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Abstract

In this thesis, we present an algorithm for k-insertion into a binary heap inspired

by the article [15] running in worst-case time O(k + log(k) · log(n+k
k
)), improving

the standard k-insertion algorithm for binary heaps in terms of worst-case running

time. The algorithm combines two routines called Heapify and Walk down. We

assess the performance of the algorithm in theory and practice and compare it to

some well-known k-insertion methods. We do this by implementing the algorithms

and measuring and comparing their running times on different datasets. Through

practical tests, we conclude that the algorithm performs better than the standard

k-insertion algorithm on worst-case input while being slightly slower on randomized

input. We, therefore, conclude that it can be better in real-world applications.
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Chapter 1

Introduction

In 1964 J. W. William introduced ”Algorithm 232” [17], a data structure that later

became known as the binary heap. The data structure was initially inspired by a

paper published by Floyd in 1962 on sorting using a tournament tree [6]. The data

structure has since become one of the most fundamental data structures in computer

science.

Over the last 60 years, a tremendous amount of research has been done within the

design and analysis of the data structure, originating back to the initial work of

Williams and Floyd. Porter and Simon [14] proved that insertion into a binary heap

admits a constant average-case running time. Sack and Strothotte [15] have published

a paper showing how to merge two binary heaps of size n and k in time O(k · log(n) ·

log(k)) where k ≤ n. Fredman and Tarjan [8] invented a new form of heap called the

Fibonacci heap where insertion can be done in O(1) time and removal in O(log(n))

time. Fredrickson [7] proved that selecting the k smallest elements in a binary heap

can be done in time O(k). In 2010, Kamp published the paper ”You’re doing it

wrong” [11] claiming to improve the traditional implementation of the binary heap

with the B-heap, a binary heap implemented to keep subtrees in a single page on the

computer. This is only a fraction of the extensive research done on the data structure.

Although many results have been made to improve on the theoretical runtime of the

binary heap, in practice the very simple implementation of a binary heap is difficult
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to beat [2]. The main reason for this is the constant average-case runtime of the

insertion method when considering random input [14].

In this thesis, we study k-insertion into a binary heap; given a binary heap of size n, we

want to simultaneously insert a collection of k elements into the heap. Sequential

insertion, with running timeO(k·log(n)), is the most common k-insertion algorithm

for the binary heap. It is widely adopted in various programming languages and

libraries. For instance, in Java, the PriorityQueue class, which utilizes a binary

heap, employs Sequential insertion as the default insertion method when adding

a collection of elements to a priority queue. Bulk insertion with heapify, with

running time O(n+ k), is also a popular choice of the k-insertion method. Since the

algorithm’s worst-case running time is linear, even when k is approaching n in size,

the algorithm is especially favorable for large datasets.

Sack and Strothotte [15] have described an algorithm for merging priority queues

organized as binary heaps. A byproduct of the paper is the existence of an efficient k-

insertion algorithm, improving both Sequential insertion and Bulk insertion

with heapify in terms of worst-case running time. The paper also proposes such

an algorithm. However, due to the inherent intricacies of the algorithm, we develop

a new k-insertion algorithm inspired by the one presented in [15], running in time

O(k + log(k) · log(n+k
k
)).

Furthermore, we investigate and compare the behavior of the algorithm’s running

time in theory and practice to the running times of Sequential insertion and

Bulk insertion with heapify by implementing the algorithms and performing

benchmark testing on different datasets.
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Chapter 2

Preliminaries

In this chapter we give a gentle introduction to most of the terminology used later in

this thesis. The primary purpose of this chapter is to collect terms and results in one

place for easy reference later. The chapter is divided into three main parts, graph

theory, data structures, and binary heaps. In Section 2.1 we will briefly introduce

some of the most fundamental results and definitions in graph theory. This will be

relevant when discussing binary heaps in Section 2.3. In Section 2.2 we will give a

brief introduction to data structures and also quickly go through some data structures

that will be relevant later. In this section we will not deal with the binary heap

data structure, but this will instead be gone through in greater detail in Section

2.3. Finally, in Section 2.3 we will, by using the terminology and results provided in

Section 2.1, describe how one can implement a binary heap data structure and also

analyze the time complexity of the implementation.

2.1 Graph theory

In this section we will give a brief introduction to some fundamental definitions and

results in graph theory. We will first define general graphs and terms related to this

and then move over to proving basic properties of trees and rooted trees. Lastly, in

the section we deal with binary trees and we will present the results needed to discuss
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the binary heap data structure in Section 2.3.

2.1.1 Graphs

A graph G = (V,E) consists of a set V of nodes and a collection E of pairs of

nodes, called edges. V (G) and E(G) denote the set of nodes and edges of a graph G,

respectively. A node is sometimes also called a vertex. An edge {u, v} that has u and

v as endpoints is denoted uv. If e = uv ∈ E(G) for some graph G, u and v are said

to be neighbors. Moreover, e is incident with u and v. An edge uu that joins a node

to itself is called a loop. If two or more edges join the same two vertices, the edges

are called multiple edges. A graph is said to be simple if it has no loops or multiple

edges. Unless otherwise stated, we will in this thesis only consider simple graphs.

The neighborhood of a vertex u in a graph G is the set of vertices it is adjacent to

and is denoted NG(u). More formally NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)}. The

degree of a vertex u in a simple graph G is the size of its neighborhood and is denoted

by dG(u). A graph H is said to be a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). Moreover, H is said to be a spanning subgraph of G if V (H) = V (G)

[3].

A walk in a graph G is a sequence of nodes v0, v1, v2, ..., vn such that vivi+1 ∈ E(G).

The first node v0 of a walk is called the initial node, and the last node vn is called

the final node. The number of edges in a walk is called the length of the walk. A

walk where all the edges are distinct is called a trail. A trail in which all nodes are

distinct, except possibly vn = v0, is called a path. A path with vn = v0 is called a

cycle. A graph without cycles is called an acyclic graph. A graph is connected if, for

any two vertices u and v in the graph, there is a path from u to v. If a graph is not

connected, it comprises several connected components. A connected component in a

graph G is a maximal connected subgraph of G [1].
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2.1.2 Trees

A forest is a simple acyclic graph. A connected forest is called a tree. A node u of a

tree T where dT (u) = 1 is called a leaf. The nodes of a tree that are not leaves are

called internal nodes. [3]

Theorem 2.1.1 ([1]). Let n ∈ Z and let T be a graph with n vertices. Then the

following statements are equivalent:

(i) T is a tree;

(ii) T has n− 1 edges and no cycles;

(iii) T has n− 1 edges and is connected.

A rooted tree is a connected tree where one node, called the root, is distinguished

from the leaf nodes and internal nodes. If the rooted tree only consists of one node,

the root is also a leaf node. Let T be a rooted tree and let u and v be two nodes of

T . If r is the root of T , T is said to be rooted at r. If v is the last node visited on

the path from the root to a u, v is called the parent of u. Conversely, u is said to be

a child of v. Consequently, the leaves do not have any children and the root is the

only node that does not have a parent. Given a path in T from the root to u, the

predecessor vertices on that path are known as the ancestors of u. If u is an ancestor

of v, v is called an descendant of u. The least common ancestor (lca) of u and v is the

first common node on the respective paths from u and v to the root and is denoted

lca(u, v). The subtree of T rooted u is denoted Tu and consists of only descendants

of u. The height of a node in a rooted tree is the length of the longest path from

the node to a leaf node, where one only traverses the descendants of the initial node.

The height of a rooted tree is equal to the height of its root. The level of a node in a

rooted is the length of the path from the node to the root of the tree [9].

If every internal vertex of a rooted tree has at most m children, the tree is called an

m-ary tree. A binary tree is a rooted tree where each internal node has at most two
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children. The children of a node in a binary tree are often referred to as the left and

right children of the node. A binary tree is said to be full if every node has either

two or no children. If each level in a binary tree is filled, except for possibly the last,

and all nodes are as far left as possible, the tree is called a complete binary tree. A

perfect binary tree is a binary tree where each internal node has exactly two children,

and all leaf nodes are on the same level [9].

Theorem 2.1.2 ([10]). The maximum number of nodes in a complete binary tree of

height h is 2h+1 − 1.

Theorem 2.1.3 ([16]). The height of a complete binary tree of size n is ⌊log2(n)⌋.

2.2 Data structures

In this section we will give a short introduction to some of the most fundamental

theories regarding data structures. In Section 2.3.1 we define terms related to general

data structures, while in Sections 2.2.2 - 2.2.4 we give examples of three relevant data

structures: namely, the array, the linear list, and the priority queue data structure.

The data structures will be discussed briefly on a theoretical level, and their imple-

mentation will not be discussed in great detail. Even though a binary heap is a data

structure, it will be skipped in this section and will be addressed in Section 2.3.

2.2.1 Definitions

A data structure is a way of storing and organizing data so that it can be used

efficiently. More formally, a data structure is a collection of data values along with a

group of operations permitted on them and a set of axioms describing the semantics of

the operations. This definition is often referred to as an abstract data type because the
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axioms do not imply a specific form of representation. The definition only states what

the data structure should do and not necessarily how it does it. An implementation

of a data structure is a specification of how each data element is represented and

requires that every function be implemented according to the specified axioms [10].

2.2.2 Arrays

Intuitively, an array is a set of pairs of indices and values. For each defined index,

there is an associated value. The main properties of an array are storing and retrieving

values, and some of the essential functions of an array are:

• Retrieve: either return the value associated with an input index or an error

if no such element exists.

• Add: enters a given key-value pair into the array.

Arrays are most often implemented using contiguous memory, but not necessarily

[10].

2.2.3 Linear lists

One of the most commonly found data structures is the linear list. A linear list is an

abstract data structure that is either empty or can be written as

l = (a0, a1, ..., an−1)

Where the ai’s are data elements of some data type, and n is referred to as the length

of the list. There are a variety of operations that can be performed on this type of

list, some of them being:

• Size: returns the length of the list.

• Retrieve: returns an element at the specified position.

• Add: stores a new value at a given position.
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• Insert: inserts a new value at a specified position. Given i as the input index,

this operation causes the elements at index i, i + 1, ..., n− 1 to be renumbered

as i+ 1, i+ 2, ..., n.

• Delete: deletes an element at a given position. Given i as the input index, this

operation causes the elements numbered i+ 1, i+ 2, ..., n− 1 to be renumbered

as i, i+ 1, ..., n− 2.

• Read: read the list from left to right (or right to left).

Note that in the operations that take a position i as input, we assume that 0 ≤ i ≤

n−1, where n is the size of the list. If i is outside this bound, we expect the functions

to return an error. Also, note that the Delete and Insert operations update the

list size accordingly [10].

A common way of representing a linear list is by using an array. Each array element

ai is associated with the array index i. In this thesis, we consider zero-indexed linear

lists. For a list of size n, the first element is located at index 0, while the last element

is positioned at index n− 1.

2.2.4 Priority Queues

A queue is a type of data structure where one element is called the front, and deletion

always occurs here. Given a queue

q = (a0, a1, ..., an−1)

We say that a0 is at the front of the queue. The two primary operations performed

on queues are deletion and insertion.

• add: adds an element at the rear end.

• Remove min: removes and returns the front element. This function will throw

an error if the queue is empty.
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How a new element is inserted into the queue depends on the implementation. For

example, a linked list is a particular type of queue where insertion occurs at the

queue’s end. Thus, in a linked list, the element first inserted is the one first removed.

A priority queue is a type of queue where each data element has an associated priority.

The data elements can, therefore, be viewed as tuples containing the element and its

priority. The priority queue is also given a set of rules describing how to compare the

priority of the data elements. The element with the highest priority is placed at the

front of the queue, while the element with the lowest priority is placed at the end. A

data element is inserted into the priority queue by comparing the element’s priority

with the priority of the elements already in the priority queue. Therefore, elements

with higher priority are removed before elements with lower priority. Priority queues

are often implemented using a data structure called a binary heap, but they can also

be implemented by a sorted linear list [16]. In this thesis, we will consider priority

queues implemented using a binary heap data structure.

2.3 Binary heaps

In this section we provide a thorough introduction to the binary heap data structure.

First, in Section 2.3.1 we present some basic definitions and properties of the binary

heap data structure. Then, in Section 2.3.2 and Section 2.3.3 we describe how a

binary heap can be represented using an array. Lastly, in Section 2.3.4 we define and

implements some fundamental operations performed on heaps. We also prove the

correctness of the implementation.

The binary heap data structure is built upon the tree data structure. In computer

science, a tree is an abstract data structure where the elements are connected hier-

archically. In Section 2.1, we dealt with trees from a graph theoretical standpoint.

This theory can be applied to the tree data structure. Therefore, we will not go into
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more depth on the tree data structure but instead use the definitions and properties

already defined in Section 2.1

2.3.1 Definitions and properties

A heap is a tree-based data structure where the tree takes the form of a complete

tree, satisfying the heap property that for every node except the root, the value stored

at a node is larger than the value stored at its parent. Immediately from this, we get

that the smallest element in the heap is held at the root, and the largest is stored

at one of the leaves. However, there is no ordering between siblings or cousins in a

heap. The heap relationship is only between nodes and their parents, grandparents,

etc. [16].

Some of the most common operations performed on heaps are:

• Heapify: transforms a linear list into a heap.

• Add: inserts a new item into a heap.

• Find min: returns, but does not remove, the item of minimum value.

• Remove min: returns and removes the item with the minimum key.

A binary heap is a heap data structure where the tree is a complete binary tree [16].

From Theorem 2.1.3, we then get the property that the height of a binary heap is

⌊log2(n)⌋.

2.3.2 Array based binary heap implementation

There are several ways of implementing a binary heap, but throughout this thesis,

we will mainly focus on binary heaps implemented using an array. This section will

first examine how one can represent a complete binary tree using an array. Then, in
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Section 2.3.3, we will show how one can ensure that the heap property is satisfied

through a process called Heapify.

Let T be a complete binary tree with n elements. The array representation of T can

be achieved by traversing T level by level, starting at the root and storing the nodes

consecutively in an array, starting at index 0. The parent-child relationship between

the nodes can be found using arithmetic on the array indices.

Theorem 2.3.1. Let T be a perfect binary tree where each internal node has exactly

two children. Let A be the array representation of T constructed as described above,

and suppose that i is a valid index of A storing a node u of T . Then

a) if u is an internal node, the right child of u is located at index 2i+ 2.

b) if u is an internal node, the left child of u is located at index 2i+ 1.

c) if u is not equal to the root of T , the parent of u is located at index
⌊
i−1
2

⌋
.

Proof.

a) Let l be the level of u in T , and let v be the last node on level l. Since T is a

perfect binary tree we have by Theorem 2.1.2, that the number of nodes contained in

the layers up to and including l is 2l+1 − 1. The index of v is 2l+1 − 2. Let j be the

number of nodes between u and v in T . We then get that

i = 2l+1 − 2− j.

Note that there are exactly 2j nodes between the right child of u and the right child

of v. Furthermore, the right child of v is, by Theorem 2.1.2, located at index 2l+2− 2

in A. We then get that the index of the right child of u is

2l+2 − 2− 2j = 2(2l+1 − 2− j) + 2 = 2i+ 2

b) This follows immediately from a) and the observation that the left child of any

node is always one place before its right child.
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c) let v be the parent of u and let j be the index of v in A. By a) and b) we have

that

j =


i−1
2
, if u is a left child

i−2
2
, if u is a right child.

(2.1)

Now let j =
⌊
i−1
2

⌋
. If u is a left child, the expression directly satisfies 2.1. Moreover,

if u is the right child of v we have that

j =

⌊
i− 1

2

⌋
=

⌊
i− 2

2
+

1

2

⌋
=

i− 2

2

Note that Theorem 2.3.1 assumes that T is a perfect binary tree. It is not necessarily

true for a complete binary tree that each internal node has exactly two children, and

all leaf nodes are on the same level. If a tree consists of an even number of nodes,

one can easily see that the last node in the tree doesn’t have a sibling. However, one

can still use the results from Theorem 2.3.1 on binary heaps by checking that the

resulting index is valid, i.e., between 0 and n − 1, where n is the size of the binary

heap.

2.3.3 Heapify

Heapify is the process of creating a binary heap data structure from a complete

binary tree, introduced by Floyd in 1964 [5]. Heapify works bottom-up, ensuring

that each node in the input tree becomes the root of a binary heap. This is commonly

achieved using a helper function referred to as Sink or Sift down in literature. For

example, given a node u in a binary heap H, Sink attempts to restore the heap

property of Hu. It assumes that both the left and right subtrees of u satisfy the heap

property, with the only possible violation being u being greater than its immediate

children. To fix this violation, u is successively exchanged with its smallest child until

the heap property is satisfied in Hu.
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Algorithm 1: Sink

Data: Array based binary heap H and index i ∈ {0, 1, ..., |H| − 1} where the

left and right subtree of the node at index i satisfy the heap property.

Result: Restores the heap property of Hi

while i is a non-leaf do

j ← index of smallest child of i;

if H[j] < H[i] then

swap H[i] and H[j];

i← j;

else
break

end

end

In the worst case, a node has to sink down to become a leaf. Hence, from Theorem

2.1.3, Algorithm 1 achieves a worst-case running time of O(log(n)), where n is the

size of the input heap. Generally, when calling Algorithm 1 on a node at height h,

we achieve a running time of O(h) [16].

Algorithm 2: Heapify

Data: Array H

Result: Converts H into a binary heap

end← index of parent of last element of H ;

for i = end downto 0 do

Sink(H, i);

end

Theorem 2.3.2 ([16]). Algorithm 2 correctly converts an array of size n into a binary

heap in time O(n).

18



2.3.4 Heap operations

In this section we discuss some of the most basic operations performed on binary

heaps. We will mainly focus on removal and insertion into a binary heap.

2.3.4.1 Removal

As mentioned, the smallest element in a binary heap is located at the root, i.e.,

at index 0. The Find min operation, defined in Section 2.3.1, can therefore be

implemented in constant time by simply returning the element at index 0. The

procedure of restoring the heap property after the root is removed consists of two

parts. First, the last element in the binary heap is placed at the empty root location,

and then the heap property is restored. Since the root is the only node in the binary

heap violating the heap property, it can be fixed by making a call to the function

Sink, defined in Section 2.3.3 [12]. The algorithm Remove min can therefore be

implemented as follows:

Algorithm 3: Remove min

Data: Array based binary heap H

Result: Returns and removes the smallest element of H

smallest← root of H;

h[0]← last element of H;

Sink(H, 0);

return smallest

The number of operations required to remove the smallest element from a binary heap

while maintaining the heap property depends on the number of levels the new root

needs to be swapped. Thus, from Theorem 2.1.3, we conclude that the worst-case

running time of Algorithm 3 is O(log(n)), where n is the size of H.

Theorem 2.3.3 ([16]). Algorithm 3 correctly removes the smallest element of the

input heap in time O(log(n)) while maintaing the heap property.
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2.3.4.2 Insertion

As with deletion, inserting an element into a binary heap consists of two parts. First,

the new element is added at the first available leaf position. This is to preserve the

complete binary tree property. Then, the heap property is restored. Restoring the

heap property is done bottom-up by successively comparing and swapping the new

node with its parent. This operation is often referred to as Swim or Sift up in the

literature and can be implemented in the following way:

Algorithm 4: Swim

Data: Array based binary heap H and index i ∈ {0, 1, ..., |H| − 1}

Result: Moves the node at index i up the tree until the heap property is

satisfied.

while i > 0 do

j ← parent of i;

if H[i] < H[j] then

swap H[i] and H[j];

i← j;

else
break

end

end

The running time of Algorithm 4 depends on the number of levels the elements at

position i need to be swapped. From Theorem 2.1.3, we have that the height of

a complete binary tree is logarithmic in the heap size. Thus, Algorithm 4 has a

worst-case running time of O(log n), where n is the size of the heap.
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Algorithm 5: Add

Data: Array based binary heap H and element e

Result: Adds e to H while satisfying the heap invariant

Add e to the end of H;

swim(H, |H| - 1);

Algorithm 5 admits a worst-case running time of O(log n) [12]. However, if the input

data has a specific pattern or is already partially sorted, it may result in fewer swaps

during the Swim operation. In 1967 the paper [14] was published, proving that the

average number of levels a random element moves up when inserted into a random

binary heap is bounded by a constant, giving a constant average-case running time

for Add.

Theorem 2.3.4 ([16]). Algorithm 5 correctly inserts an element into a binary heap

of size n while maintaining the heap property in time O(log(n)).
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Chapter 3

Naive approaches

In this chapter, we discuss two simple and commonly used approaches to k-insertion

into a binary heap of size n: Bulk insertion with heapify and Sequential in-

sertion. Bulk insertion with heapify involves directly inserting the k elements

into the binary heap in a bulk manner and then reconstructing the heap property us-

ing the Heapify algorithm discussed in Section 2.3.3. Sequential insertion, on

the other hand, involves sequentially inserting each of the k elements one by one using

the insertion method described in Section 2.3.4.2. We first discuss Bulk insertion

with heapify in Section 3.1, and then move on to Sequential insertion in Sec-

tion 3.2. Both algorithms consider heaps implemented by an array. We explore the

steps involved in each approach, including the time complexity. Throughout this

section, n will denote the size of the initial heap, and k will indicate the number of

elements to be added to the heap.

3.1 Bulk insertion with heapify

The main idea of bulk insertion is to directly add the k elements into the binary

heap in a batch or bulk manner. The process involves inserting the elements at

the end of the binary heap, effectively creating a ”partial” heap, and restoring the

heap property. The most common way to restore the heap property is by using the
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Heapify algorithm described in Section 2.3.3.

Algorithm 6: Bulk insertion with heapify

Data: Array based binary heap H and collection c of elements

Result: Adds the elements of c to H while keeping the heap invariant intact

Append the elements of c to the end of H;

heapify(H);

From Theorem 2.3.2, we can conclude that the running time of Algorithm 6 isO(n+k).

However, if for example the elements are already partially ordered, such as in a sorted

or partially sorted array, the Heapify operation may require fewer comparisons and

swaps, resulting in better performance.

3.2 Sequential insertion

Sequential insertion involves inserting the k elements into the binary heap one

by one. The elements are added using the insertion algorithm presented in Section

2.3.4. Each element is placed in the first available leaf position and then ”bubbled

up” the binary heap using the Swim operation.

Algorithm 7: sequential insertion

Data: Array based binary heap H and collection c of elements

Result: Adds the elements of c to H while keeping the heap invariant intact

for e in c do

Add(H, e)

end

From Theorem 2.3.4, we obtain that the running time of Algorithm 7 isO(k·log(n+k))

in the worst case; it performs k insertions at a cost of O(log(n + k)) each. As

mentioned, Algorithm 5 admits a constant average-case running time. Consequently,

Algorithm 7 has an average-case running time of O(k).
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3.3 Sequential vs. Bulk Insertion with heapify

In general, Sequential insertion is often preferred over Bulk insertion with

heapify for k-insertion into a binary heap. This is due to the better time complexity

per element and the simplicity of the algorithm. The time complexity of Sequen-

tial insertion, specifically its average-case running time, is favorable compared to

Bulk insertion with heapify and ensures efficient performance, especially for

small datasets. The Sequential insertion algorithm offers a simple and intuitive

solution to the k-insertion problem. Each element is added individually, and the heap

is adjusted to maintain the heap property. This straightforward process makes it easy

to understand and implement, reducing the chances of errors or complexities in the

code. Consequently, Sequential insertion has gained popularity and is widely

adopted in various programming languages and libraries. For example, in Java, the

PriorityQueue class, which uses a binary heap, employs Sequential insertion as

the default insertion method when adding a collection of elements to the binary heap.

However, Bulk insertion with heapify can be more efficient in certain cases and

is typically used when k is large compared to the initial heap size. This is because

Bulk insertion with heapify reduces the number of operations required com-

pared to individual element insertion. When inserting elements individually into a

binary heap, each element must be inserted and adjusted to maintain the heap prop-

erty. Bulk insertion with heapify, on the other hand, inserts multiple elements

into the binary heap at once and then rearranges them to satisfy the heap property

in a single operation. By using Bulk insertion with heapify for k-insertion, we

eliminate the need for k individual insertion operations and their associated adjust-

ments. This can lead to significant time savings, especially when k is large.

Bulk insertion with heapify is more commonly used for heap construction com-
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pared to Sequential insertion. When initializing a binary heap with Bulk in-

sertion with heapify, the initial heap is empty, and the algorithm is analogous to

Algorithm 2. Thus it admits an O(n) running time. Applying Heapify to the en-

tire dataset eliminates the per-element adjustment step needed by the Sequential

insertion algorithm and builds the binary heap in linear time. This can result in

significant time savings, especially for large datasets.

25



Chapter 4

Bulk insertion with walkdown

The paper [15] presents an algorithm for merging priority queues organized as binary

heaps of size n and k. The algorithm runs in O(k + log(k) · log(n)) time when

considering binary heaps implemented by an array. As a by-product, an efficient

algorithm for k-insertion into a binary heap is obtained. First, construct a binary

heap from the k elements using the Heapify method presented in Section 2.3.3, and

then merge the two heaps using the algorithm presented in [15].

Theorem 4.0.1 ([15]). A collection of k elements can be inserted ∗ into a binary

heap of size n in time O(k + log(n) · log(k)).

This approach improves the running time of both Sequential insertion and Bulk

insertion with walk down presented in Chapter 3, the most commonly used

k-insertion algorithms for binary heaps. However, the algorithm for merging two

binary heaps presented in [15] is complex and consists of numerous amount of special

cases. In addition, the algorithm runs out-of-place and requires moving subheaps of

the original heap into separate storage before performing operations on it and then

moving it back. This moving process is also not described properly in the paper. This

∗Here the length of the walk down path is approximated by O(log(n)). A better approximation

is O(log(n)− log(k)) which reduces the total runtime to O(k + log(k) · log(nk ))
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makes the algorithm hard to implement correctly with the desired running time. We

will therefore not consider this algorithm directly and we will instead present a new

k-insertion algorithm, inspired by some of the results presented in [15], that retains

the running time O(k + log(k) · log(n+k
k
)). In this chapter, we present this algorithm.

The algorithm is referred to as Bulk insertion with walk down.

We will define slots as leaves added to a binary heap when a collection of elements is

inserted into the heap. We say that a node u covers a group of slots if all slots are

descendants of u. Throughout this chapter, n will denote the size of the initial binary

heap, and k indicates the number of elements to be added to the binary heap.

4.1 Subroutines

Bulk insertion with walk down is a bulk insertion method that combines ideas

presented in the paper [15] with the Heapify algorithm discussed in Section 2.3.3.

The algorithm first adds the k elements from the collection to the end of the binary

heap in a bulk manner and then restores the heap property using three subroutines:

Find two nodes, Heapify subheap, and Walk down. These three procedures

will be explained in Sections 4.1.1 - 4.1.3.

4.1.1 Find two nodes

The algorithm Find two nodes takes as input a binary heap of size n and a number

k and finds two nodes pl and pr of the input heap of height O(log(k)) that together

cover the k first slots of the heap. The existence of these nodes is established in

Theorem 4.1.1.

Theorem 4.1.1 ([15]). Let H be a binary heap of size n. There exist two nodes p1

and pr of H such that:
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(i) The first k slots of H are descendants of either pl or pr, i.e they are covered by

pl and pr, and

(ii) Both pl and pr have height ⌊log2(k)⌋+ 1 in H.

The algorithm find 2 nodes in [15] establishes the existence of pl and pr as described

above. However, this algorithm runs in time O(log(n)). This is due to the fact that

the algorithm uses a top-down approach, starting from the least common ancestor p

of all k slots and moving down in a specific manner until it reaches pl and pr. The

length of the path from p to pl and pr is at most O(log(n)), and thus the algorithm

runs in O(log(n)) steps [15]. A bottom-up approach is one way to avoid the need for

the least common ancestor and reduces the running time to O(log(k)).

Algorithm 8: Find two nodes

Data: Array based binary heap H and number k

Result: Two indices pl and pr that together covers the first k slots of H

if k ≥ n
2
then

return (0, 0)

end

pl ← first slot of H;

pr ← kth slot of H;

for i = 0 to ⌊log2(k)⌋+ 1 do

pl ← parent of pl;

pr ← parent of pr;

if pl == pr then

break;

end

end

return (pl, pr)

When moving pl and pr up the tree in the for loop, it might be the case that we reach

the least common ancestor of pl and pr, i.e., pl = pr. In that case, the algorithm
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returns a tuple where both elements contain the least common ancestor of all k slots.

The correctness and time complexity of Algorithm 8 are established in Theorem 4.1.2.

Theorem 4.1.2. Algorithm 8 finds two nodes pl and pr as described in Theorem 4.1.1

in time O(log(k)).

Proof. Let h = ⌊log2(k)⌋, and let p be the least common ancestor of all k slots. Since

p covers all slots, so do the left child l and the right child r of p together. Additionally,

the rightmost descendant plchildr of l and the leftmost descendant prchildl of r are

both slots and they are also adjacent. Because the slots are in consecutive locations,

there are at most k− 1 slots to the left of plchildr. Moreover, these slots are covered

by the hth ancestor of plchildr. This node, which has height h + 1, will be referred

to as pl. Since pl covers all slots to the left of plchildr, it must be the case that pl is

a common ancestor of plchildr and the leftmost slot. Let pr be the hth ancestor of

plchildr. Then a similar argument holds for pr, showing that pr covers the nodes not

covered by pl and that this node is a common ancestor of prchildr and the rightmost

slot. Thus, it is true that the k slots are covered by the hth ancestors of the leftmost

and rightmost slots.

The running time of the algorithm follows immediately from the fact that the for loop

of the algorithm runs at most O(log(k)) times, and the only work being done at each

iteration is moving pl and pr to their parent, which can be done in constant time.

4.1.2 Heapify subheap

One of the subroutines of the reconstruction steps of Heapify with walk down in-

volves performing the routine Heapify on the subheaps rooted at the nodes returned

by the algorithm Find two nodes. One way to do this is to feed the subheaps rooted
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at pl and pr directly into Algorithm 2. However, this approach would require moving

the subheaps to a separate array, performing the procedure, and then moving them

back into the original heap. To avoid the need for extra storage, we have therefore

chosen to develop an algorithm similar to Algorithm 2 that takes as input a binary

heap and a node of the heap and in-place performs the procedure Heapify on the

subheap rooted at the input index.

Algorithm 9: Heapify subheap

Data: Array based binary heap H and index i ∈ {0, 1, ..., |H| − 1}

Result: Restores the heap property of Hi

right← Rightmost leaf of Hi;

left← leftmost node in Hi on the same layer as right;

while right ̸= i do

for j = left to right do

Sink(H, j);

end

left← parent of left;

right← parent of right;

end

Theorem 4.1.3. Algorithm 9 correctly ensures that Hi satisfies the heap property in

time O(k) where k is the size of Hi

Proof. Both the correctness and the time complexity of the algorithm follow imme-

diately from Theorem 2.3.2.

4.1.3 Walk down

Consider the task of inserting a small number of elements into a large binary heap

using the algorithm Sequential insertion. In the worst case, each new element

needs to be swapped from a leaf position to the root of the binary heap. In some cases,

the paths taken by the consecutive Swim operations have some edges in common.
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The algorithm Walk down ensures that this path called the walk done path, will

only be traversed once. The procedure is inspired by the algorithm walk down in [15],

with slight modifications, providing a solution for situations where the heap property

is broken between a node and its parent, and one wants to restore the heap property

in the entire heap, not just parts of it.

Walk down takes as input a binary heap H and a valid index i of H, and proceeds

as follows: start with the node at index i and compare it to the root of H. If the node

is smaller than the root of H, exchange the two and perform the Sink procedure with

H and i as input. Repeat this step for successive nodes on the path from the root of

H and the node at index i, i.e., the nodes on the walk down path. The correctness

of the algorithm is established in Theorem 4.1.4.

Algorithm 10: Walk down

Data: Array based binary heap H and index i ∈ {0, 1, ..., |H| − 1} where

the node at index i might be smaller than its parent

Result: Restores the heap property of H

j ← 0;

while i ̸= j do

if H[i] < H[j] then

swap H[i] and H[j];

Sink(H, i);

end

j ← next node on the path from 0 to i to;

end

Theorem 4.1.4. Let H be a binary heap and u a node of H at index i. Then after

a call to Algorithm 10 with H and i as input:

(a) The heap property is satisfied in u;

(b) the heap property of H is maintained.
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Proof. By induction, we will show that after the hth element on the walk down path

has been considered, the heap property is maintained in the k first nodes on the walk

down path and that the heap property is satisfied in Hu.

For h = 1, we consider the root, and the results follow immediately. Let h > 1. By

induction, the elements 1 to h−1 on the path are less than or equal to the hth element

and less than or equal to all elements in Hu. Also, the heap property is satisfied in

Hu. In processing the hth element two cases arises:

• H[h] > u and the procedure exchanges the hth and u, thereby replacing u with a

smaller element, which by induction is larger than the k−1 preceding elements.

This maintains the heap structure of H. Using the procedure Sink, the heap

property of Hu is subsequently restored.

• H[h] ≤ u and no exchange is made; thus, the results follow immediately.

Subsequently, the proof is completed by letting h equal to i.

One thing worth mentioning about Algorithm 10 is the walk down path. Since each

internal node in a binary heap has two children, it is not possible to efficiently find the

path from the root to i directly. Instead, the walk down path can easily be located

by moving from i to the root, storing the traversed nodes in a list, and then reversing

the list. The walk down path can be obtained either directly through Algorithm 10

or passed as an input to the algorithm. Regardless of the approach, the path needs

to be stored in a separate storage location with a size proportional to the length of

the path.

Theorem 4.1.5. The running time of Algorithm 10 is O(h · (log(n)−h)) where n is

the size of the input heap and h the height of the subheap rooted at the input index.

Proof. Observe that the running time of Algorithm 10 is the length of the walk down

path times the height of Hi where H is the input heap and i is the input index.
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From Theorem 2.1.3 the height of H is O(log(n)). Thus, the length of the walk down

path is O(log(n)−h). From the observation above the running time of Algorithm 10

is therefore O(h · (log(n)− h))

4.2 The algorithm

As mentioned before, Bulk insertion with walk down is a bulk insertion method

where the reconstruction step combines the three procedures Find two nodes,

Heapify subheap, and Walk down presented in Section 4.1. The algorithm first

adds the k elements from the collection at the end of the binary heap in a bulk manner.

Then, it finds two the nodes pl and pr covering the k slots using the algorithm Find

two nodes. Next, it performs the procedure Heapify subheap twice with pl and

pr as inputs, obtaining a partial binary heap where the only places where the heap

property might be broken are between pl and pr and their parents. To fix this, Bulk

insertion with walk down then performs Walk down two times with pl and pr

as input.

Algorithm 11: Bulk insertion with walkdown

Data: Array based binary heap H and collection c of elements

Result: Adds the elements of c to H while keeping the heap invariant intact

Append the elements of c to the end of H;

k ← size of c;

(pl, pr)← find two nodes(H, k);

Heapify(H, pl);

Walk down(H, pl);

Heapify(H, pr);

Walk down(H, pr);

Theorem 4.2.1. Algorithm 11 correctly inserts a collection of k elements into a

binary heap of size n in time O(k + log(k) · log(n+k
k
)) while maintaining the heap
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property.

Proof. The correctness of the algorithm follows immediately from the Theorems 4.1.2,

4.1.3, and 4.1.4.

By Theorem 4.1.2, both pl and pr can be found in time O(log(k)) and have height

log2(k). Combining this and Theorem 4.1.5, the Algorithm 8 obtains a running time

of

O(log(k) · (log(n+ k)− log(k))) = O(log(k) · log(n+ k

k
))

.

Note that the sizes of the subheaps rooted at pl and pr are O(k). Combining this

and Theorem 4.1.3, Algorithm 9 runs in time O(k). Thus the total running time of

Algorithm 11 is

O(k + log(k) + log(k) · log(n+ k

k
)) = O(k + log(k) · log(n+ k

k
))

4.3 Optimization

Certain optimizations have been incorporated in implementing the Bulk inser-

tion with walk down algorithm. These optimizations have been intentionally

omitted from the algorithm description. By isolating them from the main algorithm

description, we aim to provide a clear and concise understanding of the fundamental

workings of the algorithm. This subsection is therefore dedicated to presenting these

optimizations in detail. It should be noted that while these optimizations do not alter

the worst-case running time of the algorithm, they significantly impact its practical

performance.
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The first optimization relates to the behavior of Bulk insertion with walk down

when it calls Heapify subheap and Walk down on both pl and pr. In specific

scenarios, the paths followed by the Walk down procedure for pl and pr may overlap

or even be identical. In some cases, it, therefore, becomes more efficient to disregard

pl and pr and instead select a single node higher in the tree that has both pl and pr

as descendants. This eliminates calling Heapify subheap and Walk down two

times and instead performs the procedures once. However, this increases the number

of nodes in the sub-heap considered in Heapify subheap and Walk down. One

situation where we know it is advantageous to do this is when pl and pr are siblings,

meaning they share the same parent. By choosing the parent, we consider one extra

node but avoid calling Heapify subheap and Walk down two times and instead

perform both procedures once, thus reducing redundant work.

The following optimization also relates pl and pr and the fact that in some cases, pl and

pr cover more slots than necessary, and it is safe to consider one of their descendants

instead. Since the running time of Heapify subheap is equal to the number of

nodes in the subheaps under pl and pr while the running time of Walk down is

equal to the height of the same subheaps times log2(n) it is beneficial to reduce the

height of the subheaps as much as possible. One way of reducing the heights of pl and

pr as much as possible while still making sure that they together cover all slots is to

realize that when moving pl and pr up the heap, and pl is a right child the parent of

pl might cover nodes to the left of the first slot. So moving to its parent increase the

height of the subheap considered by Heapify subheap without covering more slot.

Similarly, when moving up the heap and pr is a left child, its parent might cover leaf

positions to the right of the kth slot. However, when implementing this optimization,

it is essential to realize that even though in one of the iterations of the for loop of

Find two nodes, it might be the case that pl is the right child one of its ancestors

still might cover some of the k slots, and we can not terminate the loop instantly.

This also goes for pr. This must be taken into consideration when implementing this
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optimization.

The final optimization is regarding the algorithm Walk down. This algorithm

involves traversing the path from the root of the binary heap to a given index, denoted

as i, and comparing each element with the node at index i. A swap is performed if

the node on the path is larger than the node at index i. As we move to the next node

on the path, we are essentially moving to a child node, which, according to the heap

property, is always larger than its parent. To minimize unnecessary swaps, we can

take advantage of this and ensure that the largest available value is always placed

at index i. To accomplish this, we store the values of the nodes on the walk down

path in a double-ended list. By the heap property, the smallest element is kept at the

front of the list, while the largest element is at the end. We then compare the front

of the list with the element at index i. To simplify the explanation, let us denote the

current node at index i as u and the current position on the walk down path as j. If

the element at the top of the list is smaller than u, we know that this element is the

smallest available element. Consequently, we remove the top element from the list

and assign it to index j. On the other hand, if the element at the top of the list is

larger than u, we know that u is the smallest available value and should be placed at

index j. However, instead of moving the element at index j down the tree to index

i, we want to place the largest available value at index i. Accordingly, we remove

the last element from the double-ended list and assign it to index i before calling the

Sink operation. This process is repeated for the next node on the walk down path.

By storing all the values of the nodes on the walk down path in the double-ended

list and always comparing u with the top of the list, we ensure that no values are

skipped. Furthermore, since we always place the largest available value at index i and

the smallest at index j, we ensure that the heap property is maintained and avoid

unnecessary swaps in subsequent steps, thus reducing extra work.
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Chapter 5

Experimental results

In this chapter we investigate and compare the behavior of the empirically com-

puted running times of the three k-insertion algorithms discussed in this thesis: Se-

quential insertion, Bulk insertion with heapify and Bulk insertion with

walk down. We investigate the behavior of the algorithms both on random input

and worst-case input. First, in Section 5.1 we will go through how the experiments

are conducted and the experimental setup. Then, in Section 5.2 and Section 5.3, we

present and discuss the results of running each algorithm on the different datasets.

Throughout this chapter, n will denote the size of the original binary heap while k is

the size of the collection added to the binary heap.

5.1 Setup

To assess and compare the performance of the algorithms, we implement them in

Java and carry out timed experiments on different data sets. We initially create an

empty binary heap for each insertion method. Following this, we generate two distinct

data sets; one of size n and one of size k. The data set of size n is referred to as

the initial data, while the data set of size k is referred to as the input data. The

standard insertion method is employed to add the initial data to the binary heaps,

ensuring that the ordering of the elements in the three heaps remains the same before

applying the k-insertion algorithms. Afterward, the time each of the three k-insertion
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algorithms takes to add the input data to their respective binary heap is recorded.

Given that the worst-case running times of Bulk insertion with heapify is O(k+

n), while the running times of Sequential insertion and Bulk insertion with

walk down are O(k · log(n + k)) and O(k + log(k) · log(n+k
k
)) respectively, it is

expected, as discussed in Section 3.3, that the performance of these algorithms will

be significantly influenced by the size of k compared to n. To analyze this relationship,

we, therefore, fix the value of n and examine how the algorithms perform on different

values of k. Specifically, we set n = 224 to create a perfect binary heap, and vary k

as 1%, 10%, 20%, 30%, and 40% of the value of n.

To measure the execution time of each algorithm, we use the nanoTime() function

in Java’s Java.lang.System library. This method retrieves the current value of the

running Java Virtual Machine’s (JVM) time source in nanoseconds. The method

provides nanosecond precision but not necessarily nanosecond accuracy. The value

returned represents the number of nanoseconds elapsed since a fixed but arbitrary

point in time and becomes meaningful when calculating the difference between two

such values [13]. Consequently, we invoke the method before and after the insertion

step and examine the resulting difference. Measuring the running times of the algo-

rithms like this might cause some problems. When running a Java program, numerous

operations are performed in the background. The frequency of these operations is of-

ten sporadic and results in a temporary halt in the execution of the running program.

So when timing an algorithm like this, we are also timing the background operations.

One of these operations is the garbage collector. In Java, garbage collection is the

process of identifying and reclaiming unused objects, referred to as garbage, in order

to free up memory and resources for other objects. During the garbage collection, the

running program may need to pause the program temporarily. The duration of these

pauses can vary, leading to inaccuracies in the recorded running times [4]. Hence, it

is important to consider this when analyzing the results. Consequently, we disregard

certain instances of the longest running times in certain cases.
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To illustrate the running times of the algorithms, we utilize a line diagram. Prior to

creating the plot, we arrange the running time values of each algorithm in increasing

order. This sorting process makes it easier to understand and interpret the plots.

By organizing the running times in ascending order, we generate a line plot that

effectively demonstrates the distribution of performance values. This visualization

can help identify patterns or trends. Additionally, sorting the running times enables

us to detect any outliers or extreme values that might distort the overall distribu-

tion. In conclusion, sorting the running times before plotting contributes to a more

comprehensive understanding of the performance of each algorithm.

When conducting experiments like this, it is worth mentioning that the results de-

pend on the implementation of the algorithms. As Java’s PriorityQueue class is

implemented with a binary heap and uses Sequential insertion as its default

k-insertion method, we, therefore, use this directly to obtain the result for Sequen-

tial insertion. Also, we use Java’s implementation of the Heapify method to

get the result for Bulk insertion with heapify. As for Bulk insertion with

walk down, we implement this algorithm ourselves using as much as possible of the

code from Javas’s standard library. We also implement the optimizations discussed

in Section 4.3. The fact that we are using Java’s built-in methods for some of the

algorithms and that these are probably highly optimized might impact the results.

5.2 Random input

In this section, we examine the running times of the three algorithms on random data.

The purpose of this is to compare their behavior when presented with randomized

input. To create the random scenarios, we generate both random initial and input

data without imposing any constraints on the elements of the sets.
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5.2.1 Expectations

Since Sequential insertion has an average-case running time of O(k) and this is

optimal for k-insertion, we don not anticipate that any of the algorithms will surpass

Sequential insertion in terms of performance on random data, regardless of the

relative sizes of k and n.

When k is small, we expect Bulk insertion with heapify to have a longer running

time than the other algorithms. However, as k increases, we anticipate that the

running time of Bulk insertion with heapify will become more comparable to

the others. This is because Bulk insertion with heapify always considers the

entire initial heap. In contrast, the other two algorithms only consider a portion of the

initial heap determined by the size of k. Consequently, as k increases while n remains

constant, Bulk insertion with walk down and Sequential insertion will

consider a more significant part of the initial heap.

Although we anticipate that the running time of Bulk insertion with heapify

will approach the others as k increases, we do not expect it to be faster than Bulk

insertion with walk down. This is because, as k increases, the majority of the

work performed by Bulk insertion with walk down is the Heapify subheap

operation. As a result, the two algorithms become more similar in their performance.

However, Bulk insertion with walk down operates on a significantly smaller

portion of the binary heap compared to Bulk insertion with heapify. Hence,

we anticipate it to be faster.

5.2.2 Results

Figure 5.1 depicts the running times of the three k-insertion algorithms on random

data, with k being relatively small compared to n. As anticipated, Bulk inser-

tion with heapify consistently exhibits the longest running times in such cases.

Furthermore, Sequential insertion and Bulk insertion with walk down dis-
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play similar behavior in this scenario. However, as expected, Sequential insertion is

marginally faster overall.
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Figure 5.1: The running times of Sequential insertion, Bulk in-

sertion with heapify and Bulk insertion with walk down on

100 different randomized data sets with different values of k and n = 224.

Figure 5.2 illustrates the running times of the three algorithms on random data for

larger values of k compared to the ones in Figure 5.1. Once again, we observe that

Sequential insertion achieves the lowest running time and performs the best. As

anticipated, Bulk insertion with heapify exhibits noticeable improvements as k

increases. Specifically, when k transitions from 20% to 30% of n, Bulk insertion

with heapify begins to outperform Bulk insertion with walk down. How-

ever, as k reaches 40% of n, the running times of all three algorithms become more

comparable, making it less evident which bulk insertion method performs the best in
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this scenario.

0 20 40 60 80 100
Iteration

0

2000

4000

6000

8000

Ru
nn

in
gt

im
e 

(M
illi

se
co

nd
s)

Random data; n=16777216, k=5033164
Bulk insertion with walk down
Sequential insertion
Bulk insertion with heapify

(a) k is 30% of n

0 20 40 60 80 100
Iteration

0

2000

4000

6000

8000

10000

Ru
nn

in
gt

im
e 

(M
illi

se
co

nd
s)

Random insertion; n=16777216, k=6710886
Bulk insertion with walk down
Sequential insertion
Bulk insertion with heapify

(b) k is 40% of n

Figure 5.2: The running times of Sequential insertion, Bulk in-

sertion with heapify and Bulk insertion with walk down on

100 different randomized data sets with different values of k and n = 224.

The surprising result is that Bulk insertion with heapify outperforms Bulk

insertion with walk down in some instances, contrary to expectations. When k

constitutes 40% of n, there is some variability in which bulk insertion method performs

better. This might have to do with the fact that we are considering random data.

However, when k is 30% of n, Bulk insertion with heapify consistently performs

faster than Bulk insertion with walk down across all datasets. As explained in

Section 5.2.1, Bulk insertion with walk down operates on a significantly smaller

portion of the binary heap compared to Bulk insertion with heapify, thus we

initially expect it to be faster. Considering that Bulk insertion with heapify is

mostly quicker than Bulk insertion with walk down when k is 30% of the value

of n, this behavior might have something do to with how Bulk insertion with

walk down works on this particular value of k

One noteworthy finding is the sudden spike in running time for each algorithm. This

is particularly evident in Figure 5.1 (c). The plot illustrates that the running time

of Bulk insertion with walk down remains relatively stable for most datasets,
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except the maximum running time, which is notably larger. Considering that we

are dealing with random data, some variation in the running times among different

datasets is expected, but the magnitude of this peak is remarkable. Additionally, none

of the other algorithms display similar behavior. Therefore, it is highly probable that

this is attributed to the timing and the Java garbage collector mentioned in Section

5.1 rather than the actual algorithms themselves.

5.3 Worst case input

In this test case we aim to evaluate the practical performance of algorithms in their

worst-case scenario. The datasets have input elements that are smaller than the

initial elements, requiring all input elements to be placed at the top of the binary

heap. Furthermore, the input data is sorted in decreasing order. As a result, the

Sequential insertion algorithm must place each added element at the top of the

binary heap, showcasing its worst-case running time in practice. In the case of the

Bulk insertion with walk down algorithm, when confronted with this scenario,

it first moves the input elements to the top of the subheaps rooted at pl and pr.

Additionally, every element on the paths during the walk down process must be

swapped with the roots of the subheaps under pl and pr and moved down the heap.

Hence, the running time of Bulk insertion with walk down on this dataset is

equal to its worst-case running time. Similarly, Bulk insertion with heapify also

attains its worst-case running time in this particular scenario as each element needs

to be moved to the top of the heap. Consequently, these types of datasets provoke

the worst-case running time for each of the tree k-insertion algorithms.

5.3.1 Expectations

Considering that the worst case running time of Bulk insertion with walk down

is O(k + log(k) · log(n+k
k
)) while it is O(k + n) and O(k · log(n + k)) for Bulk in-

sertion with heapify and Sequential insertion, we expect Bulk insertion

with walk down to perform the best.

43



When it comes to Bulk insertion with heapify and Sequential insertion,

we expect Sequential insertion to have a lower running time for small values of

k compared to Bulk insertion with heapify. As k increases in size, we expect

Bulk insertion with heapify to become faster. This was discussed in Section

5.2.1 for the random case and is due to the fact that Bulk insertion with heapify

always considers the entire binary heap, while Sequential insertion considers a

portion of the binary heap determined by the size of k.

5.3.2 Results

When conducting these experiments, we ran the algorithms on 100 datasets. However,

we have opted to exclude the five largest running times from all plots. The reason for

this decision is that the algorithms exhibit significantly longer running times on a few

datasets compared to the rest. Including these extremely high running times in the

plots would render them unreadable, and no useful information could be derived from

them. This behavior was also observed in Section 5.2, where it was concluded that the

likely cause of this is the implementation of the timing and the background operations

performed when running the program. Since the highest running times are likely

caused by Java’s program execution rather than the actual algorithm performance,

we chose to disregard them to enhance readability.
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Figure 5.3: The running times of Sequential insertion, Bulk in-

sertion with heapify and Bulk insertion with walk down on 95

different data sets where the elements of the input data are smaller than

the initial data. The value of k is different in each plot while the value of

n is consistently 224.
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Figure 5.3 illustrates the running times of the three algorithms on various datasets

with smaller values of input data compared to the initial data. Consistent with

expectations, when k is 1% of n and relatively small, Bulk insertion with walk

down demonstrates the lowest overall running time, while Bulk insertion with

heapify exhibits the poorest performance. As the size of k increases, Sequential

insertion becomes less efficient and is surpassed by the Bulk insertion with

heapify algorithm. As expected, Bulk insertion with heapify demonstrates

significantly improved efficiency as k increases in size. Surprisingly, Bulk insertion

with heapify begins to outperform Bulk insertion with walk down when k

exceeds 20% of n. This behavior was also observed in the random case, specifically

when k constituted 30% of the value of n, but it is even more pronounced in these

plots.

One hypothesis for why Bulk insertion with heapify is faster than Bulk inser-

tion with walk down in some cases even though Bulk insertion with walk

down has a lower wost-case running time is the extra work done by the algorithm.

Bulk insertion with walk down first needs to find the two nodes pl and pr,

which in practice involves traversing up and down the binary heap twice. Also, as

mentioned before, when k is large, the majority of the work done by the algorithm

is the Heapify subheap procedure. Since Heapify subheap is implemented in

place, it needs to loop through the nodes, level by level, keeping a pointer on the

leftmost and rightmost node on the current level. Bulk insertion with heapify

can simply loop through the nodes in the array representation from right to left. This

might make Bulk insertion with walk down less efficient on large datasets and

might overshadow the time gained by only considering a fraction of the binary heap.

However, the difference in number of nodes considered by the two algorithms is sig-

nificantly large. For example, if the node returned by Find two nodes is the child

of the root, Heapify subheap operates on half as many nodes as Bulk insertion

with heapify. The difference becomes rapidly larger when the pl and pr are further

down the tree. Considering that n is 224 in the experiments, there is a noticeable
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difference in the number of nodes considered by the two algorithms. Thus, it is not

certain whether this hypothesis is true or not.

Another hypothesis pertains to the implementation of the algorithms. In our ex-

periments, we utilize code from Java’s standard library directly to implement Bulk

insertion with heapify, meaning we do not implement this algorithm ourselves.

This algorithm has likely been extensively optimized. Conversely, we implement the

Bulk insertion with walk down algorithm by combining relevant code from

Java’s standard library with our own code. Both the Find two nodes and Walk

down algorithms are implemented by us. It is possible that our implementations

of these algorithms are not be the most optimal. This could therefore make Bulk

insertion with heapify faster in practice than Bulk insertion with walk

down, despite the theoretical expectation being the opposite. However, we cannot

ascertain the accuracy of this hypothesis.
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Chapter 6

Conclusion

From these results, it can be concluded that Sequential insertion behaves accord-

ing to its theoretical running time. The algorithm has an average-case running time

of O(k). Thus, we expect it to be superior to both Bulk insertion with walk

down and Bulk insertion with heapify on random data; this is also the case

in practice. The algorithm consistently exhibits the fastest running time on random

data with Bulk insertion with walk down being just slightly slower in some

cases. We have not conducted a formal analysis on the average-case running time on

the two bulk insertion methods; however, these results suggest that the average-case

running time of Bulk insertion with walk downmay be within a constant factor

of the one of Sequential insertion. This indicates an O(k) average-case running

time of Bulk insertion with walk down. Thus, there might be a possibility of

making Bulk insertion with walk down faster than Sequential insertion

by further improving the algorithm.

The Sequential insertion algorithm has a worst-case running time of O(k ·log(n+

k)); thus, we do not expect it to perform the best on worst-case data. This is also

the case in practice. Its performance is satisfactory only when the value of k is

considerably small compared to n, and then its running time rapidly increases as k

increases and gets outperformed by the other algorithms. Thus, it can be concluded

that Sequential insertion is a good choice of k-insertion algorithm when presented
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with random data. However, when faced with worst-case input, this is not the case.

Regarding the two bulk insertion methods, we expect Bulk insertion with walk

down to be noticeably faster than Bulk insertion with heapify on worst-case

input on all values of k considered in the experiments. However, this is not the case

in practice. On worst-case input, Bulk insertion with walk down demonstrates

superior performance among all the algorithms when k is small and below 20% of the

value of n. However, as k exceeds this threshold, Bulk insertion with heapify

outperforms the other methods. We also see tendencies to this in the random scenario;

however, it is not as prominent here. The results may suggest that there are some

situations where Bulk insertion with walk down doesn’t perform as well as

expected. The exact reason for this behavior is uncertain and could stem from various

factors, none of which can be definitively identified in this thesis. In conclusion,

Bulk insertion with walk down is the better choice of k-insertion method when

faced with worst-case data and the size of the input data is small compared to the

initial heap and as k increases in size Bulk insertion with heapify becomes a

better choice. Nonetheless, these results suggest the possibility of optimizing Bulk

insertion with walk down by directly utilizing Bulk insertion with heapify

when k is large.

From these results, it can therefore be concluded that there is yet no known overall

best k-insertion algorithm for binary heaps that performs the best on all types of data.

On random data, Sequential insertion consistently exhibits an ideal running time

compared to the other algorithms. However, Bulk insertion with walk down is

not much slower in this scenario. According to the results, combining Bulk inser-

tion with walk down with Bulk insertion with heapify for larger values of

k can create a k-insertion algorithm that is superior to Sequential insertion on

worst-case input for an extensive range of values of k, and also not much slower on

random data. Thus, if one aims to improve the worst-case running time of k-insertion

into a binary heap, one should opt for a combination of Bulk insertion with walk
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down and Bulk insertion with heapify instead of Sequential insertion.

6.1 Summary

In this thesis, we have considered k-insertion into a binary heap. We have devel-

oped the k-insertion algorithm Bulk insertion with walk inspired by the article

[15] running in worst case time O(k + log(k) · log(n+k
k
)). The algorithm is a bulk

insertion algorithm where the reconstruction step consists of three subroutines; Find

two nodes, Heapify subheap, and Walk down. Therefore, it only needs to

consider a small portion of the original binary heap and ensure that the paths taken

by sequentially inserting the elements are only traversed once.

We have compared the algorithm to two of the most well-known and widespread k-

insertion algorithms, namely Sequential insertion and Bulk insertion with

heapify. We did this by implementing all algorithms in Java and then conducting

timed tests on different types of datasets. We examined the behavior of the algo-

rithms on two types of datasets, random data, and worst-case data. Throughout the

experiments, we kept the value of n constant while varying the size of k between 1%

and 40% of the value of n.

From the experimental results, we concluded that Sequential insertion performed

the best out of all the algorithms on random data, both in theory and practice. How-

ever, Bulk insertion with walk down was only marginally slower, indicating an

O(k) average-case runtime. The performance of Sequential insertion degraded

significantly on worst-case data as k increased. Bulk insertion with walk down

performed overall better than Bulk insertion with heapify on random data,

but there were situations where Bulk insertion with heapify was faster. Bulk

insertion with walk down was faster than Bulk insertion with heapify on

worst-case input when the size of the input data was small, but as k increased,
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Bulk insertion with heapify started outperforming Bulk insertion with

walk down. We are unsure why the algorithms exhibited this behavior, despite

their theoretical worst-running time indicating the opposite. We presented some hy-

potheses for this results, none of which we could conclude definitely to be true. In the

future, more research can therefore be done on this area. Nonetheless, from these re-

sults, we concluded that combining Bulk insertion with walk down and Bulk

insertion with heapify for larger values of k creates a k-insertion algorithm that

is superior to Sequential insertion in real-life applications.

6.2 Future work

This chapter briefly discusses some open questions regarding the k-insertion algorithm

Bulk insertion with walk down presented in this thesis that we could not further

investigate due to either timing restrictions or them falling outside the scope of this

thesis.

For future work along the lines of k-insertion into a binary heap, the main focus

should be on analyzing the threshold value for when it is more efficient to directly call

the Bulk insertion with heapify algorithm instead of Bulk insertion with

walk down. The results provided in Chapter 5 indicate that this could improve

the practical performance of the algorithm significantly, both on random input and

worst-case input. We conducted a rough analysis on this and loosely concluded that

if k is greater than 50% of the value of n, it would be more efficient to use Bulk

insertion with heapify directly. However, the results provided in Section 5.3.2

indicate that this threshold could be lowered. Therefore, a more thorough analysis

can be conducted.

Also, for future work, an assessment of the practical performance of the three k-

insertion algorithms, especially Bulk insertion with walk down, on different
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types of datasets than the one presented in this thesis can be performed. The worst-

case data presented in this thesis is specifically constructed to display the worst-case

behavior of the algorithms, while the random testcase demonstrates their behavior

on random input. Although these two datasets give meaningful information on the

behavior of the algorithms, they don’t necessarily reflect all the different scenarios

one might encounter in the real world. Examining Bulk insertion with walk

down on other datasets would therefore give a more comprehensive picture of the

algorithm’s behavior in real-life scenarios.

Also, as it was demonstrated in Chapter 5, Sequential insertion is more efficient

than Bulk insertion with walk down on random input. In contrast, the situ-

ation is opposite on worst-case input. An interesting analysis is therefore to first let

the input data consist of random data and then let a larger and larger portion consist

of small values that need to be placed at the top of the binary heap and compare

the running times of the two algorithms and look at when they start surpassing each

other.

Since Bulk insertion with walk down utilizes the methods Walk down and

Heapify subheap the algorithm imposes an entirely different structure on the result-

ing binary heap than Sequential insertion and Bulk insertion with heapify.

An interesting analysis is to study how this structure affect the running times of the

other heap operations. More specifically, compare how consecutive Remove min

operations behave after utilizing the three different k-insertion algorithms.

After spending some time pursuing the possibility of implementing a variation of the

Bulk insertion with walk down algorithm for other kinds of heap implementa-

tions than the one used in this thesis, it was concluded that this lies outside the scope

of this thesis. Introductory in Section 1, both the Fibonacci heap and the B-heap were

mentioned. For future work, one could therefore explore how the Bulk insertion

with walk down algorithm translates to these kinds of heap implementations.
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