) = β0 +

P∑

p=1

βpxp,

where β0 is a bias term and β1, . . . βP are the coe�cients. The problem
of estimating f reduces to �nding estimates for the coe�cients. This is
known as linear regression. The simple structure of the linear regression
is useful when modelling data where the response can be predicted by a
linear function, however, when the relationship between the input variables
and the output variable is nonlinear, more complex learning models may
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be needed. However, many of the more advanced learning approaches can
be interpreted and deduced from a generalization of the linear regression
framework. This will be the case for the statistical learning models that
are presented in Papers B and C, in this thesis.

We now consider more general functions, and let f be a nonlinear func-
tion that can be represented by a linear combination of a set of basis
functions ϕm(x):

f(x) = w0 +
M∑

m=1

wmϕm(x), (3.4)

where w0 is a bias term and w1, . . . , wM are the weights. Thus, the function
f is still linear with respect to the weight parameters, while the basis
functions ϕm(x) are in general nonlinear. The basis functions are usually
determined beforehand based on characteristics of the dataset, hence, the
regression problem reduces to �nd the optimal values of the weights in
order to estimate f(x).

We will make the common assumption that the error term in Equa-
tion (3.1) is normally distributed with variance σ2 and mean zero. Using
the decomposition of f(x) into basis functions from Equation (3.4) we can
then rewrite Equation (3.1) as:

y = Φw + ϵ, ϵ = N (0, σ2I), (3.5)

where w = (w0, . . . , wM )⊤ is the vector containing all weights, I is the
N × N identity matrix and Φ is the N × (M + 1) design matrix with
elements Φ = [1,ϕ1, ...,ϕM ], where ϕm = (ϕm(x1), . . . , ϕm(xN ))⊤.

From the model speci�cation given in Equation (3.5), we have that the
density p(y|w, σ2) is Gaussian with mean Φw and variance σ2. When
applying the MLE procedure from Section 3.2, we obtain the following
estimate for w:

ŵ = (Φ⊤Φ)−1Φ⊤y. (3.6)

Note that if one choose linear basis functions, the expression in Equa-
tion (3.6) reduces to the well known normal equations obtained in linear
regression. From Equation (3.6), we notice that for the matrix Φ⊤Φ to
have an inverse, it must be nonsingular. Thus, we must have more obser-
vations than the number of basis functions, N > M . Otherwise the matrix
Φ⊤Φ will be singular because its size is M +1×M +1 and the matrix has
at most rank N . Note also that we can apply MLE to �nd an estimate of
σ2.
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3.3.1 Regularization

A common approach to obtain estimates for the weight parameters in
Equation (3.5) when N ≤ M is to apply a regularization. This approach
is still meaningful to use even when N > M as a technique used to avoid
over�tting the training data. In regularized regression, we search for the
values of w that minimize

||y −Φw||2 + λP (w), (3.7)

where λ is a tuning parameter and P (w) is a penalty term.
Two of the classical regularization methods are the ridge regression [55]

and the lasso [56], which di�ers in the choice of penalty term. The estimate
of the weights from ridge regression is obtained by using an l2 penalty
term P (w) = ||w||22 in Equation (3.7), while the lasso method uses an l1
penalty term P (w) = ||w||1. An advantage of the ridge regression is that
there exists an analytical expression for ŵ by using MLE. When λ = 0,
the ridge estimate will be equal to the maximum likelihood estimate in
Equation (3.6), while when λ increases it will shrink the estimates of the
elements in w toward zero. However, none of the estimates will be set
exactly to zero. The main advantage of lasso over ridge is that some of
the estimates of w will be set exactly to zero for su�ciently large tuning
parameter λ, hence the method can be used to obtain a sparse model. The
cost of using the l1 penalty term is that there does not exist a closed form
expression for the weight parameters.

Another popular regularization method is the Elastic net [57], which
can be seen as a combination of the ridge regression and the lasso. An
advantage with these regularized methods is their ability to balance the
trade-o� between model complexity and validation. However, all these
methods require tuning of the penalty parameter λ, which is often done
by using cross-validation [58].
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Chapter 4

Sparse Bayesian learning

This chapter gives an introduction to the framework of the sparse Bayesian
learning models that are developed in Papers B and C. The models will
mainly be presented assuming an extended linear regression framework, as
described in Section 3.3.

4.1 Bayesian inference

Assume a general parametric model where θ denotes the vector of all model
parameters. Opposed to the traditional frequentist approach, discussed in
Section 3.2, where the elements in θ are assumed to be �xed but unknown
quantities, the Bayesian approach considers the parameters to be random
variables. The random variables are assigned a prior distribution, denoted
by p(θ), that captures our prior beliefs about the parameters and can be
determined before we have any data.

Using the prior and the likelihood of the observations given the param-
eters, p(y|θ), a posterior distribution can be found from Bayes' theorem:

p(θ|y) = p(y|θ)p(θ)
p(y)

, (4.1)

where the denominator, p(y), is the marginalized probability of the data:

p(y) =

∫
p(y|θ)p(θ) dθ. (4.2)

The posterior distribution in Equation (4.1) incorporates information
from both the data and the prior. Thus, prior knowledge can be used to

21
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improve the posterior. The posterior distribution can be used to obtain
estimates of the parameters (using, e.g., the mean or the mode), and it is
also one of the main components when obtaining new predictions.

The major challenge in the Bayesian framework is to solve the integral
in Equation (4.2) as this integral is most often not possible to calculate an-
alytically. There exist therefore a variety of di�erent approaches to tackle
this, e.g., by applying numerical solutions or di�erent approximations.

4.1.1 Maximum a posteriori

Maximum a Posteriori (MAP) estimation is a common method to obtain
point estimates in the Bayesian framework, and is closely related to the
classical MLE. When applying a MAP estimation, we are searching for
the parameter values that maximizes the posterior distribution, i.e., the
mode of the posterior distribution. From Equation (4.1) we see that the
posterior is proportional to the likelihood times the prior:

p(θ|y) ∝ p(y|θ)p(θ). (4.3)

Thus, maximizing the posterior in Equation (4.1) is equivalent to maximiz-
ing Equation (4.3), as the denominator in Equation (4.1) is independent
of the parameters in θ. This approach thereby avoids the problem of �nd-
ing the marginal distribution p(y). The cost of this shortcut is, however,
that we do not obtain a complete distribution for the posterior, only the
posterior mode.

When comparing Equation (4.3) with Equation (3.3), we notice that the
MAP approach is identical to the MLE except for the inclusion of the prior.
The e�ect of adding a prior is analogue to applying a regularization in the
classical framework. The prior has a regularization e�ect, and estimates
from both the ridge regression and the lasso, described in Section 3.3.1,
can be interpreted in a Bayesian framework as MAP estimates. The lasso
solution can be interpreted as a MAP estimate when the prior for the
parameters is a Laplace distribution, while the solution from the ridge
regression can be obtained when applying a Gaussian prior [56, 54].

4.2 Bayesian hierarchical models

There are two main reasons for creating hierarchical models. These types
of models originate from data that has a layered structure. The second
motivation is that they can be created in such a way that we obtain a
sparse model. In this thesis, the main focus on the hierarchical models
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has been the second point of view, and we discuss how to obtain sparse
models in Section 4.5, but let us �rst explore the structure of the Bayesian
hierarchical models.

Assume we have the model speci�cations from Section 3.3, where the
parameters of interest are the weights in w. Further, let p(w|α) be the
prior distribution, where α contains the so called hyperparameters. This
name indicates that they are parameters one level below w. The hyper-
parameters in α may again be given a prior distribution, p(α), which is
referred to as a hyperprior. In addition, we also have to consider the noise
parameter, σ2, from Equation (3.5), which is given a prior distribution,
p(σ2). The model can now be represented by a hierarchical representation:

y|w, σ2 ∼ p(y|w, σ2) (4.4)

w|α ∼ p(w|α) (4.5)

α ∼ p(α)

σ2 ∼ p(σ2)

The equation above is one of the simpler hierarchical representations,
and other models may have several layers (see, e.g., [44]). The BLS pre-
sented in Paper B adds an additional layer for the hyperprior α where
the hyperprior is given by p(α|λ). The hyperparameter λ is estimated by
using the empirical Bayes approach, which is described in Section 4.4. Sec-
tions 4.3 and 4.4 describe two di�erent Bayesian procedures for hierarchical
models.

4.3 Fully Bayesian approach

A fully Bayesian approach of the hierarchical model structure from Sec-
tion 4.2 threats the complete set of parameters and hyperparameters as
random variables, and assign prior distributions to all of them. The pos-
terior distribution from Equation (4.1) for the hierarchical model in Sec-
tion 4.2 is given by

p(w,α, σ2|y) = p(y|w, σ2)p(w|α)p(α)p(σ2)

p(y)
, (4.6)

where the normalizing constant is calculated as

p(y) =

∫
p(y|w, σ2)p(w|α)p(α)p(σ2) dw dα dσ2. (4.7)



24 Chapter 4. Sparse Bayesian learning

However, even though it may be possible to integrate over either w or
the hyperparameters, the complete marginalization over all of these vari-
ables in Equation (4.7) is not analytically tractable [59]. As mentioned
in Section 4.1, it is only for a few simple problems where the posterior
distribution in Equation (4.1) can be calculated analytically. A common
approach is to use Markov Chain Monte Carlo (MCMC) methods to gen-
erate samples that come from the posterior distribution. Thus, MCMC
methods avoid the problem of calculating analytical solutions. However,
for certain hierarchical models, MCMC simulations are computationally
ine�cient and time consuming. This is especially an issue for higher-
dimensional cases.

4.4 Empirical Bayes

An alternative to the fully Bayesian approach is the empirical Bayes.
Within this framework one seek to �nd an approximation of the posterior
distribution in Equation (4.1) by using the observed data to determine
the hyperparameters of the prior distribution. There exist several di�er-
ent model speci�cations within this framework, but we continue with the
hierarchical model structure given in Section 4.2 to introduce the approach.

The empirical Bayes approach uses the following approximation for the
posterior distribution in Equation (4.6):

p(w,α, σ2|y) ≈ p(w|y, α̂, σ̂2), (4.8)

where α̂ and σ̂2 are point estimates for the elements in α and σ2. In
order to evaluate the approximation in Equation (4.8), we need to �nd
the posterior distribution for the weight parameters, p(w|y,α, σ2), and
estimated values for α and σ2. Because of the dependence between w, α
and σ2, the right hand side of Equation (4.8) is usually calculated by an
iterative process; see Paper C for further details.

The concept of conjugate priors is important when searching for an
analytically tractable expression of p(w|y,α, σ2). If the prior distribution
in Equation (4.5) is a conjugate to the likelihood in Equation (4.4), it
implies that the posterior distribution for the weights, p(w|y,α, σ2), is
in the same probability distribution family as the prior [60, p. 35]. The
posterior distribution for the weights, p(w|y,α, σ2), can then be derived
in closed form from Bayes' theorem:

p(w|y,α, σ2) =
p(y|w, σ2)p(w|α)

p(y|α, σ2)
. (4.9)
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The situations where the prior is a conjugate to the likelihood simplify
the calculations not only for the posterior of the weights, but also later
when estimating the hyperparameters. It is however not always possible
to apply a conjugate prior. In a classi�cation setting, the likelihood in
Equation (4.4) is often a Bernoulli and a conjugate prior may not be an
appropriate prior to use. Instead, the posterior for the weights can often
be approximated by using the Laplace method, which is explained in Sec-
tion 4.6. In the next two subsections we investigate two di�erent variants
within the empirical Bayes framework for obtaining the estimates of α̂ and
σ̂2, and we also study how these two variants relate to the true posterior
distribution in Equation (4.6).

4.4.1 Type-II maximum likelihood

The type-II maximum likelihood procedure obtains estimates of α and σ2

from the marginal likelihood, which can be found from the numerator in
Equation (4.9) by integrating over the weight parameters in w:

p(y|α, σ2) =

∫
p(y|w, σ2)p(w|α) dw. (4.10)

An analytic expression for the marginal likelihood in Equation (4.10) is
available when the prior distribution is a conjugate prior for the likelihood.
Otherwise the Laplace approximation can often be used to approximate
the marginal likelihood in Equation (4.10) by a Gaussian distribution (see
Section 4.6). The estimates for α and σ2 are then calculated as

α̂, σ̂2 = argmax
α,σ2

p(y|α, σ2).

To indicate why maximizing the marginal likelihood can obtain a rea-
sonable approximation of the true posterior distribution, notice that the
posterior distribution from Equation (4.6) can be decomposed as

p(w,α, σ2|y) = p(w|α, σ2,y)p(α, σ2|y).

Further, the posterior distribution for the hyperparameters is proportional
to

p(α, σ2|y) ∝ p(y|α, σ2)p(α)p(σ2), (4.11)

by using Bayes' theorem. If the hyperpriors p(α) and p(σ2) are relatively
�at, they can be neglected such that the estimates of α and σ2, obtained
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from maximizing the marginal likelihood function p(y|α, σ2), will give the
same solution as maximizing the right hand side of Equation (4.11).

The empirical Bayes procedure follows a similar approach as the ordi-
nary MLE described in Section 3.2, except that the hyperparameters are
found by maximizing the marginal likelihood. The RVM [26, 27] uses this
framework, where very broad gamma distributions are assumed as hyper-
priors for α and σ2. Since the parameters of the hyperprior are chosen such
that the distribution is �at over a wide range of α, (and similarly for σ2),
the particular expression of such a function is irrelevant except for issues
of computation convenience [59]. In general, estimates of the hyperparam-
eters can be found directly from the marginal likelihood in Equation (4.10)
when the hyperpriors are assumed to be �at or non-informative.

4.4.2 Type-II maximum a posteriori

When the chosen priors are not �at or non-informative then they should be
accounted for in Equation (4.11). The BLS method presented in Paper B,
in addition to the FLAP by Babacan et al. [45] and the PFCVMLP method
by Jiang et al. [29], all use an informative prior for the hyperparameters.
When using informative priors for the hyperparameters, the estimates can
be found by maximizing Equation (4.11) with respect to the hyperparam-
eters, which is an empirical Bayes MAP estimate for the hyperparameters:

α̂, σ̂2 = argmax
α,σ2

p(y|α, σ̂2)p(α)p(σ2).

For both the marginal likelihood estimates in Equation (4.10) and here,
we need that the posterior distribution p(α, σ2|y) is sharply peaked around
the values α̂ and σ̂2 in order to obtain a good approximation as we are
relying on the posterior modes [59].

The empirical Bayes has been criticized for not including the uncer-
tainty from the hyperparameters. However, in Paper C we discuss a pos-
sible method that extends the empirical Bayes such that the uncertainty
of the hyperparameters can be included in the Laplace approximation.

4.4.3 Prediction

Having found estimates α̂ and σ̂2 by maximizing the marginal likelihood in
Equation (4.10) or the posterior in Equation (4.11) we can get the approx-
imation of the posterior distribution for w in Equation (4.8). A predicted
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σ =0 .01 σ σ= 0.1 = 0.5

Figure 4.1: The Sinc function (black line) and its approximation by using the
BLS method (blue line) from data generated for di�erent values of σ. The red
dots are the relevance vectors and the black dots are the remaining data. The
blue shaded area corresponds to ±2 predictive standard deviations.

distribution can be obtained by applying the following approximation

p(y∗|y) ≈ p(y∗|y, α̂, σ̂2) =

∫
p(y∗|w, σ̂2)p(w|y, α̂, σ̂2) dw.

From the predictive distribution, we obtain both the mean and the
variance for a new prediction, where the mean can be used as a point
estimate for the new prediction.

Figure 4.1 shows the predictions obtained from the BLS method when
the training data are generated from the sinc function, f(x) = sin(x)/x,
for di�erent values of σ. The blue line shows the prediction by the BLS
method, while the black line is the true sinc function. The training data are
shown as the black dots, while the red dots represent the relevance vectors
(see Section 4.5 for the de�nition of relevance vectors). The blue shaded
area corresponds to ±2 predictive standard deviations. The uncertainty of
the predictions increases according to the increasing noise of the training
data.

4.5 Sparse priors

The sparse Bayesian methods, described in Papers B and C, use a prior
for the weights that includes individual hyperparameters for each weight
parameter. This allows some of the weights to be estimated to zero, such
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that a sparse model can be obtained. A common choice is to use a Gaussian
prior for the weights with individual variance (or precision) parameters as
hyperparameters:

p(w|α) =
N∏

i=0

N (0, αi), (4.12)

where α = (α0, . . . , αN )⊤. This form of prior that includes individual
hyperparameters is known as an automatic relevance determination (ARD)
prior and was �rst proposed by Mackay [61]. When αi goes to zero, the
probability of wi to have a value close to zero becomes signi�cantly high.
Sparse models can therefore be obtained by setting some of the αi's to
zero (or equivalently to in�nity if they are used as precision parameters,
as for the RVM [26]). When the weights are set to zero, the corresponding
basis functions will be pruned. The sparsity property of the BLS method,
presented in Paper B, is illustrated in Figure 4.2. This Figure shows the
approximation from the BLS method (the blue line) to the sinc function
(the black line). The training data are shown as the black dots. The red
dots are the training data that corresponds to the nonzero αi's. Those
data are called relevance vectors and it is only the relevance vectors that
are used in the �nal model to obtain the approximated function in blue.

Priors on the form in Equation (4.12) allow sparsity by letting the wi's
have individual hyperparameters. However, sparsity requires that some of
the αi's are set to zero during estimation. Thus, in order to understand
why sparse solutions arise, the estimation procedure of the αi's must be
analysed. This procedure will depend on the speci�c model structure,
but for the RVM method Faul and Tipping [30] have proposed a detailed
analysis based on the maximum of the log marginal likelihood. Faul and
Tipping [30] show that the log marginal likelihood, as a function of a single
αi, has a maximum that can be obtained explicitly. The same approach is
used for the BLS method in Paper B (see Section 2.3 in Paper B). Bishop
[59] proposes another way of understanding sparsity for the original RVM
method by Tipping [26], by its relation to a Gaussian process.

4.6 The Laplace approximation

The Laplace approximation of a general function f(x), where x ∈ Rn is a
Taylor expansion of f(x) around its global maximum, where only the �rst
three terms are used. Denoting the global maximum as x0, the expansion
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Figure 4.2: The BLS approximation is shown in blue, while the true sinc
function is the black line. The training data are the black dots. The enlarged
red dots are the relevance vectors.

of the logarithm of f(x) is given by

log f(x) ≈ log f(x0) + (x− x0)
⊤ ∂ log f(x0)

∂x

+
1

2
(x− x0)

⊤ ∂2 log f(x0)

∂x2
(x− x0).

(4.13)

The second term of Equation (4.13) equals zero, since x0 is the global
maximum of the function, and therefore also of log f . Further, since the
second order partial derivatives of log f evaluated at x0 are negative, Equa-
tion (4.13) simpli�es to

log f(x) ≈ log f(x0)−
1

2
(x− x0)

⊤
∣∣∣∣
∂2

∂x2
log f(x0)

∣∣∣∣ (x− x0)
2.

This expression can be rewritten as the logarithm of a normal density by

letting Σ̂
−1

denote the second order partial derivatives of log f evaluated
at x0:

log f(x) ≈ log f(x0)−
1

2
(x− x0)

⊤Σ̂
−1

(x− x0).

The function f(x) can therefore be approximated by a Gaussian where
the mean and the variance can be obtained by �nding the maximum of
log f(x) and calculating the second order partial derivatives at this point.



30 Chapter 4. Sparse Bayesian learning

As mentioned brie�y in Section 4.4, the Laplace approximation can be
applied when there is no direct calculation of the posterior distribution for
the weights in Equation (4.9) or the marginal likelihood in Equation (4.10).
Let us see how this applies to the regression example from Section 4.4. The
Laplace approximation of the posterior distribution, p(w|y, σ2), in Equa-
tion (4.9) is obtained from the joint likelihood of the weights and the data
since p(w|y,α, σ2) ∝ p(y|w, σ2)p(w|α). Hence, maximizing p(w|y,α, σ2)
is equivalent to maximizing p(y|w, σ2)p(w|α). The mean and the covari-
ance matrix of the Laplace approximation of Equation (4.9) is therefore
given by

ŵ = argmax
w

log(p(y|w, σ2)p(w|α)), (4.14)

Σ̂ =

(
∂2

∂w2
log(p(y|w, σ2)p(w|α))

)−1

. (4.15)

The marginal likelihood can be calculated from the joint likelihood of
the weights and the data, as seen in the example from Equation (4.10).
Given the Laplace approximation of p(y|w, σ2)p(w|α), the approximation
of the marginal likelihood is obtained by integrating out the weights

p(y|α, σ2) ≈
∫

p(y|ŵ, σ2)p(ŵ|α) exp
{
− 1

2
[w − ŵ]⊤Σ̂

−1
[w − ŵ]

}
dw

= p(y|ŵ, σ2)p(ŵ|α)
√
2π

N
det(Σ̂).

Of course, �nding the maximum of the right hand side of Equation (4.14)
and the second order partial derivatives of Equation (4.15) may be far from
straight forward. In some cases, such as for the RVM method, there exists
analytical solutions. However, even if an analytical expression may exist
for a method, it may be cumbersome to derive. In Paper C we show how
to use the TMB package to solve these equations.

4.6.1 The Template Model Builder

The open source R package TMB by Kristensen et al. [43] is applied in
Paper A, as it is a �exible tool for estimating the parameters of the sibling
distribution. The focus of this section, however, is to introduce the imple-
mentation of sparse Bayesian models using TMB, which is the main topic
of Paper C.

TMB provides an easy setup where the user only needs to specify a
joint likelihood of latent variables and the data as a C++ function. The



4.6. The Laplace approximation 31

TMB package can then be used to calculate the Laplace approximation
of the marginal likelihood of the speci�ed joint likelihood. The latent
variables are automatically integrated out using Automatic Di�erentia-
tion (AD) [62]. AD is a set of techniques that is used to evaluate the
derivatives of functions automatically to machine precision in a very e�-
cient manner. Thus, we do not have to manually calculate any derivatives
of the joint likelihood, nor implement and maintain the code. The opti-
mization of the Laplace approximation in order to estimate hyperparam-
eters can then easily be done by, e.g., Newton's method, in R because the
TMB package both evaluates the marginal likelihood and the gradient. In
Paper C we implement and test several di�erent sparse Bayesian methods
by using TMB.
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Chapter 5

The BLS for classi�cation

This section presents an extension of the BLS method, presented in Pa-
per B, that adapts the BLS to a two category classi�cation setting. The
sparse Bayesian methods that are presented in Paper B is the RVM [27]
and the FLAP [45], in addition to the proposed BLS. Among these, it is
only the RVM that is developed to solve classi�cation problems. Both the
theory and the numerical results of the BLS consider regression problems.
However, as we show in this chapter, the BLS can be extended to solve
classi�cation problems by following the approach of Tipping and Faul [27].
In a classi�cation setting the noise parameter σ2 (from the regression set-
ting) is omitted. The prior for the weights in the BLS reduces therefore
to the FLAP prior. The theory for the BLS in a classi�cation setting
will be presented her, and a small example of a classi�cation dataset that
compares the BLS with the RVM.

The BLS for two category classi�cation problems follows a similar
framework as the regression setting, described in Paper B, but the like-
lihood function from the regression setting, p(y|w, σ2), must be trans-
formed. The probabilistic outputs are continuous values in [0, 1], and the
sigmoid function can be used to obtain mappings from [−∞,∞] to [0, 1].
When combining this transformation with a Bernoulli distribution we ob-
tain the likelihood function:

p(y|w) =

N∏

i=1

{
S
(
(Φw)i

)}yi
{
1− S

(
(Φw)i

)}1−yi

, (5.1)

where the targets yi take values 0 or 1, (Φw)i is the i'th element of
the vector Φw from Equation (3.5), and the sigmoid function is given

33
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by S(z) = 1/(1 + e−z).
The prior and the hyperprior for the BLS in a classi�cation setting are

given by:

p(w|α) =
N∏

i=0

N (0, αi), αi ≥ 0, (5.2)

p(α|λ) =
N∏

i=0

λ

2
e−

λαi
2 , λ ≥ 0,

p(λ) =
ba

Γ(a)
(λ)a−1e−bλ, a, b ≥ 0, (5.3)

where each αi is an individual variance parameter for the corresponding
wi. Note that a non-informative prior is used for λ in the numerical results
from Paper B by setting the parameters a = b = 0 in Equation (5.3).

It is however not possible to calculate analytical expressions for the
posterior of the weights, p(w|y,α), and the marginal likelihood, p(y|α),
in a classi�cation setting due to the likelihood in Equation (5.1). To over-
come this problem, we can use the Laplace approximation, described in
Section 4.6, to approximate the posterior, p(w|y,α), by a Gaussian dis-
tribution. The Laplace approximation of the posterior is found from the
joint likelihood of the targets and the weights by using that p(w|y,α) ∝
p(y|w)p(w|α). The logarithm of the joint likelihood can be found from
Equation (5.1) and (5.2), and is given by

log[p(y|w)p(w|α)] =
N∑

i=1

{
yi logS

(
(Φw)i

)
+ (1− yi) log

[
1− S

(
(Φw)i

)]}

− 1

2
w⊤Λ−1w,

(5.4)
where Λ is a diagonal matrix with elements {αi}i=0,...,N . For �xed values
of α, Equation (5.4) can be maximized with respect to w to search for

ŵ = argmax
w

log[p(y|w)p(w|α)]. (5.5)

The estimate in Equation (5.5) can be found by using iteratively reweighted
least squares (IRLS) [See, Ch 4.3.3] [59]. Thus both the gradient vector
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and the Hessian matrix of Equation (5.4) are required:

∂

∂w
log[p(y|w)p(w|α)] = Φ⊤(y −ψ)−Λ−1w, (5.6)

∂2

∂w2
log[p(y|w)p(w|α)] = −(Φ⊤ΨΦ+Λ−1),

where ψ =
[
S
(
(Φw)1

)
, . . . , S

(
(Φw)N

)]⊤
and the matrix Ψ is diagonal

with elements Ψi = S
(
(Φw)i

)[
1−S

(
(Φw)i

)]
. At convergence of the IRLS

algorithm, the negative Hessian represents the inverse covariance matrix
for the Gaussian approximation of the posterior distribution. The mode
of the Laplace approximation, which represents the mean of the Gaussian
approximation, is obtained by setting Equation (5.6) to zero. The mean
and the covariance of the approximated posterior distribution are therefore
given by

ŵ = ΛΦ⊤(y −ψ), (5.7)

Σ̂ = (Φ⊤ΨΦ+Λ−1)−1. (5.8)

The estimates of the hyperparameters are obtained by applying the
empirical Bayes approach from Section 4.4. The posterior of the hyperpa-
rameters is given by

p(α, λ|y) ∝ p(y|α)p(α|λ)p(λ). (5.9)

The marginal likelihood p(y|α) can however not be computed analyti-
cally in the classi�cation setting. The Laplace method is therefore used to
approximate the marginal likelihood:

p(y|α) =
∫

p(y|w)p(w|α) dw ≈ p(y|ŵ)p(ŵ|α)(2π)N/2det(Σ̂)1/2,

where the estimates ŵ and Σ̂ are given in Equation (5.7) and (5.8). The
estimates of α and λ can now be obtained from maximizing Equation (5.9),
and are used in the same iterative procedure as for the regression setting
described in Paper B.

5.1 Ripley's synthetic data

The following example considers a binary classi�cation problem, where
the data are from Ripley's synthetic data [63]. Each class is generated by
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using a mixture of two Gaussian distributions. The data set consists of 125
training observations for each class. The performance of a model can then
be evaluated based on a test dataset of size 1000. The class distributions
were designed to allow a best possible error rate of about 8% [63]. The
training error rate is given by

1

N

N∑

i=1

I(yi ̸= ŷi), (5.10)

where ŷi is the predicted class label for the ith observation and N is the size
of the training data. The test error rate is found similarly by calculating
Equation (5.10) when using a test dataset as input and average over the K
test observations. The aim is to obtain the lowest possible test error rate.

We compare the fast RVM by Tipping and Faul [27] with the BLS from
Paper B, where the BLS has been adjusted for classi�cation as described
in the above section.

The result for the 250 Ripley's training data is shown in the top row
of Figure 5.1. The corresponding training error rate is 10.4% for the RVM
model and 11.6% for the BLS model. The number of relevance vectors is
7 for the RVM and 13 for the BLS. The model obtained from the RVM
method is therefore the most sparse model on this dataset. The result
for the associated 1000 example test set is shown in the bottom row of
Figure 5.1. The test error rate is 9.6% for the RVM model and 9.0% for
the BLS model. The BLS model provides the best prediction result, but
is at the same time not as sparse as the RVM. The overall performance of
these two methods on this dataset is very similar.
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Figure 5.1: Ripley's Gaussian mixture data set. The top row shows the result
on the 250 training data where the relevance vectors are shown circled. The
bottom row shows the classi�ers on the 1000 example test set.
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Chapter 6

Summary of papers

Paper A

Title: The sibling distribution for multivariate life time data

Authors: Ingvild M. Helgøy, Hans J. Skaug

Journal: Sankhya B

DOI: 10.1007/s13571-021-00259-w

In Paper A, we introduce a multivariate sibling distribution for continuous
lifetimes. The distribution is de�ned in terms of the age-at-death of m
siblings. The framework from the stable population theory is used to
�nd an expression for the joint distribution. The sibling distribution is
constructed by de�ning a reference time point where we set the time t = 0
and the assumption that the mother was alive at t = 0. There is no
information about the mother, except that she had m o�spring and was
alive at this reference time point. The latent variables in this distribution
are the birth and death time-points of the mother. The positive dependence
between the lifetimes of the siblings is due to the shared dependence of their
mother's life span, in addition to conditioning on their death time points.
The death time points are the parameters of this distribution, in addition
to the age dependent birth rate, β(a), and death rate, ϕ(a). The sibling
distribution is de�ned for general functions β(a) and ϕ(a), but the explicit
expression for the bivariate density is derived by assuming constant birth
and death rates, i.e., β(a) = β and ϕ(a) = ϕ. We prove that the bivariate
constant-rate siblings distribution is MPT2, which is a strong dependence
property [64]. The constant rate sibling distribution is also related to the
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Block-Basu distribution [42] which gives additional insight to the sibling
distribution (see Section 4 of Paper A).

Paper B

Title: A Bayesian Lasso Based Sparse Learning Model

Authors: Ingvild M. Helgøy, Yushu Li

Journal: Submitted

Paper B considers sparse Bayesian learning methods. These methods have
shown great success in several di�erent �elds and the recent years, par-
ticularity within the �eld of compressive sensing. We refer the reader to
the introduction of Paper B and Paper C for an overview. The sparse
Bayesian methods produce models that are sparse and as a consequence
robust to noisy training data and therefore generalize well when applied to
new unseen data. The main contribution in Paper B is the development of
a new sparse Bayesian learning model, called BLS. The new model applies
the hierarchical structure from the Bayesian lasso [44] in a kernel based
scheme, such that general nonlinear regression problems can be solved.
Furthermore, the Bayesian lasso is not sparse, while the BLS can provide
sparse solutions based on a fast learning algorithm. The framework from
the empirical Bayes (see Section 4.4) is applied in order to obtain a sparse
model. BLS is tested on both simulated and real data, and the results
show that the BLS model is comparable with existing models. In addition,
the results show that the BLS method works particular well for irregular
datasets that have a high degree of noise.

Paper C

Title: Sparse Bayesian Learning using TMB (Template Model Builder)

Authors: Ingvild M. Helgøy, Hans J. Skaug, Yushu Li

Journal: Submitted

One of the disadvantages of the sparse Bayesian models presented in Pa-
per B, is that sparsity is only obtained with respect to the weight parame-
ters when applied to general nonlinear regression problems. Because many
dataset may include features that are not signi�cant, a favourable model
should also include sparsity with respect to features, i.e., it should perform
feature selection (or dimension reduction). Sparse Bayesian models that
also perform feature selection are studied in Paper C, where they are im-
plemented using the TMB package [43]. The implementation using TMB,
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simpli�es the process of estimating the parameters since the algorithm can
be constructed by only de�ning the likelihood and the prior density. The
presented framework, makes it easy to adjust and modify the models. We
use this �exible framework to extend some of the existing sparse Bayesian
learning models to also include dimension reduction. In Paper B we only
considered sparse Bayesian methods for solving regression problems. In
Paper C we consider both regression and classi�cation problems.
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The Sibling Distribution for Multivariate Life Time Data

Ingvild M. Helgøy and Hans J. Skaug
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Abstract

A flexible class of multivariate distributions for continuous lifetimes is pro-
posed. The distribution is defined in terms of the age-at-death of m siblings.
The expression for the joint density is derived using classical results from
mathematical demography. The parameters of the distribution are the age-
specific birth and death rates, in addition to a vector of relative death times
for the m siblings. For the case of constant birth and death rates we are
able to derive an explicit expression for the bivariate sibling density, which is
proven to be MTP2, and hence has positive dependence. Further, we show
that a special case of the sibling distribution belongs to the Block-Basu class
of multivariate distribution. In the general case, with age-dependent birth
and death rates, evaluation of the density involves numerical integration, but
is still feasible.

AMS (2000) subject classification. Primary 62N99; Secondary 60E05.
Keywords and phrases. Copula, Frailty, Life time distribution, Mathematical
demography, Close-Kin Mark-Recapture.

1 Introduction

Classes of multivariate densities for multivariate life time and survival
data are well studied in the statistical and demographic literature (Hougaard,
2001; Barreto-Souza and Mayrink, 2019). A common approach for making
survival times positively dependent goes via “shared frailties” (Hougaard,
2001, Chpt. 7). A frailty is a latent random variable that proportionally
scales the hazard rate in a group of individuals, hence inducing dependence
between otherwise independent lifetimes. In the present paper we introduce
a new class of latent variable models, named the “sibling distribution”, which
is defined in terms of the age-at-death for each of m half siblings. There is
no information available about their common mother, except that she had
m offspring in total, and was alive at a specified point in time, taken to be
t = 0 for convenience. The two latent variables of the model are the mother’s
birth and death times. The building blocks of the sibling distribution are
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the individual birth rates β(a) and death rates φ(a), where a is the age of
an individual. We define the distribution for general functions, β(a) and
φ(a), but for most part we shall assume that β(a) and φ(a) are constants as
functions of a.

The positive dependence between the sibling’s life times comes from con-
ditioning on their (absolute) times of death, in combination with a shared
dependence on the mother’s life span. The times-of-death become parame-
ters of the distribution. This somewhat implicit construction will be seen to
be a mixture distribution, and can be studied using general theory for mul-
tivariate dependence (Shaked and Spizzichino, 1998; Khaledi and Kochar,
2001). We prove that the bivariate constant-rate sibling distribution is mul-
tivariate totally positive of order 2 (Karlin and Rinott, 1980), which for
instance imply that the correlation is positive.

The constant-rate sibling distribution turns out to have marginal dis-
tributions that are perturbated exponential distributions. The exponential
distribution plays a special role for univariate life times and several multi-
variate extensions can be found in the literature (Marshall and Olkin, 1967;
Freund, 1961; Block and Basu, 1974; Arnold and Strauss, 1988; Gumbel,
1960; Hougaard, 1986; Sarkar, 1987). One of these extensions was intro-
duced by Block and Basu (Block and Basu, 1974). The Block-Basu bivariate
lifetime distribution can be derived by omitting the singular part of a bivari-
ate exponential distribution as outlined by Marshall and Olkin (Marshall
and Olkin, 1967), but can also be viewed as a reparametrization of Freund’s
distribution (Freund, 1961). We will see that the constant-rate (birth and
death) sibling distribution reduces to a Block-Basu distribution, which will
be used to shed light on the sibling distribution.

An alternative route to construction of multivariate life time distributions
goes via copulae (Andersen, 2005). The implication also goes in the other
direction; our sibling distribution induces a novel symmetric two-parameter
copula.

The remaining part of the paper is organized as follows. In Section 2 we
introduce the general sibling distribution. Explicit expressions in the bivari-
ate case, along with positive dependence property, are derived in Section 3.
In Section 4 we discuss the relationship to the Block-Basu distribution and
in Section 5 we address simulation and parameter estimation. Finally, we
provide a discussion in Section 6.

2 The Sibling Age Distribution

Consider a female who over her lifespan is known to have hadm offspring.
Denote by tj and xj the time of death and age-at-death, respectively, of the
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j’th offspring. The offspring are arbitrarily ordered, not according to the
time of birth. We shall view t and x as random variables taking values on
the real line. For notational simplicity we let j = 0 refer to the mother, and
we condition on the fact that the mother was alive at time t = 0, i.e. on the
event that t0 − x0 ≤ 0 ≤ t0. This assumption should be kept in mind at
all times when reading this paper. We define a0 = x0 − t0 as the age of the
mother at t = 0, and we denote the joint density of (a0, t0) by g(a0, t0). Let
yj = tj −xj , be the birth time of the j’th offspring. Please refer to Fig. 1 for
an illustration of key quantities.

We denote random variables by capital letters. Conditionally on (A0, T0)
= (a0, t0), and hence on X0 = x0 = a0 + t0, the density of Yj is

fY (yj |a0, t0) =
β(yj − y0)∫ x0

0 β(a)da
, yj ∈ (y0, t0), (2.1)

where β(a) is the age-specific rate at which the mother produces offspring.
We shorten our notation for conditional densities, e.g. we write fY rather
than the full fY |A0,T0

. The joint conditional density of (Xj , Tj) is

fX,T (xj , tj |a0, t0) = fY (yj |a0, t0)fX(xj) = fY (tj − xj |a0, t0)fX(xj), (2.2)

on the support
{(xj , tj) : (tj − t0)+ ≤ xj ≤ tj − y0} , (2.3)

where z+ = max(z, 0). The constraints on xj express the fact that xj ≥ 0
and y0 ≤ yj ≤ t0, i.e. the offspring must be born in the time window when
the mother is alive (see Fig. 1). The latter is related to Eq. 2.3 via the
algebraic equivalence y0 ≤ yj ≤ t0 ⇔ tj − t0 ≤ tj − yj ≤ tj − y0. Further,
the marginal density fX(xj) in Eq. 2.2 is defined in terms of the survival
function l(xj) = Pr(X > xj) via fX(xj) = −l′(xj). Finally, the marginal
density of Tj is obtained from Eq. 2.2 and Eq. 2.3,

fT (tj |a0, t0) =
∫ tj−y0

(tj−t0)+

fY (tj − x|a0, t0)fX(x)dx, tj ≥ y0. (2.4)

Figure 1: Birth (y0) and death (t0) times of mother, and corresponding times
(yj and tj) for the j’th offspring. Further, a0 is the age of the mother at the
reference point t = 0
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The births and deaths of the m siblings are assumed to be condition-
ally independent, given (A0, T0) = (a0, t0), so the joint density of X1:m =
(X1, . . . , Xm) and T1:m = (T1, . . . , Tm) is

∏m
j=1 fX,T (xj , tj |a0, t0), where the

density fX,T (xj , tj |a0, t0) is given by Eq. 2.2. We are now in position to
define the sibling distribution as the conditional distribution of X1:m, given
T1:m = t1:m.

Remark 1. The sibling distribution of X1:m has density

f(x1:m|t1:m) =

∫∞
0

∫∞
0

∏m
j=1 fX,T (xj , tj |a0, t0)g(a0, t0)da0dt0∫∞

0

∫∞
0

∏m
j=1 fT (tj |a0, t0)g(a0, t0)da0dt0

, x1:m ∈ Rm
+ ,

(2.5)
where fX,T and fT are given by Eqs. 2.2 and 2.4, respectively, and g is the
joint density of (A0, T0) for which we will derive the density (2.7) below.

The parameters of the sibling distribution are t1:m ∈ Rm, in addition
to whatever parameters are hidden in the functional forms of the functions
β(a) and l(a). Note that the tj are not restricted to be positive, i.e. the
offspring may have died before t = 0. Mostly, we shall parameterize l(a)
in terms of the age-specific death rate φ(a), which is related to the survival
function through the well known relationship l(x) = exp

(
−
∫ x
0 φ(a)da

)
.

In order to derive an expression for the density g(a0, t0), occurring in
Eq. 2.5, we use the theory for stable age distributions from mathematical
demography (Caswell and Keyfitz, 2005), which we now briefly review. A
population in which the age-specific rates φ(a) and β(a) do not change with
time will settle into a stable age distribution. Further, the population will
grow at a rate r given as the solution to the “characteristic equation”

∫ ∞

0
β(a)l(a)e−rada = 1.

The stable age distribution has density fA(a) = l(a)e−ra/
∫ a
0 l(u)e

−rudu, for
a ≥ 0. Our point of view is that the mother is randomly selected among all
females alive at t = 0, so that the density of A0 is given by fA. This is yet
not taking into account the fact that she has m offspring over her life time.
The joint density of A0 and T0 is

fA0,T0(a0, t0) = fT0|A0
(t0|a0)fA0(a0), a0 ≥ 0, t0 ≥ 0, (2.6)

where fT0|A0
(t0|a0) = −l′(a0 + t0)/l(a0). Conditionally on A0 and T0, and

hence on the length of the time periodX0 = A0+T0 that she is alive, her total
number of offspringM is Poisson distributed with mean B(x0) =

∫ x0

0 β(u)du.
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Knowing that the mother had m offspring over her lifetime perturbs the
distribution (2.6) as follows

g(a0, t0) ∝ fA0,T0(a0, t0)B(a0 + t0)
me−B(a0+t0). (2.7)

We have now completely specified the sibling distribution via its den-
sity (2.5). Instead of providing results about its properties in the general
case, we turn to a special case in which explicit results can be found. In
Section 6 we briefly return with some discussion of the general case.

3 Constant Birth and Death Rates

We shall refer to the situation

β(a) = β and φ(a) = φ for all a, (3.1)

as the constant-rate sibling distribution. Under this assumption it follows
that the conditional densities (2.1) and (2.2) reduce respectively to

fY (yj |a0, t0) =
1

a0 + t0
, yj ∈ (−a0, t0), (3.2)

and

fX,T (xj , tj |a0, t0) =
1

a0 + t0
φe−φxj , (tj − t0)+ ≤ xj ≤ tj + a0. (3.3)

Further, the marginal density (2.4) becomes

fT (tj |a0, t0) =
e−φtj

a0 + t0

{
eφtj − e−φa0 , −a0 ≤ tj ≤ t0,

eφt0 − e−φa0 , tj > t0,
(3.4)

and the joint density (2.7) becomes

g(a0, t0) ∝ (a0 + t0)
me−(φ+β)t0e−2βa0 , a0, t0 ≥ 0. (3.5)

Using these expressions we are able to find an explicit expression for the
sibling distribution (2.5) of order m = 2. We shall first assume that t1 = t2
which simplifies expressions somewhat. Derivations for the case t1 �= t2 are
very similar.

Consider the distribution of the life times X1 and X2, given that T1 =
T2 = t, where t is the common time of death of the two siblings. We have
the following expression for the sibling density, which due to symmetry is
presented only for x1 ≤ x2.
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Theorem 1. With constant-rates (3.1), the sibling density (2.5) with
m = 2 becomes (for t > 0):

f(x1, x2) = C−1
1

⎧
⎪⎨
⎪⎩

e−(β+φ)(t−x1)−φ(x1+x2), 0 ≤ x1 ≤ x2 ≤ t,

e2β(t−x2)−(β+φ)(t−x1)−φ(x1+x2), 0 ≤ x1 ≤ t ≤ x2,

e2β(t−x2)−φ(x1+x2), 0 ≤ t ≤ x1 ≤ x2,

(3.6)

and for t < 0:

f(x1, x2) = C−1
2 e−(2β+φ)x2−φx1 , t < 0 ≤ x1 ≤ x2, (3.7)

where C1 and C2 are normalizing constants.

Proof. See Appendix A.

By integrating over three branches in Eq. 3.6 we obtain the following
expression for the normalizing constant:

C1 =

{
e−2φt(7β+5φ)
(2β+φ)(β2−φ2)

+ 4e−(β+2φ)t

φ(2β+φ) − 2e−(β+φ)t

φ(β−φ) , β �= φ,
12φeφtt−7eφt+8

6φ2e3φt
, β = φ,

(3.8)

and similarly integration of Eq. 3.7 yields

C2 = [(2β + φ)(β + φ)]−1 . (3.9)

Note that f(x1, x2) does not depend on t when t < 0 . When we in addition
set β = 0 (interpreted as a limit), X1 and X2 become independent, expo-
nentially distributed. Further interpretation of the case that t < 0 is given
in Section 4 below.

Like the exponential distribution, the constant-rate sibling distribution is
closed under change of scale. If we define X ′

j = cXj for c > 0, the parameters

of the resulting sibling distribution are φ′ = c−1φ, β′ = c−1β and t′ = ct.
Hence, we may set φ = 1 and reparameterize the distribution in terms of
(c, β, t), which for some purposes is useful.

As seen from Eq. 3.6, the density has a piecewise definition. When using
symmetry to include also the case x1 > x2, the definition of the sibling
density splits the first quadrant, x1, x2 ≥ 0, into six regions (Fig. 2 with
t1 = t2). We see that log{f(x1, x2)} is piecewise linear over these regions, and
is continuous (but not differentiable) across the boundaries of the regions.
The density is unimodal, with the mode at (x1, x2) = (0, 0) when β < φ,
and while β > φ the mode is at (x1, x2) = (t, t). Figure 3 shows f(x1, x2)
for three different parameter.
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Figure 2: The six different regions of the sibling density when t1 = 9 and
t2 = 5. The dashed line indicates ages where the siblings are born at the
same time (y1 = y2)

In order to present the sibling distribution for the case t1 �= t2, it is
advantageous to introduce a general piecewise log-linear density f over the
regions R1, . . . , R6 in Fig. 2:

f(x1, x2) = C−1ebk+ckx1+dkx2 , (x1, x2) ∈ Rk, k = 1, . . . , 6. (3.10)

Here, b1:6 = (b1, . . . , b6), c1:6 = (c1, . . . , c6) and d1:6 = (d1, . . . , d6) are con-
stants satisfying the constraints c2, c3, c4, d3, d4, d5 < 0, which are needed for

Figure 3: Bivariate sibling density f(x1, x2) with parameters φ = 1, β =
0.8, 1.0, 1.2 (left to right) and (t1, t2) = (4, 4). The red dots show expected
value (μ, μ). The dashed white curve is the contour c = 1 of c(x1, x2) given
by Eq. 3.15
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f to be a proper density. Straightforward, but tedious, integration yields
the normalization constant:

C = −eb1
(
ed1t2c1

(
e−d1t1 − ec1t1

)
+ ec1t1 (c1 + d1)− c1 − d1

)

c1d1 (c1 + d1)

+
ec2t1+b2

(
1− ed2t2

)

c2d2
+

ec3t1+d3t2+b3

c3 (c3 + d3)
+

ec4t1+d4t2+b4

d4 (c4 + d4)

−ed5t2+b5
(
ec5t1 − 1

)

c5d5
+

ed6t2+b6
(
c6

(
e−d6t1 − 1

)
+ d6

(
ec6t1 − 1

))

c6d6 (c6 + d6)
,

(3.11)

where c1+d1 �= 0 and c6+d6 �= 0 in addition to the constraint c2, c3, c4, d3, d4, d5 <
0. The constants C1 and C2 in Theorem 1 are special cases of this.

It is easy to derive the moment generating function of Eq. 3.10:

M(s1, s2) = E
(
es1X1+s2,X2

)
=

C(b1:6, c1:6 + s1, d1:6 + s2, t1, t2)

C(b1:6, c1:6, d1:6, t1, t2)
, (3.12)

where c1:6 + s1 = (c1 + s1, . . . , c6 + s1) and d1:6 + s2 = (d1 + s2, . . . , d6 +
s2). Moments of X1 and X2 of various orders can be obtained by repeated
differentiation of M(s1, s2) at s1 = s2 = 0. The resulting expressions are
complex, and not well suited for interpretation, but are nevertheless useful
for numerical evaluation.

Theorem 2. With constant rates (3.1), the sibling density (2.5) with
m = 2 and t1 �= t2 has density given by Eq. 3.10 with coefficients as specified
in Table 1.

Proof. The proof is very similar to that of Theorem 1 and is omitted.

3.1. Positive Association Intuitively, X1 and X2 are positively associ-
ated under the sibling distribution, due to their dependence of the lifespan

Table 1: Choice of coefficients in Eq. 3.10 yielding the order 2 sibling density
when t1 �= t2
j bj cj dj
1 −(β + φ)t2 −φ β
2 2βt1 − (β + φ)t2 −(2β + φ) β
3 2βt1 −(2β + φ) −φ
4 2βt2 −φ −(2β + φ)
5 2βt2 − (β + φ)t1 β −(2β + φ)
6 −(β + φ)t1 β −φ
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(−A0, T0) of their shared mother. Further, for each marginal (j = 1, 2) we
must have that Xj is stochastically increasing in the parameter tj . The in-
formal argument for the latter is that since the mother is known to have
been alive at t = 0, the larger the death time tj the older (xj) the individual
is likely to be. We now set out to prove these claims rigorously.

We start out by proving the positive association between X1 and X2. An
appropriate notion of positive association is the so-called Multivariate Total
Positivity of order 2 (MTP2). A bivariate density f(x), x ∈ R2, is is said to
be MTP2 if

f(x ∨ z)f(x ∧ z) ≥ f(x)f(z), (3.13)

for any x, z ∈ R2, where x ∨ z = (max(x1, z1),max(x2, z2)) and x ∧ z =
(min(x1, z1),min(x2, z2)). See Karlin and Rinott (1980) for a comprehensive
overview of properties of MTP2 distributions.

Theorem 3. The sibling densities (3.6) and (3.7) are MTP2.

This is proved in Appendix C using the definition Eq. 3.13 of MTP2

directly. We believe that an alternative proof may be based on the fact
that mixture distributions, of which the numerator of Eq. 2.5 is an example,
under certain conditions are MTP2 (Khaledi and Kochar, 2001; Shaked and
Spizzichino, 1998). Using this approach it may be possible to prove that
more general sibling distributions than (3.6) are MTP2.

MTP2 is a strong positive dependence property, which among other
things imply that cov(X1, X2) ≥ 0. Although covariance is (arguably) not
the most relevant dependence measure for life times, it nevertheless the most
common dependence measure in general, and it is therefore useful to have
establish this result.

3.2. Marginal Distribution and Copula The marginal densities in Eq. 3.6
are both given as

f(x) =
e−φ(t+x)

C1

⎧
⎨
⎩
e−β(t−x)

[
β+φ
βφ − e−βx

β − 2βeφ(x−t)

φ(2β+φ)

]
, x ∈ (0, t],

e2β(t−x)
[
β+φ
βφ − e−βt

β − 2βeφ(t−x)

φ(2β+φ)

]
, x ∈ (t,∞),

(3.14)

where C1 is given by Eq. 3.8. As a local measure of dependency between X1

and X2 we introduce

c(x1, x2) =
f(x1, x2)

f(x1)f(x2)
. (3.15)

The c = 1 contour of c(x1, x2) is displayed in Fig. 3. The region in which
c(x1, x2) > 1 is located around the diagonal x1 = x2. This reflects the
positive dependence in the sibling distribution.
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We can obtain an analytical expression for the cumulative joint distri-
bution F (x1, x2) by integrating Eq. 3.6. Similarly, we get an expression for
the cumulative marginal distribution function G(x) by integrating Eq. 3.14.
Then we can define a copula (Nelsen, 2007), F

(
G−1(x1), G

−1(x2)
)
, based

on the sibling distribution, where G−1 denotes the inverse of G. Because the
sibling distribution is closed under change of scale, we set φ = 1, and the
copula thus has β and t as free parameters. We do not explore this copula
further in this paper.

We next prove that X (X1 or X2) is stochastically increasing in t, in the
sense of the following theorem.

Theorem 4. For any t′ > t > 0 we have

P (X > x|T = t) ≤ P (X > x|T = t′). (3.16)

It turns out to be easier to prove the more general statement that (X1, X2)
is multivariate stochastically increasing (Shaked and Shanthikumar, 2007,
p. 265), which imply Eq. 3.16. The reason this is simpler is that the key
quantity, the ratio f(x; t′)/f(x; t), which is involved in Theorem 6.B.8. of
Shaked and Shanthikumar (2007, p. 265), takes on a simpler form for the
bivariate density (3.6) than for the univariate density (3.14). The details of
the proof are given in Appendix D.

Stochastic monotonicity of a random variable X implies that E(X) is
an increasing function of t (Shaked and Shanthikumar, 2007, p. 4). This
means that, for given φ and β, there is a one-to-one correspondence between
t and μ = E(X). This fact will play a crucial role when we later devise an
estimator for the parameters φ, β and t.

3.3. The Role of β and t Because the family of constant-rate sibling
distributions is closed under change of scale we set φ = 1. In this section we
will study the effect of varying β and t on two characteristics: the correlation
(COR) between X1 and X2 and CV(Xj) =

√
Var(Xj)/E(Xj). Without

conditioning on Tj = t, we have that Xj is exponentially distributed with
rate φ = 1. The process of conditioning on Tj can be expected to deduce
CV(Xj). Rather than trying to prove this formally, we provide numerical
evidence.

Figure 4 shows correlation and CV as functions of β (top) and t (bottom),
and indeed we see that CV ≤ 1 for all β and t. When β and t are both close
to zero we have CV ≈ 1 and COR ≈ 0, which reflects the fact that X1 and
X2 are then approximately independent and exponentially distributed. For
increasing β the correlation increases, but not necessarily monotonically, and
approaches an asymptotic level (top-left). From the corresponding plot of
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Figure 4: Correlation (left) and CV (right) of the sibling distribution (φ = 1)
as a function of its parameters. The parameter φ is set to 1 and the plots on
the top row are plotted as a function of β for five different values of t. The plots
on the bottom are plotted as a function of t for five different values of β

the CV (top-right) we notice that the overall trend is that the CV decreases
as the value of β increases. The decrease is steepest for the highest values of t.

Further, we see from the bottom row of Fig. 4 that the correlation in-
creases as a function of t, except for very small t. It can be shown that
when β = φ the correlation approaches 1 as t → ∞. When β �= φ, the
correlation does not approach 1 as t → ∞, but flattens out at a lower value
which depends on the value of β. The CV decrease quickly as a function of
t, especially for the higher values of β. When β < φ we see that the CV first
decrease, then starts to increase for higher values of t.

4 Relationship to the Block-Basu Distribution

In this section we clarify the relationship between the constant-rate sib-
ling distribution and the Block-Basu distribution (Block and Basu, 1974),
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and we shall use this relationship to interpret the sibling distribution. One
way of deriving the Block-Basu distribution goes via (Freund, 1961), and
we will refer to this as the “Freund interpretation”. Let now X1 and X2 be
the lifetimes of two components assumed to be independently exponentially
distributed with rate parameters α1 and α2, respectively. When one of the
component fails, the rate for the remaining component changes from α1 to
α∗
1 or from α2 to α∗

2, depending on which component fails first. The resulting
density (see Freund (1961)) is

f(x1, x2) =

{
α1e

−x1(α1+α2)α∗
2e

−α∗
2(x2−x1), 0 ≤ x1 ≤ x2,

α2e
−x2(α1+α2)α∗

1e
−α∗

1(x1−x2). 0 ≤ x2 ≤ x1.
(4.1)

When setting

αj = β + φ, α∗
j = 2β + φ, j = 1, 2, (4.2)

we see that Eq. 4.1 reduces to the symmetric sibling density (3.7) with t ≤ 0.
Since t = 0 is the time point at which the mother is known to have been alive,
we are effectively considering a sibling distribution where both offspring are
dying before their mother.

The Freund interpretation yields that X(1) = min(X1, X2), i.e. the age
of the youngest sibling, has an exponential distribution with rate parameter
α1 + α2 = 2(β + φ). Further, the age difference between the oldest and
the youngest, X(2) = max(X1, X2) − min(X1, X2), has an exponential dis-
tribution with rate parameter α∗ = 2β + φ. In the following paragraphs we
interpret the rates (4.2) in the context of the sibling distribution.

If we consider the case with t = 0, we know that the mother and her two
offspring were all alive at (or just prior to) t = 0. The Freund interpretation
requires us to look backwards in time, starting from t = 0. The “failure” of
a component corresponds to an offspring being born. We first look at the
event X(1) > x, which can be broken into three sub events:

(i) The mother was born prior to t = −x, i.e. a0 > x. Because the stable
age distribution of A0 is exponential with rate β, we have P (A0 > x) =
exp(−βx).

(ii) Both offspring were born prior to −x, and because we are conditioning
on there being m = 2 siblings in total, this implies that there were no
additional births in (−x, 0). The latter has probability exp(−βx).

(iii) Both offspring survived the interval (−x, 0), which has probability
exp(−2φx).
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When combining the independent events i)–iii) we get the Freund interpre-
tation P

(
X(1) > x

)
= exp [−2(β + φ)x].

The event X(2) > x can be interpreted similarly, but we must shift our
point of view backwards in time to t = −x(1) when the youngest sibling was
born. The mother would have to be born prior to t = −(x + x(1)). Using
the stable age distribution of A0, this has conditional probability

P
(
A0 > x+ x(1)|A0 > x(1)

)
= exp (−βx) .

Secondly, there couldn’t have been any births between t = −
(
x+ x(1)

)
and

t = −x(1), which has probability exp (−βx). Finally, the offspring that was
born at t = −x(2) survived from t = −

(
x+ x(1)

)
until t = −x(1), which has

probability exp (−φx). In total we get P
(
X(2) > x

)
= exp [−(2β + φ)x],

which is the Freund interpretation of the sibling distribution. Similar argu-
ments applies to the situation t < 0.

Finally, we discuss a few additional insights gained from the Freund
interpretation (4.2). First, the age difference between the siblings, X1 −X2

follows a Laplace distribution with rate 2β + φ. Further, note that α∗
j →

αj = φ as β → 0. Hence, X1 and X2 are independent in the limit β → 0,
each having an exponential distribution with rate φ.

5 Simulation, Estimation and Application to Real Data

We first devise an algorithm for sampling (x1, x2) from the density (3.6).
Rather than sampling directly from Eq. 3.6, which would be feasible albeit a
bit technical, we choose to go back to the definition of the sibling distribution.
This involves explicitly sampling (a0, t0) for the mother. As a byproduct,
our algorithm sheds light on the sibling distribution, through an expression
for the conditional density of (A0, T0), given (T1, T2).

We also construct a hybrid moment/maximum likelihood estimator for
the parameter vector θ = (β, φ, t). The statistical properties of this estimator
are investigated on simulated data.

5.1. Simulation The joint density of (A0, T0), (X1, T1) and (X2, T2) is
given by

g(a0, t0)
2∏

j=1

f(xj , tj |a0, t0) = f(t1, t2)f(a0, t0|t1, t2)
2∏

j=1

f(xj |tj , a0, t0), (5.1)

where for notational simplicity we suppress subscripts on densities and range
of variables in this section. The quantities on the left-hand side are given
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by Eqs. 3.3 and 3.5, while the right-hand side is a generic refactoring of the
joint density in terms of conditional densities. Dividing through by f(t1, t2)
in Eq. 5.1 we obtain the target distribution, and the right-hand side (5.1) sug-
gests the following algorithm for sampling (X1, X2) conditionally on (T1, T2):

(i) Sample (A0, T0) from f(a0, t0|t1, t2),

(ii) Using (a0, t0) from (i), draw Xj from f(xj |tj , a0, t0), independently for
j = 1, 2.

Step (ii) is straight forward, and is seen from Eq. 3.3 to amount to sampling
from an exponential distribution with xj constrained to a certain interval.
Step (i) requires more careful consideration. We have

f(a0, t0|t1, t2) ∝ g(a0, t0)
2∏

j=1

f(tj |a0, t0),

where f(tj |a0, t0) is given by Eq. 3.4 and g(a0, t0) by Eq. 3.5. We have found
experimentally for t1 = t2 that the following two-step procedure works well.
We start by independently drawing A0 and T0 from exponential distributions
with rates 2β and min(φ + β, t−1

1 , t−1
2 ), respectively. This is repeated K

times to get a pre-sample {(A0k, T0k), k = 1 . . . ,K}, from which a single
pair (A0, T0) is drawn with probabilities

pk ∝ f(a0k, t0k|t1, t2) exp
[
2βa0k +min(φ+ β, t−1

1 , t−1
2 )t0k

]
.

5.2. Estimation Consider n observation pairs {(x1i, x2i); i = 1, . . . , n}
from Eq. 3.6. While f(x1, x2) is continuous as a function of θ = (β, φ, t),
it is not differentiable in t at t = x1 and t = x2. This implies that the
log-likelihood

l(β, φ, t) = n−1
n∑

i=1

log (f(x1i, x2i;β, φ, t))

has 2n points where the derivative is not differentiable. Standard numerical
optimization algorithms typically either do not use derivative information
at all, or requires the objective function to be continuously differentiable in
all variables. The former types of algorithms are slow and unstable, and
the latter type are not directly applicable to our setting. We thus devise a
special two-stage estimation algorithm.

Because X1 and X2 have the same marginal distribution we define the
overall sample mean x̄ = (2n)−1

∑n
i=1(x1i + x2i). We denote by μ(β, φ, t)

the expectation of X1 and X2, and impose the constraint μ(β, φ, t) = x̄ on
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the parameter estimation problem. An analytical expression for μ(β, φ, t) is
given in Appendix B. The expression is complicated, but nevertheless well
suited for numerical evaluation. Recall that we have proven earlier that
μ(β, φ, t) is increasing as a function of t.

Our estimation algorithm iterates between the following two steps:

1. For given t̂, let β̂ and φ̂ be the maximizer of l(β, φ, t̂).

2. For given β̂ and φ̂, let t̂ be the solution of the equation μ(β̂, φ̂, t) = x̄.

Both 1) and 2) are solved numerically using the software TMB (Kristensen
et al., 2016).

5.3. Simulation Experiment Using the algorithm of Section 5.1, we
sampled n = 1000 observation pairs (x1, x2) to which the estimator of Sec-
tion 5.2 was applied. This process was repeated 1000 times to assess the
statistical properties of the estimator. Table 2 shows the results for 20 dif-
ferent parameter combinations (one row per combination). Moments charac-
terizing the distribution of (X1, X2), obtained from the moment generating
function (3.12), are also given in the table.

From Table 2 we see that the estimator for the parameter vector θ =
(β, φ, t) is overall stable with respect to the different combinations of the
input parameters. More specifically, for the parameter t in the first column,
we see that the mean values of the estimates are all very close to the true
value of t, but they are slightly worse in the case when β > φ. The same trend
can be seen in the standard deviations, which are higher in these situations.
For the parameter β we see that the mean of the estimates are more accurate
for higher values of t, but we also see the trend with better predictions when
β > φ. The standard deviations are however quite stable for all combinations
of the input parameters. The mean values of the estimates for the parameter
φ are all very similar and they do not seem to be affected by the different
combinations of the input parameters. The standard deviations are higher
when t = 2, but otherwise quite similar. Figure 5 shows the marginal density
(3.14) for some of the parameter combinations used in Table 2.

5.4. Application to Real Data We have presented the sibling distribu-
tion as a distribution for life times, but it may in fact be applied to any
set of non-negative quantities with positive dependence. The constant-rate
case is applicable only when the CV is less than one, and when t1 = t2 the
marginals must be the same. We use the “twinData” dataset found in the
R-package “OpenMx” (Neale et al., 2016) as an example. These are BMI
measurements on twins (around age 18), but nevertheless satisfy the above
mentioned restrictions (Table 3).
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Table 2: Performance of the estimator (β̂, φ̂, t̂) with n = 1000 observations
drawn using the algorithm in Section 5.2

t̂ β̂ φ̂ Moments

True Mean SD True Mean SD True Mean SD E(X) CV(X) COR

1 2.00 2.05 0.21 0.60 0.63 0.05 1.00 1.01 0.15 1.20 0.65 0.37
2 2.00 2.03 0.15 0.80 0.83 0.05 1.00 1.01 0.15 1.21 0.61 0.40
3 2.00 2.02 0.08 1.20 1.23 0.06 1.00 1.01 0.13 1.27 0.54 0.46
4 2.00 2.00 0.07 1.40 1.43 0.06 1.00 1.00 0.13 1.30 0.51 0.48
5 4.00 4.06 0.15 0.60 0.64 0.04 1.00 1.01 0.05 1.84 0.66 0.57
6 4.00 4.03 0.10 0.80 0.83 0.04 1.00 1.00 0.05 2.02 0.61 0.62
7 4.00 4.01 0.06 1.20 1.21 0.05 1.00 1.01 0.06 2.43 0.49 0.68
8 4.00 4.00 0.05 1.40 1.41 0.05 1.00 1.00 0.07 2.62 0.43 0.70
9 6.00 6.05 0.18 0.60 0.64 0.04 1.00 1.00 0.04 2.30 0.71 0.69
10 6.00 6.03 0.12 0.80 0.83 0.04 1.00 1.00 0.04 2.73 0.63 0.75
11 6.00 6.01 0.06 1.20 1.21 0.04 1.00 1.01 0.05 3.71 0.45 0.80
12 6.00 6.00 0.05 1.40 1.40 0.05 1.00 1.00 0.06 4.16 0.37 0.81
13 8.00 8.03 0.25 0.60 0.65 0.04 1.00 1.00 0.03 2.59 0.75 0.76
14 8.00 8.02 0.14 0.80 0.83 0.04 1.00 1.00 0.04 3.32 0.66 0.82
15 8.00 8.01 0.06 1.20 1.20 0.04 1.00 1.01 0.05 5.12 0.42 0.87
16 8.00 8.00 0.05 1.40 1.40 0.04 1.00 1.01 0.05 5.87 0.32 0.86
17 10.00 9.98 0.33 0.60 0.65 0.03 1.00 1.00 0.03 2.77 0.79 0.80
18 10.00 10.00 0.15 0.80 0.83 0.03 1.00 1.00 0.03 3.81 0.69 0.87
19 10.00 10.00 0.06 1.20 1.20 0.04 1.00 1.01 0.04 6.63 0.39 0.90
20 10.00 9.99 0.05 1.40 1.39 0.05 1.00 1.00 0.05 7.69 0.28 0.89

The column “True” shows the values used in the simulations, while “Mean” and “SD”
are, respectively, the average and standard deviation of (β̂, φ̂, t̂) across 1000 repetitions.
The three rightmost columns show respectively E(X), CV (X) =

√
Var(X)/E(X), and

COV(X1, X2), all calculated using the moment generating function for the true parameter
values

The dataset consists of BMI measurements for 3569 (male/female, monozy-
gotic/dizygotic) twin pairs. The fitted sibling distribution is unable to ac-
comodate the light left-hand tail of data (Fig. 6). The fitted density is
huge perturbation of the unconditional (on T ) distribution of X, which for
the constant-rate case is an exponential distribution. This illustrates the
flexibility of the distribution. Table 3 shows the parameters of the fitted
distribution. The lack of fit is reflected in estimated moments not fitting the
empirical moments very well. If we look at the estimated parameter values
in Fig. 6 we see that these are “outside in the normal range”, in the following
sense. The expected life length of an individual is 1/φ̂ = 1/0.94 = 1.12, but
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Figure 5: Marginal density (3.14) when β < φ (left) and when β > φ
(right). The legend refers to the leftmost column of Table 2, which gives the
parameter setting used for the different density curves

the mother-offspring duo spanned (mother’s birth to offspring’s death) at
least t̂ = 21.77 time units.

6 Discussion

The idea of a sibling distribution was conceived during our work with
the recently invented Close-Kin Mark-Recapture method (Bravington et al.,
2016), in which the joint age distribution of half-siblings plays a crucial
role. Its usefulness as a distribution for multivariate life time data in general
remains to be explored. The fact that it is a mixture (over A0 and T0)
of independent life times makes it amenable to analysis in the framework
of Shaked and Spizzichino (1998). However, due to the conditioning on

Table 3: Fitted sibling distribution to BMI data
Estimated Empirical

Mean 21.79 21.77
SD 1.82 0.94
CV 0.08 0.04
COR 0.87 0.53
β 1.52 -
φ 0.94 -
t 23.51 -
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Figure 6: Marginal distribution of BMI data, with fitted sibling distribution.
The dashed red curve shows the sibling density (3.6)

Tj its structure, and in particular the moments, is complicated. Moreover,
the non-differentiability of the likelihood with respect to the parameter t
prevents straight forward application of maximum likelihood estimation.

Our numerical experiments indicate that the constant-rate (3.1) distri-
bution has CV ≤ 1. This is clearly limiting for a general purpose life time
distribution, but this restriction can be removed by choosing a non-constant
φ(a). We have not been able to obtain explicit expressions for the sibling
density under more general conditions. In general, the sibling density (2.5)
can be evaluated numerically. Both the numerator and denominator in-
volves two-dimensional integrals (with respect to a0 and t0). The integrand
of the denominator is a product of m functions on form (2.4), which each
involves a one dimensional integral. This is by no means computationally
prohibitive, but specially tailored numerical integration schemes would have
to be devised in order for the general distribution to be practically useful.

We have shown that the constant-rate sibling distribution with t1 =
t2 = 0 coincides with the exchangeable Block-Basu distribution (α1 = α2

and α∗
1 = α∗

2). The non-exchangeable case is not a sibling distribution, as
the sibling framework requires that φ and β are the same for both siblings.
Conversely, the sibling distribution with t1 �= t2, or t1 = t2 > 0, is not a
Block-Basu distribution. Also, when allowing age-specific rates, φ(a) and
β(a), the sibling distribution is no longer a Block-Basu distribution. Kundu
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and Gupta (2010) extended the Block-Basu distribution by deriving it from
components that were Weibull distributed instead of exponential. The ad-
ditional shape parameter makes the extended Block-Basu distribution more
flexible at the cost of being less computational tractable.

Finally, we have proven that the constant-rate sibling distribution is
MTP2 and stochastically increasing in t. We conjecture, based on literature
for mixture distributions (Shaked and Spizzichino, 1998, p. 273; Shaked and
Shanthikumar, 2007) that these properties hold for a wider class of sibling
distributions, but possibly not for all.
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Appendix A. Proof of Theorem 1

The quantities involved in the expression (2.5) for the sibling density are
given by Eqs. 3.3, 3.4 and 3.5. The evaluation of the integrals over (a0, t0) in
the numerator and denominator of Eq. 2.5 is made difficult by the constraints
(2.3). Below we show how these constraints split the first quadrant of the
(x1, x2) plane into six disjoint regions R1, . . . , R6 (see Fig. 2). In each of these
the integrand is just a simple exponential function. Because the density is
exchangeable when t1 = t2 it is sufficient to specify the expression only over
the regions R1, R2 and R3.

Recall that yj = tj−xj denotes the birth time (j = 0, 1, 2). The integrand
of the numerator in Eq. 2.5 is

fX,T (x1, t|a0, t0)fX,T (x2, t|a0, t0)g(a0, t0)
∝ e−2βa0e−(β+φ)t0 × exp {−φ(x1 + x2)} , (A.1)
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for values of a0 and t0 such that the constraints (2.3) are satisfied for j = 1, 2,
and zero otherwise. The term after × does not depend on a0 and t0, but is
included for later reference. Because we assume x1, x2 ≥ 0, we can replace
the inequality (tj − t0)+ ≤ xj in Eq. 2.3 by t − t0 ≤ xj , which again is
equivalent to t0 ≥ yj . Similarly, the last inequality xj ≤ tj−y0 in Eq. 2.3 can
be re-expressed as a0 ≥ −yj . Together with the basic constraints a0, t0 ≥ 0
we get a0 ≥ max(0,−y1,−y2) and t0 ≥ max(0, y1, y2). Depending on the
relative values of y1 and y2, the lower bounds of the integrals over a0 and
t0 will be qualitatively different. There are 6 different cases, corresponding
to the partition R1, . . . , R6 of the (x1, x2) plane shown in Fig. 2. When
integrating (A.1) with respect to a0 and t0, and replacing yj by t− xj (j =
1, 2), we get

fX,T (x1, t)fX,T (x2, t) ∝ e−φ(x1+x2)×

⎧
⎪⎨
⎪⎩

e−(β+φ)(t−x1), (x1, x2) ∈ R1,

e2β(t−x2)e−(β+φ)(t−x1), (x1, x2) ∈ R2,

e2β(t−x2), (x1, x2) ∈ R3,

which is Eq. 3.6.
The proof when t < 0 follows in the same vein, where we start out with

the integrand of the numerator in Eq. 2.5 given by Eq. A.1. We must find
values of a0 and t0 such that the constraints (2.3) still hold. The inequality
(tj − t0)+ ≤ xj in Eq. 2.3 which is equivalent to t0 ≥ yj can be replaced with
t0 ≥ 0 since we have y1, y2 < 0 in combination with the constraint t0 ≥ 0.
For the last inequality in Eq. 2.3, the above arguments still apply such that
this term is replace, with by a0 ≥ −yj . In total we get a0 ≥ max(0,−y1,−y2)
and t0 ≥ 0.

Appendix B. Analytical expressions

The expectation under the density (3.14) is

μ(β, φ, t) = E(X)

= 6β (φ− β/3) (β + φ)2 (2β + φ)2 e(−β+φ)t

+4
(
φ2 (tβ − 1) + 2β2φt+ 2β2

)
(−β + φ)2 (β + φ)2 e−tβ

+(4− 10tβ)φ6 −
(
34β2t+ 4β

)
φ5−

(
18β3t+ 51β2

)
φ4+

(
34β4t− 7β3

)
φ3

+
(
28β5t− 23β4

)
φ2/8β (2β + φ) (−β + φ)φ (β + φ)

(
1/2 (2β + φ) (β + φ) e(−β+φ)t +

(
−β2 + φ2

)
e−tβ − 5/4φ (φ+ 7/5β)

)
.

This expression is obtained using computer algebra system Maple.
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Appendix C. Proof of Theorem 3

We shall work with g(x) = log f(x), x ∈ R2, which for the sibling density
that Eq. 3.6 is a piecewise linear function. The MTP2 property of f is
equivalent supermodularity of g, i.e.

g(x ∨ z) + g(x ∧ z) ≥ g(x) + g(z). (C.1)

It is trivial to check that a linear function g is supermodular, so it follows
directly that Eq. 3.7 is MTP2.

The density (3.6) requires more careful attention due to its piecewise
definition. It suffices to consider x and z such that the four points x, z,
(x∨z) and (x∧z) form a non-degenerate rectangle with sides parallel to the
axes. This happens when either x1 < z1 and x2 > z2 or when x1 > z1 and
x2 < z2. We will consider only the former, where x is the upper-left corner
(and z the lower-right corner) of the rectangle. The other case is handled in
the same way. When the rectangle is degenerate (a line or a point) it can
be checked that Eq. C.1 holds for any function g. Under these constraints,
if x and z lie in the same region (R1, . . . , R6) of Fig. 7 all four corners of the
rectangle lies lies in same region, and by linearity of g within each region we
have that Eq. C.1 is satisfied.

The sum of two supermodular functions is again supermodular, so we
may add φ(x1+x2) to all three branches of the logarithm of Eq. 3.6, so that
we may work with

g(x1, x2) =

⎧
⎪⎨
⎪⎩

−(β + φ)(t− x1), 0 ≤ x1 ≤ x2 ≤ t,

2β(t− x2)− (β + φ)(t− x1), 0 ≤ x1 ≤ t ≤ x2,

2β(t− x2), 0 ≤ t ≤ x1 ≤ x2.

(C.2)

The extension of g to all six regions of Fig. 7 (with t1 = t2 = t) is g(x1, x2) =
g(x2, x2) when x1 > x2. The fact that g(x1, x2) does not depend on x2 in
regions R1 and R4, and not on x2 in R3 and R6 are visualized via the a level
curve (green dashed line) of g in Fig. 7. It is seen that g is unimodal, with
the mode at (x1, x2) = (t, t).

We start out by restricting ourselves to the case x2 < t. Under the
facts established above, and the assumed restrictions on x and z, there are
only three qualitatively different cases that must be considered. Using the
red part of Fig. 7 as a reference, these are: i) x = A and z = C ′, ii)
x = A and z = D′ and iii) x = C and z = D′. With our geometric
approach, supermodularity is something that is checked for rectangles. It has
the property that we can split a rectangle (A,C,C ′, A′) in two, (A,B,B′, A′)
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Figure 7: Part of the proof of Theorem C. The green dashed line is an
example of a level curve (C.2). The red rectangles are used to prove super-
modularity

and (B,C,C ′, B′), and it is sufficient to check Eq. C.1 for the two parts.
Hence, to check all of i)–iii) it suffices to check all the red sub-rectangles in
Fig. 7, which we will now do. First, (A,B,B′, A′) lies in a single region (R6)
so Eq. C.1 holds. For (B,C,C ′, B′) we find by looking at the level curves
of g that g(C) > g(B) and g(C ′) = g(B′), which imply that Eq. C.1 holds.
Finally, the (solid black) vertical line x1 = t splits (C,D,D′, C ′) in two parts
which each line entirely in R1 and R2, respectively. This completes the proof
for x2 < t.

The situation that z2 > t, i.e. the red part of the figure is moved above
the (solid black) horizontal line x2 = t, follows by symmetry. The remain-
ing case, x2 > t > z1, can be handled by splitting in two the rectangle
horizontally at the x-axis, for each of which we know Eq. C.1 holds. Since
supermodularity is also additive when splitting a rectangle horizontally, we
have completed the proof.

Appendix D. Proof of Theorem 4

We prove that f(x1, x2; t) is multivariate stochastically increasing (Shaked
and Shanthikumar, 2007, Definition (6.B.1)) in the parameter t, where
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f(x1, x2; t) is given by Eq. 3.6. This implies Eq. 3.16, i.e. the marginals
are also stochastically increasing (Shaked and Shanthikumar, 2007, Theo-
rem 6.B.16 (c)).

We prove that the conditions in Theorem 6.B.8 in (Shaked and Shan-
thikumar, 2007) are satisfied. First, it follows from the MTP2 property that
(X1, X2) is “associated” in the sense of the theorem (Karlin and Rinott, 1980,
Eq. (1.7)). Define the function h(x1, x2) = log [f(x1, x2; t

′)/f(x1, x2; t)]. The
main condition of Theorem 6.B.8 is that h(x1, x2) is increasing in (x1, x2)
for t′ > t. To verify this we will check that

∂h

∂x1
≥ 0 and

∂h

∂x2
≥ 0, (D.1)

which together with the continuity of h is sufficient.
We build on the proof of Theorem 3, and denote the six regions of Fig. 7

associated with t′ by R′
1, . . . , R

′
6. We need to verify Eq. D.1 when (x1, x2) ∈

Rj∩R′
k for different values of j and k. When j = k it follows that h(x1, x2) =

0 which implies Eq. D.1. Next, due to the fact that t ≤ t′ many combinations
of j and k cannot occur, and we are left with the following list to check:

(x1, x2) h(x1, x2)
R4 ∩R′

5 (φ+ β)x1
R4 ∩R′

6 (φ+ β)x1 + 2βx2
R5 ∩R′

6 2βx2
R3 ∩R′

2 (φ+ β)x2
R3 ∩R′

1 (φ+ β)x2 + 2βx1
R2 ∩R′

1 2βx1

For all of these combinations (D.1) holds. Note that we have skipped
additive terms in h that does not depend on x1 or x2. This completes the
proof.
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