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Abstract

Gene regulatory network(GRN) inference remains a challenging problem in the field of
bioinformatics. GRN contain valuable information needed to get a deeper understanding
of the regulatory network. This could lead to advances in disease treatment or help drug
discovery. Our approach to solving the problem of GRN inference is to train multilayered
perceptrons (MLPs) to recreate the dynamics of the biological function. With the trained
models able to module the dynamics, we hope to extract the underlying relationships
between the species through feature attribution algorithms. We apply our method to a
regulatory network for cell apoptosis and a network regulating the T-cell response to a

pathogen.
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Chapter 1

Introduction

In the field of bioinformatics, the concept of gene regulatory networks (GRN) has be-
come the favored choice for describing the complex and dynamic relationship between
genes and their products[33]. Their use enables us to improve our knowledge about the
mechanism of diseases|23] and could lead to advancements in drug discovery[9]. However,
the process of inferring these GRNs remain a great challenge, and a huge effort has been
made in developing a solution. The existing methods cover a wide range of different

approaches|[33].

While GRN is great at describing the relationships between genes and transcription
factors, mathematical models have been used to model the dynamic behaviour of the
system[23]. These mathematical models have the ability to simulate highly complex
biological processes or biological systems. However, at a great cost. Simulations can
demand a large amount of computational power and time, which is not optimal for real-
time predictions. Machine Learning (ML) models have the potential to replace these, as
they have great abilities as function approximators. Once trained, ML models are both

time-efficient and cost-efficient in terms of computational demand[I4].

Thus, through our work we would like to answer the following:

1. Is it possible to train a set of multilayer perceptrons (MLP) to simulate the dynam-

ical behaviour of a biological process using gene expression data?

2. Can we infer a suitable network topology from the trained models using feature

attribution algorithms?



In the process of answering these two questions, we were introduced to another chal-
lenge. For some systems, multiple steady states are possible. This made learning the
dynamics of the system difficult as the machine learning models would generalize poorly
and overfit to some of the steady states. This prompted the question if a classifier could

correctly classify the model’s state. We, therefore, defined another question:

3. Is it possible to train an ML classifier to correctly identify the biological state of a

system using initial values?

In our work, we used a set of independently trained MLP to simulate the dynamics for
given biological systems. The models are trained using simulated gene expression data.
We tested their predictive ability by only providing the initial concentration for the
involved species. We then compared the models predictions against the true dynamical

behaviour.

We also propose a method for inferring a topology for a GRN. Having already trained
a set of MLP able to recreate the dynamical behaviour, we utilized different feature
attribution algorithms to infer possible network topologies. The feature attribution algo-
rithms would provide a score representing the importance of each feature for the output
of the model. By using different thresholds on the feature attribution scores for determin-
ing whether an edge should be included or not, we produced multiple possible network
topologies. We then compared the proposed networks against the true network and used

precision-recall and roc-curves as a measure of performance.

Finally, we used a small set of different classifiers to test whether it was possible to
recognize the state of the system. The models used were Logistic Regression and two
different MLPs. The different models were evaluated by their accuracy and by examining

their confusion matrices.



Chapter 2

Background

2.1 Systems biology

Systems biology is a field within biology that uses a holistic approach to understand the
complexity of biological systems. Rather than reducing the system into individual objects
and analysing each individual object’s properties and function separately, systems biology
attempts to view the system as a whole and investigate its dynamics and structure[19, [18].
A biological systems structure can be biochemical pathways or a network of interacting
genes. In contrast, the dynamics of the system explain how the system develops over
time[25]. Any development made in the field of systems biology could contribute to a
better understanding of biological processes in the human body. A better understanding

of these could lead to advancements in drug discovery and treatment of diseases[24], 2].

Mathematical modelling of a biological system is a useful tool, whether the system
represents individuals in a population or the number of molecules present in a reaction.
While there exist many different methods for doing this, one of the more popular methods
includes an ordinary differential equation(ODE) representation of the system[26]. We can

do this on the following form:

d
X (8) = =k X (1) (2.1)

This equation describes the change of concentration of molecule or species X at time

t. In this instance, X at time t is decaying at a rate of k; proportional to the current



concentration of X at time t. This equation only describes a single species and to extend

this into describing a whole system, we can use a system of ODEs’ instead.

d

aX1 (t) = (X0 (1), Xa(t), ..., X (1))

L) = Fu(X0 (1), Xolt), o X (1))

dt
This set of equations not only describes the change of concentration within the indi-

vidual species but also gives information on their relationships.

Sensitivity analysis is a tool used to study mathematical models, such as ODE mod-
els. Explicitly it is used to understand how uncertainty in the model’s output can be
attributed to the uncertainty in the model’s input[38]. Sobol sensitivity analysis is a
variance-based global sensitivity analysis and can be used for non-linear models[39).
Sobol sensitivity analysis computes both total-order sensitivity and first-order sensitivity.
Total-order sensitivity represents the variance in output caused by an input parameter
and its interaction with other input parameters. The first-order sensitivity describes only
the variance in the output caused by a single input parameter. Sobol sensitivity analysis

computes the sensitivities by ranging the input parameters over the whole input space[46].

2.1.1 Gene regulatory networks

In our bodies and other life forms, biological functions are the processes responsible for
the individual’s ability to function and survive. Biological functions happening within
cells, called cellular functions, are driven by proteins and their interactions[49]. Proteins
are large biomolecules that consist of chains of amino acids. The production of pro-
teins occurs through a complex process called gene expression. Through gene expression,
information stored in DNA is transformed into functioning proteins. This transforma-
tion undergoes two major operations called transcription and translation[I1]. The first,
transcription is responsible for the creation of the intermediate product called messen-
ger RNA (mRNA). Transcription begins when an RNA polymerase binds to the DNA
strand and reads the coding information into mRNA. In the latter process, translation,
the mRNA is transformed into a sequence of amino acids. The translation is initiated by
a ribosome binding to mRNA. The ribosome synthesizes the protein product according
to the information stored in the mRNA[IT].

4
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Figure 2.1: Transcription of DNA into mRNA.
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Figure 2.2: Translation of mRNA into protein.

Gene expression needs to be regulated to avoid producing unnecessary amounts of
protein or to avoid producing proteins at the wrong time. Regulation can happen through
a variety of different processes, but the most common way is through transcription factors
(TF)[30]. TF are proteins that bind to the regulatory regions of the DNA. The binding
of TF changes the regulatory region where RNA polymerase binds to the DNA strand.
Dependent on the type of TF, the regulatory region changes to either be able or unable
to bind to RNA polymerase. A TF that changes the regulatory region into a binding site
for RNA polymerase, is called an activator. On the contrary, a repressor is a TF that

changes the regulatory region such that it does not allow binding to RNA polymerase[29].

In an attempt to simplify the description of the interaction of genes and their products,
the concept of Gene Regulatory Networks (GRN) was developed [40]. An important
advantage of using a GRN representation is that they can often be represented using
a graph or network topology. By using graphs it is easier to visualize the relationship
between the genes. To avoid unnecessary confusion and complexity, genes and their
product, proteins, are simplified to be represented in the same node. The relationship
between genes is depicted by the edges. Figure 2.3/ shows an example of a GRN with five

genes and their relationships.



Figure 2.3: Example of gene regulatory network.

Inferring GRNs remains a challenging problem within the field of systems biology.
Researchers have developed several methods, with a large variety of approaches to solve
this problem. [54]

2.1.2 Examples of biological functions and biological systems

In this section, we will first take a look at a few general examples of the type of biological
functions and systems. Then we will present two different types of systems we will study

in this thesis.

Adaptation

Adaptation is one of the most widely studied biological functions and can be found in
many biological systems. The adaptation process can be broken down into two parts,
the first being a transient response to a change in an input signal. The second part is
the recovery stage where the system adapts to the change in signal and is restored to its
initial level[19, [43]. A perfect adaption happens when the system is able to return to the
exact same level as before the change in signal[50]. From research, the modelling of such
a function involves three nodes, one input (signal) node, one hidden node (gene 1), and
one output (gene 2) node. From this, two possible network topologies arose. The first is a
negative feedback loop with a buffer node, while the second is an incoherent feed-forward

loop with a proportioner node[32].



Input

Output

Figure 2.4: Example of adaptation network with negative feedback loop.

Oscillations

An important component of many dynamical cellular processes is the ability of the system
to exhibit oscillating behaviour[2§]. A system containing both positive and negative
feedback loops will result in oscillations. The positive feedback loop is responsible for
constructing a bistable system. The negative feedback loop will make the system jump
in between these two steady states, therefore creating the oscillating behaviour. While
the oscillating behaviour is possible for a system with only negative feedback, this system

will eventually come to a steady state through damped oscillations[50].

Figure 2.5: Example of oscillatory network with a positive and a negative feedback loop.

Cell apoptosis

Cell apoptosis is an important biological process in which the cells are programmed to

die in a controlled fashion. The process can be regulated in several ways, but it is

7



primarily regulated through transient signals in a caspase-mediated network[3]. Caspase
is an enzyme responsible for the destruction of cells[48]. The caspase network consists
of 3 different species, where Casp-3 activity is regulated by Casp-8 and XIAP. Casp-3
and Casp-8 are pro-apoptotic factors and XIAP is a pro-survival factor. Casp-8 activates
Casp-3, while XIAP inhibits Casp-3 activation. The total amount of complexes and
species in the network is 9, while one is not affecting the regulation, and is therefore
excluded from the regulatory network[3]. The full overview of the GRN can be viewed in
figure 2.6hnd the corresponding system of ODE’s modelling of the network can be found
in the appendix.

Figure 2.6: The cell apoptosis regulatory network, with 8 species, Casp8(x;), Casp8*(z2),
Casp3(z3), Casp3*(xy), Casp8-Casp3*(x5), Casp8*-Casp3(zs), XIAP(z7) and XIAP-
Casp3*(zg). Activated caspase is denoted by ”*”, while complexes are denoted by ”-”
between them.

Ontogeny of nascent CD8 memory T-cells

T-cells are a vital part of the immune system and crucial to fighting any harmful cells that
have entered its host body. They are responsible for the adaptive ability of the immune
system to handle new infections or diseases[5]. Due to the different stages in the life cycle
of a T-cell, it can provide both a short-term response and long-term protective ability.
The introduction of a pathogen or a tumor will activate naive T-cells to differentiate into
effector cells, capable of eliminating any cell affected by a pathogen or a tumor. With
time, the effector cells will differentiate into memory cells, providing long-term protection
against the same antigen[53]. Through phenotype investigation 4 possible different phases
have been identified, naive (N), early effector (E), late effector (L), and memory (M). The



regulatory network consists of 4 different cell phases and a pathogen (P). The pathogen
activates the differentiation of N into E, and E into L. E and L activate the degradation
of pathogen [10].

Figure 2.7: The regulatory network for T-cell stages and the pathogen.

2.2 Machine learning

Machine learning is a interdisciplinary field within computer science and statistics|20].
The aim of machine learning is to teach machines to perform a set of tasks using experi-
ence in the form of data. The learning part happens through a phase called training. The
training mimics the way we humans learn, by repetition of experiences and outcomes.
After each new experience, the machine uses this to alter its prediction[13]. Machine
Learning has proven to be a powerful and versatile tool, as applications range from per-
forming everyday tasks to more complex problems such as protein-folding[21]. Especially
the last two decades have seen a renewed interest and rapid development in the field. This
can mostly be contributed to hardware upgrades and the ability to store large amounts
of data.

Machine learning is typically divided into 4 different types, supervised learning, unsu-
pervised learning, semi-supervised learning, and reinforcement learning[34]. Supervised
learning uses labelled data to train and test the machine learning model. Labelled data
consist of a set of input features and a ground-truth output value(s). In the training
phase, the model uses the input features to make a prediction. Then the difference be-
tween the prediction and the ground-truth variable is calculated using a loss function.
Based upon the model algorithm used, the information captured by the loss function is
used to update the model and change the predictive pattern until a optima is reached[16].

Unsupervised learning, on the other hand, uses unlabelled data for training. These types



of models are trying to recognize patterns or groupings of the data without the help of a
target attribute[4]. Semi-supervised learning is an approach which utilizes a smaller part
of labelled data and a larger part of unlabelled data. This approach to machine learning
is often favoured when labelling data is either expensive or difficult.[51] Reinforcement
learning is a branch of machine learning that uses experiences and reward signals to train
an agent to perform a given task. Given some observational data (state), an agent per-
forms an action and is given a reward signal as a response to that action in that state.
By giving appropriate rewards for each state, the agent should be able to perform the

task after a training period[22].

2.2.1 Neural networks

A concept within machine learning that has experienced continuous interest for the last
decades is neural networks (NN)[I]. A NN is a structured network of interconnected
neurons. The networks have a layered structure, where the number of layers(depth)
and number of neurons in each layer(width) are predetermined hyperparameters of the
model[I5]. Information is passed on layer by layer and connections are only found between
neurons from consecutive layers. Each NN must be comprised of one input layer, one
output layer, and at least one intermediate layer referred to as a hidden layer. This gives
the smallest possible NN a depth of at least 3. The data is fed into the input layer
of the network and is transferred through each layer by the activation of each neuron.
The output layer is responsible for presenting the model’s prediction and is the result of
all activations in the last hidden layer[6]. In the next paragraphs, we will have a more

in-depth look at how these networks make a prediction and how they are trained.

Hidden
Layer

Figure 2.8: Example of a feedforward neural network.
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Forward pass through a neural network

The input is passed through the neural network with a series of nonlinear transformations
performed by neurons in each layer[I7]. Each neuron performs a two-part operation for
computing the activation Z. In the first operation, a is computed as a weighted sum over
all £ incoming signals z; to the current neuron. The connections between neurons, each
have an individual parameter w; called weight. A term by, called bias is then added to

the weighted sum to complete the first operation[6].

k

In the second operation, the weighted sum is transformed using a non-linear activation
function g, and we get the resulting activation Z for the neuron[6]. Often used activation
functions include Rectified Linear Unit (ReLU), Sigmoid and Tanh. Where ReLU is used
for hidden units in the intermediate layers, while the other two are mostly used for output

layers[41].

Z =g(a) (2.3)

For an intermediate neuron, the activation Z is fed as an input signal to neurons in
the next layer where the process is repeated. If the neuron is part of the output layer,

the activation Z is the model’s prediction.

Backpropagation

While the previous section describes how neural networks perform predictions from input
values, let us go into detail about how neural networks learn. In order to change a model’s
prediction, we need to update the model’s weights. The goal of training is to update these
weights in a way such that the predictions become closer to the true labels. We utilise
a cost function to decide how good the model’s prediction is. We define a cost function,

L(#), for a regression problem:

L) = lly = N(x, )| (2.4)

11



The Greek letter 6 denotes the neural network parameters, namely weights and bias.
x and y are the features and labels of the model, respectively. N(x,#) refers to the models
prediction based on features, x, and the current parameters, . Here we define the cost
function as the sum of squared errors. However, the choice of cost function is usually
dependent on the type of problem and preference of the developer. Now, the problem
becomes minimizing this cost function by the change of parameters. We can formally

define the problem as:

argmingL(0) (2.5)

The use of the error from the forward propagation to sequentially update the parame-
ters of the layers in a backwards direction is known as backpropagation. Backpropagation
works by computing the partial derivative of the cost function with respect to the weights.
It does so in a backwards direction, propagating the error from the end of the network
to the front. The derivatives can be calculated using the chain rule of differentiation[37].

For each node in the computational graph, we get:

OL 0LJ0Z

The computed gradients are then used in a process called gradient descent. The goal
of gradient descent is to optimize the cost function by using the gradients[36]. Updating

parameters using gradient descent can be defined as:

01&—‘,—1 = Qt + T]tVL<0t) (27)

Parameters are denoted by 6 and the learning rate is denoted by V. t denotes the
current time step. It is important to note that gradient descent does not guarantee the

global optima, only a local minima. This is due to the cost function not being convex[12].

2.2.2 Machine learning metrics

In this section, we will define and present some of the metrics later used to evaluate the

performance of the machine learning models.

12



Precision

Precision is a performance metric often used for classification tasks. It represents the
proportion of correctly guessed positive instances among the total guessed positive
instances[35]. It is defined as:

TP

Precision = 7_'P—|——F1P (28)

Recall

Recall is another performance metric used for classification tasks. It represents the pro-
portion of retrieved positive instances among the total number of positive instances[35].
It is defined as:

TP
Recall = m—m (29)

Accuracy

Accuracy is also a performance measure used for classification tasks. It represents the
total number of correct predictions among all possible predictions[35]. Formally, it can

be defined as:
TP+ TN

2.10
TP+TN+ FP+ FN (2.10)

Accuracy =

2.2.3 Model interpretability

One major critique of Neural Networks is the lack of explainability. They are often viewed
as "black box” functions, where they are able to map an input to a reasonable output.
However, understanding how they are able to make these predictions and what the model
is looking for when making a decision, is still not entirely clear[31]. To overcome this
critique an effort has been made in the area of model interpretability[§]. Captum is
a code library that has collected some of the algorithms that have been developed for
gradient-based learning in particular[27]. In the rest of this section, we view some of

these algorithms in more detail.

13



Integrated gradients

Integrated gradients is a gradient-based approach to find the feature attribution. The
method computes the integral of the gradients with respect to inputs along the path from
the baseline to the inputs. The development of the method is driven by fulfilling two
axioms: sensitivity and implementation variance. Sensitivity states that if two inputs,
x and 2/, only differ for feature 7, and the prediction of the model is different, then
the feature attribution for feature ¢ must be non-zero. Implementation variance states
that two models predicting equal outputs for all inputs, despite being implemented very

differently, must have the same attributions[47].

Saliency

Saliency is a simpler approach to computing attribution. The method returns the gradient

of the output with respect to input]45].

DeepLIFT

DeepLIFT is a backpropagation-based approach to quantify the importance of each fea-
ture in model prediction. The algorithm does this by trying to explain the difference
of the output to the "reference” output in terms of differences of the inputs to their
"reference” inputs. The "reference” input is usually chosen to be some neutral baseline.
The algorithm utilizes the difference between the activation in neurons to the ”reference”

activation in the same neurons, as contribution scores[44].

Feature permutation

Feature Permutation is a perturbation-based approach to finding the attributions. The
method starts with individually permuting each feature in the testing set and then com-
puting the difference (loss) in the output of the model for the different sets of input
values. The feature values are randomly permuted within a batch. The idea is simply
if a change in one feature leads to a big increase in loss, the feature must be important.

Likewise, a small change in loss suggests that the feature is not important[7].

14



Feature ablation

Feature ablation is also a perturbation-based approach, and follows the same idea as
feature permutation. However, rather than using a randomly permuted set for each
feature, the method only requires a baseline or reference for each feature. The difference

in output is computed when changing between the reference value and input value [27].

2.3 Related work

2.3.1 Systems biology informed deep learning for inferring pa-

rameters and hidden dynamics

In the work by Yazdani et al.[52], they are interested in developing an algorithm for
parameter inference and the prediction of a system’s hidden dynamics. As mentioned
earlier, using ODEs to model a biological system is frequently used in systems biology.
With this, unknown parameters are introduced and inferring these are the objective for
Yazdani et al. In addition, they aim to achieve this using a smaller number of observable
variables. To be able to infer the parameters and the hidden dynamics, they utilize
a deep neural network(DNN), with the system of ODEs incorporated into the neural
network(NN). To incorporate the ODEs into the NN, they use a custom loss function
with three terms. Two of the terms are related to the difference between the model
prediction and the measurements of each species. The last term is based on the ODE

model.

Developing an algorithm that can predict the hidden dynamics of a biological system
is also of interest to us, but one difference remains. In our work, we do not want to infer
the parameters of ODEs used in modelling the system. Instead, we want to develop an

algorithm that can infer a GRN topology.

2.3.2 Finding gene network topologies for given biological func-

tion with recurrent neural network

Shen et al.[42] displays an alternative approach to the GRN inference by using Recurrent
neural networks (RNN). Their methods train an RNN to model the dynamics for the

15



biological function of interest. The trained RNN is investigated using a developed link
knock-out method to infer possible network topologies. The method involves system-
atically perturbing the different inputs to the neural network and studying the change
in the model’s dynamic behaviour. The last part of the method focuses on exploring
the biological feasibility of the proposed network topologies. This is done by checking
if the inferred network can still model the desired biological function when its edges
are expressed through Hill functions. The approach is applied to four different types of
biological functions, adaptation, controlled oscillations, pattern formation and a set of

10-node cellular automata.

This approach differs from ours by the choice of machine learning model, and the
method of inferring the gene network topology. The choice of a machine learning model
does not make a difference in the case of capturing the dynamics of the desired function.
Both RNN and MLP have been proven able to simulate the hidden dynamics of systems
modelled by ODEs. In contrast to their approach how to infer the network topologies,
our approach is based on several attribution-based algorithms. Additionally, our method
compares the proposed network topology to the true topology. However, it does not

investigate the biological feasibility beyond this comparison.
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Chapter 3

Methods

3.1 Data generation

For any project involving machine learning algorithms, the data used is highly important.
The quality of the data should be high, and errors due to inaccuracy in measurement
should be absent. Missing values are also a common problem that decreases the quality of
data. To train our model, we are using gene expression data, and even though real-world
data is available, it would not meet the quality criteria. Real-world gene expression data
is typically noisy, has a shorter time frame and has few sampled data points. On the
basis of this, we are using controlled simulated data. In the next section, we will take a

closer look at how the data is simulated.

To generate time series data with the concentration of each species, we use the solution
to the system of ODEs as a baseline. The solution to the system of ODEs is solved using
the ODE solver, ODEint, from the SciPy library. From the solution, evenly distributed
data points from to = 0 to t,, = t.nq are sampled for each species. The t.,4 are dependent
on the problem and the time scale might be minutes or hours. To add some variance
in the data, Gaussian noise is added to each data point. The noise is sampled from a
normal distribution with mean, g = 0, and standard deviation ¢ = 0.05 % std,, where
std, is the standard deviation for each species involved. The noise added corresponds to
measurement noise and not biological noise. It is added after each data point is generated

and that way the error is not propagated to the next data point.

yi = fi(w, p) + 0.05¢,¢ N(0,0%) (3.1)
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In machine learning, we need to generate 3 different data sets, one for training, one
for validation and one for testing. The training set includes 500 trajectories with ¢.,q_1
time points, which gives a total sample size of 500*t.,4_1. Also, as this is a supervised
machine learning problem each data set must be divided into features (X) and labels (Y).
The features of the data set are the concentration level of all species at time ¢, and the
corresponding labels are the concentration levels at time t 4+ 1. Since we are predicting
the concentration level of a species in the next time step, the feature data set does not
include the last time step as we would be predicting outside of the time frame. Similarly,
the labels do not include the first time step as we have no previous time step to make a

prediction from.

3.2 Network architecture and training

3.2.1 Neural network

From section [2.1 we remember that in systems biology, modelling a biological function
can be done using a system of ODEs. Each ODE will describe the change in the level
of concentration for a species, based on the current level of concentration of all species
involved in the network of genes, and some defined parameters. In our work, the idea is
that each ODE can be modelled using a neural network. Neural networks have proven
to be great function approximators. We will use fully connected feed-forward neural
networks called multilayer perceptrons (MLP). Consequently, a biological function with
n species will need n individual MLPs. Each MLP will take a vector of size n as input

and will output a single value vector representing one of the species.

Ni(Xta 0) — Xi,t+1 (32)

Here N; represents the MLP modelling species ¢, X; is a vector containing the con-
centration of all n species at time t. p is the adjustable parameters of the neural network
corresponding to weights and biases. The output X,,.; is the concentration level of

species ¢ at time ¢ 4 1.

The architecture of each MLP is consisting of 5 layers in total, where 3 of them are

hidden layers and one input- and output layer. The number of nodes in the input layer is
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dependent on the number of species in the gene regulatory network. The hidden layers are
comprised of 128 nodes, and the output layer has 1 node. The output of each node in the
network is transformed using the non-linear ReLLU activation function. Backpropagation
is done using the Adam Optimizer. The network was implemented using the PyTorch

library.

3.2.2 Training procedure

An important step in the training procedure is pre-processing the data. Here we do
feature scaling by standardizing the features along each dimension. This step helps the
models to converge faster in training, and it might help the models’ prediction ability.

Standardization is defined as:

= M (3.3)

0;

In equation (3.3)) z; is the scaled features for dimension i. z; is the unscaled features
for dimension i. While p; and o; are the mean and standard deviation for dimension i,

respectively.

The training of each model is done in succession, and therefore each model is trained
separately. Each model is trained for 15 epochs, where the training data is randomly
shuffled at the start of each epoch. This is done as another precaution to avoid overfitting
to the training data. The input data to the model is divided into batches of eight samples
per batch. This way, the model updates its parameters after seeing eight samples, which
reduces the time used in training. The training was completed using a PC with 2 core
CPU and a clock speed of 2.50 GHz. The total training time was around 20 minutes for

the first system and around 40 minutes for the second system.

3.2.3 Network inference

The first step in our method of doing network topology inference is to use the different
feature attribution algorithms. The algorithms are implemented in a package called
Captum, which is developed for neural networks implemented in PyTorch. The feature

attribution scores are calculated separately for each model. The input vectors to the
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attribution algorithms are the prediction of the models when given the initial values. For
all attribution algorithms that require a baseline or reference, the zero vector is chosen.
The final attribution scores are the aggregate over all input vectors divided by the L1
norm. This gives all attribution scores within the same range and comparable to each
other.

Once we have the attributions scores for all algorithms and all trained models, we can
infer possible network topologies. We do this by comparing the attribution scores to a
threshold value. If the attribution score is greater than the threshold value, we add an
edge from the current feature to the current model we are inspecting. In our case, we want
to infer the presence of an edge only, and not the relationship for each edge. Therefore we
use the absolute value of the attribution score for comparison. We repeat this procedure
for the different algorithms and subsequently get 5 different network topologies for each
threshold value. By using a range of different threshold values we are able to create

precision-recall plots and ROC curves. The threshold values range from 0 to 1.

From the precision-recall and ROC curves, we choose the best-performing algorithms.
We then compare the attribution scores to the results of Sobols sensitivity analysis.
Sobols sensitivity analysis is performed using the SALib library in Python. The analysis
is performed on the ODE modelling of the system, not the trained machine learning
models. We fix all parameters in the ODEs and perform the analysis by permuting the
input variables. From the results we only use the first-order sensitivities. Finally, we

present the best-performing graph network topology.

3.2.4 Classification problem

For the bi-stable system, we are also interested in if it is possible to train a machine
learning model to predict the correct state of the system after 60 hours have passed.
Since there are two possible states we can use a binary label and the problem becomes
a classification problem. To investigate this, we created a different data set and changed

some hyperparameters in our MLP. For this classification, we only need one model.

Similar to the other problem, we need to generate data using simulation. The data
consist of the initial values for two species as features, and a binary label indicating if
the system is in cell survival or cell death state after 60 hours. The initial values were
sampled using Latin hypercube sampling. Latin hypercube sampling is a method for

random sampling from a multidimensional distribution. In order to label the data, we
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need to simulate the concentration levels for the full time course for all species. Together
with the ODEsolver in SciPy and the set of sampled initial values was used to simulate
the dynamics of each species. To label the data, we observed the concentration level
of species 4, activated caspase 3, casp3*. The concentration level of casp3* determines
which state the system has reached. The absence of casp3* means that there is nothing
left to start the degradation of cells. Therefore, the system is in a cell death state if
x4 > 0 and a cell survival state if 4 = 0. Finally, before training, the data sets were

balanced with an equal representation of each state.

For the classification problem, we trained 3 different classifiers. One logistic regression
model, one MLP classifier using Scikit-learn and one MLP classifier using PyTorch. The
logistic regression uses the standard implementation by scikit-learn with L2-loss as the
penalty term. The MLP from scikit-learn consists of 3 layers, one hidden layer with 100
nodes, one input and one output. The activation function used is ReLU and the ADAM
optimizer is used for updating the weights. L2 loss is used as the loss function. The self-
implemented MLP classifier in PyTorch uses the same activation function and optimizer.
The network architecture is different and is comprised of 5 layers, 3 hidden layers with
8 nodes each, 1 input layer and one output layer. Both the logistic regressor and the
PyTorch MLP classifier are trained for 100 epochs, while the scikit-learn MLP classifier
is trained for 300 epochs.
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Chapter 4

Results

4.1 System with one steady state

In this section, we present the results related to the single steady-state system modelling
the ontogeny of naive T-cells. We start by examining the recorded training loss and
validation loss for our set of MLPs. Following this, we will look at the models’ ability to
recreate the dynamics for each species, given only the initial values. We will then present
the results of our method for doing network topology inference. We start by looking at
the different feature attribution algorithms’ performance using precision-recall curves and
ROC curves. Next, we look closer at the attribution scores for the individual species and
compare them to the first-order sensitivities from Sobol sensitivity analysis. Finally, we

look at the best-performing inferred graph topology.
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4.1.1 Training results
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Figure 4.1: Recorded training loss and validation loss for single steady state trained
model. Along the x-axis, we find the number of epochs the model has been trained for.
The y-axis expresses the average loss recorded for each epoch.
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Figure show the recorded training loss and validation loss for all models trained. Both
losses are shown as the mean recorded for that epoch. We observe that the losses for
models 2,3, and 4 all converge to the same value for both training and validation. This
indicates that the models are generalizing well to the training and validation data. For
models 1 and 5, the validation loss does not converge to the same value as the training
loss. The validation loss for model 1 is in general smaller than the training loss, while it is
the opposite for model 5, where the training loss is in general smaller than the validation
loss. In addition, the training loss for model 5 does not appear to have converged after

15 epochs and is still decreasing.
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4.1.2 Dynamics
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In figure we see the five models predictions of each species dynamics over a 60 hour
time period compared to the ODE solution. The trained models are only given the initial
value and then use the output as the input value for the next prediction. This is then
repeated until the 60-hour mark is reached, where one hour equals one time step. From
the figure we can observe that all models are able to capture the dynamics for all species.
There is only a slight deviation close to the end for species number 4, shown in d).
The true dynamics indicate that the number of memory cells will continue to increase
throughout the whole time frame. In contrast, the trained model predicts that a steady

state is reached sometime after 50 hours have passed.

4.1.3 Network topology inference
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Figure 4.3: Precision-Recall and ROC Curve for Single-Steady state model.

From figure we can observe the precision-recall (PR) curves for the different feature
attribution algorithms. PR curves are determined by the precision score and the recall
score evaluated at different thresholds. The optimal result would be an algorithm achiev-
ing both high precision and high recall at the same threshold value. Integrated Gradients

and saliency are able to achieve the highest scores of precision and recall.

Figureshows the Receiver Operating Characteristics (ROC) curves for the feature
attribution algorithms. A ROC curve is determined by the true positive rate and false
positive rate evaluated at different thresholds. Their performance can then be compared
using the area under the curve (AUC) score. A higher AUC score indicates a better
performance. From the figure we can observe that saliency is the algorithm that performs

best with an AUC score of 0.692. Following closely are the DeepLift and Integrated
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Gradients with AUC scores of 0.676 and 0.673 respectively. On the other hand, feature

permutation performed close to a random assignment of edges.

From the results of PR curves and ROC curves, we chose the two best-performing
feature attribution algorithms and compared them to the Sobol sensitivity analysis. The
comparison shows a clear discrepancy between the sensitivity analysis and the two feature
attribution algorithms. Although more in agreement, there is also a difference between
Integrated Gradients and saliency algorithms. For comparison, we do not set a specific
threshold of when to include the influence. Instead, we look at each species (each bar
plot) and its attribution scores separately and compare the attribution scores relative to

each other for the same species.
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Figure 4.4: Bar plot of Captum feature attributions and sobol sensitivity analysis. The
figure compares the level of influence each of the species has on each other, according to
Integrated Gradients and saliency, to the results of the Sobols sensitivity analysis.

Both Integrated Gradients and saliency are confident in a self-influence for species 1,
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naive cells. In contrast, the sensitivity analysis shows a clear influence from species 5,
pathogen, on the naive cells. Taking into account what we know about the biological
system and the mathematical modelling of the system, there is a relation between the
naive cells and the pathogen. Pathogen will directly influence the number of naive cells,
as it triggers the immune system to start differentiating naive T-cells into effector cells.
We also know that the number of naive cells that die, is a product of the death rate and
the current number of naive cells. As with earlier results, we do not consider whether the

relation is activating or inhibiting, only if it is present or not.

For species 2, early effector cells, saliency does not show any distinct influence from
any of the species. The attribution scores are similar for all species, but the scores
show the most influence from species 5, pathogen. Integrated Gradients show the most
confidence in influence from the pathogen, as well as some influence from species 3, late
effector cells. The sensitivity analysis indicates a self-influence for early effector cells.
Although the algorithms and the sensitivity analysis indicate different influences, they
are all present in the biological system. Pathogen drives the differentiation of naive cells
into early effector cells and the proliferation of early effector cells. Late effector cells affect
the death rate of early effector cells. And again, early effector cells are self-influenced

when it comes to cell degradation.

Integrated Gradients and Sobol sensitivity analysis indicate a self-influence for species
3, late effector cells. In addition, Integrated gradients also show an influence from the
pathogen on late effector cells. Saliency attribution scores hint at a relationship between
species 4, memory cells and late effector cells. Compared to the mathematical modelling
of the system, we only find the self-influence as the only real edge. Using this method,

we would fail to find the differentiation of early effector cells into late effector cells.

From figure d) we observe that Integrated Gradients suggest an influence from
late effector cells on memory cells, while saliency suggests a self-influence. The sensitivity
analysis shows an influence from pathogen on memory cells. Both from the mathematical
modelling of the system and prior knowledge about the ontogeny of T-cells, an influence
from late effector cells on memory cells looks plausible. Self-influence is also present for
memory cells. However, there is no direct relationship between the pathogen and memory

cells.

Figure e) show for the first time that the sensitivity analysis indicates more than
one influencer for pathogen. Sensitivity analysis indicates both self-influence and influ-

ence from naive cells. Saliency does not regard one of the species in particular to have
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Figure 4.5: Inferred topology for the single steady state system. Green edges are correct
edges, red are wrong, and yellow are missing edges.

attribution towards pathogen. While Integrated Gradients favors self-influence and influ-
ence from both early and late effector cells. However, all of the attribution scores would
need a lower threshold to be counted. Self-influence, early effector and late effector cells

are all present relationships in the modelling of the system.

Figure show an inferred topology with missing edges. The correctly inferred edges
are colored green, while the wrongly guessed edges are red. The yellow edges indicate
edges present in the true graph, but missing in the inferred graph topology. The observed
graph topology was the graph with the highest precision with a recall above 0.4. We
observe only one wrongly inferred edge, seven missing edges, and five correctly inferred
edges. The precision of the inferred topology is 0.857 and recall of 0.416. The feature

attribution algorithm used to make this topology was integrated gradients.
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4.2 Bi-stable system

In this section, we will examine the results for the set of models trained on simulated gene
expression data from the cell apoptosis system. We trained one set of models for each of
the two states the models can be in. We start by looking at the training and validation
loss acquired during training, then we show the models ability to recreate the dynamics
of the system. We then move on to the results related to the process of inferring possible

topologies.
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4.2.1 Training results
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Figure 4.6: Training and validation loss for model trained on cell death data.

From figure[1.6) we can observe the training and validation loss for the MLP models trained
on cell death data. The training and validation loss for species 2,3, and 8 converge to
the same level. The results also show that for the remaining species, the training loss
converges, which would indicate that the models are adapting well to the training data.
The validation loss for species 7 converges to a higher level than the training loss, which
could imply the model overfitting to the training data and generalising poorly on the
validation data. However, in this case, the relative error, d = %, is quite small,
d ~ 0.02, and overfitting might not be the case. The validation loss for species 1, 3, and
5 does not converge. Lastly, we observe the validation loss for species 6 converges to a
lower level than the training loss. This might happen for a number of reasons, such as

less variance and an ”easier” validation set than a training set.
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Figure 4.7: Training and validation loss for model trained on cell survival data.

Figure [4.7 shows the recorded training and validation loss for the MLP models trained
on cell survival data. For species 2,4, and 7, both training and validation loss converge to
the same level. In contrast, the training and validation loss for species 1,3,5,6 and 8 does
not converge to the same level. We note that the training loss converges for all of these
species. The validation loss converges to a higher level than the training loss for species

1 and 8, while the remaining species validation loss does not converge to a specific level.
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4.2.2 Dynamics
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Figure 4.8: Predicted Dynamics Compared To True Dynamics For Cell Apoptosis Models.

The results show that the set of 8 MLP models is, in general, able to capture the dynamics

of the biological system for both states. For the models trained on cell survival data, there

is a slight deviation in the prediction for species 7 and 8. The trained model for species

7 is slightly off in predicting the increase in the concentration level. Figure [4.8] shows

that the trained model slightly overestimates the concentration level of species 8 after

the initial increase. The model also fails to capture the "smooth” start of the decrease.

In the prediction of the dynamics for cell death, the models capture the dynamics close

to perfect. The exception is for species 4, where the trained model overestimates the

concentration level from five hours into the process, until the end.
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4.2.3 Network topology inference
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Figure 4.10: ROC Curves.

From both the PR-curves and ROC-curves in Figures and we can observe a
clear distinction in performance for the models trained on the two different states. For
the models trained on cell death data, the different attribution algorithms did not achieve
high precision and recall. The results from the ROC-curve also shows a bad performance,
as several of the attribution algorithms achieved a lower AUC score than a random

selection of edges. The best performing network topologies were inferred using saliency

and feature permutation.

Better performance was recorded by attribution algorithms applied to the models

trained on cell survival data. Especially the graphs inferred from the attribution scores
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of feature permutation achieved a reasonable high precision and recall scores. Feature
permutation also recorded the highest AUC score with AUC = 0.771. The other pertur-

bation method, feature ablation also performed well in terms of the AUC score.
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Figure 4.11: Bar plot of sensitivity analysis, saliency and feature permutation.

The bar plots in figure show the different attribution scores for the two best-
performing attribution algorithms. The attribution scores were obtained for the models
trained on cell death data. Their attribution values are compared to the first-order
sensitivity computed using Sobol sensitivity analysis. The results show a clear contrast
between the results from the sensitivity analysis and the attribution scores computed for

all species. In addition, the two attribution algorithms disagree for a number of species.

The first bar plot shows that the saliency did not favor any influence from the other
species on casp8(x1). The attributions scores for feature permutation indicated a similar
influence from casp8-casp3*(z5) and casp8*-casp3(zg) onto casp8(zi). The first-order
sensitivity showed a clear influence from casp8-casp3*(z5) onto casp8(x;), and smaller
influences from casp3*(z4), and self-influence. From the mathematical modelling of the
system, there exists a relationship between casp8(x;) and itself, casp3*(x4) and casp8-
casp3*(x5). This relationship comes from casp8(x;) being an initiator caspase and while
not being activated it can form a complex casp8-casp3*(zs) with casp3*(x4). We do not
find any evidence to support any influence from casp8*-casp3(xg) which feature permu-

tation indicated.

For the second species casp8*(xs), the results in the second bar plot showed a disagree-
ment between all three methods. Saliency expressed a singular influence from XIAP(z7),
while feature permutation signalled influence from both casp3*(x,) and casp8*-casp3(x).
Sensitivity analysis seemed confident in an equal influence from casp3(z3) and a self-
influence. The mathematical model of the system exhibits an influence from species casp8-

casp3*(xs), casp3(z3), casp8*-casp3(xg) and self-influence on casp8*(xp). Casp8*(xs)
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is activated when casp8-casp3*(z5) dissociates, and casp8*(zy) associates with inactive
casp3(x3) to form the complex casp8*-casp3(zg). Saliency did not capture any of the
relationships, while feature permutation captured one correct relationship out of two

predicted.

The third bar plot shows the attribution scores for the third species casp3(zs). At-
tribution scores from saliency did not indicate a strong influence from any of the other
species. However, they showed that casp8-casp3*(zs) and casp8*-casp3(zg) have less in-
fluence than the rest. Feature permutation also did not show any strong influence from the
other species, but an influence from casp8-casp3*(x;), XIAP(z7) and XIAP-casp3*(zs)
seemed unlikely, based on the attribution scores. The first-order sensitivities expressed
an equal influence from casp8*(x2) and a self-influence. From prior knowledge about
the regulatory system, casp3(z3) is only influenced by casp8*(x2), casp8*-casp3(xg)and
itself. This comes from casp3(z3) being activated by casp8*(x2) when forming a complex
casp8*-casp3(zg). Both feature attribution algorithms performed poorly here, feature
permutation correctly guessed all influences, but also guessed two non-existent relation-

ships. Saliency on the other hand failed to recognize the influence of casp8*-casp3(zg).

The results for species 4, casp3*(x,), show the strongest agreement between the attri-
bution scores and first-order sensitivities. All three favored a self-influence for casp3*(x).
Saliency also expressed additional influence from XIAP(z7) and XIAP-casp3*(zs), with
XIAP(x7) being the most likely. Feature permutation also expressed influence from
XIAP(z7) and XIAP-casp3*(zs), but also showed attribution from casp8-casp3™*(x;)
and casp8*-casp3(xg) is greater than the rest of the species. The first-order sensitiv-
ities expressed the additional influence by XIAP(z7). From the modelling of the sys-
tem, casp3™*(x4) is affected by casp8*-casp3(zg), casp8(z1), casp8-caspd3*(xs), XIAP(z7),
XIAP-casp3*(xg), and itself. Casp3*(x4) is one of the central components of the system as
it is responsible for the degradation of the cell causing cell death. Casp3*(x,) can either
combine with casp8(x1) to form casp8-casp3*(x5) or be inhibited by XIAP(X7) form-
ing the intermediate XIAP-casp3*(zg) complex where tagging for ubiquitination happen.
Casp3*(z4) is also a product of the dissociation of casp8*-casp3(xs), where casp3(z3) is
activated. Feature permutation correctly guessed 5 out of 6 influences. However, the
attribution scores for casp8-casp3*(z;) and casp8*-casp3(zg) were relatively low and a
threshold including these might include a number of false relationships as well. Saliency

correctly guessed 3 out of 6 influences.

The computed attribution scores for both attribution algorithms did not show any

particular influence from the other species on species 5, casp8-casp3*(z5). The only
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exception is the attribution score from feature permutation for casp8*-casp3(zg). The
first-order sensitivity showed a self-influence only. The mathematical modelling of the
system shows a relationship between casp8-casp3*(x;) and casp8(zy), casp3*(xy) and
itself. These relationships stem from casp8-casp3*(z;) complex being formed by the
association of casp8(z1) and casp3*(z4). Both feature attribution algorithms performed

poorly and neither recognized any of the relationships in the regulatory system.

The sixth bar plot shows that saliency again did not favor any attribution from the
other species onto species 6, casp8*-casp3(xg). The attribution scores were lowest for
XIAP(z7) and XIAP-casp3*(zs), while casp8*-casp3(zg) and casp8*(z3) had the high-
est. Feature permutation and sensitivity analysis both regarded a larger attribution from
casp8*(xq) to casp8*-casp3(xg). Featured permutation also indicated an influence from
casp3*(x,), while sensitivity analysis showed an influence from casp8*(x2) and casp3(zs).
From prior knowledge about the regulatory system, casp8*-casp3(zg) is influenced by
casp8*(xq), casp3(x3) and itself. These relationships come from casp8*-casp3(zs) being
formed as an intermediate complex where casp3(z3) gets activated when associated with
casp8*(xq). Both saliency and feature permutation indicated the influence by casp8*(z,),
but did not manage to separate the attribution of casp3(x3) from many of the other
species. Feature permutation also expressed an influence from casp3*(z4), but this rela-

tionship does not exist. Saliency correctly guessed self-influence as well.

The bar plot for species 7, XIAP(z7) shows a clear discrepancy between the two at-
tribution algorithms in terms of positive and negative attribution. However, the absolute
values of the attribution were mostly similar. All three methods expressed an influence
from casp3*(x4) onto XIAP(z7). The sensitivity analysis indicated a self-influence as well.
The mathematical modelling of the system showed influence on XIAP(z7) by casp3™*(x,)
XIAP-casp3*(xg) and self-influence. XIAP(x7) is pro-survival of the cell and does this
by forming an XIAP-casp3*(xg) complex with casp3*(xzy). XIAP(z7) tags casp3*(xy)
for ubiquitination, a process which eliminates unwanted proteins. None of the feature
attribution algorithms correctly guessed either the self-influence or XIAP-casp3*(zg) in-
fluence. Saliency and feature permutation both correctly scored the attribution from
casp3*(x4). However, both of them also indicated an influence from casp8*(z5), which is

wrong. Saliency also expressed casp8(x) as a potential influence, which is also wrong.

The last bar plot shows that saliency expressed a strong influence from XIAP(x7) onto
species 8, XIAP-casp3*(zg). Saliency indicated that all other species had a small or no
influence. Feature permutation did not express any influence in particular, although there

was a slightly higher attribution score for casp3*(x,). The first-order sensitivities revealed
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an equal attribution from casp3*(z,) and XIAP(z;). From the mathematical modelling
of the system, we know that XIAP-casp3*(xs) is regulated by casp3*(z4), XIAP(z7)
and itself. As described in the paragraph above, XIAP-casp3*(zs) is the complex where
casp3*(z4) is marked for degradation. Saliency correctly indicated influence by XIAP (z7),
but failed to show influence from casp3*(z4) and self-influence. Feature permutation on
the other hand, barely indicated a higher influence by casp3*(z4) than any of the other

species and failed to recognize the self-influence and influence by XIAP(z7).
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Figure 4.12: Bar plot of sensitivity analysis, feature ablation and feature permutation.

Figure 4.12| shows the attribution scores computed for the models trained on cell
survival data. The attribution scores are again compared to the first-order sensitivities
computed from the ODE model of the system. Both cell survival state and cell death
state are modelled using the same ODE model. Therefore, the sensitivities will be the

same as in figure [4.11

The first bar plot shows the attribution scores for species 1, casp8(x;). We can
observe that feature ablation expressed an influence from casp8*(zy) and casp3(x3), and
a self-influence. Feature permutation had the highest attribution scores for casp8(z1),
casp8*(xq), and casp8-casp3™®(x5). Feature ablation had close to zero attribution scores
for casp3*(z4), XIAP(z7), and XIAP-casp3*(zs). Compared to the real relationships
described by the mathematical modelling of the system, the self-influence is recognized
by both algorithms. In contrast, none of them recognized the influence by casp3*(x4).
Feature permutation correctly expressed influence from casp8-casp3*(zs5). Both wrongly
expressed that casp8*(z2) was an influence. The influence by casp3(x3), indicated by

feature ablation, is also not found in the biological system.

From the bar plot with attribution scores for species 2, casp8*(z3), we can observe that
feature permutation expressed an influence from casp8-casp3*(x5), while there was almost
a non-existent influence from XIAP-casp3*(xg). Feature permutation also expressed an
almost equal attribution from casp3(z3), casp8*-casp3(xzs), XIAP(x7) and itself. Feature
ablation did not signal a high attribution from any of the species, while the attribution

score for casp3(x3) was close to zero. According to the mathematical modelling of the
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system, casp8*(x2) is influenced by casp3(z3), casp8-casp3*(x;), casp8*-casp3(zg) and
itself. Feature permutation correctly indicated all influences, but also included a non-
existent influence from XIAP(z7). Feature ablation on the other hand failed to express
any of the relationships for casp8*(xy). The highest attribution score was by XIAP(z7)

and XIAP-casp3*(zg), which is non-existent in the regulatory system.

The feature permutation attribution scores calculated for species 3, casp3(z3), were
the highest for species casp8-casp3*(x5) and casp8*-casp3(xg), while they were almost
zero for casp8(zy), 4 and XIAP(z7). Feature ablation expressed a self-influence and influ-
ence from casp8(xz;) and casp8*(z3). The other species had close to zero influence based
on the attribution scores. The attribution scores for feature ablation did to some de-
gree concur with the first-order sensitivity. From the mathematical modelling, casp3(x3)
is only influenced by casp8*(xq), casp8*-casp3(zg) and itself. Feature permutation cor-
rectly expressed all of these influences, but the influences by casp8*(x3) and self-influence
receive a lower attribution score than the non-existent influence from casp8-casp3*(x;).
Feature ablation recognized both self-influence and the influence by casp8*(z5), but fail
to recognize influence from casp8*-casp3(zg). In addition, feature ablation also expressed

influence from casp8*(x2), which is not a real influence.

For species 4,casp3*(z4), feature ablation strongly signalled self-influence. The rest
of the attribution scores were relatively low. Feature permutation also expressed self-
influence, although not as strongly as feature ablation. XIAP(z7) and XIAP-casp3*(zs)
were the only remaining species to show influence towards casp3*(z4). From the modelling
of the system, casp3*(zy4) is affected by casp8*-casp3(xg), casp8(x;), casp8-casp3*(zs),
XIAP(z7), XIAP-casp3*(xg), and itself. Feature permutation recognized 3 out of the 6

relationships, while feature ablation recognized only self-influence.

The fifth bar plot shows a discrepancy between the two perturbation-based algo-
rithms. Both agreed on the influence from casp8*(x2) on casp8-casp3*(x;) and the ab-
sence of influence from XIAP(z7). Feature ablation expressed influence from casp8(z)
and casp3(z3), in addition to the mentioned influence. Feature permutation had increased
attribution scores for casp8-casp3*(x5) and casp8*-casp3(zg) compared to the rest. The
mathematical modelling of the system shows a relationship between casp8-casp3™*(xs)
and casp8(xy), casp3*(x4) and itself. Feature ablation correctly expressed influence from
casp8(x1), but failed for the other two. Additionally, it incorrectly expressed influence

from casp8*(x3) and casp3(z3).

The sixth bar plot shows the attribution scores for species 6, casp8*-casp3(xg). All

three agree on relatively high attribution for casp3(z3), while only feature ablation and
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the first-order sensitivity values an attribution from casp8*(z3). Feature ablation also in-
dicated an influence from casp8(z). In contrast, feature permutation expressed an influ-
ence from casp8-casp3*(z5). From prior knowledge about the regulatory system, casp8*-
casp3(xg) is influenced by casp8*(z3), casp3(zs) and itself. Feature ablation correctly
expressed influence by casp8*(z3) and casp3(z3), but it failed to express self-influence.
Feature ablation also incorrectly indicated an influence by casp8(z;). Feature permuta-
tion only recognized influence from casp3(z3) and incorrectly expressed influence from

casp8-casp3*(zs).

For species 7, XIAP(x7), almost all three agreed on high attribution from casp3*(x,),
XIAP-casp3*(xg) and itself. The first-order sensitivity differed from the other by not
showing any contribution from XIAP-casp3*(zs) towards XIAP(z7). The mathematical
modelling of the system showed influence on XIAP(z7) by casp3*(x,), XIAP-casp3*(zs)
and self-influence. Feature permutation and feature ablation both recognized all three

influences correctly by giving them the highest attribution scores.

The last bar plot shows the attribution scores for species 8, XIAP-casp3*(zg). Both
feature attribution algorithms agree on the attribution scores for most species. The high-
est scores were for casp3™*(x,), XIAP(z7), and self-influence. Sensitivity analysis results
showed most attribution from casp3*(z4) and XIAP(z7) only. From the mathematical
modelling of the system, we know that XIAP-casp3*(zs) is regulated by casp3*(z4),
XIAP(z7) and itself. Again, both algorithms recognized the three influences by giving

them the highest attribution scores.
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Figure 4.13: Inferred topology for cell death state.

Figure show an inferred graph topology from the models trained on cell death
state. The observed graph achieved the highest precision with a recall above 0.5. Al-
though there was more than one graph achieving the same precision with this criteria, we
chose the one with the highest recall. We can observe a high number of both correctly and
wrongly inferred edges. The number of missing edges is relatively small. The precision
for the network topology was P 0.606 and the recall score was R = 0.7143. In the true
graph, there are a total of 28 edges, while in the inferred graph topology there are 33
edges.
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Figure 4.14: Inferred topology for cell survival state.

Figure show an inferred graph topology from the models trained on cell survival
state data. The graph topology achieved the highest precision and recall for a graph with
a recall above 0.5. Of the 28 real edges in the true graph, the inferred model correctly
guessed 19. The total number of wrong edges was 6. The inferred network topology
achieved a precision score P = 0.760 and a recall score R = 0.679. The network captured

7 out of 8 self-loops.

4.3 Classification

In this section we will go through the results of the classification of states from the initial
values. We will start by looking at the accuracy of the different ML models, and then
look at the confusion matrices for them. The models were tested on a balanced test
data set, with a total of 292 samples. The testing data were normalized for both neural
networks, while logistic regression used unprocessed data. Logistic regression performed

best using non-standardized data.
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Model Accuracy
Logistic Regression 0.9281
MLP Classifier Sk-learn 0.962
MLP Classifier PyTorch 0.969

Table 4.1: Model Accuracy on test data.

From Table we observe that both MLP classifiers received a high accuracy on the
testing data. Logistic regression had fewer correct classifications and had lower accuracy

than the others. The top-scoring model in terms of accuracy was the MLP classifier
implemented in PyTorch.
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Figure 4.15: Confusion matrix for Classifiers.

From the confusion matrices in figure we can observe that the MLP classifiers’
performances were almost equal, but the classifier from sklearn got one more wrong
prediction of the cell survival state. The classifiers struggled more with predicting cell
death state as they both labelled 138 of 146 correctly. The logistic regressor labelled 139

of 146 correctly cell death states, but struggled more with recognizing the cell survival
states.
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Chapter 5

Discussion

5.1 Choice of biological systems

The choice of biological systems to use in our work was based on a few conditions. The
first was that a mathematical model was available, without this we would not be able
to generate simulated data for training the ML models. Another condition was that the
number of species was relatively small. Lastly, we wanted to test our method for two
systems that exhibit different dynamical behaviour and complexity in terms of steady

states.

5.2 Training results

The results from the training section were varied. Some of the models were able to gen-
eralize well to both training and validation data, with both training and validation loss
converging to the same level. Other models looked to overfit the training data, by converg-
ing nicely for the training data, while still experiencing variance in the validation error.
The variance in performance was observed within the different models for a biological
system and was not specific to any of the biological systems. One of the reasons for this
behaviour could be the difference in ”difficulty” for the data sets. The features were the
same for all the models in the same biological system, but the labels were model-specific.
This difference in the data sets might lead to some of the models being too complex or

not complex enough, while other models have the right complexity. Building on this, all
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models were trained for the same number of epochs, and the number of epochs might not
be optimal for every model. Obtaining better results in training might be achieved by
testing a range of different hyperparameters controlling the model’s complexity. Another
approach could be implementing an early stopping method or a stopping method, that

stops training when the change in training and validation loss reaches a certain threshold.

The varying results from training did not seem to be reflected in the model’s ability
to predict the species dynamics. There was no direct correspondence between a model

performing poorly in training and performing not optimal in predicting the dynamics.

5.3 Models ability to reproduce the dynamical be-

haviour

The results from this section showed an overall good ability to predict the dynamic
behaviour of the systems. Only minor errors were recorded. We cannot observe any
noticeable difference in performance related to the two different kinds of systems. The
great performance can be attributed to NNs ability to fit almost any kind of data. With
our choice of having one MLP network for each species, each species has an equal amount
of internal parameters in the MLPs and do not need to share these with the other species.
This choice could be contributing to not seeing an increase in error when modelling a
system with an increased number of species. Further work in relation to this could be to
introduce more variance in the data sets, thereby increasing the robustness of the models.
We perturbed the data with 5 % of an error drawn from a Gaussian distribution, N (0, 0?),
where the standard deviation o was calculated for each species in the data. As mentioned
in the previous section, training the models with a broad range of hyperparameters could
find models capable of obtaining even better predictions. Another benefit to this could

be discovering less complex models capable of performing as well as the current models.

The results show that using relatively low complex ML models such as an MLP, can

be used as surrogates for high computational demand mechanistic models.
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5.4 Network topology inference

After reviewing the results, our method for network topology inference proved to not
be consistent. The performance varied between the different sets of models trained on
different data. There was no indication that a single attribution algorithm performed
best in all three instances. The results showed promise for the graph topologies inferred
from models trained on cell survival data, but for the other two, none of the inferred

graph topologies showed any promise.

Our method using integrated gradients managed to infer a topology with high preci-
sion and a reasonable recall for the single steady-state system. However, after recognizing
about half of the true edges, the precision drops quite significantly. This is related to the
attribution scoring and threshold values. The precision will drop if the attribution algo-
rithm computes a wrong attribution score, especially giving an existent relation and an
almost non-existent attribution score. By wrongly asserting a low attribution score, the
resulting topology would need to include a lot of false edges to achieve a high recall score.
For example, we can observe that the attribution algorithm assigns a very low score for
the pathogen to influence naive cells. In order to include this in the graph almost every

other possible edge must be included as well.

The precision-recall curves for the attribution algorithms applied to models trained on
cell death data, reveal that the attribution algorithms managed to assign correct scores
to a few features only. The precision drops off very quickly for most of the attribution
algorithms, and quickly descends into a performance equal to the random assignment of

edges.

The best-performing case was for inferred topologies from the models trained on
cell survival data. Feature permutation managed to assign feature attribution scores
reasonably well. The precision-recall curve proves that it was able to maintain a high
precision score while recognizing most edges. By comparing the feature attribution scores
for the models trained on different states, we can observe a general trend. In the case of
cell survival, the feature attribution algorithms are better at distinguishing the level of
attribution for the different features. For cell death, many of the attribution scores are

similar.

We present three possible reasons for our method failing to infer suitable network
topologies. The first is that the data used to train the models do not contain enough

information about the relationship of the species in the system. For the two sets of models
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trained on the two states of cell apoptosis, the only difference was the data used in training
and this led to two very different results. If we look at figure 4.8 we can compare the
difference between the two states. The cell survival data will capture both types of states
as cell death is a transient state in the dynamics. Therefore the cell survival data might
capture more information about the system and can explain the better performance. The
second reason could be that the ML models are not able to capture the correct structure
of the system. If one of the models overfits the data, it will capture noise in the training
set and lead to wrong information about the system. The last reason could be the feature
attribution algorithms failing to explain the model’s thinking when making a prediction.
Either by the algorithm itself not being able to explain the model or the wrong usage
of the algorithm. Wrong, meaning not exploring different baselines or "references” for
the feature attribution algorithms that rely on these. As stated by the authors of these
algorithms, the choice of baseline is problem-dependent and there is no general optimal
solution. Investigating with a set of different baselines could see better inferred network

topologies.

5.5 Classification ability

The results showed that classifiers without much tweaking in terms of hyperparameters
are able to achieve a reasonable accuracy. All of the tested models managed to correctly
classify the state of the system in more than 90% of the test cases. Further work could
be performing the classification for other systems than cell apoptosis. Improving the
accuracy could also be an area of interest. Our work did not include testing with different

hyperparameters, and this could be experimented with.

95



Chapter 6

Conclusion

In our work, we have further demonstrated that ML models are capable of replacing
high-demand computational mechanistic models for simulating the dynamics of a given
biological system. In section we reviewed two different approaches for solving the
same problem. Yazdani et al.[52] used a single DNN with a tailored loss function to
incorporate the ODEs into the NN. On the other hand, Shen et al.[42] utilized a single
RNN to learn the dynamics of a given biological function. We have shown that a set of n
MLPs can mimic the dynamic of an n-species biological system. We applied our method

to two different systems, exhibiting two very different dynamics and succeeded in both.

We have also proposed a new method for doing GRN inference. Shen et al.[42] used
sensitivity analysis of the network to infer the underlying network topology. Our approach
relied on computing the feature attributions for each of the trained MLPs. We used a set
of different algorithms for computing the feature attributions. Finally, we used a set of
threshold values to determine which edges to include in the final topology. We applied
our method to two different systems and achieved varying results. Further work could
include exploring different baselines for the feature attribution algorithms or applying

our method to different biological systems.

Finally, we proved that it is possible to train an ML classifier to recognize the final
state of a bistable system using initial values. Our approach was to use a MLP classifier

for the classification problem.
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Appendix A

ODE systems used in thesis

Ontogeny of nascent CD8 memory T-cells
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