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0 | Introduction

The main topic of this thesis is a family of polytopes called nestohedra, a
particular subfamily of generalized permutohedra. The generalized permuto-
hedra are a particularly interesting family of polytopes as they have a strong
connection to optimization; they are equivalent to submodular functions [1].
These submodular functions have what is called the diminishing returns prop-
erty, a property we encounter many places in nature. As such, the generalized
permutohedra can be used in many cases as a polyhedral model for other com-
binatorial objects. The reason we are particularly interested in nestohedra is
because their face structure is directly connected to nested sets of building sets,
which gives a helpful framework for studying the structure of this particular
subfamily of the generalized permutohedra.

This thesis mainly builds on the works of Aguiar and Ardila [1] and Post-
nikov [9]. [1] gives a detailed overview of Hopf monoids in species as a frame-
work for studying several other combinatorial structures. Although Hopf monoids
are beyond the scope of this thesis, [1] provides most of the framework and no-
tation we use. It should be noted that [1] also builds on [9]; Postnikov’s article
[9] gives a vastly detailed description of many combinatorial objects, not only
limited to generalized permutohedra.

Nestohedra in the context of this thesis are the hypergraphical polytopes
of certain hypergraphs called building sets. These are closely related to the
graph associahedra, should the reader be familiar with those. According to
[9] the concept of building sets first appeared in the work of De Concini and
Procesi on subspace arrangements in 1995. The structure of the nestohedra
was independently discovered [9] by Postnikov, and by Feichtner and Sturmfels
in their joint work on Matroid Polytopes in 2005.

The goal of this thesis is to serve as a friendly introduction to generalized
permutohedra and nestohedra. We focus primarily on giving helpful examples
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and figures where the literature does not. We will assume the reader is already
familiar with rudimentary concepts of combinatorics and geometry, although
we still provide elementary definitions and examples.

When it comes to our original work, our main results are the theorems
and propositions in sections 3.3 and 3.4. Here we introduce the (n, r)-complete
nestohedra, which are intended to serve as a generalization of the construction
of the permutohedron as a nestohedron. We find the face-structure of the
(n, n− 1)-complete nestohedra and the (n, n− 1)-complete nestohedra.

Chapter 1 gives an introduction to the generalized permutohedra; section
1.1 introduces the permutohedron, which models the permutations on sets.
Section 1.2 gives the preliminaries for defining the generalized permutohedra,
which we introduce in section 1.3. In section 1.4 we look at the connection
between the generalized permutohedra and the submodular functions.

Chapter 2 gives an overview of the nestohedra. In section 2.1 we define
Minkowski sums, and give constructions of several polytopes as Minkowski
sums, including the hypercube and associahedron. Section 2.2 provides several
definitions of objects related to the nestohedron, such as building sets, nested
sets and B-forests. In section 2.3 we define the nestohedra and provide some
examples. Here we find Theorem 2.3.1, which describes the structure of the
nestohedron through its connection to nested sets.

Chapter 3 gives examples of some classes of polytopes constructed as nesto-
hedra. In section 3.1 we construct the permutohedron and associahedron as
nestohedra, where we provide the connection between the vertices of the associ-
ahedron and plane binary trees. In section 3.2 we construct the Pitman-Stanley
polytope as a nestohedron and give its bijection to the hypercube, which we
defined in section 2.1. In section 3.3 we define the (n, r)-complete nestohe-
dron, and study the face structure of the (n, n−1)-complete nestohedron. The
main result here is Theorem 3.3.1. Section 3.4 tackles the (n, n− 2)-complete
nestohedron, the main result here is Theorem 3.4.1.



1 | Generalized permutohedra

1.1 The permutohedron

Definition 1.1.1. For a set {x1, x2, . . . , xn} of n distinct elements there are
n! possible orderings of the elements. Given x1, x2, . . . , xn ∈ R we can for
each permutation w ∈ Sn define the point (xw(1), xw(2), . . . , xw(n)) ∈ Rn. The
polytope whose vertex set consists of these n! points is called a permutohedron,
and we write it as

Pn(x1, x2, . . . , xn) := Conv({(xw(1), xw(2), . . . , xw(n)) ∈ Rn | w ∈ Sn}) (1.1)

By the convention in [9] we will assume w.l.o.g. that x1 ≥ x2 ≥ · · · ≥ xn.
Example 1.1.1. In [1] they define the standard permutohedron Pn(n, n −
1, . . . , 1), while [9] defines the regular permutohedron Pn(n − 1, n − 2, . . . , 0).
In R2 these permutohedra are line segments; see Figure 1.1. In R3 both the
standard and regular permutohedra are hexagons. As one would expect, in any
dimension the regular permutohedron is equivalent to the standard permuto-
hedron up to a translation by the vector [1, 1, . . . , 1].
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Figure 1.1: The regular (red) and standard (blue) permutohedra in R2 and R3.
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1.1. THE PERMUTOHEDRON 4

The face structure of the permutohedron is described in [1], which we repeat
(and expand a little upon) here. Let I = {x1, x2, . . . , xn} and write πI for
Pn(x1, x2, . . . , xn). Throughout this part we will illustrate with P3(3, 2, 1). We
also describe in detail the face structure of P4(4, 3, 2, 1) in Example 1.1.7 and
Figure 1.6.

• 0-dimensional faces:

πI has n! vertices (each corresponding to a permutation of I).

Example 1.1.2. P3(3, 2, 1) has 3! = 6 vertices (0-dimensional faces),
each vertex having as coordinates a permutation of (1, 2, 3).

213 312

321

231132

123

Figure 1.2: P3(3, 2, 1) pictured head-on. It has the 6 permutations of (1, 2, 3)
as vertices.

• 1-dimensional faces:

Two vertices u and v are joined by an edge in πI if their corresponding
permutations are obtained from each other by swapping the positions of
the numbers r and r + 1 for some r ∈ {1, . . . , n− 1}, hence degree(v) =
n−1 for all vertices v in πI . Letting i and j be the swapped coordinates,
the edge joining u and v is a parallel translate of the vector ei − ej. We
recall from graph theory the handshake lemma for a graph with vertex
set V and edge set E: ∑

v∈V

degree(v) = 2|E| (1.2)
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Since there are n! vertices in πI , each having degree n−1, Equation (1.2)
gives us that the number of edges in πI is |E| = n!(n−1)

2
.

Example 1.1.3. P3(3, 2, 1) has 3!(3−1)
2

= 6 edges (1-dimensional faces).
Its vertices are connected by an edge if they can be obtained from each
other by swapping the positions of 1 and 2 or 2 and 3. We highlight
each of these swaps in Figure 1.3, 12 meaning 1 and 2 are swapped and
23 meaning 2 and 3 are swapped. (1, 3, 2) is obtained from (2, 3, 1) by
swapping the 1st coordinate with the 3rd, hence the edge connecting
them is a parallel translate of the vector e1 − e3. We see this edge is
parallel to the edge joining (2, 1, 3) and (3, 1, 2), this is because these two
vertices are also obtained from each other by swapping the 1st and 3rd
coordinate.

213 312

321

231132

123

23

12

23

12

23

12

Figure 1.3: Two vertices of P3(3, 2, 1) are connected only if they are obtained
from each other by swapping the positions of 1 and 2 or 2 and 3.

• (n− 2)-dimensional faces (facets):

The number of facets corresponds to the number of non-empty subsets of
I strictly smaller than I. We recall that the power set 2I of the set I is
the set of all subsets of I, where |2I | = 2|I|. Hence under the restriction to
non-empty subsets strictly smaller than I, there are 2n − 2 such subsets,
hence πI has 2n − 2 facets.

Example 1.1.4. The facets of P3(3, 2, 1) are the 1-dimensional faces, i.e.
the edges. As we see in Figure 1.3, P3(3, 2, 1) has 23 − 2 = 6 facets.
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• (n− k)-dimensional faces:

The (n − k)-dimensional faces are in bijection with the compositions of
I into k non-empty subsets: For a partition I = S1 ⊔S2 ⊔ · · · ⊔Sk, where
⊔ denotes the disjoint union, the corresponding face has as vertices the
permutations such that the entries {s1i | xi ∈ S1} are the largest |S1|
elements of I, {s2i | xi ∈ S2} are the largest |S2| elements in I − S1,
and so on, see Examples 1.1.5, 1.1.7 and 1.1.8. The total number of such
compositions is k!

{
n
k

}
, where

{
n
k

}
is the Stirling number of the second

kind [2], some of which can be seen in Table 1.1. The factor
{
n
k

}
gives

the number of ways of partitioning a set of size n into k parts, and the
factor k! gives the total number of ways of ordering those partitions.

n k S(n, k)
3 2 3
4 2 7
4 3 6
5 2 15
5 3 25
5 4 10

Table 1.1: Some of the first Stirling numbers of the second kind. We have
omitted the trivial cases of n = k, as S(n, n) = 1.

Example 1.1.5. Let us look back to the 0- and 1-dimensional faces of
P3(3, 2, 1) we studied in Examples 1.1.2, 1.1.3 and 1.1.4, but now from
the viewpoint of these as (3 − 3)- and (3 − 2)-dimensional faces. The
(3 − 3)-dimensional faces (vertices) are in bijection with compositions
of I = {1, 2, 3} into k = 3 disjoint parts. That is, compositions of the
form I = {1} ⊔ {2} ⊔ {3} and I = {2} ⊔ {3} ⊔ {1}. Let us find the
corresponding vertex for the composition I = {1} ⊔ {2} ⊔ {3}. Since
S1 = {1} and |S1| = |1|, the 1st coordinate should be the largest element
of I, which is 3. Since S2 = {2} and |S2| = 1, the 2nd coordinate should
be the largest remaining element of I, which is 2 (since 3 is already the
1st coordinate). This leaves 1 as the 3rd coordinate, which we see from
the composition of S3 = {3}.
The (3− 2)-dimensional faces (edges) are in bijection with compositions
of I = {1, 2, 3} into k = 2 disjoint parts, such as I = {2, 3} ⊔ {1} and
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I = {2} ⊔ {1, 3}. Let us find the vertices of the edges corresponding to
these compositions, starting with I = {2, 3} ⊔ {1}. From S1 = {2, 3} we
get the vertices we are searching for have the |S1| = 2 largest elements
of I as their 2nd and 3rd coordinate, hence the vertices of this edge are
(1, 2, 3) and (1, 3, 2). For the composition I = {2} ⊔ {1, 3}, S1 = {2}
means the 2nd coordinate of the vertices of the corresponding edge is
the largest element of I, which is 3. S2 = {1, 3} means the 1st and 3rd
coordinates are the |S2| = 2 largest remaining elements of I, which are
(in this case the only remaining elements) 1 and 2. Hence the vertices
are (1, 3, 2) and (2, 3, 1). Let us redraw Figure 1.3, but this time with the
edges marked by their corresponding compositions, see Figure 1.4.

213 312

321

231132

123

{1, 3} ⊔ {2}

{1
} ⊔

{2
, 3
}

{1, 2} ⊔
{3}

{2} ⊔ {1, 3}

{2
, 3
} ⊔

{1
}

{3} ⊔
{1, 2}

Figure 1.4: The edges of P3(3, 2, 1) marked with the corresponding composition
of I into k = 2 disjoint parts.

• Total number of faces: We recall first the notion of a strict weak ordering
on a set I of n elements. A strict weak ordering is an ordered sequence
of the elements of I that allows ties. The typical example is from horse
racing. Usually there is a total order on the set of horses given by the
order in which they finish the race. However, in the case of a photo finish
in which no faster horse can be determined, the horses in the photo finish
would be considered tied. This would give a strict weak ordering, not a
total ordering. As previously mentioned, the (n − k)-dimensional faces
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are in bijection with certain compositions of I into k non-empty subsets.
These compositions are in bijections with weak orderings of k subsets
representing the elements that are tied, where all elements in the first
subset are tied amongst themselves and larger than those in the second,
which in turn are tied amongst themselves and larger than those in the
third, and so on. Therefore, when we take the sum of all the faces, we
actually count the number of strict weak orderings on I. This number is
precisely the ordered Bell number, a(n). The first 7 ordered Bell numbers
can be seen in Table 1.2.

n a(n)
0 1
1 1
2 3
3 13
4 75
5 541
6 4683

Table 1.2: The first 7 ordered Bell numbers.

Example 1.1.6. We see from Table 1.2 that a(3) = 13. From previous
examples and figures we’ve seen that P3(3, 2, 1) has 6 vertices, 6 edges
and one 2-dimensional face (the entire permutohedron). Hence the total
number of faces is 6+6+1 = 13 = a(3). We’ve already seen in Figure 1.4
how each edge corresponds to a composition of I into 2 disjoint parts. We
will now see how two of these compositions correspond to weak orderings
on I.

Take {1, 3} ⊔ {2} as an example. The vertices of this edge are such that
the 1st and 3rd coordinates are the 2 largest elements of I. Both are
larger than the 2nd coordinate, which is always 1. We may write this
weak ordering as a > b, c > b, where a corresponds to the 1st coordinate,
b to the 2nd, and c to the 3rd. a and c are not comparable, since for
vertices (2, 1, 3) and (3, 1, 2) of this edge we have a < c for the first vertex,
but c < a for the second vertex. Therefore we consider these tied for this
weak ordering. Similarly, the composition {3}⊔{1, 2} corresponds to the
weak ordering c > a, c > b.
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Example 1.1.7. Let us consider P4(4, 3, 2, 1). P4(4, 3, 2, 1) is a truncated oc-
tohedron, see Figure 1.5. It consists of 4! = 24 nodes and 4!(4−1)

2
= 36 edges.

There are two kinds of facets; squares and regular hexagons. The total number
of faces is simply the ordered Bell number a(4), which we see from Table 1.2
is 75.

Figure 1.5: P4(4, 3, 2, 1) is a truncated octahedron.

We will now take a closer look at the facets of P4(4, 3, 2, 1). We see
P4(4, 3, 2, 1) has 24 − 2 = 14 facets. The facets correspond to compositions
of I = {1, 2, 3, 4} into 2 disjoint parts, for which there are two choices: One
set of size 1 and one set of size 3, or two sets of size 2. If we study any hexag-
onal facet of P4(4, 3, 2, 1) in Figure 1.6, we see all the vertices of that facet has
either 1 or 4 in the same coordinate-position. Consider the facet F of vertices
(1, 2, 4, 3), (1, 3, 4, 2), (1, 4, 3, 2), (1, 4, 2, 3), (1, 3, 2, 4) and (1, 2, 3, 4) as an ex-
ample; every vertex has 1 as its 1st coordinate. Or consider the facet F′ of
vertices (2, 4, 3, 1), (3, 4, 2, 1), (3, 4, 1, 2), (2, 4, 1, 3), (1, 4, 2, 3) and (1, 4, 3, 2);
all of these vertices have 4 as their 2nd coordinate.

This is because the hexagonal facets correspond to compositions of the
form S1 ⊔ S2 with either |S1| = 1, |S2| = 3 or |S1| = 3, |S2| = 1. For the
case |S1| = 1, whatever coordinate is given by the one element in S1 must
be the largest element of I, namely 4. In the second case of |S1| = 3, 1 is
placed according to the only element of S2. F corresponds to the composition
{2, 3, 4} ⊔ {1} and F′ corresponds to the composition {2} ⊔ {1, 3, 4}.
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1432

2134

2143
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2341
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3124

3142

3214

3241
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4123

4132

4213
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4312

4321

e1 − e2 e1 − e3 e1 − e4 e2 − e3 e2 − e4 e3 − e4

Figure 1.6: A closer look at P4(4, 3, 2, 1).

The edges as always connect two vertices if they are obtained from each
other by swapping the position of two consecutive numbers. For I = {1, 2, 3, 4},
this allows for swapping 1 and 2, 2 and 3, and 3 and 4. Consider the vertices
(3, 1, 2, 4) and (2, 1, 3, 4). (3, 1, 2, 4) is connected to (2, 1, 3, 4), as we obtain
one from the other by swapping 2 and 3. As (3, 1, 2, 4) and (2, 1, 3, 4) differ in
a swap of the 1st and 3rd coordinates, the edge connecting them is a parallel
translate of the vector e1 − e3. We draw each edge a specific color depending
on which vector ei − ej the edge is a parallel translate of in Figure 1.6.
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Example 1.1.8. Consider the standard permutohedron P5(5, 4, 3, 2, 1). We
see from Table 1.2 that a(5) = 541, hence this permutohedron has 541 faces in
total. If we wish to study its 2-dimensional faces we look at compositions of
{1, 2, 3, 4, 5} into 3 non-empty subsets. From Table 1.1 we see

{
5
3

}
= 25, hence

P5(5, 4, 3, 2, 1) has 3! ∗ 25 = 150 2-dimensional faces in total. There are two
possible ways of composing {1, 2, 3, 4, 5} into 3 non-empty subsets:

• One set of size 3 and two sets of size 1:

The three sets can be ordered in 3 ways; 311, 131, 113. For the set of 3
elements there are

(
5
3

)
= 10 choices of elements from I, leaving only 2

possible choices for the other two sets of size 1. Taking the orderings of
the 3 sets in consideration, there are a total of 60 such compositions out
of the total 150.

• Two sets of size 2 and one set of size 1:

The three sets can be ordered in 3 ways; 122, 212, 221. For the first set
of 2 elements there are

(
5
2

)
= 10 choices of elements from I, with

(
3
2

)
= 3

choices remaining for the other set of size 2, forcing the remaining element
for the set of size 1. Taking the 3 orderings of the sets in consideration,
there are a total of 3 ∗ 3 ∗ 10 = 90 such compositions out of the total 150.

An example of a composition of the first kind is {1, 2, 3} ⊔ {4} ⊔ {5}. The
vertices in the corresponding face will be of the form (x, y, z, 2, 1), where the
first 3 coordinates correspond to one of the 6 permutations of {3, 4, 5}. Ex-
amples of such points are (4, 3, 5, 2, 1) and (3, 5, 4, 2, 1). Letting {a, b, c, d, e}
represent respectively the five coordinates of a point in R5, the composition
{1, 2, 3}⊔{4}⊔{5} corresponds to the strict weak ordering a = b = c > d > e.

For the composition {2, 4, 5} ⊔ {3} ⊔ {1} we get points such as (1, 3, 2, 4, 5)
and (1, 5, 2, 3, 4); the largest 3 numbers make up the 2nd, 4th and 5th coordi-
nates, the 3rd coordinate is 2, and the 1st coordinate is 1. This corresponds
to the strict weak ordering b = d = e > c > a. If we swap around the order of
the composition and look at {1} ⊔ {3} ⊔ {2, 4, 5}, we would now have the 1st
coordinate always being 5, the 3rd coordinate always being 4, and the remain-
ing 2nd, 4th and 5th coordinates being a permutation of {1, 2, 3}. Examples
of such points are (5, 1, 4, 3, 2) and (5, 2, 4, 1, 3).
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There are other ways of representing permutohedra than as convex hulls.
We recall the standard scalar product given by

⟨x, y⟩ :=
n∑

i=1

xiyi, x, y ∈ Rn.

Any hyperplane separates Rn into two parts which we call half-spaces. We will
describe hyperplanes H and their two associated closed half-spaces H− and
H+ as follows:

H = {x ∈ Rn | ⟨a, x⟩ = b}
H− = {x ∈ Rn | ⟨a, x⟩ ≤ b}
H+ = {x ∈ Rn | ⟨a, x⟩ ≥ b}

for some vector a ∈ Rn and scalar b ∈ R, see Figure 1.7 for an example.

a

H
H+

H−

Figure 1.7: A hyperplane in R2. It separates the plane into two half-spaces.

The permutohedron was defined earlier as a convex polytope. We recall that
convex polytopes are bounded polyhedrons (and vice versa), where a bounded
polyhedron is a bounded intersection of finitely many closed half-spaces. We
can describe the permutohedron Pn(x1, x2, . . . , xn) as a bounded polyhedron as
follows: For a set I = {i1, i2, . . . , in} we define the real vector space RI, which
consists of vectors of the form r1i1 + r2i2 + · · ·+ rnin, for all r1, r2, . . . , rn ∈ R.
We identify the vector r1i1 + r2i2 + · · ·+ rnin with the I-tuple (r1, r2, . . . , rn).
The only purpose of the ij’s in I is as the basis for RI. In this sense, RI is
essentially the same as Rn, where n = |I|. From now on we will refer to the
basis-vectors of RI as ei to distinguish them from the elements i ∈ I. Keeping



1.1. THE PERMUTOHEDRON 13

in mind our convention xi ≥ xi+1 for all i ∈ {1, 2, . . . , n−1}, Pn(x1, x2, . . . , xn)
is the set of solutions (ri)i∈I of the following system of one equality and 2n − 2
inequalities: ∑

i∈I

ri = x1 + x2 + · · ·+ xn (1.3)∑
i∈A

ri ≤ x1 + x2 + · · ·+ x|A|, for A ⊂ I, |A| ≠ 0

Note that one can alternatively write this system of (in)equalities as∑
i∈I

ri = x1 + x2 + · · ·+ xn (1.4)∑
i∈A

ri ≥ xn + xn−1 + · · ·+ xn−|A|+1, for A ⊂ I, |A| ≠ 0

For an example of how these two alternative systems of equations describe
the same permutohedron, see the construction of P2(2, 1) in Example 1.1.9. We
also construct the standard permutohedra P3(3, 2, 1) as a bounded polyhedron
in Example 1.1.10.

Example 1.1.9. Let I = {1, 2}. According to the definitions the standard
permutohedron P2(2, 1) is equally described by the solutions to the following
two systems of (in)equalities:

r1 + r2 = 3 r1 + r2 = 3

r1 ≥ 1 r1 ≤ 2

r2 ≥ 1 r2 ≤ 2

As we see in Figure 1.8, these systems describe the same region of R2. It
should not be hard to convince ourselves why. The hyperplane r1 + r2 = 3
under the "restriction" r1 ≥ 1 implies r2 ≤ 2, and r2 ≥ 1 implies r1 ≤ 2, and
vice versa for the second system of equations.
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r1

r2

1 2 30

1

2

3

r1

r2

1 2 30

1

2

3

Figure 1.8: P2(2, 1) constructed as a polyhedron using the two systems of
(in)equalities.

Example 1.1.10. We define [n] := {1, 2, . . . , n}. The standard permutohedron
π[n] = Pn(n, n− 1, . . . , 1) is the set of solutions (ri)i∈[n] of the following system:∑

i∈I

ri = n+ (n− 1) + · · ·+ 1∑
i∈A

ri ≥ 1 + 2 + · · ·+ |A|, for A ⊂ I, |A| ≠ 0

In Example 1.1.1 we saw that π[3] was a regular hexagon with the 6 permu-
tations of (1, 2, 3) as its vertices. We can likewise construct π[3] using the defini-
tion above. Letting I = {1, 2, 3}, we get the following system of (in)equalities:

r1 + r2 + r3 = 6 r1 + r2 ≥ 3 r1 ≥ 1

r1 + r3 ≥ 3 r2 ≥ 1

r2 + r3 ≥ 3 r3 ≥ 1

Each of the inequalities defines a hyperplane and its positive half-space,
with that hyperplane fully intersecting exactly one of the polyhedron’s facets.
In the top-left of Figure 1.9 we see the three hyperplanes defined by the first
three inequalities, with normal vectors pointing into each hyperplane’s respec-
tive positive half-space. The top-right shows the corresponding for the last
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three inequalities. Finally, taking the intersection of all the positive half-spaces
in the top-left and top-right part of Figure 1.9, together with the intersection
of the hyperplane r1 + r2 + r3 = 6, we get π[3] as seen at the bottom of Figure
1.9.

r1

r2

r3 r 1
+
r 2
=
3r 1

+
r 3

=
3

r2 + r3 = 3

r1

r2

r3 r 1
=
1

r 2
=
1

r3 = 1

r1

r2

r3

1

1

1 2

2

2
3

3

3

Figure 1.9: π[3] constructed as a polyhedron.

Example 1.1.11. When the values of the xi’s are not in arithmetic progression
we get less symmetric permutohedra. If we also allow for some of the xi’s to
be equal, the face-structure degenerates into "smaller" polytopes. Taking P3

as an example: As we saw in Example 1.1.1 and Figure 1.1, the standard
permutohedron P3(3, 2, 1) is a hexagon. Consider P3(4, 3, 0). As we see in
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Figure 1.10: The permutohedra P3(4, 3, 0), P3(2, 2, 1) and P3(6, 6, 6).

Figure 1.10, P3(4, 3, 0) is also a hexagon, but not a regular hexagon. If we
instead consider P3(2, 2, 1) we no longer get a hexagon, but a triangle. Finally
when we let all the xi be equal, say P3(6, 6, 6), we just get a single point.
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1.2 Normal fans and the braid arrangement

We begin this section by first considering a hyperplane H intersecting some
convex polytope p. As mentioned, H is described by a single linear equation
of the form ⟨a, x⟩ = b. Keeping the vector a fixed, we can translate H parallel
to a by varying the value of b. For certain values of b the hyperplane will still
intersect p, but for other values H will "leave" p, that is, H ∩ p = ∅. Crucially,
if we imagine ourselves slowly and steadily increasing/decreasing the value of
b until H is just about to leave p, there will come a point where H intersects a
single face F ⊆ p with the rest of p lying completely on one side of H, that is,
either p ⊆ H+, p ∩H ̸= ∅ or p ⊆ H−, p ∩H ̸= ∅. We call such a hyperplane
a supporting hyperplane.
Example 1.2.1. Let V = {(4, 3), (4, 4), (6, 5), (7, 2.5)} and consider the convex
polytope p in R2 with V as its vertex set, and let a = (1, 2) ∈ R2 be a vector.
Let H be the hyperplane defined by the linear equation ⟨a, x⟩ = b, for b ∈ R,
that is, x + 2y = b. As long as 10 ≤ b ≤ 16, the corresponding hyperplane
will intersect p. b = 10 and b = 16 are precisely the two values that give the
supporting hyperplanes normal to the vector a = (1, 2). Since b = 16 is the
largest such b-value, we say the corresponding face of p, which is just the vertex
v, is the a-maximal face of p (see Figure 1.11).
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1

2

3

4
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6

7

a
b = 7

b = 10

b = 13

b = 16

b = 19
p

u

v

Figure 1.11: A convex polytope p and some hyperplanes normal to [1, 2] ∈ R2.
The hyperplanes corresponding to b ∈ {10, 16} support p; the one correspond-
ing to b = 16 gives the [1, 2]-maximal face of p, which is the vertex v.
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For the remainder of this section, definitions are taken from [1] unless other-
wise specified. Based on the preceding example of a hyperplane and a maximal
value b corresponding to a face, we will define the notion of directions and max-
imal faces in the framework of RI and RI .

Definition 1.2.1. We let RI := {functions y : I → R} be the dual vector
space to RI. We call the elements y ∈ RI directions. Such directions y act as
linear functionals on RI by y(

∑
i∈I riei) =

∑
i∈I y(i)ri for all

∑
i∈I riei ∈ RI.

We may sometimes write ai for y(i). We let {1i | i ∈ I} be the basis of RI dual
to the basis {ei | i ∈ I} of RI. For any subset S ⊆ I we write 1S :=

∑
i∈S 1i,

such that for any (ri)i∈I ∈ RI we have 1S((ri)i∈I) =
∑

i∈S ri.

For a quick example consider the set I = {a, b, c, d}. The basis of RI is
{ea, eb, ec, ed} and the basis of RI is {1a, 1b, 1c, 1d}. Letting S = {a, c} ⊂ I and
r = (2, 4, 1, 0) ∈ RI, we get 1S(r) = 2 + 1 = 3.

Definition 1.2.2. Let p ⊆ RI be a polyhedron and y ∈ RI a direction, we
then define the y-maximal face of p to be

py := {F ⊆ p | y(F) ≥ y(a) ∀ a ∈ p} (1.5)

Here we must be careful since the notation y(F) is in general not well-
defined. In Equation 1.5, y(F) is uniquely valued for that face, in the sense
that y(p) is equal for all points p ∈ F. However for other faces F′ ⊆ p, y(F′)
may take several values depending on which point p′ ∈ F′ one supplies y.

Example 1.2.2. Consider again the polytope p of Example 1.2.1, seen in
Figure 1.11. Let I = {1, 2} and a ∈ RI the direction such that a(r1e1+r2e2) =
r1 + 2r2. Then pa = v, as the vertex v = (6, 5) is the face of p that maximizes
the value of t in the equation r1 + 2r2 = t. If we instead consider a′ ∈ RI for
which a′(r1e1 + r2e2) = −r1 − 2r2, we now get pa′ = u, as the vertex u = (4, 3)
is the face of p that maximizes the value of t′ in the equation −r1 − 2r2 = t′.
As a small demonstration of pa = v and pa′ = u:

16 = 1 ∗ 6 + 2 ∗ 5 = a(v) > a(u) = 1 ∗ 4 + 2 ∗ 3 = 10

−16 = −(1 ∗ 6 + 2 ∗ 5) = a′(v) < a′(u) = −(1 ∗ 4 + 2 ∗ 3) = −10

For any point f ∈ p− {u, v} we have 10 < a(f) < 16 and −16 < a′(f) < −10.
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As one might guess from studying Figure 1.11, the direction a(r1e1+r2e2) =
r1 + 2r2 is not the only direction with v as its maximal face. As an example,
for c(r1e1 + r2e2) = r2 and d(r1e1 + r2e2) = r1 + r2 we have pa = pc = pd = v.
This motivates the definitions of normal cones and the normal fan.

Definition 1.2.3. For every face F ⊆ p, p a polyhedron, we define the open
and closed normal cones of F as follows:

Co
p(F) := {y ∈ RI | F = py}
Cp(F) := {y ∈ RI | F ⊆ py}

The normal fan Np is the polyhedral fan consisting of Cp(F) for each face F ⊆ p.

Example 1.2.3. Consider the standard permutohedron π[3], pictured head-on
in Figure 1.12. For each edge there is one "half" of a hyperplane such that
any directions in that half has that edge as its maximal face; these normal
cones (hyperplane "halves") are drawn as dashed lines. For each vertex the
corresponding normal cone consists of a much larger range of directions than
any cone for an edge; these vertex-cones are drawn as colored triangles. Keeping
in mind that we are looking at π[3] head-on in Figure 1.12, these vertex-cones
are 3-dimensional. The open cone to the left is Co

p(f). It is the set of directions
y for which py is exactly f . The two dashed lines bordering Co

p(f) are the cones
of the edges af and ef ; note that both of these edges contain f . Hence, if we
consider these two cones (dashed lines) together with Co

p(f), i.e. we look at the
closure of Co

p(f), this would then be the set of all directions y such that f is a
face of py. This is precisely Cp(f).

r1r3

r2

a b

c

de

f

Figure 1.12: The standard permutohedron π[3] and its normal fan. Note that
the normal fan actually lives in the dual space, but for the sake of visualization
we draw it "together" with π[3] in Rn.
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Definition 1.2.4. Let Hij := {y ∈ RI | y(i) = y(j), i ̸= j} be the hyperplane
in RI with i-th and j-th coordinates being equal. The braid arrangement
consists of all the hyperplanes Hij in RI .

Since each equation y(i) = y(j) describing one of these hyperplanes Hij is
just a choice of 2 elements of I, which has n elements in total, there are

(
n
2

)
such hyperplanes in total. The normal fan NπI

is then the set of faces of the
braid arrangement BI .

Example 1.2.4. Consider again Figure 1.12 where we drew Nπ[3]
. The normal

cones for the edges were drawn as 6 dashed lines, but as mentioned in Example
1.2.3 each of these 6 dashed lines is a "half" of a hyperplane. What we have
actually drawn are 3 "full" hyperplanes, which are precisely the 3 hyperplanes
of the braid arrangement B[3]. These 3 hyperplanes are respectively described
by the equations r1 = r2, r1 = r3 and r2 = r3. Seen from the side instead
of head-on, we see in Figure 1.13 how these three hyperplanes correspond to
the dashed lines in Figure 1.12. The open normal cones of the vertices are the
empty spaces between the hyperplanes.

r1

r2

r3

r 1
=
r 2

r
1 =

r
3

r2 = r3

Figure 1.13: Nπ[3]
as the set of faces of the braid arrangement B[3].
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Example 1.2.5. π[4] is a truncated octahedron, as seen in Figure 1.14. At-
tempting to draw the braid arrangement for π[4] is a pointless endeavor, so
instead we will draw one of the normal cones of a vertex in π[4] in Figure 1.14
as an example. The vertex we wish to find the normal cone of has been high-
lighted in red (top left). We proceed by drawing the directions of the normal
cones of the three facets which contain that vertex (top right). From these we
find the normal cones of the edges the vertex is a face of by considering each
possible pairing of facet normal cones, and then "filling in the area" which they
span (bottom left). These edge normal cones form the closure of the vertex
normal cone we are looking for, and so we can now imagine "filling in the vol-
ume" spanned by them. This gives us the normal cone of the wanted vertex
(bottom right). Note that here we have actually drawn the closed normal cone
for the vertex, since we have included the cone’s closure in the drawing.

Figure 1.14: π[4] and the closed normal cone of one of its vertices.
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We recall from earlier that the (n−k)-dimensional faces of πI are in bijection
with the compositions of I into k parts. The bijection was such that the
composition I = S1⊔S2⊔· · ·⊔Sk corresponded to the face of πI whose vertices
had S1 giving the coordinates of the |S1| largest elements of I, S2 giving the
coordinates of the |S2| largest elements of I − S1, and so on. We denoted this
face as πS1,S2,...,Sk

. Similarly the braid arrangement is also in bijection with the
compositions of I in the following sense: Letting again S1 ⊔ S2 ⊔ · · · ⊔ Sk be
a composition of I we get the face BS1,S2,...,Sk

⊆ BI of directions y ∈ RI , such
that for i, j ∈ Sa and k ∈ Sb with a < b we have y(i) = y(j) > y(k). The y
maximal face of such a direction y is then (πI)y = πS1,S2,...,Sk

. In this way the
face BS1,S2,...,Sk

can be thought of as the dual of the face πS1,S2,...,Sk
.

Example 1.2.6. In Example 1.1.8 we had the composition {2, 4, 5}⊔{3}⊔{1}
of I = {1, 2, 3, 4, 5}. This composition corresponds to the face π{2,4,5},{3},{1}
with vertices (1, 5, 2, 4, 3), (1, 5, 2, 3, 4), (1, 4, 2, 5, 3), (1, 4, 2, 3, 5), (1, 3, 2, 5, 4),
(1, 3, 2, 4, 5). The composition also corresponds to the face B{2,4,5},{3},{1} ⊆ B[5]

of directions y ∈ R[5] such that y(2) = y(4) = y(5) > y(3) > y(1). For
directions y in B{2,4,5},{3},{1} the y-maximal face π[5]y = π{2,4,5},{3},{1}.

For another example we look back to Figure 1.12. The edge cd corresponds
to the composition I = {1, 2} ⊔ {3}. Likewise it also corresponds to the face
B{1,2},{3} of directions t ∈ R{1,2,3} such that t(e1) = t(e2) > t(e3). These are
exactly the directions in the normal cone Co

π[3]
(cd) for the edge cd, that is, the

directions t for which cd is the t-maximal face.
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1.3 Generalized permutohedra

Throughout this section, any claims and definitions are taken from [1] unless
otherwise specified. From Example 1.2.4 and Example 1.2.5 it should not be
hard to convince oneself that the dimension of the normal cone of a dim(F)-
dimensional face F ⊆ π[n] is simply n− dim(F). In particular normal cones of
facets are 1-dimensional, which will be used for the construction of generalized
permutohedra. Before we define generalized permutohedra, we first recall the
notions of refinement and coarsening for polyhedral normal fans. We say a
normal fan Np is a coarsening of the normal fan Nq if every cone of Np is a
union of cones of Nq. Equivalently we could say Nq is a refinement of Np.

Definition 1.3.1. A generalized permutohedron p ⊆ RI is a polyhedron with
normal fan Np such that Np is a coarsening of the braid arrangement BI .

Example 1.3.1. Intuitively we may think of coarsening a normal fan of a per-
mutohedron as translating the facets of the permutohedron along their normal
cones (which as we said are always 1-dimensional), but not past any vertices.
Alternatively we can start moving a vertex while maintaining the same ori-
entations of all the edges (which usually implies that moving a single vertex
requires moving several other vertices at the same time).

Take Nπ[3]
as an example, as seen head-on to the left in Figure 1.15. For

the first approach, we imagine grabbing hold of edge cd and pulling it outwards
from the center, along its normal cone. After pulling a little, the edge cd has
become shorter while the edges bc and de have been lengthened to compensate.
If we pull enough on the edge cd it will eventually degenerate into a single
vertex, at which point we have to stop pulling (recall we may translate the
facets along the normal cone, but not past any vertices). The rightmost normal
fan in Figure 1.15 is a coarsening of Nπ[3]

to the left; every cone in the rightmost
normal fan is a union of cones of Nπ[3]

to the left. Therefore the pentagon we
have constructed is a generalized permutohedron.

For the second approach of moving a vertex while preserving edge orienta-
tions, we can again look to Figure 1.15. Here we can imagine grabbing onto d
and moving it. Since we must preserve edge orientations, the way we move d
will also move other vertices. In the case of moving d eastward (middle part of
Figure 1.15), we see we also have to move c along a vector parallel to the edge
bc to compensate. Eventually the vertices c and d meet and degenerate into a
single vertex h.
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Figure 1.15: Constructing a generalized permutohedron by pulling an edge of
π[3] along its normal cone until the edge degenerates into a single vertex.

We notice also that instead of imagining ourselves pulling on the edge cd
until it degenerated into a single vertex, we would end up with the same result
if we just erased the open normal cone of cd and then lengthened the edges bc
and de until they intersect. We show this approach in Figure 1.16.
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c

de

f

a b

e

f
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e

f

Figure 1.16: Constructing a generalized permutohedron by removing a facet’s
normal cone from Nπ[3]

and extending edges to compensate.

Example 1.3.2. Of course, we are not just limited to pulling facets outwards,
we can also imagine pushing a facet inwards until it is about to move past
any vertices. Consider again Nπ[3]

, pictured head-on to the left in Figure 1.17.
Again we imagine grabbing hold of edge cd, but this time we push it towards
the center of π[3]. This time cd is extended while edges bc and de are shortened.
Eventually the vertex pairs b, c and d, e degenerate into single vertices k and
l respectively. Since the edges bc and de have vanished, so have their normal
cones. The remaining normal cones are all unions of normal cones of Nπ[3]

,
hence we have constructed a generalized permutohedron.
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Figure 1.17: Constructing a generalized permutohedron by pushing a facet
inwards along its normal cone.

Example 1.3.3. Here we will give two examples starting from π[4]. As men-
tioned earlier, π[4] is a truncated octahedron. A hand-wavy way of describing
the classical construction of the truncated octahedron is by starting with a
octahedron and replacing its vertices with facets. As we recall from Example
1.3.1, one way of making a generalized permutohedron is by pulling facets of
a permutohedron along their normal cones until they degenerate. In other
words, for the truncated octahedron we can "undo" the truncation to get the
regular octahedron (which is therefore a generalized permutohedron). We do
this by pulling the square facets of π[4] drawn in blue in Figure 1.18 until they
degenerate into vertices. As wanted, the resulting generalized permutohedron
is the octahedron.

Figure 1.18: Since π[4] is a truncated octahedron, we can construct the octahe-
dron as a generalized permutohedron by pulling the square facets of π[4] (drawn
in blue) along their normal cones until they degenerate into vertices.
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For our second generalized permutohedron we have drawn π[4] with two
facets in red and two facets in the part of Figure 1.19 labeled A. We will
push the red facets inwards and pull the blue facets outwards. This gives the
generalized permutohedron labeled E in Figure 1.19. Since π[4] is a more com-
plicated polytope than π[3], we will for this example only do one push/pull at
a time. This way we also get to see in more detail how these actions transform
the polytope, and as an added benefit we get several examples of generalized
permutohedra "for free" along the way. In steps A, B, C and D the arrow
indicates which face will be pushed/pulled next.

A B

C
D

E

Figure 1.19: Constructing a generalized permutohedron from π[4] by pushing
inwards the facets drawn in red and pulling outwards the facets drawn in blue.
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As one might have noticed from Figure 1.17, the generalized permutohedron
we get from pushing edge cd inwards has the same normal fan as the generalized
permutohedron we would get by pulling edges bc and de outwards, as seen in
Figure 1.20. Although these generalized permutohedra have the same normal
fan, they are not equal. This is an example of normal equivalence. More
generally, we say polyhedra p and q are normally equivalent if Np = Nq. We
denote this by p ≡ q.

a b

c

de

f

a b

c

de

f

a k

l

f

Figure 1.20: Constructing a generalized permutohedra normally equivalent to
the one in Figure 1.17.

Example 1.3.4. One should take note that under the "rules" given here for
constructing generalized permutohedra, it is also possible to construct un-
bounded generalized permutohedra. Consider the generalized permutohedron
of Figure 1.20. Think now of what happens if we remove the open normal cone
of edge kl and extend edges fl and ak to compensate. The extended edges will
never intersect, and will therefore extend forever, as we see in Figure 1.21.

a k

l

f

a

f

Figure 1.21: An example of an unbounded generalized permutohedron.
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As the generalized permutohedra are constructed by coarsening the normal
fan of permutohedra, it should be clear that the faces of generalized permuto-
hedra are in correspondence to compositions of I, just as the faces of the per-
mutohedra are (recall that generalized permutohedra live in RI). One should
note however that there is no longer a bijection. Just look to Figure 1.20 as an
example. The unique compositions corresponding to the open cones of vertices
d and e respectively would both correspond to the open cone of vertex l in
the generalized permutohedron we constructed. There is also the possibility
for a composition of I to not correspond to any face at all. Look to Figure
1.21; because the generalized permutohedron is unbounded, there are several
compositions of I which do not correspond to a face. We must therefore be
slightly careful when defining the correspondence.

We recall from our definition of Co
p(F) for a face F of polyhedron p that it

is the set of all directions y ∈ RI such that py = F. Hence for a composition
I = S1 ⊔ S2 ⊔ · · · ⊔ Sk and a generalized permutohedron p ⊆ RI, if there is
a direction y ∈ Bo

S1,S2,...,Sk
for which p is bounded, then p is bounded for all

directions y ∈ Bo
S1,S2,...,Sk

. This is because all y ∈ Bo
S1,S2,...,Sk

give the same
y-maximal face py. We then define pS1,S2,...,Sk

:= py for any y ∈ Bo
S1,S2,...,Sk

. For
the remainder of this thesis every generalized permutohedron we study will be
bounded, and so one needs not worry about this.
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1.4 Submodular functions and the base polytope

Submodular functions are closely related to generalized permutohedra by the
base polytope; every generalized permutohedron is equal to the base polytope
for some submodular function. The literature doesn’t appear to agree on one
particular definition of submodular functions. [1] defines the co-domain to be
R, and sets no particular upper bound of the image of each input. [4] meanwhile
defines the co-domain to be Z, and sets a specific upper limit for the image of
each possible input. We unite the definitions given in [1] and [4] as follows:

Definition 1.4.1. Let I be a finite set with power-set 2I . A function z : 2I → R
is submodular if it satisfies the following conditions (Z1-Z4):

(Z1) z(∅) = 0

(Z2) ∀X ⊆ I : 0 ≤ z(X)

(Z3) X ⊆ Y ⊆ I =⇒ z(X) ≤ z(Y )

(Z4) ∀X, Y ⊆ I : z(X ∪ Y ) + z(X ∩ Y ) ≤ z(X) + z(Y )

It is well-known (and sometimes stated as a defining condition in place of
(Z4)) that submodular functions have the diminishing return property [1, 3, 10]
(in fact a function satisfies (Z4) if and only if it has the diminishing return
property [1, 3]), which we define here:

Definition 1.4.2. A set function z : 2I → R is said to have the diminishing
return property if it satisfies the condition

z(X ∪ {e})− z(X) ≥ z(Y ∪ {e})− z(Y ) (1.6)

for any X ⊆ Y ⊆ I − {e}. In other words, adding {e} to Y will never "cause
a larger increase" than adding {e} to X.

It is a simple exercise to show (Z4) implies the diminishing returns property,
we rephrase the short proof of [3] here: Assume z : 2I → R is a submodular
function, and let X ⊆ Y ⊆ I − {e}. Then by (Z4):

Z(X ∪{e})+ z(Y ) ≥ z((X ∪{e})∪Y )+ z((X ∪{e})∩Y ) = z(Y ∪{e})+ z(X)

Subtracting z(X) and z(Y ) from both sides gives the result.
Each submodular function z is in bijection with a polytope P(z) ⊆ RI

called a base polytope, which is defined as follows:
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Definition 1.4.3. The base polytope P(z) of a submodular function z : 2I → R
is the set

P(z) := {r ∈ RI |
∑
i∈I

ri = z(I) and
∑
i∈A

ri ≤ z(A) ∀A ⊆ I} (1.7)

Example 1.4.1. It shouldn’t be too hard to see the connection between the
permutohedron and the base polytope: Simply compare the definition of the
base polytope to the construction of the permutahedron as a polyhedron us-
ing the system of (in)equalities given by Equation 1.3: The only difference is
replacing sums of xi’s in Equation 1.3 with z(X) in Equation 1.7 for some
X ⊆ I.

Let’s look at πI for {a, b, c} as an example. We wish to make a submodular
function z : 2{a,b,c} → R such that πI = P(z). πI lives in the hyperplane
ra + rb + rc = 6, so we let z(I) = 6. πI is further defined by 6 inequalities; we
list those to the left and add the corresponding z(X) value to the right:

ra + rb ≤ 5 z({a, b}) = 5

ra + rc ≤ 5 z({a, c}) = 5

rb + rc ≤ 5 z({b, c}) = 5

ra ≤ 3 z({a}) = 3

rb ≤ 3 z({b}) = 3

rc ≤ 3 z({c}) = 3

We also impose z(∅) = 0 to satisfy (Z1). It should be clear that z satisfies
(Z2) and (Z3). Showing (Z4) by direct calculation is tedious (we do it once for
Example 1.4.2), and so we will instead use the diminishing return property. We
will do this for the general case of a permutohedron Pn(x1, x2, . . . , xn): Starting
with any 1-element subset A ⊆ {x1, x2, . . . , xn}, the sum on the right-hand-
side of Equation 1.3 is x1. Adding another element e ∈ {x1, x2, . . . , xn}−A to
A gives the sum of 1.3 equaling x1 + x2. As we keep adding elements in this
way, the additional contribution to the sum for any particular element e always
decreases as the number of elements in the set grows; keep in mind xi ≥ xj

for i < j. This naturally implies the diminishing return property, which as
mentioned is equivalent to (Z4).

From the "viewpoint" of Equation 1.3, the acts of pushing/pulling on facets
as described in Examples 1.3.1 and 1.3.2 are simply equal to re-scaling the right-
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hand-side of certain sums of Equation 1.3 while preserving submodularity. See
Example 1.4.2 for an example from this "viewpoint".

Example 1.4.2. We will construct a generalized permutohedron from πa,b,c iso-
morphic to the one we constructed in Figure 1.15. The system of (in)equalities
describing πa,b,c and the submodular function z of the corresponding base poly-
tope are exactly as in Example 1.4.1. In Figure 1.15 we imagined pulling one
edge outwards until it degenerated into a single point, but this time we will do
it from the viewpoint of the system of (in)equalities in Example 1.4.1. Pulling
the edge cd outward in Figure 1.15 corresponds to changing the right-hand-side
of the inequality ra + rb ≤ 5 to ra + rb ≤ 6, see Figure 1.22.
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Figure 1.22: Constructing a generalized permutohedron from the "viewpoint"
of Equation 1.3. Imagining ourselves pulling on the edge uv until it degenerates
is equivalent to changing the inequality ra + rb ≤ 5 to ra + rb ≤ 6.
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The submodular function z whose base polytope equals the generalized
permutohedron we have constructed is then:

z({a}) = 3 z({a, b}) = 6 z({a, b, c}) = 6

z({b}) = 3 z({a, c}) = 5 z({∅}) = 0

z({c}) = 3 z({b, c}) = 5

To show z indeed satisfies (Z4) we calculate z(X∪Y )+z(X∩Y ) ≤ z(X)+z(Y )
for all pairs of X, Y in Table 1.3. The leftmost column specifies X, the header-
row specifies Y .

X \ Y {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
{a} 6 ≤ 6 6 ≤ 6 5 ≤ 6 9 ≤ 9 8 ≤ 8 6 ≤ 8 9 ≤ 9
{b} 6 ≤ 6 6 ≤ 6 5 ≤ 6 9 ≤ 9 6 ≤ 8 8 ≤ 8 9 ≤ 9
{c} 5 ≤ 6 5 ≤ 6 6 ≤ 6 6 ≤ 9 8 ≤ 8 8 ≤ 8 9 ≤ 9
{a, b} 9 ≤ 9 9 ≤ 9 6 ≤ 9 12 ≤ 12 9 ≤ 11 9 ≤ 11 12 ≤ 12
{a, c} 8 ≤ 8 6 ≤ 8 8 ≤ 8 9 ≤ 11 10 ≤ 10 9 ≤ 10 11 ≤ 11
{b, c} 6 ≤ 8 8 ≤ 8 8 ≤ 8 9 ≤ 11 9 ≤ 10 10 ≤ 10 11 ≤ 11
{a, b, c} 9 ≤ 9 9 ≤ 9 9 ≤ 9 12 ≤ 12 11 ≤ 11 11 ≤ 11 12 ≤ 12

Table 1.3: Showing z of Example 1.4.2 satisfies (Z4) by direct calculation.
Each cell displays the calculation z(X ∪ Y ) + z(X ∩ Y ) ≤ z(X) + z(Y ).

Example 1.4.3. Let us find the submodular function of the generalized per-
mutohedron labeled E in Figure 1.19. It is recommended for the reader to
reference the detailed drawing of π[4] in Figure 1.6 while reading this example.
First we identify the facets that are pushed/pulled in Figure 1.19: The square
that is pulled outwards corresponds to the composition {3, 4} ⊔ {1, 2}, again
corresponding to the inequality r3 + r4 ≤ 7. Pulling this facet outwards cor-
responds to changing the inequality r3 + r4 ≤ 7 to r3 + r4 ≤ 8. The square
we push inwards corresponds to {1, 3} ⊔ {2, 4}, which in turn corresponds to
the inequality r1 + r3 ≤ 7. Pushing this facet inwards until edges degenerate
corresponds to changing r1+r3 ≤ 7 to r1+r3 ≤ 6. The hexagon that is pushed
inwards corresponds to the composition {1, 2, 4} ⊔ {3}, pushing this facet un-
til edges degenerate corresponds to changing the inequality r1 + r2 + r4 ≤ 9
to r1 + r2 + r4 ≤ 8. The hexagon that is pulled outwards corresponds to the
composition {2}⊔{1, 3, 4}. Pushing that facet outwards until edges degenerate
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corresponds to changing the inequality r2 ≤ 4 to r2 ≤ 5. Hence the submodular
function z of the generalized permutohedron labeled E in Figure 1.19 is:

z({1, 2, 3, 4}) = 10 z({1, 2, 3}) = 9 z({1, 2, 4}) = 8

z({1, 3, 4}) = 9 z({2, 3, 4}) = 9 z({1, 2}) = 7

z({1, 3}) = 6 z({1, 4}) = 7 z({2, 3}) = 7

z({2, 4}) = 7 z({3, 4}) = 8 z({1}) = 4

z({2}) = 5 z({3}) = 4 z({4}) = 4

z(∅) = 0



2 | Nestohedra

2.1 Minkowski sums, permutohedra, associahe-
dra and hypergraphical polytopes

For this chapter we will describe the construction of nestohedra. We start the
chapter by looking at Minkowski sums and some polytope-constructions using
Minkowski sums.

We recall the Minkowski sum X + Y = {x + y | x ∈ X, y ∈ Y } of non-
empty sets X and Y in Rn. This naturally extends to polyhedra p, q ⊆ RI in
the obvious way: p+ q = {p+ q | p ∈ p, q ∈ q}.

Example 2.1.1. A zonotope is a Minkowski sum of line-segments, and by [1] we
can describe the standard permutohedron as a zonotope as follows: We let ∆ij

be the line-segment connecting ei and ej in RI. The standard permutohedron
πI is then

πI =
∑
i<j∈I

∆ij +
∑
i∈I

eI (2.1)

Note that
∑

i∈I eI is just a translation by the 1-vector. As we mentioned
in Example 1.1.1, the only difference between the regular and standard per-
mutohedron was a translation by the 1-vector, hence excluding

∑
i∈I eI from

Equation 2.1 would simply give the regular permutohedron as a zonotope.
Let us construct π[3] as a zonotope, see Figure 2.1. From Equation 2.1 we

have π[3] = ∆12 + ∆13 + ∆23 + e1 + e2 + e3 (we will ignore the translation by
the [1, 1, 1] vector in our drawing). From a geometric perspective, taking a
Minkowski sum of two polytopes p and q can be thought of as follows: For
every pair of vertices p, q of p, q imagine translating p such that p intersects q,
and recording the new positions of the vertices of p for each such pair. The

34
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Minkowski sum is the convex hull of all those new positions we recorded. We
illustrate this in Figure 2.1.
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+
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∆
13

∆12
+∆13

∆12
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∆
23

∆12 +∆13 +∆23

Figure 2.1: π[3] constructed as a zonotope.

We may also construct n-cubes (n-dimensional hypercubes) as zonotopes.
Let I = [n] and pick any n unit length line segments in RI, all pairwise
perpendicular. The Minkowski sum of these line segments is then an n-cube.
A helpful way of constructing the n-cube is by choosing the line segments as
follows: For each k = 1, 2, . . . , n choose the line segment from the origin to
the point (ri)i∈I , where ri = 1 if i = k and ri = 0 if i ̸= k. Note that this
construction is equivalent to taking the convex hull of every possible point in
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RI whose coordinates are k 1’s and n− k 0’s, for k = 0, 1, . . . , n. We will refer
to this construction as the n-cube or the n-dimensional hypercube.

This construction gives a simple way of describing the faces of the n-cube
as words a1a2 · · · an of n in the alphabet {0, 1, ∗}. Here we consider a word
A to be "contained" in another word B if the letter at position k in B is a ∗
and/or the same letter as in position k in A, for all k = 1, . . . , n. The lattice of
length n words in the alphabet {0, 1, ∗} ordered by inclusion is then isomorphic
to the face lattice of the n-cube, where for a vertex v = (r1, r2, . . . , rn) the
corresponding word is r1r2 · · · rn. The word encoding a k-dimensional face F
contains k ∗’s. We retrieve the (k − r)-dimensional faces contained in F by
replacing r of the ∗’s with 0’s and/or 1’s.

It is an easy exercise to count the number of k-dimensional faces of the
n-cube; it is identical to asking how many words of length n can be formed in
the alphabet {0, 1, ∗}, with each word containing exactly k ∗’s. We imagine
an ordered row of n empty boxes. We may then think of forming a word as
adding one letter from {0, 1, ∗} to each box. First we choose which k boxes to
place the ∗’s in, for which there are

(
n
k

)
possibilities. For any of the remaining

n − k boxes we place either a 0 or a 1, and so for a given placement of ∗’s
there are 2n−k possible ways of adding the 0’s and 1’s. Hence the total number
of k-dimensional faces of the n-cube is

(
n
k

)
2n−k for k = 0, 1, . . . , n. We will

see in Section 3.2 how the faces of the n-cube is in bijection with the faces
of the n-dimensional Pitman-Stanley polytope, which can be constructed as a
nestohedron.

Example 2.1.2. Let l1 be the line segment from (0, 0, 0) to (1, 0, 0), l2 the
line segment from (0, 0, 0) to (0, 1, 0), and l3 the line segment from (0, 0, 0) to
(0, 0, 1). The 3-cube is then the zonotope l1 + l2 + l3, see Figure 2.2. We also
label the faces with words in the alphabet {0, 1, ∗}. The 3-dimensional face
(the entire cube) corresponds to the word ∗ ∗ ∗. Consider the topmost facet
∗1∗. We retrieve its edges by replacing one ∗ with a 0 or a 1; the edges are
01∗, 11∗, ∗10 and ∗11. The edge ∗11 contains the vertices 011 and 111.
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Figure 2.2: The 3-cube with face-labeling.

The n-dimensional associahedron is a polytope whose vertices all correspond
to a parenthesization of a string of n + 2 letters [1]. That is, imagine we are
multiplying n numbers, say s1s2 · · · sn. A parenthesization is then an insertion
of opening and closing parenthesis such that every operation in the multipli-
cation is binary. There is an edge between two vertices if the corresponding
parenthesizations differ in a single application of the law of associativity. A use-
ful construction of the associahedron is Loday’s associahedron, see Definition
2.1.1.

Example 2.1.3. As an example, consider the product abcd. The parenthe-
sizations of abcd are a(b(cd)), a((bc)d), (a(bc))d, ((ab)c)d and (ab)(cd) (no-
tice how every multiplication is binary). By the law of associativity we have
b(cd) = (bc)d, hence we say a(b(cd)) and a((bc)d) differ in a single application
of the law of associativity. If we think of (ab) as a single element, then by
associativity we have (ab)(cd) = ((ab)c)d, and so on for the remaining strings.
We draw the corresponding associahedron in Figure 2.3.
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a(b(cd))

a((bc)d) (a(bc))d

((ab)c)d

(ab)(cd)

Figure 2.3: The 2-dimensional associahedron has as vertices the 5 parenthe-
sizations of abcd.

Definition 2.1.1. Let I be a finite set and ℓ a linear order on I. For i, j ∈ I
with i ≤ j in ℓ let [i, j]ℓ := {c ∈ I | i ≤ c ≤ j in ℓ} denote the interval from i
to j in ℓ. Loday’s associahedron aℓ is then

aℓ =
∑

i≤j in ℓ

∆[i,j]ℓ (2.2)

where ∆[i,j]ℓ is the standard simplex in RT ⊆ RI for T = [i, j]ℓ. When
ℓ is the natural order of [n] we write an for aℓ. We will refer to Loday’s
associahedron as just the associahedron for simplicity’s sake.

Example 2.1.4. The associahedron of Example 2.1.3 is a3, see Figure 2.4.

1

2

3

a3 = ∆1 +∆2 +∆3 +∆12 +∆23 +∆123

Figure 2.4: The 2-dimensional associahedron of Example 2.1.3 realized as a3.
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Another family of polytopes constructed from Minkowski sums are hyper-
graphical polytopes, which as the name suggests are constructed from hyper-
graphs. We will use a similar definition of hypergraphs given in [1]:

Definition 2.1.2. A hypergraph with vertex set I is a collection H of possibly
repeated subsets of I. We call the sets of H multiedges. We will refer to a
multiedge of cardinality 2 as an edge.

A graph is simply a special case of a hypergraph with all multiedges being
edges. One should make note that [1] uses the convention that there is exactly
one copy of ∅ in H whereas other authors may use the convention ∅ /∈ H. Since
the inclusion or exclusion of ∅ in H is not important for our applications we
will simply ignore it.

Example 2.1.5. Let us consider three similar-looking hypergraphs HA, HB

and HC on vertex set I = {1, 2, 3}, see Figure 2.5. HA is simply the com-
plete graph on 3 vertices (no multiedges), so HA = {{1, 2}, {1, 3}, {2, 3}}. To
simplify our notation, we will rewrite sets like {1, 2} as 12. In this simplified
notation we would write HA = {12, 13, 23}. HB has one multiedge containing
all vertices, but no edges. The proper way of writing the multiedge is {1, 2, 3}
which we in our simplified notation write as 123, hence HB = {123}. Lastly,
HC is the complete graph on 3 vertices, but also with one multiedge containing
all vertices. In simplified notation we then write HC = {12, 13, 23, 123}.

1 2

3

HA

{12, 13, 23}
1 2

3

HB

{123}
1 2

3

HC

{12, 13, 23, 123}

Figure 2.5: Three similar-looking yet different hypergraphs on I = {1, 2, 3}.

Our definition of course allows for the slight oddity of a multiedge consisting
of just one vertex. As mentioned earlier, we also allow repeated multiedges.
Let us revisit our hypergraphs HA, HB and HC , but adding and removing a
few multiedges, see HA′ , HB′ and HC′ in Figure 2.6. We draw multiedges of
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cardinality 1 as larger colored vertices. Take special note of how the changes
affect the multiedge-collection of each hypergraph.

1 2

3

HA′

{1, 3, 13, 23}
1 2

3

HB′

{2, 13, 123}
1 2

3

HC′

{12, 13, 23, 23, 123, 123}

Figure 2.6: The three hypergraphs of Figure 2.5 on I = {1, 2, 3}, but adding
and removing some multiedges. The drawing might make it look like there is
only one multiedge {1, 2, 3} in HC′ , there are in fact two such multiedges.

Definition 2.1.3. Given a hypergraph H on vertex set I we construct the
corresponding hypergraphical polytope ∆H as follows: For any J ⊆ I let ∆J be
the standard simplex in RJ ⊆ RI. The hypergraphical polytope ∆H is then

∆H =
∑
J⊆H

∆J (2.3)

Example 2.1.6. Consider the hypergraph HA = {12, 13, 23} of Example 2.1.5.
By Equation 2.3 we have ∆HA

= ∆12+∆13+∆23. This is simply a translation
of π[3], which we constructed in Example 2.1.1. Let us construct the hyper-
graphical polytope ∆HC′ of the hypergraph HC′ depicted in Figure 2.6, see
Figure 2.7.



2.1. MINKOWSKI SUMS, PERMUTOHEDRA, ASSOCIAHEDRA AND
HYPERGRAPHICAL POLYTOPES 41

1 2

3
∆[3]

+ =

+ 2 =

+ 2 =

Figure 2.7: The hypergraphical polytope ∆HC′ constructed from the hyper-
graph HC′ = {12, 13, 23, 23, 123, 123} depicted in Figure 2.6.
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2.2 Building sets and nested sets

We recall the notion of an induced subgraph. Let H be a hypergraph on vertex
set I, and let J ⊆ I. The induced subgraph of H on J is the hypergraph H|J
on vertex set J , with H|J = {E ∈ H | E ⊆ J}. That is, H|J is the collection of
those multiedges of H whose vertices are all in J . The notation H|J is borrowed
from [1], where it is read as "H restricted to J".

Example 2.2.1. Let us consider the hypergraph H = {1, 2, 13, 24, 124} on
vertex set I = {1, 2, 3, 4}. Let J = {1, 3} and K = {1, 2, 4}, and consider
H|J and H|K , see Figure 2.8. For H|J we add all multiedges E ∈ H for which
E ⊆ J . Therefore H|J = {1, 13}. For K we get H|K = {1, 2, 24, 124}.

1 2

3 4

H

{1, 2, 13, 24, 124}
1

3

H|J

{1, 13}
1 2

4

H|K

{1, 2, 24, 124}

Figure 2.8: Two examples of induced subgraphs.

Building sets are a particular kind of hypergraph we can think of as encoding
the "connectedness" of other hypergraphs, as we will see. Let us look at a
simple graph as a motivating example.

Example 2.2.2. Consider the graph G of Figure 2.9. We make the following
observations: It consists of 2 connected components, one being a path of length
4 and the other being the clique on 3 vertices. Consider the vertices 1 and 3.
There is clearly a path from 1 to 3. A way of showing this is by seeing that
the edges 12 and 23 intersect; they both share the vertex 2. That is, because
{1, 2} ∩ {2, 3} ≠ ∅, the induced subgraph G|{1,2}∪{2,3} = G|{1,2,3} is connected.
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1 2 3 4

5 6

7
G

Figure 2.9: A simple graph G for motivating building sets.

Let us try to represent the "connectedness" of G in the following way:
To a collection B we will add all subsets J ⊆ I such that G|J is connected.
The simplest cases are subsets J of cardinality 1; G|J is a graph consisting
of a single vertex, which we consider to be connected, so we add J to B.
Next are the edges, i.e. subsets J of cardinality 2. The induced subgraph
G|J is only connected if its vertices already form an edge in G. Hence we
add all edges of G to B. Next are the subsets of size 3. For G there are
3 subsets J, |J | = 3 such that G|J is connected; these are {1, 2, 3}, {2, 3, 4}
and {5, 6, 7}. Finally there is 1 subset of cardinality 4 satisfying our condi-
tion, which is {1, 2, 3, 4}. Adding all these subsets to B we get the follow-
ing, keeping in mind our shorthand notation {a1, a2, . . . , ak} = a1a2 · · · ak:
B = {1, 2, 3, 4, 5, 6, 7, 12, 23, 34, 56, 57, 67, 123, 234, 567, 1234}. Observe the fol-
lowing for this collection B: It is a hypergraph on vertex set I, {i} ∈ B ∀i ∈ I,
and ∀J,K ∈ B, if J ∩K ̸= ∅ then J ∪K ∈ B. This is exactly the definition
of buildings sets given in [1], see Definition 2.2.1. We draw the hypergraph B
in Figure 2.10. We draw multiedges of cardinality 3 as filled triangles, and the
multiedge of cardinality 4 as a thick outline.

B = {1, 2, 3, 4, 5, 6, 7, 12, 23, 34, 56, 57, 67, 123, 234, 567, 1234}

1 2

3 4

5 6

7

Figure 2.10: B is the building set of the graph G of Figure 2.9.
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Definition 2.2.1. A collection B of subsets of a set I is a building set on I if
it satisfies the following conditions (B1-B2):

(B1) If J,K ∈ B and J ∩K ̸= ∅ then J ∪K ∈ B
(B2) ∀i ∈ I, {i} ∈ B

We say the sets in B are connected ; in the context of building sets of hy-
pergraphs this may be understood as saying the induced subgraph on any set
in B is connected. The maximal sets in B with respect to inclusion are called
connected components. Notice for example in Example 2.2.2 how 1234 and 567
are maximal by inclusion, and that B|1234 and B|567 are the connected compo-
nents of B. We denote the subset of all connected components of B as Bmax.
For B of Example 2.2.2 we get Bmax = {1234, 567}. In the case of |Bmax| = 1
(i.e. the case I ∈ B) we say B is connected. One important family of subsets
of building sets are the nested sets. We use the definition of [1], see Definition
2.2.2.

Definition 2.2.2. Let B be a building set. A subset N ⊆ B is a nested set if
it satisfies the following conditions (N1-N3):

(N1) If J,K ∈ N , then J ⊆ K or K ⊆ J or J ∩K = ∅
(N2) If J1, J2, . . . , Jk ∈ N are pairwise disjoint, then J1 ∪ J2 ∪ · · · ∪ Jk /∈ B
(N3) Bmax ⊆ N

Example 2.2.3. Let B be the building set from Example 2.2.2. By condition
(N3) any nested set N must contain 1234 and 567; notice in particular that
Bmax is itself a nested set for any B. Say we wanted to find a nested set N
of size 3. Since N must contain 1234 and 567, we need to find one more
element of B that we can add while still satisfying (N1) and (N2). It should
not be hard to see we may in fact add any element b ∈ B − Bmax to N . b is
necessarily contained in exactly one of 1234 or 567 and disjoint to the other,
and so N = {b, 1234, 567} satisfies (N1). If b ∈ 1234 then b and 567 are
disjoint with b∪ 567 /∈ B by maximality of 1234 and 567, and vice versa, hence
{b, 1234, 567} satisfies (N2).

Let N = {23, 1234, 567} and let us find another element we can add to
make it a nested set of size 4. Notice that we could add any c ∈ B|567 to N
since 23 and c are contained in separate connected components of B. Consider
instead the elements of B|1234. By (N1) we may not add 12 or 34 to N ; 12 ⊈ 23,
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23 ⊈ 12, 12 ∩ 23 ̸= ∅ and 34 ⊈ 23, 23 ⊈ 34, 34 ∩ 23 ̸= ∅. By (N2) we may
not add 1 or 4 to N ; 1 ∩ 23 = ∅ and 4 ∩ 23 = ∅ with 1 ∪ 23 = 123 ∈ B and
4∪ 23 = 234 ∈ B. The elements we could choose amongst from B|1234 are then
2, 3, 123, 234. Say we add 2 to N = {23, 1234, 567}. We may then also add 123
or 234 (but not both) to get a nested set of size 6. If we added 3 instead of 2
we could still also add one of 123 or 234.

Definition 2.2.3. [9] Let B be a building set. The nested complex N (B) is
the poset of all nested sets in B ordered by inclusion.

Example 2.2.4. Let B = {1, 2, 3, 12, 23, 123} be the building set of the graph
G = {12, 23} on I = [3]; the corresponding nestohedron ∆B is precisely the
associahedron a3 which we drew in Figure 2.4. We construct the nested complex
N (B) in Figure 2.11.

{123}

{1, 123} {2, 123} {3, 123} {12, 123} {23, 123}

{1, 3, 123} {1, 12, 123} {2, 12, 123} {2, 23, 123} {3, 23, 123}

Figure 2.11: The nested complex N (B) of B = {1, 2, 3, 12, 23, 123}.

By Proposition 7.8 in [9], the nested sets of a building set B on I are in
bijection with the B-forests, which we formally define in Definition 2.2.5. Given
a nested set N of B we can intuitively think of forming the corresponding B-
forest by considering N as a poset ordered by inclusion, and for any set in N
we remove any elements of I that appear in a set below it.

Definition 2.2.4. [9] A rooted forest F is a forest where each connected com-
ponent of F has a specific root with either all edges directed towards or away
from that root; here we will use the convention that all edges are directed to-
wards the root. For two nodes A and B of F we say A is a descendant of B if
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they both lie in the same connected component and B lies on the path from
A to the root, and vice versa. If neither A is a descendant of B nor B is a
descendant of A, we say A and B are incomparable. We consider every node
to be a descendant of itself. We denote the set of all descendants of A in F
by desc(A,F ). Note that for the root R of any connected component in F ,
desc(R,F ) is the set of all nodes in that connected component.

As it will always be obvious in the context what B-forest F we are working
with, we will just write desc(a) instead of desc(a,F).

Definition 2.2.5. [9] Given a building set B on I, a B-forest F is a rooted
forest where the nodes are labeled with non-empty sets partitioning I such that
the conditions (F1-F3) are satisfied:

(F1) For any node S, desc(S) ∈ B

(F2) If S1, . . . , Sk are pairwise incomparable nodes, then
k⋃

i=1

desc(S) /∈ B

(F3) If R1, . . . , Rr are the roots of F , then {desc(R1), . . . , desc(Rr)} = Bmax

Example 2.2.5. Let N = {1, 3, 5, 56, 123, 567, 1234} be a nested set for the
building set B of Example 2.2.2. We draw the Hasse diagram (face poset) of
N to the left in Figure 2.12 and corresponding B-forest F to the right.

N
1234

123

1 3

567

56

5

F
4

2

1 3

7

6

5

Figure 2.12: Left: The Hasse diagram of N = {1, 3, 5, 56, 123, 567, 1234}.
Right: The B-forest F isomorphic to N .

To give some examples of descent-sets, we find desc(4) = 1234, desc(2) =
123 and desc(5) = 5. In particular, {desc(4), desc(7)} = {1234, 567} = Bmax,
where 4 and 7 are the roots of F .
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2.3 Nestohedra

Definition 2.3.1. A nestohedron ∆B is a generalized permutohedron con-
structed as a hypergraphical polytope of some building set B

∆B =
∑
J∈B

∆J (2.4)

These generalized permutohedra are particularly nice as we can describe
their full face structure; the faces are in bijection with the nested sets of B,
which in turn are equivalent to B-forests. First, we look at two basic examples.

Example 2.3.1. Consider the path G on vertex set I = {1, 2, 3}, see Figure
2.13. The building set of G is B = {1, 2, 3, 12, 23, 123}. The corresponding
nestohedron is then ∆B = ∆1 +∆2 +∆3 +∆12 +∆23 +∆123. This is precisely
the associahedron a3.

1 2 3G

Figure 2.13: The path G on vertex set I = {1, 2, 3} gives the building set
B = {1, 2, 3, 12, 23, 123}. Hence ∆B is the associahedron a3 of Figure 2.4.

Example 2.3.2. Consider the graph G = {14, 24, 34} depicted in Figure 2.14.
It has building set B = {1, 2, 3, 4, 14, 24, 34, 124, 134, 234, 1234}. We construct
the corresponding nestohedron ∆B in Figure 2.15.

1

23

4G

Figure 2.14: The graph G = {14, 24, 34} from which we build the nestohedron
of Figure 2.15.
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1 2

4

3

∆B

Figure 2.15: The graph G = {14, 24, 34} and corresponding nestohedron ∆B
constructed from the building set B = {1, 2, 3, 4, 14, 24, 34, 124, 134, 234, 1234}.

The face structure of nestohedra is described in Theorem 7.4 and Proposi-
tion 7.5 in [9]. We combine these in Theorem 2.3.1.
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Theorem 2.3.1. Face structure of nestohedra
Let B be a building set on I = [n], and let ∆B be the corresponding nestohedron
and N (B) its nested complex. Every face F ⊆ ∆B corresponds to a nested set
NF ∈ N (B). The face poset of ∆B ordered with respect to reverse inclusion is
isomorphic to N (B). In other words, if we have faces F1 ⊆ F2 ⊆ · · · ⊆ Fk

of ∆B, then NFk
⊆ · · · ⊆ NF2 ⊆ NF1. The dimension of any face F ⊆ ∆B is

n− |NF|, in particular the dimension of ∆B is n− |Bmax|.
Example 2.3.3. Before we give the proof of Theorem 2.3.1 we apply the
theorem to the nestohedron of Example 2.3.2 constructed from the graph G =
{14, 24, 34}. First we find the nested sets, working in order of size 1 to 4. We
recall the building B was B = {1, 2, 3, 4, 14, 24, 34, 124, 134, 234, 1234}. There
is precisely one nested set of size 1, which is simply {1234}. This corresponds
to the single 3-dimensional face of ∆B, which is ∆B itself.

The size 2 nested sets correspond to the facets of ∆B. These nested sets
are all of the form {a, 1234} for a ∈ B − Bmax. This gives the 10 nested sets
{1, 1234}, {2, 1234}, {3, 1234}, {4, 1234}, {14, 1234}, {24, 1234}, {34, 1234},
{124, 1234}, {134, 1234} and {234, 1234}.

The size 3 nested sets correspond to the edges of ∆B. There are 24 such sets:
{1, 2, 1234}, {1, 3, 1234}, {2, 3, 1234}, {1, 14, 1234}, {4, 14, 1234}, {2, 24, 1234},
{4, 24, 1234}, {3, 34, 1234}, {4, 34, 1234}, {1, 124, 1234}, {2, 124, 1234},
{4, 124, 1234}, {14, 124, 1234}, {24, 124, 1234}, {1, 134, 1234}, {3, 134, 1234},
{4, 134, 1234}, {14, 134, 1234}, {34, 134, 1234}, {2, 234, 1234}, {3, 234, 1234},
{4, 234, 1234}, {24, 234, 1234} and {34, 234, 1234}.

The size 4 nested sets correspond to the vertices of ∆B. There are 16
such sets: {1, 2, 3, 1234}, {1, 2, 124, 1234}, {1, 3, 134, 1234}, {2, 3, 234, 1234},
{1, 14, 124, 1234}, {4, 14, 124, 1234}, {2, 24, 124, 1234}, {4, 24, 124, 1234},
{1, 14, 134, 1234}, {4, 14, 134, 1234}, {3, 34, 134, 1234}, {4, 34, 134, 1234},
{2, 24, 234, 1234}, {4, 24, 234, 1234}, {3, 34, 234, 1234} and {4, 34, 234, 1234}.

Note from Figure 2.15 that there is exactly one hexagonal facet (the "bot-
tom" facet of the polytope). By Theorem 2.3.1 there is then exactly one nested
set of size 2 (corresponding to that facet) that is contained in 6 nested sets
of size 3 (corresponding to the 6 edges of that facet). The nested sets in
question are {4, 1234} (the facet), {4, 14, 1234}, {4, 24, 1234}, {4, 34, 1234},
{4, 124, 1234}, {4, 134, 1234} and {4, 234, 1234}. The edge corresponding to
the nested set {4, 34, 1234} contains the vertices corresponding to the nested
sets {4, 34, 134, 1234} and {4, 34, 234, 1234}, as these are the only two size 4
nested sets that contain {4, 34, 1234}.
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Proof of Theorem 2.3.1: We will include the proof of Theorem 7.4 in [9]
here, as the proof itself will be useful to us later in section 3.3 and section 3.4.
We will rephrase the proof to the context of RI and RI . Whereas [9] works from
the perspective that faces of polytopes minimize certain linear functions, we
will work from the perspective that faces of polytopes are y-maximal for certain
directions y ∈ RI . To clarify we will refer to the nestohedron ∆B of example
2.3.2 throughout the proof. We focus on a particular cutout of ∆B, see Figure
2.16. The hexagonal facet in the cutout is the 1{1,2,3}-maximal face of ∆B, and
the rectangular facet is the 1{1,2}-maximal face. They correspond to the nested
sets Nhexagon = {4, 1234} and Nrectangle = {34, 1234}. By Theorem 2.3.1, the
edge they share must correspond to the nested set Nedge = {4, 34, 1234}.

1 2

4

3

FNedge

Figure 2.16: A cutout of the nestohedron drawn in Figure 2.15. We have
highlighted the edge corresponding to the nested set Nedge = {4, 34, 1234}
with an arrow.

Let I = [n] and y((ri)i∈I) =
∑

i∈I airi be a direction in RI . Let B be
a building set on I, and let ∆B be the corresponding nestohedron. The y-
maximal face of a Minkowski sum Q1+Q2+· · ·+Qm is precisely the Minkowski
sum of the y-maximal faces of all the Qi’s. The coefficients a1, . . . , an of y
gives an ordered set partition of [n] into a disjoint union of nonempty sets,
[n] = A1 ⊔ · · · ⊔As, such that ai = aj whenever i and j are in the same set Ak,
and ai < aj whenever i ∈ Au and j ∈ Av with u < v. For every subset J ⊆ I
we let j = j(J) denote the maximal index for which J ∩ Aj ̸= ∅, and we let
Ĵ := J ∩Aj. We will show that the y-maximal face Fy of ∆B is the Minkowski
sum Fy =

∑
J∈B ∆Ĵ .

Consider the edge FNedge
highlighted in Figure 2.16 corresponding to the

nested set Nedge = {4, 34, 1234}. The edge FNedge
is the y-maximal face for

any direction y with coefficients a4 < a3 < a1 = a2; this gives the partition
[4] = A1⊔A2⊔A3 = {4}⊔{3}⊔{1, 2}. For the sets J1 = {1, 2, 4}, J2 = {4} and
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J3 = {1, 2, 3, 4} we have j(J1) = 3, j(J2) = 1 and j(J3) = 3, and Ĵ1 = {1, 2},
Ĵ2 = {4} and Ĵ3 = {1, 2}. Essentially what Ĵ does is "extract the part of J
that is y-maximal", in the sense that the y-maximal face ∆Jy of ∆J is ∆Ĵ .

We always have j(J) ≤ j(J ′) for J ⊆ J ′. We now let N ⊆ B be the
collection of sets J ∈ B such that j(J) ⪇ j(J ′) for all J ′ ∈ B with J ⊊ J ′

(notice [n] is always in N ). Then N is a nested set (see [9] for closer details),
and so we have that given a direction y (and therefore a particular y-maximal
face) we may extract a unique nested set N . Given N we may also recover the
subsets Ĵ ⊆ J for all J ∈ B. Let J ′ be the minimal by inclusion element of N
such that J ⊆ J ′. Then Ĵ ′ = J ′ −

⋃
K⊊J ′,K∈N K, and Ĵ = J ∩ Ĵ ′. Hence the

nested set N uniquely determines the y-maximal face Fy =
∑

J∈B ∆Ĵ of ∆B.
Let us for each J ∈ B = {1, 2, 3, 4, 14, 24, 34, 124, 134, 234, 1234} find j(J),

Ĵ and N as described above. From Table 2.1 we find that N = {4, 34, 1234},
which we recognize to be Nedge.

J 1 2 3 4 14 24 34 124 134 234 1234
j(J) 3 3 2 1 3 3 2 3 3 3 3

Ĵ 1 2 3 4 1 2 3 12 1 2 12

Table 2.1: The values of j(J) and subsets Ĵ ⊆ J for J ∈ B.

We now go "the opposite way"; given N = {4, 34, 1234} we now obtain
the Ĵ ’s for J ∈ B, see Table 2.2. We see the third row of Table 2.1 matches
precisely the fourth row of Table 2.2, as wanted. From these rows we also get
FNedge

=
∑

J∈B ∆Ĵ = 3∆1 + 3∆2 + 2∆3 +∆4 + 2∆12.

J 1 2 3 4 14 24 34 124 134 234 1234
J ′ 1234 1234 34 4 1234 1234 34 1234 1234 1234 1234

Ĵ ′ 12 12 3 4 12 12 3 12 12 12 12

Ĵ 1 2 3 4 1 2 3 12 1 2 12

Table 2.2: The Ĵ ’s for J ∈ B given N = {4, 34, 1234}.

We now show that for any nested set N in the nested complex N (B),
there exists a face of ∆B associated with N . For every J ∈ N let AJ :=
J −

⋃
K⊊J,K∈N K. Then

⋃
J∈N AJ is a set partition of [n] into a disjoint union

of nonempty sets. Now pick any linear order < on the AJ ’s such that we have
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AJ < AJ ′ for J ⊊ J ′, and pick any direction y giving the same ordered set
partition of [n]. This direction y gives us a y-maximal face Fy ⊆ ∆B and
applying the earlier described procedure to Fy we recover the nested set N .
Implicit in this construction is the fact that any face FN ⊆ ∆B is contained in
another face FN ′ if and only if N ′ ⊆ N .

Returning to our example of Nedge = {4, 34, 1234}, we have A{4} = {4},
A{3,4} = {3} and A{1,2,3,4} = {1, 2}. The only linear order < on the AJ for
which AJ < AJ ′ for J ⊊ J ′ is A{4} < A{3,4} < A{1,2,3,4}, which gives us
the ordered set partition [4] = {4} ⊔ {3} ⊔ {1, 2}. As we saw earlier, any
direction y whose coefficients a1, . . . , a4 satisfy a4 < a3 < a1 = a2 gives the same
ordered set partition of [4]. We also saw earlier how starting with a direction
y with coefficients satisfying a4 < a3 < a1 = a2 gave a direct construction for
N = {4, 34, 1234}. From this we see the one-to-one relationship between the
nested sets of the nested complex N (B) and the faces of ∆B.



3 | Classes of nestohedra

3.1 The permutohedron and associahedron

Depending on the structure of the building set we may recover familiar classes of
polytopes realized as nestohedra. In this chapter we will give a brief overview of
buildings sets that correspond to permutohedra, associahedra, and the Pitman-
Stanley polytope, and finally we study the cases r = n − 1 and r = n − 2 for
the class of nestohedra we will call (n, r)-complete nestohedra. The (n, r)-
complete nestohedra are intended to further generalize the construction of the
permutohedron as a nestohedron.

Permutohedra: Let G be the complete graph on n vertices, and let B
be its building set. The nestohedron ∆B is then combinatorially equivalent
to the permutohedron π[n] [9]. By saying two polytopes are combinatorially
equivalent we mean to say their face posets are isomorphic.

As we have already described the permutohedron in great detail throughout
chapter 1, we will only give a description of the nested sets here, and skip most
of the details on the face-structure of the permutohedra. Notice that for all
J ⊆ [n] the induced subgraph G|J is connected. Therefore every subset of [n]
is in B, hence B = 2[n]. Suppose a subset A of B contained two disjoint sets
J,K. Since B = 2[n] we have J ∪ K ∈ B. Then A is not a nested set, as it
would not satisfy (N2). Therefore, combined with (N1), the structure of any
nested set N of B can be described as follows: For some relabeling Ji of all
the J ∈ N , we have J1 ⊊ J2 ⊊ · · · ⊊ Jk = [n], where |J1| < |J2| < · · · < |Jk|.
For a maximal nested set (corresponding to a vertex), we have |Ji| = i for
i = 1, 2, . . . , n.

Example 3.1.1. Consider the complete graph G on I = [4]. The correspond-
ing building set is B = {1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234}.
The maximal nested sets contain one set of every size k = 1, 2, 3, 4, where the

53
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size 1 set is contained in the size 2 set, which in turn is contained in the size
3 set, which is of course contained in the size 4 set. Examples of such nested
sets are {2, 24, 124, 1234} and {1, 14, 134, 1234}.

We may easily count the numbers of vertices and facets of the permutohe-
dron by using the nested sets. By Theorem 2.3.1, vertices correspond to the
maximal nested sets (nested sets of size n). When constructing a maximal
nested set we may start with {[n]} and add any size n − 1 set, then add any
size n−2 set contained in the size n−1 set, and so on, until we’ve added a size
1 set contained in whatever size 2 set we added previously. At the first step we
have n choices of what size n− 1 set to add, at the second step we have n− 1
choices of what size n− 2 set to add, and so on. The total number of choices
is then n(n− 1) · · · ∗ 2 ∗ 1 = n!, which is therefore the total number of vertices.

By Theorem 2.3.1 the facets correspond to nested sets of size 2. As men-
tioned previously, B = 2[n] and so |B| = 2n. As every nested set must contain
[n], constructing a nested set of size 2 is equivalent to choosing one element
from B − {[n]}, of which there are 2n − 1 choices. Hence the permutohedron
has 2n − 1 facets.

Example 3.1.2. We are already well-acquainted with the permutohedron π[3],
we will now use it to better understand how to label the faces of a nestohedron
with nested sets. The 2-dimensional permutohedron is the nestohedron ∆B for
B = {1, 2, 3, 12, 13, 23, 123}, see Figure 3.1.

1 2

3 ∆B

Figure 3.1: The 2-dimensional permutohedron constructed as a nestohedron.

The 1{3} maximal face of ∆B is the topmost horizontal edge parallel to
∆12. Applying the procedure in the proof of Theorem 2.3.1, the direction 1{3}
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corresponds to the ordered set partition [3] = {1, 2} ⊔ {3}. The nested set
N which gives that same ordered set partition is N = {12, 123}. The 1{1,2}-
maximal face is the bottom horizontal edge parallel to ∆12. The direction
1{1,2} gives the partition [3] = {3}⊔{1, 2}, which corresponds to the nested set
{3, 123}. Repeating in this fashion for all the directions 1S for S ⊆ [3]−{1, 2, 3}
we get the nested sets corresponding to all the facets, see the left part of Figure
3.2.

For the vertices, we may simply use Theorem 2.3.1: For any vertex v,
its corresponding nested set is the union of the nested sets of the edges v is
contained in. As an example, the vertex contained in the edges corresponding
to the nested sets {2, 123} and {12, 123} is {2, 12, 123}. We label all vertices
with their corresponding nested set in the right part of Figure 3.2.

{12, 123}
{1, 123}

{1
3,
12
3}

{3, 123}

{23, 123}

{2
, 1
23
}

{2, 12, 123} {1, 12, 123}

{1, 13, 123}

{3, 13, 123}{3, 23, 123}

{2, 23, 123}

Figure 3.2: Left: Edges of ∆B labeled with nested sets. Right: Vertices of ∆B
labeled with nested sets.

Associahedra: Let G be the path on n vertices, and let B be its building
set. The nestohedron ∆B is then precisely an. This should not be hard to
see; B is simply the collection of all intervals [i, j] for i, j ∈ [n], i ≤ j. Hence
the nestohedron ∆B is the exact same construction of the associahedron as in
Loday’s associahedron a given by Equation 2.2 (letting ℓ be the natural order
of [n] in the aforementioned equation).

The nested sets N ⊆ B are such that every set J ∈ N is an interval, and
every pair of sets J,K ∈ N are such that either J ⊆ K or K ⊆ J , or J and
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K are disjoint non-adjacent intervals such that J ∪K is itself not an interval.
If J and K had been disjoint and adjacent, then J ∪ K ∈ B which does not
satisfy (N2).

For the remainder of this section, any non-cited claim we make is taken
from [9]. Recall that plane binary trees are trees where each node has at most
2 child nodes, which we refer to as the left child and the right child. For a
node with only one child, we specify whether the child is the left child or the
right child. The number of unlabeled plane binary trees on n nodes is the n’th
Catalan number cn = 1

n+1

(
2n
n

)
. By Proposition 8.1 in [9], the B-forests are

exactly plane binary trees on n nodes with the binary search labeling :

Definition 3.1.1. Let T be a plane binary tree on n nodes. The binary search
labeling labels each node with a unique integer 1, . . . , n such that for any node
S, if S has a left child then the left child is labeled with a smaller value than
S, and if S has a right child then the right child is labeled with a larger value
than S.

We may construct the binary search labeling using the following algorithm:
We perform a depth-first search on T , which is as follows. We start a walk at
the root of the binary tree, and apply the following 4 rules:

• 1: If we are at a node whose left child has not been visited yet, then go
to the left child.

• 2: Otherwise, if we have not visited the node’s right child, then go the
right child.

• 3: Otherwise, if the node has a parent, then go to the parent.

• 4: Otherwise, stop.

Throughout the depth-first search we label each node with the integers
1, 2, . . . , n in their order of appearance according to the following rule: If the
node we visit is unmarked and rule 1 does not apply, then we mark this node.
The resulting labeling is the binary search labeling.

Example 3.1.3. Consider the plane binary tree in Figure 3.3. Applying the
algorithm described earlier to that tree gives the binary search labeling in
Figure 3.4. By Proposition 8.1 in [9] the plane binary tree in Figure 3.4 is the
B-forest of some maximal nested set N of the building set B of the path-graph
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on 12 vertices. We draw the Hasse diagram of the corresponding nested set
N in Figure 3.5. The total number of plane binary trees on 12 nodes is the
Catalan number c12 = 208012, hence the associahedron a12 has 208012 vertices.

Figure 3.3: A plane binary tree on 12 nodes.

8

6 9

2 7 11

1 4
10 12

3 5

Figure 3.4: The binary search labeling on the plane binary tree in Figure 3.3.
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[12]

[1, 7] [9, 12]

[1, 5] 7 [10, 12]

1 [3, 5]
10 12

3 5

Figure 3.5: Hasse diagram of the nested set N corresponding to the B-forest
in Figure 3.4.
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3.2 The Pitman-Stanley polytope

The original construction of the Pitman-Stanley polytope is as follows [11]: For
any x = (x1, . . . , xn) with xi > 0 for all i, the corresponding Pitman-Stanley
polytope PSn(x) is

PSn(x) := {y ∈ Rn | yi ≥ 0 and y1 + · · ·+ yi ≤ x1 + · · ·+ xi for all 1 ≤ i ≤ n}

Postnikov [9] provides the following construction of the Pitman-Stanley
polytope as a nestohedron: Let H = {[2], [3], . . . , [n]} be the hypergraph on
I = [n] with building set B = {1, 2, . . . , n, [2], [3], . . . , [n]}. The nestohedron
∆B is then a Pitman-Stanley polytope PSn.

We are particularly interested in the Pitman-Stanley polytope because of
its connection to the (n − 1)-dimensional hypercube. Recall from Section 2.1
how the faces of hypercubes can be encoded as words in the alphabet {0, 1, ∗};
we may also do the same for the Pitman-Stanley polytope.

As B contains all intervals [i] for i = 1, 2, . . . , n, any nested set containing
the interval [i] cannot also contain the singleton {i + 1} because of (N2). We
will use this fact to encode any nested set N by a word a1a2 · · · an−1 in the
alphabet {0, 1, ∗} as follows: For i = 1, 2, . . . , n− 1, if [i] ∈ N then ai = 0, else
if {i + 1} ∈ N then ai = 1, otherwise ai = ∗. This gives a bijection between
the faces of PSn and length n − 1 words in the alphabet {0, 1, ∗}, just as for
the faces of the (n − 1)-cube. Notice also that if a nested set N ′ is contained
in the nested set N , then the word w corresponding to N differs from the
word w′ corresponding to N ′ only in that some ∗’s in w′ has been replaced
with 0’s and/or 1’s. As a quick example, N = {1, 12, 1234} corresponds to
the word w = 00∗ and N ′ = {12, 1234} corresponds to the word w′ = ∗0∗.
Notice that w can be obtained from w′ by replacing the first ∗ in w′ with a
0, and since N ′ ⊆ N we have FN ⊆ FN ′ by the reverse-inclusion property of
Theorem 2.3.1. Hence any face F of the Pitman-Stanley polytope is contained
in another face F′ if the word w corresponding to F can be obtained from the
word w′ corresponding to F′ by replacing some of the ∗’s of w′ with 0’s and/or
1’s. This is precisely the face-containment-structure we described earlier for
the hypercube, and hence we find that PSn is isomorphic to the (n− 1)-cube.

Example 3.2.1. The building set of PS4 is B = {1, 2, 3, 4, 12, 123, 1234}, we
draw PS4 in Figure 3.6. Consider the 3 nested sets NA = {1, 123, 1234},
NB = {4, 12, 1234} and NC = {1, 3, 123, 1234}. These nested sets correspond
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respectively to the words 0 ∗ 0, ∗01 and 010. By the procedure in the proof
of Theorem 2.3.1, we find that NA is the yA-maximal face for any direction
yA(

∑
i∈[4] riei) =

∑
i∈[4] airi for which a4 > a2 = a3 > a1. We also find NB to

be the yB-maximal face for any direction yB whose a-coefficients are such that
a3 > a1 = a2 and a3 > a4. Finally, we find NC to be the yC-maximal face for
any direction yC whose a-coefficients are such that a4 > a2 > a1 and a2 > a3.

1 2

3

4

PS4

0 ∗ 0

∗01

010

101 001

000100

111 011

110 00∗

∗00

10∗

1 ∗
1 0 ∗ 1

1 ∗
0

∗11

01∗

∗10

11
∗

Figure 3.6: The 3-dimensional Pitman-Stanley polytope constructed as a nesto-
hedron, with words in the alphabet {0, 1, ∗} added to all vertices and edges.
We have highlighted the words corresponding to the nested sets NA, NB and
NC in bold (refer back to Example 3.2.1).
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3.3 The (n, n-1)-complete nestohedron

Definition 3.3.1. We say J is an (r)-set if |J | = r. A hypergraph H is
(r)-uniform if all J ∈ H are (r)-sets. We let Hr

n denote the complete (r)-
uniform hypergraph on [n], that is, Hr

n is the collection of all the (r)-sets in
2[n]. We define the building set Br

n to be Br
n = [n] ∪ Hr

n ∪ Hr+1
n ∪ · · · ∪ Hn

n,
where Hn

n = {[n]}. We will refer to the corresponding nestohedron ∆Br
n

as the
(n, r)-complete nestohedron.

Remarks: Notice that B1
n is identical to B2

n; these both correspond to the
construction of the permutohedron as a nestohedron. We originally intended
to let Br

n be the building set of Hr
n. The issue with this construction is that

the building set for H1
3 would be {1, 2, 3} and not B1

3 = {1, 2, 3, 12, 13, 23, 123}
as wanted.

The (n, n − 1)-complete nestohedron: Recall a (k)-simplex ∆k is a k-
dimensional simplex, such as ∆[k+1]. Consider H2

3 = {12, 13, 14, 23, 24, 34}; it
is precisely the complete graph on [3], and the corresponding nestohedron is
a hexagon, which is a truncated (2)-simplex. For n = 4 the corresponding
nestohedron ∆B3

4
is a truncated (3)-simplex, see Figure 3.7. We will here study

the face structure of the general case ∆Bn−1
n

.

1 2
3

4

∆B3
4

Figure 3.7: The (4, 3)-complete nestohedron of ∆B3
4

is a truncated tetrahedron.



3.3. THE (N, N-1)-COMPLETE NESTOHEDRON 62

Observe that any nested set N of Bn−1
n can contain at most one (n − 1)-

set, as two distinct (n − 1)-sets J,K do not satisfy (N1). For all dimensions
k = 1, 2, . . . , n − 2 we can construct nested sets in two ways, either as [n]
together with one (n − 1)-set J and any n − k − 2 singletons of J , or [n] and
any choice of n− k− 1 singletons of [n]. We will call the former kind of nested
set an (n− 1)-nest and the corresponding face an (n− 1)-face, and the latter
kind we call a singleton-nest and the corresponding face a singleton-face. We
may sometimes replace the word "face" with "edge" or "facet" depending on
the context; for example a singleton-edge corresponds to a nested set containing
[n] and n− 2 singletons, and so on.

Theorem 3.3.1. Face structure of the (n, n− 1)-complete nestohedron
The (n, n− 1)-complete nestohedron ∆Bn−1

n
is an (n− 1)-dimensional polytope

that has n(n − 1) vertices and (n − k) n!
(n−k−1)!(k+1)!

k-dimensional faces, for
dimensions k = 1, 2, . . . , n− 2. These k-dimensional faces come in two types:

• Singleton-faces: There are n!
(n−k−1)!(k+1)!

k-dimensional singleton-faces.
These faces are combinatorially equivalent to ∆Bk

k+1
.

• (n− 1)-faces: There are n!
(n−k−2)!(k+1)!

k-dimensional (n− 1)-faces. These
faces are (k)-simplices.

In particular, ∆Bn−1
n

has 2n facets and n(n−1)2

2
edges. n facets are (n − 2)-

simplices and n facets combinatorially equivalent to ∆Bn−2
n−1

.

Proof. A nested set may contain at most n − 2 singletons, as the union of
n − 1 singletons is an (n − 1)-set which is necessarily contained in Bn−1

n by
construction, which would not satisfy (N2). For any (n − 1)-nest containing
singletons, the singletons are necessarily contained in the (n − 1)-set, again
due to (N2). Vertices of ∆Bn−1

n
correspond to nested sets of size n by Theorem

2.3.1; such nested sets can only be constructed as [n] together with a choice of
one (n−1)-set J and n−2 choices of singletons from J . There are n (n−1)-sets
to choose from in Bn−1

n , and we have
(
n−1
n−2

)
= n− 1 choices of n− 2 singletons

from an (n−1)-set. Hence there are n(n−1) size n nested sets for Bn−1
n , which

means ∆Bn−1
n

has n(n− 1) vertices by Theorem 2.3.1.
For dimensions k = 1, 2, . . . , n−2, every (n−1)-nest contains n−k−2 sin-

gletons, and every singleton-nest contains n−k−1 singletons by Theorem 2.3.1.
When constructing an (n − 1)-nest we have n choices for the (n − 1)-set and
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(
n−1

n−k−2

)
choices of singletons, hence there are n

(
n−1

n−k−2

)
= n!

(n−k−2)!(k+1)!
(n− 1)-

nests and (n− 1)-faces. For singleton-nests we have
(

n
n−k−1

)
choices of single-

tons, and therefore
(

n
n−k−1

)
= n!

(n−k−1)!(k+1)!
singleton-nests and singleton-faces.

The total number of k-dimensional faces is then n!
(n−k−2)!(k+1)!

+ n!
(n−k−1)!(k+1)!

.
Multiplying the first term with n−k−1

n−k−1
we may simplify the expression into

(n− k)
(

n
n−k−1

)
= (n− k) n!

(n−k−1)!(k+1)!
.

Let us study the structure of the dimension k = 1, 2, . . . , n − 2 faces. We
start with the (n − 1)-faces. Due to the inherent symmetry of Bn−1

n , every
(n− 1)-face has identical structure; we may without loss of generality consider
the structure of the face FN corresponding to the particular (n− 1)-nest N =
{1, 2, . . . , n− k − 2, [n− 1], [n]}. N is isomorphic to the Bn−1

n -forest of Figure
3.8.

n

(n− k − 1) · · · (n− 1)

1 2 · · · n− k − 2

6

345

1 2

Figure 3.8: N = {1, 2, . . . , n−k−2, [n−1], [n]} is isomorphic to the Bn−1
n -forest

pictured to the left. To the right we show the case n = 6, k = 2.

Let us apply the procedure for finding a corresponding direction y as we
did in the proof of Theorem 2.3.1, such that the face corresponding to N is
the y-maximal face of ∆Bn−1

n
. For every J ∈ N let AJ := J −

⋃
K⊊J,K∈N K.

For the singletons J ∈ N we get AJ = J . For the non-singletons we have
A[n−1] = {n − k − 2, n − k − 1, . . . , n − 1} and A[n] = {n}. We are then free
to pick any linear order < on the sets AJ satisfying AJ < AJ ′ for J ⊊ J ′.
The linear order must therefore satisfy As < A[n−1] < A[n] for every singleton
s ∈ N . We then choose a direction y giving the same disjoint set partition of
[n], again following the procedure of the proof of Theorem 2.3.1. This is the
case for any direction y(

∑
riei) =

∑
airi where an > an−k−1 = · · · = an−1 and

an−1 > aj for j = 1, . . . , n − k − 2. Hence FN is the y-maximal face for any
such direction y, giving us FN =

∑
J∈B ∆Ĵ (refer to the proof of Theorem 2.3.1
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for the definition of Ĵ).
Notice how we may extract this relationship between the a-coefficients of y

directly from the Bn−1
n -forest pictured in Figure 3.8. For any two elements u

and v of node S we have au = av, and for every pair of nodes S and S ′ where
S is a descendant of S ′ we have as < as′ for s ∈ S and s′ ∈ S ′. Consider the
example Bn−1

n -forest for n = 6, k = 2 in Figure 3.8; from this B-forest we would
infer the a-coefficients to be related as follows: a6 > a3 = a4 = a5, a3 > a1 and
a3 > a2. In the future we will not give such a detailed construction of y (that
is, we will skip constructing all the AJ ’s). We will simply pick a nested set
N , find its corresponding Bn−1

n -forest, and read the relationship between the
a-coefficients directly from the Bn−1

n -forest using the procedure we just gave.
Recall from earlier the notation py; for a polytope p and a direction y, py is

the y-maximal face of p. We will now work our way through the sets J ∈ Bn−1
n

to find FNy . There are four kinds of sets J in Bn−1
n :

• J is a singleton: ∆Jy = ∆J , whose contribution to the sum is just a
translation.

• J = [n]: ∆Jy = ∆n, whose contribution to the sum is just a translation.

• J is an (n− 1)-set, n ∈ J : ∆Jy = ∆n.

• J is an (n− 1)-set, n /∈ J : J = [n− 1], hence ∆Jy = ∆[n−1]−[n−k−2].

Therefore the face structure of FN is given by ∆[n−1]−[n−k−2] which is a
(k)-simplex, because |[n− 1]− [n− k − 2]| = k + 1. Hence any k-dimensional
(n− 1)-face is a (k)-simplex.

Moving on to the case of singleton-faces, we may without loss of generality
consider the nested set N = {k + 2, . . . , n, [n]}. N is isomorphic to the Bn−1

n -
forest in Figure 3.9. The corresponding face FN is the y-maximal face for
any direction y(

∑
riei) =

∑
airi where a1 = · · · = ak+1 and ak+1 > aj for

j = k + 2, . . . , n.
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12 · · · (k + 1)

k + 2 k + 1 · · · n

123

4 5 6

Figure 3.9: N = {k + 2, . . . , n, [n]} is isomorphic to the Bn−1
n -forest pictured

to the left. To the right we show the case n = 6, k = 2.

Again we use that FN =
∑

J∈Bn−1
n

∆Jy. There are again four kinds of sets
J in Bn−1

n :

• J is a singleton: ∆Jy = ∆J , whose contribution to the sum is just a
translation.

• J = [n]: ∆Jy = ∆[k+1].

• J is an (n− 1)-set, [k + 1] ⊆ J : ∆Jy = ∆[k+1].

• J is an (n− 1)-set, [k + 1] ⊈ J : ∆Jy = ∆J∩[k+1].

To get a clearer view of the situation when J is an (n − 1)-set, we make
a table showing the possible sets J and the corresponding ∆J∩[k+1] going into
the sum FN =

∑
J∈Bn−1

n
∆Jy.

J [n]− {n} · · · [n]− {k + 2} [n]− {k + 1} · · · [n]− {1}
∆J∩[k+1] ∆[k+1] · · · ∆[k+1] ∆[k+1]−{k+1} · · · ∆[k+1]−{1}

Table 3.1: The (n− 1)-sets J and the corresponding simplex ∆J∩[k+1].

In total there are n − k copies of ∆[k+1] in the sum FN =
∑

J∈Bn−1
n

∆Jy;
one from J = [n] and n − k − 1 copies from J = [n] − {n}, . . . , [n] − {k + 2}.
Therefore FN = ∆1+ · · ·+∆n+(n−k)∆[k+1]+∆[k+1]−{k+1}+ · · ·+∆[k+1]−{1}.
The coefficient (n − k) only dilates the simplex ∆[k+1]; FN is combinatorially
equivalent to ∆1+· · ·+∆n+∆[k+1]+∆[k+1]−{k+1}+· · ·+∆[k+1]−{1}. We recognise
this sum to be ∆Bk

k+1
, hence any k-dimensional singleton-face is combinatorially

equivalent to the (k + 1, k)-complete nestohedron.
For the particular case of facets, simply let k = n− 2 in the above discus-

sion. This gives 2n facets in total, n of which are (n − 2)-simplices, and the
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remaining n facets are combinatorially equivalent to the (n−1, n−2)-complete
nestohedron.

By combining the structure of the nested sets of N (Bn−1
n ) with Theorem

2.3.1 and Theorem 3.3.1, we can easily give finer descriptions of how many
faces of one kind are contained in so-and-so many higher-dimension faces of
another kind. We will here tackle the relationship between vertices and facets,
and edges and facets.

Proposition 3.3.1. In the (n, n−1)-complete nestohedron, one (n−2)-simplex
and n− 2 facets combinatorially equivalent to ∆Bn−2

n−1
join in every vertex.

Proof. Any maximal nested set contains [n], one (n−1)-set and n−2 singletons.
Hence by Theorem 2.3.1 any vertex is contained in one (n− 1)-facet and n− 2
singleton-facets. By Theorem 3.3.1, the (n − 1)-facets are (n − 2)-simplices,
and the singleton-facets are combinatorially equivalent to ∆Bn−2

n−1
.

Proposition 3.3.2. The (n, n − 1)-complete nestohedron has two types of
edges, differing in which types of facets they are contained in:

• (n − 1)-edges: There are n(n−1)(n−2)
2

(n − 1)-edges. Each (n − 1)-edge is
contained in one (n− 2)-simplex and n− 3 facets combinatorially equiv-
alent to ∆Bn−2

n−1
.

• Singleton-edges: There are n(n−1)
2

singleton-edges. Each singleton-edge is
contained in n− 2 facets combinatorially equivalent to ∆Bn−2

n−1
.

Proof. This is easily seen by the reverse-inclusion property of nested sets and
their corresponding faces. The nested set corresponding to any singleton-edge
contains [n] and n − 2 singletons, hence by Theorem 2.3.1 any singleton edge
is contained in n− 2 singleton-facets. For any (n− 1)-edge, its corresponding
(n− 1)-nest contains [n] together with n− 3 singletons and an (n− 1)-set. By
Theorem 3.3.1 the singleton-facets are combinatorially equivalent to ∆Bn−2

n−1
,

and the (n−1)-facets are (n−2)-simplices. We get the number of each type of
edge by letting k = 1 in the appropriate formulas given in Theorem 3.3.1.

Example 3.3.1. The (5, 4)-complete nestohedron ∆B4
5

has 5 ∗ 4 = 20 ver-
tices, 5∗42

2
= 40 edges and 2 ∗ 5 = 10 facets. 5 of the facets are (3)-simplices

(tetrahedra), and the other 5 are combinatorially equivalent to ∆B3
4

(truncated
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tetrahedra). ∆B4
5

has (5− 2)
(

5
5−2−1

)
= 30 2-dimensional faces;

(
5

5−2−1

)
= 10 of

these are hexagons (truncated (2)-simplices), the other 20 are triangles ((2)-
simplices). There are two types of edges. 5!

3!2!
= 10 of the edges are contained

in 3 truncated tetrahedra, and 5!
2!2!

= 30 are contained in one (3)-simplex and
2 truncated tetrahedra. One tetrahedron and 3 truncated tetrahedra join in
every vertex. This matches the face structure of the truncated (4)-simplex [12].

Remark: We believe the (n, n − 1)-complete nestohedron is a truncated
(n− 1)-simplex, however we offer no proof of this.
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3.4 The (n, n-2)-complete nestohedron

Here we will consider the case of the (n, n − 2)-complete nestohedron ∆Bn−2
n

.
As an example we recognize ∆B2

4
to be the truncated octahedron, which we

gave a detailed description of earlier in Example 1.1.7.
If N is a nested set of Bn−2

n = [n]∪Hn−2
n ∪Hn−1

n ∪Hn
n, then N may contain

either zero or one (n−1)-set, zero or one (n−2)-set, and up to n−3 singletons.
If there is both an (n− 1)-set and an (n− 2)-set in N then the (n− 2)-set is a
subset of the (n− 1)-set in order to satisfy (N1). If N contains an (n− 2)-set
J then any singletons in N must be contained in J to satisfy (N2). Likewise,
if N contains an (n − 1)-set K, but no (n − 2)-set, then any singletons in N
must be contained in K.

Except for the nested set N = {[n]}, we refer to the nested sets as follows:
A nested set that neither contains an (n − 1)-set nor an (n − 2)-set will be
referred to as a singleton-nest, and the corresponding face will be referred to
as a singleton-face. We refer to nested sets containing an (n − 1)-set but no
(n − 2)-set as (n − 1)-nests, and we refer to the corresponding face as an
(n− 1)-face. Likewise, we refer to nested sets containing an (n− 2)-set but no
(n − 1)-set as (n − 2)-nests, and their corresponding faces are referred to as
(n−2)-faces. Finally, we refer to nested sets containing both an (n−1)-set and
an (n− 2)-set as an (n− 1, n− 2)-nest, and we refer to the corresponding face
as an (n− 1, n− 2)-face. Just as in section 3.3 we may sometimes replace the
word "face" with "edge" or "facet" depending on the context; as an example,
an (n−1)-edge would be an edge whose corresponding nested set is an (n−1)-
nest.

Theorem 3.4.1. Face structure of the (n, n− 2)-complete nestohedron
The (n, n− 2)-complete nestohedron ∆Bn−2

n
is an (n− 1)-dimensional polytope

that has n(n − 1)(n − 2) vertices, n(n−1)2(n−2)
2

edges and n(n+3)
2

facets. There
are 3 types of facets:

• Singleton-facets: There are n singleton facets. These are combinatorially
equivalent to ∆Bn−3

n−1
.

• (n − 1)-facets: There are n (n − 1)-facets. These are combinatorially
equivalent to ∆Bn−2

n−1
.
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• (n−2)-facets: There are n(n−1)
2

(n−2)-facets. These are (n−3)-simplicial
prisms.

There are n!(2n2−9n+11)
12(n−3)!

2-dimensional faces in total, these also come in 3 types:

• Hexagons: There are n(n−1)(n−2)2

6
hexagons. These correspond to singleton-

nests and (n− 1)-nests of size n− 2.

• Squares: There are n(n−1)(n−2)(n−3)
4

squares. These correspond to (n− 2)-
nests of size n− 2.

• Triangles: There are n(n−1)(n−2)(n−3)(n−4)
6

triangles. These correspond to
(n− 1, n− 2)-nests of size n− 2.

For dimensions k = 3, . . . , n− 3, there are 4 kinds of faces:

• Singleton-faces: There are n!
(n−k−1)!(k+1)!

singleton-faces. These faces are
combinatorially equivalent to ∆Bk−1

k+1
.

• (n − 1)-faces: There are n!
(n−k−2)!(k+1)!

(n − 1)-faces. These faces are
combinatorially equivalent to ∆Bk

k+1
.

• (n−2)-faces: There are n!
2(n−k−2)!k!

(n−2)-faces. These faces are (k−1)-
simplicial prisms.

• (n − 1, n − 2)-faces: There are n!
(n−k−3)!(k+1)!

(n − 1, n − 2)-faces. These
faces are (k)-simplices.

The total number of k-dimensional faces is n!(2n2+k2−3nk−3n+2k+3)
2(n−k−1)!(k+1)!

.

Remark: It should be noted that the cases n < 5 are outliers in that their
structure differs slightly from the general description that we give in Theorem
3.4.1. For these cases some of the "different types" of faces are identical, for
example the truncated octahedron only has 2 types of facets, not 3.

Proof. To determine the structure of the (n, n − 2)-complete nestohedron we
will here use the exact same approach as we did previously for the (n, n− 1)-
complete nestohedron. We will do as follows for each type of nested set: We
provide a nested set N and a direction y such that N corresponds to the y-
maximal face FN of ∆Bn−2

n
. We recommend the reader refer back to how we
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determined the a-coefficients of y from the Bn−1
n -forest in Figure 3.8 in Section

3.3, as we will use the same procedure here. We work our way through the
subsets J of Bn−2

n and give the y-maximal face of ∆J , such that we may write
FN as a Minkowski sum of simplices. We will refer to this sum as the face-sum.
From the face-sum we then "extract" the face structure of FN , and therefore
the face structure of all faces corresponding to that type of nested set.

Let us study the structure of the dimension k = 2, . . . , n − 3 faces. A
k-dimensional face corresponds to some size n − k nested set N by Theorem
2.3.1. Earlier we identified 4 types of such nested sets and we will deal with
these on a case-by-case basis.

Case A: N contains [n] and n − k − 1 singletons (the singleton-nests).
There are

(
n

n−k−1

)
singleton-nests of size n− k. Let N = {k + 2, . . . , n, [n]} be

a singleton-nest. We draw the isomorphic Bn−2
n -forest in Figure 3.10.

12 · · · (k + 1)

k + 2 k + 3 · · · n

Figure 3.10: Bn−2
n -forest isomorphic to N = {k + 2, . . . , n, [n]}.

From this Bn−2
n -forest we get that the corresponding face FN is the y-

maximal face for any direction y(
∑

i∈[n] riei) =
∑

i∈[n] airi such that a1 = · · · =
ak+1 and ak+1 > aj for j = k + 2, . . . , n. Let y be such a direction and let
J ∈ Bn−2

n :

• J is a singleton: The contribution of all such J to the face-sum is∑
i∈[n] ∆i.

• J is an (n − 2)-set: For the J ’s such that [k + 1] ⊆ J , the contribution
of ∆J to the face sum is ∆[k+1]. There are

(
n−k−1
n−k−3

)
such J ’s: Building

J from the ground up, k + 1 elements out of the n − 2 must be [k + 1],
leaving a choice of n− k − 3 elements among the remaining n− k − 1.

For the J ’s such that there is exactly one element a ∈ [k+1] for which a /∈
J , ∆J ’s contribution to the face-sum is ∆[k+1]−{a}. For every a ∈ [k + 1]
the number of J ’s such that J ∩ [k+1] = [k+1]−{a} is n−k−1. Hence
the combined contribution to the face-sum by all J such that exactly
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one element in [k + 1] is not in J , is (n − k − 1)
∑

a∈[k+1]∆[k+1]−{a} =

(n− k − 1)
∑

K∈Hk
k+1

∆K .

For the J ’s such that there are two elements in [k + 1] not in J , the
combined contribution to the face-sum is ∆[k+1]−A for all (2)-sets A ⊆
[k + 1]. That is, the total contribution is

∑
S∈Hk−1

k+1
∆K .

• J is an (n − 1)-set: For n − k − 1 of these J ’s we have [k + 1] ⊆ J ,
and so the y-maximal face of ∆J is ∆[k+1]. For the other J ’s there is
one element a ∈ [k + 1] such that a /∈ J , hence the y-maximal face of
∆J is ∆[k+1]−{a}. The (n − 1)-sets’ total contribution to the face-sum is
therefore (n− k − 1)∆[k+1] +

∑
K∈Hk

k+1
∆K .

• J = [n]: The y-maximal face of ∆[n] is ∆[k+1].

Hence FN =
∑

i∈[n] ∆i+(
(
n−k−1
n−k−3

)
+n−k)∆[k+1]+

∑
S∈Hk−1

k+1
∆S+2

∑
K∈Hk

k+1
∆K ,

which we recognize to be combinatorially equivalent to ∆Bk−1
k+1

. Hence every k-
dimensional singleton-face is combinatorially equivalent to ∆Bk−1

k+1
.

Case B: N contains [n], one (n−1)-set, and n−k−2 singletons (the (n−1)-
nests). We have n choices of (n− 1)-sets, and

(
n−1

n−k−2

)
choices of singletons of

that (n − 1)-set, giving a total of n
(

n−1
n−k−2

)
(n − 1)-nests of size n − k. Let

N = {k + 3, . . . , n, [n] − {k + 2}, [n]} be an (n − 1)-nest isomorphic to the
Bn−2
n -forest of Figure 3.11.

k + 2

12 · · · (k + 1)

k + 3 k + 4 · · · n

Figure 3.11: The Bn−2
n -forest isomorphic to N = {k+3, . . . , n, [n]−{k+2}, [n]}.

From this Bn−2
n -forest we get that FN is the y-maximal face of ∆Bn−2

n
for

any direction y(
∑

i∈[n] riei) =
∑

i∈[n] airi such that ak+2 > a1 = · · · = ak+1 and
ak+1 > aj for j = k + 3, . . . , n. Let y be such a direction and let J ∈ Bn−2

n :
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• Singletons: The total contribution to the face-sum is
∑

i∈[n] ∆i.

• J is an (n− 2)-set: If k + 2 ∈ J then the y-maximal face of ∆J is ∆k+2,
if k + 2 /∈ J then the y-maximal face of ∆J is ∆[k+1]∩J . There are

(
n−1
n−3

)
J ’s of the first kind, contributing

(
n−1
n−3

)
∆k+2 to the face-sum. For the J ’s

such that k+2 /∈ J , we either have [k+1] ⊆ J or [k+1] ⊈ J . There are
n−k−2 J ’s such that k+2 /∈ J , [k+1] ⊆ J , contributing (n−k−2)∆[k+1]

to the face-sum. The combined contribution to the face-sum by the J
for which k + 2 /∈ J , [k + 1] ⊈ J is

∑
a∈[k+1]∆[k+1]−{a} = ∆Hk

k+1
. The

combined contribution is then
(
n−1
n−3

)
∆k+2 + (n− k − 2)∆[k+1] +∆Hk

k+1
.

• J is an (n − 1)-set: There are n − 1 J ’s for which k + 2 ∈ J ; each of
these contribute ∆k+2 to the face-sum. For J = [n] − {k + 2} we have
[k + 1] ⊆ J , which adds ∆[k+1] to the face-sum. Therefore the combined
contribution to the face-sum is (n− 1)∆k+2 +∆[k+1].

• J = [n]: The y-maximal face of ∆[n] is ∆k+2.

This gives FN =
∑

i∈[n] ∆i+∆Hk
k+1

+(n−k−1)∆[k+1]+(
(
n−1
n−3

)
+n)∆k+2, which

is combinatorially equivalent to Bk
k+1. Hence all k-dimensional (n − 1)-faces

are combinatorially equivalent to Bk
k+1.

Case C: N contains [n], one (n − 2)-set and n − k − 2 singletons (the
(n − 2)-nests). We have

(
n

n−2

)
choices for the (n − 2) set and

(
n−2

n−k−2

)
choices

of n − k − 2 singletons from that (n − 2)-set, giving us a total of n!
2(n−k−2)!k!

(n− 2)-nests of size n− k. Let N = {k + 3, . . . , n, [n]− {k + 1, k + 2}, [n]} be
the (n− 2)-nest isomorphic to the Bn−2

n -forest of Figure 3.12.

(k + 1)(k + 2)

12 · · · k

k + 3 k + 4 · · · n

Figure 3.12: N = {k + 3, . . . , n, [n] − {k + 1, k + 2}, [n]} is isomorphic to the
above Bn−2

n -forest.
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From this Bn−2
n -forest we find FN to be the y-maximal face of ∆Bn−2

n
for any

direction y(
∑

i∈[n] riei) =
∑

i∈[n] airi such that ak+1 = ak+2 > a1 = a2 = · · · =
ak and ak > aj for j = k+3, . . . , n. Let y be such a direction and let J ∈ Bn−2

n .
For non-singleton J : If {k + 1, k + 2} ⊆ J then the y-maximal face of ∆J is
∆{k+1,k+2}, else if k + 1 ∈ J , k + 2 /∈ J (resp. k + 1 /∈ J , k + 2 ∈ J) then the
y-maximal face of ∆J is ∆k+1 (resp. ∆k+2). Finally, if {k + 1, k + 2} ∩ J = ∅
then [k] ⊆ J and therefore the y-maximal face of ∆J is ∆[k].

• Singletons: The total contribution to the face-sum is
∑

i∈[n] ∆i.

• J is an (n − 2)-set: There are
(
n−2
n−4

)
J ’s such that {k + 1, k + 2} ⊆ J ,

n − 2 J ’s are such that k + 1 ∈ J , k + 2 /∈ J and likewise for k + 1 /∈
J , k + 2 ∈ J , and exactly one J such that {k + 1, k + 2} ∩ J = ∅.
By the earlier discussion the total contribution to the face-sum is then
(n− 2)∆k+1 + (n− 2)∆k+2 +

(
n−2
n−4

)
∆{k+1,k+2} +∆[k].

• J is an (n − 1)-set: It should be clear from the earlier discussion that
the combined contribution by the (n− 1)-sets to the face-sum is ∆k+1 +
∆k+2 + (n− 2)∆{k+1,k+2}.

• J = [n]: The y-maximal face of ∆[n] is ∆{k+1,k+2}.

Hence FN =
∑

i∈[n] ∆i+(n−1)(∆k+1+∆k+2)+(
(
n−2
n−4

)
+n−1)∆{k+1,k+2}+∆[k],

which is combinatorially equivalent to ∆{k+1,k+2}+∆[k]. Hence all (n−2)-nests
correspond to (k − 1)-simplicial prisms.

Case D: N contains [n], an (n−1)-set, an (n−2)-set and n−k−3 singletons
(the (n− 1, n− 2)-nests). There are n choices for the (n− 1)-set, n− 1 choices
of an (n− 2)-set contained in that (n− 1)-set, and

(
n−2

n−k−3

)
possible choices of

n−k−3 singletons from that (n−2)-set, giving a total n!
(n−k−3)!(k+1)!

(n−1, n−2)-
nests of size n−k. Let N = {k+4, . . . , n, [n]−{k+2, k+3}, [n]−{k+3}, [n]}
be the (n− 1, n− 2)-nest isomorphic to the Bn−2

n -forest of Figure 3.13.
From this Bn−2

n -forest we see that FN is the y-maximal face of ∆Bn−2
n

for
any direction y(

∑
i∈[n] riei) =

∑
i∈[n] airi such that ak+3 > ak+2 > a1 = a2 =

· · · = ak+1 and ak+1 > aj for j = k + 4, . . . , n. Let y be such a direction and
let J ∈ Bn−2

n . For non-singleton J : If k + 3 ∈ J then J contributes ∆k+3 to
the face-sum. Else, if k + 2 ∈ J then J contributes ∆k+2 to the face-sum. If
k + 3 /∈ J and k + 2 /∈ J then [k + 1] ⊆ J and hence J contributes ∆[k+1] to
the face-sum. We work our way through the J ∈ Bn−2

n :



3.4. THE (N, N-2)-COMPLETE NESTOHEDRON 74

k + 3

k + 2

12 · · · (k + 1)

k + 4 k + 5 · · · n

Figure 3.13: N = {k + 4, . . . , n, [n] − {k + 2, k + 3}, [n] − {k + 3}, [n]} is
isomorphic to the above Bn−2

n -forest.

• Singletons: The total contribution to the face-sum is
∑

i∈[n] ∆i.

• J is an (n − 2)-set: There are
(
n−1
n−3

)
J ’s for which k + 3 ∈ J , n − 2 J ’s

such that k + 3 /∈ J , k + 2 ∈ J , and exactly one J such that k + 3 /∈ J ,
k+2 /∈ J . By the earlier discussion, the total contribution to the face-sum
is ∆[k+1] + (n− 2)∆k+2 +

(
n−1
n−3

)
∆k+3

• J is an (n− 1)-set: From the earlier discussion we see that the combined
contribution by the (n− 1)-sets to the face-sum is ∆k+2 + (n− 1)∆k+3.

• J = [n]: The y-maximal face of ∆[n] is ∆k+3.

Combined this gives FN =
∑

i∈[n] ∆i+(n− 1)∆k+2+(
(
n−1
n−3

)
+n)∆k+3+∆[k+1],

which is just a translation of ∆[k+1]. Hence all (n− 1, n− 2)-nests correspond
to (k)-simplices.

The total sum of k-dimensional faces is the total number of size n − k
singleton-nests, (n − 1)-nests, (n − 2)-nests and (n − 1, n − 2)-nests. That
is, the total number of k-dimensional faces is n!

(n−k−1)!(k+1)!
+ n!

(n−k−2)!(k+1)!
+

n!
2(n−k−2)!k!

+ n!
(n−k−3)!(k+1)!

. We can simplify this by factoring out n!
2(k+1)!(n−k−1)!

from each term, allowing us to rewrite the sum as n!(2n2+k2−3nk−3n+2k+3)
2(k+1)!(n−k−1)!

.
For the facets we may simply let k = n − 2 for the earlier discussion of k-

dimensional faces, but ignoring case D, as nested sets corresponding to facets
are of size 2 while all (n−1, n−2)-nests are of size 3 or larger. Doing this we get
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n(n+3)
2

facets in total, of which n are combinatorially equivalent to ∆Bn−2
n−1

, n(n−1)
2

are (n − 3)-simplicial prisms, and the remaining n facets are combinatorially
equivalent to ∆Bn−3

n−1
.

For the case k = 2 the singleton-faces and (n − 1)-faces are identical; ∆B1
3

and ∆B2
3

are both hexagons. There are therefore only 3 kinds of 2-dimensional
faces, of which

(
n

n−3

)
+ n

(
n−1
n−4

)
= n(n−1)(n−2)2

6
are hexagons.

Vertices correspond to the maximal nested sets. Any maximal nested set
contains [n], one (n− 1)-set, one (n− 2)-set contained in the (n− 1)-set, and
(n− 3)-singletons contained in the (n− 2)-set. There are n(n− 1)(n− 2) such
nested sets, hence ∆Bn−2

n
has n(n− 1)(n− 2) vertices.

Edges correspond to a nested sets of size n − 1, which may be thought
of as removing one element (except [n]) from any maximal nested set. There
are 3 types of such size n − 1 nested sets: n

(
n−1
n−3

)
of these nested sets are [n]

together with an (n−1)-set and n−3 singletons from that (n−1)-set, another(
n

n−2

)
(n − 3) are [n] together with an (n − 2)-set and n − 3 singletons from

that (n − 2)-set, and n(n − 1)
(
n−2
n−4

)
are [n] together with an (n − 1)-set, one

(n− 2)-set contained in the (n− 1)-set, and n− 4 singletons contained in the
(n− 2)-set. This gives a total n(n−1)2(n−2)

2
edges.

Just as we did for ∆Bn−1
n

in section 3.4 we may also give finer descriptions of
how many faces of one kind are contained in so-and-so many higher-dimension
faces of another kind. Again we will give the relationship between vertices and
facets, and edges and facets.

Proposition 3.4.1. In the (n, n− 2)-complete nestohedron, one facet combi-
natorially equivalent to ∆Bn−2

n−1
, one (n − 3)-simplicial prism, and n − 3 facets

combinatorially equivalent to ∆Bn−3
n−1

join at every vertex.

Proof. Any maximal nested set contains one (n − 1)-set, one (n − 2)-set and
n − 3 singletons. By Theorem 2.3.1 every vertex is therefore contained in
one (n − 1)-facet, one (n − 2)-facet and n − 3 singleton-facets. By Theorem
3.4.1 the (n − 1)-facets are combinatorially equivalent to ∆Bn−2

n−1
, the (n − 2)-

facets are (n−3)-simplicial prisms, and the singleton-facets are combinatorially
equivalent to ∆Bn−3

n−1
.

Proposition 3.4.2. In the (n, n− 2)-complete nestohedron, there are 3 kinds
of edges:
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• (n − 1)-edges: There are n(n−1)(n−2)
2

(n − 1)-edges. Each (n − 1)-edge
is contained in one facet combinatorially equivalent to ∆Bn−2

n−1
and n − 3

facets combinatorially equivalent to ∆Bn−3
n−1

.

• (n − 2)-edges: There are n(n−1)(n−2)
2

(n − 2)-edges. Each (n − 2)-edge is
contained in one (n−3)-simplicial prism and n−3 facets combinatorially
equivalent to ∆Bn−3

n−1
.

• (n− 1, n− 2)-edges: There are n(n−1)(n−2)(n−3)
2

(n− 1, n− 2)-edges. Each
(n − 1, n − 2)-edge is contained in one facet combinatorially equivalent
to ∆Bn−2

n−1
, one (n− 3)-simplicial prism, and n− 4 facets combinatorially

equivalent to ∆Bn−3
n−1

.

Proof. Follows directly by the description of edge-nests given in the proof of
Theorem 3.4.1 and applying Theorem 2.3.1 in the same way we did for Propo-
sitions 3.3.1, 3.3.2 and 3.4.1.

Example 3.4.1. The (5, 3)-complete nestohedron has 60 vertices, 120 edges,
80 2-dimensional faces, and 20 facets. Of the 20 facets, 5 are truncated octa-
hedra (∆B2

4
), 10 facets are (2)-simplicial prisms, and the 5 remaining facets are

truncated tetrahedra (∆B3
4
). The 80 2-dimensional faces consist of 30 hexagons,

30 squares, and 20 triangles. 2 truncated octahedra, one (2)-simplicial prism
and one truncated tetrahedron join at every vertex. This is precisely the struc-
ture of the cantitruncated (4)-simplex [7].

Example 3.4.2. The (6, 4)-complete nestohedron has 120 vertices, 300 edges,
290 2-dimensional faces, 135 3-dimensional faces, and 27 facets. The facets con-
sist of 6 cantitruncated (4)-simplices, 15 (4)-simplicial prisms, and 6 truncated
(4)-simplices. 15 of the 3-dimensional faces are truncated octahedra, 60 are
(2)-simplicial prisms, another 30 are truncated tetrahedra, and the remaining
30 are tetrahedra. The 290 2-dimensional faces are 80 hexagons, 90 squares and
120 triangles. 3 cantitruncated (4)-simplices, one (4)-simplicial prism and one
truncated (4)-simplex join at every vertex. This coincides with the structure
of the cantitruncated (5)-simplex [6].

Example 3.4.3. The (7, 5)-complete nestohedron has 210 vertices, 630 edges,
805 2-dimensional faces, 560 3-dimensional faces, 210 4-dimensional faces and
35 facets. 7 facets are cantitruncated (5)-simplices, 21 facets are (4)-simplicial
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prisms, and 7 facets are truncated (5)-simplices. Of the 210 4-dimensional
faces, 21 are cantitruncated (4)-simplices, 105 are (3)-simplicial prisms, 42
are truncated (4)-simplices and the final 42 are (4)-simplices. The 560 3-
dimensional faces consist of 35 truncated octahedra, 210 (2)-simplicial prisms,
105 truncated (3)-simplices and 210 (3)-simplices. Lastly, of the 805 2-dimensional
faces, 175 are hexagons, 210 squares and 420 triangles. 4 cantitruncated (5)-
simplices, one (5)-simplicial prism and one truncated (5)-simplex join at each
vertex. This matches the structure of the cantitruncated (6)-simplex [5].

Remark: From the examples we could find on the Polytope Wiki [5, 6, 7] it
seems the (n, n− 2)-complete nestohedron is a cantitruncated (n− 1)-simplex,
however we offer no proof of this observation.
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