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Abstract

Unveiling the details of white matter (WM) maturation throughout ageing is a funda-

mental question for understanding the ageing brain. In an extensive comparison of

brain age predictions and age-associations of WM features from different diffusion

approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI)

data across midlife and older age (N = 35,749, 44.6–82.8 years of age). Conventional

and advanced dMRI approaches were consistent in predicting brain age. WM-age

associations indicate a steady microstructure degeneration with increasing age from

midlife to older ages. Brain age was estimated best when combining diffusion

approaches, showing different aspects of WM contributing to brain age. Fornix was

found as the central region for brain age predictions across diffusion approaches in

complement to forceps minor as another important region. These regions exhibited a

general pattern of positive associations with age for intra axonal water fractions, axial,

radial diffusivities, and negative relationships with age for mean diffusivities, frac-

tional anisotropy, kurtosis. We encourage the application of multiple dMRI

approaches for detailed insights into WM, and the further investigation of fornix and

forceps as potential biomarkers of brain age and ageing.
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1 | INTRODUCTION

Along the past decades, neuroscientific research, and particularly mag-

netic resonance imaging (MRI) have increased our understanding of

the biological mechanisms associated with brain tissue maturation and

ageing effects (Grady, 2012; Symms et al., 2004; Wrigglesworth

et al., 2021). A fundamental basis for that are large-scale MRI data-

bases, such as UK Biobank (UKB; Sudlow et al., 2015) or the Human

Connectome Project (Van Essen et al., 2012), allowing one to provide

larger generalizability for revealed effects (Marek et al., 2022). Simulta-

neously, large-scale data provide sufficient power for the application

of advanced multivariate statistical models, and machine learning

(ML) techniques. Brain age prediction is an example of such technique,

translating large amounts of complex multidimensional data into practi-

cally interpretable outputs. Brain age prediction involves training a ML

model to determine trajectories of brain ageing from a series of brain

MRI features. Once the model is trained, it can predict the age of

brains not included in the training data. The disparity between chrono-

logical age and predicted age, the so-called brain age gap (BAG), can be

used as an indicator of various disorders and potentially general health

status (Beck et al., 2022; Cole et al., 2017; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Leonardsen et al., 2021). For example, BAG has

been associated with stroke history, diabetes, smoking, alcohol intake,

several cognitive measures (Cole, 2020; Leonardsen et al., 2021), car-

diovascular risk factors (Beck et al., 2022), stroke risk (de Lange

et al., 2020), and loneliness (de Lange et al., 2021), mortality risk, differ-

ent brain and psychiatric disorders, particularly Alzheimer's disease and

schizophrenia (Cole & Franke, 2017; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Rokicki et al., 2021). Yet, the effect of brain age

on brain maturation remains unclear (Vidal-Pineiro et al., 2021), indi-

cating the need for further investigation.

BAG and age trajectories offer paths toward a better understand-

ing of the ageing brain. There are various detectable age-related brain

changes, such as GM and white matter (WM) atrophy (Lawrence

et al., 2021), WM de-differentiation (Cox et al., 2016a), and functional

connectivity changes (Wrigglesworth et al., 2021) which have hence

informed the choice of brain-age modeling-parameters (Beck

et al., 2021; Beck et al., 2022; Cole, 2020; de Lange et al., 2020; Le

Chen et al., 2020; Richard et al., 2018; Salih et al., 2021). In that con-

text, many ML approaches have been used to make robust and clini-

cally relevant brain age predictions from different MRI modalities

(Baecker et al., 2021; Dosenbach et al., 2010; Franke et al., 2010;

Kaufmann et al., 2019); yet, particularly the eXtreme Gradient Boost-

ing (Chen & Guestrin, 2016) regressor model, using a decision tree

approach, is increasingly used for brain age predictions from large-

scale data due to its precision and speed (Beck et al., 2021; de Lange

et al., 2019; Kaufmann et al., 2019). Especially diffusion magnetic res-

onance imaging (dMRI) and structural MRI have been shown useful

for brain age predictions (Beck et al., 2021; Beck et al., 2022;

Cole, 2020; de Lange et al., 2020; Le Chen et al., 2020; Richard

et al., 2018; Salih et al., 2021). However, further systematic, suffi-

ciently powered assessments of dMRI-derived brain age and how dif-

fusion metrics map onto age are needed. To this end, there are only a

few publications about the influence of diffusion derived metrics on

brain age predictions. Moreover, studies on the relationships between

age and diffusion metrics usually focus on diffusion tensor imaging

(DTI; Basser et al., 1994). In turn, advanced dMRI approaches

(Fieremans et al., 2011; Jensen et al., 2005; Kaden et al., 2016a;

Kaden et al., 2016b; Novikov et al., 2019; Reisert et al., 2017; Westlye

et al., 2010) which offer additional details on WM microstructure and,

hence, brain maturation processes require further research. In order

to address this shortcoming, this study focusses in dMRI-derived mea-

sures from a large midlife-to-older adult sample and the measures'

associations with age.

DMRI-derived measures consist of unique parameters allowing

both to reveal WM changes at micrometer scale and to provide the

basis for a prediction of macroscopic outcomes, such as age. Conven-

tionally, WM brain architecture is described using DTI (Basser

et al., 1994). However, recent advances offer more biophysically

meaningful approaches (Novikov et al., 2019), and sensible foundation

for cross-validation and better comparability (Beck et al., 2021). DTI-

derived measures, namely fractional anisotropy (FA), and axial (AD),

mean (MD), and radial (RD) diffusivity have all been shown to be

highly age sensitive (Beck et al., 2021; Cox et al., 2016a; Westlye

et al., 2010). Nevertheless, the DTI approach is limited by the Gauss-

ian diffusion assumption and is unable to take into account entangled

WM microstructure features (Beck et al., 2021). In the present work,

we consider (1) the Bayesian rotationally invariant approach (BRIA;

Reisert et al., 2017), (2) diffusion kurtosis imaging (DKI; Jensen

et al., 2005), (3) kurtosis derived supplement, known as white matter

tract integrity (WMTI; Fieremans et al., 2011) (4) spherical mean tech-

nique (SMT; Kaden et al., 2016a), and (5) multi-compartment spherical

mean technique (mcSMT; Kaden et al., 2016b) in addition to DTI. Only

a few studies have compared dMRI models directly as original brain

age predictors (Beck et al., 2021; Maximov et al., 2021; Raghavan

et al., 2021). Yet, brain age and age curve assessments of DTI, BRIA,

DKI, WMTI, SMT, mcSMT (Table S10) in a representative sample pre-

sent a great interest, as well as most influential WM regions for brain

ageing. Our assessments focus on the process of ageing (from midlife

to late adulthood), starting by associating BAG across diffusion

approaches and compare–predicted versus chronological-age correla-

tions in order to assess predictors' consistency. As fornix was identi-

fied as most contributing feature in these predictions, and forceps

minor as another influential region, post-hoc analyses focused on both

fornix, forceps minor, and whole-brain relationships with age. Fornix

was the strongest correlate of age, and fornix and forceps minor fea-

tures were highly correlated across approaches. Finally, we created

fornix, forceps minor, and whole-brain-age curves expecting
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curvilinear relationships reflecting brain-tissue-composition at differ-

ent ageing stages (Beck et al., 2021; Davis et al., 2009; Westlye

et al., 2010).

2 | METHODS

2.1 | Sample characteristics

The original UKB (Sudlow et al., 2015) diffusion MRI data consisted of

N = 42,208 participants. After exclusions, based on later withdrawn

consent and an ICD-10 diagnosis from categories F, G, I, and stroke

(excluded: N = 3521), and data sets not meeting quality control stan-

dards (N = 2938) using the YTTRIUM method (Maximov et al., 2021),

we obtained a final sample consisting of 35,749 healthy adults (age

range 44.57–82.75, Mage = 64.46, SDage = 7.62, Mdage = 64.97;

52.96% females, 47.04% males). In brief, YTTRIUM converts diffusion

scalar metric into 2D format using a structural similarity extension

(Wang et al., 2004) of each scalar map to their mean image in order to

create a 2D distribution of image and diffusion parameters. The qual-

ity check is based on a two-step clustering algorithm applied to iden-

tify subjects located out of the main distribution. We define healthy

here as the absence of mental and behavioral disorder (ICD-10 cate-

gory F), disease of the nervous system (ICD-10 category G), and dis-

ease of the circulatory system (ICD-10 category I). Included

participants showed generally higher cognitive test performance and

took less medication than excluded subjects (Table 1). Participants

were recruited and scanned at four different sites: 57.62% in Cheadle,

26.30% in Newcastle, 15.96% in Reading, and 0.12% in Bristol

(Figure 1). Imbalances in age distributions in the Bristol sample can be

attributed to the small number of participants sampled (N = 43).

2.2 | MRI acquisition, diffusion pipeline, and tract-
based spatial statistic analysis

UKB MRI data acquisition procedures are described elsewhere (Miller

et al., 2016; Sudlow et al., 2015). The brain scan protocol (https://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367) was applied at each

scanner site (see also documentation: https://biobank.ctsu.ox.ac.uk/

crystal/refer.cgi?id=1977). Shortly, the diffusion protocol consists of

two b-values (1000 and 2000 s/mm2) with 50 noncoplanar diffusion

weighting gradients per each shell. For a susceptibility artefact correc-

tion, nondiffusion weighted images with an opposite gradient encod-

ing direction were acquitted as well.

Diffusion data preprocessing was conducted as described in

Maximov et al. (2019), using an optimized pipeline which includes

corrections for noise (Veraart et al., 2016), Gibbs ringing (Kellner

et al., 2016), susceptibility-induced and motion distortions, and

eddy current artefacts (Andersson & Sotiropoulos, 2016). Isotropic

Gaussian smoothing was carried out with the FSL (Jenkinson

et al., 2012) function fslmaths with a Gaussian kernel of 1 mm3.

After that DTI, DKI, and WMTI metrics were estimated using Matlab

2017b (Mathworks, 2017). Employing the multishell data, DKI and

WMTI metrics were estimated using Matlab code (https://github.

com/NYU-DiffusionMRI/DESIGNER; Fieremans et al., 2011). SMT,

and mcSMT metrics were estimated using original code (https://

github.com/ekaden/smt; Kaden et al., 2016a), as well as

Bayesian estimates/BRIA were estimated by the original Matlab

code (https://bitbucket.org/reisert/baydiff/src/master/; Reisert

et al., 2017).

In total, we obtained 28 metrics from 6 diffusion approaches

(DTI, DKI, WMTI, SMT, mcSMT, BRIA; Beck et al., 2021; Kaden

et al., 2016b; Maximov et al., 2019; Benitez et al., 2018; Hope

et al., 2019; Pines et al., 2020). In order to normalize all metrics, we

used TBSS (Smith et al., 2006), as part of FSL (Smith et al., 2004). In

brief, initially all BET-extracted (Smith, 2002) FA images were aligned

to MNI space using nonlinear transformation (FNIRT; Jenkinson

et al., 2012). Afterward, the mean FA image and related mean FA

skeleton were derived. Each diffusion scalar map was projected onto

the mean FA skeleton using the TBSS procedure. In order to provide

a quantitative description of diffusion metrics we evaluated aver-

aged values over the skeleton and two white matter atlases, namely

the JHU atlas (Mori & Wakana, 2005) and the JHU tractographic

atlas (Hua et al., 2008). Finally, we obtained 20 WM tracts and

48 regions of interest (ROIs) based on a probabilistic white matter

TABLE 1 Included and excluded sample characteristics.

Variable Excluded (N = 6459) Included (N = 35,749) P-value Cohens d

Number of medications 2.812 (2.782) 1.784 (2.034) <.001 0.474

Self-rated health 2.204 (0.764) 1.965 (0.644) <.001 0.360

Number of correctly solved matrix puzzles 7.671 (2.191) 8.012 (2.126) <.001 �0.159

Number of correctly solved tower puzzles 9.650 (3.318) 9.917 (3.224) <.001 �0.083

Number of correct symbol digit matches 17.808 (5.414) 18.998 (5.246) <.001 �0.226

Number of incorrectly matched pairs 2.239 (1.282) 2.215 (1.274) 0.250 0.019

Matrix puzzle response time in seconds 81.116 (16.605) 83.011 (15.873) <.001 �0.119

Maximum number of remembered digits 6.497 (1.642) 6.678 (1.538) <.001 �0.117

Fluid intelligence 6.429 (2.096) 6.634 (2.054) <.001 �0.099

Prospective memory score 1.069 (0.433) 1.068 (0.397) 0.783 0.004

Note: Mean (SD) for each sample's variables. p-values are indicated for Welch two sample t-tests.
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atlas (JHU; Hua et al., 2008) for each of the 28 metrics, including the

mean skeleton values. Altogether, 1932 features per individual were

derived (28 metrics * [48 ROIs +1 skeleton mean + 20 tracts]; see

number of dMRI features in Table 2)). We included both whole-brain

average metrics in addition to tracts and regional averages, as these

provide spatially differential information (Figure S16), also expressed

the metrics' relationships with age (Barrick et al., 2010; Beck

et al., 2021; Eikenes et al., 2023; Kochunov et al., 2007; Westlye

et al., 2010).

2.3 | Brain age predictions

First, brain age predictions were performed using XGBoost (Chen &

Guestrin, 2016) in Python (v3.7.1). To evaluate how much data was

needed for hyper-parameter tuning while accurately predicting brain

age from all 1932 brain features, we divided the full dataset

(N = 35,749) into two equal parts: one validation set and one hyper-

parameter tuning set for independent parameter-tuning. From the

hyper-parameter tuning set, data was randomly sampled into
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F IGURE 1 Density plots for the sample's age by sex and scanner site. The y-axis indicates the probability of age scaled to 1.

4 KORBMACHER ET AL.

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26333 by H
ogskulen Pa V

estlandet, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



subsamples consisting of 358, 715, 1073, 1430, 1788, 2145, 2503,

2860, 3218, 3575, 7150, 10,725, 14,300, or 17,875 participants, cor-

responding to 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%,

40%, and 50% of the total subjects, respectively (Figure 2). Hyper-

parameters were tuned on these sub-samples and then tested on the

remaining half, that is, the validation sample, using 10-fold cross vali-

dation showing model performance to not further improve past the

10% (tuning) data mark, informing our tuning-validation-split

(Figure 2, Table S1, trained models in S2).

Second, in order to compare the different diffusion approaches,

based on the previous steps, the training-test split was fixed at previ-

ously used 10% training data (N = 3575) and 90% test data

(N = 32,174) which indicated a best fit at a learning rate = 0.05, max

layers/depth = 3, and number of trees = 750. These tuned parame-

ters were used for 10-fold cross-validations brain age predictions on

the test data of all six individual models, one multimodal model com-

bining all metrics from all diffusion models, and one multimodal model

using only mean values from all diffusion models (Table 2).

Third, uncorrected BAG was calculated as the difference between

chronological age Ω and predicted age P:

BAGu ¼P�Ω ð1Þ

We calculated BAG as it is the commonly used metric indicative

of general health when using brain age predictions (Beck et al., 2022;

Cole, 2020; Cole et al., 2017; Cole & Franke, 2017; de Lange

et al., 2020; de Lange et al., 2021; Franke & Ten Gaser, 2019;

Kaufmann et al., 2019; Leonardsen et al., 2021; Rokicki et al., 2021;

Vidal-Pineiro et al., 2021). BAG is, however, sensitive to the age distri-

bution of the sample (de Lange et al., 2019; de Lange & Cole, 2020).

Hence as a supplement, age-bias-corrected predicted age was calcu-

lated from the intercept and slope of age predictions as previously

described (de Lange et al., 2019; de Lange & Cole, 2020):

P¼ α�Ωþβ ð2Þ
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F IGURE 2 Model performance for different train-test splits.
Model metrics R2, root mean squared error (RMSE), mean absolute
error (MAE) and their standard deviations, as well as the Pearson's
correlations between predicted and chronological age and its 95%
confidence interval are displayed for different training data
percentages of the total data (x-axis). For visualization purposes,
RMSE and MAE were divided by 10. For exact values see Table S1.
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BAGc¼ Pþ Ω� α�Ωþβð Þ½ �ð Þ�Ω ð3Þ

P represents predicted age modelled from chronological age Ω,

with intercept β and slope α. This age-bias correction allowed for a

bias-corrected BAG estimate (BAGc). See Figure 3 for both uncor-

rected and age-bias-corrected brain ages over age.

2.4 | Statistical analyses

All statistical analyses were carried out using R (v3.6.0; www.r-

project.org/). p-values were adjusted for multiple comparison using

Holm correction (Holm, 1979). Model performance for brain ages esti-

mations across different diffusion approaches are presented in addi-

tion to top five features for each brain age model ranked based on

their model contributions (variance explained, as determined by per-

mutation feature importance testing). Then, the correlation structure

of age, brain age, BAG, and brain features (identified as main contribu-

tors in the model and whole-brain-average scores) were examined

across diffusion approaches. In detail: first, brain ages were correlated

across diffusion-approach-specific brain ages. Then, the correlations

between true and estimated age across diffusion approaches were

compared. Second, BAGs were correlated across diffusion

approaches. Third, we present the correlation structure of fornix and

age, and present brain-age crude and adjusted age-relationships for all

included metrics (M).

M¼ β0þβ1Ageþβ2Age2þβ3�Site�Sexþβ4Sex�Ageþβ5Sexþβ6Site

ð4Þ

Fourth, we plot absolute/crude whole-brain and fornix diffusion

metrics by age, and contrast these with diffusion metrics (M) adjusted

for age, sex, and site. To test the age-sensitivity of the metrics, we

removed age from the model and compared the models using Likeli-

hood Ratio tests.

M¼ β0þβ1Site�Sexþβ2Sexþβ3Site ð5Þ

We also assess to which extent the regression lines can be called

linear by comparing model fit of generalized additive models with

simple linear regression models for fornix and whole brain features.

Finally, we associate the first two principal components of all WM

features with the different brain ages to assess the relationship

between BAG and WM. For an overview of the analyses see

Figure 4.

3 | RESULTS

3.1 | Brain age predictions

Table 2 presents a comparison between different diffusion

approaches in predicting brain age for each diffusion approach. The

strongest correlation between uncorrected age predictions and

chronological age was observed for WMTI Pearson's r = 0.765, 95%

CI [0.761, 0.770], p < .001, and the smallest for mcSMT Pearson's

r = 0.721, 95% CI [0.716, 0.726], p < .001.
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F IGURE 3 Corrected and uncorrected brain age by age for each
of the utilized brain age models.
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Hotelling's (Hotelling, 1936) t-tests were used to compare corre-

lations between uncorrected predicted age and chronological age

across diffusion models. Zou's (Zou, 2007) method was used to esti-

mate the confidence intervals around the correlation differences

(Figure 5 and Table S3; Figure S8 and Table S2 for corrected predic-

tion correlation comparisons). These differences were not signifi-

cantly different from each other for model pairs DKI and DTI (p ≈ 1).

All other correlations were different from each other, Pearson's

rsdiff ≤0.15, p < .001, with the biggest difference observed between

mean and full multimodal scores’ correlations (Table S2 for exact

values).

Permutation feature importance estimates across diffusion

models showed that fornix contributed strongest to variance

explained (Table 3), which was in correspondence with feature

F IGURE 4 Overview of the analysis steps.
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rankings by gain score (XBGoost Developers, 2021; Table S15).

Follow-up models which had fornix features removed had lower

model fit, explained less variance in age, and predicted-chronological-

age correlations were smaller than for models containing fornix

(rsdiff < �0.003, ps < .001; Table S16). Another potentially important

region was the forceps minor, also contributing significantly to age

predictions (Table 3).

3.2 | BAG across diffusion approaches and age

In order to compare uncorrected BAG (BAGu) calculations across the

used diffusion approaches, BAGu was correlated from different diffu-

sion approaches and with age. Correlations between the six diffusion

approaches ranged between r = 0.857 and r = 0.966 (Figures 6 and

S1 for corrected BAG correlations). Overall, BAGu scores from the dif-

ferent approaches were strongest related to WMTI BAGc (range:

r = 0.873–0.952), and weakest to mean multimodal BAGu (range:

r = 0.779–0.828), and could be observed in one cluster containing

DKI, DTI, WMTI, and multimodal BAGu and a second cluster contain-

ing BRIA, SMT, and SMTmc. However, DKI, BAGu was more strongly

correlated with full multimodal BAGc than with other well-performing

approaches DTI (Pearson's rdiff = 0.03, p < .001) and WMTI

(rdiff = 0.03, p < .001). Vice versa, DTI BAGc correlated strongest

with WMTI BAGc (r = 0.905, p < .001).

F IGURE 5 Differences between Pearson's correlations of
chronological and uncorrected predicted ages across diffusion
approaches with 95% confidence interval. Differences between
Pearson's correlation coefficients of chronological and uncorrected
predicted age by diffusion approach. See Figure S8 for correlational
differences between approaches for corrected brain age predictions.

TABLE 3 Top five diffusion metrics ranked by their contribution to variance explained (R2) in age.

BRIA DKI DTI SMT mcSMT WMTI Multimodal

Micro FA fornix

0.1954

± 0.0027

AK right anterior

limb of internal

capsule

0.0984 ± 0.0014

MD fornix

0.0712

± 0.0013

MD fornix

0.0795 ± 0.0018

Extratrans fornix

0.0498 ± 0.0013

AWF fornix

0.1699 ± 0.0023

Micro FA fornix

0.0914

± 0.0011

Vextra forceps

minor

0.0278 ± 0.0007

RK fornix 0.0884

± 0.0016

FA forceps minor

0.0533 ± 0.0011
FA right superior

longitudinal

fasciculus

0.0267 ± 0.0007

Intra forceps

minor

0.0444 ± 0.0009

radEAD fornix to

right

striaterminalis

0.0283 ± 0.0007

AK anterior limb

of internal

capsule

0.0055

± 0.0011

Vextra body of

the corpus

callosum

0.0261 ± 0.0007

MK left external

capsule

0.0259 ± 0.0006

RD fornix to

right

Striaterminalis

0.0462 ± 0.0009

Longitudinal

fornix

0.0251 ± 0.0006

Intra fornix

0.0289 ± 0.0009

AWF forceps minor

0.0194 ± 0.0005

FA forceps

minor

0.0219

± 0.0006

Micro FA fornix

to right

Striaterminalis

0.0203 ± 0.0006

MK right superior

longitudinal

fasciculus

0.0214 ± 0.0006

FA right superior

cerebellar

peduncle

0.0221 ± 0.0006

Trans fornix to

right

striaterminalis

0.0204 ± 0.0006

Extratrans fornix

to right

Striaterminalis

0.0201 ± 0.0006

axEAD forceps

minor

0.0193 ± 0.0007

RD right fornix

stria

terminalis

0.0214

± 0.0006

Vintra right

superior

cerebellar

peduncle

0.0194 ± 0.0006

RK forceps minor

0.0208 ± 0.0005
FA body of the

corpus

callosum

0.0218 ± 0.0006

FA fornix

0.0192 ± 0.0006
Extratrans right

external capsule

0.0163 ± 0.0007

axEAD left posterior

limb of internal

capsule

0.0173 ± 0.0006

AK Genu corpus

callosum

0.0095

± 0.0003

Note: Variance explained (R2) by a single feature refers here to the part of the total variance explained by the respective feature in each of the brain age

models presented in Table 2. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches. Cells containing fornix are marked

in green. Cells containing forceps minor are marked in blue. See Table S19 for an overview of all the features and their variance explained.

Abbreviations: BRIA, Bayesian rotationally invariant approach; DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; mcSMT, multicompartment

spherical mean technique; SMT, spherical mean technique; WMTI, white matter tract integrity.
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3.3 | Associations between diffusion metrics
and age

A correlational analysis was used to demonstrate associations among

fornix diffusion metrics and age (Figure 7, including QC outliers:

Figure S4). Association strengths ranged from to r = �0.997 (smtTrans

and smtMCintra) to r = 0.999 (smtTrans and smtMD). Correlations

between fornix metrics and age ranged from r = �0.558 (smtMCintra)

to r = 0.570 (microRD), and between forceps minor metrics and age

from r = �0.519 (FA) to r = 0.493 (RD, see Figure S13).

Correlations across all diffusionmetrics and age (1933 � 1933 corre-

lations), age-fornix associations were the strongest (Figure 8, Figure S12).

Overall, the significant N = 1823 correlations (at pHolm < .001) ranged

from jrj = 0.024 to jrj = 0.578 with jrjMean = 0.245, jrjSD = 0.122.

3.4 | Age trajectories of diffusion features

In Figure 9 we present absolute diffusion metrics for the whole brain

(Figure 9a) and fornix (Figure 9b) across ages for the examined six dif-

fusion approaches (for forceps see Figure S14; overview of metrics:

Table S10). Age-metric relationships for fornix were approximating lin-

earity closer than more curvilinear global age-curves.

Several fornix-age relationships for BRIA extra-axonal and

intra-axonal radial and axonal diffusivity opposed age relation-

ships of whole-brain-averages, whereas forceps-age relationships

closely resembled these whole-brain-average metrics' age

relationships.

Whole-brain (Figure 10), fornix (Figure S9), and forceps

(Figure S15) diffusion metrics M were predicted from age, sex and

scanner site to create age curves (Figure 10a,b) which can be com-

pared to crude curves (Figure 10c,d). Highest SE, R2adj, and variability

across metrics was observed when predicting BRIA metrics

(R2adj = 0.21), as well as lowest R2adj ≈ 0 in BRIA Vextra, respec-

tively. While DTI metrics could also be predicted well from the model,

lowest variability in R2adj was found in WMTI and DKI. For fornix

metrics, SE and R2adj was generally higher across diffusion

approaches (Figure S9).

Likelihood Ratio tests indicated age dependence across global

metrics (pHolm < .001), with the exception of WMTI axEAD

(χ2 = 6.66, pHolm = .084; Table S11), whereas all fornix (Table S4)

and forceps (Table S17) features were age sensitive. While the regres-

sion lines show a slight curvature, model fit did not differ between lin-

ear and nonlinear models for whole-brain (Table S12), fornix metrics

(Table S9), and forceps minor metrics (Table S18), indicating steady

WM degeneration in mid-life to older ages.

F IGURE 6 Correlations of
uncorrected BAG and age across
used diffusion approaches. Age-
BAG correlations were significant
at pHolm < .001. For the
corrected BAG correlations
across models see Figure S1.
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3.5 | Associations between BAG and WM

Finally, principal components of regional and whole-brain WM metrics

for each of the eight models (Table 2) were only weakly correlated

with uncorrected BAGu, and similarly related to corrected BAGc,

chronological and predicted ages (Figure S10). Furthermore, when

predicting either WM components which explain most variability

(Figure S10, Table S14) or single regional or whole-brain metrics

(Figure S11) from BAGc and BAGu and covariates, models predicted

relatively small proportions of variance, with small contributions of

BAG to the model (Figures S10, S11).

4 | DISCUSSION

We revealed that both conventional DTI and advanced diffusion

approaches (WMTI, DKI, BRIA, SMT, mcSMT) perform consistently on

brain age predictions, as indicated previously (Beck et al., 2021). As a

novel finding, our results show strong contributions of fornix and

forceps minor microstructures to brain age prediction models. Addi-

tionally, among WM features, fornix shows strongest correlations

with age. This suggest that the fornix and forceps minor are key WM

region of cross-sectional brain age, with fornix and whole-brain dMRI

metrics' age trajectories following similar patterns such as steepening

slopes at later ages. Furthermore, WM microstructure is expected to

steadily degenerate in midlife to older ages, in particular, in extra axo-

nal space.

4.1 | Limitations

There are multiple challenges related to fornix and forceps minor as

drivers of brain age estimates, particularly multicollinearity, which

might bias estimates of the importance of fornix and forceps minor

(gain and permutation feature importance) for brain age predictions,

and second, data processing artefacts. UKB offers diffusion data

acquired with the most typical two-shell-diffusion protocol. Neverthe-

less, the standard diffusion model (Novikov et al., 2018) based on

F IGURE 7 Correlation matrix for fornix diffusion metrics and chronological age. All correlations were significant at Holm-corrected
pHolm < .05.
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differentiation of intra- and extra-axonal water pools could not be

solved using this measurement strategy (Novikov et al., 2018). As a

result, the derived diffusion metrics have both numerical uncertainties

and the variability introduced from nonbiological parameters (Novikov

et al., 2018). Quantitative metrics derived from the different diffusion

approaches allow to investigate such nonbiological variability and to

grade the subject variability in terms of used covariances. Yet, the

aforementioned technical limitation might play a decisive role in a clin-

ical context (Novikov et al., 2018; Thomas et al., 2011).

Besides obstacles resulting from modelling assumptions, our sam-

ple is cross-sectional in design and limited to adults older than

40, which, in turn, influences predictions (de Lange et al., 2022). Addi-

tionally, the UKB imaging subsample shows better health than the

non-imaging UKB subjects (Lyall et al., 2022). Another open question

is the exact interpretation of BAG and its relationship with WM

metrics. This BAG-WM relationship was found to be small for princi-

pal WM components (Figure S10) and single diffusion metrics

(Figure S11). Previous research indicates no relationship between the

rate of change in longitudinal regional and global T1-weighted-fea-

ture-retrieved BAG (Vidal-Pineiro et al., 2021). Yet, further investiga-

tion of longitudinal, in particular voxel-wise WM-derived BAG

provides additional avenues to increase the interpretability of BAG.

Diffusion metrics were highly correlated within fornix (Figure 7)

and forceps (Figure S13) across diffusion approaches, and show simi-

lar age trajectories (fornix: Figure S9, forceps: Figure S15). This pro-

vokes the question of redundancy of some of the metrics. The

identification of redundant metrics and the combination of metrics

across diffusion approaches is a matter of future research comparing

diffusion approaches by probing them in practical settings such as in

clinical samples (Kantarci, 2014).

F IGURE 8 Correlations between diffusion metrics and age. Each point indicates one correlation between a diffusion metric and chronological
age. Names of diffusion metrics are displayed when correlations between the metric and age reached a Pearson correlation of jrj > 0.5. Holm
correction (Holm, 1979) was used for Holm-correction, and all displayed values were significant at p < .001. For the distribution of the
correlations see Figure S12.
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Only few studies (Chen et al., 2015; Christiansen et al., 2016)

address the fornix across ages. A possible reason is fornix’
artefact-susceptibility induced from its proximity to the

cerebrospinal-fluid, while being a small tubular region. Recent pro-

cessing pipelines such as TBSS minimize such artefacts (Smith

et al., 2006). Yet, the influence of cerebrospinal-fluid artefacts in

F IGURE 9 Whole-brain and fornix diffusion metrics across age. The presented plots represent diffusion metrics for each of the six diffusion
models from the full sample N = 35,749 for (a) whole-brain diffusion metrics, (b) fornix diffusion metrics. Brighter colors indicate higher density
and red lines are fitted lines to the relationship between age and diffusion metric. Plots for forceps can be found in Figure S14.
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small tubular structures like the fornix remains unclear (Bach

et al., 2014). Fornix is a relatively small anatomical structure, and,

for example, fornix BRIA cerebrospinal-fluid fraction is higher

(vCSF > 0.5) than global measures (vCSF > 0.075), suggesting a

presence of strong partial volume effect. In order to overcome

such distorting effects, voxel-wise techniques are recommended,

demanding the development of novel approaches incorporating

techniques such as deep learning showing better performance than

traditional ML, especially on large population samples (Popescu

et al., 2021).

F IGURE 10 Raw and predicted whole-brain WM diffusion metrics by chronological age. Figure 10a–d shows age curves for each
standardized (z-score) diffusion metric's mean skeleton value (y-axis) plotted as a function of age (x-axis). Shaded areas represent 95% CI. Curves
fitted to raw values (Figure 10c,d) serve as a comparison to the lm-derived predicted values from Equation (4) (Figure a,b). Figure 10e indicates
the model fit for the linear models from Figure 10a,b, showing R2adj values on top and standard error (SE) on the bottom of the bars which each
represent a Fornix skeleton value for one of the seven models. Lines crossing at age 65 are marked with ovals. Model summaries of all 28 mean
models can be found in Table S5. The same visualization of fornix diffusion values can be found in Figure S9, and for the forceps minor in
Figure S15.
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4.2 | Consistency across diffusion approaches

Overall, the results of brain age predictions are similar across diffusion

approaches, with WMTI, DTI, and DKI predicting age better than

SMT, mcSMT, and BRIA considering model fit and prediction-outcome

correlations (Table 2). This finding could be explained in terms of dif-

fusion approaches, that is, the attempt to introduce more biophysi-

cally accurate parameters into the model might simultaneously reduce

the general sensitivity of the used approaches to tissue changes. Inte-

grative approaches such as DTI or DKI are able to localize brain

changes, however, without providing information about the underly-

ing mechanisms. Our study supports a previous study with a smaller

but more age-differentiated sample (n = 702) of DTI and WMTI being

superior to mcSMT at brain age predictions in terms of model perfor-

mance (Beck et al., 2021). When examining additional diffusion

models on a larger sample, and also including JHU ROIs in addition to

tract and whole-brain average scores, we find DKI metrics to have

higher predictive power than in Beck and colleagues (Beck

et al., 2021). This effect might be partly due to added spatial detail

from the added RIOs and their relationships to the tracts. Simulta-

neously, differences between diffusion approaches, and both variance

explained and prediction error (root mean squared error, mean abso-

lute error) were smaller in this study. These differences are likely due

to the narrower age range in our study (de Lange et al., 2022),

whereas our significantly larger sample emphasizes the reliability of

our findings.

While brain age predictions from single diffusion approaches

were grossly similar, predictions from combined approaches were

most accurate (Table 2). Correlations between predicted and chrono-

logical age were consistent across diffusion approaches, as differences

between correlations were small (Figure 5, Figure S8). This shows that

addressing a wider range of WM characteristics improves predictive

models compared to models with single diffusion approach metrics

(e.g., only DTI), which would be intuitive when considering BAG as a

general indicator of health (Beck et al., 2022; Cole et al., 2017;

Kaufmann et al., 2019; Leonardsen et al., 2021).Vice versa, reducing

spatial specificity by averaging diffusion metrics across all WM

reduced prediction accuracy. Conventionally used DTI on its own is

limited in its ability to present biophysically meaningful measures of

the underlying microstructure. As a result, the advanced modelling is

recalled including intra- and extra-axonal spaces and tissue peculiari-

ties being influenced by individual differences in myelin and fiber

architecture (crossing/bending fibers, and axonal characteristics; Beck

et al., 2021). Hence, adding additional information to DTI better allow

to infer the underlying neurobiology of tissue, for example, expressed

in differential WM-age-dependences (Figures 9, 10, Figures S14, 15)

or brain age predictions (Table 2; Beck et al., 2021).

We observed that BAG exhibits strong correlations across all dif-

fusion approaches (Figure 6, Figure S1). Congruently with the correla-

tional differences (Figure 5, Figure S8), BAG based on averaged

skeleton values was least correlated to all other diffusion approaches

(Figure 6), indicating inferiority of global compared to region-wide

approaches. BAG obtained from WMTI, DTI, and DKI were closest

related to BAG from the multimodal approach (which predicted age

best), both for age-bias corrected and uncorrected BAG (Figure 6,

Figure S1). This is in agreement with the observed age-prediction

model performance (Table 2). BAG correlations were observed in

three clusters: (1) WMTI and DTI, (2) mcSMT, SMT, BRIA, and (3) DKI,

indicative of similar measurements within these clusters (Figure 6,

Figure S1). To a certain extent, these clusters reflect similarities in the

underlying mathematics of the clustering diffusion approaches. For

example, mcSMT and SMT are closely related models (Kaden

et al., 2016a), whereas DKI's non-Gaussianity might reveal another

quality of age-sensitive WM microstructures not captured by the

other approaches (De Santis et al., 2011). Additionally, the cluster dif-

ferences indicate that the observed diffusion approaches measure dif-

ferent age(ing)-sensitive characteristics, supporting the argument for a

combination of diffusion approaches when assessing the ageing brain.

4.3 | Age trajectories and fornix and forceps minor
as a brain age feature

Based on the presented findings on fornix, we further investigate

details of fornix, keeping discussed limitations to the generalizability

of the findings in mind. Diffusion metrics describing fornix microstruc-

ture were consistently related to each other and age across all diffu-

sion approaches in two clusters. Values were positively correlated

within each cluster and negatively between clusters (see Figure 7). In

the first cluster, different approaches' FA, kurtosis metrics (MK, RK,

AK), water fractions (vintra and vextra from BRIA and AWF from

WMTI), and BRIA intra-axonal and extra-axonal radial and AD were

positively correlated. The second cluster, which was negatively related

to the first cluster but positive to age, contained metrics of MD, AD,

and RD, and cerebrospinal-fluid fraction of the different diffusion

approaches, which were positively related to each other. Interestingly,

both clusters consisted of unit-less values, for example, water frac-

tions, and diffusivities, which might have the same meaning as extra-

axonal ADs from different diffusion approaches, for example, BRIA

versus SMTmc. Such consistencies of similar metrics across diffusion

approaches were more apparent for the fornix when QC-identified

outliers were removed (compare Figure 7 and Figure S4), which sup-

ports the reliability of our findings of fornix-age-dependencies. Fur-

thermore, fornix metrics were most strongly related to age across

diffusion approaches (Figure 8, Figure S11), supporting the impor-

tance of fornix in reducing error of brain age predictions (Table 3).

Correlations of diffusion metrics within the forceps minor were not as

strong and consistent as in the fornix, and partly in the opposite direc-

tion as for the fornix (Figure S13). Not surprisingly, all fornix and for-

ceps minor features were age-sensitive (Tables S4, S17), and more age

sensitive than whole-brain metrics (compare: Table S11). Whole-brain

trajectories are in agreement with previous results, showing-age sen-

sitivity of various mean diffusion metrics (Beck et al., 2021), and the

same directionality of age trajectories of metrics for DTI (Cox

et al., 2016a; Westlye et al., 2010), mcSMT, DKI, WMTI (Beck

et al., 2021).
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We displayed differential behaviors of fornix microstructure mea-

sures across diffusion approaches (Figures 9, 10). Focusing on abso-

lute diffusion values (Figure 9), diffusion measures which are

correlated (Figures 6, 7, Figure S13) exhibit similar age dependences.

Additionally, slopes of fornix compared to whole-brain diffusion met-

rics were generally steeper and closer approximating linearity, indicat-

ing stronger changes, such as quicker WM degeneration in the fornix

compared to the whole-brain average (see Figure 9). Particularly BRIA

metrics show visually detectable differences between the fornix and

the whole brain (Figure 9, DAXextra, DAXintra, DRADextra, Vextra);

as opposed to global age trends which are also strongly resembled by

forceps minor (Figure S14), fornix intra and extra-axonal diffusion

decreased, indicating fornix shrinkage with increasing age. Periventri-

cular shrinkage is linked to enlarging ventricles (Kwon et al., 2014),

which has been related to ageing and neurodegenerative disorder pro-

gression (Pinaya et al., 2021). This effect was observed by a positive

relationship between age and cerebrospinal fluid (CSF) fraction in

BRIA. Another metric which revealed larger differences in the fornix

than for the whole-brain average was intra-axonal water fractions,

which can be treated as a proxy for the axonal density, decreased with

increasing age (see Figure 9, BRIA:Vintra; SMTmc:intra; WMTI:AWF)

while the CSF fraction (BRIA) increases. Such WM microstructure

changes are not only directly linked to different neurobiological fea-

tures but can be markers of clinical outcomes, such as dementia

(Meeter et al., 2017; Thomas et al., 2011).

A selection of metrics is comparable across diffusion approaches

when taking DTI as reference point and focusing on similar age trends.

DTI metrics AD, RD, and MD tend to increase over the lifespan and

FA tends to decrease across brain regions (Figures 9, 10; Beck

et al., 2021; Cox et al., 2016b; Davis et al., 2009; Westlye et al., 2010)

as well as in fornix (Figure 9b, Figure S9), implying processes such as

de-myelination, changes in axonal and general WM integrity. Such

DTI-age-dependencies are reflected by according BRIA, SMT, and

WMTI metrics, whereas DKI shows opposite age-relationships, as pre-

sented previously (Beck et al., 2021). Deterioration effects, measured

by the age-dependency of axonal water fractions, were generally

stronger in fornix compared to whole-brain metrics (Figure 9). Inter-

estingly, opposed to global metrics, radial diffusivity measures from

DKI and BRIA (DRADextra) decreased in fornix (Figure 9), suggesting

higher fornix than global plasticity, potentially being an antecedent of

age-related hippocampal changes (Metzler-Baddeley et al., 2019).

Additional, unique information about age dynamics was pre-

sented by standardized scores corrected for age, sex, and scanner site

and crude standardized scores across ages (Figure 10, Figure S9).

After corrections, most fornix metrics follow a tightly resembling

near-linear trend either increasing or decreasing by age (Figure S9a,b),

as opposed to forceps minor (Figure S15) and whole-brain metrics

which follow a rather curvilinear line, as previously shown (Beck

et al., 2021; Davis et al., 2009; Westlye et al., 2010). Diffusion metrics'

variance explained across models indicates fornix metrics to be more

sensitive to a combination of covariates age, sex, and scanner site

than whole-brain metrics (Figure 10, Figure S9). In the fornix, only

BRIA extra-axonal AD (DAX extra) and the SMT longitudinal diffusion

coefficient (SMT long) showed non-linear trajectories, however, both

measures are weakly correlated to other diffusion parameters

(Figure 10). Yet, when comparing model metrics such as variance

explained of linear and nonlinear models predicting fornix, forceps

minor, and whole-brain diffusion metrics from age, sex, and scanner

site and their interactions, there were no apparent differences

between models (Tables S9, S12, S15). This implies that contrary to

previous research observing the entire lifespan presenting curvilinear

DTI age trajectories (Beck et al., 2021; Westlye et al., 2010), or trends

toward curvilinearity (with yet better linear fit for selected regions;

Davis et al., 2009), we found that fornix and whole-brain age trajecto-

ries from age 40 can be described as linear when accounting for cov-

ariates sex, age, and scanner site. While the crossing of the x-axis at

age 65 (Figure 10, Figures S9, S15) is a reflection of the sample's age

distribution (Figure 1), in addition to the shapes of the different age-

trajectories, it reveals that the different diffusion approaches are simi-

larly age-sensitive or measure similar underlying ageing-related

changes. For whole-brain metrics, changes become exacerbated from

65 onward (Figure 1), with reasons potentially laying in an accelerated

neurodegeneration also reflected in the exponentially increasing risk

to develop neurodegenerative disorders from age 65 onward (Nichols

et al., 2022). For example, in the USA, 3% of 65–74 year olds, 17% of

the 75–84 year olds, and 32% of those aged 85+ developed Alzhei-

mer's dementia (Alzheimer's Association, 2020). Subclinical or preclini-

cal states are, however, not captured by these approximations, and

WM changes usually precede clinical detections. This makes WM

monitoring a promising tool for early neurodegenerative disease

detection.

Beyond WM, fornix changes seem to play an important role for

GM changes, particularly in the hippocampus: for example, fornix glia

damages lead to hippocampal GM atrophy (Metzler-Baddeley

et al., 2019). This might be reflected by dis-connectivity of fornix with

other brain regions as described by decreasing extra axonal space

coefficients (Figure 8b), and following changes in fornix function.

Potentially, the consequences of age-related fornix changes thereby

affect functionality of a selection of brain regions, such as the hippo-

campus. While several studies have presented ageing-related fornix

microstructure changes in humans (Chen et al., 2015; Christiansen

et al., 2016) and monkeys (Peters et al., 2010) in small samples, only

one large-scale study revealed findings connected to the fornix,

namely strongest default mode network GM volume covariation with

fornix WM microstructure (Kernbach et al., 2018). This suggests that

fornix, a key connector of the limbic system with the cortex, might

also be critical for default mode network functioning. Moreover,

memory and episodic recall have been related to fornix (Senova

et al., 2020). Hence, fornix changes might play an important role in

known ageing-dependent temporal lobe changes, and specifically hip-

pocampal changes for ageing-related pathological developments

(Cabeza et al., 2018; Burke & Barnes, 2006; Hedden & Gabrieli, 2004;

Pluvinage & Wyss-Coray, 2020). Previous studies presented age-

related fornix DTI metric changes (Chen et al., 2015; Christiansen

et al., 2016; Metzler-Baddeley et al., 2019) which potentially appear

prior to hippocampal volume changes (Chen et al., 2015; Metzler-
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Baddeley et al., 2019), and are related to declining episodic memory

performance (Metzler-Baddeley et al., 2019). Hence, fornix changes

potentially serve to predict future pathological development, suggest-

ing fornix WM microstructure and changes in such as ageing bio-

markers. This supports previous findings showing network re-

activations, metabolic, and GM changes after fornix deep-brain-stimu-

lation, antagonizing the progression of neurodegenerative disorders

(Jakobs et al., 2020).

Different studies showed age-related deterioration effects in the

forceps minor (Bastin et al., 2008; Fan et al., 2019), a subregion of the

corpus callosum. Loss in WM integrity have also been associated with

various phenotypes, for example, behavioral impacts, such as mental

slowing (Jokinen et al., 2007), and various disorders, such as major

depressive disorder (Won et al., 2016), schizophrenia (Kelly

et al., 2018), dependencies on cocaine (Moeller et al., 2005) and alco-

hol (Pfefferbaum & Sullivan, 2005), with WM degeneracy explaining

higher impulsivity in cocaine addiction (Moeller et al., 2005). Overall,

the forceps are assumed to have an important role of connecting both

hemispheres, which might be crucial for interhemispheric signal prop-

agation (Voineskos et al., 2010). Previous research shows also that

WM changes in FA and MD relate to GM thinning with the forceps

being particularly vulnerable to such changes (Storsve et al., 2016).

Moreover, cognitive test scores were related to forceps minor AD and

MD scores in Alzheimer's Disease patients (Tu et al., 2017), and

already at mild cognitive impaired forceps minor FA and MD scores

were different from age-matched participants with subjective cogni-

tive decline (Luo et al., 2020). FA was also shown in this study as

important brain age feature for both multimodal and DTI models

(Table 3). This suggests forceps as an important region for brain age

and ageing.

The current study gives for the first time a detailed account on

region-wise-to-global WM-age relationships for multiple diffusion

approaches in a representative sample, and highlights fornix and for-

ceps minor as an important structures for age predictions across diffu-

sion approaches. Brain age was estimated best when combining

diffusion approaches, showing different aspects of WM to contribute

to brain age with fornix and forceps minor being the central regions

for these predictions. Trained models are made available for further

research to extend the reported brain age predictions to other sam-

ples (e.g., to clinical samples with a similar age structure), in addition

to examining the discussed metrics in fornix and forceps.
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