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Abstract 

This thesis aimed to develop a methodology using Machine Learning (ML) techniques for the 

interpretation of deep-sea resources. The deep-sea hosts diverse ecosystems and valuable 

resources, but potential environmental implications, particularly from mining activities, 

necessitate effective management strategies. Detailed maps of the sea floor are therefore a 

necessity, yet such maps have to date only been produced based on manual interpretation which 

is time consuming and subjective. The study focused on assessing the potential of ML methods 

to map deep-sea features based on photomosaic and bathymetry data in order to take the first 

steps in developing an automated, objective, and time-saving technique. This thesis’s method 

accurately identified and classified features like chimneys at the hydrothermal vent fields, 

providing insights for resource interpretation and conservation. 

Integrating ML methods into deep-sea resource management is crucial. The methodology 

enhances understanding of complex techniques, such as Convolutional Neural Networks 

(CNN) and Object-Based Image Analysis (OBIA) to overcome a seabed characterization. 

Simultaneously describing the parameters utilised to achieve a meaningful classification. 

ML algorithms analyze large data volumes, extract patterns, and predict feature distributions, 

aiding targeted conservation measures and sustainable resource exploitation. The methodology 

successfully mapped hydrothermal chimneys in two study areas yet producer accuracies (0,7%) 

were higher than user accuracies (0,64%), indicating that there were other landforms that 

shared similar features.  

The methodology also helps assess potential environmental implications of future mining, 

supporting informed decision-making and mitigation strategies. It serves also as a foundation 

for future research to aim at overcoming problems related to incomplete spatial coverage, 

attempt to better utilize shape and spatial parameters within the OBIA refinement, try to 

identify more background classes for excluding them from the model, etc. 

Keywords: hydrothermal vent features, seabed exploration, object-based image analysis, 

seabed mining, environmental implications. 

 

Master's Thesis in Earth Science, GEOV399, 60 credits 
Supervisor: Benjamin Robson 
Department of Earth Science (GEO), University of Bergen. 
The whole document is available at https://bora.uib.no/bora-xmlui/  



 

 

  



 

Acknowledgements 

 

Special thanks to everyone who deserves it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“But more wonderful than the lore of old men and the lore of books is the secret lore of ocean. Blue, green, grey, 

white, or black; smooth, ruffled, or mountainous; that ocean is not silent. All my days have I watched it and 

listened to it, and I know it well. At first it told to me only the plain little tales of calm beaches and near ports, but 

with the years it grew more friendly and spoke of other things, of things more strange and more distant in space 

and in time. Sometimes at twilight the grey vapours of the horizon have parted to grant me glimpses of the ways 

beyond; and sometimes at night the deep waters of the sea have grown clear and phosphorescent, to grant me 

glimpses of the ways beneath. And these glimpses have been as often of the ways that were and the ways that 

might be, as of the ways that are; for ocean is more ancient than the mountains and freighted with the memories 

and the dreams of Time.” 

 H.P. Lovecraft 
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1. Introduction  

 
1.1. History of deep-sea exploration 

A relatively long tradition of the ocean exploration and monitoring results today in a worldwide 

integrated deep ocean observing system. It involves significant international cooperation, 

coordination, and agreements to create a bathymetric map of the entire ocean domain.      

Ocean exploration companies and scientists use cutting-edge technology to collect bathymetry 

and photographic characterisation datasets to achieve this goal. This strategy uses strong data 

storage and transmission methods to ensure that the results are made publicly available quickly 

after data collection.           

There are numerous examples of this kind of initiative: the Seabed 2030 project, on behalf of 

the General Bathymetric Chart of the Oceans (GEBCO), aggregates all available bathymetric 

data with the aim of producing the definite map of the global ocean floor by 2030. Or the Deep-

Ocean Observing Strategy (DOOS), under the guidance of the Global Ocean Observing System 

(GOOS) (Levin et al., 2019), which seeks to bring together the global community of deep-

ocean analysts in order to monitor and better understand the state of the deep ocean. These 

projects have benefited from the implementation of 21st-century autonomous technologies and 

are supported by numerous agencies and innovative enterprises. 

There is a clear and growing interest in the deep sea, which can be explained by the following 

reasons. Firstly, this vast and unexplored frontier hosts a rich diversity of species and 

ecosystems. Many of these species are unique and have evolved to survive in extreme 

conditions, making them of great scientific interest. Secondly, the deep sea plays a crucial role 

in regulating the Earth's climate and supporting global ecosystems. Thus, it is of vital 

importance for understanding and mitigating the impacts of climate change. Finally, the deep 

sea is believed to be a potential source of valuable resources, including new minerals, oil, and 

gas exploitation opportunities (Cuyvers et al., 2018; Levin et al., 2019). 

And yet, regardless of centuries of data collection and the development of new and better 

mapping technology in the past few decades, it is estimated that less than 18% of the global 

seafloor has been surveyed at a high resolution.  
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1.2. Natural diversity of the deep-sea 

The deep ocean is defined as starting 200 metres below the sea level, known as The Twilight 

Zone, as very little light reaches this far below the sea. It is the largest environment on our 

planet in terms of volume and surface, yet also the least studied. 

It is home to a unique marine diversity, as it is not found anywhere else with such specific 

conditions. The deep-sea hosts a type of biology and geology characterised by the influence of 

high pressures due to the depth, the absence of natural light and very low temperatures. 

Biologically, the seabed has a much higher biodiversity than previously thought. And even 

today, new species are still being discovered (Fig.1). This is indicative of the lack of 

knowledge that science has on this ecosystem and therefore how is directly affecting to its 

conservation. To work towards the objective of fulfilling SDG 14 - Life below water - of the 

Agenda 2030 for Sustainable Development, more precise seabed knowledge, particularly 

high-resolution bathymetric data, is necessary (Wölfl et al., 2019). Especially with regard to 

benthic species, bathymetry has proven to be one of the key driving tools for the study of 

species distribution. Aside from depth, derived variables including slope or roughness among 

others, they have been found to be important indicators in benthic species distribution 

models.  

Figure 1. Interpretative collage of the deep-sea biodiversity. Pictures courtesy of NOAA, MBARI, and 

photographer Joshua Lambus. 
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Similarly, reliable bathymetric models can have a significant impact on climate models' ability 

to replicate global events such as El Niño in the Pacific. Or the natural formation of tsunamis, 

closely linked to the morphology of the seafloor, such as the historic Storegga Slide on 

Norway’s west coast (Kelley et al., 2015; Levin et al., 2019). 

Geologically, and with special relevance for this thesis, the mining of three main minerals in 

the deep sea has been suggested for various types of habitats that can be found worldwide 

(Miller et al., 2018): 

Manganese polymetallic nodules on the abyssal plains and Cobalt-rich crust at seamounts have 

their most significant deposits in the Pacific Ocean, with a notable concentration along the 

Clarion-Clipperton Zone (CCZ). Polymetallic sulphides are found at hydrothermal vents, 

including those along the Mid-Atlantic Ridge (Fig 2).  

Figure 2. Mineral resources distribution, and representative images of three major deep seabed mineral resources. Pictures 

courtesy of GEOMAR and (Guo et al., 2023) 
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- Manganese polymetallic nodules on the abyssal plains: Structures compound 

primarily of manganese and iron together with traces of other commercially relevant metals 

such as nickel, copper, and rare earth metals among others. The nodules present a potato-like 

shape in which minerals are deposited around a solid nucleus. It takes millions of years for 

these nodules to grow up to 4 to 10 centimeters in diameter.  

- Cobalt-rich crust on the slopes and top of seamounts (underwater mountains): Also 

known as ferromanganese crust, they are formed through the precipitation of minerals 

dissolved in seawater onto sediment-free substrates and are composed by a variety of trace 

metals such as manganese, iron, cobalt, nickel, and platinum. Due to its numerous applications 

in superalloys, and battery technology, cobalt is a subject of significant commercial interest. 

- Polymetallic sulphides on the hydrothermal vents: Formations containing a high 

sulphide concentration but are also abundant in copper, zinc, gold, lead, barium, and silver. 

They are connected to either ongoing or extinct hydrothermal activity along the oceanic ridges. 

According to the findings of the exploration and resource evaluation, it has been estimated that 

approximately 10 potential deposits out of over 200 mineralized sites may possess enough 

grade to be considered suitable for commercial mining. 

The discussion will provide a more detailed description of how these features interact within 

their respective habitats. 

 

1.3.Impact of human activity on deep-sea ecosystems 

Mapping the seafloor has the potential to meet the increasing global demand for more minerals 

and metals. The depletion of the resources located on land, has led to a renewed search for new 

metal supply chains, i.e., deep-sea mining. Despite not having started the extraction as such 

yet, exploration licenses for these resources have already been given to private investors and 

research institutions of multiple nationalities (Miller et al., 2018). 

At this early stage of the process, new data collection techniques are essential for assessing the 

feasibility of mining initiatives. Furthermore, the accuracy of this data is important in order to 

obtain a complete grasp of what is lying at such depths, where technological disadvantages like 

the absence of light and the challenging accessibility, or even the lack of regulations makes it 

harder to govern these potential activities.  
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Regarding conservation efforts, new maps can be used to identify important habitats and to 

design marine protected areas. Accurate maps of the seafloor are important for understanding 

the geology and ecology of the deep sea, as well as for predicting the impacts of climate change 

and other environmental factors. 

Thus, there is a growing need to address the knowledge gap that now exists around the potential 

environmental impacts of possible industrial activity in the deep-sea. In this paper, support 

vessel operations, shipping risks and accidents are not addressed. For the moment, no 

metalliferous resource has been fully mined, hence not all mining consequences are based on 

scientific findings. Small-scale perturbations or shallow water processes can suggest some 

impacts, but others are hypothetical (Christiansen et al., 2020; Miller et al., 2018):  

A removal of substrate, caused by cutting, scraping, and dragging of ore deposits and 

sediments, could affect broad sections of the seafloor, depending on which resources are being 

Figure 3. Classification of diverse depths, distinct maritime zones along with their corresponding national sovereignty rights, and different maritime 

resources. Modified from CEDA deep sea mining information portal. (Koschinsky et al., 2018; Miller et al., 2018) 
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extracted. Following that, the majority of potential mining scenarios these days include a closed 

riser mechanism that requires substantial volumes of ambient water to dilute the soil and the 

crushed ore and transport the resulting slurry to the surface. Similarly, significant amounts of 

surface water will be transferred to benthic regions. Meaning that both habitats will be altered, 

potentially leading to the infiltration of non-native organisms or harmful substances that may, 

in particular cases, be able to survive the abrupt change in scenarios.    

This part of the procedure results in the creation of two distinct categories of sediment plumes. 

The operational aspect is attributed to the utilisation of mining equipment and the motion of 

collectors positioned on the ocean floor. The second factor, which has a further significant 

influence, involves the creation of sediment plumes upon discharge. Such plumes will reach 

unpredictable heights or lengths, and are dependent on many variables, including the 

dimensions of the particles in suspension, the prevailing oceanic currents, and the 

topography of the ocean floor. The altered sediment deposition rate will have an impact on all 

deep-sea fauna that lacks the ability to feed under these new conditions.             

Furthermore, the process of extracting ore from rock involves the leaching of heavy metals, 

which could be performed on the mining vessel during a primary stage. However, if these 

heavy metals are subsequently dumped back into the ocean, they may release significant 

amounts of toxic substances into the sediment plumes. The potential side effects of 

acidification and oxygen depletion resulting from industrial activity have received limited 

research attention, as no such activity has yet started.        

Collectors for manganese nodules, cobalt crust and massive sulphides will likely have powerful 

lights to illuminate the seafloor along the mining path for camera control. Survey, inspection, 

and maintenance ROVs will also emit more light. However, many fishes and invertebrates with 

fully developed eyes are likely sensitive to bioluminescence's low light levels (Fig 1). 

Bioluminescence is the only natural light source in the deep water and found in all seas. 

Bacteria and fish produce it, and certain species of fish are drawn towards light, while others 

exhibit negative response to light stimuli. The tendency to be drawn towards light could 

potentially amplify the risk of entrainment, among other hazards. Bright illumination can 

locally cover up the ecological function of bioluminescence.      

The exact role of sound within deep-sea ecosystems remains largely unknown. The propagation 

of noise generated during ore extraction can have a significant impact on vast regions due to 

the omnidirectional nature of underwater sound dispersion, particularly at low frequencies, 

potentially spanning hundreds of kilometres. 
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With the above, the precise mapping of the seabed holds great significance and a crucial 

responsibility in the initial stages of determining the possible viability of a mining project, 

given the number of potential impacts involved. One of the mapping responsibilities refers to 

the modelling of plume behaviour, which is heavily influenced by the topography of the 

seafloor. Alternatively, it also involves gathering the most effective paths for the collectors. 

The process requires the determination of optimal routes for collectors, which takes into 

account the location of high populated areas or submerged landforms that may serve as 

obstacles, thereby reducing the potential adverse effects on the ocean floor. 

 

1.4. Goals, objectives, and research questions. 

This thesis aims to broaden the perception of the deep marine environments by testing CNNs 

and OBIA specifically for deep-sea imagery and to determine if artificial intelligence can 

more efficiently characterise the ocean floor, which can be useful in assisting researchers in 

better understanding how human activities, such as pollution and climate change, affect the 

oceans. To accomplish this goal, the next steps were followed:  

1. To determine what level of pre-processing is needed in order to robustly and 

consistently apply machine learning algorithms on deep sea imagery. 

2. To assess what model structure is most suitable for interpreting deep sea imagery, 

as well as what geological forms meet the conditions to be the most appropriate to 

be recognised by the model. 

3.  To expand on whether it is possible to scale up this methodology over larger 

extends with the existing resources. 

4. To consider the bigger picture of what automated analysis of deep-sea imagery 

could mean, and how such techniques can help contribute to more effective habitat 

management  and monitoring.  
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2. Geological Setting 

2.1. Mid Ocean Ridges formation  

The scientific concept of plate tectonics illustrates the dynamic motion of the Earth's crustal 

plates and the resulting geological structures that arise from their interactions. The Mid-Ocean 

Ridges, a lengthy range of mountains spanning the Earth's oceanic basins, is regarded as a 

highly characteristic attribute of this particular theory. These locations are crucial for 

comprehending the tectonic mechanisms, as they represent the sites where new oceanic crust 

is generated. (Alt, 1995; Dyment et al., 2007).  

  

Figure 4. (a) The current seafloor spreading rate grid. (b) The current spreading mode grid. Ultraslow (<20 mm/yr), slow (20–55 mm/yr), 

intermediate (55–75 mm/yr), fast (75–180 mm/yr), and super-fast (>180 mm/yr). Histogram insert shows the percentage of each spreading 

mode. (Seton et al., 2020) 
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The emergence of the Mid-Ocean Ridges is an indication of continental drift, specifically when 

divergent plate boundaries are spreading apart. When two tectonic plates diverge, magma 

ascends from the Earth's mantle to occupy the space between them. As the molten rock known 

as magma experiences cooling and solidification, it results in the formation of fresh oceanic 

crust that subsequently builds up to the edges of the tectonic plates (Tivey, 2007). Over a period 

of time, this phenomenon leads to the development of the extended and uninterrupted series of 

submerged mountains that traverse the oceanic basin. 

Several research methodologies have been employed to improve the understanding of the 

relationship between plate tectonics and the formation of the Mid-Ocean Ridge. The techniques 

included in this set of methods consist of seafloor cartography, seismic profiling, and borehole 

drilling. (Seton et al., 2020). Studies have provided important insights regarding the 

configuration and constitution of the Earth's crustal plates, along with the geological 

mechanisms that facilitated the genesis and also predict the evolution of the Mid-Ocean Ridges. 

Volcanic activity is occurring frequently, particularly in close proximity to the spreading 

centres where tectonic plates are diverging. This process creates seamounts, volcanic islands, 

and other topographical characteristics that are discernible on the ocean floor, such as the 

hydrothermal vent fields. 
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2.1.1.  Mid-Atlantic Ridge  

The Mid-Atlantic Ridge (MAR) is an extensive underwater mountain range that extends across 

the Atlantic Ocean from 87° N to 54° S. This entity is an outcome of tectonic activity and is 

distinguished by its division into multiple ridge segments that show a right-stepping pattern. 

These segments vary in length, spanning from ten to hundreds kilometres. (Bramley et al., 

2019). The MAR defines the boundary separating the North American Plate and the Eurasian 

Plate, experiencing an average spreading rate of approximately 22 mm/year (Eason et al., 2016) 

making it one of the most active volcanic and hydrothermal systems on the planet.   

The genesis of this geological formation is explained by its positioning on a magmatic bulge 

that spans the Atlantic Ocean, upon which the mid-oceanic ridge is situated. The emergence of 

this protuberance was triggered by a surge of convective forces coming from the asthenosphere, 

which allowed the production of newly formed lithosphere and oceanic crust. The 

geological incident actually happened in the Triassic period (201 Ma-252 Ma), in which a 

sequence of  three-armed grabens converged on the supercontinent Pangaea. It is expected for 

a divergent plate boundary to form in only two segments of a three-armed graben. The 

geological term for the "failing arms" is aulacogens. The aulacogens of the MAR have 

contributed to the formation of the river valleys present today across the continents of Africa 

Figure 5. MAR setting interpretation 
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and the Americas. Examples of such river valleys include the Mississippi, Amazon, and Niger 

rivers (Burke, 1976; Burke & Wilson, 1976; Humphris et al., 2002). 

The MAR presents a diverse range of lithologies that hold significant implications for the 

understanding of plate tectonics and the formation of the oceanic crust. Basalts, serpentines, 

gabbros, and dolerites show unique chemical compositions and physical characteristics (Fig 6), 

which offer valuable insights into the sub-surface processes of the ocean. (Dick et al., 2003). 

Understanding these lithologies is essential for improving the comprehension of the Earth's 

crust and the mechanisms that facilitate the formation of hydrothermal vents (Emery & Uchupi, 

2012; Fox et al., 1973; Nicholls et al., 1964):  

-Basalts represent a prevalent lithological type that is frequently found in the MAR, 

constituting an important portion of the oceanic crust. These rocks are characterised by their 

dark colour and fine-grained texture and are the result of the solidification of lava that has been 

extruded onto the oceanic crust. Basaltic rocks are primarily composed by minerals such as 

plagioclase feldspar, pyroxene, and olivine, and possess a relatively low silica content. Basaltic 

rocks exhibit a relatively homogeneous aspect, characterised by diminutive mineral grains that 

are difficult to discern with the naked eye. 

Figure 6. Ocean ridge crustal accretion models. A - Classic interpretation of the Penrose Model for a fast-spreading ridge; B - 

Penrose model modified for slow-spreading ridges based on the abundance of peridotite and frequent absence of gabbro at 

transforms following focused melt-ow models; C - Model of the anomalous 14-16°N area of the Mid-Atlantic Ridge; D - Model of the 

magmatic and amagmatic accretionary segments at ultraslow-spreading ridges Red and blue bars are drilling sites and targets 

respectively (Dick et al., 2003).  
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- Serpentines represent a distinct lithological composition observed within the 

MAR region. They are composed of magnesium-rich minerals, and they are formed through 

the alteration of ultramafic rocks, specifically peridotite, upon exposure and hydration with 

seawater. Serpentines exhibit a characteristic greenish-grey colour and possess a waxy texture. 

These minerals are frequently found in regions of hydrothermal activity and fault zones. The 

presence of serpentines has significant implications for the study of the MAR due to their 

potential to serve as a setting for hydrothermal vents. 

- Dolerites are commonly found in geological formations known as dykes and sills. 

These are igneous rocks with a fine-grained texture and dark coloration that form due to the 

rapid cooling and solidification of magma.  Dolerites consist of plagioclase feldspar, pyroxene, 

and olivine minerals and have a high silica content. The value of dolerites lies in their utility 

for investigating the MAR due to their function as an transitional zone connecting the upper 

and lower parts of the oceanic crust. 

- Gabbros are a type of igneous rock characterised by a coarse-grained texture, 

commonly occurring in the lower parts of the oceanic crust. They are a result of the gradual 

cooling and solidification of magma beneath the Earth's surface. These rocks are primarily 

composed of various minerals including plagioclase feldspar, pyroxene, and olivine. The 

gabbro rock exhibits a characteristic dotted appearance, featuring black and white colours, and 

notable mineral grains that are discernible without the aid of magnification. The importance of 

gabbros in the study of the MAR lies in their representation of the deeper parts of the oceanic 

crust, thereby facilitating an understanding of the subterranean mechanisms at play. 
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2.2. Hydrothermal Vent Fields 

Hydrothermal vents are geological features that emerge as hot springs on the seabed. These 

fissures in the ocean floor facilitate the emergence of fluids that are both hot and mineral-rich, 

which can subsequently reach the Earth's surface. The genesis of these fluids can be attributed 

to the convective movement of seawater within the Earth's crust, which undergoes thermal 

alteration due to the presence of underlying magma that serves as a thermal reservoir (Fig 7). 

The chemical composition of the substance may experience modifications through interactions 

with adjacent host rocks and their respective compositions. (Fisher et al., 2007; Kelley & 

Shank, 2010; Puzenat et al., 2021). This alteration and a consequent metamorphism get 

gradually increased going deeper in the crust. Both effects reflect variability based on the 

distinct sections of the hydrothermal systems in which the chemical exchange transpires. (Alt, 

1995). Thus, distinguishing three main ones: Recharge, reaction, and discharge zones. 

Figure 7. Schematic representation of hydrothermal venting process. Display of different lithologies, temperatures and  venting Zones. 

Modified from picture courtesy of Spencer Sutton. 
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As seawater penetrates the crust, it reaches elevated temperatures of approximately 400°C, 

thereby acquiring its distinctive chemical composition and influencing its buoyancy by 

augmenting it. Subsequently, the fluid rapidly ascends towards the ocean floor. Additionally, 

as it cools, it causes the creation of sulphide deposits that are abundant in minerals and metals 

containing Au, Ag, Pb, As, Sb, and Ba, relative to mid-ocean ridges deposits (Tivey, 2007). 

The demand for these elements is consistently increasing in order to facilitate the development 

of green technology and ensure the continuity of the intended economic growth. (Hallgren & 

Hansson, 2021). 

Regarding a geological background, hydrothermal venting can vary greatly when it comes to 

its origin settings (Dover, 1995; Zeng et al., 2020). Vent fields are present in various geological 

formations such as Mid-Ocean Ridges (MORs) like the Mid-Atlantic Ridge (MAR), back-arc 

basins (BaBs) such as the Okinawa Trough near Taiwan, island-arcs (IAs) like the Eastern 

Manus Basin in Papua New Guinea, and hot spots like Strýtan in Iceland.  

 

2.2.1. Hydrothermal Vent Features 

The presence of diverse geographical features can lead to the occurrence of multiple basement 

rocks exhibiting distinct chemical properties, therefore resulting in a range of hydrothermal 

outputs.                      

This thesis will focus on the lithologies of MORs rather than looking into the mentioned BaBs 

or IAs. The area contains volcanic rocks that exhibit abyssal peridotites and other remnants of 

magma that experienced significant alteration due to exposure to seawater. This is evidenced 

by the presence of elemental anomalies such as Rb, Ba, Sr, Li, and Pb, which suggest a source 

originating directly from the Earth's mantle (Langmuir et al., 1997). Based on the available 

data, it can be determined that the hydrothermal vents produce products such as vent fluids 

exhibiting a thermal gradient ranging from 66º- 403º C and pH levels that can vary from 2.6 to 

10.6 under standard conditions (25ºC and 1 atm). Typically exhibiting elevated levels of H2S, 

Fe, and Mn (Zeng et al., 2020). 

Historically, the main strategy for identifying and categorising hydrothermal vent fields has 

been to search for indicators such as chemical footprints or heat anomalies. This is largely due 

to the extensive knowledge and experience that has been accumulated through the use of these 
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methodologies (German et al., 2010). Although remote sensing approaches such as the one 

proposed in this thesis, are gaining popularity due to improvements in technology. 

In the domain of geomorphology, an extensive understanding of the geological features present 

in the hydrothermal vent field is essential for its subsequent categorization. 

2.2.1.1. Hydrothermal features at a Bathymetric level 

On a larger scale, volcanic landforms have been identified along the MAR or other slow 

spreading ridges. These landforms are useful for bathymetrical interpretation as they exhibit 

continuous and identifiable shapes that do not require high resolutions (Palgan, 2017): 

- Volcanic hummocks represent the most prevalent and small monogenic landform in 

the MAR, characterised by heights up to 300 metres, steep slopes, and diameters that vary from 

50 to 500 metres. 

- Hummocky ridges are created through the clustering of multiple volcanic hummocks, 

resulting in a larger volcanic feature that can be easily identified through bathymetry. They 

have the potential to reach a length of multiple kilometres, have a width ranging from 100 to 2 

kilometres, and achieve an elevation of up to fifty metres above the surrounding seabed. 

Figure 8. Examples of volcanic landforms distinguished under bathymetric resolutions: A) Volcanic Hummocks. Bathymetry 

gridded at 50m; B) Hummocky Ridges. AUV Bathymetry of 1m resolution; C) Flat-topped volcanoes. Bathymetry gridded at 

35m; D) Flat lava flows (lobate flows) with detailed structures such as hummocks, conical volcanoes (tumulis) and collapse 

structures. AUV bathymetry of 1 m resolution. (Palgan, 2017) 
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 - Eruptive fissures are a commonly observed site for effusive eruptions, and their 

formation can be attributed to one of three processes: magmatic intrusions, lithosphere 

stretching, or thermal contraction. These fissures are characterised by the presence of inflated 

lobate and pillow lavas. The formation of recognizable wrinkles around them is attributed to 

the process of folding. 

 - Flat-topped seamounts can be easily identified in bathymetric datasets. 

Their circular shape is susceptible to tectonic deformation. These types of volcanoes are 

commonly referred to as "flat-topped volcanoes" and typically exhibit a flattened summit. They 

can present a radius of 1-2 kilometres and reach heights of 50-200 metres. 

 - Axial volcanic ridges are formed through the superposition of the volcanic 

features previously described. They are the most common features, particularly in the Mid-

Atlantic Ridge. Additionally, these distinctive composite volcanoes serve as the principal 

constructors of the emerging volcanic region. 

2.2.1.2.Hydrothermal features at a Mosaic level 

To conduct a mosaic analysis at an increased resolution in comparison to the bathymetry, a 

more detailed classification can be executed. This implies that the volcanic characteristics 

observed have the potential to meet the criteria for different lava categories. Thus, similar to 

those seen on land, submerged lava flows display a variety of morphologies.    

Figure 9. Examples of hydrothermal formations distinguished under mosaic resolutions: A) A group of limestones chimneys at the Lost City 
Hydrothermal Vent Field at the Mid-Atlantic Ridge. B) Bacterial mats and hydrothermal chimney in the Gulf of California. C) Prominent 
basement rocks on the steeply sloping side of the Western Massif of Lost City Hydrothermal Vent Field. D) Bacterial mat seen at the Blake 
Ridge diapir. The two red dots near the center of the image are laser pointers from the sub used to measure the size of a targeted object. These 
two points are always 10 cm apart.  Images courtesy of NOAA agency 
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The lava morphologies that are commonly observed on the mid-ocean ridges include pillow 

lavas, lobate flows, and sheet flows. (Dover, 1995; Mitchell, 2018).         

In addition to the various classifications of lava, the mosaic in question also features 

identifiable examples of hydrothermal vent features:  

- Bacterial mats are dense layers of microbial communities that form in close proximity 

to hydrothermal vents. Vent streams often contain particular bacteria that possess the ability to 

degrade the chemical compounds and minerals present within them. The high reflectance of 

the object towards artificial light results in its noticeable appearance in the image, due to its 

bright white shade. 

Chimneys and their corresponding shadows are easily discernible. The mineral deposits, 

mainly made up of metal sulfides, that can be found in the vents' surroundings are used to create 

these tall, hollow structures. Chimneys can be subclassified as: 

- Sulphide edifices are intricate and extensive formations composed of metal sulphides 

and various minerals that may appear in proximity of hydrothermal vents. These entities have 

the ability to last for many years, achieving considerable heights. 

- The black smokers discharge water that is rich in sulphides and minerals, typically 

characterised by dark plumes of water that contribute to their distinctive appearance. (The term 

"smokers" is attributed because of how much they mimic smokestacks from factories.) 

- The white smokers emit mineral-rich plumes of water, typically composed of silicon, 

calcium, and barium. Hydrothermal vents of this type are comparatively infrequent in 

comparison to black smokers and tend to occur at lower temperatures. 

The various vertical structures have been regarded as a unified entity in the categorization 

process. The structure in question has been referred to as "chimney." As shown in Fig. 9 (A), 

the vertical nature of the structure makes it more challenging to discern through superficial 

mapping techniques, as it blends easily with other features. Thus, the small bathymetric 

alterations play a significant role. For this reason, it is strongly recommended that a high-

resolution bathymetry is employed to detect even the slightest variations in the topography of 

the seabed. 

- The basement rocks (Snook et al., 2018) and mounds of spire fragments and 

hydrothermal sediments are highly significant for mining purposes due to their inactive nature, 

characterised by low temperatures and the absence of any living ecosystems in the immediate 

area. During the process of mosaic analysis, they present a substantial surface of the sea floor.  
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2.2.2. Loki’s Castle Hydrothermal Vent Field 

The location of the LCHVF is situated at the juncture of the Mohns Ridge segment's northward 

turn into the Knipovich Ridge, more precisely at coordinates 73°30′N and 8°E. This northern 

region of the MAR is called The Mid-Ocean Ridge (AMOR) (Pedersen et al., 2010). 

The LCHVF is situated at a depth of roughly 2400 metres. The AMOR is classified as a 

ultraslow-spreading ridge, spreading at a rate of approximately 6-15 mm/yr. The geological 

composition of the area surrounding the vent field is predominantly constituted of basaltic 

Figure 10. Bathymetrical augmentation from (a) the Axial Volcanic Ridge (AVR), with an expanded perspective of the AVR as observed from

a southern oblique viewpoint (b). The LCHVF emerges at the centre of the crest, while an inset of the hydrothermal vent showcases the 

Eastern and Western mound subdivisions, along with their corresponding vents (c). Bathymetry maps from (Pedersen et al., 2010) 
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rocks, with a minor presence of gabbroic and ultramafic rocks in the underlying strata.   

The vent field is named after the Loki's Castle vent, which is the largest of the vent sites and is 

located at the top of a volcanic edifice. The edifice is composed of a mixture of basaltic and 

rhyolitic rocks, which are thought to have been formed by volcanic activity related to the Mid-

Ocean Ridge (Snook et al., 2018). 

At the Loki's Castle Hydrothermal Vent Field there is a discharge of black smoker fluids 

emanating from chimneys that can reach heights of up to 13 metres, numbering four in total. 

The chimneys are located on two hydrothermal mounds, with an approximate distance of 150 

metres between them (Fig. 10 (c)). These mounds are estimated to have a height of 20-30 

metres and a width of 150-200 metres (Jaeschke et al., 2012). 

The Eastern mound, 150m east of the western mound, and has the same size and composition. 

The eastern mound contains only one hydrothermal vent at the top, called João, while the 

western mound has three. The mound's most prominent characteristic is the high-temperature, 

focussed vent (João), yet bacterial mats cover much of it, indicating a significant fraction of 

diffuse outflow.           

The Western mound has a diameter of 150-200m and is 20-30m tall. The mound contains 

mostly pyrite, sphalerite, and pyrrhotite. Three high-temperature (>300°C) black smoker vents 

are evenly distributed from northwest to southeast on the mound. The northwest vent, Sleepy, 

is the least active of the three smokers. Menorah and Camel are the middle and southeast vents, 

respectively. Menorah and Camel have multiple chimneys, whereas Sleepy has one rounded 

chimney (Pedersen et al., 2010). 

The Loki's Castle Hydrothermal Vent Field is considered a suitable location for the finding of 

sulphide mineral deposits with regards to its potential mineral resources. These deposits exhibit 

elevated levels of metallic elements, including copper, zinc, and gold, that are of significant 

economic importance (Koschinsky et al., 2018). However, the exploration and exploitation of 

these resources requires careful consideration of the potential environmental impacts and the 

sustainability of such activities. 

The Loki's Castle Hydrothermal Vent Field is under Norwegian jurisdiction (Fig. 28) as it falls 

within Norway's Exclusive Economic Zone. Starting this year, the Norwegian government will 

grant licences exclusively for scientific research and exploration purposes in the region to 

private enterprises. The assumed extinct site known as "Mohns Treasure" is the target location 

for their mission (Directorate, 2023). 
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2.2.3. Lucky Strike Hydrothermal Vent Field  

The LSHVF is situated on the southern section of the Mid-Atlantic Ridge, more precisely at 

37°17′ N and 32°16′ W. It lies approximately 400 km southwest from the Azores archipelago, 

at a depth of around 1500 meters and with a slow spreading rate of roughly 22mm/year 

(Humphris et al., 2002).  

The area is characterized by a high degree of tectonic activity, with frequent earthquakes and 

volcanic eruptions along most of the sea floor in this segment, south of the Azores platform. 

Meaning that the Azores hot spot has a significant impact on this system (Kelley & Shank, 

Figure 11. Bathymetrical augmentation of the Lucky Strike Hydrothermal Vent Field from (A) the Lucky Strike segment from shipboard multibeam 

data highlighting the summit of the central  volcano (box Figure 2a). Lines show locations of the main axial valley bounding faults (WBF: west 

bounding faults and EBF: east bounding faults). (B) Map containing the shaded high-resolution LSHVF bathymetry (C.1), surrounded by the three 

volcanic cones NWC: Northwest volcanic Cone, NEC: Northeast volcanic cone and SC: South volcanic Cone. (C.2) Tracks of the ROV Victor. 

Bathymetry maps from (Ondréas et al., 2009). 
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2010). At the centre of the Lucky Strike segment, on the summit of a noticeable volcano, the 

Lucky Strike hydrothermal vent field covers an area of over 1 km2 (Fig.11, C.1). At Lucky 

Strike, venting sites include ridges with pool temperatures above 200°C, black smokers with 

fluids as hot as 333°C, and chimneys releasing diffuse fluids with lower temperatures. 

Hydrothermal venting occurs in four main regions, each of which contains several chimneys, 

some of which are well-known, such as Sintra, the Tour Eiffel, and Montsegur (Ondréas et al., 

2009).  These Lucky Strike vents are situated in the vicinity of an even stretch of smooth lava 

and remarkable columnar formations, which have been considered as the remnants of a 

fossil lava lake. The identification of the lava lake below the Lucky Strike volcano implies the 

presence or recent activity of a subterranean magma chamber within the Earth's crust. This 

statement suggests that the composition of the hydrothermal vent consists of basaltic rocks, 

which are formed through the process of lava cooling and solidifying (Langmuir et al., 1997).  

The hydrothermal vents situated towards the southern and western regions of the lava lake are 

constructed on a unique stratified basaltic breccia formation, which is occasionally cemented 

by silica. This formation appears in the form of a slab-like material, measuring up to one metre 

in thickness. It is believed to be formed due to a localised explosive volcanic activity. 

Subsequently, it was cemented by silica that precipitated from the combination of hydrothermal 

fluids and seawater (Humphris et al., 2002; Ondréas et al., 2009). 

The LSHVF and its resources are located in the Marine Park of Azores (Menini & Van Dover, 

2019) . The site includes distinct regions that encompass diverse marine environments, such as 

seamounts, banks, submerged islands, and hydrothermal vents. The Portuguese EEZ covers 

two hydrothermal vent fields (Fig. 28), including Lucky Strike and also Menez Gwen, which 

are situated within the Park. These vent fields are defined by their significant depth, exceeding 

500 metres, and have been declared as Marine Natural Reserves. As such, all economic 

activities, such as deep-water fishing and resource exploitation, are forbidden within these 

reserves.  
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2.3. Hydrothermal Vents as potential mining sites. 

Known as massive sulfides or polymetallic sulfides, the minerals formed as a result of the 

hydrothermal vents activity are key factors for the so-called Green Transition (Church & 

Crawford, 2020). In which rare metals are used for high-tech tools and objects such as batteries 

for transportation, electronic devices or for storing solar and wind energy. 

For the past forty years, deep-sea mining (DSM) activities have seen ups and downs within its 

funding and evolution. DSM experienced a considerable boost after the end of the 

decolonization, in efforts to close the inequality gap between rich and poor countries. As 

discussed in (Hallgren & Hansson, 2021), minerals found on the deep seabed, ones that lie 

beyond any countries jurisdiction, belong to nobody and everybody, i.e., they are a common 

good (Fig. 3). Therefore, the international authorities which deal with its regulation have the 

duty to create and follow a system that is equitable and fair. With this purpose, the ISA was 

created in 1994, a UN body in charge of ensuring the integrity of the marine environment 

(Blanchard et al., 2023; Miller et al., 2018).         

As of now, there has not been an issue of mining licences. The ISA operates by granting 

approval to a plan of work (PoW) for the exploitation of each mineral resource . On June 25th, 

2021, the Republic of Nauru initiated the implementation of the Law of the Sea by formally 

requesting the ISA Council to adopt regulations within a two-year timeframe that would 

facilitate the approval of the PoW for exploitation. 

In contrast, as a measure of precaution, the European Union Parliament voted for a 

moratorium of exploitation activities in the year 2018, and has reaffirmed the same position in 

2021. Regardless of its limited impact on the Member States, the Council's elected 

representatives did not formally suggest a moratorium. Instead, they focused their efforts on 

enhancing the draft's existing environmental regulations (Ardito & Rovere, 2022). 

There are still numerous uncertainties which can cause severe or even permanent damage to 

an ecosystem during the extraction process, that humanity barely understands yet. There is still 

a lot of research ongoing, and is needed to wait and see what it uncovers, or else most of the 

ongoing initiatives may just turn hazardous. 

This thesis therefore aims to point out the strong relationship between new methods of 

underwater exploration and the conservation of the marine environment as intended by the UN. 

 



 

23 

 

3. Theoretical Background 

3.1. Development of deep-sea mapping techniques 

Egyptians are thought to have been the first to try to figure out what was beneath the water's 

surface. They would post a person at the bow of the boat, holding a long pole into the water, 

tracing the submerged bottom in order to warn if any obstacle would hit the hull (Wölfl et al., 

2019). More than a century ago, the little information available was obtained by using 

rudimentary technics such as dropping a lead weight tied to a line over the edge of a boat and 

measuring the length to the bottom. Within a short amount of time, these technologies evolved 

into single beam echo-sounders, which acted as a bridge to the multibeam surveying that is 

used nowadays.  

To observe any region of the ocean more precisely, researchers employ echo-sounding  

technology rather than satellites, typically used for on-land surveys, because of the increased 

resolution. Echo-sounding is the use of sonar technology, short for SOund NAvigation and 

Ranging, as a tool (Eason et al., 2016) typically for determining water depth (bathymetry) 

through sound waves. It functions by releasing the acoustic waves into water and measuring 

the time interval between pulse emission and return; the resulting duration of “flight”, 

considering simultaneously the speed of sound in water, allows scientist to estimate the 

distance between sonar and target. 

Onboard sonar systems nowadays can image the ocean floor at a resolution of around 100 

metres across a thin strip below the ship (Fig. 12). These highly precise maps have currently 

only covered the previously mentioned percentage of 18%, an area roughly the size of Africa 

(Mayer, 2006). Moreover, when trying to detect anything only a few metres in size on the ocean 

Figure 12. Single beam sonar data (A), which is made up of random soundings and curves interpolated from spare soundings. Comparison 
to multibeam sonar data (B), which represents a much more detailed bathymetric description. (Mayer, 2006) 
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floor, such as the mineral spires of hydrothermal vents analysed in this study, sonar equipment 

must be brought exceptionally close to the seabed utilising underwater vehicles or towed 

devices. At this level, sonar has mapped less than 0.05% of the global ocean floor to that 

maximum degree of detail, an area roughly the size of Ireland. Thus, in order to add more 

information to obtain a more complete dataset, the combination of bathymetric and 

photomosaic’s surveys is applied. 

Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) are 

responsible for collecting photographic and multibeam data with higher resolution than the 

ships themselves since they can dive with almost no restriction (Fig 13), with the most 

advanced vehicles reaching almost the deepest point in the ocean (11000 mbsl). While ROVs 

are controlled remotely and powered from a vessel, AUVs operate autonomously, with only 

their own power supply limiting their range. 

The establishment of these near-bottom mapping techniques is still impractical for surveying 

broad areas, due in part to their low speeds in comparison to ships (Wölfl et al., 2019). In 

addition, they are not yet capable of declaring ship-based surveys obsolete, as the positioning 

detail of AUVs remains restricted, and it is still required to roughly grasp the bathymetry of a 

region before a submersible can be dived down to the seafloor autonomously. 

Generally, the volcanic features, with all their associated intricacies, have been identified 

visually on a photomosaic. A photomosaic is an aggregation of images generated by the 

Figure 13. Interpretative collage of underwater vehicles ROV Deep Discover (left) and AUV Sparus II (right). Pictures courtesy of NOAA 

and IQUA Robotics Spain respectively. 
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submergible vehicles, which captures individual pictures within visual range of the seafloor, at 

10 m. These individual images are then put together into a mosaic to create a clear visual of 

the seabed area, resulting in resolutioins as good as 1cm. In addition, AUVs can map multibeam 

surveys 50 m off-bottom (Keohane & White, 2022), which simultaneously increases the speed 

of data collection and, thus, the potential area of study. While these methods are effective, they 

can be tedious, subjective, time-consuming and expensive, and are limited by the resolution 

and range of the sonar equipment. To this date, the vast ocean floor has only been analysed 

manually, and studies have been very selective and focused solely along high-interest areas 

due to the extraordinarily arduous nature of this task. 

3.1.1.  Manual Deep-sea image interpretation. 

Mapping the sea floor is an important task for understanding the ocean’s geological and 

biological characteristics. Advanced imaging techniques, such as sonar, have facilitated the 

acquisition of extensive data related to the submerged environment (Fig. 12). However, the 

intricacy of the data often requires the use of advanced software tools to extract significant 

information from it. 

Image interpretation is a vital process for the extraction of information from visual data. It 

involves analysing visual information to identify patterns, features, and objects, and then 

drawing meaningful conclusions from that information. The analysis of visual representations 

has an extensive and rich history, with early examples dating back to the 19th century, during 

which cartography and aerial photography were used to interpret geographic information 

(Cohen, 2000). Following to that period, the progression of technology has facilitated the 

acquisition and analysis of images with progressively improved precision and intricacy, 

making it an indispensable instrument for numerous disciplines, such as marine science. 

Figure 14. Mound structures from LSHVF plotted manually using Matlab. 
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Traditionally, deep-sea landforms have been delineated and categorised through subjective 

interpretation, whereby geologists relied on their prior experiences to identify and classify 

features, which were subsequently reviewed and revised by other geologists. 

The techniques employed were found to be laborious and evidently reliant on personal 

judgement, given that the accuracy of the specialist categorizations was restricted to a relatively 

limited number of samples (Fig. 14) and evaluators (Mayer, 2006). In the field of biology, a 

comparable scenario would arise as the creation of a repository capable of accommodating all 

the species encountered during the course of study, in which some are not even static. This 

process necessitates as well great attention to detail towards potential counting inaccuracies. 

Leading again to an higher susceptibility to human errors during the process of interpretation. 

Figure 15, along with other examples displayed in the publications cited hereafter, serve as 

illustrations obtained so far from manually characterised underwater geological features. 

(Barreyre et al., 2012; Gini et al., 2021; Puzenat et al., 2021; Somoza et al., 2021) 

This raises the issue of how and by whom the determination of what is considered right and 

wrong. Simultaneously, it presents a potential resolution by enabling artificial intelligence an 

opportunity to generate classifications that are as objective as feasible, based in objective 

parameters. 

Figure 15. Image mosaic analysis with in situ observations reveal a detail classification of the south-eastern half of the Lucky Strike 

hydrothermal field (A) and manually identified hydrothermal structures, both active and inactive (B). (Barreyre et al., 2012) 
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3.1.2. Deep-sea image interpretation automation 

As more and more expeditions are carried out every year, the amount of data available is 

constantly increasing. As a result, there have been a number of significant efforts in recent 

years to develop automated methods for the interpretation of deep-sea imagery (Ricard Prados, 

2012). This requires the development of scalable algorithms that can handle the large amounts 

of data generated by modern deep sea imaging systems, so it can classify and identify the 

different types of volcanic seafloor features and marine life (Sonogashira et al., 2020). Hence, 

machine learning (ML), a type of artificial intelligence, has been essential for the automation. 

It enables computers to learn from data, developing algorithms that can analyse and make 

predictions or decisions based on patterns in the data (Ditria et al., 2022). There are several 

types of ML, including supervised learning, unsupervised learning and reinforcement learning. 

In addition to these, it is also worth just mentioning the efforts to use other computer vision 

techniques, such as stereo reconstruction (Ye, 2022), to create detailed 3D models of the 

seafloor. Or the magnetic exploration (Guo et al., 2023) based on accurate and autonomous 

interpretation of anomalies in the geomagnetic fields of certain ore resources such as iron, ore, 

lead-zinc ore and copper ore.  

While ML and AI have shown considerable potential for mapping landforms in the deep sea 

over traditional techniques, there are still several research questions that remain unanswered. 

While some recent publications have already made some significant findings with regards to 

seafloor mapping together with AI, as evidenced by the work of  (Jiang & Zhu, 2022; Keohane 

& White, 2022; Sonogashira et al., 2020; Ye, 2022).      The main 

task ahead is the need to develop more efficient algorithms. These ML models require 

improvement in their ability to learn from unlabelled data (Ditria et al., 2022) in a quicker and 

more accurate way. 

In addition to improvements to the mapping technologies themselves, there are still other areas 

where further research is needed to improve the automated interpretation of deep-sea imagery. 

One important and necessary leap is the need for new methods of handling data from multiple 

types of sensors like cameras, sonar, and lidar, that could provide complementary information 

about the environment (Miller et al., 2018) and at the same time, its protection. 
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This  novel technology has been used by the Department of Earth Science at UiB. Which 

now possesses data related to multiple scientific initiatives that have primarily focused on the 

Mid-Atlantic region in the past few decades. This thesis gets then, significant importance in 

defining the appropriate mapping method of this geological setting, utilising an 

interdisciplinary approach with the latest improvements in technology. 

One such tool is eCognition, a software application that has been specifically developed for the 

purpose of advanced image analysis and interpretation. The main advantage of this platform 

lies in its powerful segmentation algorithms and its ability to perform hierarchical, cross-linked 

modelling and classification. (Nussbaum et al., 2008). The advanced ML techniques employed 

by eCognition facilitate its robust image analysis capabilities. The implementation of artificial 

intelligence techniques enables computer systems to acquire knowledge from data sets, without 

the need for explicit programming. 

Within the field of image analysis, ML algorithms get trained using extensive datasets of 

labelled images, which allows them to identify patterns in new images.               

Deep learning is a highly effective ML technique that is commonly employed in the field of 

image analysis. This methodology utilises neural networks to detect patterns in visual data. 

Once all the data is collected, the methods that follow can be divided in three sections              

(Fig. 16): first step is pre-processing the imagery for an effective management in the post-

processing software, eCognition. Following that, the primary goal is to discover the most 

accurate output or heatmap that clearly represents a differentiation between the sought features. 

One of the preferred techniques has been supervised learning algorithms.  

Convolutional Neural Networks (CNNs) and Object-Based Image Analysis (OBIA) are two 

methods with strong potential for the image classification tasks (Fig 16), notably because they 

have already been shown to be effective at identifying and classifying different types of 

Figure 16. Machine Learning workflow followed in this thesis. Modified from (Gupta & Bhadauria, 2014) 
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landforms from satellite and aerial imagery (Robson et al., 2020). An introduction to these two 

methods is followed. Moreover, it will get further explained in the methodological definitions.  

CNNs 

Convolutional Neural Networks refer to computational models that are designed inspired on 

the structural and functional characteristics of the human brain. They composed of multiple 

layers of interconnected nodes, commonly referred to as "neurons" which collaborate to 

recognise and discern patterns that are present within the data. (Gupta & Bhadauria, 2014).  

Once trained, deep learning algorithms are particularly useful in the domain of underwater 

imaging, due to the ability to gather enormous quantities of data that is collected during a single 

cruise. Manual analysis of such data is both time-consuming and prone to errors, thereby 

demonstrating the value of deep learning algorithms in this context. As an illustration, a deep 

learning algorithm might receive training on a dataset which includes images capturing 

underwater ridges, with the aim of acquiring the ability to recognise these same characteristics 

in novel images. 

OBIA 

Object-Based Image Analysis is a methodology that offers an alternative to pixel-based 

approaches by utilising image objects as the fundamental analysis unit, rather than individual 

pixels (Robson et al., 2015). The objective is to assess more complicated classes that are 

characterised by spatial and hierarchical associations both within and throughout the 

classification process (Fig. 16).                 

OBIA is characterised by its focus on the segmentation of remote sensing imagery into 

meaningful image-objects, and the subsequent analysis of their properties using a range of 

spectral and spatial measurements (Hossain & Chen, 2019).The primary objective of this 

approach in this thesis is to offer a technique for examining high-spatial resolution imagery 

through the application of spectral, spatial, textural, and topological underwater-attributes 

whereas pixel-based methods are frequently restricted to spectral indices.    

The results obtained are crucial in comprehending the complex geological processes occurring 

beneath the water surface. Deep learning algorithms can be employed by researchers to detect 

features of interest, such as hydrothermal vents, and subsequently apply this information to 

better generate cartographic representations of the seabed.  
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4. Data 

The following chapter explores the ways to gather data utilised in this thesis, as well as the 

strategy for its management. The chapter can be divided in two distinct sections that follow 

one another: Types of data and how the datasets were acquired and pre-processed. 

The two primary categories into which these datasets have been classified based on their 

characteristics are photomosaics and bathymetry imageries.  

The entire set of the dataset utilised in this study were provided by my co-supervisor, Thibaut 

Barreyre, whose research interests include Deep-Sea Instrumentation and Exploration.       

When downloaded, all geospatial data was set to their specific coordinate reference system 

(CRS): ETRS 1989 UTM Zone 32N for Loki’s Castle and WGS 1984 UTM Zone 25N for the 

Lucky Strike Hydrothermal Vent Field.  

Figure 17. Examples of the raw datasets utilised. 
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4.1. Photomosaic 

The photomosaic is a composite image created by merging multiple photographs captured 

using a vertically mounted, down-looking electronic black-and-white still camera on the 

ROV utilised for conducting the surveys. In order to ensure a uniform and proportional 

merging, is needed to maintain a constant distant from the sea floor, that is an altitude ranging 

from 5 to 10 m above the seafloor. Moreover, keeping a reduced cruising speed for the ROV 

contributes the image to seem steady.          

As an illustration, the mosaic MoMAR08 is utilised to cover the LSHVF, affecting an area of 

267179 m2. It is composed by 21262 images that took 101 hours of survey to make. Finishing 

with a photomosaic of 1 cm resolution.         

To overcome this characterisation. During the cruises like the one previously mentioned, a 

photographical survey is planned. The raw images are taken while a vehicle that is controlled 

remotely from the research vessel traverses the seafloor surface containing the hydrothermal 

field. (Barreyre et al., 2012; Escartín et al., 2008; Humphris et al., 2002).  

Two photomosaics as classified in (Table 1): ROV_30 and ROV_31 illustrate respectively 

Loki East (João, barite field, oasis) and Loki West (Sleepy, Menorah, Camel).  

The previously mentioned vehicles used for this task went by the names of VICTOR6000 for 

Lucky Strike and Ægir 6000 for Loki’s Castle. 

To build the mosaic, as explained from (Ricard Prados, 2012). First, captured raw images are 

pre-processed to, among other things, adjust the overall brightness across photos. Secondly, 

equalize unequal illumination from the lighting system and imaging geometry, and finally 

rectify the optical geometric distortion caused by the camera lenses.  

To create a navigation-based mosaic using vehicle navigation (location, altitude, direction, 

pitch, and roll), pre-processed photos were scaled, rotated, and projected originally, and a 

second time to adjust minor details and make them overlap as this thesis requires. 

Among other instruments needed for measure the temperature, pH and other geochemical 

parameters (Mayer, 2006), the remote operated vehicle or ROV is equipped with lighting 

apparatus specifically created for low-light conditions, such as strobe lights. 
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4.2. Bathymetry 

As its Greek-origin etymology reflects, bathymetry is the study of the topography of the ocean 

floor, which includes the measurement of the ocean’s depths and the mapping of the features 

on the seafloor. To do so, bathymetry, in combination with sonar imaging, is generally utilised 

to identify volcanic features producing those characteristic colourful maps, where generally 

red is used to show shallow depths and blue or purple for deeper depths. 

The main instrument used in these vehicles is the SONAR. This thesis employs various sonar 

techniques, including those commonly referred to as (Eason et al., 2016; Escartin et al., 2021): 

- Multibeam surveying: Using multiple sonar beams to create a detailed 3D map of the 

seafloor. It works by emitting sound waves from a ship or a ROV and measuring the time it 

takes for the sound waves to bounce back, thus analysing the time and intensity of the reflected 

sound waves. 

-  Side-scan sonar: A category of active sonar system that is installed on the hull of a 

ship or mounted to another platform, such as a towfish. As the ship moves, the transducer array 

sends out signals on both sides, sweeping the seafloor like a flashlight's fan-shaped beam. Side-

scans look in straight lines at uniform speeds, allowing the ship to record the ocean floor as it 

moves. Depending on the survey goals, the towfish will record data at different sound 

frequencies: a lower frequency (50 kilohertz (kHz) -100 kHz) can cover broad swaths of the 

seafloor at low image resolution. Higher-frequency pulses (500 kHz to 1 megahertz) record 

smaller but more detailed areas. 

As a result, because side-scan sonar cannot measure bathymetry, it is employed in conjunction 

with depth-measuring equipment such as multibeam sonar. This available near-bottom 

multibeam bathymetry (gridded at 40m) presents nominal horizontal resolutions of 0.4m and 

1.5m (Barreyre et al., 2012). 

Regarding these datasets, the navigation and processing of imagery and multibeam data were 

done independently. Therefore, it is worth to remember that these datasets show relative offsets 

of less than 10 m for well-known sites. 
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4.3. Data Collection  

Since 1976, cruise expeditions to specific areas have taken place systematically trying to 

generate higher resolution maps over the southern edge of the Azores platform in the Mid-

Atlantic Ridge (Brundage & Patterson, 1976). In 1992, the FAZAR cruise found the Lucky 

Strike Hydrothermal Vent Field (LSHVF) (Langmuir et al., 1997) which now serves as the 

study area for this thesis. Thereafter, several expeditions have improved the quality of the 

dataset that the scientific community have been working with. And ever since, recent 

expeditions such as MoMARETO and Graviluck, 2006; MoMAR, 2008; Bathyluck, 2009; 

MoMARSAT 2010 and 2011 have been constantly updating the dataset (Escartin J., 2015; 

Keohane & White, 2022).  

With regards to the acquisition of bathymetric data. The Lucky Strike ridge section along the 

Mid-Atlantic Ridge was surveyed using multibeam near-bottom bathymetry. The bathymetry 

data were collected during surveys with the AUV Asterx and the ROV Victor6000 on three 

different cruises (MOMARETO 2006, MOMAR'08-Leg1, and BATHYLUCK'09) (Gini et al., 

2021).  The dataset contains a central grid (LuckyStrike_microbathymetry_Centre) that gathers 

data from several AUV and ROV dives, and where original bathymetry grids for each dive 

have been manually merged into a single grid, using other datasets for geographical reference 

(Escartin et al., 2021).  

On the other hand, in 2008, Loki’s Castle was first discovered. This hydrothermal vent system 

was recorded thanks to the research cruises conducted by the K.G. Jebsen centre for Deep Sea 

Research aboard R/V G.O. Sars consecutively during the summers from 2017 to 2020. The aim 

of   these cruises was mapping, among other studies , the hydrothermal formations along the 

Arctic Mid-Ocean Ridge (AMOR) (Rikter-Svendsen, 2020).  

LCHVF has been covered by three surveys (table 1): one for the eastern mound and barite field 

(survey #1), one for the western mound and related vents (survey #2), and one for the oasis’ 

fault scarp. After the images have been processed, a total of two photomosaics (ROV30 & 

ROV31) were produced, representing respectively Loki East (João, barite field & oasis) and 

Loki West. 

 



 

 

 

Table 1. Data sources and formats utilised for the classification analysis. 

Dataset Source Cruise Date Depth Vehicle 

Mosaic Resolution 
(m) 

Grid resolution 
Bathymetry (m) 

MoMAR08 Photomosaic MOMAR'08 Leg 1 2008 ∼1500 ROV VICTOR6000 0.01 

Bathyluck Bathymetry Bathyluck’09 2009 ∼1500 ROV VICTOR6000 1 

Momareto_UTM Bathymetry MOMARETO 2006 2006 ∼1500 
ROV VICTOR6000 

 
0.5  

LuckyStrike_microbathymetry_Centre Bathymetry 
Bathyluck’09 

MOMAR’08-Leg 1 
MOMARETO 2006 

2021 ∼1500 
ROV VICTOR6000 

AUV AsterX 
1 

Loki East 
João, Barite Field, Oasis 

Photomosaic CDeepSea18 2018 ∼2400 
Bathysaurus XL 

ROV30 
0.01 

Loki West 
Sleepy, Menorah, Camel 

Photomosaic CDeepSea18 2018 ∼2400 
Bathysaurus XL 

ROV31 
0.01 

GS17 Loki Castle, Barite Field Bathymetry unidentified unidentified ∼2400 
Ægir 6000 

ROV01 
0.01 

GS18 João, Camel Bathymetry unidentified unidentified ∼2400 
Ægir 6000 

ROV02 
0.01 



 

 

 

5. Methodology 

The current chapter has been split into two separate sections. The first section of the paper 

centres on defining the various steps required to overcome the categorization. The latter 

section indicates the different parameters employed in every stage (Fig. 16) of the previously 

explained methodology. 

The softwares that I have utilized and have been successful to use during these steps are 

eCognition software Developer 10.2 (its CNN workflow is based on Google TensorFlow API), 

ArcGIS Pro 3.0.2, QGIS 3.28 Firenze and CATALYST Professional Version 2222.0.8 

Figure 18. Methodology workflow chart 
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5.1. Methodological processes 

5.1.1. Pre-Processing 

In general, the efficacy of a deep learning approach tends to increase with the quantity of input 

samples provided. Acquiring bathymetric images in quantities equivalent to the volume of 

satellite imagery in on-land classifications presents a challenge in this case, given the limited 

availability of significant features even across extensively mapped regions. Hence, it is feasible 

to derive diverse data for a given image or raster through the technique of derivation, such as 

looking at the slope, aspect, or curvature of the terrain. (Keohane & White, 2022; Sonogashira 

et al., 2020). The main idea behind producing additions is to virtually increase a larger set of 

samples by implementing diverse modifications on the pre-existing samples (Fig. 20), as well 

as standardise the datasets so they are suitable for CNN processing. To achieve this objective, 

the "Slope, Aspect, Curvature" processing tool in QGIS is utilised on the Loki's Castle's subsets 

of the original bathymetry data at the locations of Camel, Joao. To generate the corresponding 

derived rasters possessing such attributes. The Lucky Strike's bathymetric 

raster, namely LuckyStrike_microbathymetry_Centre, has undergone the "Roughness" and 

"General Curvature" derivations via the utilisation of ArcGIS software. The most prominent 

by-product derived from the momareto raster corresponds with the "Slope" derivation.  

Figure 19. Example of raster derivation. (A) Camel's RAW bathymetry derived into: (B) Curvature, (C) Aspect and (D) Slope 
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The considerable disparities in resolution between the photomosaic and bathymetry of Lucky 

Strike present a challenge in their comparison and the identification of small volcanic 

characteristics, such as hydrothermal vents and scattered boulders. The application of Slope, 

Roughness, and General Curvature in this particular context serves to expose inclined surfaces, 

which are considered to be less suited to being the site of standing chimneys due to their 

unstable topography.              

To execute the CNN on the raster datasets is needed to have a common way of files types stored 

(Robson et al., 2020). The conversion of all imagery into 32-bit floating rasters with normalised 

pixel values between 0 and 1 was necessary through the usage of ArcGIS. 

With regard to the mosaics, due to the large surface coverage of the Lucky Strike’s survey, the 

resulting ROV image have sizable data voids with variable NoData values. These data values 

could cause problems in the CNN training. As such all NoData values were reclassified to a 

universal value of zero. 

To conclude, the original Loki Castle’s mosaics presented three coloured exact images, with 

no distinction between each other. Therefore, only one of these was converted into a single-

band grayscale image. Then the algorithm process one band per mosaic to be analysed, 32-bit 

float, in the greyscale, and with pixel values between 0 and 1.  

Henceforth, the interpretation will be established in the form of a ruleset by the eCognition 

software. Every step is implemented in a single ruleset that could be run as one process. 

Although the goal was to make a classification procedure that was equally applicable on both 

datasets due to differences in data type, resolution, and coverage between the study areas, slight 

modifications were required, as shown in the general flowchart (Fig. 19).  The following 

algorithms are the ones used for the interpretation of the previously mentioned processed data. 

5.1.2. Segmentation 

During the segmentation process, recognisable image objects are created from the mosaic. This 

step groups the pixels that share similar spectral context. Based on numerous configurable 

parameters of colour and shape homogeneity and heterogeneity. 

There exist various procedures for performing segmentation, however, the multiresolution 

segmentation process is considered most suitable for the purposes of this thesis. This process 

is a bottom-up region-merging approach, it begins with a single pixel object and merges smaller 

image objects into bigger ones in succeeding segmentation steps, therefore establishing a 

semantic hierarchy to discover the objects of interest (Gupta & Bhadauria, 2014; Nussbaum et 
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al., 2008). After, the objects will be selected manually to serve as training data for the CNN to 

work with. 

Within the multiresolution segmentation algorithm, in order to find the most suitable 

segmentation parameters, a trial-and-error method has been applied. Trying out different 

parameters before getting the right ones. These help the samples that are consequently created 

to share as much similarities as possible with the targeted volcanic features. The parameters 

utilised in the multiresolution segmentation process can be defined in a next manner 

(Geospatial, 2023): 

- The scale parameter's value determines the standard dimension of the object. This 

parameter affects the maximum permitted object heterogeneity. The larger the scale parameter 

the larger the objects are. In general, most of the mosaics studied in this thesis present a 

reasonable segmentation. 

- The Shape element holds significant influence over the interaction between shape and 

colour criteria. By adjusting the Shape criterion, the colour criteria can be defined as the 

complementary value of the Shape criterion (colour = 1 – shape). When comparing the shape 

homogeneity criterion, the greater the shape value, the lower the influence of colour on the 

segmentation process.  

- The compactness criterion is applied in cases where distinct image objects exhibit a 

compact nature, yet are distinguished from non-compact objects by a spectral contrast that is 

comparably weak. The higher the value, the more compact image objects may be.  

Apart from scale, shape, and compactness parameters, the resulting segmentation is also 

affected by the weight of its input layers. By weighting datasets, it is guaranteed that the 

segmentation is not monopolised by only one dataset (Robson et al., 2015).     

All these algorithms are based on individual assumptions described in table 2. Meaning that 

there are multiple ways to achieve similar results. 
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After the segmentation, a new layer is produced, where the new image-objects that it contains, 

are collections of pixels with common values. The domain where the ruleset classification 

algorithms are applied is the image-object level. 

  

Figure 20. Segmentation parameters for each dataset. The examples reflect how the software performs different 

segmentations based on the context of each image. In the case of João and Camel, the scale parameter is able to adjust to 

smaller sizes to segment shadows, thanks to large differences on brightness values. Similarly  to the level of detail of the 

Lucky Strike segmentation, which manages to define silhouettes as the Chimaera Monstrosa. Animal closely displayed in 

Fig. 1. Above it, there is an optimal capture of a chimney.   
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5.1.3. Convolutional Neural Networks  

Also known as CNNs, the Convolutional Neural Networks are a form of ML that are 

increasingly used to analyze imagery of all kinds, including the ones used here, the underwater 

photomosaics and bathymetry. 

In a nutshell (Fig. 21), its fundamental structure is made up of an input layer (the pre-processed 

imagery), and output layer (the heatmaps), and multiple hidden layers in between.  

Mathematically, a convolution is a grouping function. In CNNs, convolution happens when 

two matrices (rectangular arrays of numbers arranged in columns and rows) are merged to form 

a third matrix. The way it works in here is by extracting features from the input image using a 

number of convolutional layers, and then classifying the image by running the feature map 

produced by those first layers through one or more fully connected layers (Robson et al., 2020). 

These convolutional layers would work as a set of filters or kernels to the input images to 

extract specific features, such as textures and edges. Resulting in an attempt to mimic the way a 

human would evaluate the imagery. 

  

Figure 21. Basics CNN flowchart diagram. Modified from: (https://developersbreach.com, accessed on 23 May 2023). 
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The overall analysis can be defined as CNN Training and Classification (Timilsina et al., 2019). 

And it is represented in the following diagram: 

 

 

5.1.3.1. Generate Sample labelled patches for the CNN model: 

Upon segmenting the underwater images in eCognition, it is needed to transform the resulting 

segments into image objects. The image objects denote discrete areas within the image that are 

suitable to classification by the CNN. 

The parameters utilised for each of the input datasets are explained in the section 5.2  

  

Figure 22. Workflow chart in eCognition software 

Figure 23. Example of sample labelled patches showing non-exact features boundaries while 

recycling the random points from ArcGIS to eCognition. Green samples refer to Chimneys 

and dark red samples to Shadows.  
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5.1.3.2. Create CNN model 

In the first place, regarding the hidden layers, the convolution layers are the responsible for 

detecting patterns within the image. Each of them are composed of a collection of filters or 

kernels that move over the segmented mosaic performing a element-wise multiplication with 

the image pixels. The output of this multiplication is then added together to generate a single 

value that indicates the activation of a specific feature or pattern in the image (LeCun et al., 

2015; Sonogashira et al., 2020). This process is repeated for each kernel in the layer, generating 

a collection of feature maps that capture various features of the input image. 

Convolution layers are followed by pooling layers since their output is frequently too big to be 

processed effectively. By combining close pixels or features, these layers shrink the size of the 

feature maps. This improves the efficiency of the process by lowering the number of its 

parameters in the process. Each of these layers is made up of a collection of filters or kernels 

that move over the input image and conduct element-wise multiplication with the image pixels. 

The result of this multiplication is then added together to generate a single value that indicates 

the activation of a certain feature or pattern in the image (LeCun et al., 2015).  There are max 

and average pooling layers. Max pooling picks the maximum value in a window, while average 

pooling computes the average. Pooling layers reduce overfitting and accelerate layer 

computation by reducing feature map size. In the case of this thesis, it is considered 

unnecessary to utilise the previously mentioned pooling layers due to the acceptable size of the 

feature maps and because that would reduce the feature map’s resolution. Alternatively, shorter 

subsets were generated to get around the issue of excessive computational time required for 

larger images.                    

Fully connected layers are similar to the rest of the layers in a traditional neural network. They 

take the output of the previous layers and combine it to produce the final output of the network. 

Fully connected layers are typically used at the end of the CNN, where they map the high-level 

features extracted by the convolutional layers to the class labels or predictions. As a result, a 

heatmap is obtained, a prediction raster, which pixels vary from 0 to 1. Where higher values 

indicate that a given pixel is more likely to correspond to the targeted class. (Keohane & White, 

2022; Robson et al., 2020; Ye, 2022). 
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In summary (Fig. 23), convolutional layers detect features or patterns within an image, pooling 

layers reduce the spatial size of the feature maps, and fully connected layers combine the 

features to form the final output of the network. 

Moreover, various parameters require consideration when constructing the CNN: 

- The sample patch size parameter specifies the dimensions of the rectangular sample 

patches in terms of pixels. The dimensions of the size parameter must correspond to the 

dimensions of the sample size, and the value is automatically inserted by the eCognition 

software based on the previously defined value to generate the sample labelled patches. 

- Number of input layers. 

- The output model classes, which are utilised by the model, serve as the applied classes. 

  - The number of hidden layers will perform convolution on the preceding layer utilising 

distinct kernels, resulting in the creation of diverse feature maps. Adjustments can be made 

within them: 

- The kernel size parameter specifies the dimensions of the convolution kernel, 

determining its length and width. 

- Number of feature maps determines the quantity of feature maps produced within the 

hidden layer. 

  

Figure 24. CNN layer architecture 
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5.1.3.3.Train CNN model 

Training involves many separate training steps. During each iteration, a batch of samples is 

randomly selected and included into the model. The gradients for each weight are then 

computed using backpropagation, which is the calculation of a neuron's influence on a neuron 

in the next layer and the subsequent adjustment of its influence is performed. To conclude, 

the weights are optimised using a statistical gradient descent approach. 

In eCognition, the training of the CNN model can be performed using the “train convolutional 

neural network” algorithm, where it can be imported the labelled sample patches generated in 

the previous step and define the following training settings: 

-  A Sample folder generation, that contains the labelled samples for the training. It is 

anticipated that the sample images will be 32-bit floating images within the range of (0,1). 

- The Leaning rate parameter specifies how much weights are altered in each iteration 

of the statistical gradient descent algorithm. The higher the value of the learning rate, the faster 

the training, but the optimal minimum may not be obtained. Smaller values will slow down 

training processing and may cause it to become trapped in a local minimum, resulting in 

weights that are not even close to ideal (Timilsina et al., 2019). Default value 0.0006. 

- The Train steps indicates the number of times this process will be implemented. 

- The Batch size refers to the quantity of samples utilised in each training step. 

 

 
5.1.3.4.Apply CNN model 

Once the trained CNN model is applied to the input datasets. The resulting output may manifest 

as either class predictions or probability scores for each pixel that has been accurately classified 

as belonging to a specific class. In this case, a heatmap is generated highlighting the desired 

features. This map displays the features’ likelihood with colours that vary from red, showing 

the highest probability values, to blue, indicating the lowest chance for detecting the proper 

features (being 0 the lowest and 1 the highest). 
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The parameters used in this algorithm are (Geospatial, 2023): 

- The TensorFlow model format, which can be chosen between the eCognition model, 

a TensorFlow model created with eCognition or the TensorFlow (SavedModel) which is the 

Google TensorFlow. The parameter TensorFlow compiles various methods and models to 

create deep neural networks for image recognition/classification. TensorFlow uses a "graph" 

of processing nodes, each of which represents a mathematical operation. 

- The system generates two distinct forms of output, which are a heatmap and a 

segmentation of each pre-trained class, or alternatively, those selected individually. 

- As an input, instead of using the image layer arrays, the main image layer serves as a 

unique input. Being the mosaic the common main image layer for the three locations. 

- The configuration for Normalisation determines whether the normalisation of image 

layers is necessary and specifies the data range for the chosen image layers. By default, the 

normalisation of image layers will be within the range of [0,1] and the data type will be 32-bit 

float. An alternative normalisation has been chosen for this study, ranging between [0 , 255].  

A temporary layer is generated that serves the purpose of facilitating visualisation. The 

heatmap goes through a smoothing process through the application of a 7 x 7 Gaussian filter, 

which is produced by a pixel filter consisting of 7 x 7 pixels. 

In conclusion, as it is important to preserve the deep learning process. The algorithm known as 

"Save Convolutional Neural Network" generates two distinct file types. 

- The Meta Graph file is a repository storing the network architecture of a model. 

- The Index file functions as a repository for the weight configurations of the model.  

Figure 25. Chimney heatmap  representation and its output value. 
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5.1.4. Object-Based Image Analysis 

To create the proper hydrothermal feature outlines, the OBIA method makes use of the 

segmentation process. A bottom-up, multilevel technique that utilises statistical grouping  and 

where the software initiates its operation by selecting a seed pixel and subsequently 

incorporates adjacent pixels into the growing object, provided that the object's internal 

consistency contrasts with the external heterogeneity. The software additionally sticks to a 

predefined set of shape and compactness parameters, that are previously defined, to generate 

larger and comparable image-objects (Blaschke et al., 2014). 

One of the benefits of utilising OBIA is that the outcomes of object-based analysis tend to be 

more straightforward to interpret. This could be attributed to the fact that OBIA imitates human 

perception. An additional benefit is that the averaged representation of object characteristics 

during segmentation reduces the likelihood of an incorrect classification. 

The resultant image-objects are ultimately classified using a mix of the deep learning heatmaps 

produced, the observed morphology, and the classification algorithm. Image-objects are real-

world identities made of similar-valued pixels (Blaschke et al., 2014). Low-level features of 

image-objects can be collected to assign membership to the desired classes. Both the 

parameters and the thresholds for the image segmentation processes were determined manually 

based on personal considerations.  (Robson et al., 2020). The resulting image-objects are stored 

in their own image-object level, which is above the pixel-level. This level is the domain where 

the ruleset classification algorithms are applied.  

When faced with multiple thresholds and their respective algorithms, it can become difficult to 

determine which specific one to adjust. An alternative approach to defining the thresholds if 

the classes become more intricate consist in assign several conditions directly to each class. 

This is done from the adjusting the Membership functions (Fig. 26) in the Class Hierarchy, 

choosing between the following parameters for each class analysed: 
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  The membership graph (1) 

indicates the relation between data 

values and "acceptability" at that value. 

Utilising linear functions to specify a 

value in which the item definitely 

belongs to the class and a value in 

which it may still belong to a class. 

 Layer weightings (2) reflect 

membership function importance. 

Changing the Maximum value to 0.5 

gives it a 50% weighting. 

 The acceptable values (3) refer to 

the maximum and minimum values that 

are taken into account during the 

analysis.  

Tweaking these parameters results in an object that closely matches the appearance of a feature 

that has been manually defined. The previously mentioned entities are extracted through the 

utilisation of an algorithm, specifically the "export vector layer" algorithm, which exports the 

shapes of the entities in the form of polygons, thereby generating a shapefile (*.shp). 

To achieve the desired comparison between the manually delineated polygons that define the 

hydrothermal features and the objects generated from eCognition. The shapefiles 

undergo  final processing in ArcGIS, where a concluding procedure will be executed. 

  

Figure 26. Parameters used to adjust each class thresholds. 

1 

2 

3 
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5.1.5. Classification Accuracy Assessment 

The final accuracy is an outcome of the combination of the two stated techniques for image 

classification, (OBIA and CNN). The Accuracy Assessment of the classification relies on the 

confusion matrix generated from two distinct sources, namely the "ground truth" data, 

manually generated, and the eCognition outcome (OBIA_raster), which are the classified 

rasters (Robson et al., 2020; Timilsina et al., 2019). The absence of reliable and verifiable 

ground-truth data poses a challenge in evaluating the accuracy of manully mapping outlines. 

This study draws upon the comprehensive knowledge and expertise gained from the description 

of hydrothermal vent features, as detailed in sections 2.2.1.1 and 2.2.1.2 . The study aims to 

develop distinct outlines with a reasonable degree of certainty and assurance, displaying on a 

confusion matrix, which is a table layout that allows visualization of the performance of the 

algorithm 

In order to execute this combination, a set of random points is generated within arcGIS and 

designated as either "chimney" or "non-chimney" features, alongside other hydrothermal 

features. These designations were based on the manual mapping outlines produced within the 

scope of this thesis . Subsequently, a comparison was made between the aforementioned points 

and the results obtained from OBIA_raster. This comparison led to the determination of the 

following error terms in the confusion matrix (Robson et al., 2016): 

- User’s accuracy: This error of commission shows the percentage of the final 

classification that was a chimney. 

- Producer’s accuracy: This error of omission describes the percentage of actual chimney 

area that was successfully classified.  

- Overall accuracy: This takes into account the accuracy of both the user and the 

producer, and presents the proportion of correctly classified points as a percentage. 

- Kappa coeficient: This evaluates the agreement between the assigned classifications 

and the actual ground truth pixels, this is a crucial indicator of the classification's 

accuracy, as it helps to rule out the possibility of the classification being a result of 

random chance. 

The following analysis involves a comparison between the confusion matrices of manual and 

automated mapping. The purpose of this comparison is to determine the validity of the 

approach utilised in this thesis. A comprehensive discussion will be presented to address this 

matter.  
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5.2. Parameters utilised 

The objective of this analysis was to employ the OBIA ruleset to categorise hydrothermal 

features in every study area, with the aim of evaluating the chimneys inventory creation 

capacity of CNN-OBIA. The aim was to create a basic ruleset that could be implemented 

across three different study areas characterised by diverse topographies, resolutions, and 

lighting conditions. Consequently, the adjustment of thresholds such as brightness, standard 

deviation of each image layer, and depth, which may vary across each area, was performed 

on an individual basis. 

It is noteworthy to emphasise that the main parameter setting employed to attain a significant 

classification in this thesis is the one explained hereafter, in spite of the existence of 

alternative methodologies that may achieve comparable results. 

 The segmentation process has been performed using the following settings: 

Table 2. Segmentation parameters. 

 

- Lucky Strike's segmentation produced objects that match into the intended structures, 

particularly in cases where these structures exhibit discernible variations in their luminosity 

and shapes within the image. 

- Loki East and West is affected by the same principle, thus obtaining suitable segmentations 

even for blocks as they are scattered along the smooth surface that surrounds the vents on top 

of the two mounds. 

As can be seen, the values shown in Table 2 show strong similarities, since all sharing same 

resolutions and are set in the black-and-white spectrum. In every instance, the classification 

of small objects becomes challenging by setting larger scale parameters. The shape criterion 

Dataset Scale Shape Compactness Layers Classification 

Lucky 

Strike 
105 0,3 0,9 mosaic 

Bacterial mats, chimney, 

smoke/ shadow, wrinkles 

Loki East 

(João) 
100 0,3 0,99 

mosaic and 

bathymetry 
Chimney, block, slope 

Loki West 

(Camel) 
90 0,3 0,99 

mosaic and 

bathymetry 
Chimney, block, slope 
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has been adjusted to a relatively reduced threshold due to the increased impact of colour 

when working with monochromatic images. Whereas the compactness criterion is chosen to 

have the maximum value, as pixels vary abruptly throughout every mosaic analysed, smaller 

values would result in more frequent outstanding appendices. 

 Labelled sample patches were produced using two different procedures: 

- For the Lucky Strike’s dataset, an earlier and unsuccessful approach was tried before 

choosing the multiresolution segmentation as the most appropriate method. It consisted of 

generating polygons covering the features to be processed later. These polygons had random 

points generated in ArcGIS. Buffer zones were established based on the identified points to 

delineate areas with similar characteristics that share a common space. These buffers meant 

that the training data expanded over the target classes but simultaneously it did it over larger 

parts of non-target classes, meaning the training data was blurred.     

Subsequently, the random points got recycled using the Assign Class algorithm in 

eCognition, taking  into account the mentioned random points which overlap within the 

segmented new features. 

 - For the rest of the segmented mosaics, samples were chosen manually. These samples 

remain related with the many classes that are designed to be examined, whether 

independently or with the "Brush" option. And finally, an algorithm in the ruleset converts 

the sample objects to classified objects. 

 In order to create the CNN model, the following parameters have been used: 

 

Table 3. CNN parameters 

 

Dataset Sample patch size # input layers # hidden layers Kernel size # feature maps 

Lucky Strike 32 1 2 13, 14 80, 50 

Loki East (João) 128 1 2 5, 5 80, 80 

Loki West (Camel) 64 1 2 12, 12 80, 80 
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Each sample patch size was assigned after conducting multiple trials to determine the optimal 

size that produced the desired heatmap. The sample size was defined at the beginning of the 

deep learning process using the algorithm “update variable”. Finer results have been observed 

when using powers of 2. 

- The input layer employed for the three regions is the mosaic, as it is the one that contains 

more information to work with. 

- The mosaic is chosen as the input layer for the three regions due to its capacity to provide 

an increased quantity of information for processing. 

- The recommended approach in this case involves the application of two hidden layers for all 

processes. The utilisation of different amounts of hidden layers is subject to unfavourable 

interpretations.  

- Within them, the determination of the kernel size depends on the total number of classes 

that the CNN is intended to classify. This number is the result of subtracting the sum of the 

kernel sizes from the original sample size. 

- The determination of the number of feature maps is also dependent on a trial-and-error 

approach. 

As explained in section 5.1.3.2. For this thesis, Max pooling was not applied, as the highest 

resolution in the results was sought. 

 The training parameters were as well chosen from an empirical methodology,  

obtaining suitable heatmaps by keeping the learning rate for the three datasets in its default 

value (0,0006). The number of iterations this process is repeated was 8000 for the Lucky 

Strike mosaic and 4000 for both Loki’s datasets. Respectively, the quantity of samples 

utilised in each training step (the Batch size), were 20 and 16. 

 

 As the final output of this methodology has to be compared across the  

different datasets. The desired result type is a visualisation in the form of a heatmap. The 

CNN was implemented using the eCognition model for the TensorFlow format. The 

normalization values that  define the data range of the selected image layers are [0, 255]. 

 

 



 

52 

 

 OBIA  

Using the segmentation parameters that were previously discussed. The refining process that 

is to come involves a set of thresholds or maximum acceptable values that are determined on 

an individual basis for each input dataset: 

Figure 27. OBIA workflow applied for the classification. 
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 Table 4. OBIA's maximum acceptable values 

 

In addition, among the admissible values, the minimum acceptable values serve as the lower 

limits, delineating the extent to which the conditions continue to classify the objects. 

Upon achieving satisfactory classification of image objects, objects that share the same 

designation are grouped together through the implementation of the "merge region" rule. This 

rule is responsible for the gathering of all image objects within the image object domain. The 

final step of the classification procedure requires the extraction of the shapes of the image 

objects and their exportation into a vector file. The algorithm "export vector layer" is utilised 

to create the previously mentioned output. Thus, a new raster that includes the recently 

merged polygons is generated, and subsequently stored in a distinct pathway in the format of 

a shapefile (*shp). 

Dataset Brightness Depth (m) Mean Slope 

Area 

(m2) others 

LS bacterial mat   
bac mat > 0,54 

block > 0,20 
   

LS block < -35  block > 0,20    

LS chimney   
chimney > 

0,64 
 < 1,01 

border 
to 

shadow 

> - 0,01 

LS smoke/shadow < 20  smoke > 0,75 Slope*   

LS wrinkle   wrinkle > 0,39    

LE João slope   Slope > 0,21 < 31   

LE João chimney > 140 > -2312 chimney > 0,9    

LW Camel 

chimney > -706 > -2314 

chimney > 

0,68    
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 Accuracy Assessment 

 

The shapefile produced by eCognition software are imported in ArcGIS. In order to perform 

a Confusion Matrix Computation, the outlined workflow has been followed (Fig. 28). 

Generating 9000 random points, they have been assigned to either “chimney” or “not-

chimney” features using the manually created outlines. These outlines inevitably are very  

 The random points were then compared with the OBIA_raster outputs, with the objective of 

determining the errors, which constitute the desired results.  

Figure 28. Confusion Matrix model applied for the assessment of accuracy. 
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6. Results 

Initially, it is essential to highlight that the efficacy of the CNN process in accurately 

classifying data has a direct impact on the interpretation of identified features and 

consequently influences the level of satisfaction with the generated heatmaps.   

The heatmaps that are presented below have been considered as the most suitable for 

accurately classifying chimneys.   

 The process of resolving this task was the most time-intensive aspect of the thesis project, 

requiring significant condition adjustments to various parameters, and algorithm trial-and-

error approaches in order to ultimately generate the foundational heatmaps necessary for 

analysis.     

As shown in the Figure 29, the heatmaps have effectively identified the most significant 

features for the purpose of this study. 

 The primary objective of this thesis was to evaluate the feasibility of formulating a 

methodology, rather than achieving exceptional outcomes. As such, the result that was 

reached is fairly straightforward. 

The heatmaps chosen for evaluation of their efficacy are those that optimally delineate the 

boundaries of the objects being identified, based on the parameters incorporated in order to 

create the CNN (Table 3).  

Table 5. Accuracy Assessment final values. 

  

Three rasters, labelled as OBIA_rasters, were generated from the heatmaps and incorporated 

into the ArcGIS model (Fig. 28). The resultant values were calculated utilising the confusion 

matrix, as elucidated in the Methodology section. The evaluation of the confusion matrix is 

centred on the validation polygons (OBIA_rasters) rather than the training polygons 

(manual). 

Dataset User’s Acc. Producer’s Acc. Kappa Coefficient Overall Acc. 

Lucky Strike 0,29 0,36 0,39 0,51 

Loki East (João) 0,64 0,7 0,67 0,99 

Loki West (Camel) 0,73 0,76 0,75 0,99 
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These values are discussed in the forthcoming section. 

  

Figure 29. Final chimney heatmaps of the three study regions and the manual outlines produced as reference.  
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7. Discussion 

The present chapter is divided into two distinct sections. The initial section focuses on the 

utilisation of the CNN-OBIA methodology and deliberates on the choices made during the 

process of segmentation and classification. Regarding this matter, the challenges posed by 

various types of training data are discussed, as well as the limitations of this study and 

possibilities for improvement. The remaining part of the classification-focused 

discussion looks into the accuracy of the ruleset-based classification. 

The second section of the discussion centres on the ethical and environmental implications 

that arise when achieving a more precise cartography of the ocean floor.  In conjunction with 

a comprehensive understanding of the actual knowledge gaps that exist as well as of the 

current legal setting and a description of the imminent future in the deep-sea mining sector. 

7.1. Technical Discussion 

In this thesis, it has been explored the potential of machine learning methods as instruments 

for the management of deep-sea resources. Although this thesis is one of the first of its kind, 

the results obtained indicate promising developments and highlight the influence of artificial 

intelligence in this domain. This discussion section aims to provide a broader perspective on 

the significance of these findings, the limitations of the study, and the potential future 

directions for research in this field. 

The findings presented in this thesis indicate that ML techniques, particularly those employed 

with the three mosaics, are effective in the classification of deep-sea features. The efficacy of 

these methods has been demonstrated and has surpassed expectations, providing 

new perspectives on the research and facing exploitation of these unfamiliar ecosystems. 

Through the utilisation of ML algorithms, a detailed examination using of relative extensive 

datasets has been achieved, taking into consideration environmental parameters, distribution 

patterns of landforms, and characteristics of habitats, resulting in an improved understanding 

of the deep-sea. 
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7.1.1. Classification and evaluation of deep-sea hydrothermal features 

through CNNs and OBIA integration 

The practical knowledge acquired through the handling of underwater imagery led to 

determine that the utilisation of object classification represents an improved methodology for 

the interpretation of hydrothermal characteristics, in contrast to the combination of diverse 

satellite bands like satellite remote sensing has traditionally done.  

The present study has developed a CNN-OBIA classification approach that shows a notable 

level of accuracy in two of the three separate study regions.  

Being the main objects sought since the beginning, the chimneys are also among those with 

the most discernible characteristics of all the objects that have been assumed as possible 

targets from the very start. These characteristics, which are listed in Table 4, mostly respond 

to differences in the image, which in the end is the main data source for the study. The 

differences include the compactness of its morphology and the abrupt fluctuations in 

luminosity caused by the artificial lighting. The chimneys exhibit a range of luminosity, 

ranging from bright white illumination at their uppermost portions to significantly darker 

shades, located just next to them (Fig. 20 and Fig. 23). Thus, the heatmaps depicting the 

interpretation of the chimney, which was the one predominantly utilised in this study, have 

attained a considerable degree of precision. Demonstrating well-defined boundaries that 

enable comparison with manually interpreted counterparts, as part of a subsequent Accuracy 

Assessment. 

Nonetheless, alternative heatmaps have been generated, though not employed in the 

final evaluation. Hydrothermal features, such as bacterial mats, could be identified by 

analysing brightness values of 100 ranging from 0 to 255 and selecting smooth surfaces 

during the CNN procedure.  

However, the heatmaps generated by these features exhibited a significant quantity of 

bacterial maps that were determined to be unreliable. The reason behind the decision to 

ultimately stay away from employing it. 

Analogous methodologies have been applied to hydrothermal characteristics, including 

dispersed blocks, wrinkles resulting from vulcanism, and general slopes that can be 

distinguished based on coarse variations in luminosity. 
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The CNN-OBIA method generated maximum accuracy scores of 76 % for chimney features 

in one study region (Camel). This suggests that the integration of deep learning and OBIA is 

a reliable and precise approach for defining the boundaries of venting activity in complex 

hydrothermal settings.  

The João hydrothermal setting can be considered as a comparable scenario. 

However, in the context of the Lucky Strike mosaic interpretation, the kappa coefficient 

obtained along with were comparatively lower than that of the other two datasets. Meaning 

that the agreement between assigned classification and actual ground control points is poorly 

evaluated. This occurrence can be explained by the comparatively greater dimensions of the 

previously mentioned input, in addition to the existence of a greater number of intricate 

features spanning the majority of the mosaic. In contrast to the smoothed and almost 

unaltered surfaces observed in the Joao and Camel hydrothermal mounds.  (Zoom-in Figure 

17 to compare mosaic surfaces.) 

7.1.2. The datasets utilised for training and limitations of this study. 

Despite having worked with this limited source of training data, a significant progress has 

been made. However, further enhancements can be made by incorporating additional 

information to augment the existing dataset. 

This study used high-resolution underwater mosaic to train the CNN models to extract 

patterns and develop predictive feature mapping models. Moreover ML also requires 

bathymetry data, which describes the seafloor's depth and topography. Bathymetry data helps 

map the distribution and interconnectedness of deep-sea ecosystems. Predictive models based 

on bathymetry data can help predict deep-sea feature occurrence and spatial extent. By 

combining the seafloor's three-dimensional properties, bathymetry and mosaic data can 

improve feature mapping. The only disadvantage is that high-resolution bathymetry is scarce. 

Therefore, it becomes a limitation to work with coarser resolutions in bathymetry. (Fig. 30) 

While the results of this thesis are encouraging, it is essential to acknowledge its limitations. 

The investigation of the ocean floor represents a challenge in it's own. Although, ongoing 

advancements in research are concentrated on addressing some of the most prevalent 

constraints encountered during underwater research. 
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Firstly, the study is constrained by the availability and quality of data, as deep-sea 

environments remain largely unexplored. Future research efforts should focus on expanding 

data collection and improving data accuracy to enhance the robustness of ML models. 

The resolution of images tends to decrease significantly when analysing images at such depths. 

For instance, the resolution of these datasets represents a significant factor in altering the 

outcome. The reason for this can be attributed to the analysis of a single region using datasets 

that vary greatly in nature, such as photomosaics and bathymetry. The figure depicted below 

illustrates the varying resolutions within a example region of the Lucky Strike datasets. 

  

Figure 30. Comparison of different resolution from a section of Lucky Strike Hydrothermal Vent Field. Outlined in red is a segmented 

object that serves to compare the difference in resolution between the mosaic and the bathymetry. In the bottom-right corner there is 

heatmap produced out from the mosaic. The values given in metres are the resolution of each of the datasets.. 
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7.1.3. Potential for improvement 

In the future, there exist numerous potential possibilities for further research within this 

particular academic domain. The incorporation of more sophisticated machine learning 

techniques has the potential to improve the predictive capacities of models and facilitate more 

precise evaluations of the behaviour of deep-sea resources. 

Furthermore, the incorporation of real-time data streams and the development of autonomous 

data collection platforms could facilitate continuous monitoring and adaptive management 

strategies. The Saildrone Surveyor (Gentemann et al., 2020) and the Eelume robot developed 

by NTNU are two examples that have been put forth to support the Seabed 2030 Project, as 

mentioned in the Introduction. 

Throughout the process of composing the thesis, a research attempt was conducted into the 

feasibility of employing an alternative technique, namely ESRGAN, which tries to enhance 

the resolution of datasets through programming. The issue at hand pertains to the fact that the 

technique was originally intended for the purpose of interpolating pixels that are associated 

with colour images. And underwater images, especially bathymetry, are never in colour. Still, 

this suggests the continuing room for improvement. 

 

7.2. Ethical Discussion 

This thesis is conceived to be one more tool from  academia to ensure the protection of the 

marine environment as a whole. It focuses on the mapping of the seabed  to divulge the 

tremendous natural wealth that this environment contains and of which we know so little. And 

thus, this study aims to contribute to the current social pressure on international organizations 

such as the International Seabed Authority (ISA) to pause and implement regulations in this 

incipient mining process until environmental protection requirements have been met. This will 

prevent further disastrous ecological harm that the planet has experienced before. This thesis 

aims to serve as further evidence that research is a valuable means of ensuring the sustainable 

progress that is necessary. 

The utilisation of AI and ML to quickly and conveniently assess imagery and related 

environmental data has led to a growing number of questions regarding how society will 

manage this inflow of novel data. 
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In light of recent advancements across various fields, there has been a growing interest in 

identifying more efficient methods for extracting valuable resources. Gaining an in-depth 

comprehension of deep-sea ecosystems is imperative in mitigating humanity's tendency to 

exhaust all available resources. Thus, it will ensure that the neceessary measures for preventing 

any potential adverse impacts are adequately considered, prior to it being too late to do so. 

Hence, given the numerous uncertainties surrounding the forthcoming underwater large-scale 

mining process, it is crucial to conduct more extensive scientific research before embarking on 

any sensitive industrial activities. 

Even though models are useful tools to analyse the potential effects of deep-sea mining, to 

completely appreciate the nature and extent of the impacts it would be necessary to conduct 

and carefully monitor mining tests. 

7.2.1. Knowledge gaps 

In spite of certain pre-existing knowledge, such as the instances listed in the section 1.3 

(Impacts of human activity on deep-sea ecosystems), there is a lack of established ecological 

baselines for ecosystems that will likely be impacted by deep-sea mining. In order to address 

this issue it is important to fully understand the temporal dynamics, thereby enabling the 

differentiation of mining impacts from natural variations (Clark et al., 2020). 

More precisely, it is recommended that research efforts refer to every level of the water 

column, with a particular emphasis on the bathypelagic and abyssopelagic regions, from 

depths of roughly 1,000 metres to the uppermost layer of the seafloor. This is due to the 

potential co-occurrence of seafloor collector plumes and dewatering plumes in these regions. 

An additional point of uncertainty arises in the development of the study of metal leaching 

from ores onboard  the mining vessels and the assessment of optimal techniques for 

monitoring the spatial and temporal impact of these processes within the discharge of 

dewatering fluids. The impact of this is dependent on the characteristics of different 

procedures used and mining scenarios. Empirical acquisition of certain significant inputs, 

such as physical oceanographic and sediment parameters in mining regions, is necessary for 

these models (Drazen et al., 2020).  

To exemplify it, according to the report produce by the (Directorate, 2023), slightly over half 

of the study areas in Norway have been mapped using ship bathymetry as of December 1st, 

2022. This offers a foundation for generating high-resolution (25 m or less) topographic maps 

of the ocean floor. It is important to ensure uniform resolution across the entire investigation 
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area. Accurate calculation of the surface area of mountainous regions that satisfy the 

conditions for the development of manganese crusts is key. Simultaneously, this serves as a 

fundamental prerequisite for AUV expeditions aimed at locating ancient sulphide deposits 

situated to the east and west of current spreading ridges. 

With regard to these polymetallic sulphide deposits, its mining would be concentrated on 

inactive sectors due to functionality and safety considerations. Prior to any exploitation, it is 

vital to determine whether hydrothermal activity ends temporarily (dormant) or permanently 

(extinct), as their respective habitats encounter dramatic changes (Van Dover et al., 2020).  

7.2.2. Environmental Repercussions 

Building upon the impacts outlined initially in the introductory section 2.3 (Hydrothermal 

Vents as potential mining sites), the required additional investigation has been organised into 

three separate units based on each phase of the entire mining process.         

Throughout this thesis, it has been emphasised how crucial it is during the exploration stage 

(Clark et al., 2020) to understand the range of natural variations in the environmental baseline 

parameters and differentiate human-induced changes from natural conditions in the 

environment.  

The following paragraphs will focus on phases that have not yet begun (Guo et al., 2023): 

Throughout the extraction stage the ecological factors centre on the methods employed for 

mining and the resulting tailings. It is imperative to use the current monitoring techniques and 

uphold existing theoretical counselling in order to assess the ecological consequences of 

mining operations in the long-term. This approach is necessary to maintain sensitive 

environmental indicators within acceptable thresholds, as well as to validate the accuracy of 

projected impacts on the environment.                                 

In the closure stage, the primary objective is to rehabilitate the mine site's ecosystem, 

specifically in regards to the original flora and fauna. Whilst the full repercussions of mining 

activities remain incompletely understood, certain factors require consideration. These include 

the extent of the mining activities in relation to the overall oceanic region, the effects of mining 

activities from epipelagic to benthypelagic flows during varying seasons, the proximity of 

human settlements to the mined regions and the potential effects on fishing or other 

commercial activities in the affected area. 
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7.2.3. Current state of development 

The protection and management of the rare and vulnerable hydrothermal vent ecosystems is 

already acknowledged. As described in the section 2.3, there are multiple efforts from 

international bodies to ensure correct practices both along international waters and within the 

national EEZs (Fig. 29).  

However, it is noteworthy that certain institutions have faced criticism for their attempts to 

hasten the initiation of deep-sea mining, despite the apparent scepticism of such ideas, 

highlighted by this article (McVeigh, 2023) in The Guardian.              

Historically, conflicts of interest have posed a challenge in achieving objectives related to 

complex situations such as seabed mining. In contemporary times, there is an extensive 

history of diplomatic relations between nations and the potential advances in technology 

facilitating responsible practices in sustainable seabed mining. Considering this, achieving a 

mutually beneficial consensus should not prove to be an impossible task. Even so, the 

following is a summary of the context that shows the complex situation surrounding seabed 

mining. 
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The ISA is creating regulations for the resource exploration and development of "the Area" 

(Fig. 3). As imposed by the UN Convention of the Law of the Sea (UNCLOS), this 

governance system will incorporate a "financial mechanism" to distribute seafloor mineral 

exploitation benefits. This mechanism prioritises contractors' financial burdens over 

the environmental and socio-economic repercussions mentioned previously (Thiele & Singh, 

2021). On the other hand, the Forum for Development and the Environment, which is an 

association of  50 different organisations (Seas_at_Risk, 2021), has released a statement 

calling for a “moratorium on mineral extraction on the seabed until thorough mapping of the 

ecosystems that will be affected, until we have overcome the environmental challenges 

associated with land-based mining, and until a proper assessment of the real societal need to 

open up the seabed for mineral extraction.” 

Figure 31. Maritime Boundaries Geodatabase: Maritime Boundaries and EEZ (200NM)  and augmentation of the Norwegian and Portuguese 

EEZ (black lines) which enclose within the yellow circles the LCHVF and LSHVF respectively. The red coloured areas represent the network 

of marine protected areas (MPAs). Edited maps from Flanders Marine Institute (2019) and OSPAR Network of MPAs (as of 1 October 2021) 
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However, as the saying goes: every law has its loophole. And in this case, it is the “Two-Year 

Rule” (Singh, 2022). This “rule” gives the ISA Council two years - until July 9, 2023 - to 

finalise legislation for mining minerals on the international seabed and equitably divide 

mining earnings and other benefits. The Council must "consider" and "provisionally approve" 

exploitation applications if the regulations are not adopted within this time. The “Two-Year 

Rule” was triggered by the small Pacific island nation of Nauru, on behalf of the mining 

company under their sponsorship, Nauru Ocean Resources Inc. (NORI) , which intends to 

submit for UNCLOS approval of a PoW for exploitation. The Metals Company (previously 

DeepGreen), a Canadian mining startup, owns 100% of Nauru-incorporated NORI. 

7.2.4. Alternative approaches 

A considerable number of the topics discussed in the preceding sections possess a high 

likelihood of materialising. Similar to other bureaucratic procedures, the expectation of timely 

implementation of regulations can often be perceived as overly optimistic or even compliant. 

The pragmatic approach to this scenario would be to acknowledge that social and economic 

patterns are unlikely to undergo a significant shift in the immediate future. Thus, the extraction 

of mineral resources from the seabed will inevitably become necessary at some point in time. 

Therefore, certain research groups have proactively undertaken the task of specialising on 

offering alternatives to mitigate the impact of this inevitable endeavour. 

Concurrently, there has been a surge in demand for new professionals in this particular field, 

leading to the emergence of educational programmes such as the one offered by NTNU 

(Oceans pilot programme on deep-sea mining). While the underlying motives of this 

programme stay unexamined, it is very likely that it will promote the development of creative 

and analytical professionals who possess the ability to make informed decisions based on a 

more comprehensive understanding, supported by empirical evidence, than their current 

counterpart. On the other hand, professionals in the field are currently developing innovative 

alternatives to the conventional approach of underwater mining. One such approach involves 

integrating traditional geological exploration techniques with geophysical approaches, such as 

seismic and electromagnetics, to detect dormant or extinct sulphide deposits and figure out how 

deep they are underneath the ocean floor (Koschinsky et al., 2018). Alternative proposals have 

been put forth, such as the implementation of robotic technology proposed by the North 

American Consortium for Responsible Ocean Mining (NACROM), as outlined on their official 
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website. This technology would enable the selective extraction of individual mineral resources, 

thereby reducing the environmental impact that has been previously discussed. 

Given the aforementioned points, it is reasonable to state that adopting an interdisciplinary 

approach is strongly advisable. Thus, it becomes pertinent to consider the potential societal and 

economical implications that may arise from this activity in the future.  

(Thiele & Singh, 2021) presents three clear points that encapsulate certain key socio-economic 

stances: At first, it is important that the financial system truly portrays all expenses and 

potential hazards linked to mining operations within the Area (Fig. 3). Secondly, indigenous, 

civil society and future generations must be considered as significant and representative as any 

other stakeholder. Secondly, it is imperative to acknowledge the importance and representation 

of indigenous communities, civil society, and future generations as stakeholders on par with 

any other interested group. Ultimately, this study aims to showcase the feasibility of 

implementing on a significant scale a payment regime designed with the interest of 

Humankind, particularly in developing nations. Such a regime has the potential to narrow the 

disparity between globalised economies and benefit those who have historically been 

marginalised. 

In case the reader is interested in conducting additional research, some concepts that must be 

incorporated in the investigation include: Degrowth, Circular Economy, the “Let the minerals 

be” narrative, “the Two-Year rule”. 
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8. Conclusion  

This thesis represents an initial step in using the potential of ML for the interpretation of 

deep-sea resources. The positive outcomes and functionality demonstrated by the three 

mosaics employed, while also highlighting the requisite degree of pre-processing necessary to 

ensure the reliable and adaptable application of machine learning algorithms. in this study 

highlight the value of ML in understanding and sustaining these unique ecosystems. While 

there are still limitations to be addressed and further research to be undertaken, the findings 

from this thesis helps to open the way for future advancements in the field. 

Furthermore, it is important to note that the applicability of the results may be restricted to 

the particular geographical location under study, and it is advisable to use prudence when 

extending the outcomes to other deep-sea regions. Future work should attempt to expand on 

the number of landforms being mapped, and to separate between similar classes. 

The utilization of mosaic and bathymetry datasets in this study exemplifies the importance of 

data diversity for ML-based mapping of deep-sea features. Incorporating additional types of 

datasets, can further enhance the accuracy and applicability of ML models in this domain. 

Furthermore, international cooperation and a multidisciplinary science approach are essential 

for comprehensively addressing the management of deep-sea resources. 

As funding for long-term monitoring projects remains scarce, the cost of purchasing, 

implementing, and running AI technology continues to decrease, making automation an 

attractive alternative for conservation management in marine ecosystems. 

From an ethical standpoint, deep sea mining raises concerns due to knowledge gaps, 

environmental repercussions and its current state of development. Limited understanding of 

deep-sea ecosystems necessitates precautionary measures to avoid irreversible damage. 

Environmental consequences, including habitat destruction and species extinction, raise 

ethical concerns for present and future generations. Addressing knowledge gaps through 

baseline studies and ongoing monitoring is crucial. Transparent and accountable governance, 

with international cooperation, can mitigate risks. Alternative approaches such as circular 

economy principles, recycling, and sustainable practices can reduce the demand for deep-sea 

mining. International collaboration and the share of knowledge can result in comprehensive 

and sustainable solutions. Ethical decision-making must balance economic interests with the 

preservation of deep-sea biodiversity, ensuring long-term well-being for marine ecosystems 

and the human society that relies from them. 
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