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Brain age refers to age predicted by brain features. Brain age has previously been 
associated with various health and disease outcomes and suggested as a potential 
biomarker of general health. Few previous studies have systematically assessed 
brain age variability derived from single and multi-shell diffusion magnetic 
resonance imaging data. Here, we present multivariate models of brain age derived 
from various diffusion approaches and how they relate to bio-psycho-social 
variables within the domains of sociodemographic, cognitive, life-satisfaction, as 
well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6–82.8 years 
of age). Bio-psycho-social factors could uniquely explain a small proportion of 
the brain age variance, in a similar pattern across diffusion approaches: cognitive 
scores, life satisfaction, health and lifestyle factors adding to the variance 
explained, but not socio-demographics. Consistent brain age associations across 
models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix 
puzzles solving, and job and health satisfaction and perception. Furthermore, 
we found large variability in sex and ethnicity group differences in brain age. Our 
results show that brain age cannot be sufficiently explained by bio-psycho-social 
variables alone. However, the observed associations suggest to adjust for sex, 
ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe 
bio-psycho-social factor interactions’ influence on brain age in future studies.
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1. Introduction

Developmental trajectories of brain morphology are informative 
signaling markers of health. For example, significant deviations from 
normative morphology values can signify the presence or development 
of disease (Marquand et al., 2019; Remiszewski et al., 2022). Based on 
the idea that a general normative pattern could describe brain 
trajectories, the concept of brain age has been introduced. Here, 
different brain features are used to predict individuals’ age. The 
difference between such predicted age and chronological age, the brain 
age gap (BAG), has the potential as a general health biomarker, sensitive 
to various neurological, neuropsychiatric, and neurodegenerative 
disorders (Kaufmann et al., 2019; Cole, 2020; Rokicki et al., 2021). Brain 
age can be derived using different imaging modalities. Structural and 
diffusion MRI (dMRI) have shown high prediction accuracy (e.g., Cole, 
2020; Beck et al., 2022b; Chen et al., 2022; Leonardsen et al., 2022; Sone 
et al., 2022). Different dMRI-derived parameters allow one to describe 
multiple changes in WM micro-structure using various diffusion-
weighted approaches. Such dMRI measures provide invaluable 
information about WM architecture at the micrometer scale and can 
be associated with macroscopic outcomes. The most popular dMRI 
approach, diffusion tensor imaging (DTI), is often used to describe WM 
organization (Basser et al., 1994). However, methodological advances 
and newer diffusion approaches may provide more meaningful 
bio-physical information (Novikov et al., 2019), thereby increasing the 
power of cross-validation of findings and their comparability with other 
clinical markers (Billiet et al., 2015; Kamagata et al., 2020; Beck et al., 
2021; Wood et al., 2022).

The bio-psycho-social model (Engel, 1977) strives for a holistic 
perspective on medical research to understand health and disease by 
integrating information on biological, psychological, and social factors 
(e.g., Ghaemi, 2009; Wade and Halligan, 2017). Brain age can 
be utilized in this context as an indicator of general health (Kaufmann 
et al., 2019), using the different levels of observation (bio-psycho-
social) to describe brain age relationships with different phenotypes. 
While there are some studies providing evidence for brain age 
associations with bio-psycho-social factors, including demographic, 
biomedical, lifestyle, cognitive, and behavioral factors (Cole, 2020; de 
Lange et al., 2021; Beck et al., 2022b; Leonardsen et al., 2022; Sone 
et  al., 2022), it remains unclear whether brain age derived from 
different diffusion approaches relates differentially to 
sociodemographic, health, life-satisfaction, and cognitive factors 
(Figure 1), and what the qualities of such relationships are.

While brain age is a proxy for different health-related processes, 
similar to various bio-psycho-social factors, it remains largely unclear 
how brain age and bio-psycho-social factors associate. It is hence 
necessary to increase our understanding and the interpretability of 
brain age by observing the associations of common phenotypes with 
brain age. There are large differences in the usage of underlying data 
and machine learning approaches applied to the data for brain age 
predictions (Franke and Gaser, 2019). Practical effects of such 
differences, for example, on phenotype associations, have yet to 
be systematized to better interpret brain age and BAG. The bio-psycho-
social approach (Engel, 1977) lends itself to categorizing phenotypes 
into concrete groups. Within the groups, phenotype associations with 
brain age in general can be considered in addition to differences in 
underlying data used to calculate brain age. Here, we  limit our 
investigations to dMRI-derived brain age to examine brain age 

relationships with bio-psycho-social factors specific to WM. WM has 
repeatedly been shown to change throughout ageing and to relate to 
different bio-psycho-social variables (Le Bihan and Iima 2015; Beck 
et al., 2021, 2022a,b). Although comparisons of single MRI modality 
predictions from either T1-weighted or dMRI depend on the model 
selection and observed parameter choice (Niu et al., 2019; Rokicki 
et  al., 2021), models using T1-weighted and dMRI features show 
comparable age prediction performance (Cole, 2020; de Lange et al., 
2021). However, phenotype-WM-brain-age relationships require still 
further examination. Using different diffusion approaches in this 
context will not only help extend commonly used diffusion tensor 
imaging by giving reference values to other brain age derived from 
other WM metrics but also provide a clearer understanding of 
WM-phenotype associations.

Diffusion MRI can describe various biological processes by 
providing markers of brain tissue changes across the lifespan (Beck 
et al., 2021). These markers are not only heritable (Elliott et al., 2018) 
but also indicative of health, for example, by being associated with 
psychiatric and neurological disorders, addiction, stroke (Le Bihan 
and Iima 2015), or cardiovascular health (Beck et al., 2022b). Various 
diffusion metrics that have previously been related to cognitive and 
mental health traits have also shared genetic underpinnings with 
cognitive and mental health phenotypes (Zhao et  al., 2021). The 
biological underpinnings of dMRI markers become particularly 
apparent in WM abnormalities observed in severe mental disorders, 
including schizophrenia (Cetin-Karayumak et al., 2020) or bipolar 
disorder (Houenou et al., 2007). Furthermore, dMRI-derived brain 
age is higher in people showing accumulations of cardiometabolic risk 
and markers of adipose tissue distribution (Beck et al., 2022a,b). Such 
associations between phenotypes and brain age can also be observed 
when comparing high to low socioeconomic status (SES) groups, 
where low SES individuals have lower WM integrity (Pavlakis et al., 
2015; Shaked et al., 2019).

Furthermore, dMRI offers both single and multi-shell approaches 
and various meaningful metrics describing white matter 
microstructure (Jensen et al., 2005; Fieremans et al., 2011; Kaden et al., 
2016a,b; Reisert et al., 2017), which serve as a good basis for brain age 
estimations (Beck et al., 2021; Korbmacher et al., 2022) exploiting 
biophysically meaningful parameters of brain tissue in contrast to 
general measures such as grey/white volume or thickness.

While there are various diffusion models offering a plethora of 
metrics, most efforts have focussed on DTI which provides fractional 
anisotropy, which decreases, and radial, axial, and mean diffusivity, 
which increase over the lifetime, respectively, indicating a loss of 
structural integrity (Westlye et al., 2010; Behler et al., 2021). Advanced 
diffusion approaches also examine structural integrity, but adding 
further detail such as the differentiation between intra-and extra-
axonal space, parametrization of extra-axonal diffusivity, and axonal 
bundle distribution (Jensen et al., 2005; Fieremans et al., 2011; Kaden 
et al., 2016a,b; Reisert et al., 2017).

Differences in brain age-phenotype relationships can be expected 
when varying dMRI approaches, as varying underlying dMRI 
approaches will also produce variability in brain age predictions (see 
Beck et  al., 2021; Korbmacher et  al., 2022), potentially due to 
measuring different bio-physical processes (Jensen et  al., 2005; 
Fieremans et al., 2011; Kaden et al., 2016a,b; Reisert et al., 2017). These 
potential differences become important when attempting to generalize 
findings on brain age across the literature and setting standards for 
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brain age predictions. However, to what extent age predictions based 
on single and multi-shell dMRI approaches relate differentially to 
phenotypes requires further investigation. Hence, comparing dMRI-
based brain age predictions can be fruitful, not only when expanding 
current efforts of examining brain age associations with phenotypes 
but also by investigating whether differences in the underlying data 
can influence relationships of brain age with bio-psycho-
social variables.

State-of-the-art conceptualizations of health, such as the 
bio-psycho-social model (Engel, 1977), recommend considering 
various domains or levels of explanation when assessing health 
outcomes, such as brain age. In that sense, brain age can related to 
different biological, psychological and social factors. The extent of the 
relationships are important as they can inform on which bio-psycho-
social factors lead to better compared to worse brain or general health. 
Beyond validating brain age as a concept, this can directly improve our 
understanding of health. To date, brain age is usually calculated from 
a large range of MRI features. The resulting brain age estimate is then 
usually predicted from single variables of interest while controlling for 
sex and age (e.g., Cole, 2020; Leonardsen et  al., 2022). However, 
cumulative and synergy effects can be  expected to partly explain 
health, which has, for example, been shown for cardiometabolic risk 
factors explaining brain age (see Beck et al., 2022a,b). Hence, we group 
available phenotypes that have previously been found influential for 
health (Figure 1) into health and lifestyle factors, representing the 
biological dimension of the bio-psycho-social model, respectively 
(Erhardt, 2009; Ning et al., 2020; Gill et al., 2021; Vidal-Pineiro et al., 
2021; Beck et al., 2022a,b; Pham et al., 2022). Life satisfaction factors 
and cognitive factors represent the psychological dimension, and 
sociodemographic factors the social dimension of the bio-psycho-
social model, respectively.

Generally, explaining brain age variance is required to further our 
understanding of brain age and its multivariate relationship with 

different phenotypes influencing physiology directly or indirectly. We, 
therefore, extend previous work by explaining variance in brain age 
by combining sets of bio-psycho-social variables into domains of 
sociodemographic, health, life satisfaction, and cognitive factors 
(Figure 1) to assess their associations with brain age. In addition to 
exploring associations of bio-psycho-social variables with dMRI-
based brain age, we differentiate between diffusion approaches used 
for brain age predictions and exame the consistency across diffusion 
approaches. Previous findings revealed weak associations of various 
phenotypes with brain age in the UK Biobank (e.g., Smith et al., 2019; 
Cole, 2020). Hence, we expect only small proportions of the variance 
in brain age to be predicted by bio-psycho-social variables. We also 
hypothesize that factors directly representing or impacting physiology 
are more predictive of brain age than those which impact physiology 
only indirectly. Thus, health factors are presumed to be  more 
predictive of brain age than sociodemographic, cognitive, and life 
satisfaction factors. Finally, we  expect some variability in these 
associations to be  due to the underlying diffusion approach, as 
different WM properties are also expected to be differentially related 
to phenotypes. We may move brain age closer to the clinical utility by 
furthering our understanding of brain age.

2. Methods

2.1. Sample characteristics

The sample used has been described elsewhere (Korbmacher 
et al., 2022). In brief, the UK Biobank (UKB) (Sudlow et al., 2015) 
diffusion MRI data consisted of N = 42,208 participants. 
We excluded subjects who withdrew their informed consent (up to 
22nd of February 2022) or with an ICD-10 diagnosis from 
categories F, G, I, or stroke from the general health assessment 

FIGURE 1

Overview of the variables used.
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(Field 42,006; excluded: N = 3,521). We also excluded data that did 
not pass our quality control (N = 2,938) using the YTTRIUM 
method (Maximov et  al., 2021). In brief, YTTRIUM converts 
diffusion scalar metric into 2D format using a structural similarity 
extension (Wang et al., 2004) of each scalar map to their mean 
image to create a 2D distribution of image and diffusion 
parameters. Quality check is based on 2 step clustering algorithm 
in order to identify subjects out of the main distribution. Our final 
sample consisted of 35,749 healthy adults. For an overview of 
demographics and the bio-psycho-social variables included in this 
study and their relationship with brain age see Table 1.

2.2. MRI acquisition, diffusion 
post-processing, and TBSS analysis

UKB MRI data acquisition procedures are described elsewhere 
(Sudlow et al., 2015; Miller et al., 2016; Alfaro-Almagro et al., 2018). 
Briefly, single and multi-shell data were acquired at four different 
locations using identical scanners: 3 T Siemens Skyra, with a standard 
32-channel head coil and key diffusion parameters being MB = 3, 
R = 1, TE/TR = 92/3600 ms, PF 6/8, fat sat, b = 0 s/mm2 (5x + 3× phase-
encoding reversed), b = 1,000 s/mm2 (50×), b = 2,000 s/mm2 (50×) 
(Alfaro-Almagro et al., 2018).

We obtained access to the raw diffusion data and pre-processed 
the data using an optimized pipeline as described by Maximov et al. 
(2019). The pipeline includes corrections for noise (Veraart et al., 
2016), Gibbs ringing (Kellner et al., 2016), susceptibility-induced and 
motion distortions, and eddy current artifacts (Andersson and 
Sotiropoulos, 2016). Isotropic 1 mm3 Gaussian smoothing was carried 
out using FSL’s (Smith et al., 2004; Jenkinson et al., 2012) fslmaths. 
Employing the multi-shell data, Diffusion Tensor Imaging (DTI), 
Diffusion Kurtosis Imaging (DKI) (Jensen et al., 2005) and White 
Matter Tract Integrity (WMTI) (Fieremans et al., 2011) metrics were 
estimated using Matlab 2017b code.1 Spherical mean technique SMT 
(Kaden et  al., 2016b), and multi-compartment spherical mean 
technique (mcSMT) (Kaden et al., 2016a) metrics were estimated 
using original code2 (Kaden et  al., 2016a,b). Estimates from the 
Bayesian Rotational Invariant Approach (BRIA) were evaluated by the 
original Matlab code3 (Reisert et al., 2017).

Previous advances observing age-dependent WM changes have 
largely focused on single-shell diffusion, such as DTI with DTI-derived 
metrics being fractional anisotropy (FA), and axial (AD), mean (MD), 
and radial (RD) diffusivity, all being highly sensitive to age (Westlye 
et al., 2010; Cox et al., 2016; Beck et al., 2021). More recently developed 
multi-shell diffusion approaches which extend the space of derivable 
diffusion metrics appear more sensitive to brain changes and sex 
differences (Lawrence et al., 2021), and at the same time less sensitive 
to motion artefacts than single-shell models (Pines et al., 2020). Newer 
approaches are (1) BRIA, as an alternative to not rely on fiber 
orientation but rotation invariant feature (Reisert et al., 2017), (2) 
DKI, a method tackling the problem of non-Gaussian diffusion 
(Jensen et al., 2005); (3) WMTI, which extends DKI by calculating 

1 https://github.com/NYU-DiffusionMRI/DESIGNER

2 https://github.com/ekaden/smt

3 https://bitbucket.org/reisert/baydiff/src/master/

inter and extra-axonal features (Fieremans et al., 2011); and (4) SMT 
(Kaden et  al., 2016b) and (5) mcSMT, which factor out neurite 
orientation to give a better estimate of microscopic diffusion 
anisotropy (Kaden et al., 2016a). The selection of diffusion models was 
dictated by a few practical reasons. There are two conventional 
approaches (DTI and DKI) describing the general WM changes. As a 
result, these approaches are expected to be sensitive to a broad range 
of aging-related effects associated with WM maturation (Westlye et al., 
2010; Yap et  al., 2013). Advanced dMRI approaches enable more 
detailed quantification associated with age in a different manner (Cox 
et  al., 2016; Beck et  al., 2021). Diffusion modelling relies on 

TABLE 1 Overview of the predictors used in the bio-psycho-social 
models.

Model Predictors

Model 1. Baseline

Age

Sex

Scanner site*

Model 2. Socio-demographics

Age

Sex

Scanner site*

Ethnicity

Income

Education

Nb of social visits

Model 3. Cognitive Scores

Age

Sex

Scanner site*

Prospective memory

Fluid intelligence

Symbol digit substitution

Pair matches

Matrix puzzles

Tower arranging

Digit memorization

Model 4. Life satisfaction

Age

Sex

Scanner site*

Financial and job satisfaction

Friend and family relation satisfaction

Happiness

Model 5. Health and lifestyle

Age

Sex

Scanner site*

BMI

WHR

Pulse pressure

Diabetes

Smoking

High cholesterol

Diagnosed vascular disorder

Birth weight

Sleeping hours

Daily coffee intake

Alcohol drinker

*Random effect.
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biophysically motivated assumptions such as the axon bundle 
distribution (WMTI) or attempts to suppress such kind of parameters 
(SMT and SMT mc). Another modelling option are Bayesian rotation 
invariants (BRIA), providing multiple measures of WM but depending 
on efficacy of initial Bayesian simulations. All together, these 
approaches allow us to indirectly verify the stability and reliability of 
diffusion assumptions in brain-age prediction on their own and in 
comparison to each other, or to determine similarity among scalar 
metrics appearing in several diffusion approaches.

In total, we obtained 28 metrics (Supplementary Table S1) from 
six diffusion modeling approaches (DTI, DKI, WMTI, SMT, mcSMT, 
and BRIA). To normalize all metrics, we  used tract-based spatial 
statistics (TBSS) (Smith et al., 2006) as part of FSL (Smith et al., 2004; 
Jenkinson et al., 2012). In brief, initially, all FSL BET-extracted (Smith, 
2002) FA images were aligned to MNI space using non-linear 
transformation (FNIRT) (Jenkinson et  al., 2012). Subsequently, 
we derived the mean FA image and the related mean FA skeleton. 
Each diffusion scalar map was projected onto the mean FA skeleton 
using the standard TBSS procedure. To provide a quantitative 
description of diffusion metrics we evaluated averaged values over the 
skeleton and two WM atlases, namely the Johns Hopkins University 
(JHU) atlas (Mori et al., 2005) and the JHU tractography atlas (Hua 
et al., 2008; see Supplementary Table S2 for an overview). Finally, 
we obtained 20 WM tracts and 48 regions of interest (ROIs) based on 
a probabilistic WM atlas (JHU) (Hua et al., 2008) for each of the 28 
metrics, including the mean skeleton values. Altogether, we derived 
1,932 features per individual [28 metrics * (48 ROIs +1 skeleton 
mean + 20 tracts)]; see Supplementary Table S1 for metrics and 
Supplementary Table S2 for regions and tracts.

2.3. Brain age predictions

We computed brain age predictions derived from 8 different 
models including the six diffusion approaches, their whole-brain 
average scores (mean multimodal), and a model combining the six 
diffusion approaches and their whole-Brian average scores (full 
multimodal). Each of the six diffusion approaches details WM features 
based on differing modelling assumptions and were assumed to 
provide unique brain age scores. Whole-brain average scores for each 
of the six diffusion approaches’ metrics were investigated on their own 
to further our understanding of spacial specificity. Finally, previous 
results (de Lange et al., 2020b; Beck et al., 2021, 2022b) provide clear 
evidence of strong age prediction performance when combining 
diffusion metrics. We hence included a model combining all diffusion 
approaches’ metrics and their whole-brain average scores to compare 
whether there are differences in multimodal to single diffusion 
approaches’ brain-age-phenotype associations.

Brain age was predicted using the XGBoost tree-boosting 
algorithm (gradient boosting tree) implemented in Python (v3.7.1), 
being a highly effective algorithm for tabular data (Chen and Guestrin, 
2016). From the total included sample (N = 35,749), we used 10% 
(N = 3,575) for hyperparameter tuning on a data set containing data 
from all diffusion approaches (i.e., full multimodal data with 1,932 
features/parameters) using 5-fold cross-validation (after estimating an 
optimal hyperparameter tuning set size; Korbmacher et al., 2022). The 
considered hyperparameters for the randomized grid search were (1) 
learning rate with a range of 0.01–0.3 and steps of 0.05, (2) maximum 

layers/depth with a range of 3–6 and steps of 1, and (3) number of 
trees with a range of 100–1,000 and steps of 50. The resulting 
hyperparameters (learning rate = 0.05, max layers/depth = 3, and the 
number of trees = 750) were then used in a 10-fold cross-validation 
applied to the test set (N = 32,174). Cross-validation was used to 
leverage the full sample size and to calculate the uncertainty around 
the estimates (for such see Korbmacher et  al., 2022). The cross-
validation procedure was executed using each of the six diffusion 
approaches’ metrics, whole-brain averaged metrics for all approaches 
(mean multimodal model), and finally a combination of all approaches 
and the whole-brain average scores (full multimodal model), resulting 
in eight brain age models (see Supplementary Table S1 for dMRI 
approach-specific metrics). Each of these brain ages were used in the 
analyses. See Supplementary Figure S1 for an overview of the brain 
age models and the following modelling of these predictions from the 
bio-psycho-social models.

2.4. Statistical analyses

All statistical analyses were carried out using Python, version 3.7.1 
and R, version 4.2.04 using test data set (N = 32,174). These analyses 
focused on the associations between brain age and (1) demographics, 
(2) social factors, (3) cognitive test scores, (4) life satisfaction, and (5) 
health and lifestyle factors (with weight on cardiometabolic factors). 
For detailed information on how variables were extracted and coded 
see Supplementary Table S3. First, we calculated the first principal 
component of bio-psycho-social factors’ by grouping numeric 
variables of each of the 5 domains (demographics, social factors, 
cognitive tests scores, life satisfaction, and health and lifestyle factors), 
using scaling and the number of allowed components equal to the 
number of variables included. We then examined the first components’ 
associations with brain age. Second, we examined to which extend 
multivariate models (as specified in 2.4.1) explain brain age from the 
factors of the five bio-psycho-social domains. Finally, we  tested 
whether our findings would be influenced by analyzing data separately 
for males and females, and present bi-variate relationships between 
multimodal brain age and single bio-psycho-social variables.

For bi-variate relationships between bio-psycho-social factors and 
full multimodal brain age, we  adjusted p-values for multiple 
comparison using Bonferroni correction, dividing the alpha-level by 
twenty-five (α/25), the number of bi-variate associations observed. For 
multivariate relationships we divided alpha by eight (α/8), the number 
of brain age models used. Furthermore, the coefficient of 
determination describing the proportion of variance explained (R2) 
will be presented as marginal R2, referring to variance explained by 
fixed effects, and conditional R2, referring to both fixed and random 
effects variance explained.

2.4.1. Bio-psycho-social models explaining brain 
age

We used linear mixed effects models with the random intercepts at 
the level of scanner site to explain changes in brain age from socio-
demographics, cognitive test scores, life satisfaction (self-assessment), and 

4 www.r-project.org/
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health and lifestyle factors. The presented models were used in two 
different ways: first, with the principal component of the model-specific 
bio-psycho-social factors replacing the respective bio-psycho-social 
factors, and second using all eight brain ages from the different diffusion 
approaches on with the models. For an overview of the predictors in the 
multivariate bio-psycho-social models used see Table 1.

We established the following models to compare:
(1) A baseline model capturing the relationship of age, sex, the 

age-sex interaction, and scanner site with brain age. This baseline 
model was selected as predicted age is expected to be largely reflected 
by chronological age. However, also sex (e.g., Rokicki et al., 2021), and 
scanner site (here, Bristol, Cheadle, Newcastle, Reading) and 
prediction bias (e.g., Jirsaraie et  al., 2022) have been shown to 
be influential for brain age. Using a baseline model and additional 
models for comparison had the goal to estimate added variance 
explained by the bio-psycho-social models above and beyond the 
baseline mode (Bollen, 1989). Additionally, predictors within these 
bio-psycho-social models were observed individually (bivariate 
compared to multivariate relationships with brain age). Model 
comparison to a baseline model (instead of a null model) is important 
in this context as brain age is sensitive to age, sex and scanner site (de 
Lange and Cole, 2020; Rokicki et  al., 2021; Jirsaraie et  al., 2022). 
Hence, instead of using a null model which does not contain much 
information, we used the following model as a reference point for 
further model comparison:

 brainage sex age sex age site= + + ∗ +

(2) A sociodemographic model additionally included ethnic ancestry 
(binary yes/no self-reported white European; for additional information 
sample groupings by ethnicity see Supplementary Table S4), average 
annual total household income before tax (coded as continuous variable 
1–5, with low <£18,000 to high income >£100,000), and higher education 
(binary yes/no self-report of having obtained higher education) relative 
to the baseline model.

 
brainage sex age sex age ethnicity

income education site
= + + ∗ +
+ + +

(3) A cognitive model testing how non-verbal cognitive abilities 
add to the baseline model (overview: Fawns-Ritchie and Deary, 2020). 
We  limited the selection of cognitive variables to non-verbal 
assessment measures to reduce the parameter space of cognitive 
variables and as non-verbal assessment scores have been found to 
associated with dMRI metrics throughout the lifespan (e.g., Sullivan 
and Pfefferbaum, 2006; Sasson et al., 2010; McPhee et al., 2019; Parikh 
et al., 2021). Namely, the number of matrix puzzles solved (matrixS) 
testing non-verbal reasoning using COGNITO Matrices, tower 
arranging correctly solved (towerS) testing executive function using 
the Delis-Kaplan Executive Function System Tower Test, prospective 
memory (memory) assessed with the Rivermead Behavioural Memory 
Test, fluid intelligence (intel) from the UKB own Fluid IQ test, digits 
remembered (digits) from the Symbol Digit Modalities Tests, and the 
mean number of incorrect pair matches (IPM) across trail A and B 
assessing visual declarative memory using the Wechsler Memory Scale 
IV Designs I and Designs II. Correlations were small to moderate 
(rmax = 0.41) with the variance inflation factor (VIF) indicating low 
levels of multicollinearity (Supplementary Figure S2).

 

brainage sex age sex age matrixS towerS
memory intel digit

= + + ∗ + +
+ + + ss IPM site+ +

(4) A life satisfaction model that additionally included job 
satisfaction (jobS), financial satisfaction (financeS), overall health 
rating (healthR), health satisfaction (healthS), family relation 
satisfaction (famS), happiness, friend relationship satisfaction 
(friendS) relative to the baseline model. Some of the model features 
were highly correlated (rmax = 0.65), yet VIF values indicated low levels 
of multicollinearity (Supplementary Figure S3).

 

brainage sex age sex age jobS
financeS healthR healthS
fam

= + + ∗ +
+ + +
+ SS friendS happiness site+ + +

(5) A health and lifestyle model testing how body mass index 
(BMI), pulse pressure (Ppressure: the difference between systolic and 
diastolic blood pressure), waist-to-hip-ratio (WHR), binary smoking 
status, binary diabetes diagnosis (both type I and II), binary high 
cholesterol (chol), binary diagnosed vascular problem (DVP), birth 
weight (Bweight), sleeping hours, and daily coffee intake (coffee) add 
to the baseline model, with only BMI and WHR showing a moderate 
correlation r = 0.42, but all other correlations being small rs < 0.16, 
with VIF values indicating only low levels of multicollinearity 
(Supplementary Figure S4).

 

brainage sex age sex age BMI WHR Ppressure
diabetes smokin

= + + ∗ + + +
+ + gg chol DVP
Bweight coffee site

+ +
+ + +

2.4.2. Follow-up and quality control analyses and 
single bio-psycho-social factor associations with 
multimodal brain age

Previous research showed sex differences in brain age, suggesting 
sex separate analyses (Rokicki et al., 2021). Hence, we conducted the 
analyses described in 2.4.1 separately for males and females.

 brainage age site biopsychosocialfactors= + +

To examine the contributions of single bio-psycho-social variables to 
explaining WM brain age, linear mixed models were used to observe 
bio-psycho-social variable associations with brain age when controlling 
for age and sex with scanner site as a random factor. In other words, 
different from 2.4.1, we applied one model per bio-psycho-social factor. 
For simplicity, this analysis step only considered the best brain age 
predictions from the multimodal model including the metrics of all 
diffusion approaches (Korbmacher et al., 2022).

 

brainage sex age sex age site
singlebiopsychosocialfactor

= + + ∗ +
+

Each model was then compared to a model not including the 
respective bio psycho social variable:
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 brainage sex age sex age site= + + ∗ +

3. Results

3.1. Linear mixed effect models explaining 
brain age gap from bio-psycho-social 
factors

We ran the proposed five baseline and bio-psycho-social models 
with the first principal component (PC) of the numeric predictors 
from each of the models showing a small proportion of the variance 
in brain age uniquely explained by the principal components (R2 < 1%; 
Supplementary Table S5), with differences between these models and 
respective baseline models yet being highly significant 
(Supplementary Table S6).

When including bio-psycho-social factors instead of their PCs 
and comparing baseline to models 2–5, a larger proportion of both 
marginal or conditional variance in brain age could be  uniquely 
explained by bio-psycho-social variables (marginal and conditional 
R2 < 0.03; Figure 2 and Supplementary Table S7). Model comparisons 
showed that, with the exception of socio-demographic factors, 
bio-psycho-social models explained significantly more variance in 
brain age than the baseline model (with age, sex, and age-by-sex 
interaction as fixed and scanner site as random effect), irrespective of 
the diffusion approach used to calculate brain age (ps < 0.01; Figure 3). 
Differences between this uniquely explained marginal variance were 
small across diffusion approaches (Figure 2).

Across statistical and diffusion models, age was used as a control 
variable to correct for the mere reflection of age by brain age producing 
stable associations across models (1–5) for multimodal brain age 
(Figures  4–7). However, except for the life-satisfaction model, in 
contrast to the full multimodal model, the other diffusion approaches’ 

brain ages were negatively associated with age, giving another 
indication of overall poor model fit. Even more so, the effect of sex was 
dependent on the model, producing mixed effects with large 
uncertainty surrounding β-values, also in the age-by-sex interactions’ 
associations with brain age. Overall, bio-psycho-social factors were 
consistently associated with brain ages from different diffusion 
approaches, with the exception for sex (Figures 4–7).

3.1.1. Sociodemographic factors’ associations 
with brain age

In the model including sociodemographic factors explaining 
brain age (see Figure 4 for the predictors), results were mixed for the 
significant predictors. Sex was a significant predictor for mean DKI, 
DTI, and WMTI (ps < 0.05), the age-by-sex interaction only for BRIA 
(p = 0.045), and ethnicity only for DKI (p = 0.012; Figure 4). Overall, 
only 95% confidence intervals of β-values for age and ethnicity were 
not consistently overlapping, indicating differential effects of these 
variables on brain age based on the underlying data. All other 95% 
confidence intervals surrounding coefficients’ β-values were 
overlapping across diffusion approaches, with expected strong age 
contributions predicting brain age.

3.1.2. Health and lifestyle factors’ associations 
with brain age

Similarly, in the model including health and lifestyle factors 
explaining brain age (see Figure  5 for the predictors), significant 
health factors leading to higher brain age were WHR (ps < 0.001), 
pulse pressure (ps < 0.001), and hypertension (ps < 0.001). Evidence 
across diffusion approaches was mixed for the other predictors with 
smoking predicting brain age derived from BRIA, DTI, mean scores, 
SNT, and WMTI (ps < 0.05), diabetes diagnosis for all models except 
DKI and DTI (ps < 0.05), the diagnosis of at least one vascular disease 
for BRIA, mean scores, and mcSMT (ps < 0.02), and average daily cups 
of coffee for brain age estimates except the one based on BRIA 

FIGURE 2

Marginal R2 values for statistical models across diffusion approaches.
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(ps < 0.01), and the age-by-sex interaction for BRIA and mcSMT 
(ps < 0.04).

Interestingly, WHR was a stronger predictor of brain age in males 
than in females (Supplementary Figure S5). Practically, a WHR βunstd-
value of, for example β = 4 would mean that for every 0.1 step change 
in WHR, the brain age can be expected to increase by 0.4 years (see 
Supplementary Figures S6–S9 for βunstd). Importantly, this association 
was controlled for age, as age is correlated with WHR at r = 0.14 and 
brain age at r = 0.80. Mean population values for WHR were found to 
be WHR < 1 (Molarius et al., 1999), with our sample corresponding 
with these estimates (MWHR = 0.871 ± 0.088, min = 0.534, max = 1.472) 
with males having a higher WHR (MWHR = 0.923 ± 0.064) than females 
(MWHR = 0.817 ± 0.069).

BMI was potentially non-significant due to the model construction 
as the highly correlated WHR (Supplementary Figure S4) was a 
significant predictor of brain age, and BMI alone being a significant 
predictor of brain age (Table  2). Finally, higher birth weight was 
associated with lower brain age estimated from full and mean models, 
as well as BRIA and WMTI (ps < 0.02).

Generally, 95% confidence intervals around coefficients’ β-values 
were overlapping across models indicating no significant differences in 

β-values across diffusion approaches. As a control, we ran the same model 
without WHR as predictor, due to its high correlation with BMI, 
rendering BMI as significant predictor across diffusion approaches’ brain 
ages except the mean model (βs > 0.01, ps < 0.004), also showing now 
clearer evidence for higher brain age when smoking (ps < 0.05), with other 
predictors unchanged (Supplementary Figure S11). Furthermore, leaving 
out hypertension, being a substrate of blood pressure, did not lead to 
changes in the model (Supplementary Figure S12). For both models, 
variance explained is slightly reduced compared to the models including 
the respective variables, making the reduced models significantly different 
(ps < 0.001) from the full health models (Supplementary Tables S8, S9).

3.1.3. Life satisfaction factors’ associations with 
brain age

When modeling brain age from life satisfaction (see Figure 6 for 
the predictors), self-rated health was a significant predictor of all brain 
age estimates except for DKI brain age (ps < 0.05) and health 
satisfaction for all brain age estimates except the mean model’s brain 
age (ps < 0.02). Only the 95% confidence intervals of β-values for age 
do not overlap across models (with the mean model having the largest 
β and full model the smallest β-value for age). All other 95% 

FIGURE 3

Overview of comparison of bio-psycho-social statistical models with baseline models. The figure presents χ2 values for each of the bio-psycho-social 
statistical models for each diffusion approach tested against the baseline model. Note that only values of χ2 > 11 were significant (p < 0.05).
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confidence intervals around coefficients’ β-values overlap across 
models indicating no significant differences in β-values across 
diffusion approaches.

Perceived health is moderately correlated with health satisfaction and 
was left out in a control model resulting in a slightly stronger effect of 

health satisfaction and significantly worse performing model (ps < 0.001; 
Supplementary Figure S12 and Supplementary Tables S8, S9). Differently, 
when leaving out happiness as being correlated with several variables the 
model remains unaffected (ps > 0.23; Supplementary Figure S13 and 
Supplementary Tables S8, S9).

FIGURE 4

Sociodemographic model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p < 0.05.

FIGURE 5

Health model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p < 0.05.
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3.1.4. Cognitive factors’ associations with brain 
age

The only cognitive factor explaining brain age across all models 
was symbol digit substitution (ps < 0.001; Figure 7). Matrix puzzles 
solved was only a significant predictor for the full multimodal brain 
age (p = 0.014), and sex only for DTI and WMTI (ps < 0.02). 

Confidence intervals around coefficients’ β-values are overlapping 
across models indicating no significant differences in β-values across 
diffusion approaches. Fluid intelligence and matrix puzzles are highly 
correlated and hence, matrix puzzles were left out in a quality control 
model, not significantly affecting the structure of most models 
(Supplementary Figure S14 and Supplementary Tables S8, S9).

FIGURE 7

Cognition model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p < 0.05.

FIGURE 6

Well-being model predictors’ standardized beta-values with standard error. *Indicates Bonferroni-corrected p < 0.05.
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TABLE 2 Linear models relating multimodal brain age to bio-psycho-social factors.

Variable Level or 
metric

Variable 
value

Brain 
age1/
Age1

N2 Marginal 
R2 diff

Log 
Likelihooddiff

χ2 pdiff
4 βraw/βstd

3 ppred
4

Brain age Mean ± SD 64.470 ± 5.946 32,174

Demographics

Scanner site % Cheadle 57.559 63.6/63.6 18,519

% Newcastle 26.403 65.3/65.2 8,495

% Reading 15.913 66.1/66.2 5,120

% Bristol 0.124 67.0/67.2 40

Sex % Male 47.122 65.4/65.1 17,013 −1.07/0.09 0.025

% Female 52.878 63.7/63.9 15,161

Age Mean ± SD 64.473 ± 7.614 64.5/64.5 32,174 0.62/0.79 <0.001

Socio-demographics

Ethnicity European 96.800 64.5/64.6 31,160 −1.8 × 10−5

Non-European 2.970 62.3/61.2 956 −1.8 × 10−5 4 0.007 −0.31/–0.01 185

Prefer not to say (0.180) 65.6/65.6 58

Income5 % less £18 k 10.363 65.6/66.1 3,310 1.4 × 10−4

% £18 k-£30 24.253 65.6/66.5 7,747 1.4 × 10−4 11 <0.001 −0.28/–0.02 0.003

% £30 k-£52 k 27.713 64.6/64.7 8,852 1.4 × 10−4 11 <0.001 −0.29/–0.02 <0.001

% £52 k-100 k 21.586 62.9/61.7 6,895 1.4 × 10−4 11 <0.001 −0.18/–0.01 0.4

% > £100 k 6.956 61.5/59.4 2,222 1.4 × 10−4 11 <0.001 −0.30/–0.01 0.075

Do not know 3.040 67.2/68.0 972

Prefer not to say 6.086 65.6/66.8 1944

Higher education % Yes 49.326 64.2/63.9 15,870 5.2 × 10−5 1 0.177

5.3 × 10−2/–

0.004 1

% No 50.674 64.8/65.0 16,304 5.2 × 10−5 1 0.177

Cognitive test scores

Matrix puzzles solved Mean ± SD 8.011 ± 0.500 64.8/64.7 21,755 6.8 × 10−4 27 <0.001 −0.08/–0.03 <0.001

Tower rearranging correct 

attempts Mean ± SD 9.920 ± 2.123 64.8/64.7 21,587 5.0 × 10−4 17 <0.001 −0.04/–0.02 <0.001

Prospective memory Mean ± SD 1.067 ± 0.397 64.3/64.3 30,300 −1.7 × 10−6 0 0.312

−0.05/–

0.003 1

Fluid intelligence Mean ± SD 6.631 ± 0.397 64.3/64.2 29,786 7.3 × 10−4 23 <0.001 −0.07/–0.02 <0.001

Digits remembered Mean ± SD 6.675 ± 1.540 64.9/64.8 23,070 1.6 × 10−4 15 <0.001 −0.06/–0.02 0.002

Mean number of incorrect 

pair matches across trials

Mean ± SD 2.214 ± 1.279 63.9/63.8 20,770 2.9 × 10−4 3 0.014 −0.05/0.01 0.375

Life satisfaction6

Job satisfaction Mean ± SD 4.511 ± 0.863 62.7/61.6 18,399 −5.5 × 10−6 1 0.494 0.02/0.003 1

Financial satisfaction Mean ± SD 4.714 ± 0.828 64.4/64.5 31,909 2.6 × 10−4 10 <0.001 −0.10/0.003 <0.001

Health satisfaction Mean ± SD 4.470 ± 0.766 64.5/64.5 31,911 0.001 52 <0.001 −0.26/0.003 <0.001

Overall health rating Mean ± SD 3.030 ± 0.630 64.5/64.5 31,934 0.001 66 <0.001 −0.36/–0.04 <0.001

Family relation satisfaction Mean ± SD 4.814 ± 0.846 64.4/64.4 31,737 2.7 × 10−4 17 <0.001 −0.10/0.003 <0.001

Friend relationship 

satisfaction

Mean ± SD 4.784 ± 0.846 64.4/64.4 31,640 2.0 × 10−6 0 0.485 −0.02/0.003 1

Happiness Mean ± SD 4.542 ± 0.686 64.5/64.5 31,884 1.2 × 10−4 3 0.011 −0.07/–

0.008

0.275

(Continued)
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3.1.5. Follow-up: quality control and bivariate 
relationships of multimodal brain age and 
bio-psycho-social factors

Due to the strong variability in sex β-values across models 
(Figures 2, 4–6), we also ran the described analyses separately for 
males and females showing some differences in model performance. 
For example, bio-psycho-social models explained a differential of 
between 1 and 4% of conditional variance for males 
(Supplementary Table S10) and differences in contributions of the 
different models’ predictors, predictors’ β-values being generally 
higher for males (Supplementary Figure S2). Overall, quality checks 
show small levels of multicollinearity, and that each predictor 
contributes individual to the models (Supplementary Figures S2–S10 
and Supplementary Tables S8, S9), supporting assumptions about the 
robustness of the utilized models, as well as that simply adding all 
variables together saturates the model leading to lower model 
performance than at baseline across brain ages based on different 
diffusion approaches with a differential in marginal R2 = 3.38%.

Finally, for a better understanding of bivariate relationships, 
Table 2 gives an overview of brain age calculated from combined 
single and multi-shell diffusion data in relation to the observed 
bio-psycho-social factors. Strongest standardized associations when 
adding single factors to a model explaining brain age from age were 
found for WHR (βstd = 0.07, p < 0.001), PP (βstd = 05, p < 0.001), and 
overall health rating (βstd = −0.04, p < 0.001), and health satisfaction 
(βstd = −0.03, p < 0.001). Strongest brain age group differences were 

found for sex (βstd = −0.09, p = 0.001), diabetes (βstd = 0.02, p < 0.001), 
and hypertension (βstd = 0.06, p < 0.001).

4. Discussion

We assessed the influence of various bio-psycho-social variables 
on brain age estimated from different diffusion approaches (and their 
combinations). As predicted, linear mixed effects models showed that 
bio-psycho-social variables uniquely explain a small proportion of 
brain age variability consistently across models, and estimates overlap 
for most predictors. Health and lifestyle factors were most indicative 
of brain age. However, differences in brain age variance explained 
between bio-psycho-social models and diffusion approaches were 
small. Significant predictors of brain age were job satisfaction, health 
satisfaction, WHR (and to a lesser extent BMI when excluding WHR 
as a predictor), diabetes, hypertension, any vascular diagnosis, daily 
coffee consumption, smoking, birth weight, matrix puzzles, and 
symbol digit substitution performance. Our findings indicate that 
brain age estimates derived from different diffusion approaches relate 
similarly to the examined bio-psycho-social factors. This is an 
important finding as it reveals that different WM characteristics share 
common aging associations, which are detailed by bio-psycho-social 
factor associations. The presented diffusion approaches are based on 
different theoretical assumptions for deriving a set of WM features. 
For example, DTI and DKI metrics are usually quite sensitive to a 

TABLE 2 (Continued)

Variable Level or 
metric

Variable 
value

Brain 
age1/
Age1

N2 Marginal 
R2 diff

Log 
Likelihooddiff

χ2 pdiff
4 βraw/βstd

3 ppred
4

Health and lifestyle factors

BMI Mean ± SD 26.319 ± 4.269 64.4/64.4 31,052 5.9 × 10−4 41 <0.001 0.04/0.03 <0.001

Pulse pressure Mean ± SD 60.027 ± 14.540 64.3/64.3 28,184 0.002 66 <0.001 0.02/0.05 <0.001

WHR Mean ± SD 0.872  ± 0.088 64.4/64.4 31,138 0.004 129 <0.001 4.86/0.07 <0.001

Smoking % Yes 2.629 63.0/61.4 838 7.5 × 10−5 4 0.005 0.34/0.01 0.15

% No 97.374 64.5/64.5 31,033 7.5 × 10−5 4 0.005

Diabetes % Yes 1.688 66.6/66.1 543 5.1 × 10−4 22 <0.001 0.99/0.02 <0.001

% No 98.312 64.4/64.4 31,631 5.1 × 10−4 22 <0.001

Hypertension % Yes 19.680 66.7/66.9 6,332 0.002 151 <0.001 0.86/0.06 <0.001

% No 80.320 63.9/63.9 25,842 0.002 151 <0.001

High cholesterol % Yes 12.202 66.9/68.0 3,926 −7.4 × 10−5 18 <0.001 0.26/0.01 <0.001

% No 83.798 64.1/64 28,248 −7.4 × 10−5 18 <0.001

Vascular diagnosis % Yes 22.726 66.7/67.1 7,312 0.002 136 <0.001 0.78/0.06 <0.001

% No 87.274 63.8/63.7 24,862 0.002 136 <0.001

Birth weight (kg) Mean ± SD 3.358 ± 0.619 63.7/63.3 19,409 3.0 × 10−4 10 <0.001 −0.18/–0.02 <0.001

Daily coffee intake (cups) Mean ± SD 2.065 ± 1.815 64.5/64.5 31,973 3.0 × 10−4 20 <0.001 0.06/0.02 <0.001

Linear models were used to observe each of the bio-psycho-social variables of interest in a model of [brain age ~ age + sex + age*sex + bio-psycho-social variable] with scanner site as a random 
factor. The model was then compared to a baseline model of [brain age ~ age + sex + age*sex] with scanner site as a random factor, and hence, R2 values refer to variance uniquely contributed by 
the single bio-psycho-social variable when added to the baseline model, referring to the marginal R2. For sex and age, fixed effects, and site, the random effect are being presented from the 
baseline model. 1These values differ because of missing data in the associated bio-psycho-social factors and will be influenced by the model’s age bias. 2Sample sizes differ due to missing data in 
the bio-psycho-social variables. 3βraw/βstd are the raw and standardized β values of the bio-psycho-social variables of interest. 4ppred refers to the Bonferroni-corrected (multiplied by the number 
of bi-variate tests = 25) p-values of the predictors/bio-psycho-social variables’ β, pdiff refers to the differences between baseline model and the respective model including the bio-psycho-social 
variable of interest using χ2 test. 5Likert-type scales were applied for self-rating scales ranging from 1 “extremely unhappy” to 6 “extremely happy” with the exception of overall health ranging 
from 1 “poor” to 4 “excellent.”
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broad range of WM changes due to their integrative nature of the 
scalar metrics (Basser et al., 1994; Jensen et al., 2005), i.e., DTI’s FA or 
DKI’s MK allow one to detect and localize the WM changes but not to 
explain their origins. In turn, dMRI approaches such as SMTmc or 
BRIA offer several metrics potentially allowing us to bind WM 
architecture with their predictive power (Kaden et al., 2016a,b; Reisert 
et al., 2017). For example, the intra-axonal water fraction appearing in 
both models might correlate with axonal density and axon diameter 
(Jelescu et al., 2020). Consequently, the metric provides information 
about WM maturation associated with aging leading to similar 
associations with age, aging and aging-related variables as DTI/DKI 
models. This encourages the usage of both conventional and advanced 
diffusion approaches when examining the relationship of bio-psycho-
social factors and WM. Particularly, the application of dMRI 
approaches with more accurate assumptions around biophysical 
processes such as a ratio between intra-and extra-axonal diffusivities, 
permeability and other features offers various opportunities to 
investigate aging and associated diseases.

4.1. Explaining brain age from 
bio-psycho-social factors

Recent research has made a strong case for the conjunction effects 
of various bio-psycho-social factors in explaining general health 
(Lehman et  al., 2017). Applied to brain age, for example, 
cardiometabolic effects have been shown to influence brain age (Beck 
et al., 2022a,b). However, assessments of how much of the variance 
explained in brain age above and beyond age, sex, age-by-sex 
interaction, and scanner site have not been described in the literature. 
We find close-to-zero added brain age variance explained by models 
including single bio-psycho-social variables (Table  2). Principal 
components of the health and lifestyle, life satisfaction, socio-
demographics, and cognitive ability variables also added only small 
levels of brain age variance explained to the baseline model. A 
comparably larger proportion of brain age variance (R2 < 4%) is 
uniquely explained by health and lifestyle, life satisfaction, socio-
demographics, and cognitive ability variables underlying the principal 
components (Figure 2 and Supplementary Table S7). These results 
suggest to include the different bio-psycho-social variables as 
predictors in order to explain brain age and the full covariance 
structure rather than using components which reduces the 
covariance matrix.

Health and lifestyle factors explained most brain age variance 
when added to the baseline model, followed by life satisfaction, and 
sociodemographic factors. Adding cognitive scores to the baseline 
model decreased brain age variance explained by the model (Figure 2). 
This suggests that biological and psychological factors are more 
influential than demographic factors. In turn, the observed 
bio-psycho-social factors are not independent of each other. Thus, 
we assume that bio-psycho-social factors contribute to explainations 
of brain age conjunctively. Additionally, we revealed that the added 
variance explained was small across models. A potential reason for 
small added R2 values might lay in multiple confounder effects and 
heterogeneity in effects across covariate levels (Table  2 fallacy, 
Westreich and Greenland, 2013). Importantly, the added brain age 
variance explained is not just an effect of adding predictors randomly 
to the model, which rather decreases the variance explained, as shown 

when adding all bio-psycho-social variables to the model. Hence, it 
seems more sensible to employ models incorporating several 
compared to single domain-specific variables to explain brain age. 
However, our results also indicate that a large part of the variance in 
brain age cannot be explained by our proposed bio-psycho-social 
models. Whether this unexplained variance is due to actual 
biologically founded individual differences, or the characteristics of 
brain age, for example, how the metric is being estimated (de Lange 
et al., 2022), remains unclear. BAG might also be rather static and 
indicated by constants such as genetic architecture and birth weight 
(Vidal-Pineiro et al., 2021). This would explain the smaller influence 
of more variable bio-psycho-social variables. Strong deviations from 
the norm, for example, due to atrophy will also have a strong influence 
on brain age (Kaufmann et al., 2019). Hence, for diseases impacting 
brain structure, brain age can be a useful indicator of health status 
(Kaufmann et al., 2019). Potentially, the health and lifestyle factors 
which are most likely to impact brain structure are therefore also more 
predictive of brain age than other bio-psycho-social variables 
(Figures 4–7). While our models failed to explain larger proportions 
of the variance of brain age, there are various interesting phenotype 
associations within these models which will be  discussed in 
the following.

4.1.1. The importance of age, sex, and ethnicity
Usually, age, sex, and at times, scanner site, are used as covariates 

for brain age-phenotype associations as they are expected to influence 
various phenotypes (Jirsaraie et  al., 2022). As brain age reflects 
chronological age, age also explains most of the brain age variance 
(Figures 4–7). We also find that the effects of sex and the sex-age 
interaction were highly variable across diffusion models predicting 
brain age with sex and the sex-age interaction being mostly 
non-significant predictors across diffusion models (Figures  4–7). 
Nevertheless, brain age does significantly differ between sexes 
(Sanford et al., 2022; Subramaniapillai et al., 2022), and we cannot 
exclude sex difference in WM microstructure. These relationships 
might also lead to differences in WM brain ages between sexes. 
Furthermore, models were more predictive of bio-psycho-social 
factors in males than females (Supplementary Table S2 and 
Supplementary Figure S2). Where the influence of sex changes based 
on the model construction, while potentially also influencing the 
model (Figures 4–7 and Supplementary Figures S5–S8). Some of the 
observed sex differences might be based on anatomical features, such 
as higher intracranial volume in males and different sex-specific aging 
(Eikenes et al., 2022). Brain age was differentially sensitive to ethnicity 
dependent on the approach it was calculated on (Figures 4–7), with 
these differences being influenced by sex (Supplementary Figure S2). 
A previous study showed that being a UK immigrant might influence 
brain age estimates (Leonardsen et  al., 2022). Potentially, genetic 
contributions to brain age both estimated from T1-weighted (Ning 
et al., 2020; Vidal-Pineiro et al., 2021) and dMRI data (Salih et al., 
2021) also have a connection with the mentioned brain age differences 
by sex and ethnicity. However, the causal structure of sex and ethnicity 
differences in brain age estimates requires further investigation.

Previous research has shown the effects of sex on metrics derived 
from conventional and advanced diffusion approaches, such as BRIA, 
DKI, DTI, NODDI, RSI, SMT, SMT mc, and WMTI (Beck et al., 2021; 
Eikenes et al., 2022). While a systematic assessment of sex-related 
effects on diffusion metrics from both conventional and advanced 

https://doi.org/10.3389/fpsyg.2023.1117732
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Korbmacher et al. 10.3389/fpsyg.2023.1117732

Frontiers in Psychology 14 frontiersin.org

dMRI approaches from voxel-to-whole-brain averages over the 
lifespan is yet to be established, different studies presented sex-related 
developmental trajectories in the structural connectome in children 
(Ingalhalikar et al., 2014), and sex related WM changes during aging 
(Hsu et al., 2008). Furthermore, sex differences in aging reflected in 
WM microstructure can be expected due to menopause and cascading 
biological processes, affecting both brain and body systems in various 
ways (Barth and de Lange, 2020; Mosconi et al., 2021; Lohner et al., 
2022). Hence, developmental trajectories differing between males and 
females can be expected which makes sex-separated analyses useful 
to providing important additional information (e.g., as in 
Subramaniapillai et al., 2022). To which extend this applies to ethnicity 
requires further research. Hence, further research is required to 
delineate the underlying causal structure of sex and ethnicity to 
explain their highly variable associations with brain age.

4.1.2. Health and lifestyle factors
Interestingly, while the health and lifestyle factors models 

explained only a small proportion of the brain age variance, most of 
its predictors were significant. Furthermore, these predictors are 
generally only weakly correlated (Supplementary Figure S5), but when 
added in conjunction explaining more variability in brain age than on 
their own (compare Table 2 and Figure 5). To a certain degree, this is 
not surprising, due to dependencies between these predictors. For 
example, WHR, being the strongest predictor of brain age (see 
Figure  5), shows a clear relationship with pulse pressure 
(Supplementary Figure S5). For the extreme cases, this is expressed in 
a well-established relationship between obesity and hypertension 
(Kotsis et al., 2010) or any vascular diagnosis (Mathew et al., 2008). 
This is reflected in brain age, where minimum and maximum values 
show that there is an expected difference of up to 4 years in brain age 
between those with lowest compared to highest WHR, or a 2.4-years 
brain age difference between mean and maximum WHR. Interestingly, 
blood pressure is expected to increase with age, and higher blood 
pressure is positively associated with BAG (Cherbuin et al., 2021). 
However, these effects were not exclusively driven by hypertension but 
across the spectrum of measured blood pressure values (Cherbuin 
et al., 2021). This was supported by our findings showing both an 
effect of pulse pressure and hypertension on brain age. These effects 
are not surprising, as hypertension has been suggested as one of the 
most important risk factors for various cerebrovascular complications 
such as cerebral small vessel disease and resulting cognitive 
impairments (Meissner, 2016; Forte et al., 2019).

Another aspect of high WHR and BMI is obesity increasing diabetes 
risk (Kahn et al., 2006). While the evidence for the direction of the effect 
of diabetes is mixed (Franke et al., 2013; Cole et al., 2018; Sone et al., 
2022), we find participants with diabetes to show higher brain age than 
those without diabetes (Table 1 and Figure 5). Several complications 
within the central nervous system have been associated with diabetes, 
including morphological, electrophysiological, and cognitive changes, 
often in the hippocampus (Wrighten et al., 2009), just as WM lesions and 
altered metabolite ratios (van der Harten et al., 2006; Biessels and Reijmer, 
2014), supporting the idea of higher brain age among those with diabetes. 
But also generally, the increase in risk of cardiovascular disease by WHR 
is mediated by BMI, systolic blood pressure, diabetes, lipids, and smoking 
(Gill et al., 2021). In relation to the brain, higher WHR has been generally 
associated with lower gray matter volume (Hamer and Batty, 2019; 

Gurholt et al., 2021), and higher WM brain age (Beck et al., 2022a,b; 
Subramaniapillai et  al., 2022). Hence, to which extent high WHR 
accelerates brain aging requires further investigation, which might 
be particularly informative when observed in combination with other 
health and lifestyle variables (Hamer and Batty, 2019) and sex 
(Subramaniapillai et al., 2022).

Negative health consequences of smoking (Erhardt, 2009) are 
reflected in smoker’s cortex being thinner (Gurholt et al., 2021), and 
smokers’ brains being 1.5 years older on average than non-smokers’ 
brains (Table 2). Smoking is a known risk factor for cardiovascular 
health significantly increasing its mortality and inducing various 
negative downstream effects on health (Erhardt, 2009), with negative 
impacts on the reward system (Le Foll et al., 2022), repeatedly shown 
in rats (e.g., Gozzi et al., 2006; Kenny and Markou, 2006; Cao et al., 
2013). It can hence be expected that both general and brain health are 
influenced by smoking, making it an important control variable in 
assessing brain age.

The findings for coffee on the other hand are mixed, suggesting 
coffee consumption to be generally positive for cardiovascular health 
and decreasing the risk of Parkinson’s disease, stroke, and Alzheimer’s 
(Nehlig, 2016). The consumption of higher doses of caffeine is, 
however, associated with smaller brain volume and an increased risk 
of dementia (Pham et al., 2022). Practically, the direct effect of the 
number of daily cups of coffee consumed is small in our study. It 
would require on average 10 cups of coffee daily for an increase of 
0.6 years of brain age, fitting the observations made by Pham et al. 
(2022). It also remains unclear whether the effect of coffee 
consumption on brain age is rather mediated by third variables such 
as poor sleep and mental health downstream effects which show 
direct negative effects on health (Distelberg et al., 2017). Additionally, 
there are vulnerable groups in which caffeine can cause adverse 
effects such as people with hypertension (Higdon and Frei, 2006). 
We conclude that health and lifestyle factors function in synergy in 
influencing brain age.

4.1.3. Health perception and satisfaction, and job 
satisfaction

We find significant assignations of self-rated health, friendship/
relationship satisfaction, and job satisfaction with brain age. Self-
assessments and self-rated scores are some of the fastest and easiest 
assessments. Yet, their reliability is under constant scrutiny, particularly 
when assessing health outcomes (e.g., Crossley and Kennedy, 2002; 
Reychav et  al., 2019). In our study, self-rated overall health was a 
significant predictor of brain age, suggesting that asking participants 
about their health can be a useful preliminary assessment of different 
aspects of health. Self-rated health was additionally moderately 
correlated with health perception (Supplementary Figure S4), 
indicating both variables measure, to a certain degree, the same 
underlying phenomenon. However, self-rated health brain age 
associations were stronger and more variable across diffusion 
approaches’ brain ages (Figure 6). These associations support the idea 
of brain age is not only indicative of brain health, but also overall health 
(Kaufmann et al., 2019).

Lastly, there was a trend of individuals’ job satisfaction being 
associated with brain age (Figure 6). Conceptually, this would not 
be surprising as associations between wealth and health (e.g., Adler 
and Ostrove, 1999) as well as job (e.g., Faragher et al., 2013) and 
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financial satisfaction and health (e.g., Hsieh, 2001) have already 
been investigated. However, in the case of our study, higher job 
satisfaction was also indicative of higher brain age. Potential reasons 
are speculative but might reflect the tendency of people engaged in 
their jobs to work long hours which has previously been related 
with various negative mental and physical health outcomes (Lim 
et  al., 2010; Bannai and Tamakoshi, 2014). Nevertheless, the 
underlying mechanisms of the associations between these single 
items in their relationship with brain age require 
further investigation.

4.1.4. Cognitive scores
Cognitive scores’ impact on brain age might be small in the current 

study, yet still important in general (Table 2). This might be due to the 
selection of the observed cognitive test scores, with many more possible 
tests to be included which are potentially more indicative of brain age, 
such as IQ (Elliott et al., 2021). Another opportunity lies in assessing 
associations of cognitive performance and brain age in clinical groups. For 
example, brain age has been found to be explanatory of symbol digit 
modality test scores in multiple sclerosis suggesting brain age as a 
biomarker for cognitive dysfunction (Denissen et al., 2022). Similar to 
such findings, we find a similarly sized effect of symbol digit substitution 
test scores in our healthy aging data (Figure 7). Associations of cognitive 
performance and brain age are also sensitive to sex. For example, the 
number of solved matrix puzzles showing an effect when analyzing males 
and females data together seemed to be a predictor of brain age only in 
females when analyzing females from males data separately 
(Supplementary Figure S2). The quality of these differences requires 
further investigation.

4.2. Variability in brain age-phenotype 
relationships

Imaging phenotypes derived from diffusion UKB data contribute to 
a small additional proportion of the variability in the obtained results. 
However, the presented comparison of R2 differences (Figure  3) 
underestimates the effects of single bio-psycho-social factors, and has to 
be interpreted with care, with cognitive function, life satisfaction, and 
health and lifestyle factors significantly adding to the baseline model 
(Figure 3). Yet, the used brain age estimation model might also introduce 
variability in brain age phenotype associations. Problematically, model 
evaluation metrics such as R2, MAE, or RMSE depend additionally on 
cohort-and study-specific data characteristics making brain age model 
comparison across the literature not straightforward (de Lange et al., 
2022). Additionally, there are differences between models trained on 
voxel-level compared to region-averaged data. Deep learning models 
using voxel-level data reach age predictions errors as low as 
MAE = 2.14 years in midlife to late adulthood (Peng et  al., 2021) or 
MAE = 3.90 years across the lifespan (Leonardsen et  al., 2022) while 
explaining large proportions of variance in age (R2 > 0.90), whereas 
models trained on regional and global average measures predict age 
usually with larger error, MAE > 3.6 years, and/or lower variances 
explained R2 < 0.75 (de Lange et al., 2020a,b; Beck et al., 2021, 2022b; 
Rokicki et al., 2021; Korbmacher et al., 2022). However, Niu et al. (2019) 
showed that with different shallow and deep machine learning 
algorithms (ridge regression, support vector regressor, Gaussian process 

regressor, deep neural networks) high prediction accuracies (R2 > 0.75, 
MAE < 1.43) could be reached when using multimodal regional average 
data using a young sample with narrow age range. Nonetheless, the same 
database (UKB) is able to provide similar patterns of detected 
associations between brain age and used phenotypes by applying 
different samples, modalities, and methods to calculate brain age. For 
example, diabetes diagnosis, diagnosed vascular problems or place of 
birth (see Figure 4 in Leonardsen et al., 2022), hip circumference, trail-
making tasks, and matrix pattern completion were significantly 
associated with brain age (see Table 5 in Cole, 2020). However, it remains 
unclear whether the differences in the findings are due to analysis degree 
of freedom, sample characteristics, or actual bio-physical manifestations. 
For instance, the underlying data used for brain age estimation can 
be based on different modalities, e.g., dMRI metrics, as in the present 
work, versus T1-weighted images in Cole (2020) and Leonardsen et al. 
(2022). We can assume that WM-derived brain age associations with 
bio-psycho-social factors are relatively stable across diffusion approaches 
(see Figures  2, 4–6). We  used four mixed models grouping (a) 
demographics, (b) cognitive, (c) life satisfaction, and (d) health and 
lifestyle variables to predict brain age. In contrast, Cole (2020) predicted 
bias-adjusted brain age from simple linear models with sex, age, and age2 
as covariates, and Leonardsen et al. (2022) observed similar associations 
for uncorrected brain age predicted from the respective phenotype and 
age and sex as covariates. However, bio-psycho-social variables are likely 
to interact in a complex pattern when explaining variables such as brain 
age. If we add only single bio-psycho-social variables, such as waist-to-
hip-ratio, to a baseline model and then compare the two models, the 
differences in variance explained are small. Adding blocks of 
meaningfully related variables leads to stronger increases in Brian age 
variance explained (compare Table 2 and Supplementary Table S7). In 
summary, there are various sources of variability in brain age prediction. 
Phenotype associations could encompass not only the underlying data 
but also researchers’ degree of freedom such as data selection, processing, 
and analysis.

5. Conclusion and future directions

Bio-psycho-social factors contribute similarly to explaining WM 
brain age across conventional and advanced diffusion MRI approaches 
when arranged as cognitive scores, life satisfaction, health and lifestyle 
factors, but not socio-demographics. Focusing on single predictors, health 
and lifestyle factors, WHR, birth weight, diabetes, hypertension, and 
related diagnoses, as well as smoking status and coffee consumption, were 
more predictive of brain age than cognitive and life satisfaction measures. 
Apart from health satisfaction and self-ratings, we found relationships of 
life satisfaction variables with brain age to be non-significant. Of the 
cognitive scores, only the digit substitution task performance was a 
significant predictor, which might be relevant in samples from midlife to 
old age. Furthermore, the influence of sex and ethnicity is largely variable 
suggesting the usage of sensible control mechanisms, such as separate 
analyses or exclusions in case of strongly imbalanced samples. 
We  recommend future study designs taking observable interactions 
between the different bio-psycho-social effects into account. A potentially 
helpful guiding principle in the search for bio-psycho-social variables 
affecting brain age could be to focus on measures which are directly or 
indirectly related to or reflect pathology.
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