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1 Introduction

The two-Higgs-doublet model (2HDM) is one of the simplest extensions of the Standard
Model (SM) of particle physics. It was introduced in 1973 by T.D. Lee [1] as a means
to obtain an extra source, other than the CKM matrix, of matter-antimatter asymmetry,
via the spontaneous breaking of the CP symmetry by vacuum expectation values (vevs)
of Higgs doublets. To achieve this, the field content of the scalar sector of the model is
doubled relative to the SM — instead of a single SU(2) doublet, the 2HDM has two. The
model has a rich phenomenology, with an enlarged scalar spectrum compared to that of
the SM: two charged spin-0 particles and three neutral ones. Certain versions of the model
can provide dark matter candidates, or change the LHC-discovered Higgs boson production
and decay rates. For a review, see [2].

Early on it was recognised that the fact that both scalar doublets could couple in-
dependently to fermions would induce scalar-mediated tree-level flavour-changing neutral
currents (FCNC). Since these interactions are severely constrained from numerous exper-
imental observations in the quark and lepton sectors, they must either be fine-tuned via
judicious choices of Yukawa coupling values, suppressed by heavy-enough flavour-changing
Higgs bosons, or set to zero naturally through the imposition of a global symmetry on
the model. The first such symmetry proposed was a Z2 one, in a paper by Glashow and
Weinberg [3], it forces a single scalar doublet to couple to fermions of the same electric
charge, at the same time simplifying the 2HDM scalar potential. The global U(1) Peccei-
Quinn symmetry [4] also eliminates tree-level FCNC, although leading to a different scalar
potential. Said symmetries are imposed on the whole Lagrangian, but it is also of interest
to find out what are the possible symmetries of the scalar potential alone. This question
is made more complex by the fact that the two doublets of the 2HDM carry the same
quantum numbers, therefore any linear combination thereof which preserves their kinetic
terms is as physically acceptable as any other. This basis freedom can make it difficult to
recognize whether a given 2HDM scalar sector has a specific symmetry, since different field
bases will imply different symmetry-imposed relations among parameters of the potential.

Using a bilinear formalism [5–11], Ivanov was able to show [6, 9] that there are only six
different global symmetries one can impose upon the SU(2)×U(1) 2HDM scalar potential.
Out of these six, three are so-called Higgs family symmetries — unitary transformations in
which the doublets Φ1 and Φ2 mix among themselves, two of which are the aforementioned
Z2 and U(1) symmetries, the third one an SO(3) symmetry. The remaining three are
generalized CP symmetries, called CP1, CP2 and CP3, anti-unitary transformations which
relate the doublets and their complex conjugates. Ivanov proved this result by analysing
the basis-invariant eigenvalues of a matrix built from quartic couplings. Using a slightly
different bilinear formalism, a more complete set of basis-independent conditions for the
presence of global symmetries in the 2HDMwas explored in ref. [12]. These were obtained in
terms of properties of two vectors, together with the eigenvalues and eigenvectors of a 3×3
matrix, constructed from the parameters of the potential. This procedure, however, is not
fully satisfactory, since the most general 2HDM potential contains redundant parameters:
of a total of 14 parameters, only 11 are necessary for a parametrization of physics contained
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in the scalar sector of the model [13]. Indeed, a set P, of 11 physical parameters has been
proposed [14–17], consisting of scalar masses, couplings of scalars to gauge bosons and scalar
trilinear and quartic interaction couplings — to parameterize the 2HDM scalar potential.
Conditions for CP conservation, for instance, were obtained using this formalism.

Recently, we rephrased the symmetry conditions of [12] in terms of the set P of phys-
ical parameters [18]. Each symmetry — in decreasing number of potential parameters,
CP1, Z2, U(1), CP2, CP3 and SO(3) — implies restrictions on the number of scalar sector
parameters, by imposing relationships among them, or eliminating some altogether. This,
in terms of the physical parameters in P, translates as relationships among physical pa-
rameters, i.e, observables. However, unlike the relationships among potential parameters
of [9] or [12], the parameters in P are physical and correspond to quantities which appear
after spontaneous symmetry breaking, e.g., scalar masses. Such symmetry classification
must take into account the vacuum state of the model, and whether that vacuum preserves
the symmetry under consideration.

As a simple example, consider a model with a CP1-symmetric potential. For certain
values of its free parameters, the model may have a vacuum which preserves CP1, but in
other regions of parameter space the vacuum may spontaneously break that symmetry.1
In the former vacuum, two of the neutral scalars Hi couple to gauge bosons via triple ver-
tices of the form HiV V , the third does not; in the latter vacuum, all three neutral scalars
have such couplings. The work of [18] considered all possible vacua present for each of the
six exact symmetries, and listed the sets of relations between physical observables of P for
those vacua. Along the way it was discovered that many of the symmetry conditions of [12]
amounted to tree-level fine tunings of parameters, which are not preserved under renormal-
ization — for example, some conditions of [12] implied tree-level mass degeneracies which
were not preserved under radiative corrections, and as such those symmetry conditions
amounted to tree-level accidents — if a symmetry is present in the potential and imposes
relations among parameters, those relations ought to be preserved under renormalization.

Our recent work [18] was however limited to symmetries of the potential as a whole
(allowing for spontaneous breaking, but not for soft breaking). There is, on the other
hand, considerable interest in softly-broken 2HDM symmetries. For instance, models with
an exact Z2 symmetry, spontaneously broken by the vacuum, predict an upper bound of
about ∼ 800GeV on masses of the non-SM-like scalars, due to constraints from unitarity.
Hence such models cannot have a decoupling limit and have a considerably harder time
fitting existing experimental data from the LHC. The introduction of a dimension-2 term in
the potential, which softly breaks the Z2 symmetry (therefore preserving all Z2 conditions
in the quartic couplings to all orders of perturbation theory) solves this issue, allowing
the extra scalars to have masses as high as necessary to accommodate all current LHC
experimental results.

In this work we formulate and investigate tree-level constraints implied by softly broken
symmetries of the 2HDM, i.e., when dim-4 interactions (quartic terms) are invariant while

1However, no simultaneous CP1-preserving/ CP1-breaking minima may coexist in the potential for the
same set of parameters [19, 20].
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dim-2 (quadratic) are not. Note that, in general, separation between dim-4 and the lower-
dimensional Lagrangian is not invariant with respect to basis transformations of the fields.
For instance, in a case of softly broken Z2 symmetry, λ6 = λ7 = 0 and m2

12 6= 0 in a
certain basis. One can, however, perform a change of basis and rotate into a basis in which
m2

12 = 0. In this new basis, the quartic couplings will change, and in particular λ6,7 will
become non-zero. It is then natural to question if the requirement of invariant quartic and
modified quadratic terms will have the same physical consequences when formulated in
those two different bases. Therefore, a natural question of the physical significance of soft
symmetry breaking arises. A straightforward strategy that might be used to clarify this
issue is to adopt sufficient and necessary conditions for soft breaking in a general basis.
Since transformation rules of potential parameters for 2HDM are known, see e.g., [21],
one could express the conditions in terms of parameters in another basis and this way
explicitly verify if the conditions have the same form in terms of redefined parameters.
This is, however, not the procedure we have adopted.

Our strategy, altogether more ambitious, is to attempt to express the conditions for soft
symmetry breaking in terms of invariant (with respect to basis transformations) observable
quantities like tree-level masses and appropriate tree-level couplings. If this procedure were
to be successful, not only would a physical meaning of soft symmetry breaking be identified,
but one could also formulate a strategy to test the breaking experimentally. This is the
strategy we are opting for here. Therefore the main goal of this work is to express the soft-
symmetry breaking conditions in terms of physical parameters/observables like masses and
couplings. Having masses and couplings measured, one can then relatively easily test
the breaking of a given symmetry experimentally. As we will see in next sections, the
constraints are somewhat complicated when expressed in terms of the physical parameters.
However, the result is unique, i.e., there is no alternative (e.g., simpler) form of those
constraints for a given set of observable input parameters.

In order to gain understanding and develop some intuition for the constraints, we will
also formulate the results in the alignment limit, defined by requiring that couplings of the
SM-like Higgs boson to be exactly as predicted by the SM. Applying this constraint, the
symmetry conditions simplify, thus offering a chance for a slightly deeper understanding of
the model.

This work is an extension of the study presented in [18]. There, we only studied
the exact symmetries of the potential. In this work we allow for soft breaking of the six
symmetries. Besides purely theoretical curiosity explained above, our motivation for this
study is the considerable interest for soft symmetry breaking in search for an optimal scalar
sector of the electroweak theory. As before, our intent is to identify relationships among
physical parameters within each model with a softly-broken symmetry. We will only deal
with the scalar and gauge sector of the theory — the symmetries considered could of course
be extended to the fermion sector, but we will not deal with that issue here. In fact, it
is known that three of these symmetries (CP1, Z2 and U(1)) have phenomenologically
valid fermionic extensions, one (CP3) can account for quark and charged lepton masses
but seems numerically unable to reproduce the CKM matrix [22] and another (CP2) yields
one generation of massless charged fermions [22–24]. However, it does not seem to be
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impossible that all of them have hitherto unknown valid fermionic extensions (for CP3, for
instance, a 2HDM with a fermionic sector with vector-like quarks is a phenomenologically
valid model [25]).

This paper is organized as follows. In section 2 we define the model, together with
our notation. Masses and couplings are presented, together with the employed physical
parameter set. In section 3 we present conditions for the softly broken symmetries and
relate them to potential parameters and the vacuum, in terms of physical parameters. In
section 4 we present a brief summary. Some technical material on quartic and quadratic
invariants is collected in appendices A and B. In appendix C we explore how these softly
broken symmetries look like in the Alignment Limit (AL). Finally, RG-unstable cases
encountered are listed in appendix D.

2 The model

We start out by parameterizing the scalar potential of the generic (CP-violating) 2HDM
in the common fashion:

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1) + 1
2
[
λ5(Φ†1Φ2)2 + H.c.

]
+
{[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
(Φ†1Φ2) + H.c.

}
. (2.1)

The vacuum will be parameterized as

〈Φ1〉 = 1√
2

(
0
v1

)
, 〈Φ2〉 = eiξ√

2

(
0
v2

)
. (2.2)

All parameters in (2.1) are real, except for m2
12, λ5, λ6 and λ7, which in general could be

complex. Counting real and imaginary parts of each coupling, the potential of eq. (2.1)
would seem to have 14 parameters, but in fact that number is reduced to 11 by the basis
freedom the potential has. In fact, since both doublets have identical quantum numbers,
any linear combination of them which preserves the Φ1,2 kinetic terms is as acceptable as
any other, and this allows some simplification of (2.1).

In order to see this explicitly, let us define Φ̄i = UijΦj , where U is a generic U(2) matrix.
If we express the potential in terms of {Φ̄1 , Φ̄2} instead of {Φ1 , Φ2}, this is referred to as
a change of basis. Note that the parameters of the potential will in general change under
a change of basis. This is explicitly given in, for instance, eqs. (5)–(15) of [21]. Basis
changes may therefore be used to express the potential in simpler terms, since sometimes
it is possible to altogether eliminate some of its parameters. For instance, it is easy to
find a U(2) matrix such that the terms of the 2HDM potential which are quadratic in
the doublets are “diagonalised” — i.e., we go to a basis where the new value of the m2

12
coefficient is zero, thus eliminating two parameters out of the initial 14. In the new basis
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the quartic couplings λ5, λ6 and λ7 will in general be complex, with unrelated phases —
but since in this basis m2

12 = 0, it is always possible to rephase one of the doublets so
as to eliminate one of the complex phases of those three quartic couplings. For instance,
if θ5 = arg(λ5), the rephasing Φ̄2 = eiθ5/2Φ2 will render, in the new basis, λ5 real, thus
eliminating one more parameter from the potential, leaving us with 11 independent real
parameters.

2.1 The physical parameter set

The most general 2HDM thus needs 11 independent real parameters to fully characterize
it. Clearly, physics cannot depend on an arbitrary choice of basis for the Higgs doublets.
All measurable quantities must be basis independent, thereby leading to the study of basis
invariant quantities. Of course, the scalar masses are basis invariant. The same holds
for most of the physical couplings, though couplings involving charged fields may have
arbitrary phases, and are thus pseudo-invariants [14]. In recent works [14–16] a set of 11
physical parameters was proposed to describe the 2HDM. That set includes, to begin with,
the four masses of the scalar particles of the model — three neutral states and a charged
one. Those masses can obviously be related to the potential parameters in any basis, but
for some applications it is simpler to work in the Higgs basis [26, 27]. To reach a Higgs
basis we perform a field rotation such that only one doublet has a non-vanishing, real
and positive vacuum expectation value (VEV), whereas the other doublet has a vanishing
VEV,2 i.e.

〈Φ1〉 = 1√
2

(
0
v

)
, 〈Φ2〉 =

(
0
0

)
, (2.3)

with v = 246 GeV. We must make sure that the vacuum corresponds to a minimum of the
potential, and by demanding that the derivatives of the potential with respect to the fields
should vanish we end up with the stationary-point equations3

m2
11 = v2λ1, m2

12 = v2λ6. (2.4)

We are assuming that a minimum of the potential can be found — this is ensured by re-
quiring that the potential be bounded from below (BFB), so that no field direction exists for
which the potential tends to minus infinity. These BFB conditions [28] impose constraints
on the quartic couplings, such as demanding that λ1 > 0 and λ2 > 0. It has been shown,
for the most general 2HDM potential, that BFB conditions are basis-invariant — in the
sense that, if a potential is BFB in one basis, it will be so in any other [6, 9]. We are also
assuming that this vacuum is the global minimum of the model, which in some cases might

2The Higgs basis is not unique, as it is still possible to perform a basis change consisting of a U(1)
rotation on Φ2, staying within the Higgs basis.

3Demanding that the vacuum should correspond to a stationary point does not guarantee that it is a
minimum of the potential. One must also demand that the squared masses of the physical scalars are positive
in order for the potential to have the curvature of a minimum point. In the present study we shall also
encounter situations where some physical scalar has vanishing mass. Then we shall relax the requirement
of positive squared masses to just demanding that the physical scalars have non-negative squared masses.
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not necessarily be true — for instance, for the softly broken Z2 potential, there is the pos-
sibility of coexistence of two minima which both spontaneously break Z2 [9, 29, 30]. This
feature, however, occurs only for very constrained regions of the parameter space. And
even if the minima we choose in the current work were local and not global, that would
have no impact on the relations between physical parameters we will establish. We should
also mention that the globality of the vacuum is of course a basis-invariant statement, since
it concerns the value of the potential, which is basis-invariant by definition.

In the Higgs basis we may parameterize the two doublets as

Φ1 =
(

G+

(v + η1 + iG0)/
√

2

)
, Φ2 =

(
H+

(η2 + iη3)/
√

2

)
. (2.5)

The great advantage of the Higgs basis is the fact that the would-be Goldstone bosons are
all contained in the first doublet, and the charged field is automatically identified as the
upper component of the second doublet. Indeed, we identify G0 and G± as the massless
would-be Goldstone fields, whereas H± are the massive charged scalars. The neutral fields
ηi are not mass eigenstates, we relate them to the mass eigenstate fields Hi by an orthogonal
rotation matrix R as H1

H2
H3

 = R

η1
η2
η3

 . (2.6)

In general, the H1,2,3 neutral mass eigenstates have no definite CP properties. This would
depend on the type of vacuum adopted — if it preserves CP, two of these states will be
CP even, the third CP odd; but if there is no CP conservation in the model all three states
will have undefined CP properties. As for the charged sector, the masses of the charged
scalars H± can be read directly off from the corresponding bilinear terms in the potential,
and are found, in the Higgs basis, to be given by

M2
H± = −m

2
22

2 + v2

2 λ3. (2.7)

As for the neutral sector, the squared mass matrix is (in the Higgs basis) given by

M2 = v2


λ1 Reλ6 −Imλ6

Reλ6
1
2(λ3 + λ4 + Reλ5 −

m2
22
v2 ) −1

2 Imλ5

−Imλ6 −1
2 Imλ5

1
2(λ3 + λ4 − Reλ5 −

m2
22
v2 )

 . (2.8)

Then, by using (2.6) we get the masses of the neutral scalars from the diagonalization of
the mass-squared matrix,M2,

diag(M2
1 ,M

2
2 ,M

2
3 ) = RM2RT. (2.9)

Thus the four masses — the charged one from eq. (2.7) and the three neutral ones
from eq. (2.9) — are the first four of the physical parameter set P. Next we consider three
parameters which govern the interactions of the neutral scalars with the electroweak gauge
bosons. To study such interactions, we must consider the kinetic term of the Lagrangian,

Lk = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2), (2.10)

– 6 –



J
H
E
P
0
1
(
2
0
2
3
)
1
4
3

where Dµ = ∂µ+ ig
2 σiW

µ
i + ig

′

2 B
µ, and the gauge mass eigenstates are related to the gauge

fields by

Wµ
1 = 1√

2
(W+µ +W−µ), W µ

2 = i√
2

(W+µ −W−µ), (2.11a)

Wµ
3 = cos θWZ

µ + sin θWA
µ, Bµ = − sin θWZ

µ + cos θWA
µ. (2.11b)

The couplings between gauge fields and neutral scalars can now be read off from the kinetic
term,

Coefficient
(
Lk, Zµ

[
Hj
←→
∂µHi

])
= g

2v cos θW
εijkek, (2.12a)

Coefficient (Lk, HiZ
µZν) = g2

4 cos2 θW
ei gµν , (2.12b)

Coefficient
(
Lk, HiW

+µW−ν
)

= g2

2 ei gµν . (2.12c)

Notice how all interactions between the Hi and the electroweak gauge bosons involve the
quantities ei — if H1 is the SM-like Higgs boson, for instance, e1 would be related to the
Higgs-gauge bosons coupling modifier κV used by the LHC experimental collaborations
(see for instance [31]) by κV = e1/v. These quantities are given, in the Higgs basis, by

ei ≡ vRi1. (2.13)

In a general basis, with two VEVs for the doublets and a different rotation matrix R, these
coefficients would be given by ei = v1Ri1 + v2Ri2, and are found to be explicitly invariant
under a change of basis [17]. The ei coefficients satisfy a “sum rule”

e2
1 + e2

2 + e2
3 = v2, (2.14)

which is a consequence of the unitarity of the rotation matrix.
Finally, the physical set P is completed with three trilinear scalar couplings and a

quartic one. The three trilinear HiH
+H− couplings and the quadrilinear H+H+H−H−

coupling are chosen, denoted qi and q, respectively. In the Higgs basis they are

qi ≡ Coefficient(V,HiH
+H−)

= v(Ri1λ3 +Ri2Reλ7 −Ri3Imλ7), (2.15)
q ≡ Coefficient(V,H+H+H−H−)

= 1
2λ2, (2.16)

where the Rij are elements of the rotation matrix R of (2.9). In a general basis one can
show explicitly that these couplings are all basis independent quantities [17]. If H1 is the
SM-like Higgs boson, for instance, q1 would contribute to its diphoton width, since in the
2HDM that process involves a charged Higgs triangle diagram and thus the H1H

+H−

trilinear coupling.
To summarize, then, the physical set P is composed of the mass of the charged scalar;

the masses of the three neutral scalars; the coefficients ei of the gauge couplings of the
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neutral scalars; the trilinear couplings qi between neutral and charged scalars, HiH
+H−;

and the quartic charged coupling q, corresponding to the vertex H+H+H−H−, so that4

P ≡ {M2
H± ,M

2
1 ,M

2
2 ,M

2
3 , e1, e2, e3, q1, q2, q3, q}. (2.17)

These are all tree-level masses and couplings. All physical observables of the scalar sector
are expressible in terms of these 11 parameters [14–16].

2.2 2HDM symmetries

Considering the 2HDM scalar potential invariant under the gauge symmetry SU(2)L ×
U(1)Y , there are six possible global symmetries that one can impose on the model, via
unitary (Higgs family symmetries) or anti-unitary (generalized CP symmetries) transfor-
mations among the two doublets.5 The symmetry transformations corresponding to each
symmetry can themselves have different forms in different bases and still yield the same
physical models, but there is a “canonical” form for each. The first symmetry, which causes
the least amount of constraints on the model, is CP1, corresponding to the “standard” CP
transformation:

• CP1:
Φ1 → Φ?

1 , Φ2 → Φ?
2. (2.18)

This yields a potential which, in the basis where the symmetry transformation is as above,
has all couplings real, and 9 independent real parameters. Next we have the Z2 symmetry,
where one of the doublets is transformed to change sign, thereby eliminating terms with
an odd number of that doublet field:

• Z2:
Φ1 → Φ1 , Φ2 → −Φ2 . (2.19)

This yields a potential with 7 independent real parameters, all of them, without loss of
generality, real. The Peccei-Quinn U(1) symmetry, corresponding to the doublet transfor-
mation

• U(1):
Φ1 → e−iθΦ1 , Φ2 → eiθΦ2 , (2.20)

where θ is an arbitrary angle, further reduces the number of parameters to 6, eliminating
a quartic λ5 coupling. We then have the CP2 symmetry, where the fields transform as

• CP2:
Φ1 → Φ?

2 , Φ2 → −Φ?
1, (2.21)

4This set is not unique, see [32]. Note that the couplings ei and qi have dimension of mass.
5If one disregards the hypercharge group U(1) and Yukawa couplings, the list of possible 2HDM sym-

metries is larger, and may be found in [33, 34]. We will not be considering those extra symmetries.
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Symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7 N

CP1 real real real real 9
Z2 0 0 0 7
U(1) 0 0 0 0 6
CP2 m2

11 0 λ1 real 0 0 5
CP3 m2

11 0 λ1 λ1 − λ3 − λ4 0 0 4
SO(3) m2

11 0 λ1 λ1 − λ3 0 0 0 3

Table 1. Constraints on the 2HDM scalar potential parameters due to each of the six symmetries,
imposed using their “canonical” forms (except for CP2). In the final column we show the total
number N of independent real parameters for each symmetry-constrained scalar potential.

forcing several quadratic and quartic parameters to be related to one another and others to
be zero, yielding a total of 5 independent real parameters. The phenomenology yielded by
this symmetry was thoroughly studied in a series of papers by Maniatis, Nachtmann and
collaborators [23, 24]. In the scalar sector, CP2 is a special example of the CP3 symmetry
(much like Z2 is a special case of U(1)), where the fields transform as

• CP3:

Φi → XijΦ?
j , with X =

(
cos θ sin θ
− sin θ cos θ

)
, (2.22)

and θ is an arbitrary angle between 0 and π/2 (the CP2 transformation corresponds to
θ = π/2, and the CP1 transformation corresponds to θ = 0). This potential has only 4
independent real parameters and the CP3 symmetry has an interesting extension to the
fermionic sector [22]. Finally, the most symmetry-constrained potential is the one with an
SO(3) symmetry, with field transformations given by

• SO(3):
Φi → UijΦj , (2.23)

where U is a generic unitary 2 × 2 matrix. The SO(3) symmetry gives a potential with
only 3 independent real parameters.

In table 1 we summarise the constraints on the parameters of the potential of eq. (2.1) of
the “canonical” form of these symmetry transformations6 — in other bases the symmetries
would have different field transformations and correspond to different relationships between
parameters, with no impact on the physics predicted by each model.

In ref. [18] we identified the impact of each of these symmetries in terms of relations
among the physical parameters (2.17). We now wish to study in detail the possibility that
these symmetries are not exact, but rather softly broken by dimension-2 terms.

6Except for the CP2 symmetry, which we present in a simpler basis proposed in [13].
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3 Softly broken symmetries

A global symmetry is said to be softly broken when the dim-4 part of the Lagrangian satisfies
the symmetry constraints but parts of dim-2 or dim-3 ones do not. The introduction of soft
breaking terms in the model — terms quadratic or cubic in the fields, with coefficients of
dimensions (mass)2 or (mass)1, respectively — does not spoil the renormalizability of the
model [35, 36]. In other words, no new counterterms need to be introduced in a model with
a softly broken symmetry compared to the model with a potential where that symmetry is
intact. In practical terms, this means that we can have perfectly acceptable 2HDMs, from
a renormalization point of view, for which the quartic couplings obey the conditions laid
out in table 1, but the quadratic ones do not. In fact, the most commonly studied version
of the 2HDM is one with a softly broken Z2 symmetry — the symmetry would force the
quadratic term m2

12 to be zero, but this term is reintroduced in the potential, so that a
decoupling limit [37, 38] becomes accessible. Indeed, the soft-breaking coefficient allows the
masses of the extra scalars to be as high as desired, and thus the model can easily comply
with the so-far non-observation of new physics at the LHC.

Another basic example is the Peccei-Quinn model, for which a massless axion appears
if the symmetry is broken by the vacuum. With a soft-breaking term m2

12 in the potential,
however, the axion becomes a massive pseudoscalar, with mass proportional to m2

12. The
Minimal Supersymmetric Model, whose Higgs sector closely resembles the 2HDM, also
possesses a Peccei-Quinn symmetry which must be broken to avoid a massless axion, via
the introduction of a soft-breaking term, the so-called µ-term.

Notice a potential obstacle. Soft breaking of a symmetry requires an invariance of
the dim-4 part of the Lagrangian and a non-trivial variation of the lower-dimensional part.
However, in general, separation between the dim-4 and the lower-dimensional Lagrangian is
not invariant with respect to basis transformations of fields. Therefore, a natural question
of the physical meaning of soft symmetry breaking arises. It will be shown here that
the conditions for soft symmetry breaking within the 2HDM can be formulated in terms
of invariant (therefore, in principle, observable) quantities. Thus, in spite of the above-
mentioned uncertainty, soft symmetry breaking does have a unique physical meaning.

It is therefore of great interest to study the possibility and implications of soft breakings
of the six symmetries of the 2HDM. As we will see, some symmetries may have different
types of soft breaking, by leaving the potential invariant to smaller symmetry groups. We
will now go through the several possibilities for the 2HDM, and determine the relations
among the parameters of the physical set P that they imply.

3.1 Softly broken CP1 symmetry

Demanding CP1 invariance in the quartic part of the potential implies Im λ5 = Imλ6 =
Imλ7 = 0, using the CP1 transformation of eq. (2.18). In the quadratic part this would
render m2

12 real, as seen in table 1. The only possibility of soft breaking, then, is to make
this parameter complex, which then yields the potential for the most general 2HDM with
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a softly broken CP1 symmetry,

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ Reλ5
2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
+
{[

Reλ6(Φ†1Φ1) + Reλ7(Φ†2Φ2)
] [

(Φ†1Φ2) + (Φ†2Φ1)
]}
. (3.1)

The only complex parameter in the potential is therefore m2
12, and there is no basis

redefinition that can eliminate that complex phase. The potential therefore is explicitly CP
violating. However, this potential is not the same as the most general 2HDM — the fact
that a basis exists for which the quartic part of the potential is real distinguishes this case
from the most general 2HDM, for which no such basis exists. In fact, this model possesses
a soft explicit CP violation.7 Also, notice that this model has a total of 10 independent real
parameters, unlike the 11 of the most general 2HDM potential. In fact, we can imagine a
basis rotation which absorbs the complex phase of m2

12, making it reappear in the quartic
part; the new quartic coefficients λ5,6,7 become therefore complex, but their phases are
closely correlated. A further basis rotation can eliminate the remaining real part of m2

12,
changing λi but not ruining the fact that the phases of these couplings are correlated. The
resulting potential has 2 quadratic and 4 quartic real parameters and 3 quartic complex
ones, out of which there is a single independent phase, a total of 10 real parameters.

We shall now discuss the conditions for the quartic part of the 2HDM potential to be
invariant under CP1 in terms of the parameter set P. To recap, there exists a basis in which
the quartic part of the potential is invariant under the CP1 transformation of eq. (2.18),
which implies that Im λ5 = Imλ6 = Imλ7 = 0. If at the same time no such basis exists in
which Imm2

12 = 0, we have softly broken CP1. In [21], the authors constructed four 2HDM
basis-invariant quantities using the parameters of the potential. They proved that if all
four of these invariants were zero the potential would be explicitly CP-conserving. Out
of these four invariants only one, their quantity I6Z , is defined solely in terms of quartic
couplings, the remaining ones involving also the quadratic parameters. The authors of [21]
show, in their section III, that the vanishing of I6Z is a necessary-and-sufficient condition
for the existence of a basis wherein the quartic part of the potential is real (therefore, CP1
invariant), regardless of what happens with the quadratic terms. Using the techniques
described in [17], I6Z can be expressed in terms of the parameter set P. This conversion
was presented in an earlier work [15]. The result is recast here in appendix A.

Still, even with I6Z = 0, the quadratic part of the potential may or may not be
simultaneously CP1 invariant, meaning CP1 may or may not be softly broken. In order
to guarantee a softly broken CP1 symmetry, we must therefore complement the vanishing
of I6Z with conditions preventing the quadratic part of the potential from simultaneously
becoming CP1 invariant. While it is feasible to express such conditions in terms of masses
and couplings, it turns out to be impractical and not so transparent, therefore we choose

7A 2HDM with this property was discussed in ref. [39].
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another approach. In an earlier work [18], we presented conditions for the whole potential
to be CP1 invariant, in terms of P, and labelled them Case A, B, C and D,8

Case A: M1 = M2 = M3.

Case B: Mi = Mj , (ejqi − eiqj) = 0.
Case C: ek = qk = 0.
Case D: ∆m+ = ∆q = 0.

Those cases with a bar above were found to be RG-unstable [18] — they in fact correspond
to a tree-level fine tuning, imposing relations among physical parameters (such as mass
degeneracies) which are not preserved under radiative corrections. We list those here for
completeness, but will, for the remainder of the paper, only focus on RG-stable symmetry
conditions, excluding possible fine tunings. Notice, however, that the two cases A and B
both involve mass degeneracy of neutral scalars. Thus, by requiring that no neutral scalars
be degenerate in mass we are effectively excluding the RG-unstable situations for CP1.
(Note, however, that mass degeneracies are allowed for some of the higher symmetries [18].)
Observe as well that Case C would imply the existence of a neutral scalar Hk which does
not couple to electroweak gauge bosons nor to a pair of charged scalars — i.e., it is a
pseudoscalar.

Thus, in order to guarantee a softly broken CP1 (SOFT-CP1) we simply demand that
there should not exist relations among the physical parameters such that the conditions
defining any of these four CP1-invariant cases apply. Then, the criterion for having a softly
broken CP1 becomes

Case SOFT-CP1: I6Z =0 and none of the four cases of CP1 invariant potential applies,
for any combination of i, j, k.

Note that the condition for invariance of the quartic part of the potential, I6Z = 0, is a
quadratic equation that allows for solutions with respect to ∆m+ in terms of the remaining
parameters. That way the charged Higgs boson mass, for instance, is no longer a free
parameter and could be determined in terms of other parameters. Details are presented
in appendix A. And since the physical set P has 11 parameters, the condition I6Z = 0
reduces that number to 10, thus conforming to the parameter counting we had established
earlier. The expression for I6Z is quite unwieldy, being a homogeneous polynomial of order
6 in the lambdas,9 but it does nonetheless force a relationship among the parameters of P.
From the expression for I6Z given in (A.11) we readily see that I6Z vanishes in Cases A,
B, C and D (recalling that all Im Ji = 0, implying all cij = 0 in Cases A, B and C).

3.2 Softly broken Z2 symmetry

To softly break the Z2 symmetry, the quartic parameters must obey the conditions laid out
in table 1 for that symmetry but the quadratic ones do not, which means that one must

8See appendix A for the definition of the quantities ∆m+ and ∆q.
9In terms of our parameter set P, I6Z becomes a homogeneous polynomial of order 6 in the parameters

{M2
1 ,M

2
2 ,M

2
3 ,M

2
H± , q1, q2, q3, q} with the gauge couplings {e1, e2, e3} acting as “coefficients”.
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reintroduce an m2
12 coefficient in the potential. Unlike the CP1 case, there is more than

one way to softly break the Z2 symmetry. Indeed there are three different possibilities,
yielding models with different phenomenologies. In fact, when the Z2 symmetry is softly
broken, CP is no longer necessarily conserved, unlike the case when Z2 is unbroken. And
this CP breaking can be either explicit or spontaneous.

The most general softly broken Z2 potential, in the basis where the symmetry is defined
as in eq. (2.19), is given by

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ 1
2
[
λ5(Φ†1Φ2)2 + H.c.

]
, (3.2)

where, after a phase change that renders λ5 real, other than m2
12, all parameters are real.

Three models are then possible:

• If the soft breaking parameter m2
12 is complex then the potential has explicit CP

violation. This is the so-called complex 2HDM (C2HDM) [40–47], with a total of 9
independent real parameters.

• If the soft breaking parameter m2
12 is real but the vacuum breaks CP, this model has

spontaneous CP violation, and the corresponding potential has 8 independent real
parameters.

• If the soft breaking parameter m2
12 is real but the vacuum preserves CP, we obtain the

most commonly studied version of the 2HDM, with the same number of parameters
as the previous case.

First, we present conditions for the quartic part of the 2HDM-potential to be invariant
under Z2 in terms of our parameter set P. If there exists a basis in which the quartic part
of the potential is invariant under the “canonical” transformation of eq. (2.19), we say that
the quartic part of the potential is Z2 invariant. This is equivalent to saying that there
exists a basis in which λ6 = λ7 = 0. If at the same time no basis exists such that m2

12 = 0,
we have softly broken Z2. Basis-invariant conditions for Z2 invariance were deduced in
ref. [13]. We are here interested in conditions concerning only the quartic sector. These
involve the vanishing of a commutator, which we call B, between two 2× 2 matrices built
from quartic couplings, first introduced in section III.B of [13]. Again, using the techniques
described in [17], B can be expressed in terms of the parameter set P. Explicit calculations
are shown in appendix B, where we can see that B = 0 introduces two relations among the
parameters of P.

In our earlier work [18], we presented conditions for the whole potential to be Z2
invariant in terms of P, listing a total of six cases. Four of the cases were found to be RG
unstable, and we will not repeat them here. In fact, all such RG-unstable cases involved
some mass degeneracy between neutral scalars. This means that, considering always the
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general case where no neutral scalars are mass degenerate, we are automatically avoiding
the RG-unstable cases found in [18] for Z2. The two RG-stable cases of exact Z2 symmetry
in the 2HDM potential are, using the notation of the work cited above,

Case CD: ek = qk = 0, 2(e2
jM

2
i + e2

iM
2
j )M2

H± = v2(ejqjM2
i + eiqiM

2
j −M2

iM
2
j ),

2(e2
jM

2
i + e2

iM
2
j )q = (ejqi − eiqj)2 +M2

iM
2
j .

Case CC: ej = qj = ek = qk = 0.

Case CD corresponds to a model where the Z2 symmetry is spontaneously broken by the
vacuum; case CC, on the other hand, is a model for which the vacuum preserves Z2, the
so-called Inert Doublet Model (IDM) [28, 48–50]. When accompanied by a soft breaking
term m2

12 6= 0, the Z2 symmetry could not be spontaneously broken anymore since it
had already been explicitly broken. However still the vacuum could either be invariant or
non-invariant under Z2.

When working out the conditions for the vanishing of B, in order to guarantee that Z2
is in fact softly broken, we must in addition demand that there should not exist relations
among the physical parameters such that the constraints defining any of the six cases of a
Z2-invariant potential apply. Here we list only two10 RG-stable cases of softly broken Z2
(three more RG-unstable cases are listed in appendix D for completeness):

Case SOFT-Z2-X: (B.14) and (B.16) apply, and none of the six cases of Z2-invariant
potential found in [18] applies, for any combination of i, j, k. (There
is an implicit assumption in (B.14) that Im J1 6= 0.)

Case SOFT-Z2-C: ek = qk = 0, bij = 0, and none of the six cases of Z2-invariant
potential applies, for any combination of i, j, k.

The quantity bij is defined in (B.15). The Case SOFT-Z2-C is CP conserving, and the
last letter “C” indicates that it is a sub-case of the CP1-invariant case C presented in
section 3.1. We find that Case SOFT-Z2-X describes the C2HDM which is defined in
terms of 9 parameters. Furthermore, the CP conserving case SOFT-Z2-C specifies a model
where m2

12 is real, the vacuum conserves CP, and the three constraints leave us with a
model defined in terms of 8 free parameters.

3.2.1 Softly broken Z2 with spontaneous CP violation

We have not yet identified all the constraints defining the model with a softly broken
Z2, where m2

12 is real and where CP is broken spontaneously. Such a model is contained
within Case SOFT-Z2-X (the only CP-violating option), but these constraints have to be
combined with the constraints of Case D of CP1, which will always happen whenever CP
is violated spontaneously.

10In appendix B we also found the RG-stable case SOFT-Z2-Y. It is not listed here since it is in fact only
a special case of the more general case SOFT-CP2 which will be presented in section 3.4 on softly broken
CP2.
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In order to have Z2-invariant quartic couplings, eq. (B.14) imposes a condition on q,
whereas eq. (B.16) imposes a condition on M2

H± . In additions, there are conditions on q

and M2
H± required for spontaneous CP violation, the “Case D conditions”. Superficially,

it looks like this will leave us with four constraints. The two constraints on q can be
made compatible for fq = 0 and those on M2

H± are compatible for fm+ = 0, where fq and
fm+ are rational functions of the remaining 9 parameters of P. Those conditions can be
expressed as

fq = g × hq = 0, fm+ = g × hm+ = 0. (3.3)

Thus, they are both satisfied for g = 0, which is the condition (3.4) below. The remaining
factors, hq and hm+ can not simultaneously be zero, so there is no second solution. The
new constraint we get (g = 0) in addition to (B.14) and (B.16) is rather involved, it can
be expressed in terms of the dijk of eq. (A.1) as

(2d010d012d101 + d010d
2
012 + 2d010d020 − 3d010d022 − d2

010d101 + d010d
2
101 − d010d200

−2d012d020 − d012d022 + d012d200 + d020d101 − 2d022d101 − 2d030 + 5d032 − 2d101d111

+d210)Im J1 + (4d010d012 − 2d2
010 + 2d020 − 4d022)Im J11

+(d010d012 −
d2

010
2 + d020

2 − d022)Im J2 + (2d010d012 − d2
010 + d020 − 2d022)Im J30 = 0.

(3.4)

This leaves us with

Case SOFT-Z2-XD: ∆m+ = ∆q = 0, (3.4) applies, and none of the six cases of Z2

invariant potential applies, for any combination of i, j, k.

This case describes a model with soft breaking of Z2 and spontaneous CP violation. The
number of parameters is again 8.

3.3 Softly broken U(1) symmetry

The most general softly broken U(1) potential, in the basis where the symmetry is defined
as in eq. (2.20), is given by

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +m2

12

(
Φ†1Φ2 + H.c.

)}
+ λ1

2 (Φ†1Φ1)2 + λ2
2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1), (3.5)

where all parameters are real. Notice that any complex phase of the soft breaking parameter
m2

12 may be absorbed by a trivial phase rotation of one of the fields, so we can consider,
without loss of generality, that it is real. As for the CP1 case, and unlike the Z2 one,
there is only one possible form of soft breaking of the U(1) symmetry. This is equivalent
to saying that there exists a basis in which λ5 = λ6 = λ7 = 0 but no basis exists in which
m2

12 = 0 simultaneously.
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From table II of [12] we see that the potential possesses a U(1) symmetry if one of the
following two conditions is met:

• ∆ = 0; and ξ × e = η × e = 0, where e is an eigenvector from a one-dimensional
eigenspace of E, (3.6)

• ∆ = 0; ∆0 = 0; and ξ × η = 0. (3.7)

The constraint on ξ only affects the quadratic part of the potential, therefore the conditions
for the quartic part of the potential to be U(1) invariant is

• ∆ = 0; and η × e = 0, where e is an eigenvector from a one-dimensional
eigenspace of E, or (3.8)

• ∆ = 0; ∆0 = 0. (3.9)

The vectors ξ, η, the matrix E and the discriminants ∆ and ∆0 were discussed and
expressed in terms of masses and couplings in [18], therefore we omit details here and only
present the final results. In [18], we also presented conditions for the whole potential to
be U(1) invariant in terms of P, listing a total of four cases. Presenting only the two
RG-stable cases, they correspond to

Case BCC: Mj = Mk, ej = qj = ek = qk = 0.
Case C0D: ek = qk = 0, 2(e2

jM
2
i + e2

iM
2
j )M2

H± = v2(ejqjM2
i + eiqiM

2
j −M2

iM
2
j ),

2(e2
jM

2
i + e2

iM
2
j )q = (ejqi − eiqj)2 +M2

iM
2
j , Mk = 0.

Case BCC is the U(1) version of the IDM, where the global symmetry is preserved by
the vacuum. Case C0D, on the other hand, corresponds to a vacuum for which the U(1)
symmetry is spontaneously broken, thus originating a massless scalar (an axion). With a
soft breaking of the symmetry, neither case is achievable — given that both depend on the
global U(1) being intact before spontaneous symmetry breaking.

Thus, in order to guarantee a softly broken U(1), we simply demand that there should
not exist relations among the physical parameters such that the constraints defining any
of the four cases of a U(1) invariant potential apply. The RG-stable case is

Case SOFT-U1-C: ek = qk = 0,
2(e2

jM
2
i + e2

iM
2
j − v2M2

k )M2
H±

= v2((M2
j −M2

k )eiqi + (M2
i −M2

k )ejqj)
+ e2

j (M2
k −M2

i )(M2
j − 2M2

k ) + e2
i (M2

k −M2
j )(M2

i − 2M2
k ),

2v2(e2
jM

2
i + e2

iM
2
j − v2M2

k )q
= v2(eiqj − ejqi)2 + e2

jM
2
j (M2

i −M2
k ) + e2

iM
2
i (M2

j −M2
k ),

and none of the four cases of U(1) invariant potential
found in [18] applies, for any combination of i, j, k.

This case is CP conserving, as it constitutes a subcase of Case C. An RG-unstable case is
listed in appendix D for completeness.
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3.4 Softly broken CP2 symmetry

The most general softly broken CP2 potential, in the basis where the symmetry is defined
as in eq. (2.21), is given by

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ 1
2
[
λ5(Φ†1Φ2)2 + H.c.

]
+
{
λ6
[
(Φ†1Φ1)− (Φ†2Φ2)

]
(Φ†1Φ2) + H.c.

}
. (3.10)

Without loss of generality we can employ a change of basis (making λ6 = λ7 = 0 and λ5
real) to get a simpler expression for the potential. Let’s refer to this basis as the reduced
CP2-basis in which the potential reads

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ Reλ5
2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
, (3.11)

counting a total of 8 parameters.
If the quadratic part of the potential is not simultaneously invariant under the transfor-

mation (2.21), we say that CP2 is softly broken by the potential. In the reduced CP2-basis
this is equivalent to saying that we cannot simultaneously have m2

12 = 0 and m2
22 = m2

11.
From table II of [12] we see that the potential possesses the CP2 symmetry iff the following
conditions are met:

• (ξ,η) = (0,0). (3.12)

The constraint on ξ only affects the quadratic part of the potential, thus the condition for
the quartic part of the potential to be CP2 invariant becomes

• η = 0, (3.13)

In [18], we presented conditions for the whole potential to be CP2 invariant in terms of P.
Out of three cases, only one was found to be RG stable, namely

Case CCD: ej = qj = ek = qk = 0, 2M2
H± = eiqi −M2

i , 2v2q = M2
i .

Thus, in order to guarantee a softly broken CP2, we simply demand that there should not
exist relations among the physical parameters such that the constraints defining any of
those three cases applies. Then, the conditions expressing a softly broken CP2 become

Case SOFT-CP2: v2(e1q2 − e2q1) + e1e2(M2
2 −M2

1 ) = 0,
v2(e1q3 − e3q1) + e1e3(M2

3 −M2
1 ) = 0,

v2(e2q3 − e3q2) + e2e3(M2
3 −M2

2 ) = 0,
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2v4q = e2
1M

2
1 + e2

2M
2
2 + e2

3M
2
3 ,

and none of the three cases of CP2 invariant potential
found in [18] applies, for any combination of i, j, k.

These may look like four constraints, but the first three of these are not independent, so
in reality these conditions only give three constraints. This matches the number of free
parameters, so there can be no more constraints in the general case. The authors of a
recent paper [51] discuss the softly broken CP2 (naming it ERPS4). This model is fully
described by the constraints in Case SOFT-CP2. The unbroken CP2 (their ERPS) is fully
described by Case CCD.

3.4.1 Distinguishing softly broken CP2 cases

There are seemingly five different options for how to softly break CP2, namely

Option I: m2
11 6= m2

22, m2
12 complex, (8 model parameters)

Option II: m2
11 6= m2

22, m2
12 real, (7 model parameters)

Option III: m2
11 6= m2

22, m2
12 = 0, (6 model parameters)

Option IV: m2
11 = m2

22, m2
12 complex, (7 model parameters)

Option V: m2
11 = m2

22, m2
12 real, (6 model parameters)

What distinguishes these different soft breaking options are the symmetries they leave un-
broken. In fact, as in the Z2 case, different soft breakings will leave intact different “pieces”
of the original CP2 symmetry. The CP2-invariant potential in the reduced basis,11 can be
conceived of as resulting from the application of a Z2 symmetry, followed by a permutation
symmetry S2, Φ1 ↔ Φ2. Since the potential in that basis is fully real, it is also trivially
CP1 symmetric. The options for soft symmetry breaking above, then, correspond to: (I) no
symmetry (other than gauge) left unbroken; (II) potential with residual CP1 symmetry;
(III) potential with residual Z2 (and CP1) symmetry; (IV) potential with residual CP1
symmetry; (V) potential with residual S2 (and CP1) symmetry. However, only three of
these options are relevant, as two of them can be related to others via basis transforma-
tions. Indeed, the residual CP1 symmetry of option IV only becomes visible if one changes
to a new basis given by the transformation(

Φ̄1
Φ̄2

)
= 1√

2

(
1 1
−i i

)(
Φ1
Φ2

)
(3.14)

which renders m̄2
12 real. After this change of basis, m̄11 6= m̄22. This means that the

change of basis has led us back to Option II. Therefore Option II and Option IV ultimately
lead to the same physics, making one of these two options redundant. Likewise, starting
from the potential described by Option V, we may perform a change of basis, using the
transformation (

Φ̄1
Φ̄2

)
= 1√

2

(
1 1
−1 1

)(
Φ1
Φ2

)
(3.15)

11Eq. (3.11) with m2
22 = m2

11 and m2
12 = 0.
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to make m̄2
12 vanish. This takes us to the potential described by Option III. Therefore

Option III and Option V ultimately lead to the same physics, making one of these two
options redundant.

All these options will satisfy the constraints of case SOFT-CP2, but only Option I,
which is the most general way to softly break CP2 is fully described by case SOFT-CP2
without any additional constraints.

Options II and IV both have 7 model parameters, and they lead to two sub-cases of
case SOFT-CP2 which both are described by four constraints. These are

Case SOFT-CP2-C: v2(eiqj − ejqi) + eiej(M2
j −M2

i ) = 0,

ek = qk = 0, q =
e2
iM

2
i + e2

jM
2
j

2v4 .

Case SOFT-CP2-D: v2(e1q2 − e2q1) + e1e2(M2
2 −M2

1 ) = 0,
v2(e1q3 − e3q1) + e1e3(M2

3 −M2
1 ) = 0,

v2(e2q3 − e3q2) + e2e3(M2
3 −M2

2 ) = 0,

M2
H± = v2(e1q1M

2
2M

2
3 + e2q2M

2
3M

2
1 + e3q3M

2
1M

2
2 −M2

1M
2
2M

2
3 )

2(e2
1M

2
2M

2
3 + e2

2M
2
3M

2
1 + e2

3M
2
1M

2
2 ) ,

q = e2
1M

2
1 + e2

2M
2
2 + e2

3M
2
3

2v4 .

Case SOFT-CP2-C is what we get if Case SOFT-CP2 is combined with Case C of a CP1
invariant potential. This describes a model which conserves CP, and simultaneously softly
breaks CP2. There are different ways to realize this case. For Option II, if we assume a
vacuum where (in the “reduced CP2 basis”) sin ξ = 0 and v2 6= v1, or for Option IV if
we assume a vacuum where v2 = v1, we will end up with a model fully described by Case
SOFT-CP2-C.

Case SOFT-CP2-D is what we get if Case SOFT-CP2 is combined with Case D of
a CP1 invariant potential. This describes a model which spontaneously breaks CP, and
simultaneously softly breaks CP2. Note again that the number of constrains is in fact
only four, since the first three of these constraints are not independent. There are again
different ways to realize this case. For Option II, if we assume a vacuum where sin ξ 6= 0,
or for Option IV if we assume a vacuum where v2 6= v1, we will end up with a model fully
described by Case SOFT-CP2-D.

Options III and V both have 6 model parameters, and they lead to two sub-cases of
case SOFT-CP2 which both are described by five constraints. These are

Case SOFT-CP2-CC: ej = qj = ek = qk = 0, q = M2
i

2v2 .

Case SOFT-CP2-CD: v2(eiqj − ejqi) + eiej(M2
j −M2

i ) = 0,

ek = qk = 0, q =
e2
iM

2
i + e2

jM
2
j

2v4 ,

M2
H± =

v2(eiqiM2
j + ejqjM

2
i −M2

iM
2
j )

2(e2
iM

2
j + e2

jM
2
i ) .
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Case SOFT-CP2-CC is what we get if Case SOFT-CP2 is combined with Case CC of a
Z2 invariant potential. This describes a model which is Z2 invariant, and simultaneously
softly breaks CP2. In order to realize this case, we start from Option III and assume a
vacuum where v2 = 0 (or equivalently v1 = 0), or we start from Option IV and assume
both v2 = v1 and sin ξ = 0 to end up with a model fully described by Case SOFT-CP2-CC.

Case SOFT-CP2-CD is what we get if Case SOFT-CP2 is combined with Case CD
of a Z2 invariant potential. This describes a model which spontaneously breaks Z2, and
simultaneously softly breaks CP2. There are again different ways to realize this case. For
Option III, if we assume a vacuum where sin 2ξ = 0 and both vi 6= 0, or for Option V if we
assume a vacuum where sin ξ = 0 and v2 6= v1 or a vacuum where sin ξ 6= 0 and v2 = v1,
we will end up with a model fully described by Case SOFT-CP2-CD.

3.5 Softly broken CP3 symmetry

The most general softly broken CP3 potential, in the basis where the symmetry is defined
as in eq. (2.22), is given by

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λ1 − λ3 − λ4
2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
. (3.16)

Without loss of generality we can employ a change of basis (making m2
22 = m2

11) to get a
simpler expression for the potential. Let’s refer to this basis as the reduced CP3-basis in
which the potential reads

V (Φ1,Φ2) = − 1
2
{
m2

11

(
Φ†1Φ1 + Φ†2Φ2

)
+
[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λ1 − λ3 − λ4
2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
, (3.17)

counting a total of 6 parameters. If the quadratic part of the potential is not simultaneously
invariant under the same transformation, we say that CP3 is softly broken by the potential.
In the reduced CP3-basis this is equivalent to saying that we cannot simultaneously have
m2

12 = 0. From table II of [12] we see that the potential possesses a CP3 symmetry iff the
following conditions are met:

• ∆ = 0; with (ξ,η) = (0,0). (3.18)

The constraint on ξ only affects the quadratic part of the potential, so the condition for
the quartic part of the potential to be CP3 invariant becomes

• ∆ = 0; with η = 0. (3.19)
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In [18], we presented conditions for the whole potential to be CP3 invariant in terms of P,
identifying a total of five cases of which two were found to be RG stable:

Case BCCD: ej = qj = ek = qk = 0, 2M2
H± = eiqi −M2

i , 2v2q = M2
i , Mj = Mk.

Case C0CD: ej = qj = ek = qk = 0, 2M2
H± = eiqi −M2

i , 2v2q = M2
i , Mj = 0.

Thus, in order to guarantee a softly broken CP3, we demand that there should not exist
relations among the physical parameters such that the constraints defining any of those
cases of a CP3 invariant potential applies. Then, the conditions expressing a softly broken
CP3 become (listing only the RG-stable cases):

Case SOFT-CP3-B: Mj = Mk, ejqk − ekqj = 0,
v2(eiqj − ejqi) + eiej(M2

j −M2
i ) = 0,

v2(eiqk − ekqi) + eiek(M2
j −M2

i ) = 0,
2v4q = e2

iM
2
i + (e2

j + e2
k)M2

j ,

2v2M2
H± = e2

iM
2
i + (e2

j + e2
k)M2

j + v2(e1q1 + e2q2 + e3q3),
and none of the five cases of CP3 invariant potential
found in [18] applies, for any combination of i, j, k.

Case SOFT-CP3-C: ek = qk = 0, v2(eiqj − ejqi) + eiej(M2
j −M2

i ) = 0,
2v4q = e2

iM
2
i + e2

jM
2
j ,

(e2
jM

2
i + e2

iM
2
j − v2M2

k )

×
[
2v2M2

H± + e2
iM

2
i + e2

jM
2
j − v2(2M2

k + eiqi + ejqj)
]

= 2e2
i e

2
j (M2

j −M2
i )2,

and none of the five cases of CP3 invariant potential
found in [18] applies, for any combination of i, j, k.

Case SOFT-CP3-B contains partial mass degeneracy, which requires m2
11 + m2

22 = 0,
whereas case SOFT-CP3-C represents the general case of softly broken CP3. Another,
RG-unstable case is listed in appendix D for completeness.

Then there is seemingly three different options for how to softly break CP3, namely

Option I: m2
12 complex, (6 model parameters)

Option II: m2
12 imaginary, (5 model parameters)

Option III: m2
12 real, (5 model parameters)

All these options will satisfy the constraints of case SOFT-CP3-C, but only Option I, which
is the most general way to softly break CP3 is fully described by case SOFT-CP3-C without
any additional constraints.

Case SOFT-CP3-CC: ej = qj = ek = qk = 0, 2v2q = M2
i ,

M2
H± = 1

2(2M2
k −M2

i + eiqi),
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Case SOFT-CP3-CD: ek = qk = 0, v2(eiqj − ejqi) + eiej(M2
j −M2

i ) = 0,
2v4q = e2

iM
2
i + e2

jM
2
j ,

2(e2
jM

2
i + e2

iM
2
j )M2

H± = v2(ejqjM2
i + eiqiM

2
j −M2

iM
2
j ),

e2
iM

2
j (M2

j −M2
k ) + e2

jM
2
i (M2

i −M2
k ) = 0,

Case SOFT-CP3-BCC: ej = qj = ek = qk = 0, Mj = Mk, 2v2q = M2
i ,

Case SOFT-CP3-C0D: ek = qk = 0, Mk = 0, v2(eiqj−ejqi) + eiej(M2
j −M2

i )=0,
2v4q = e2

iM
2
i + e2

jM
2
j ,

2(e2
jM

2
i + e2

iM
2
j )M2

H± = v2(ejqjM2
i + eiqiM

2
j −M2

iM
2
j ),

Case SOFT-CP3-CC is what we get if Case SOFT-CP3-C is combined with Case CC of a
Z2 invariant potential. This describes a model which is Z2 invariant, and simultaneously
softly breaks CP3. In order to realize this case, we start from Option III and assume a
vacuum where sin ξ = 0 and v1 = v2 to end up with a model fully described by Case
SOFT-CP3-CC.

Case SOFT-CP3-CD is what we get if Case SOFT-CP3-C is combined with Case CD
of a Z2 invariant potential. This describes a model which spontaneously breaks Z2, and
simultaneously softly breaks CP3. In order to realize this case, we start from Option III and
assume a vacuum where sin ξ 6= 0 and v1 = v2 to end up with a model fully described by
Case SOFT-CP3-CD. Note that the last of the constraints for case SOFT-CP3-CD comes
from equating the expressions for M2

H± from case SOFT-CP3-C and case D and working
out the resulting condition.

Case SOFT-CP3-BCC is what we get if Case SOFT-CP3-C is combined with Case
BCC of a U(1) invariant potential. This describes a model which is U(1) invariant, and
simultaneously softly breaks CP3. In order to realize this case, we start from Option II
and assume a vacuum where cos ξ 6= 0 or v1 6= v2 to end up with a model fully described
by Case SOFT-CP3-BCC.

Case SOFT-CP3-C0D is what we get if Case SOFT-CP3-C is combined with Case C0D
of a U(1) invariant potential. This describes a model which spontaneously breaks U(1),
and simultaneously softly breaks CP3. In order to realize this case, we start from Option II
and assume a vacuum where cos ξ = 0 and v1 = v2 to end up with a model fully described
by Case SOFT-CP3-C0D.

3.6 Softly broken SO(3) symmetry

The most general softly broken SO(3) potential, in the basis where the symmetry is defined
as in eq. (2.23), is given by

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + H.c.
]}

+ λ1
2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + (λ1 − λ3)(Φ†1Φ2)(Φ†2Φ1).
(3.20)

Without loss of generality we can employ a change of basis (making m2
12 = 0) to get a

simpler expression for the quadratic part of the potential. The SO(3)-invariant quartic
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part of the potential remains unchanged under all basis changes. Let’s refer to this simpler
basis as the reduced SO(3)-basis in which the potential reads

V (Φ1,Φ2) = − 1
2
{
m2

11Φ†1Φ1 +m2
22Φ†2Φ2

}
+ λ1

2
{

(Φ†1Φ1)2 + (Φ†2Φ2)2
}

+ λ3(Φ†1Φ1)(Φ†2Φ2) + (λ1 − λ3)(Φ†1Φ2)(Φ†2Φ1),
(3.21)

counting a total of 4 parameters. If the quadratic part of the potential is not invariant
under the same transformation, we say that SO(3) is softly broken by the potential. In
the reduced SO(3)-basis this is equivalent to saying that we cannot simultaneously have
m2

11 = m2
22. From table II of [12] we see that the potential possesses the SO(3) symmetry

iff the following conditions are met:

• ∆ = 0; ∆0 = 0; with (ξ,η) = (0,0). (3.22)

The constraint on ξ only affects the quadratic part of the potential, the condition for the
quartic part of the potential to be SO(3) invariant is

• ∆ = 0; ∆0 = 0; with η = 0, (3.23)

In [18], we presented conditions for the whole potential to be SO(3) invariant, identifying
two cases, of which one is RG stable, namely

Case B0C0C0D: Mj = Mk = 0, ej = qj = ek = qk = 0,
2M2

H± = eiqi −M2
i , 2v2q = M2

i .

Thus, in order to guarantee a softly broken SO(3), we demand that there should not exist
relations among the physical parameters such that the constraints defining any of those
two cases apply. Then, the conditions expressing a softly broken SO(3) become

Case SOFT-SO3-ABBB: M1 = M2 = M3, Q2 = 0,
2M2

H± = M2
1 + e1q1 + e2q2 + e3q3, 2v2q = M2

1 ,

and none of the two cases of SO(3) invariant potential
found in [18] applies, for any combination of i, j, k.

Case SOFT-SO3-BCC: Mj = Mk, ej = qj = ek = qk = 0,
2M2

H± = eiqi −M2
i + 2M2

j , 2v2q = M2
i ,

and none of the two cases of SO(3) invariant potential
found in [18] applies, for any combination of i, j, k.

Both these two cases are found to be RG stable. Case SOFT-SO3-ABBB contains full
mass degeneracy and requires m2

11 + m2
22 = 0, whereas Case SOFT-SO3-BCC represents

the general case of softly broken SO(3) and requires v2 = 0 (or equivalently v1 = 0) in the
reduced SO(3)-basis.
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CP1 Z2 U(1) CP2 CP3 SO(3)
unbroken 9 7 6 5 4 3

soft breaking 10 9 7 8 6 4

Table 2. Free parameters (not counting inequalities) in models with various symmetries. Only the
numbers for the most general model containing each symmetry is given.

4 Summary

The weak-basis invariant formulation of soft symmetry breaking of the scalar 2HDM po-
tential has been developed. Soft breaking of a symmetry requires an invariance of the
dimension-4 part of the Lagrangian and a non-trivial variation of the lower-dimensional
part. In general, the dim-4 and the lower-dimensional parts of the potential change un-
der a basis transformation of the Higgs doublets. It has been shown that in spite of the
ambiguity corresponding to the separation between the dim-4 and the lower-dimensional
Lagrangian, implications of the soft symmetry breaking could be formulated in terms of
tree-level observables, i.e., they are physical and testable. There exist six global symme-
tries that one can impose on the scalar potential of the model. Necessary and sufficient
conditions for soft breaking of all of them have been formulated for the generic 2HDM in
terms of observables.

In figure 1 we give an overview of the different ways the six symmetries can be broken.
The least symmetric case is when the CP1 symmetry is softly broken. This case is referred
to as “SOFT-CP1”, and was discussed in section 3.1. The different higher symmetries can
also be softly broken, some in more than one way. Accordingly, in addition to the models
with a fully symmetric potential [18], there is a plethora of addtional models, in this paper
denoted by a name whose prefix is “SOFT”.

In order to gain some further understanding of the conditions for soft symmetry break-
ing we have also found their form in the alignment limit (AL), defined by requiring that
couplings of the SM-like Higgs boson discovered at the LHC are exactly as predicted by
the SM. The results for the AL are shown in appendix C.

In table 2 we list the number of free parameters that are compatible with the different
symmetries. Note that two models with different symmetries may have the same number
of free parameters.

We recall that all the relations between couplings and physical parameters shown in this
paper were based on tree-level results obtained from the Lagrangian. One could wonder if
our symmetry-based relations remain valid if radiative corrections were taken into account.
To answer this question one would need to calculate the 1-loop (at least) effective potential,
define and determine physical masses and couplings and then find potential parameters (m2

ij

and λi) in terms of physical (observable) parameters like masses and couplings. Those
relations would receive, in general, loop corrections. However, even though this would be
an attractive project, it lies far beyond the scope of our work. Nevertheless a few remarks
concerning the relevance of loop corrections are useful.
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CP1

V4 invariant

vacuum

breaks

CP1

vacuum

respects


CP1

V2 invariant

D C
SOFT-CP1

Ω
Ω

Ω
Ω

Ω

V4 invariant

Z2

V2 invariant

V4 invariant

U(1)

CP2

CP3

SO(3)

V4 invariant

V2 invariant

V4 invariant

V2 invariant

V4 invariant

V2 invariant

V4 invariant

V2 invariant

vacuum

breaks


Z2

vacuum

respects


Z2

vacuum

breaks


U(1)

vacuum

respects


U(1)

vacuum

breaks

CP2

vacuum

respects


CP2

vacuum

breaks

CP3

vacuum

respects


CP3

vacuum

breaks

SO(3)

vacuum

respects


SO(3)

CC (IDM)CD SOFT-Z2-X

SOFT-Z2-Y

SOFT-Z2-C

BCCC0D

CCD none

BCCDC0CD

B0C0C0D none

SOFT-U1-C

SOFT-CP2

SOFT-CP3-B
SOFT-CP3-C

SOFT-SO3-ABBB

SOFT-SO3-BCC

Figure 1. Overview of the six symmetries, with a listing of the different ways these can be broken.
V2,4 denote dim-2 and dim-4 parts of the scalar potential, respectively.
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Let us consider, as an illustration, the model with a Z2 symmetry imposed, which forces
the relation λ6 = λ7 = 0. With or without soft breakings, the model is renormalizable,
which means that couterterms δλ6,7 are not needed to get rid of all divergences. As a
consequence of that the relation λ6 = λ7 = 0 is preserved by RG evolution to all orders of
perturbation expansion. However, if the Z2 symmetry is softly broken, finite corrections to
λ6 and λ7 are expected. Indeed, the authors of [52] argue that such finite threshold effects
might induce non-zero value for λ6 and λ7.

First let us emphasize the role played by a symmetry of vacuum, it turns out that it
is as relevant as a soft breaking of the symmetry. We have found many examples in which
the vacuum leaves intact certain symmetries after spontaneous symmetry breaking [18].
For instance, if the whole potential is Z2-invariant there are two possible models implying
different physics. If only one doublet has a non-vanishing vev we get the inert doublet
model, and for this model the Z2 symmetry is exact. If both doublets have non-zero vevs,
Z2 is spontaneously broken. Both cases stem from a potential with the same symmetry,
but the physics they imply is different.

For the inert doublet model, since the Z2 symmetry is preserved after spontaneous
symmetry breaking, the relation λ6 = λ7 = 0 will hold at all orders, also when considering
finite contributions from radiative corrections to these couplings. But if the vacuum spon-
taneously breaks Z2, though no infinite contributions to λ6 and λ7 will ever appear in a
loop calculation, finite contributions to those couplings may well emerge. It is important
to stress that in this case one can expect λ6 and λ7 to be much smaller than remaining
(tree-level allowed) quartic couplings λ1−5. If λ6,7 were experimentally confirmed in the
future to be indeed much smaller than other quartic couplings it would indicate the case of
spontaneously broken Z2 rather than a model with tree-level allowed λ6 and λ7. One could
then conclude that the non-zero values of λ6 and λ7 were not independent of the rest of
the parameters, but rather follow the expected loop relations deduced from a model with
spontaneouly broken Z2, retaining the number of free parameters of the model.

The presence of soft breaking terms would manifest itself at higher orders in much the
same manner as discussed above. If one were to consider a potential with Z2 symmetry
softly broken by, for instance, a real m2

12, one may expect to find finite contributions to λ6
and λ7 appearing in loop calculations, now depending on m2

12, as presumed in eq. (3.17)
of ref. [52]. But the number of free parameters of the model remains the same (in this
case 8), and the non-zero values of λ6 and λ7 are not independent, but rather follow the
formulae deduced from a loop calculation in the softly broken Z2 model. And that would
suggest that the model had an underlying, softly broken, symmetry.12 Furthermore, they
can be expected to be much smaller than the other quartic couplings, so that the tree-level
expressions used throughout this paper should constitute a useful approximation to study
of the model. The same argument also holds for all the other symmetries discussed in this
work. Concluding, it might be interesting to study relations between couplings and physical
parameters beyond the tree level approximation. However, since radiative corrections do

12Or, spontaneously broken Z2.
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not imply symmetry breaking13 we do not expect them to change the tree-level predictions
drastically, while definitely it would fall outside the scope of the current work.
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A The invariant I6Z in terms of couplings and masses

We will need the following useful dimensionless abbreviations [15],

dijk = qi1M
2j
1 ek1 + qi2M

2j
2 ek2 + qi3M

2j
3 ek3

vi+2j+k , (A.1)

m+ =
M2
H±

v2 , mi = M2
i

v2 , (A.2)

and also the CP -odd invariants

Im J1 = 1
v5

∑
i,j,k

εijkM
2
i eiekqj

= 1
v5 [e1e2q3(M2

2 −M2
1 )− e1e3q2(M2

3 −M2
1 ) + e2e3q1(M2

3 −M2
2 )], (A.3)

Im J2 = 2
v9

∑
i,j,k

εijkeiejekM
4
iM

2
k = 2e1e2e3

v9

∑
i,j,k

εijkM
4
iM

2
k

= 2e1e2e3
v9 (M2

2 −M2
1 )(M2

3 −M2
2 )(M2

3 −M2
1 ), (A.4)

Im J30 ≡
1
v5

∑
i,j,k

εijkqiM
2
i ejqk,

= 1
v5 [q1q2e3(M2

2 −M2
1 )− q1q3e2(M2

3 −M2
1 ) + q2q3e1(M2

3 −M2
2 )],

Im J11 ≡
1
v7

∑
i,j,k

εijkeiM
2
iM

2
j ekqj (A.5)

= 1
v7 [e1e2q3M

2
3 (M2

2 −M2
1 )− e1e3q2M

2
2 (M2

3 −M2
1 ) + e2e3q1M

2
1 (M2

3 −M2
2 )].

(A.6)
13In this work we limit ourselves to the tree-level approximation. There are, however, cases where loop

contributions are indispensable. Anomalous symmetries, like e.g. the scale invariance may serve as an
illustration. In this case the invariance is broken by 1-loop corrections and masses are generated, see [53].
However, we do not consider anomalous symmetries here.
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The expression for I6Z , whose vanishing guarantees a CP1 invariant quartic potential
is large and unwieldy when expressed directly in terms of the masses and couplings of P.
Therefore we introduce some abbreviations, let us first introduce the notation

∆m+ ≡
M2
H±

v2 − m̃+, (A.7)

∆q ≡ q − q̃, (A.8)

where

m̃+ ≡
e1q1M

2
2M

2
3 + e2q2M

2
1M

2
3 + e3q3M

2
1M

2
2 −M2

1M
2
2M

2
3

2(e2
1M

2
2M

2
3 + e2

2M
2
3M

2
1 + e2

3M
2
1M

2
2 ) , (A.9)

q̃ ≡ (e2q3 − e3q2)2M2
1 + (e3q1 − e1q3)2M2

2 + (e1q2 − e2q1)2M2
3 +M2

1M
2
2M

2
3

2(e2
1M

2
2M

2
3 + e2

2M
2
3M

2
1 + e2

3M
2
1M

2
2 ) .(A.10)

Using this notation, we find

I6Z = c21(∆m+)2∆q + c20(∆m+)2 + c12∆m+(∆q)2 + c11∆m+∆q + c10∆m+

+c03(∆q)3 + c02(∆q)2 + c01∆q, (A.11)

where cij are polynomials in terms of model parameters, given by

c21 = 16 (−d010 + d012 + d101) Im J1 + 32Im J11 + 8Im J2 + 16Im J30, (A.12)
c20 = (2q̃ − d012) (8 (−d010 + d012 + d101) Im J1 + 16Im J11 + 4Im J2 + 8Im J30) ,(A.13)
c12 = 16 (d012 − d010) Im J1 + 32Im J11 + 16Im J2, (A.14)
c11 = 8

(
−4d010d012 − 4m̃+d010 − 4q̃d010 + 2d2

010 + 2d012d101

+4m̃+d012 + 4q̃d012 + d2
012 + d022 + 4m̃+d101 − d2

101 − d200
)
Im J1

+32 (−d010 + d012 − d101 + 2m̃+ + 2q̃) Im J11

+8 (−d010 − d101 + 2m̃+ + 4q̃) Im J2

+16 (−d010 + 2d012 − d101 + 2m̃+) Im J30, (A.15)
c10 = −4

(
−4m̃+d010d012 + 8q̃d010d012 + 2d2

010d012 − 5d010d022 − 2d010d
2
101

+2d010d200 + 8m̃+q̃d010 + 4q̃2d010 − 4q̃d2
010 + 4m̃+d012d101

−4q̃d012d101 + d012d
2
101 − 3d012d200 − 8m̃+q̃d012 + 4m̃+d

2
012

−4q̃2d012 − 2q̃d2
012 + 2d022d101 − 2q̃d022 + 3d032 + 2d101d111

−2d101d200 − 8m̃+q̃d101 + 2q̃d2
101 + 2d3

101 + 2q̃d200 − 2d210
)
Im J1

+4
(
4d010d012 − 8q̃d010 + 4d012d101 − 8m̃+d012 + 8q̃d012 + d2

012

−7d022 − 8q̃d101 − 2d2
101 + 2d200 + 16m̃+q̃ + 8q̃2

)
Im J11

+2 (2d010d012 − 4q̃d010 − d012d101 − 4m̃+d012 − 2d022 − 4q̃d101

−2d2
101 + 3d111 + 2d200 + 8m̃+q̃ + 8q̃2

)
Im J2

+8
(
d010d012 − 2q̃d010 − 2m̃+d012 + 4q̃d012 − d2

012

−d022 − 2q̃d101 − d2
101 + d111 + d200 + 4m̃+q̃

)
Im J30, (A.16)
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c03 = 8Im J2, (A.17)
c02 = −8 (5d010d012 − d010d101 + 2m̃+d010

−2d2
010 − 2m̃+d012 − 5d022 + d111 + 2d020

)
Im J1

+16 (−d010 + 2d012 − d101 + 2m̃+) Im J11

+4 (−2d010 + d012 − 2d101 + 4m̃+ + 6q̃) Im J2, (A.18)
c01 = −4

(
5d010d012d101 + 8m̃+d010d012 + 20q̃d010d012 + d010d

2
012

+2d2
010d012 + 4d010d020 − 10d010d022 − 4q̃d010d101

−3d010d
2
101 − 3d010d111 + 2d010d200 + 4m̃2

+d010 + 8m̃+q̃d010

−4m̃+d
2
010 − 8q̃d2

010 − 8d012d020 − d012d022 − 4m̃+d012d101

+d012d111 − d012d200 − 4m̃2
+d012 − 8m̃+q̃d012 − 2m̃+d

2
012

+2d020d101 + 8q̃d020 − 6d022d101 − 2m̃+d022 − 20q̃d022 − 4d030

+16d032 + 4d101d111 − d101d200

−4m̃2
+d101 + 2m̃+d

2
101 + 4q̃d111 + 2m̃+d200

)
Im J1

+8
(
−4d010d012 + 2d010d101 − 4m̃+d010 − 4q̃d010 + 2d2

010

+d012d101 + 4m̃+d012 + 8q̃d012 − 2d020 + 3d022 − 4m̃+d101

−4q̃d101 − 2d2
101 − 3d111 + 3d200 + 4m̃2

+ + 8m̃+q̃
)
Im J11

+2 (−2d010d012 + 2d010d101 − 4m̃+d010 − 8q̃d010

+2d2
010 + 4q̃d012 − 2d020 + 2d022 − 4m̃+d101

−8q̃d101 − 4d2
101 + 5d200 + 4m̃2

+ + 16m̃+q̃ + 12q̃2
)
Im J2

+4
(
−6d010d012 + 2d010d101 − 4m̃+d010 + 2d2

010 + 8m̃+d012

−2d020 + 7d022 − 4m̃+d101 + d2
101 − 4d111 + 4m̃2

+

)
Im J30. (A.19)

There are different ways to realize I6Z = 0.

1. We easily see that I6Z vanishes when all Im Ji vanish. This corresponds to a CP1-
invariant potential (both the quadratic and quartic parts) as well as a CP-invariant
vacuum. There is no CP-violation in the scalar sector.

2. We easily see that I6Z also vanishes whenever ∆m+ = ∆q = 0. We know that this
corresponds to a CP1-invariant potential (both the quadratic and quartic parts). If
at least one Im Ji is nonzero, we have spontaneous CP violation.

3. Situations under which I6Z vanish, other than the two mentioned above, yield models
with softly broken CP1.

B The commutator B

It is convenient to rewrite the scalar potential of eq. (2.1) as

V ≡ Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ†c̄Φd). (B.1)
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In this second form, a summation over barred with un-barred indices is implied, e.g.,
a = ā = 1, 2. Thus,

Y11 = −m
2
11

2 , Y12 = −m
2
12

2 , Y21 = −(m2
12)∗
2 , Y22 = −m

2
22

2 (B.2)

and

Z1111 = λ1, Z2222 = λ2, Z1122 = Z2211 = λ3,

Z1221 = Z2112 = λ4, Z1212 = λ5, Z2121 = (λ5)∗,
Z1112 = Z1211 = λ6, Z1121 = Z2111 = (λ6)∗,
Z1222 = Z2212 = λ7, Z2122 = Z2221 = (λ7)∗. (B.3)

All other Zab̄cd̄ vanish.
In section III.B of [13], three commutators of 2 × 2 matrices are presented, whose

simultaneous vanishing guarantees a Z2 invariant potential. For our purposes, we shall
need only one of these commutators in order to guarantee a Z2 invariant quartic potential,
namely

B ≡ [Z(1), Z(11)], (B.4)

where

Z
(1)
ad̄

= Zab̄bd̄, (B.5)

Z
(11)
cd̄

= Z
(1)
ba Zab̄cd̄, (B.6)

are given in terms of the potential coefficients in (B.3). Let us point out that B is not
basis-invariant, nor are its elements. However, the condition B = 0 (requiring all four
matrix elements to vanish simultaneously) is a basis-invariant constraint. We translate the
elements of B into masses and couplings by working in the Higgs basis using the method
described in [17], yielding the following matrix-elements of B,

B11 = 2i [(2q − 2d010 + d012 + 2d101)Im J1 + 4 Im J11 + Im J2 + 2 Im J30] , (B.7)

B12 = 1
v6

3∑
i=1

[
2 (d012 − 2q)M4

i ei + 2v2 (d012 − 2q)M2
i qi

+v2 [d012 (2q − d101) +m+ (4q − 2d012)
+2
(
−d022 + qd101 − d2

101 + d200 + 2q2
)]
eiM

2
i

+v4
[
d012 (d101 + 2q) +m+ (4q − 2d012) + d2

012

−2
(
d022 + qd101 + d2

101 − d200
)]
qi
]
fi, (B.8)

B21 = −B∗12, (B.9)
B22 = −B11. (B.10)

Here, fi refers to the HiW
+H− coupling [14]. We see that the vanishing of all four matrix

elements is achieved by requiring B11 = B12 = 0. Since B12 has both a real and an imaginary
part, the vanishing of B12 is equivalent to requiring |B12|2 = 0. We find

v12|B12|2 = b212 + b213 + b223, (B.11)
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where

bij = v4
[
d012 (d101 + 2q) +m+ (4q − 2d012) + d2

012

−2
(
d022 + qd101 + d2

101 − d200
)]

(ejqi − eiqj)

+v2 [d012 (2q − d101) +m+ (4q − 2d012)
+2
(
−d022 + qd101 − d2

101 + d200 + 2q2
)]
eiej(M2

i −M2
j )

+2v2 (d012 − 2q) (M2
i qiej −M2

j qjei) + 2 (d012 − 2q) eiej(M4
i −M4

j ), (B.12)

so the vanishing of B12 is equivalent to b12 = b13 = b23 = 0. Requiring the vanishing of
the commutator B is then equivalent to requiring B11 = b12 = b13 = b23 = 0. At first
glance this looks like four constraints. As we will soon see, these four constraints are not
all independent, so the number of independent constraints arising from demanding the
vanishing of the commutator B is less than four. It turns out that the detailed analysis
becomes easier if we split the analysis in separate parts, depending on whether Im J1 is
vanishing or not.14

Let’s first assume Im J1 6= 0 (implying CP violation). We may then solve B11 = 0 for
q to get

q = d010 − 1
2d012 − d101 −

4 Im J11 + Im J2 + 2Im J30
2Im J1

. (B.14)

Next, we insert the expression for q into the expressions for all three bij to get

bij =
eiej(M2

j −M2
i )− (ejqi − eiqj)v2

(Im J1)2

×
[
2Im J1[2(d012 + d101 − d010)Im J1 + 4 Im J11 + Im J2 + 2 Im J30]M2

H±

−v2{2(d010d012 − d010d101 − d022 + d200)(Im J1)2

+[4(2d101 − d010)Im J11 + (d012 − 2d010 + 3d101)Im J2

+2(d101 − d012)Im J30]Im J1

+(2 Im J11 + Im J2)(4 Im J11 + Im J2 + 2 Im J30)
}]
. (B.15)

Demanding that all three bij should vanish, the only viable solution15 is given by

2Im J1[2(d012 + d101 − d010)Im J1 + 4 Im J11 + Im J2 + 2 Im J30]M2
H±

= v2{2(d010d012 − d010d101 − d022 + d200)(Im J1)2

+[4(2d101 − d010)Im J11 + (d012 − 2d010 + 3d101)Im J2 + 2(d101 − d012)Im J30]Im J1

+(2 Im J11 + Im J2)(4 Im J11 + Im J2 + 2 Im J30)
}
. (B.16)

14If we evaluate Im J1 in the symmetry basis (λ6 = λ7 = 0) for the most general form of the VEV, we
find

Im J1 = v2
1v

2
2(λ2 − λ1)Im (λ5e

2iξ)
v4 . (B.13)

The only realistic way that Im J1 can vanish is if Im (λ5e
2iξ) = 0, since the vanishing of v1 or v2 implies

m2
12 = 0 (no soft breaking of Z2), and λ2 = λ1 implies CP2 symmetry of V4.
15If we require eiej(M2

j − M2
i ) − (ejqi − eiqj)v2 = for all three combinations of i, j, this will imply

Im J1 = 0, which we have assumed is not the case.
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We must also consider the possible physical configurations where Im J1 = 0, in which
case we cannot solve (B.7) for q. We provided a list of all such configurations in section
3.5 of [18]. We then work systematically through all six possible configurations to see what
additional constraints are needed in order to make the commutator B vanish.

For Configuration 1 (the case of full mass degeneracy (two constraints) — which is
CP conserving), we find that the commutator B vanishes whenever Q2 = 0 (this is Case
ABBB from [18], representing a U(1) invariant (and thereby also Z2 invariant) potential,
which we discard since we are only interested in softly broken Z2). Another possibility for
the commutator B to vanish in the case of full mass degeneracy is whenever

2v4(d200 − d2
101) + (v2d101 +M2

1 − 2M2
H±)(M2

1 − 2v2q) = 0. (B.17)

We then arrive at a model with three constraints in which the non-RGE-stable full mass-
deneracy is combined with the vanishing of the commutator B. Such a model is also
not RGE-stable and will not be discussed further. For completeness it will be listed in
appendix D as Case SOFT-Z2-A.

For Configuration 2 (two constraints - also CP conserving), we find that B11 = 0 and
also bij = 0. Let us also assume that ei 6= 0, so we can solve for qj = ejqi/ei. Then we
find that bjk vanish whenever bik vanish, since they are now proportional to each other.
So we get only one additional constraint bik = 0 in order to make B vanish in this case.
This leaves us with a total of three constraints, but the partial mass-degeneracy is again
non-RGE-stable so we will not discuss this case further.

We should also address what happens for this configuration whenever ei = 0 (and we
cannot solve for qj). Then we get ejqi = 0. If qi = 0, we find that bik = 0, so we get
only one additional constraint (bjk = 0) for B to vanish. If on the other hand ej = 0,
we find (assuming q2

i + q2
j 6= 0 in order to avoid a Z2-symmetric potential) that bij and

bjk vanish simultaneously, so we get only one additional constraint (bjk = 0) in order to
make B vanish. Again, this is non-RGE-stable and will not be discussed further. Within
Configuration 2, we end up with cases that have three or sometimes four constraints, all
non-RGE-stable. For completeness we list them in appendix D as Case SOFT-Z2-B.

For Configuration 3 (two constraints - also CP conserving), we find that we have
quartic Z2-invariance if in addition bij = 0. This is RGE-stable.

For Configuration 4 (two constraints), we find that demanding B11 = 0, will imply
Configuration 1, 2 or 3, already analyzed.

For Configuration 5 (two constraints), we find that demanding B11 = 0, will imply
Configuration 2 or 3, already analyzed.

For Configuration 6 (one constraint), we find that we have quartic Z2-invariance if in
addition

v2(qjei − qiej)− eiej(M2
i −M2

j ) = 0, and q = 1
2d012. (B.18)

This implies CP violation. The total number of constraints is three, and it is listed in
section 3.2 as Case SOFT-Z2-Y.
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C Alignment

As we have seen, the symmetry conditions of the quartic potential are complicated, there-
fore in this appendix we are going to consider their alignment limit (AL) which, in our
formalism, is simply given by

e1 = v, e2 = e3 = 0 . (C.1)

For each symmetry, we shall formulate criteria for having softly broken symmetry in the AL.
In certain cases alignment might be a consequence of a symmetry of the potential, so

that (C.1) appears naturally without the necessity of parameter tuning. Such possibilities
have been discussed within the 2HDM in refs. [25, 54, 55] and generalized for nHDM
in [52, 56].

C.1 Softly broken CP1 in the alignment limit

The alignment condition (C.1) makes Im J1 = Im J11 = Im J2 = 0, but Im J30 may still be
non-zero, making room for CP violation in the scalar couplings.

(Im J30)AL = q2q3(M2
3 −M2

2 )
v4 , (C.2)

implying q2q3(M2
3 −M2

2 ) 6= 0 in order for our model to be CP violating in the AL. Next,
let us look at the (simplified) expression for I6Z in the AL. First,

(∆m+)AL = vq1 −M2
1

2v2 , (C.3)

(∆q)AL = 1
2

(
q2

2
M2

2
+ q2

3
M3

3
+ M2

1
v2

)
. (C.4)

We find

(I6Z)AL = (Im J30)AL
v4

[
16v4(∆m+)2

AL(∆q)AL + 8v4
(
q2

2
M2

2
+ q2

3
M2

3

)
(∆m+)2

AL

− 16v2(M2
2 +M2

3 )(∆m+)AL(∆q)AL

− 8v2
(
q2

2M
2
3

M2
2

+ q2
3M

2
2

M2
3

)
(∆m+)AL + 16M2

2M
2
3 (∆q)AL

]
. (C.5)

There are different ways to realize (I6Z)AL = 0, which is the condition for invariance of the
quartic part of the potential in the AL.

1. (I6Z)AL vanishes when (Im J30)AL vanish. In this situation we have a CP1-invariant
potential as well as a CP-invariant vacuum. There is no CP violation in the scalar
sector.

2. (I6Z)AL also vanishes whenever (∆m+)AL = (∆q)AL = 0. We know that this corre-
sponds to a CP1-invariant potential. If (Im J30)AL is nonzero, we have spontaneous
CP violation in the AL.
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3. There are other ways to make (I6Z)AL vanish than the two mentioned above. If
(Im J30)AL 6= 0 then the condition (I6Z)AL = 0 becomes a relatively simple quadratic
equation16 that allows for a determination of (∆m+)AL in terms of model parameters.
Therefore the charged Higgs boson mass is given in terms of other parameters. These
cases yield models with softly broken CP1 in the AL.

Case (SOFT-CP1)AL: e1 = v, e2 = e3 = 0, (I6Z)AL = 0 and q2q3(M2
3 −M2

2 ) 6= 0
and (∆m+)2

AL + (∆q)2
AL 6= 0.

C.2 Softly broken Z2 in the alignment limit

Case SOFT-Z2-X requires Im J1 6= 0, and Case SOFT-Z2-Y requires all em 6= 0, none of
which are compatible with the AL. Thus, we are left with only Case SOFT-Z2-C, being
compatible with alignment,

Case (SOFT-Z2-C)AL: e1 = v, e2 = e3 = q3 = 0,
(M2

1 − 2v2q)(2M2
H± +M2

1 − 2M2
2 − vq1) = 2q2

2v
2.

C.3 Softly broken U(1) in the alignment limit

When we impose alignment on the softly broken U(1) model, we find

Case (SOFT-U1-C)AL: e1 = v, e2 = e3 = q3 = 0,
2M2

H± = vq1 −M2
1 + 2M2

3 ,

2v2(M2
2 −M2

3 )q = v2q2
2 +M2

1 (M2
2 −M2

3 ).

C.4 Softly broken CP2 in the alignment limit

When we impose alignment on the softly broken CP2 model, we find

Case (SOFT-CP2)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 .

Case (SOFT-CP2-C)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 .

Case (SOFT-CP2-D)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 , 2M2
H± = vq1.

Case (SOFT-CP2-CC)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 .

Case (SOFT-CP2-CD)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 , 2M2
H± = vq1 −M2

1 .

16One can also consider (C.5) as a linear equation in (∆q)AL, but the coefficient of front of (∆q)AL can
vanish, so it cannot always be solved for (∆q)AL.
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C.5 Softly broken CP3 in the alignment limit

By identifying {i, j, k} = {1, 2, 3}, we see that Case SOFT-CP3-BCC is already aligned,
and by imposing alignment Case SOFT-CP3-B becomes a special case of SOFT-CP3-BCC.
SOFT-CP3-C simplifies in the AL, so we have two different models of softly broken CP3
in the AL,

Case (SOFT-CP3-BCC)AL: e1 =v, e2 = e3 = q2 = q3 = 0, M2 = M3, 2v2q=M2
1 .

Case (SOFT-CP3-C)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 , 2M2
H± = vq1 −M2

1 + 2M2
3 .

Case (SOFT-CP3-CC)AL: e1 = v, e2 = e3 = q2 = q3 = 0,
2v2q = M2

1 , 2M2
H± = vq1 −M2

1 + 2M2
3 .

Case (SOFT-CP3-B)AL: e1 = v, e2 = e3 = q2 = q3 = 0, M2 = M3,

2v2q = M2
1 , 2M2

H± = vq1 +M2
1 .

Case (SOFT-CP3-BCC)AL: e1 = v, e2 = e3 = q2 = q3 = 0, M2 = M3,

2v2q = M2
1 .

Case (SOFT-CP3-CD)AL: e1 = v, e2 = e3 = q2 = q3 = 0, M2 = M3,

2v2q = M2
1 , 2M2

H± = vq1 −M2
1 .

Case (SOFT-CP3-C0D)AL: e1 = v, e2 = e3 = q2 = q3 = 0, M3 = 0,
2v2q = M2

1 , 2M2
H± = vq1 −M2

1 .

C.6 Softly broken SO(3) in the alignment limit

By identifying {i, j, k} = {1, 2, 3}, we see that case SOFT-SO3-BCC is already aligned,
and by imposing alignment case SOFT-SO3-A becomes a special case of SOFT-SO3-BCC.

Case (SOFT-SO3-BCC)AL: e1 = v, e2 = e3 = q2 = q3 = 0, M2 = M3,

2M2
H± = e1q1 −M2

1 + 2M2
2 , 2v2q = M2

1 .

A recent paper [57] studies a model with softly broken Z2. In particular, the alignment
limit is adopted and the impact of the Z2-breaking parameter m12 on the digamma rate,
h→ γγ is explored. This corresponds to Case (SOFT-Z2-C)AL, where H3 decouples from
the charged pair (q3 = 0) in addition to its decoupling (together with H2) from the gauge
bosons (e2 = e3 = 0). In addition, there is a constraint involving M1, M2, MH± , q1 and
q2, as well as the quartic coupling q. The authors of ref. [57] analyse the digamma rate in
terms of the trilinear coupling

λhH+H− = 1
v2

[
2M2

h± +M2
1 −

2m2
12

sin β cosβ

]
. (C.6)

In this model, as we see above, m12 has no simple interpretation. Actually, the additional
constraint for this model is

q1
v

= 1
v2

[
2M2

h± +M2
1 − 2M2

2 −
2v2q2

2
M2

1 − 2v2q

]
(C.7)
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with λhH+H− = q1/v. But one should be aware that the mapping of m12 to physical
parameters depends on the model assumptions (see the other models above).

D The non-RGE-stable cases

D.1 Softly broken Z2

Case SOFT-Z2-A: M1 =M2 =M3, (B.17) apply, and none of the six cases of Z2

invariant potential found in [18] apply, for any combination of i, j, k.
Case SOFT-Z2-B: Mi=Mj , ejqi − eiqj =0, bik=bjk=0, and none of the six cases of Z2

invariant potential found in [18] apply, for any combination of i, j, k.

D.2 Softly broken U(1)

Case SOFT-U1-B: Mi = Mj , eiqj − ejqi = 0,
2(e2

i + e2
j )M2

H± = (e2
i + e2

j )M2
i + v2(eiqi + ejqj),

2(e2
i + e2

j )(M2
i −M2

k )v2q = (e2
i + e2

j )(M2
i −M2

k )M2
i

− v2
[
(ekqi − eiqk)2 + (ekqj − ejqk)2

]
,

and none of the four cases of U(1) invariant
potential found in [18] apply, for any combination of i, j, k.

D.3 Softly broken CP3

Case SOFT-CP3-ABBB: M1 = M2 = M3, Q2 = 0, 2v2q = M2
1 ,

and none of the five cases of CP3 invariant
potential found in [18] apply, for any combination of i, j, k.
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