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There is an urgent need to assess the extent to which the global fishing enterprise

can be sustainable in the face of climate change. Artisanal fishing plays a crucial

role in sustaining livelihoods and meeting food security demands in coastal

countries. Yet, the ability of the artisanal sector to do so not only depends on the

economic efficiency of the fleets, but also on the changing productivity and

distribution of target species under rapid climate change in the oceans. These

impacts are already leading to sudden declines, long-term collapses in

production, or increases in the price of fish products, which can further

exacerbate excess levels of fishing capacity. We examined historical changes

(1950-2014) in technical efficiency within the global artisanal fishing fleets in

relation to sea surface temperature anomalies, market prices by taxonomic

group, and fuel costs. We show that temperature anomalies affected countries

differently; while some have enhanced production from an increase in the

resource distribution, which alter the structure of the ecosystem, others have

had to adapt to the negative impacts of seawater warming. In addition, efficiency

decreases are also related to rises in global marine fish price, whereby more

labour and capital are attracted into the fishery, which in turn can lead to an

excess in fleet capacity. Our results contribute to the understanding of how the

effects of climate-induced change in the oceans could potentially affect the

efficiency of artisanal fishing fleets.
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1 Introduction

At a time of increasing demand for global food resources

(Barange et al., 2014) and growing understanding on the observed

(Weatherdon et al., 2016) and projected (Gaines et al., 2018) global

impacts of climate change on fisheries, new approaches are needed

to assess their sustainability and adaptive capacity across different

systems and scales (Thiault et al., 2019). Factors such as

anthropogenic climate change have implications toward global

change (e.g., employment and/or mobility) or changes in demand

from population growth and wealth—that risk significant changes

to sustainable yields or substantial increases in the price of fish

products, both of which could negatively affect many people’s lives

in terms of health, well-being, and dietary needs (Golden et al.,

2016). A key challenge for fisheries is how we can rigorously

evaluate their sustainability to effectively anticipate and avoid

risks to fisheries livelihoods and economies under climate change.

However, this is often undiagnosed because of limited data on

fishing effort and the exogenous drivers (e.g., climatic, costs and

prices) that influence fishing (Lam et al., 2016).

Threats to marine capture stocks continue due in part to

government subsidies, globally representing US$35.4 billion

annually (Sumaila et al., 2019), which encourage wasteful,

uneconomic fishing practices in already overcapitalized fisheries,

where current numbers of vessels double those of the 1950s and

maintain fishing effort even when stock levels decline (Rousseau

et al., 2019). It is also important to note that fisheries subsidies are

now directed towards conservation and research/management and

away from capacity enhancement (see Skerritt et al., 2020). Other

contributing causes include: (i) the failure to regulate access rights,

which are insufficiently defined and enforced (Costello et al., 2008)

leading to Illegal, Unreported and Unregulated (IUU) fishing

(Agnew et al., 2009); and (ii) the increase in the number of fish

markets (Cunningham and Gré boval, 2001), and (iii) technological

creep, i.e., year-to-year increases in technical efficiency (Tidd et al.,

2016; Tidd et al., 2022). The culmination of the above factors can

lead to excess capacity (surplus use of inputs to produce potential

outputs) and low technical efficiency, which can threaten the long-

term sustainability of global fisheries resources and economic

viability of fishing operations (Garcia and Grainger, 2005).

Simply, technical efficiency relates to economics in that fish are

targeted at the lowest possible costs. It is therefore not a useful

indicator to make inferences about relative stock biomass size

changes as technical efficiency can be high or low, regardless of

fish stock biomass levels. This is due to a combination of factors,

because excess capacity changes through time (Hilborn and

Walters, 1992), whereby fishers produce less than under normal

operating conditions because of changes in market conditions,

management regulations, environmental factors, energy-efficient

fishing means, skilled employees, and stock abundance (Herrero

and Pascoe, 2003).

Of increasing concern are the global motorized artisanal

fisheries that represent 57% of the global 3.7 million vessels and

50% of the total global 145.9-gigawatt power as of 2015 (Rousseau

et al., 2019). For this fishing sector, much less is known in terms of

the status of targeted global stocks or the level of excess capacity,
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compared to industrial fisheries (Lancker et al., 2019). Furthermore,

artisanal fleets operate in coastal waters and generally have higher

exposure to climate change impacts and extreme events (Bezner

Kerr et al., 2022; Ilosvay et al., 2022), and a lower adaptive capacity

than industrial fleets due to fisher’s mobility constraints and the

level of technology (Bezner Kerr et al., 2022; Cooley et al., 2022).

Despite the importance of artisanal fisheries for employment and

nutrition, especially in developing countries, they are often

unregulated and have historically been less studied than industrial

fisheries (Júnior et al., 2016). Here, we aim to fill this gap by

focusing on the global artisanal fishing fleet and how technical

efficiency is affected under climate and economic change.

Indicators that connect economic and social-ecological

processes are in short supply, as are indicators to determine the

extent to which fishing has reached or exceeded capacity (i.e., the

excess fishing pressure that threatens both the sustainability of fish

stock and the socioeconomic performance of the fleet) across the

global ocean. Some indicators and frameworks for determining

fisheries performance do exist (e.g., Anderson et al., 2015),

providing a collective insight into how management and

exogenous factors interact with the resource and community

factors as to who benefits. The recent development of fishing

maps of global catch reconstruction time series (Watson and

Tidd, 2018) combined with satellite remote sensing provide

scientists with the opportunity for more comprehensive methods

to globally address changes in stock levels concerning target

reference points and the associated social and economic risks.

There have also been advances through the development of bio-

economic models to assess what broad-scale fisheries reform might

look like for global fisheries (Costello et al., 2016), including

management scenarios under climate change (Gaines et al., 2018;

Free et al., 2020; Leitão et al., 2020). However, these global analyses

often do not disentangle the effects of the industrial and artisanal

fishing sectors due to poorly detailed and incomplete reports of fish

catches. In addition, there are still very few examples in the

literature that directly explore how fishing behaviour and

efficiency change as a result of climate change (Rubio et al.,

2020). The present study contributes to fill this gap. Several

studies have used environmental predictor variables such as

temperature anomalies to model fish growth (e.g., Sande et al.,

2019), or the influence of ENSO indices in modelling tuna

abundance indices (e.g., Ducharme-Barth et al., 2022). Other

studies have used a combination of environmental variables for

estimating technical efficiencies in diverse sectors such as coastal

aquaculture fisheries (Schrobback et al., 2014) or grain production

within the agriculture sector (Neumann et al., 2010).

A recent study provided an assessment of global fishing

efficiencies and highlighted that many of the countries having

years of low technical efficiency (excess capacity) are also those

with a high vulnerability to climate induced change (e.g., western

central Pacific Ocean), and have a low adaptive capacity to respond

to those changes (i.e, low Gross Domestic Product (GDP)) (Tidd

et al., 2022). However, it may be important for countries to have

excess capacity in the fleet for adaptive reasons, preparedness to

address maintenance issues such as breakdowns or engine refits,

and/or readiness to respond to cyclic weather systems affecting
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stocks such as El Niño and La Niña in Oceania and South America,

respectively. Further, where fish stock distributional changes are

likely to occur across jurisdictional borders, increased tensions

among the nations sharing the fisheries resource are to be

expected (Pinsky et al., 2018; Oremus et al., 2020). This chain of

impacts is likely to disproportionately affect small-scale artisanal

fisheries, which are constrained by limited adaptation capacity and

their dependence on coastal ecosystems. Importantly, society needs

a better understanding of how climate change impacts our food

systems. While mean temperatures represent the single most

important predictor of global distributions of marine biota

(Tittensor et al., 2010), short-term, periodic changes in climatic

conditions are known to influence the abundance and distribution

of many species (e.g., Lehodey et al., 1997). Extreme and prolonged

temperature anomalies are of increasing concern because they can

significantly alter the abundance, composition and geographical

ranges of commercial species while damaging important supporting

ecosystems such as corals, kelps, and seagrasses (Smale et al., 2019).

These impacts can have significant socio-economic implications,

including altered fishing patterns, prices collapses and closures of

fisheries (Cavole et al., 2016). In this study, we focus on sea surface

temperature anomalies as an indicator of climatic change to

specifically explore how the technical efficiencies of artisanal fleets

have been affected globally. While artisanal fleets have been found

to be vulnerable to the long-term effects of climate change (Tidd

et al., 2022), here we specifically ask 1) how has climate change

influenced/impacted global artisanal fleets’ technical efficiency at

the exclusive economic zones (EEZs) level, and 2) how the dynamic

changing market conditions affect technical efficiency.

To address these questions this paper combines the results from

a previous Data Envelopment Analysis (DEA) (Farrell, 1957) time-

series (1950-2014) of artisanal fisheries technical efficiency

estimates from Tidd et al. (2022), with additional data on market

dynamics and climate change. We apply a second stage statistical

approach (Hoff, 2007) to predict technical efficiency scores subject

to market dynamics (costs and prices), and sea surface temperature

anomalies. By monitoring changes in technical efficiency influenced

by exogenous factors (i.e., climatic, cost, and prices), we will provide

novel important knowledge for the enforcement of fisheries

regulations under continually changing economics and

environmental conditions.
2 Materials and methods

2.1 Data envelopment analysis (DEA)

Economic approaches to estimate technical efficiency, defined

as the ratio of the current output (catch) to potential output or

simply what is caught/what could be caught with available means,

i.e., the ability to catch fish (Herrero and Pascoe, 2003), have been

widely used to assess economic sustainability in many sectors

including fisheries (e.g., environmental decision making and

policy analysis; Mardani et al., 2018). Among them, Data

Envelopment Analysis (DEA; Farrell, 1957) is a useful tool for

estimating technical efficiency that accounts for additional variables
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that affect output such as short-term changes in market conditions

(e.g., cost and prices) or stock abundance, and differences in the

technical efficiency of countries (fleets and/or vessels). One of the

key benefits of DEA is that it does not require individual fisher

information on revenue and costs. This approach is invaluable in

data-limited situations and across multiple scales of aggregation

(from individual vessels to entire fleets and fisheries sectors). The

method assumes the production function (how outputs change

within inputs) is unknown and compares each production unit

against all other production units (Cooper et al., 2000). Here, we

used year as the production unit within a country’s time series to

compare against all other years and given a set of input and output

variables. The approach identifies the “frontier” which represents

the most efficient combination of various inputs (kW power, fishing

days and number of vessels by country and year) and output

variables (catches by country and year - total weight in tonnes)

for the countries in question. All else being equal, any production

year of similar characteristics should be able to achieve the same

output. The process is deterministic and produces an efficiency

index (score) for that year production unit. The DEA process is

often criticized for being nonparametric, as it does not account for

random error, resulting in the underestimation of the efficiency

scores due to serial correlation. To avoid this, Simar and Wilson

(1998) suggested applying a bootstrapping approach to provide

bias-corrected deterministic technical efficiency scores to improve

statistical validity, inference, and efficiency.
2.2 Global fishing activity data and
predictor variables

We use the database for global fishing activity produced by Tidd

et al. (2022) containing bias-corrected technical efficiency scores

(dependent variable) derived from a Data Envelopment Analysis

described above (see Farrell (1957)), by year, country, and sector

(i.e., artisanal for 105 countries over the period 1950-2014). These

data originate from reconstructed catch (Watson, 2016) and effort

data (Rousseau et al., 2019) (see data availability section). The Price

data is comprised of a large data set compiled by the Sea Around Us

Project and described in: Swartz et al. (2012) and Sumaila et al.

(2007). The database contains nominal price data from global ex-

vessel prices for all commercially exploited marine fish stocks by

country and year (1950-2014), as well as converted local inflation-

adjusted real price in $US (used here) to the year (year base 2000)

from the International Monetary Fund database.

Model predictors were chosen to avoid collinearity with the

inputs into the DEA. The resulting model predictors included

country-specific, inflation-adjusted average real price by year and

taxonomic group (FAO International Standard Statistical

Classification of Aquatic Animals and Plants) including marine

molluscs (e.g. squids), crustacean (e.g. crabs), marine fish (e.g.

demersal fishes such as flatfishes and cod), small pelagic fish (e.g.

anchoveta), large pelagic fish (e.g. tunas), mixed pelagic fish (e.g.

tunas and swordfish), elasmobranchs (e.g. sharks, skates and rays),

diadromous fish (e.g. salmons and trouts), freshwater (e.g. carps,

and pikes from capture catches in Baltic and Black sea regions –
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contains a mixture of freshwater and marine fauna) and other (e.g.

aquatic plants and miscellaneous seafood products) (see Table 1).

To reflect the cost of inputs, US crude oil prices ($US per barrel)

were obtained from Western Texas Intermediate (WTI) spot prices

per month (see Table 1). These cost values were averaged per year

and inflation-adjusted using the raw consumer price index (CPI) for

fuel from the US labour department for statistics found here

(https://www.in2013dollars.com/Fuel-oil/price-inflation accessed

February 22, 2022). This data was combined with the price data

by year.

Annual sea surface temperature (SST) anomalies were

calculated for each of the artisanal country’s Economic Exclusive

Zones (EEZs) (Flanders, 2014) from the 1-deg resolution, annual

mean global sea surface temperature (SST) HadiSSTa v1.1 data set

(Rayner et al., 2003) (see Table 1). EEZ anomalies were calculated

by computing the average cell-wise differences between the annual

means over the study period (1950-2014) and the overall mean SST

for the baseline period (1981-2010). Anomalies are an important

diagnostic tool to evaluate departures from long-term mean

climatic conditions. Positive and negative anomalies indicate,

respectively, years with above/below-average mean temperatures.

Country specific fleet totals for engine horsepower (hp) were

excluded from the analysis as they were highly correlated with
Frontiers in Marine Science 04
country-specific kW power that was used in the primary DEA

analysis to determine technical efficiency.
2.3 Regression model

Censored regression (Tobit model; Tobin, 1958) has been often

used to explain differences in bias-corrected technical efficiency

scores from DEA (e.g., Tingley et al., 2005). This type of model

naturally allows for the estimation of linear relationships in cases

where dependent variables are ‘censored’ at an upper and/or lower

threshold value (i.e., efficiency scores values range between 0 and 1).

However, there have been discussions in the literature as to whether

the efficiency estimates are censored (e.g., fractional or normalized

with a heteroskedasticity distribution i.e., the variability of the

dependent variable widens or narrows with the increase in the

predictor variables), and whether the Tobit regression is needed

where Ordinary Least Squares (OLS) may suffice (e.g., Hoff, 2007;

McDonald, 2009). McDonald (2009) argues that the Tobit may

result in model mis-specified parameter estimates and that OLS is

more appropriate. The results from the experiment comparing OLS

and Tobit by Hoff, 2007 also re-emphasize the use of OLS over

Tobit. Therefore, we use OLS to fit our statistical model.
TABLE 1 Variable description and source.

Variable Type Description Source

TE numerical Annual technical efficiency estimates - dependent variable Tidd et al. (2022) see data availability section

country categorical 105 countries - predictor variable Tidd et al. (2022) see data availability section

marine
mollusc

numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

crustacean numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

small pelagic
fish

numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

large pelagic
fish

numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

mixed pelagic
fish

numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

freshwater numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

elasmobranchs numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

marine numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

diadromous numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

other numerical
Inflation adjusted average regional real price by year ($US) -
predictor variable

Swartz et al. (2012) and Sumaila et al. (2007)

SST numerical
Annual sea surface temperature (SST) anomalies from country’s
EEZ- predictor variable

https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11
(Accessed 17/07/21)

fuel numerical
Inflation adjusted average regional real spot fuel price by year
($US) - predictor variable

https://forecast-chart.com/chart-crude-oil.html (Accessed 22/02/
22)
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To account for the censoring of the data (i.e., values close to 1)

where parametric inference is impossible and there are

heteroscedastic residuals to fit with small samples, we followed

the two-stage bootstrap method suggested by Simar and Wilson

(2007). The first stage involved bootstrapping (1000 replications)

the efficiency scores to correct for their right-skewed distribution,

and to bias-correct estimates of efficiency scores. These scores were

then modelled in a second stage as the dependent variable with the

predictor variable marginal effects to be estimated. At this stage, a

second bootstrap (1000 replications) is applied to the empirical

distribution of the bias-corrected efficiency scores via a regression.

The resulting parameter estimates of the marginal effects are then

bias-corrected.

Specifically, the overall procedure consisted of the

following steps:
Fron
1. Calculate the bias-corrected DEA scores (q) for each year (j)

in each country by solving the DEA algorithm.

2. OLS was fitted to obtain estimates of beta of each predictor

variable x (b̂ x) and ŝ € (from the N(0,   ŝ €)) from the

regression of the efficiency scores calculated in Step 1.

3. Use the 1000 bootstrapped replicates (B) from Step 2 as a an

approximation of the true distribution of the efficiency

score.

4. Calculate bias-corrected estimates of the parameter

estimates. Where bias [d̂ ] =( 1
B  oB

b=1db) − b̂ , and the

bias-corrected estimate b̂* ~ = b̂ − bias ½d̂ ]. Essentially
when an estimator is known to be biased, it is possible to

estimate the bias and then modify the estimator by

subtracting the estimated bias from the original estimate

(Step 2) with the intent of improving the accuracy of the

estimate.
Model selection was performed by systematically fitting all

possible combinations of available uncorrelated (i.e., variance

inflation factor (VIF) ≤ 5; Rogerson, 2001) model predictor

variables from the full OLS model specification using the R

package ‘glmulti’ (Calcagno and de Mazancourt, 2010). The

resulting set of candidate models was ranked by their Akaike

Information Criterion (AIC) and the best model were selected

using their AIC-model weights (Burnham and Anderson, 2002).

Cross-validation was applied on the final model to test for

overfitting by randomly selecting 70% of the data for model

training and the remaining 30% for testing. Overfitting occurs

when the model accuracy on predicting the training data is much

higher than that from predicting the test set. The selected model was

finally bootstrapped 1000 times as previously described to bias-

correct the fixed-parameter estimates.
2.4 Elasticities

The elasticities marginal effects were calculated by country on

the continuous predictor variables to understand their unit effect on

technical efficiency (i.e., a 1% marginal effect change in X gives a %
tiers in Marine Science 05
marginal effect change in Y) all other predictor variables held

constant. E.g., see equation (1).

x = c +   b
max(X)

�Y

� �
(1)

Where X is the maximum value and �Y is the mean used to

estimate the bias-corrected exogenous variable coefficient b plus the

country coefficient c, and x is the elasticity for that variable.

Maximum values are used instead of means to compare elasticities

across countries. Often country effects are larger than the covariates

due to unobserved country differences due to countries heterogeneity

and therefore any meaningful difference will be small.
3 Results

3.1 Model validation

Model selection performed on the full OLS model (all predictors

had VIF values ≤ 3.5) resulted in five competing models (DAIC ≤ 2

units) extracted from the total of 8,450 candidate models (Table 2).

Given all competing models were statistically significant at the p <

0.001 level and there was no clear support for any of them, we chose

the higher rank model based on the raw AIC and the Akaike

weights. Cross-validation performed on the selected model showed

very little difference in the predictive accuracies with an R2 of 0.46

(RMSE of 0.164) for the test set and 0.45 (RMSE 0.16) for the

training set, suggesting overfitting was not an issue.

Results from the model fit shown coefficients for all continuous

exogenous covariates statistically significant at the 5% level

(Table 3). Price-related regression coefficients displayed the

expected positive signs apart from the marine fishes. In contrast,

the coefficient for fuel price was positive suggesting that higher

prices drive higher efficiencies. The positive coefficient for SST

shows positive changes in technical efficiency to warmer-than-

average years all else remaining equal. Results from the random

stratified bootstrapped regression mean parameter estimates

(Table 3), where the confidence intervals indicate the precision of

the estimates, differed very slightly from those of the full OLS model

strongly suggesting low error estimation and a good model fitting.
3.2 Exogenous effects on fishing efficiency

The predicted global artisanal fleets change in technical

efficiency (i.e., elasticities) resulting from single percentage unit

changes in each predictor variable (catch price, fuel costs and SST)

varied widely depending on countries and regions (Figures 1, 2). All

elasticities were found to be inelastic i.e., less than a 1% change in

technical efficiency from a 1% change in exogenous predictor

variables. This means that when, for example, the prices or costs

go up there are small changes. The largest global negative effect ~ -

0.1% on technical efficiency (e.g., a 1% change in marine prices

results in a 0.1% decrease in fishing efficiency) was found because of

an increase in marine fish prices in Oceania and South America

(Figures 1E, F) respectively) and other global mid-latitude countries
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(Figure 2E). Diadromous fishes and crustacean prices revealed the

highest positive values of elasticities amongst the other taxonomic

groups on average. Crustacean price dominated globally and

generally had the largest positive effects on technical efficiency

across all geographical regions (~0.1%; Figure 1) other than

Oceania. Fuel price increases had a positive effect on the technical

efficiency of artisanal fleets in most of the regions and for most

countries (Figures 1, 2A). However, these fuel elasticities were

smaller compared to the crustacean price covariate for most

regions. The highest effect of fuel costs was observed in Europe

(~0.12%) and, conversely, a negligible decline in efficiency was

observed for the Oceania region.

The effect of SST anomalies varied with the region (Figures 1,

2B) and the largest effects on technical efficiency increases were

found concentrating in Europe and Africa and Asia. However,

countries were SST anomalies were associated with a decrease in

technical efficiency were found in Oceania and South America.

These countries also exhibited large associated variability in their

technical efficiency estimates (Figures 1E, F).
4 Discussion

Improving the sustainability of global artisanal fisheries requires

the adoption of effective fisheries management standards and

planning to ensure the vital supply to feed future generations. This

is reflected by the United Nations Sustainable Development Goals in

its SDG14 “Life below water” that urges countries to progress in

ending perverse subsidies to fishing fleets and to recognizing and

protecting access rights for small-scale fisheries globally, in terms of

marine resources and markets. Advances in these fields will form a

global picture of optimum levels of fishing activity by country and

region. Acquiring new knowledge through performance indicators,

and driving global forces can lead to improvements in fisheries

management that could counterbalance the effects of external

drivers of change, such as climate change and fluctuations in

economic markets (Garcia and Rosenberg, 2010). Furthermore,
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technical progress needs to be considered. Squires and Vestergaard

(2013) show that technical progress has been substantial in many

fisheries. Differences in efficiency can be attributed to differences in

technical efficiency with a lot of heterogeneity e.g., technological

advancements, global positioning systems and sonar, vessel power

and size, skipper and crew skill, changes to port side infrastructure

and within the processing sectors, such as transportation, storage, and

preservation. Fishers are always finding ways that are more efficient to

process and harvest seafood to reduce costs and therefore maximise

profits, this in turn results in differences in physical and economic

efficiencies among fishers. Our study helps to bridge this research gap

by providing novel evidence on how different climatic and economic

exogenous drivers have influenced the global artisanal fleet technical

efficiency over the last 6 decades.
4.1 Effects of SST increases on efficiency

The results of this analysis show some interesting findings. For

instance, rising SST show similar negative elasticities concerning the

maximum change in fishing efficiency of countries within the

regions of Oceania, which should exacerbate the already observed

and predicted impacts of climate change in catches and profits from

fisheries for these regions (Free et al., 2020). The effect of

temperature anomalies varies across regions where in some cases,

we see a positive link to efficiencies (i.e. through resource

productivity), while in other we see a negative link (i.e. due to

reaching species thermal tolerances and productivity). Please see

Figure 3 which represents a time series of SST anomalies, technical

efficiency estimates, fish prices and cost indexes for the regions of

(A) Africa, (B) Asia, (C) Europe, (D) North America, (E) Oceania,

and (F) South America.

Oceanian countries are subjected to frequent extreme weather

patterns (e.g., Hanich et al., 2018) and their waters have seen strong

recent increases in temperature (Figure 3A). For example, the ocean

acidification condition of Tuvalu’s waters has dramatically declined

over recent years from overfishing, pollution, and climatic events
TABLE 2 Candidate models diagnostics.

source df AIC DAIC Wt(AIC) Equation

model1 115 -4136.42 0.0 0.338 technical efficiency ~ fuel + SST + crustacean + large_pelagic + marine + mixed_pelagic + mollusc + diadromous
+ country

model2 116 -4135.39 0.9 0.201 technical efficiency ~ fuel + SST + crustacean + elasmobranchs + large_pelagic + marine + mixed_pelagic +
mollusc + diadromous + country

model4 116 -4135.11 1.2 0.175 technical efficiency ~ fuel + SST + crustacean + large_pelagic + marine + mixed_pelagic + mollusc + other +
diadromous + country

model5 116 -4134.77 1.5 0.147 technical efficiency ~ fuel + SST + crustacean + large_pelagic + marine + mixed_pelagic + mollusc + diadromous
+ freshwater + country +

model3 116 -4134.41 1.9 0.123 technical efficiency ~ fuel + SST + crustacean + large_pelagic + marine + mixed_pelagic + mollusc +
small_pelagic + + diadromous + country

full
model

119 -4130.50 5.8 0.015 technical efficiency ~ fuel + SST + crustacean + large_pelagic + marine + mixed_pelagic + mollusc + diadromous
+ freshwater + small_pelagic + other + country

null
model

2 -1133.93 3002.4 0 technical efficiency ~ 1
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TABLE 3 Model 1 coefficient estimates for OLS and bootstrapped OLS (bias-corrected (bc)).

term estimate bias std.error bc lcl ucl

(Intercept) 0.732565 0.000327 0.027430 0.732238 0.681318 0.785160 ***

fuel 0.000449 0.000000 0.000104 0.000450 0.000250 0.000654 ***

SST 0.017550 0.000135 0.007624 0.017415 0.002584 0.032705 *

crustacean 0.000010 0.000000 0.000001 0.000011 0.000008 0.000013 ***

large_pelagic 0.000003 0.000000 0.000002 0.000003 0.000000 0.000007 *

marine -0.000021 0.000000 0.000005 -0.000021 -0.000031 -0.000010 **

mixed_pelagic 0.000012 0.000000 0.000004 0.000012 0.000005 0.000019 *

mollusc 0.000006 0.000000 0.000002 0.000006 0.000002 0.000009 *

diadromous 0.000008 0.000000 0.000002 0.000008 0.000004 0.000011 ***

Algeria 0.071575 0.001088 0.031847 0.070487 0.003848 0.132318 *

Angola 0.090877 0.001126 0.037977 0.089752 0.015838 0.170535 *

Antigua Barb -0.080957 0.001092 0.035557 -0.082049 -0.150693 -0.013714 **

Bahamas 0.056497 0.000557 0.031002 0.055941 -0.006372 0.116725

Bahrain 0.068350 -0.000504 0.030726 0.068855 0.010870 0.126744 *

Barbados 0.177887 -0.000185 0.028139 0.178072 0.123523 0.229936 ***

Belize 0.012589 -0.000519 0.031366 0.013108 -0.051202 0.073196

Benin -0.142895 -0.000264 0.035312 -0.142631 -0.213373 -0.077562 ***

Brazil 0.048811 0.000908 0.029691 0.047903 -0.010844 0.101617

Brunei Darsm -0.170858 -0.000133 0.034770 -0.170725 -0.240178 -0.101836 ***

Bulgaria -0.042236 -0.001300 0.036558 -0.040935 -0.112872 0.031073

Cambodia -0.191551 -0.001342 0.044825 -0.190209 -0.282476 -0.105816 ***

Cameroon -0.020696 0.000167 0.033726 -0.020863 -0.083894 0.045625

Canada 0.045785 -0.000261 0.030682 0.046046 -0.014064 0.103421

Cape Verde -0.158374 0.001769 0.038462 -0.160143 -0.236377 -0.086372 ***

China Main 0.081954 -0.000581 0.035213 0.082534 0.014680 0.148269 **

Comoros 0.003743 -0.000002 0.038848 0.003745 -0.067936 0.077140

Congo Rep 0.118764 0.000163 0.029610 0.118601 0.059666 0.171697 ***

Cook Is. 0.084606 0.000911 0.035661 0.083694 0.014713 0.154411 **

Costa Rica 0.032073 0.001218 0.035575 0.030855 -0.040282 0.100916

Cote d’Ivoire 0.106944 0.000229 0.032017 0.106715 0.043680 0.169439 **

Croatia -0.037201 0.000949 0.039356 -0.038150 -0.112319 0.042671

Cyprus 0.000552 -0.000547 0.039931 0.001099 -0.074363 0.079656

Djibouti 0.005152 0.001331 0.040333 0.003821 -0.074710 0.082198

Dominican Rp 0.016610 0.000386 0.032403 0.016224 -0.046631 0.081526

Ecuador 0.026549 -0.000058 0.035803 0.026607 -0.046205 0.096487

Egypt -0.024315 0.000272 0.039642 -0.024587 -0.108079 0.054769

El Salvador -0.103113 0.000363 0.043384 -0.103477 -0.190439 -0.022602 **

Eq Guinea -0.112056 -0.000451 0.044410 -0.111606 -0.201788 -0.024269 ***

Eritrea -0.206111 -0.002221 0.046076 -0.203890 -0.294470 -0.113003 ***

(Continued)
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TABLE 3 Continued

term estimate bias std.error bc lcl ucl

Faeroe Is 0.172680 -0.000416 0.030065 0.173097 0.111556 0.229396 **

Fiji -0.172897 -0.000110 0.041657 -0.172787 -0.253579 -0.093303 ***

Finland -0.068445 -0.002641 0.050285 -0.065804 -0.159016 0.032114

Gabon 0.267374 -0.000338 0.026851 0.267712 0.212929 0.316031 ***

Gambia -0.073474 0.000683 0.033849 -0.074157 -0.142380 -0.008990 *

Ghana 0.178681 0.000081 0.029740 0.178600 0.122748 0.235262 ***

Greece 0.178074 -0.000375 0.032484 0.178449 0.110697 0.240583 ***

Greenland -0.150043 0.000007 0.041423 -0.150050 -0.238265 -0.068223 ***

Grenada -0.020264 -0.000527 0.035002 -0.019737 -0.085737 0.048379

Guinea -0.133143 0.000364 0.034967 -0.133507 -0.202468 -0.066653 ***

Guyana -0.102393 -0.001105 0.037730 -0.101289 -0.173173 -0.026675 ***

Haiti 0.155236 0.000615 0.028625 0.154621 0.097691 0.208236 ***

Honduras -0.000433 -0.000451 0.037006 0.000018 -0.069974 0.073188

India 0.188745 0.000085 0.027945 0.188660 0.133647 0.238922 ***

Indonesia 0.195222 -0.000239 0.027938 0.195461 0.139293 0.248717 ***

Iran 0.075753 -0.000911 0.030691 0.076664 0.016764 0.137622 *

Israel -0.047389 -0.000576 0.033543 -0.046813 -0.111094 0.018188

Italy 0.139782 -0.000202 0.035447 0.139984 0.068246 0.209701 **

Jamaica -0.059373 -0.000080 0.029170 -0.059293 -0.119165 -0.006653 *

Japan 0.147831 -0.000287 0.029987 0.148118 0.090059 0.206758 ***

Kenya 0.091433 0.000210 0.029929 0.091223 0.029811 0.147915 **

Korea Rep 0.180614 0.000145 0.027742 0.180469 0.122809 0.233872 ***

Lebanon -0.108302 0.000733 0.040275 -0.109034 -0.193657 -0.031613 ***

Libya -0.120591 -0.000391 0.036765 -0.120199 -0.193682 -0.047624 ***

Madagascar 0.214770 0.000004 0.027311 0.214765 0.161303 0.265255 ***

Malaysia 0.143737 -0.000037 0.028786 0.143773 0.088208 0.197380 ***

Maldives -0.027247 -0.001811 0.038530 -0.025435 -0.101151 0.051158

Marshall Is -0.300860 -0.000916 0.047221 -0.299944 -0.390619 -0.208000 ***

Mauritania -0.079568 0.000082 0.037310 -0.079649 -0.153649 -0.004286 *

Mauritius -0.036165 0.000605 0.032811 -0.036770 -0.103172 0.027272

Mexico 0.154759 0.000785 0.029673 0.153974 0.093222 0.209103 ***

Micronesia 0.023638 -0.001939 0.043815 0.025577 -0.056579 0.117568

Morocco 0.216920 0.000492 0.028046 0.216428 0.161126 0.269780 ***

Mozambique 0.179124 -0.000149 0.031690 0.179273 0.119240 0.238008 ***

Myanmar 0.188649 -0.000290 0.031757 0.188939 0.127885 0.251350 ***

Nauru -0.169269 0.000358 0.041892 -0.169628 -0.251250 -0.085571 ***

Nicaragua 0.116072 0.000653 0.031040 0.115419 0.052396 0.175184 **

Niue -0.151759 -0.003338 0.053108 -0.148422 -0.250496 -0.040923 ***

Norway 0.137389 -0.000596 0.034238 0.137984 0.067219 0.197796 **

(Continued)
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TABLE 3 Continued

term estimate bias std.error bc lcl ucl

Oman 0.109639 -0.000457 0.030986 0.110097 0.049088 0.169035 **

Pakistan 0.098269 -0.000416 0.032844 0.098684 0.035322 0.165701 **

Palau 0.176156 -0.001005 0.029163 0.177161 0.119105 0.232367 ***

Panama 0.035659 0.001747 0.031216 0.033912 -0.028592 0.094273

Papua N Guin -0.064363 0.000045 0.045301 -0.064408 -0.147608 0.024023 .

Peru 0.025112 0.000053 0.033084 0.025058 -0.042444 0.090029

Philippines 0.104112 0.000459 0.035604 0.103653 0.037785 0.171472 ***

Qatar -0.167305 -0.000297 0.032662 -0.167008 -0.231301 -0.104403 ***

Saudi Arabia 0.095400 0.000038 0.028796 0.095363 0.041938 0.146751 **

Senegal -0.026551 -0.002133 0.041233 -0.024418 -0.102293 0.060087

Seychelles 0.059814 -0.000103 0.030431 0.059917 0.003614 0.116411 *

Sierra Leone -0.013541 -0.000974 0.034817 -0.012567 -0.080992 0.052679

Solomon Is. 0.207664 -0.000140 0.028443 0.207805 0.151200 0.262186 ***

Somalia 0.027535 0.000562 0.031468 0.026974 -0.037385 0.086725

South Africa -0.101034 -0.001101 0.033849 -0.099933 -0.168666 -0.035965 ***

Sri Lanka 0.104160 0.000181 0.029891 0.103979 0.041846 0.160061 ***

St Kitts Nev -0.234858 -0.000634 0.047433 -0.234224 -0.329312 -0.145645 ***

St Vincent -0.168683 -0.001592 0.048173 -0.167091 -0.264449 -0.077142 ***

Sudan -0.169432 -0.001377 0.039709 -0.168055 -0.241691 -0.091770 ***

Suriname -0.333470 0.000502 0.037848 -0.333972 -0.409713 -0.262480 ***

Syria 0.027407 0.000225 0.032526 0.027182 -0.034882 0.091580

Taiwan 0.191220 -0.000220 0.028702 0.191440 0.134732 0.246658 ***

Tanzania 0.080448 0.000676 0.031023 0.079772 0.020682 0.139999 *

Thailand 0.041580 -0.001643 0.037028 0.043223 -0.035314 0.112281

Togo -0.105888 0.000779 0.036644 -0.106667 -0.184449 -0.034731 ***

Tonga 0.050094 -0.001446 0.032348 0.051540 -0.012241 0.116359

Trinidad Tob -0.321160 0.000475 0.041848 -0.321635 -0.403549 -0.239433 ***

Tunisia 0.105888 0.000079 0.030083 0.105808 0.044883 0.160108 ***

Turkey -0.120176 0.000070 0.037242 -0.120245 -0.191687 -0.052772 ***

Tuvalu -0.463017 -0.001617 0.041527 -0.461400 -0.544343 -0.382353 ***

Untd Arab Em 0.064365 0.000537 0.032609 0.063828 0.000679 0.127611 *

USA 0.136819 -0.000024 0.028631 0.136842 0.078772 0.189870 ***

Vanuatu 0.122210 -0.000804 0.031429 0.123014 0.062708 0.183547 ***

Venezuela 0.100467 0.000376 0.031261 0.100090 0.038647 0.160611 **

Viet Nam -0.004544 -0.000114 0.032666 -0.004430 -0.066711 0.060317

Yemen -0.026671 0.001013 0.036288 -0.027684 -0.098830 0.044037
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such as sea surface temperature warming (Kuchinke et al., 2014),

which has affected reef fishes’ quantity and size (McCubbin et al.,

2017). Nowadays, Tuvalu’s fishers must travel further away from

the islands surrounding the lagoon to target pelagic fish resulting in

increased costs (McCubbin et al., 2017). We also note the global

trend in fuel index increases (Figure 3E) in more recent times (the

late 1990s to 2014), and the declines in fish price and efficiency,

potentially driven by the accelerated expansion of the regional tuna

fisheries (large pelagics) (Tidd et al., 2016). With the increase in

costs in recent times (Figure 3A), competitive pricing of imported

foods and the number of industrial tuna vessels offloading fish on

the local markets may affect artisanal fisher efficiency. Artisanal

vessels may be forced, due to internally driven changes in market

forces, to alter their production strategies (James et al., 2018) (recent

excess capacity in Oceania of ~ 40%; Figure 3E), e.g., exit fisheries,

use for other purposes such as tourism, tie up or be sold and operate

elsewhere. This also comes with its issues as it could lead to social

and economic consequences to coastal communities that rely on

fleets for employment (James et al., 2018).

The North American/Europe region has benefitted from SST

and technical efficiency leading to increase fisheries, particularly

since the 1990s when fuel costs were low and prices on the increase

coupled with recent increases in the SST (see the general regional

trends provided in Figures 3C, D). The artisanal fleet in these

regions also benefits from the low cost to harvest shellfish

(crustaceans) (Figure 1D). However, gradual SST warming is
Frontiers in Marine Science
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threatening shellfish abundance specifically in the Caribbean (Defeo

and Castilla, 2012). Furthermore, with increasing climate variability

and weather extremes in these regions (e.g., the Caribbean), changes

to the growth and productivity of the fisheries are also anticipated

according to their physiological thermal tolerances (Smale et al.,

2019). These more extreme conditions expected in the future could

result in distributional changes of species that would subsequently

affect the allocation of catches between country EEZs (Pinsky et al.,

2018). Furthermore, climate induced change may lead to changes in

supply/demand and subsequently market prices (e.g., a negative

environmental impact in stock biomass is likely to decrease supply

and an increase fish market prices), decreasing quantity demand.

Future studies incorporating other types of climate impacts not

explored here, such as weather extreme events (e.g., heatwaves,

extreme winds, storm surges), may offer further insights as these

events may increase the risk on at-sea operations and potentially

have a negative effect on the technical efficiency of the fishing fleets

(Ojea et al., 2023). Although with improved education (e.g on-

board safety training), communication (e.g. VHF, mobile phones),

navigation (e.g. GPS, compasses, depth-finders) and physical

changes to the fleet units, one could expect increases in technical

efficiency overtime. The differences between the weather events

affecting capacity utilization and also the technical efficiency could

potentially be estimated via two different DEA models, and thus the

ratio of the two models results in an unbiased estimate of capacity

utilization (see Kirkley and Squires, 2003).
A B

D E F

C

FIGURE 1

Maximum global elasticities by region. A 1% change in the exogenous predictor’s leads to a percentage change in technical efficiency (y-axis) (black
standard error bars). Each panel represent a different region: (A–F) Africa, Asia, Europe, North America, Oceania, and South America, respectively.
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4.2 Economic effects influencing efficiency

One of the biggest causes of excess capacities is government

grants or subsidies with many of the Asian fleets largely subsidized

for fuel. For example, the government has subsidized the Chinese

fleet, which has over one million vessels, for up to 6.5 billion US

dollars in 2013, of which ~94% was in the form of fuel (Mallory,
Frontiers in Marine Science 11
2016). However, 4 million tonnes of China domestic catch are low-

value fish for non-human consumption that are used primarily as

fish feed for the expanding aquaculture industry (Greenpeace,

2017). Our analysis shows a positive coefficient for fuel price and

a negative coefficient for marine fish price, which is non-intuitive in

terms of the effects on technical efficiency. Although an increase in

fuel prices would be expected to induce fishers to adapt their fishing
A B

D

E F

G H

C

FIGURE 2

Country specific elasticities. Global maps providing the country-level marginal effect elasticities (a 1% change) calculated on the continuous
predictor variables including: (A) fuel price, (B) SST, (C) crustaceans, (D) large pelagic, (E) mixed pelagic, (F) marine fishes, (G) molluscs, and (H)
diadromous fishes. Colors represent percentage change in technical efficiency.
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strategies and change their technologies. While a decrease in fuel

price may attract more entrants to the fishery and eventually lead to

excess capacity and low efficiency. Since fishing technologies and

skills develop over time, fishing can become more productive and

efficient even with falling stock biomasses, the negative effect of the

fuel price increases is compensated by the positive effect of

technological creep, with a potentially positive net effect on catch

per unit effort (Tidd et al., 2016). The negative global effect for
Frontiers in Marine Science 12
marine fish catch (a broad classification aggregating many species)

may be due to supply and demand, i.e., excessive supply can lead to

a negative effect on the price of fish. Usually, a higher price will lead

to increased production. However, an elastic price effect of demand

may also occur, whereby a moderate increase in technical efficiency

will result in a decrease in price (Chu and Kompas, 2014). High

prices due to demand caused by falling biomasses, leading to the

rarity of resources, can lead in turn to an increase in fishing effort
A

B

D

E

F

C

FIGURE 3

Time series for the predictor variables over the study period by region for (A) Africa, (B) Asia, (C) Europe, (D) North America, (E) Oceania, and (F)
South America. Envelopes around the lines are ±1 standard errors for mean technical efficiency (orange lines), the scaled composite nominal price
index by country (blue lines), and the mean SST (green lines). The solid grey lines correspond to the scaled nominal fuel price index. Nominal fuel
price index scaled, (solid grey line). Mean SST (green line with standard errors).
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and a large excess of capacity, especially in regions where regulation

is lacking e.g., in most artisanal fisheries. We especially note the

price increase effect for the iconic diadromous fish group (e.g.,

salmonids and eels) which are globally highly valued, and some are

threatened by overfishing, habitat loss, pollution, and migration

(Wilson and Veneranta, 2019).

There has been a general decline or constant stability in global

finfish catches since the 1990s and a rise in invertebrate catches, i.e.,

shellfish (FAO, 2020). New markets for invertebrates have increased

in response to the decline in finfish catches and high prices

(Anderson et al., 2011). Furthermore, in 2000-2004, the largest of

all the catches of invertebrates were found in the Yellow Sea and the

East China Sea off the eastern coast of China (Anderson et al., 2011).

Although all elasticities calculated here were relatively small

percentage changes, the scale of the effects can be extremely large.

For example, China landed ~9 million tonnes of seafood within its

EEZ in 2010 (Pauly and Le Manach, 2015). Therefore, the overall

impact of a positive or negative 1% shock on this scale in China could

have dramatic effects on their seafood production, and thus could

translate into not only a food security issue, but also in terms of

economic security for maintaining jobs livelihoods and wellbeing.
4.3 Conclusions

This paper presents an initial examination of the global artisanal

fleet to improve our understanding of the factors that have influenced

fishing efficiency concerning resource users, market dynamics and

climate change. Teasing apart these cause and effects parameters is a

major challenge for scientists and any management policy. To address

the problem of excess capacity in global fishing fleets we would need to

understand the effects of these economic and environmental factors,

especially for many of the world’s poorest countries that rely offisheries

for nutrition and food security.

A major challenge is how different artisanal fishing systems

respond to dynamic global environmental and societal change,

including economic cycles affecting fishing costs and demand,

and ongoing global warming. While studies mostly focus on

catches and profits, this analysis goes one step further to

understand how the technical efficiency of the fisheries can be

compromised or not by these global changes. Our results have

demonstrated that economic (prices, costs) and environmental (SST

anomalies) significantly explain past changes in global artisanal

fleets technical efficiency. These effects vary regionally. Where some

regions increase efficiency with higher prices of different species

groups and with the SST anomalies, these same factors can decrease

technical efficiency in other regions. The global artisanal fleet was

estimated to account for over 34 million tonnes of global marine

catches in 2012 (World Bank, 2012), although more recent

estimates put this figure at 37 million tonnes (Infofish report

accessed April 29, 2022). Therefore, any significant percentage

marginal change in the exogenous dynamics could potentially
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have a pronounced effect on the efficiency of these fishers (see

Tidd et al., 2022).

To extend these analyses, studies can further explore the

mechanisms underlying such trends in order to help the artisanal

fishing sector to face the forthcoming changes (and crises) of the

global economy and climate extreme events in the sea.
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Cunningham, S., and Gréboval, D. (2001). Managing fishing capacity: A review of
policy and technical issues. FAO fisheries technical paper no. 409 (Rome: FAO), 60.

Defeo, O., and Castilla, J. C. (2012). Governance and governability of coastal
shellfisheries in Latin America and the Caribbean: multi–scale emerging models and
effects of globalization and climate change. Curr. Opin. Environ. Sustainability 4, 344–
350. doi: 10.1016/j.cosust.2012.05.002

Ducharme-Barth, N. D., Grüss, A., Vincent, M. T., Kiyofuji, H., Aoki, Y., Pilling, G.,
et al. (2022). Impacts of fisheries-dependent spatial sampling patterns on catch-per-
unit-effort standardisation: A simulation study and fishery application. Fisheries Res.
246, 106169. doi: 10.1016/j.fishres.2021.106169

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in
action. Rome. doi: 10.4060/ca9229en

Farrell, M. J. (1957). The measurement of productive efficiency. J. R. Stat. Soc. 120,
253–281. doi: 10.2307/2343100

Flanders Marine Institute (2014) Union of the ESRI country shapefile and the
exclusive economic zones (version 2). Available at: http://www.marineregions.org/.

Free, C. M., Mangin, T., Molinos, J. G., Ojea, E., Burden, M., Costello, C., et al. (2020).
Realistic fisheries management reforms could mitigate the impacts of climate change in most
countries. PLoS One 15 (3), e0224347. doi: 10.1371/journal.pone.0224347

Gaines, S. D., Costello, C., Owashi, B., Mangin, T., Bone, J., Molinos, J. G., et al.
(2018). Improved fisheries management could offset many negative effects of climate
change. Sci. Adv. 4, eaao1378. doi: 10.1126/sciadv.aao1378

Garcia, S. M., and Grainger, R. J. (2005). Gloom and doom? the future of marine
capture fisheries. Philos. Trans. R Soc. Lond. B Biol. Sci. 360, 21–4615713587.
doi: 10.1098/rstb.2004.1580

Garcia, S. M., and Rosenberg, A. A. (2010). Food security and marine capture
fisheries: characteristics, trends, drivers and future perspectives. philosophical
Frontiers in Marine Science 14
transactions of the royal society of London. Ser. B Biol. Sci. 365 (1554), 2869–2880.
doi: 10.1098/rstb.2010.0171

Golden, C., Allison, E. H., Cheung, W. W., Dey, M. M., Halpern, B. S., McCauley, D.
J., et al. (2016). Fall in fish catch threatens human health. Nature 534, 317–320.
doi: 10.1038/534317a

Greenpeace China (2017). Status of china’s marine trash fish and its revelatory
implications for the sustainable development of china’s marine fisheries industry
(Beijing, China). Available at: https://www.greenpeace.org/eastasia/press/1163/
almost-one-third-of-chinas-annual-fisheries-catch-is-trash-fish-greenpeace/.

Hanich, Q., Wabnitz, C. C., Ota, Y., Amos, M., Donato–Hunt, C., and Hunt, A.
(2018). Small– scale fisheries under climate change in the pacific islands region. Mar.
Policy 88, 279–284. doi: 10.1016/j.marpol.2017.11.011

Herrero, I., and Pascoe, S. (2003). Value versus volume in the catch of the Spanish
south–Atlantic trawl fishery. J. Agric. Econ 54 (2), 325–341. doi: 10.1111/j.1477-
9552.2003.tb00066.x

Hilborn, R., and Walters, C. J. (1992). Quantitative fisheries stock assessment:
choice, dynamics and uncertainty. Chapman Hall New York, 570. doi: 10.1007/978-1-
4615-3598-0

Hoff, A. (2007). Second stage DEA: Comparison of approaches for modelling the
DEA score. Eur. J. Operational Res. 181, 425–435. doi: 10.1016/j.ejor.2006.05.019
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