
University of Bergen
Department of Informatics

DRLMA: An Intelligent Move

Acceptance for Combinatorial

Optimization Problems based on

Deep Reinforcement Learning

Author: Eskil Hamre Isaksen

Supervisor: Ahmad Hemmati

Co-supervisor: Ramin Hasibi

June, 2023

Abstract

Numerous heuristic solution methods have been developed to tackle combinatorial opti-

mization problems, often customized for specific problem domains and use-cases where

they exhibit remarkable performance. However, their effectiveness diminishes significantly

when applied to problem domains for which they were not originally designed, showcasing

poor generalization capabilities. In contrast, metaheuristics are higher-level heuristics so-

lution methods that aim to be applicable to a wide range of different problems. Perturba-

tive metaheuristics operate by traversing the solution space through iterative application

of modifications induced by low-level heuristics. This process continues until a specified

stopping criteria is met, enabling the method to efficiently explore and refine solutions.

A central aspect of these search-based methods is the move acceptance scheme, which

determines whether or not the suggested modification is to be applied. The Simulated

Annealing acceptance criteria, for instance, occasionally accepts uphill moves, or worse so-

lutions, in order to explore the space of solutions and help the search escape local optima.

In this thesis we propose Deep Reinforcement Learning Move Acceptance (DRLMA), a

general move acceptance framework that leverages Deep Reinforcement Learning into

the acceptance decision. A Deep RL agent is trained using problem-independent search

information, enabling it to learn high-level acceptance strategies regardless of the specific

combinatorial optimization problem at hand. We show that by replacing the Simulated

Annealing acceptance criteria with DRLMA in two different heuristic selection frame-

works, namely Adaptive Large Neighborhood Search (ALNS) and Deep Reinforcement

Learning Hyperheuristic (DRLH), we are generally able to improve the performance of

the respective search methods, the degree of improvement ranging from only slightly in

the worst cases to considerably in the best cases.

Acknowledgements

I would like to express my heartfelt appreciation to my supervisors, Ahmad Hemmati

and Ramin Hasibi, for their invaluable guidance and support throughout my master’s

studies at the University of Bergen. I am deeply grateful for the insightful discussions

we have had, for their encouragement to explore my own ideas and for their trust in my

ability to manage my time effectively. I am indebted to them both for the time and effort

they have invested in my development, and for being an understanding and resourceful

presence throughout my journey.

Furthermore, I am immensely grateful to all those who have have supported me through-

out the completion of this master thesis. While the research itself has been a fun and

fulfilling endeavor, it is the camaraderie and steadfast support of my peers that have truly

enriched this experience. I would especially like to express my gratitude to Thorarinn

Gunnarsonn in this regard, for without his presence my time at UiB would have been

much less enjoyable. I’d also like to give a special shout-out to Audun Ljone Henriksen

and Herman Jangsett Mostein for our enlightening exchanges. Without them, I’m pretty

certain my upcoming summer vacation would’ve been seriously cut short. Thanks for

keeping it intellectually stimulating and saving my precious downtime! I would also like

to thank my family and friends who have contributed immensely to keeping me moti-

vated throughout this entire journey and for providing me with healthy and much-needed

distractions along the way. Lastly, a big thank you to my incredible girlfriend Pauline,

for your unwavering understanding and support. I am forever thankful for the patience

you have displayed by sticking with me these last few months.

Eskil Hamre Isaksen

Tuesday 27th June, 2023

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Thesis outline . 4

2 Background and Related Work 5

2.1 Combinatorial Optimization . 5

2.2 Solution Methods . 6

2.2.1 Exact approach . 6

2.2.2 Heuristic approach . 7

2.2.3 Metaheuristics . 9

2.3 Hyperheuristics . 10

2.4 Adaptive Large Neighborhood Search . 12

2.4.1 Simulated Annealing Acceptance Criteria 13

2.5 Reinforcement Learning . 14

2.5.1 Introduction to Reinforcement Learning 15

2.5.2 Deep Reinforcement Learning . 19

2.6 Related Work . 22

2.6.1 Metaheuristics and Reinforcement Learning 22

2.6.2 Move Acceptance . 23

2.6.3 Move Acceptance and Reinforcement Learning 24

3 Problem Sets 26

3.1 Capacitated Vehicle Routing Problem (CVRP) 26

3.2 Parallel Job Scheduling Problem (PJSP) 27

4 DRLMA 29

4.1 The Hyperheuristic Setup . 29

4.1.1 Heuristics . 30

4.1.2 Solution Representation and Initial Solution 33

i

4.1.3 Stopping Condition . 33

4.1.4 Deep Reinforcement Learning in the Hyperheuristic setting 34

4.2 Deep RL Move Acceptance (DRLMA) 35

4.2.1 State Representation . 36

4.2.2 Reward function . 38

4.3 DRLH+DRLMA: A comment on Design Choice 40

5 Experimental Setup 43

5.1 Experimental Environment . 43

5.2 Dataset Generation . 43

5.2.1 CVRP . 44

5.2.2 PJSP . 44

5.3 Baseline Solution Methods . 44

5.3.1 Adaptive Large Neighborhood Search (ALNS) 45

5.3.2 Deep Reinforcement Learning Hyperheuristic (DRLH) 45

5.4 Hyperparameter Selection . 46

5.4.1 Adaptive Large Neighborhood Search (ALNS) 46

5.4.2 DRLMA . 46

6 Results 49

6.1 Results of CVRP . 50

6.2 Results of PJSP . 50

6.3 Performance Results . 53

6.4 Move Acceptance Behaviour . 53

7 Conclusion and Future Work 57

List of Acronyms and Abbreviations 59

Bibliography 60

A Additional Performance Plots 65

ii

List of Figures

2.1 The general hyperheuristic framework. At time-step t, the incumbent so-

lution St is passed to the Heuristic Selection part of the algorithm, where a

set of heuristics L is selected and applied onto St, producing a set of candi-

date solutions W . St and W is further passed onto the Move Acceptance,

which either accepts a solution in W or rejects W entirely, resulting in

the incumbent solution for time-step t + 1. The domain barrier separates

the hyperheuristic framework from low-level problem-dependent details.

Image taken from Özcan et al. (2010). 11

2.2 The agent-environment interaction cycle. At state St the agent selects

action At. The environment transitions the agent into the new state St+1

along with the immediate reward Rt+1. Image from Sutton and Barto (2018). 16

3.1 Illustration of the CVRP. 27

3.2 Illustration of the PJSP. 28

6.1 Results of DRLMA and DRLH+DRLMA for CVRP and PJSP. 50

6.2 Box plot results for the largest instances of CVRP and PJSP. 51

6.3 Average performance of ALNS, DRLH, DRLMA and DRLH+DRLMA on

the two problems. 54

6.4 Acceptance probabilities for ALNS, DRLMA and DRLH+DRLMA on

CVRP-50. 56

A.1 Average performance of ALNS, DRLH, DRLMA and DRLH-DRLMA on

the CVRP. 66

A.2 Average performance of ALNS, DRLH, DRLMA and DRLH-DRLMA on

the PJSP. 67

iii

List of Tables

4.1 The destroy heuristics. 32

4.2 The repair heuristics. 33

4.3 State representation of the RL Move Acceptance agent. 37

5.1 The Python packages used in our experiments. 43

5.2 The general hyperparameters used in our experiments. 46

5.3 The hyperparameters of the DRLMA Reward function (4.3). 47

6.1 Average performance for CVRP-20. 51

6.2 Average performance for CVRP-50. 51

6.3 Average performance for CVRP-100. 52

6.4 Average performance for CVRP-200. 52

6.5 Average performance for PJSP-20. 52

6.6 Average performance for PJSP-50. 52

6.7 Average performance for PJSP-100. 52

6.8 Average performance for PJSP-300. 53

iv

Chapter 1

Introduction

1.1 Context and Motivation

Combinatorial optimization problems encompass a wide range of problems that involves

finding an arrangement or a selection of elements from a finite set such that an objective

function is optimized. Typical combinatorial optimization problems include the Trav-

eling Salesman Problem (TSP), the Minimum Spanning Tree Problem (MST) and the

Knapsack Problem (KP). Many of these problems cannot be solved in polynomial time,

and exhaustive search-based methods becomes intractable very quickly as the size of

the problem grows. For this reason one often resort to approximation solution methods

instead, called heuristics, which deal with quickly finding solutions of sub-optimal but

satisfactory quality.

Metaheuristics, a powerful class of solution methods, consists of algorithmic frame-

works that each provide a set of rules or strategies that make up a heuristic optimiza-

tion algorithm. Examples of classical metaheuristics are Genetic Algorithm (GA), Tabu

Search (TS), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and

Simulated Annealing (SA). In recent times, Adaptive Large Neighborhood Search (ALNS)

(Ropke and Pisinger, 2006) is a frequently used metaheuristic that has proven to be quite

effective on several combinatorial optimization problems. In ALNS, a set of combined

destroy-repair operators with different attributes is used to repeatedly modify a solu-

tion, exploring parts of the solution space and discovering better solutions along the way.

When the search ends, the solution with the best objective value is yielded. The main

contribution of ALNS lies in its adaptive layer which determines the operator selection

1

process. During the search, each operator has scores associated with them that reflects

the effectiveness of the operator in the most recent part of the search. These scores makes

up the operator selection probabilities, such that recently well-performing operators are

more likely to be selected in the future.

ALNS also has some shortcomings, however. Firstly, Turkeš et al. (2021) claim that

the effectiveness of the adaptive layer of ALNS has been widely overstated, further claim-

ing that it only has a small impact on the objective value in general. Secondly, the ALNS

search is divided into segments consisting of a certain number of search iterations, in

which the operator scores - and thus the selection probabilities - stays constant. The

scores are only updated in between two segments. Although the decision making ca-

pabilities possess a certain level adaptability on a ”macro-level”, it remains quite rigid

on a ”micro-level”. From iteration to iteration within a segment, the operator choice is

randomly sampled according to the fixed operator probabilities. This design employs a

considerable limitation on the decision making capabilities of ALNS.

Kallestad et al. (2023) proposed Deep Reinforcement Learning Hyperheuristic (DRLH)

to mitigate the shortcomings of ALNS. In their contribution they replace the adaptive

layer of ALNS with a deep reinforcement learning (RL) agent. The RL agent is re-

sponsible for selecting which operator to apply to the solution at every iteration of the

search. The agent is trained to use available problem-independent information regard-

ing the search, such as the difference in objective value between past solutions and the

number of iterations since the solution was last changed, to select an operator so as to

maximize a long-term reward function. This makes DRLH adaptable on a ”micro-level”,

at each iteration of the search being able to recognize problem-independent situations

and efficiently map them to a certain operator. As opposed to ALNS, the operator selec-

tion probabilities may change quickly from iteration to iteration since the agent is able

to immediately adapt to new situations. The authors show that DRLH is able to signif-

icantly outperform ALNS on four different combinatorial optimization problems, clearly

displaying the generalization capabilities of their contribution.

An entirely different aspect of these iterative solution methods is the move accep-

tance, also known as the acceptance criteria, which is combined with the operator selec-

tion scheme. The selected operator modifies the incumbent solution into a new solution,

called the candidate solution. This ”move” in the solution space is merely a suggestion.

The move acceptance decides whether the move should be accepted or rejected, and so

if the candidate is accepted, it takes the place as the incumbent solution. It is gener-

ally considered wise to accept downhill moves (improvements), so the defining trait of

2

different move acceptances is usually their strategy when dealing with uphill moves (non-

improvements). The move acceptance turns out to be a very important decision, vital to

a successful search algorithm. Classical move acceptances include Hill climbing, Record-

To-Record Travel, Great Deluge and the Simulated Annealing acceptance criteria, which

all appear quite frequently in the literature.

In a their cross-domain performance comparison of different move acceptances, Jack-

son et al. (2018) show the Simulated Annealing acceptance criteria to be the most effec-

tive one in general terms. In Simulated Annealing, the acceptance decision is based on a

stochastic framework called the Metropolis criteria which depends on the change in ob-

jective value and the temperature which decreases in time (Kirkpatrick et al., 1983). The

overall strategy of the Simulated Annealing acceptance criteria is to gradually decrease

the probability of accepting uphill moves as time progresses. By frequently allowing uphill

moves at the beginning of the search, it is able to explore diverse regions of the solution

space, and as the search progresses the strategy is progressively shifted to favour downhill

moves only - to converge towards as good solutions as possible. Both ALNS and DRLH

use the Simulated Annealing acceptance criteria.

Although generally considered to be a strong move acceptance, we argue that it isn’t

flawless. Its performance can be sensitive to the selection of certain hyperparameters,

such as the initial temperature and the cooling schedule. Different problems may require

different hyperparameter configurations, and careful experimentation and tuning is often

required to achieve good performance. Moreover, most move acceptances in literature,

including the Simulated Annealing acceptance criteria, has the property that acceptance

is based on only a narrow fraction of the information available regarding the search.

Inspired by the works presented by Kallestad et al. (2023), we believe that more sophisti-

cated move acceptance can be developed by allowing more search information to be taken

into consideration.

In this thesis we propose Deep Reinforcement Learning Move Acceptance

(DRLMA), a general move acceptance for solving combinatorial optimization problems.

The move acceptance consists of a Deep RL agent which is trained using a popular Deep

RL technique called Proximal Policy Optimization (Schulman et al., 2017). DRLMA

is trained using problem-independent information about the search process as its state

representation, combined with a problem-independent reward function that encourages

the search to locate better solutions in the near future. By removing DRLMA from any

problem-specific details we allow the framework to be applied to different combinatorial

optimization problems, which we show experimentally by solving two different combina-

torial optimization problems, namely the Capacitated Vehicle Routing Problem (CVRP)

3

and the Parallel Job Scheduling Problem (PJSP). Training DRLMA makes it adaptable

to different problem settings by allowing it to develop a problem-specific move accep-

tance strategy for each individual problem setting. Both the state representation, the

reward function and remaining hyperparameters stays constant across the two problems,

removing the need for problem-specific parameter tuning which is usually required to

achieve good performance when using ALNS and Simulated Annealing. Furthermore, we

combine DRLMA with two different hyperheuristic frameworks, showing that DRLMA

displays a general tendency to outperform the Simulated Annealing acceptance criteria

in different operator-selection settings. Most importantly perhaps, this also shows that

the performance of DRLH can be further improved upon by replacing the Simulated

Annealing acceptance criteria with DRLMA.

1.2 Thesis outline

Chapter 2 - Background and Related Work touches upon the theoretical aspects

of combinatorial optimization and reinforcement learning that we find relevant to this

thesis. This section also covers previous work related to solving combinatorial optimiza-

tion problems by embedding elements of reinforcement learning into the optimization

algorithm.

Chapter 3 - Problem Sets briefly describes the two combinatorial optimization prob-

lems that we use to display the effectiveness of DRLMA.

Chapter 4 - DRLMA introduces the Deep Reinforcement Learning Move Acceptance,

the main contribution of this thesis. We describe the framework in detail, along with the

operators used by all the solution methods.

Chapter 5 - Experimental Setup describes the experimental details of this thesis,

including the hardware and software used to set up and run the experiments, infor-

mation regarding the baseline methods used to compare the performance of DRLMA,

experimental hyperparameters and reward function specifics, and the generation of the

problem instance datasets.

Chapter 6 - Results displays the experimental statistics and findings, along with a

discussion of their significance.

Chapter 8 - Conclusion and Future Work summarizes the work and main findings

of this thesis, followed by a brief proposition of future work related to the thesis based

what we experienced when developing it.

4

Chapter 2

Background and Related Work

2.1 Combinatorial Optimization

Optimization is the process of making a design or decision as effective as possible relative

to a set of criteria or constraints (Kelley, 2010). Combinatorial optimization is a subfield

within optimization concerned with finding an optimal object from a finite set of objects

(Schrijver, 2003). These objects, or solutions, are discrete in their nature, consisting ei-

ther of an arrangement or a selection of elements originating from a finite set of elements.

These kinds of problems arise in many different disciplines, such as operations research,

artificial intelligence, algorithmic theory, bioinformatics, transportation and electronic

commerce. Some prominent examples of combinatorial optimization problems include

Vehicle Routing Problems, Graph Colouring Problems, Knapsack Problems, Scheduling

Problems and Bin Packing Problems. A combinatorial optimization problem is based

on an objective function and a set of logical conditions or constraints. A solution that

satisfies these logical conditions are deemed feasible or valid, and feasible solutions are

deemed comparable in terms of their objective function value. An optimal solution is

the solution among the finite set of feasible solutions with either the highest or lowest

objective, depending upon whether the problem is a maximization or minimization prob-

lem, respectively (Hoos and Stützle, 2005). A solution to the Scheduling Problem, for

instance, assigns each worker or machine an arrangement of jobs, such that all the jobs

are handled exactly once.

It turns out that being able efficiently solve combinatorial optimization problems is of

great economic importance. A food delivery company, for instance, must be able schedule

5

its available drivers in a manner such that delivery time is minimized and/or profit is

maximized, and an airline company would want to set up schedules for their crew such

that the total operational cost is minimized. The difference between improvisational

on-the-fly planning directed by humans and advanced algorithmic planning to find the

optimal course of actions can mean the difference between great economic success and

bankruptcy for a company (Hoffman and Ralphs, 2013).

There exists a fundamental divide in combinatorial optimization problems based on

whether they can be solved in polynomial time (meaning efficiently) or not. Problems

that are concerned with finding shortest paths, optimal flows and spanning trees are ex-

amples of problems where the optimal solution may be obtained efficiently. On the other

hand, many of the combinatorial optimization problems that frequently appear in the real

world, such as the Traveling Salesman Problems, Vehicle Routing Problems and Schedul-

ing Problems, belong to the complexity class known as NP-Complete. Simply put this

means that no efficient optimization algorithm can be constructed (assuming P ̸= NP,

a reasonable assumption which we won’t linger on in this thesis). Furthermore, exhaus-

tive search-based solution methods for these kinds of problems are generally considered

intractable: real-world instances of these problems are usually so big that a complete

enumeration of the solution space, the set of all feasible solutions, simply would take

too long a time. Throughout the rest of this thesis, the term combinatorial optimization

problems refers to the latter type of problems. There exists several solution methods

for these kinds of combinatorial optimization problems, and we will touch upon some of

them in the following section.

2.2 Solution Methods

In this thesis we find it appropriate to divide the solution methods of combinatorial opti-

mization problems into two categories, namely exact approaches and heuristic approaches.

As our thesis’ main contribution is a heuristic approach, we will explore this category

most in-depth. However, first we shortly introduce the concept of exact approaches to

emphasize the existence of alternatives to heuristic approaches, and most importantly to

illustrate the need for heuristic approaches.

2.2.1 Exact approach

When solving a combinatorial optimization problem, exact approaches offers a guarantee

of obtaining the optimal solution. The downside is that these approaches usually have to

6

exhaustively explore large parts of the solution space, severely impacting the algorithmic

run time when dealing with large-scale and tightly constrained problems. One commonly

used exact approach is the branch-and-bound method, which uses a tree search to divide

the solution space into smaller subspaces and strategically excludes those regions which

cannot lead to a better solution (Morrison et al., 2016). Although a complete solution

space enumeration is avoided, this method still becomes time-consuming for problems

of realistic size, limiting its practicality. When used in practise, the search is typically

stopped when a limit is reached, such as a time limit or maximum number of solutions

visited - turning this solution method into a heuristic. Other examples of exact approaches

are branch-and-bound, branch-and-price and dynamic programming.

2.2.2 Heuristic approach

As opposed to exact algorithms, heuristic approaches do not guarantee to find an optimal

solution. The main strength of heuristic approaches is that they find ”good enough”

solutions with much less computational effort than exact approaches. For large-scale

problems where exact approaches becomes intractable, heuristic approaches is the only

alternative. For instance, Drezner et al. (2005) show that exact methods are unable to

solve instances of the Quadratic Assignment Problem to optimally when the problem size

grows beyond 30-40, whereas heuristic approaches manages to quickly find high quality

solutions. A lot of research has been conducted by the optimization community on

developing heuristic techniques that produce as good solutions as possible. Before diving

further into the different techniques, we find it useful to divide heuristic approaches into

two categories: constructive heuristics, which builds a solution from scratch by iteratively

adding elements, and perturbative heuristics, which starts out which some initial solution

and repeatedly applies modifications in order to improve it. Of these, we will explain the

latter category in greater detail, since it encompasses this thesis’ contribution.

Constructive Heuristics

Constructive heuristics build a solution by repeatedly adding elements until a complete

solution is obtained. These heuristic approaches are generally very fast and produce

solutions with higher quality than random construction approaches, but quality-wise they

usually fall way short compared to exact approaches and even perturbative heuristics

since they do not perform local modifications to the constructed solution. In fact, due to

7

the speed of constructive heuristics they are often employed to create initial solutions for

perturbative heuristics approaches, which then further improves upon the initial solution.

An example of a simple constructive heuristic is the greedy one: in TSP, for instance, a

solution can be constructed by starting with an arbitrary city and iteratively select the

closest unvisited city to add to the solution until all cities has been visited.

Perturbative Heuristics

Perturbative heuristics, also called local search methods, iteratively apply a rule-based

and potentially stochastic modification to the solution l, producing a neighboring solu-

tion l′. The functional core performing the modification itself has several names in the

literature, ranging from heuristics, move operators or simply just operators. In this thesis

we use both the terms ”heuristic” and ”operator” to refer to this functional core.

Recall that combinatorial optimization can be viewed as searching for the best object

(solution) in a finite set of objects (the solution space). Exact solution methods, such as

branch-and-bound, does this by visiting a large portion of the solutions in the solution

space. Perturbative heuristics, however, seeks to drastically limit the number of visited

solutions to speed up the search considerably. The goal of any perturbative heuristic is

thus to ”make every second count” - to obtain an as high-quality solution as possible

under the constraint of being limited to a tiny fraction of the solution space.

The design of a heuristic (as in operator) reflects a certain search-strategic idea. For

instance, a greedy heuristic produces solutions closer to local optimum in the solution

space. Solely relying on such a heuristic will trap the search in the closest local optimum,

generally leading to solutions of poor quality. When designing a heuristic, a common idea

is to include a degree of randomness within it. The neighborhood of a solution is the set

of all solutions that can be obtained by applying the heuristic a single time. Stochastic

heuristics has a larger neighborhoods than deterministic heuristics, and is much less likely

to get stuck in local optima. A different design aspect is the question of how much the

heuristic should modify the solution. Small-scale heuristics perform small modifications

to the solution and are generally computationally inexpensive, allowing the search method

to explore a vast set of solutions in a short amount of time. However, search methods

that rely on repeated small modifications have difficulties moving from one promising

part of the solution space to the next.

A core aspect of perturbative heuristic methods is the stopping criteria. This typically

puts a limit on either the amount of perturbations or on the running time of the search.

8

When the stopping criteria is reached, the algorithm terminates and yields the global

best solution found. The stopping criteria we adapt in this thesis limits the amount of

perturbations, or search iterations.

2.2.3 Metaheuristics

A metaheuristic is a high-level problem-independent algorithmic framework that provides

a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen

and Glover, 2013). As with heuristics, metaheuristics solution methods can be divided

into constructive and perturbative metaheuristics. In the remainder of this thesis we use

the term ”metaheuristics” to refer to ”perturbative metaheuristics”, as they appear most

frequent in the literature and is highly relevant to this thesis.

Metaheuristics are regarded as problem-independent, as they make few assumptions

on the underlying details of the problem being solved. This makes metaheuristics very

flexible optimization framework suitable for solving a wide range of different combinato-

rial optimization problems. A central aspect of metaheuristics is that they search within

the solution space, comparing the objective of different solutions encountered to guide the

search onward. The search process can be summarized as iteratively modifying solutions

by applying various operators in some rule-based fashion, allowing the search to explore

different regions of the solution space, escape local optima and move towards promising

solutions. Examples of metaheuristics that frequently appear in the literature are Ge-

netic Algorithms, Tabu Search, Simulated Annealing, Variable Neighborhood Search and

Adaptive Large Neighborhood Search.

Metaheuristics can further be classified in several dimensions, such as trajectory meth-

ods versus discontinuous methods, single-point search versus population-based search,

one vs. various neighborhood structures (Birattari et al., 2003). In this thesis we focus

on metaheuristics that embeds move acceptance methods into a single-point, trajectory-

based search framework. In literature, these kinds of metaheuristics are also known as

hyperheuristics (Burke et al., 2013), a class of search methods we will describe in further

detail in Section 2.3. The move acceptance determines if the search should move to the

suggested solution or stay at the incumbent one, thus playing a vital role guiding the

search in the correct direction. This will be explained in greater detail in Section 2.4.1.

9

Intensification and diversification

Metaheuristics are constrained to visit only a miniature fraction of the solution space by

moving from one solution to next in a trajectory-like manner until the stopping criteria

is met. The central question in these kinds of metaheuristics is how to guide the search-

trajectory to obtain the best possible solution. A challenging aspect of this question is

finding a good balance between two conflicting notions throughout the search, namely in-

tensification and diversification. Intuitively, parts of the solution space deemed promising

should be explored as much as possible, increasing the chance of discovering good solu-

tions. This notion is known as intensification. At the same time, the search should also

cover as large portion of the solution space as possible to prevent the search from being

confined to a certain region of the solution space. This notion is known as diversification.

Obviously, both notions have their place in the search, and the metaheuristic should

balance the two in a sensible manner.

2.3 Hyperheuristics

As mentioned, the design of an operator, or heuristic, should reflect a certain strategic

idea. It turns out that the quality of the search method might improve by gathering

multiple lower-level heuristics with different attributes and use-cases into a heuristic

pool, and then strategically alternate between which heuristic to employ. Hyperheuris-

tics are heuristic search methods that aim to intelligently direct the selection process (or

generation process) of lower-level heuristics throughout the search, based on problem-

independent information available. In simpler (and slightly less accurate) terms, hyper-

heuristics are heuristics to choose heuristics (Cowling et al., 2001).

Unlike metaheuristics which search within the solution space, hyperheuristics search

within the search space of heuristics. In this sense, hyperheuristics aim to operate at

a level of abstraction above the problem instance and even the class of problems be-

ing solved. In other words, a domain barrier is set up between the heuristic selection

process and the dynamics of the underlying problem, as displayed in Figure 2.1. This

reflects the general goal of the hyperheuristic approach: to discover a generally applicable

methodology capable of solving a wide range of problem classes, at the cost of slightly

subpar solution qualities compared to problem-specific heuristic methods. As opposed

to problem-specific heuristic methods, the low-level heuristics typically used in hyper-

heuristic frameworks are easy to implement across different problem classes, requiring

little-to-none domain knowledge.

10

11

Figure 2.1: The general hyperheuristic framework. At time-step t, the incumbent solution
St is passed to the Heuristic Selection part of the algorithm, where a set of heuristics L
is selected and applied onto St, producing a set of candidate solutions W . St and W is
further passed onto the Move Acceptance, which either accepts a solution in W or rejects
W entirely, resulting in the incumbent solution for time-step t + 1. The domain barrier
separates the hyperheuristic framework from low-level problem-dependent details. Image
taken from Özcan et al. (2010).

2.4 Adaptive Large Neighborhood Search

Large Neighborhood Search (LNS), proposed by Shaw (1997), was among the first solu-

tion methods that made large-scale solution modification tractable through the use of a

combined destroy and repair heuristic. Unlike typical small-scale local search heuristics,

destroy and repair heuristics can rearrange 30-40% of the solution components, producing

vastly different solutions. This allows the search to explore a completely different part

of the solution space with a single operation. This is useful in complex combinatorial

optimization problems which has to meet many constraints, such as routing problems

(Schrimpf et al., 2000). Although a destroy and repair heuristic is a much slower opera-

tion, in practise it seems to work at least as effective as solution methods using small-scale

heuristics when given the same amount of time. Building upon the idea of large neigh-

borhoods, Adaptive Large Neighborhood Search (ALNS) expands upon LNS, making it

into a hyperheuristic by providing a selection strategy for multiple destroy and repair

heuristics (Ropke and Pisinger, 2006).

The selection process is stochastic, and each heuristic has an associated probability

of being selected. At the beginning of the search, all heuristics are assigned equal proba-

bilities. During the search the probabilities are dynamically updated based on the recent

performance of each heuristic. Thus, selection of recently well-performing heuristics be-

comes more likely. The search is divided into many segments with a predefined size, in

which heuristic probabilities stay stationary. When a heuristic is selected and applied

to the incumbent solution l to produce a candidate solution l′, it receives an immediate

score based on a score function on the form:

ψ = max



ω1 if f(l′) < f(lbest),

ω2 if f(l′) < f(l),

ω3 if accept(l′),

ω4 else

(2.1)

where ω1, ω2, ω3 and ω4 are parameters set by the client. Usually ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0.

Thus, the higher the value the more successful the heuristic. During the segment the

search keeps track of the total score for each heuristic. When the segment ends, the

probability distribution is updated such that high-scoring heuristics become more likely

in the new segment. The scores resets, and a new segment starts. This is the adaptive

part of ALNS.

12

Two hyperparameters determines the effectiveness of this solution method, namely

the reaction factor and the segment size. The reaction factor determines the degree in

which the scores from the last segment should affect the new probability distribution,

like a trade-off between emphasis on past performance and most recent performance.

The segment size determines the number of optimization steps the algorithm should

perform before the probability distribution is updated. Longer segments means less

frequent updates to the probability distribution, increasing the time it takes for valuable

information to influence the probabilities. However, once an update is performed it is

less affected by stochastic noise. In the same manner, a low reaction factor mean a more

conservative probability distribution update, meaning it takes longer to achieve optimal

probabilities. At the same time it avoids potentially harmful updates caused by stochastic

noise in the search process.

2.4.1 Simulated Annealing Acceptance Criteria

The purpose of the move acceptance, also called the acceptance criteria, is to aid the

search in finding a sensible balance between intensification and diversification and help

the search escape local minima. Observe in Eq.2.1 that heuristics receive a small score if

an uphill move is accepted. The idea is that heuristics should also be slightly awarded for

producing solutions that pass the acceptance criteria, so as to not solely encourage the

selection of intensifying heuristics. But how should the acceptance criteria be designed

so that it aids the search in a best possible way?

Ropke and Pisinger (2006), the authors who proposed ALNS, suggest using the same

move acceptance presented in the Simulated Annealing (SA) metaheuristic, introduced

by Kirkpatrick et al. (1983). This move acceptance, inspired from physics, stochastically

accepts uphill moves with a probability based on the Boltzmann function. The details

surrounding this move acceptance vary slightly in literature, and so we present the version

that Kallestad et al. (2023) used in their experimentation and that consequentially we use

in our own experiments. The SA acceptance criteria derives the probability of accepting

the candidate solution l′ based on the following formula:

PSimulated Annealing(accept) =



1.0 f(l′) < f(l),

0.0 if l′ has been encountered before,

pwarmup if warm-up phase,

e−
∆E
T otherwise

13

where the given order is regarded as the order of precedence - the first satisfied condition

determines the probability.

The Boltzmann function e−
∆E
T contains two parameters, the first being the difference

in cost between the incumbent l and new solution l′, denoted ∆E = f(l′) − f(l). The

cost difference term ensures that small uphill steps is more likely than large ones. The

second parameter is called the temperature T , which is gradually decreases throughout the

search. At the beginning of the search the algorithm is more likely to perform larger uphill

moves, allowing exploration of large portions of the solution space. When temperature

drops towards the end of the search, the search will increasingly favor downhill moves only

- shifting its focus onto finding as good solutions as possible. This balances intensification

and diversification in a logical manner: diversify first, discovering the promising areas of

the solution space. When the solution space is sufficiently explored, shift focus onto

finding the best solutions within the promising regions.

Since the nominator of the Boltzmann function is dependent upon objective values,

the denominator - the temperature - must also have this characteristic somehow. To set

the initial temperature T0 the search starts off with a warmup phase, a period of the search

lasting for 100 iterations where solutions are accepted with a probability determined by

the hyperparameter pwarmup (usually set to 1.0). During this phase all the cost differences

of the non-improving moves ∆E > 0 is kept track of by the algorithm. When the warmup

phase ends, the mean positive delta ∆E is calculated, from which the initial temperature

is derived:

T0 =
∆E

ln 0.8

During the rest of the search, the temperature is exponentially decreased by a cooling

schedule presented in Crama and Schyns (2003), reaching about zero temperature - and

hence about zero acceptance probability - at the end of the search.

Later in this thesis we present DRLMA, a novel move acceptance which we will

compare to the SA acceptance criteria.

2.5 Reinforcement Learning

It is common to divide machine learning into three separate fields, namely supervised

learning, unsupervised learning and reinforcement learning. Out of these three, supervised

14

learning is by far the largest area of research, contributing huge advances within the fields

of image processing and natural language processing. In supervised learning a model

is trained to discover underlying patterns in a certain data distribution given both a

set of samples X and their corresponding target variables Y . The overall goal is the

maximize the prediction capability of the model. Given an unseen set of data from the

same distribution, the desire is to have the predicted targets Ypred to resemble the true

targets Ytrue as much as possible. For instance, X might be pictures of animals and Y the

corresponding type of animal. The supervised learning task is thus animal recognition - to

be able to tell the type of animal given a picture of it. Similarly, unsupervised learning is

also concerned with a data setX from some underlying distribution, but unlike supervised

learning, it doesn’t utilize the target variables Y . The objective of unsupervised learning is

rather to gain some insight into the nature of the data distribution itself, and some typical

unsupervised tasks are dimensionality reduction, clustering, and anomaly detection.

Reinforcement learning, which is the focus of this thesis, is quite different from the

two other fields of machine learning. The most important distinction is the absence of a

predefined data set. Reinforcement learning is concerned with the learner and decision

maker one the one hand, denoted agent, and the environment which the agent interacts

with on the other hand. For each action the agents makes, it is given a scalar value,

denoted reward, from the environment. The reward can be interpreted as the environ-

ment’s response to the agent’s action, and it can be both positive and negative. It gives

the agent an indication of the quality of the action. The agent will use this feedback to

try to learn which actions are favorable in a given situation. The agent’s objective is to

maximize the received reward in the long run.

This chapter will firstly give a brief introduction to reinforcement learning and its

central concepts. Then, the concept of Deep Reinforcement Learning (DRL) will be

introduced, along with one of its most successful approaches in recent times.

2.5.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is learning how to map situations to actions so that some

numerical reward is maximized. The agent and the environment interact continually

in a circular fashion. The agent selects an action based on what it currently observes,

somehow utilizing the knowledge it has learnt. The environment executes the action,

transitions the agent into a new situation, and provides the agent with an immediate

reward. This circular dynamic is displayed in Figure 2.2.

15

More precisely, the agent is given a state st ∈ S from the environment at time step t,

where S is the set of all possible states. A state is a representation of the environment as

things currently is - every bit of information the agent should know to make a decision.

Given a state, the agent chooses an action at from its own action space A(st). Both the

next state st+1 and the reward rt+1 is determined by the dynamics of the environment.

In cases where the number of possible states, actions and rewards are finite, the dynamics

can be mathematically formulated as the conditional state-transition probability function

p(s′, r|s, a) = P (St = s′, Rt = r|St−1 = s, At−1 = a) (2.2)

for all s′, s ∈ S, r ∈ R and a ∈ A(s). Being a conditional probability distribution, it has

the following property:∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s). (2.3)

This means that the agent has a certain probability of ending up in state s′ given that

it currently is in state s and performs the action a. In many reinforcement learning

scenarios, this probability is zero for all but a few states. It can be useful to think of

the next state and reward pair as being sampled from this probability function. One

important aspect of the environments dynamics is whether it is stationary or dynamic.

In a stationary environment where the transition probabilities and reward function stays

constant, learning is much easier since any knowledge the agent acquires will also be

true in the later parts of the learning process. In our experiments the environment is

stationary, but we will briefly discuss a potential improvement upon or own contribution

toward the end of this thesis where the environment becomes dynamic.

Figure 2.2: The agent-environment interaction cycle. At state St the agent selects action
At. The environment transitions the agent into the new state St+1 along with the imme-
diate reward Rt+1. Image from Sutton and Barto (2018).

16

Another important aspect of the environments dynamics is that it is often unknown.

The only way of gaining knowledge about the quality of an action given a state is by

having an agent explore - choose some action, receive some reward, and learn from the

result. Recall that the agent’s objective is to maximize the long-term reward signal. This

long-term reward can formally be defined as the discounted return, commonly referred to

as just the return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.4)

where γ ∈ [0, 1] is the discount rate (Sutton and Barto, 2018). The discount rate balances

how much the agent values immediate rewards versus rewards far into the future. Note

that when attempting to optimize the return, the agent might not always choose the

action with the highest immediate reward - a seemingly bad action might be the optimal

choice in the long run.

A central concept in RL is the value function, which gives the expected return for any

state or state-action pair. This is a theoretical concept the agent has no direct access

to. However, some RL-approaches maintains a value function estimate. In such cases

the estimate is continually updated as the agent explores the environment and receives

more knowledge about its behaviour. The value function goes hand-in-hand with the

agents policy, meaning its behaviour. Formally, the policy can be defined as a probability

distribution over all possible actions conditioned on the current state, denoted π(at|st).
It can be thought of as a mapping from states to actions. The policy is thus highly

interpretable - it explicitly states the agents behaviour. The state-value function v is

theoretically defined with respect to a certain policy π:

vπ(s) = Eπ(Gt|St = s) (2.5)

that is, the expected return from state s if the agent follows the policy π at time step t.

Instead of explicitly stating which action the agent should take, the value function states

how preferable a certain state is.

Using these concepts, the field of RL can be roughly divided into the following ap-

proaches (Sutton and Barto, 2018):

• Value-based: Has a learnt value function, from which the policy is implicitly derived

• Policy-based: Learns the policy directly

• Actor-critic: Learns both the policy and the value function

17

Value-based methods aims to estimate the true value function - the expected return

for all states or state-action pairs. The goal in RL is usually to improve upon an already

known policy, and possibly even to find the optimal policy - the policy that maximizes

the expected return of all states. The idea of value-based methods is to use the value

function to search for good policies. A common approach is to estimate the state-value

function Vπ(s) for a given policy π. The value function estimate only tells you how

good a particular state is - it doesn’t clearly communicate the best action given a state.

Therefore, many value-based RL approaches revolves around estimating the action-value

function qπ(s, a) = Eπ(Gt|St = s, At = a) instead. Theoretically it is equivalent to

the value function, and it is immediately clear which action that will likely yield the

highest return. A simple and yet effective way obtaining an action-value estimate Qπ is

by applying the recursive Bellman equation (Bellman, 1954):

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, π(st+1))] (2.6)

The idea is to repeatedly explore the environment and continually update the estimate

for the encountered state-action pairs by combining the immediate reward with a one-

step look-ahead. If the right conditions are met it can be theoretically shown that this

procedure will converge to the action-value function of the optimal policy. One of these

conditions is that all states must have a non-zero probability of being visited, which

means that exploration must be a part of the trajectory sampling process in some way.

Examples of value-based methods that estimate the action-value function to obtain good

policies are SARSA and Q-learning.

While value-based methods aims to find the optimal policy through value-function

estimates, policy-based methods aims to directly learn the optimal policy. One common

approach is policy gradient methods, which parameterize the policy by using a parameter

vector θ ∈ Rd. The policy, denoted π(a|s,θ), can be seen as a function that inputs

the current state and the parameter vector, and outputs the probability distribution

over all possible actions. The most straightforward approach is to represent the policy

parameters as a one-dimensional vector, which corresponds to linear approximation. The

parameters may also represent the weights of a deep neural network, a topic we will return

to shortly. The objective function of policy gradient methods is the expected return from

the start state following the current policy: J(θ) = vπθ
(s0). Recall that this quantity

is what we want to maximize. The policy gradient theorem states that the gradient

of this quantity with respect to the parameters, ∇J(θ), can be calculated using some

theoretical quantities including the true value function. In theory then, the parameters

18

can be updated using gradient accent:

θt+1 = θ + α∇J(θ) (2.7)

where α is the learning rate - the degree of change applied to the policy parameters.

Since the true value function of the policy is unknown, the gradient ∇J(θ) needs to be

approximated. One possibility is to replace the value function term with the observed

return Gt, which yields an unbiased estimate of the gradient. This is the idea behind the

straightforward algorithm known as REINFORCE (Williams, 1992). However, return-

based estimates are often noisy and can result in drastic updates to the parameters. This

is the main reason why these policy gradient methods have a high variance and suffer

from slow convergences. Luckily, there exits techniques that aim to reduce this variance.

One approach is known as baseline subtraction from the estimated return, which can

stabilize learning. Another approach is known as actor-critic methods.

In actor-critic methods both a value function and a policy is learnt, in hopes of

combining the advantages of both value-based methods and policy-based methods. The

actor corresponds to the policy and is responsible for selecting the actions, and the critic

corresponds to the estimated value function. By having a value function estimate it’s

possible to estimate the advantage of taking some action in some particular state. The

advantage, as a theoretical quantity, is the difference between the expected return of

taking some action and the expected return of following the current policy given a state.

This provides a way of assessing the actions in question: a positive advantage means

that the action is preferable compared to following the current policy. The policy can

then be updated to favor actions that has a high advantage, which can lead to faster and

more stable learning. Replacing the empirical return with the advantage estimate reduces

the variance at the cost of introducing some bias (Schulman et al., 2018). In the recent

years, several actor-critic approaches is has shown state-of-the-art-like performance on

a wide range of reinforcement learning tasks, especially in combination with the recent

developments of deep learning.

2.5.2 Deep Reinforcement Learning

If the state and action space for a reinforcement learning problem is limited in size, it is

sufficient to represent the value function or the policy as a table that maps state-action

pairs to values or probabilities. Such approaches, called tabular solution methods, updates

the values of the state-action pairs the agent visits based on the rewards received and

19

the observed state transition that follows. However, many real-life problems are often

very complex and consist of a high-dimensional state space. The state space of such

problems is often huge and may even be infinite. For these kinds of problems we simply

cannot hope to learn the optimal policy using tabular methods, because the state space

cannot be sufficiently explored. There is also the practical issue of fitting the entire state

table into the computer memory. In these situations approximate solution methods are

in order, where the goal is to find sub-optimal but good enough policies.

DRL is a subfield of machine learning that combines deep learning with reinforcement

learning. Deep learning is used to scale the classical RL methods, making them applicable

to problems earlier thought to be intractable. The greatest achievement within the field

of DRL to date is arguably when Google DeepMind’s deep learning-based RL-program

AlphaGo was able to beat the sitting world champion Lee Sedol in the game of Go with a

4-1 score in March 2016. The game of Go is often viewed within the artificial intelligence

community as the most challenging of classical games to master due to its enormous state

and action space, and before the showdown this achievement was thought to lie at least

a decade ahead (Silver et al., 2016). This alone truly demonstrates the potential of the

area of research that is DRL. Besides that, DRL also has practical applications in fields

of robotics, healthcare, transportation, video games and finance.

Deep neural networks (DNN) are essentially function approximators very capable of

learning to capture complex relationships between a high-dimensional raw input space

and the output space. There are several benefits to this that makes them appropriate

in the reinforcement learning setting. The use of DNNs enables so called end-to-end

learning, which means that the network input is the raw, unperturbed state space and

the output is either the action to take or the value of the state or the state-action pair.

Thus, the DNN approximates either the value function or the policy directly, eliminating

the need for manual feature extraction, which in practise can be a tedious and time-

consuming task. For example, convolutional neural networks (CNNs) can be integrated

into the DNN, making it capable of handling raw, high-resolution imagery as input.

In contrast to tabular methods, DNNs don’t suffer from the explosion of the di-

mensionality of the state space which typically happens for complex RL problems. On

the contrary, DNNs are known to generalize, enabling the agent to behave reasonably

when facing previously unseen states. This is due to the powerful concept of represen-

tation learning : the neural network learns to represent the high-dimensional raw input

as low-dimensional features without losing the relevant information. These features can

be generalized across similar states, which speeds up learning and removes the need for

20

exploring the entire state space. This assumes the smoothness assumption: if some state

action pair (S,A) was a good choice, and another state S ′ is similar to S, then chances

are that also (S ′, A) is good. For many RL problems, this is a reasonable assumption to

make.

The field of DRL really took off when a novel algorithm was shown to display profes-

sional human-level performance on a range of Atari 2600 video games, learning to play

based on raw image pixel data and the game score (Mnih et al., 2015). Their algorithmic

contribution, know as Deep Q-Network (DQN), combines a variant of Q-learning with

the deep convolution neural network architecture. Since the success of DQN, a number

of algorithmic improvements has been proposed. One such example is Double Deep Q-

Network (DDQN), which uses two separate networks in training: one for action selection

and one for action value estimation. This decouples action selection from action value

evaluation, in turn mitigating the tendency DQN has of overestimating action values,

leading to faster learning and an overall better performance on a range of problems (van

Hasselt et al., 2015).

Both DQN and DDQN is value-based methods. Although powerful, they suffer from

some shortcomings, the biggest one being related to the fact that value-based methods

estimates the future reward of state-action pairs, and have implicit policies thereof. When

updating the value estimates, the policy might change drastically, which can lead to issues

like instability and oscillation in the Q-values, and ultimately to poor performance. Also,

value-based methods aren’t able to handle stochastic policies, and would fail in a simple

rock-paper-scissors environment. This, however, is no problem for policy-based methods,

which handles stochastic policies perfectly fine. However, policy-based methods tend to

be both data inefficient compared to their value-based counterparts and may suffer from

converging to severe local minima - that is, unsatisfactory policies.

Proximal Policy Optimization

With policy-based methods it can be challenging to update the policy in a stable way, es-

pecially if the state space is vast and generally unstable (Wang et al., 2020). As mentioned

earlier, a naive weight update using some gradient estimate might lead to large changes

in behaviour, which can result in disastrous policies. To combat this, an actor-critic

method called Trust Region Policy Optimization (TRPO) was developed, which restricts

the degree the policy is allowed to change for each weight update. This is achieved by

21

introducing a constraint term into the objective function. A downside to this is that solv-

ing constrained optimization problems is rather computationally expensive, as it requires

a quadratic approximation to the constraint.

Its more natural to utilize a close relative of TRPO called Proximal Policy Opti-

mization (PPO), introduced by Schulman et al. (2017). In PPO the constraint term is

replaced by a clipped surrogate objective, which can be solved using only first-order opti-

mization, like gradient accent. This objective pessimistically ensures that the new policy

doesn’t deviate too far from the old policy. That is, even though there is indications that

the new policy is improved, only a small policy update is performed. This can result in

slower learning, but typically it rather leads to more stable and consistent learning, which

often is the most desirable thing in reinforcement learning. Also, the clipped surrogate

objective allows for using several epochs, i.e. gradient updates per data sample. This

increases data efficiency, essentially increasing the size of the training set without having

to increase the amount of interaction with the environment. Thus, the policy can be

gradually refined in a controlled manner, essentially using the available information in

the data to its fullest extent.

When it was launched in 2017, PPO displayed state-of-the-art performance on typ-

ical RL benchmarks like Atari games compared to other policy-gradient methods. In

comparison to TRPO, PPO is simpler to implement, less computationally expensive and

requires less tuning of hyperparameters. Due to its simplistic and versatile nature, this

algorithm is a natural first choice when faced with a reinforcement learning task, even

today. We use PPO as the RL backbone through this entire thesis.

2.6 Related Work

2.6.1 Metaheuristics and Reinforcement Learning

Although the idea of incorporating reinforcement learning into both metaheuristic and

hyperheuristic framework is relatively new, a fair amount of research has been done on

the topic. Zhang and Dietterich (1995) was one of the first papers which combined

reinforcement learning and metaheuristics, according to Wauters et al. (2013). This

methods learns the value function on a small set of instances of the job-shop scheduling

problem, using domain-specific constructive heuristics. These heuristics make up the

action space of the RL model. This approach was shown to outperform the leading

22

heuristic algorithm for this task at the time, namely an iterative repair method based on

SA, on multiple new instances of the same problem.

The advent of DRL has inspired researchers to incorporate typical DRL techniques

into heuristic solution methods. Several construction-based hyperheuristic methods has

been proposed, such as Kool et al. (2019), Nazari et al. (2018) and Zhang et al. (2022).

Although outperforming other simpler construction heuristics, the solutions obtained lack

the quality that perturbative metaheuristics are able to produce. Lu et al. (2020) uses

a Deep RL agent for the selection of low-level heuristics in a perturbative hyperheuristic

framework. A limitation of all of these mentioned works is that they somehow rely on

problem-dependent information, which limits their applicable scope to a single problem

or a class of similar problems.

As far as we are aware, Kallestad et al. (2023) was the first work to propose a general

hyperheuristic framework which solely relays on a Deep-RL agent for heuristic selection.

Their contribution, called Deep Reinforcement Learning Hyperheuristic (DRLH), uses

at each time step a state representation to produce a probability distribution over the

low-level heuristics, from which the heuristic choice is sampled. As opposed to ALNS

which uses segment-locked probabilities, DRLH is able to take advantage of the available

information at every single time step, producing drastically varying probabilities from

one iteration to the next. In their work they show that DRLH manages to significantly

outperform ALNS on a wide set of combinatorial optimization problems with a fixed set

of hyperparameters.

2.6.2 Move Acceptance

In the original version of ALNS, Ropke and Pisinger (2006) proposed using the SA accep-

tance criteria - without putting a lot of emphasis on the reasoning behind this choice. In

later years there has been several attempts on comparing the most prominent acceptance

criteria in literature. Jackson et al. (2018) compared several different acceptance criteria

backed by the a hyperheuristic known as HyFlex (Hyde et al., 2010) on nine different

combinatorial optimization problems. They find that although the SA acceptance crite-

ria isn’t outperforming the other acceptance criteria on any of the specific problems, it

consistently performs quite well across all the nine problems - coming out as the leading

move acceptance in general. Perhaps more relevant to our own research, in their com-

parison of different move acceptances within the ALNS framework, Santini et al. (2018)

23

found that the move acceptance known as Record-to-Record Travel (RRT) was consis-

tently undominated by the others - a group of acceptance criteria which included Hill

climbing, Great deluge and the SA acceptance criteria. The findings of Hemmati and

Hvattum (2017) confirm the superiority of the RRT acceptance criteria compared to the

SA acceptance criteria on the Pickup and Delivery Problem.

RRT, first proposed by Dueck (1993), is a deterministic criteria that accepts uphill

moves within a certain threshold T of the best seen solution. There are several implemen-

tations of this criteria in literature, so here we recite the one used by Hemmati and Hvat-

tum (2017). More formally then, the worse solution l′t is accepted if f(l′t) < f(lbestt) + T ,

where T = 0.2(N−t
N

)f(lbestt). Here, N is the total number of search iterations (perturba-

tions) and t the current iteration number. Observe that the threshold T decreases linearly

in the iteration number, shifting the focus gradually from diversification to intensifica-

tion as the search progresses - an idea shared with the SA acceptance criteria. In our

experimentation, we will combine ALNS with both the SA acceptance criteria and the

RRT acceptance criteria, and compare their performances with our own contributions.

2.6.3 Move Acceptance and Reinforcement Learning

As far as we are aware, very little research has been conducted on the topic of incorporat-

ing techniques of RL into the move acceptance . Wauters et al. (2013) is the only work we

could find which leverages RL in the move acceptance. Their contribution improves upon

the Iteration Limited Threshold Acceptance (ILTA), which accepts small uphill moves

after a certain number of non-improving candidates. These uphill moves are limited by

a range R, a certain objective difference between the candidate l′t and the current best

known solution lbestt . In ILTA, R is a hyperparameter and stays constant throughout the

search. Their contribution, called LA-ILTA, uses a RL-agent to select the value of R

from a predefined set of reasonable values. The search process is divided into 10 peri-

ods, and at the start of each period the agent selects the value of R which will remain

constant for that period. This makes the search process more adaptive and removes the

need for carefully finetuning the hyperparameter. Their approach was able to outperform

regular ILTA on two different combinatorial optimization problems, namely the Patient

Admission Scheduling Problem and the Edge Matching Puzzle Problem. An immediate

weakness with this approach is that the set of R-values must be tailored to the particular

problem type and size, requiring some knowledge about the problem nature in advance

along with further tuning of the selected values.

24

In our opinion, all the move acceptances we have discussed so far has a common

weakness, namely that they work quite elementary on a technical level. The criteria we

have touched upon are concerned with some objective difference threshold, defined either

deterministically (hard threshold) or probabilistically (soft threshold), whose magnitudes

are decreased throughout the search. Our main critique is that only a marginal fraction

of the search information available is actually utilized. Furthermore, neither of them take

advantage of the learning capabilities and representation power of Deep RL.

Let us now introduce the concept of leaving the acceptance decision up to a Deep RL-

agent. The authors of this thesis experimented with this concept prior to this thesis, as

part of a graduate-level project course at the Department of Informatics at the University

of Bergen in the Spring of 2022. In a proof-of-concept like manner they showed that an

RL-based move acceptance was able to outperform both the SA acceptance criteria and

the random acceptance criteria on several sizes of the CVRP. In their experimentation,

ALNS was used as the hyperheuristic. Their results were presented in an unpublished

project report. As of today we are unable to locate any published research that resembles

this approach.

In this thesis we further develop the contributions of the aforementioned project into

a general move acceptance framework which we call Deep Reinforcement Learning Move

Acceptance (DRLMA). Moreover, we show that the findings of Kallestad et al. (2023)

can be further improved upon by unifying their contribution, DRLH, with DRLMA. We

display the effectiveness of DRLMA on two different combinatorial optimization prob-

lems, namely the Capacitated Vehicle Routing Problem (CVRP) and the Parallel Job

Scheduling Problem (PJSP).

25

Chapter 3

Problem Sets

3.1 Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem is certainly one of the most frequently encoun-

tered routing problems in the literature. The problem deals with efficient distribution of

orders from a central depot to a set of geographically dispersed customers using a fleet

of vehicles. The objective of CVRP may vary, but for our purposes it is to minimize the

total distance travelled while at the same time satisfying a set of constraints.

More specifically, N orders must be delivered to their associated customers through

the use of a vehicle. A vehicle must begin its journey at central depot, deliver some

orders, and then return to the depot. Such a journey is referred to as a tour. The vehicle

has a maximum capacity, and each order i has an associated weight Wi. When departing

from the depot the total weight of the set of orders handled in the current tour cannot

exceed the vehicle’s maximum capacity. Typically then, several tours must be made in

order to handle all the orders. The objective is to construct a set of tours that minimize

the total distance travelled. Note that there is no incentive to minimize the number of

tours made - this number may be as high as N . Note also that in this version of the

CVRP, the size of the fleet of vehicles isn’t relevant. All M tours may be handled in

parallel by M vehicles, or they may be handled consecutively by a single vehicle.

26

Figure 3.1: Illustration of the CVRP.

3.2 Parallel Job Scheduling Problem (PJSP)

The Parallel Job Scheduling Problem (PJSP) is a combinatorial optimization problem

that involves scheduling a set of jobs onto a set of parallel machines. There exists several

variants of this problem, and in this variant each machine operates at a different pro-

cessing speed, and each job has an associated deadline or due time. The objective is to

minimize the total delay of the jobs, which is the sum of the lateness of each job.

More formally, the PJSP consists of a set n jobs, denoted J = {J1, J2, ..., Jn}, and a

set of m parallel machines, denoted M = {M1,M2, ...,Mm}. Since the machines operate

at different processing speeds, each job Ji has a processing time Ti,j associated with each

machine Mj, representing the amount of time required to complete job Ji on machine

Mj. Each job Ji must be assigned a machine and is given a start time Si. The lateness of

job Ji is given by li = max(0, Si + Ti,j − di), where di is the the deadline of job Ji. That

is, the lateness of a job is the difference in its completion time and its deadline, and it

cannot be negative. Each machine is assigned a sequence of jobs such that all jobs are

handled exactly once, and the objective to find a job sequence distribution such that the

total job lateness
∑n

i=0 li is minimized.

27

28

Figure 3.2: Illustration of the PJSP.

Chapter 4

DRLMA

In this chapter we present the novel contribution of this thesis, the Deep RL Move

Acceptance (DRLMA) - a move acceptance based on Deep Reinforcement Learning.

This is a standalone move acceptance framework, meaning it can be combined with any

heuristic selection strategy. We show this by inserting it into two different hyperheuristic

contexts, namely ALNS and DRLH. In settings where both solution methods are brought

up, we use the term DRLMA to refer to the ALNS setting and DRLH+DRLMA to refer to

the DRLH setting. Otherwise, DRLMA will refer to just the move acceptance framework

itself. The emerging solution method in which DRLMA is embedded is presented in

Algorithm 1

4.1 The Hyperheuristic Setup

Before diving into the details surrounding DRLMA, we first present details regarding our

hyperheuristic setup that remains constant throughout all experiments. This includes

the details of the heuristics we leverage, including the way they are constructed. Further

more, we present the stopping criteria, the solution representations and the initial solu-

tions that we use in our experiments. Lastly, we introduce the concept of including Deep

RL into the hyperheuristic setting.

29

4.1.1 Heuristics

In all of the solution methods used in our experimentation we use the same set of heuris-

tics H. This set consists of two classes of heuristics: the first class, which makes up

most of the heuristics h ∈ H, is a combination of destroy and repair heuristics which is

presented in Tables 4.1 and 4.2 respectively. The second class consists of one intensify-

ing heuristic c which doesn’t possess the destroy-repair combination property. All the

heuristics are problem independent, meaning that they can be implemented and applied

to most combinatorial optimization problems. The heuristic set construction process is

described in Algorithm 2.

Algorithm 1: Hyperheuristic framework with Deep RL Move Acceptance

Input: Move Acceptance Policy θ, Hyperheuristic hh()

Output: lbest

Function Hyperheuristic():
Generate initial solution l with objective f(l) (see section 4.1.2)

H = Generate Heuristics() (see Algorithm 2)

lbest = l

repeat
choose h ∈ H based on hyperheuristic hh()

l′ = h(l)

if f(l′) < f(lbest) then
lbest = l′

end if

if accept(st, θ) (see section 4.2) then
l = l′

end if

until stop-criteria met ;

30

Algorithm 2: Generating the heuristic set H

Input: D, R, C

Output: H

Function Generate Heuristics():

H ← {};
foreach destroy heuristic d ∈ D do

foreach repair heuristic r ∈ R do

Combine d and r into a heuristic h;

H ← H ∪ h;
end foreach

end foreach

foreach additional heuristic c ∈ C do

H ← H ∪ c;
end foreach

In our case, the cardinality of the heuristic sets is as following: |D| = 7, |R| = 4 and

|C| = 1. Thus, the final set of heuristics H has a size of |H| = 29 (7 destroys × 4 repairs

+ 1 additional). At each iteration of the search process, one of these 29 heuristics h ∈ H
is selected by the hyperheurstic and applied to the incumbent solution l with a cost of

f(l), producing a candidate solution l′ with a cost of f(l′). The following subsections

describes the destroy, repair and additional heuristics in closer detail.

Destroy Heuristics D

The destroy heuristics set D is presented in Table 4.1. The first five heuristics removes

elements from the solution at random. They differ in size - more specifically in the

amount of elements to remove, a number which is randomly sampled from a predefined

range. These five heuristics have a strong diversifying effect. On the other hand the next

heuristic, called Destroy largest D, provides a more intensifying effect, using a concept

we refer to as the deviation D. In this context, we define the deviation Di as the cost

difference of the solution with and without element i present in the solution. This heuristic

thus removes the n elements with the largest Di, where n is randomly sampled from the

range [2, 5]. The last heuristic, Destroy τ , removes a randomly selected sequence of

n back-to-back elements in the solution, where n is sampled in the same way as with

Destroy largest D.

31

Name Description
Random destroy XS Removes between 2-5 random elements
Random destroy S Removes between 5-10 random elements
Random destroy M Removes between 10-20 random elements
Random destroy L Removes between 20-30 random elements
Random destroy XL Removes between 30-40 random elements
Destroy largest D Removes between 2-5 elements with the largest Di

Destroy τ Removes a random segment of 2-5 successive elements

Table 4.1: The destroy heuristics.

Repair Heuristics R

The repair heuristics set R is presented in Table 4.2. We use four repair operators, whose

purpose it is to ”repair” the ”destroyed” solution l′ by relocating the removed elements

into befitting locations of l′. Firstly, its worth mentioning that the insertion order is

random if not specified otherwise. Repair greedy inserts the removed elements in the

location within the solution that minimizes the total cost. The immediate problem with

this heuristic is that a seemingly optimal insertion of one element might result in poor

insertions of the consecutive elements. The Repair beam search heuristic attempts to

mitigate this problem by conducting a beam search with beam width 10 when inserting

each element. This beam search maintains track of the 10 best insertion combinations

seen so far. When a new element is to be inserted, the 5 best solutions for each beam

is kept, creating 50 candidate solutions. Of these, the 10 best candidates is selected as

the next-generation beam, and the process is repeated until all elements is inserted. The

Repair by variance heuristic calculates the variance in cost between the 10 best insertion

locations for each element. A large variance indicates that some locations are far better

or worse than others, which again is arguing for a certain ”urgency” of inserting the

particular element. The elements is inserted back into the solution in their best possible

position similar to Repair greedy, but in the order of highest variance first. Lastly, the

Repair first heuristic inserts the elements in the first feasible position found within the

solution. A certain degree of randomness is introduced by this heuristic by randomly

selecting the order of solution sub-parts to attempt insertion at.

32

Name Description
Repair greedy Inserts elements in their best possible location
Repair beam search Inserts elements in their best location using beam search
Repair by variance Inserts elements in their best possible location,

where insertion order is based on variance
Repair first Inserts elements randomly at first feasible location

Table 4.2: The repair heuristics.

Additional Heuristics C

In addition to the destroy-repair heuristics typically utilized by LNS and ALNS, we

use one additional heuristic in our experiments which doesn’t possess this characteristic,

namely the Find single best. This heuristic focuses entirely on intensification by produc-

ing the best possible solution modifying only a single element. More specifically, every

element is attempted removed and greedily reinserted, and the modified solution l′ with

the lowest cost f(l′) is finally yielded.

4.1.2 Solution Representation and Initial Solution

To represent a solution to a problem we use permutations of orders or jobs, where each

vehicle or machine is assigned such a permutation. From a vehicle’s perspective the

permutation represents its route. From a machine’s perspective it represents the sequence

of jobs to handle. All of the orders/jobs must occur in the permutations exactly once.

The initial solutions to the problem instances are constructed in a deterministic and

rather inelegant fashion. For the CVRP consisting of n orders, the initial solution consists

of n tours, each tour delivering a single order. For the PJSP consisting of n jobs, all the

machines but the last one is assigned zero jobs and the last machine is assigned all the

jobs. Quite obviously, these solutions are far from optimal, but they provide a fair and

equal starting point for all the solution methods in our experiments.

4.1.3 Stopping Condition

Recall that the stopping condition is usually either defined as a time limit or as a limit

on the number of permutations - or search iterations. In this thesis we use the latter

stopping condition, as was used by Kallestad et al. (2023). For all the solution methods

in our experiments, the search terminates after 1000 search iterations.

33

4.1.4 Deep Reinforcement Learning in the Hyperheuristic set-

ting

Reinforcement learning is concerned with having an agent interact with its environment

while simultaneously attempting to optimize the policy π. The policy is typically rep-

resented indirectly through an action-value function Q(s, a) or directly through a policy

function π(s). In the latter approach, the policy can be parameterized through a set of

parameters θ ∈ Rd in the following way

π(a|s, θ) = Pr{At = a|St = t, θt = θ} (4.1)

where at each time step t, the state St is the information available to the agent, At is the

action it selects and θt is the current policy parameters.

In our approach we utilize a class of non-linear function approximators called Multi-

Layered Perceptron (MLP) to represent the policy π, which is one type of DNNs. The

weights that make up the layers of the MLP represents the policy parameters θ. Between

the layers we employ an activation function called ReLU which is widely regarded as the

golden standard of activation functions. As mentioned the parameters are trained ac-

cording to the actor-critic method known as PPO (Schulman et al. (2017)). The training

process is described in closer detail in Algorithm 3.

Throughout this thesis we train the agents on several different optimization settings.

In this context, an optimization setting is referring to a specific configuration of the

following parameters: 1) the optimization problem being solved, 2) the size of the prob-

lem. For each optimization setting explored in this thesis, a new MLP is initialized and

trained, as shown in Algorithm 3. Within such an optimization setting, the developed

policy should be able to generalize - that is, it should be able to perform well across

different problem instances. As such, the agent is trained on a set of problem instances

called the training set, each instance varying slightly from the next in attributes not re-

lated to the size of the problem. Each instance is optimized until the stopping criteria is

met, which marks the end of the RL episode. Then, the weights of the MLP is updated

using the experience gathered from the episode. This process is repeated for the entire

training set. The overall goal is to find an as good approximation of the optimal policy

π∗ as possible. However, the agent’s performance on the training set is a biased estimate

of its performance - it doesn’t relay the policy’s ability to generalize within this optimiza-

tion setting. Therefore, the trained policies are used to optimize a smaller set of unseen

34

instances called the test set. The test performances can then be used to determine good

policies from bad ones.

Algorithm 3: Training the RL agent

Output: πθ ≈ π∗ the optimal policy

Function Training loop():

Initialize policy weights θ0 in a uniform random fashion;

for e← 1 to episodes do

Receive initial state s1 using initial solution;

for t← 1 to steps do

Sample and perform action at ∈ A according to π(a|s, θe−1);

Receive reward rt and next state st+1 ∈ S from the environment;

end for

Update policy θe ← PPO(θe−1) as described by Schulman et al. (2017)

end for

When solving any problem using RL there are two central design choices one has to

make regardless of the RL algorithm used, namely the state representation and the reward

function. Getting these design choices right is essential for learning good policies and by

extension finding good solution methods to the optimization problems. There is also the

generalization aspect of these two design choices: in our thesis, the state representation

and reward function is invariant to the optimization setting, indicating that our approach

is able to generalize across problems. The state representation should contain all the

information considered relevant to the agent’s decision in the search process, without

containing any problem-specific details. The reward function is the very thing that the

agent attempts to maximize, so it should be aligned with the overall goal of producing

an as good solution method as possible. This alignment is no easy task, and seemingly

reasonable reward functions might be exploitable by the agent, a phenomenon known

as reward hacking (Amodei et al., 2016). This phenomenon can be characterized as the

agent having learnt a policy that receives high rewards while at the same time performing

terrible at the task, even often coupled with nonsensical behaviour. We will discuss these

two design choices in the context of our solution method in the following section.

4.2 Deep RL Move Acceptance (DRLMA)

It is our opinion that the other common move acceptances in literature are quite el-

ementary on a technical level, in the sense that their decisions are based on a small

35

amount of available information regarding the search. For instance, the SA acceptance

criteria is based on two parameters: 1) how much worse the proposed solution is and 2)

the temperature, which decreases exponentially as the search approaches the stopping

criteria. However, there might exist better move acceptance strategies that depend on

even more information about the search process. These strategies might be obtainable

automatically through the power of Deep RL instead of manually developed by experts.

Furthermore, Deep RL is able to capture complex non-linear relationships between the

inputs and outputs, allowing the learnt strategies to be quite sophisticated. Thus, we

hope to learn an Deep RL-fueled move acceptance to explore the solution space more

effectively than other state-of-the-art move acceptance strategies.

The action space of the RL agent is quite simple, namely whether to accept or reject

the candidate solution. Note that the RL part of our move acceptance is only applied

in cases where the candidate solution is worse than the incumbent. In these cases, the

output of the move acceptance is the acceptance probability, from which the action is

sampled. In terms of the policy function described by Eq.(4.1), the policy π can be

defined as

π(accept|s, θ) = Pr{At = Accept|St = t, θt = θ} (4.2)

Using the policy then, the acceptance probability of DRLMA is derived from the following

formula:

PDRLMA(accept) =



1.0 f(l′) < f(l),

0.0 if l′ has been encountered before,

pwarmup if warm-up phase,

π(accept|s, θ) otherwise

Note also that from a RL perspective, the heuristic selection scheme is a central part of

the environment in which the DRLMA agent is trained. Therefore, the move acceptance

strategy developed in the ALNS setting might substantially differ from the one developed

in the DRLH setting. For this reason, we need to train an agent in both settings.

4.2.1 State Representation

The chosen state representation contains a set of features we believe to be useful in the

acceptance choices the agent has to make. These features are problem independent: they

36

contain information regarding the search itself, and about previous decision made by

both the heuristic selector and the move acceptance. Thus, our state representation can

be applied when solving many different combinatorial optimization problems. Table 4.3

displays the state representation of the RL agent.

In general, it is easier to train a MLP if its input features are either standard normally

distributed or confined to some small range, such as between 0 and 1. In our case we

separate features into two groups, depending if they are suitable for normalization or not.

Our state representation contains 8 non-confined features that we find normalizable. For

this reason, we keep track of the 100000 previously seen states used to derive the feature-

level means µ and standard deviations σ. These statistics are then used to normalize the

observed state before being passed on to the RL agent.

Name Description

Normalizable features

cost Cost of incumbent solution
candidate cost Cost of the candidate solution
min cost Cost of the best found solution
cost from min Cost difference between incumbent and best

found solution
candidate cost from min Cost difference between candidate and best

found solution
∆E Cost difference between candidate and incumbent

solution
steps since improvement #iterations since last improvement
steps with incumbent #iterations since current incumbent was accepted

Non-normalizable features

index step How far we are in the search (max normalized)
last action Previous action made by the RL network
selected heuristic The selected heuristic (one-hot encoded)
acceptance category Previous move acceptance action category
candidate solution ranks Cost ranks of candidate solution
solution ranks diff Cost ranks difference between candidate and

incumbent solution

Table 4.3: State representation of the RL Move Acceptance agent.

The first six features are related to the costs of the incumbent, candidate and best

solution, and how they compare to each other. These features, combined with index step,

tells the agent how well the search is doing with respect to how far into the search

37

it currently is. More importantly, it communicates the relative quality of the candi-

date solution, which undoubtedly is vital in the decision. steps since improvement and

steps with incumbent is the number of steps since an improvement happened and the num-

ber of steps since the current incumbent was accepted, respectively. These two features

relays information about the current balance between diversification and intensification,

and is useful for the agent to adjust this balance. For instance, if both values grows large

the agent might decide that it should escape the local minima.

last action, selected heuristic and acceptance category all gives the agent information

about recent events within the search. last action tells the agent whether the solu-

tion was accepted the last time the RL network made the decision. selected heuristic

is a one-hot encoded representation relaying which heuristic made the candidate solu-

tion. acceptance category indicates in a one-hot encoded fashion which part of the move

acceptance that made the decision the previous step, along with the action, although

indirectly. There are mainly four move acceptance cases: 1) improvement, implying

acceptance, 2) candidate already encountered before, implying rejection, 3) no special

case, implying acceptance and lastly 4) no special case, implying rejection. Lastly, can-

didate solution ranks and solution ranks diff utilize the concept of cost ranks among the

solutions encountered so far in the search. This ignores the numerical aspect with costs

altogether, making it less sensitive to cost variations across different problem instances

and shifts the focus entirely onto instance-specific cost rankings. The ranks are scaled

between 0 and 1, where being close to 1 implies a good solution. Three different rankings

are reported: a solution’s ranking all among 1) solutions which has had the ”best solu-

tion” status, 2) the accepted solutions, and 3) the seen solutions so far into the search.

candidate solution ranks communicates the quality of the candidate solution within the

problem instance, while solution ranks diff compares the rankings of the incumbent and

candidate solutions, relaying their rank distance. Overall, these features supplement the

cost-related features in conveying the quality of the candidate solution by comparing the

candidate to all the solution encountered in the search so far.

4.2.2 Reward function

The reward function design is vital for learning a useful policy. Firstly, its worth mention-

ing that Kallestad et al. (2023) utilize the ALNS score function (2.1) as reward function

in heuristic selection framework called DRLH. This is simply not applicable in this case,

since the move acceptance is part of the ALNS score function. It’s unclear how the re-

ward function should be designed, simply because it’s unclear if the decision resulted in

38

a favourable outcome post-decision time. The first idea that comes to mind is to look

ahead into the next iteration - if something favourable happened here, say the search

found a new best solution, then arguably our decision was a good one. We decided to

try giving the ALNS score of the next iteration as reward, modified to ignore the move

acceptance part of the score calculation, since this directly depends on the agent’s next

decision. Some initial experimentation with this design resulted in poor performance.

Even though the DRLH reward function is non-applicable in our case, some inspiration

can still be drawn from it. Specifically, the DRLH agent is optimized to produce as many

improving solutions as possible, with an extra emphasis on discovering new current-best

solutions. Given the quality of their results, they show that the solution strategy can

be improved when you increase the number of improving moves within the search. Our

reward function should thus reflect this idea.

The reward function we propose relaxes the ”real time” reward calculation constraint,

allowing rewards to be calculated after the episode is done. This allows information

regarding the search process in the near future to be considered when assessing an action.

More specifically, the current incumbent and best known solution is compared to the

incumbents and best known solutions λ iterations into the future, where λ is a tuneable

hyperparameter. Our reward function, which we refer to as Rλ steps ahead
t , has the following

formula structure:

Rλ steps ahead
t =



ωbest, if f(lbestt+λ) < f(lbestt)

ωimprovement, if f(l†) < f(lt)

ωotherwise, if none of the above

ωno improvement & accept, if f(lt) ≤ f(l†) and accept(l′t)

ωn rejections, if n solutions were rejected in a row

(4.3)

where f(l†) = min
i∈[t+1...t+λ]

f(li). Furthermore, ωbest, ωimprovement, ωotherwise, ωno improvement & accept

and ωn rejections represent scalar values and are tuneable hyperparameters. The reward

function consists of three independent components, separated by dotted lines. The first

condition that is fulfilled within each component contributes its associated value ω to to-

tal reward for time step t. Thus, several components might be invoked at the same time,

and if that is the case their values are added together. Although the reward values are

parameterized, the first component reflects desirable behaviour which we positively rein-

force by having ωbest, ωimprovement ≥ 0. On the other hand the other components describe

39

potentially unwanted behaviour, which we discourage by having ωno improvement & accept,

ωn rejections ≤ 0 The scalar values used in our experiments are presented in Table 5.3.

Let’s carefully unpack the intuition behind this reward function. First of all, the first

component builds on the assumption that an action is favourable if it leads the search

to discover a better solution in the near future. This assumption reflects the idea that

the move acceptance should lead the search process into promising parts of the solution

space. Note that this component ignores the decision itself. Initially this component

made up the entire reward function, and experiments (using ωotherwise = 0) showed that

the trained agents tended to accept all uphill moves. For this reason we introduced

the second component, whose main purpose it is to discourage the agent from accepting

solutions that doesn’t lead to an improvement in the near future. Although this works

very well, it leads to more ”reserved” policies that generally give quite low acceptance

probabilities. To combat this reserved behaviour we introduced the third component,

which punishes the agent for rejecting n solutions in a row, essentially forcing the agent

be less reserved. Though experiments confirm the learnt policies are less reserved, they

also doesn’t perform as well, and so we ended up putting ωn rejections = 0 when training

both DRLMA and DRLH+DRLMA.

There is also the choice of number of steps to look ahead in time, λ, when calculating

these rewards. A too low λ-value encourages moves that the search can quickly improve

upon, and this doesn’t allow the search enough time to properly diversify. At the same

time, any improvements that happens too far into the future of the search (high λ) is so

affected noise that the accomplishment can hardly be attributed to the current decision.

In our opinion the optimal choice of λ must be determined experimentally.

4.3 DRLH+DRLMA: A comment on Design Choice

The authors of DRLH showed that they were able to improve upon ALNS by letting a

Deep RL agent handle the heuristic selection part of the search. Similarly, the authors

of this thesis have previously displayed that the ALNS performance might be slightly

boosted by replacing the the SA acceptance criteria with a trained Deep RL agent.

This section describes the attempt to unify these two solution methods into a novel

hyperheuristic, namely the DRLH+DRLMA. More specifically, we will be discussing the

details of how the two approaches might be combined and the reasoning behind our design

choice.

40

There are several ways of carrying out this unification in practice, and each such

way have some corresponding benefits and challenges. The setup consists of two collab-

orating RL agents, the heuristic selector agent and the move acceptance agent. Both

agents have previously been trained in a single-agent environment: the heuristic selector

agent in DRLH and the DRLMA agent in the ALNS-environment. Thus, each agent’s

corresponding neural network, which makes up the the policy π itself, might either be

loaded from disk or trained again from scratch, resulting in four different experimental

combinations.

On the one hand, loading both the heuristic selector agent and the move acceptance

agent might not induce any extra training time, but we believe it to be a bad idea

nonetheless. Both agents are trained in single-agent environments where the opposite

decision maker is equivalent to that of ALNS. When put together, the environment is

radically changed from the perspective of each agent. A RL agent that performs well in

one environment might not necessarily perform satisfactory in a different environment

with different dynamics - this is a corollary of the No Free Lunch Theorem (NFLT)

in optimization and machine learning (Wolpert and Macready, 1997). We believe that

freezing both policies is a too rigid constraint, and that better joint policies are obtainable

by relaxing this constraint.

On the other hand, training both the heuristic selector agent and the move acceptance

agent from scratch offers a lot of flexibility and might seem like the best option, but

this also carry some severe challenges. Once several agents are allowed to interact in

the same environment and update their policies, you enter into the realm of Multi-Agent

Reinforcement Learning (MARL), a more recent and actively evolving field of RL research

with several challenges that makes it more complex than single-agent RL. For instance,

one of the main challenges of MARL is the presence of other learning agents, which

induces non-stationary into the environment. As one agent learn and update its own

policy, the environment’s dynamics changes caused by the other agent’s updated policy,

making it difficult to converge to an optimal, joint policy. We consider the MARL-based

approach to be outside the scope of this thesis, the main focus being the DRLMA itself.

We will return to this idea in Chapter 7.

We consider DRLH+DRLMA to be a ”golden mean” between the two approaches just

described, attempting to mitigate the change-in-environment problem that arises in the

first approach while preserving some of the flexibility provided by the MARL approach.

We achieve this by training an DRLMA agent within the DRLH framework, freezing the

parameters of the DRLH agent. Note that even though two RL agents are employed

41

at once, it is not regarded as MARL since only the DRLMA agent is being trained.

The DRLH agent is simply regarded as part of the stationary environment. Furthermore,

this approach also emphasizes the hyperheuristic-independence of DRLMA. The DRLMA

agent can simply be inserted into any hyperheuristic setting, and be trained to increase

the performance - see Chapter 6 performance details.

42

Chapter 5

Experimental Setup

5.1 Experimental Environment

The experiments conducted in this thesis was performed on a desktop computer running

a Windows 10 Operating System, possessing an AMD Ryzen 7 5800X processor and 32

GBs of RAM. Our experiments are implemented in a Python 3.10.6 environment, and

Table 5.1 displays the Python packages and versions we used.

Package Name Version
Numpy 1.23.2
Gym 0.26.0
PettingZoo 1.20.1
Torch 1.12.1
SortedContainers 2.4.0
Tensorboard 2.11.0
Wandb 0.14.0

Table 5.1: The Python packages used in our experiments.

5.2 Dataset Generation

For each problem and problem size, we use a training set consisting of 5000 instances and

a disjoint testing set consisting of 100 instances. These are the very same problem sets

used by Kallestad et al. (2023) in their contribution, which they generated as a part of

their work. Below follows a brief description on generation process.

43

5.2.1 CVRP

The problem instances was generated according to the methodology presented in Kool

et al. (2019), Nazari et al. (2018), but a larger problem variation was also generated.

Problem instances containing N orders are generated and grouped together, where

N ∈ {20, 50, 100, 200}. Both the depot and the order locations are sampled uniformly

within the unit square. Furthermore, each order has a associated weight which is set

to γ̂ = γ/DN , where γ is randomly sampled from the integers {1, ..., 9}, and DN is the

normalization factor set to D20 = 30, D50 = 40, D100 = 50, D200 = 50 for problems with

N instances respectively.

5.2.2 PJSP

Problem instances consisting of N jobs are generated and grouped together, where N ∈
{20, 50, 100, 300}. Each problem of size N has ⌊N/4⌋ machines at its disposal. Now,

each job Ji has a time required to finish it associated with each machine Mj, namely

Ti,j, and it is derived in the following way. The speed of each machine Mj, measured in

processing steps per time unit and denoted Sj, is sampled from N (µ, σ2) with µ = 10

and σ = 30, rounded to the nearest integer and set to be at least 1. Each job Ji requires

Pi processing steps to complete, a number which is randomly sampled from the set of

integers {100, 101, ..., 1000}. Thus, the time required to finish Ji on machine Mj is then

derived by Ti,j = ⌈Pi/Sj⌉.

5.3 Baseline Solution Methods

As baselines, we use two different heuristic selection schemes, namely ALNS and DRLH.

Within the ALNS framework, we apply two different move acceptance strategies, making

it in total three solution methods to act as baseline comparisons to our own contributions.

All of these have identical experimental conditions as our own: the initial solutions, the

stopping condition and the set of heuristics are all the same. Now we present the details

of the baselines.

44

5.3.1 Adaptive Large Neighborhood Search (ALNS)

With ALNS being one of the most prominent hyperheuristics in literature, it serves as

a solid experimental starting point. In particular, we now present two different baseline

move acceptance strategies which both are employed on top of the adaptive layer of

ALNS.

Simulated Annealing Move Acceptance

Simulated Annealing remains a viable metaheuristic to this day, and its acceptance cri-

teria is used in the original version of ALNS (Ropke and Pisinger, 2006). Thus, the SA

acceptance criteria used together with ALNS serves as the main competitive baseline to

DRLMA, as well as the general baseline in all of our experiments. We will refer to the

ALNS-SA solution method as simply ALNS.

Record to Record Travel Move Acceptance

Presented briefly in 2.6.2, the Record to Record Travel move acceptance was shown to

outperform the SA acceptance criteria by both Santini et al. (2018) and Hemmati and

Hvattum (2017). We thus include the RRT move acceptance as a baseline to further

illustrate the effectiveness of DRLMA compared to the No-RL state-of-the-art move ac-

ceptances. We will refer to the ALNS-RRT solution method as RRT.

5.3.2 Deep Reinforcement Learning Hyperheuristic (DRLH)

As mentioned previously, the DRLH presented by Kallestad et al. (2023) was a huge

inspiration to the contribution presented in this thesis. We wish to use their work as a

baseline to compare the influence of Deep RL-based heuristic selection compared to Deep

RL-based move acceptance, to answer the question of which component plays the biggest

part for achieving improvement. Furthermore, DRLH will act as the main competitive

baseline in comparison to DRLH+DRLMA.

45

5.4 Hyperparameter Selection

5.4.1 Adaptive Large Neighborhood Search (ALNS)

For all experiments using the ALNS selection framework, we have set the reaction factor

to be 0.3 and segment size to 50. Now optimally, these hyperparameters should be

tuned to the both the specific problem, the size of the problem and the move acceptance

employed. To limit the computational scope and save time, these chosen hyperparameters

mirrors those used by Kallestad et al. (2023) in their experimentation.

5.4.2 DRLMA

Below, we display the hyperparameters we used when training both DRLMA and

DRLH+DRLMA. Table 5.2 displays the general hyperparameters used in both ap-

proaches, and for the keen reader we included the hyperparameters of DRLH as a com-

parison view. Table 5.3 displays the choice of hyperparameters for the reward function

when training the DRLMA agent.

Hyperparameter DRLH DRLMA DRLH+DRLMA
#Episodes (max) 5000 5000 5000
SA warmup phase Yes No No
#Epochs 10 10 10
Learning rate 1e-5 1e-5 1e-5
Batch size 64 64 64
Hidden layer sizes [256, 256] [256,256] [256, 256]
Discount rate γ 0.5 0.99 0.99
GAE λ 0.95 0.95 0.95
Clip parameter ϵ 0.2 0.2 0.2
Entropy coefficient 0.0 0.01 0.01
Weight decay 0.0 1e-4 1e-4
KL divergence limit N/A 0.025 0.025
Value normalization N/A 1e-5 1e-5
smoothing factor

Table 5.2: The general hyperparameters used in our experiments.

Regarding the choice of these particular hyperparameters presented in Table 5.2, the

hyperparameter tuning performed was very limited in scope due to the run time of a single

46

hyperparameter configuration. It seemed reasonable to us to start our experimentation

with hyperparameters mirroring those of DRLH. Besides, many of these are related to

PPO and take on the default values presented in Schulman et al. (2017), such as the

batch size, discount rate γ, GAE λ and the number of epochs used.

Our hyperparameter selection differ slightly from that of DRLH. Firstly, we set the

discount rate to 0.99 as this is standard to PPO and seemed to work just fine. Secondly,

we included some more schemes into the training that seemed to stabilize learning and

improve the final performance of the agent. In the beginning of our experimentation,

the agent seemed to very quickly converge to some sub-optimal policy and continued to

exploit this policy. To combat this we included an entropy term into the PPO loss as this

ensures sufficient exploration (Schulman et al., 2017). We found that L2-regularization,

also known as weight decay, contributed to increased performance, as was suggested by

Liu et al. (2020). Another issue we had was the RL phenomenon known as catastrophic

forgetting, which is when a policy update results in sudden drastic behaviour change,

essentially ”forgetting” beneficial elements of policy learnt so far and resulting in bad

performance. Anecdotal evidence suggests including maximum KL-divergence limit into

the training process, essentially skipping any policy update which would make it differ too

much from the old policy - their difference measured by the KL-divergence estimation.

When including this limit into training, we didn’t observe this phenomenon anymore.

Lastly, Yu et al. (2022) suggests keeping a running average of the value targets to stabilize

the training of the value network. Although their suggestion is intended for the MARL

setting, we found this to generally increase (and never hurt) the performance of the

trained agent in our single-agent setting.

Hyperparameter DRLMA DRLH+DRLMA
λ (steps ahead) 7 7
ωbest 5 3
ωimprovement 0 1
ωotherwise -1 0
ωno improvement & accept 0 -3
ωn rejections 0 0

Table 5.3: The hyperparameters of the DRLMA Reward function (4.3).

As mentioned we experienced the choice of reward function to be essential in obtain-

ing a well-performing policy. Table 5.3 shows the selection of hyperparameters for the

DRLMA reward function, Rλ steps ahead
t , presented in Eq.4.3. After some initial experi-

mentation with different value combinations, these were the configurations that seem to

47

perform the most optimally across all problems. We attempted to find a single hyper-

parameter configuration that would work well in both approaches, but were ultimately

unsuccessful. As of the number of steps to look ahead, λ, we briefly experimented with

the values λ ∈ {5, 7, 10, 15} on CVRP-50, and found that 7 seems to result in the most

successful policy.

48

Chapter 6

Results

The performance metrics in the tables and plots in this section is the average (or the

median in case of the box plots) of the best solution costs obtained on the 500 test

instances of the problem - the same 100 test instances solved 5 times with 5 different

input seeds to the random number generator. This strengthens the statistical foundation

of our findings, minimizing the particular seed’s effect in the calculated performance

metrics.

Regarding the tables displaying all performance results, the Average Cost column

shows the total average performance across the different seeds. The Best Cost column

represent the best average performance among the 5 different seeds, and is included to

display the robustness of each solution method. The Best Cost shouldn’t deviate too

far from the Average Cost, as the solution method shouldn’t be too sensitive to the

chosen seed. The last column, named % Improvement, shows the percentage of average

improvement compared to the performance of ALNS. This is identical to what is showed

in Figure 6.1.

Note also that we do not report the running time of the solution methods. Our focus

is the effectiveness of an RL-based move acceptance in terms of solution quality, and thus

we don’t find the running time to be of any relevance. Besides, the choice of acceptance

criteria has little effect on the overall running time of the solution method, even when

backed by a DNN. The curious reader should know that the main bottleneck of our

framework in terms of running time is, by far, the low-level heuristics.

49

(a) CVRP (b) PJSP

Figure 6.1: Results of DRLMA and DRLH+DRLMA for CVRP and PJSP.

6.1 Results of CVRP

Figure 6.1a shows the improvement in percentage DRLMA, DRLH+DRLMA along with

the other baselines has over ALNS on all the sizes of the CVRP. As for DRLMA, it is

able to outperform both ALNS and RRT on all sizes except the smallest instances of

the problem. However, it is quite clear from the figure that DRLMA is outperformed by

DRLH. Also, DRLH+DRLMA is able to keep up DRLH on all sizes except the smallest

one, even slightly outperforming it on the size 50 and 100. This suggests that combining

DRLMA with DRLH does not hurt the performance, with a slight potential of improving

it. Like DRLH, both DRLMA and DRLH+DRLMA follows the clear trend of performing

progressively better than ALNS as the size of the problem increases. Figure 6.2a shows the

best cost distribution for each solution method on the instances of size 200. This shows

a similar trend, with DRLMA outperforming the non-RL baselines, and with DRLH and

DRLH+DRLMA further outperforming DRLMA. Overall there is a strong indication that

RL-based heuristic selection has a more positive performance effect on CVRP compared

to RL-based move acceptance. See Tables 6.1, 6.2, 6.3 and 6.4 for all the results on CVRP

of sizes 20, 50, 100 and 200 respectively.

6.2 Results of PJSP

Figure 6.1b shows that both DRLMA and DRLH+DRLMA is able to outperform DRLH

on PJSP, with the exception of DRLMA on the smallest problem instances. For this prob-

50

(a) CVRP-200 (b) PJSP-300

Figure 6.2: Box plot results for the largest instances of CVRP and PJSP.

Solution method Average Cost Best Cost % Improvement
ALNS 6.182 6.179 0.00
RRT 6.180 6.178 0.04
DRLH 6.190 6.186 -0.12
DRLMA 6.183 6.181 -0.01
DRLH+DRLMA 6.193 6.186 -0.18

Table 6.1: Average performance for CVRP-20.

lem there is strong indication that the solution method benefits more from a sophisticated

move acceptance then from a equivalently sophisticated heuristic selection strategy. The

degree of improvement of DRLMA clearly increases with the problem size, whereas for

DRLH this trend is much more modest. DRLH+DRLMA significantly outperforms the

other solution methods, albeit less prominently for the smallest instances. Figure 6.2b

illustrates the performance of each solution problem on the largest instances of PJSP,

further displaying the effectiveness of the RL-based acceptance criteria on this problem.

See Tables 6.5, 6.6, 6.7 and 6.8 for a full overview of performance on PJSP of sizes 20,

50, 100 and 300 respectively.

Solution method Average Cost Best Cost % Improvement
ALNS 10.52 10.51 0.00
RRT 10.50 10.49 0.24
DRLH 10.44 10.44 0.75
DRLMA 10.47 10.46 0.48
DRLH+DRLMA 10.42 10.42 0.95

Table 6.2: Average performance for CVRP-50.

51

52
Solution method Average Cost Best Cost % Improvement
ALNS 16.19 16.18 0.00
RRT 16.13 16.05 0.4
DRLH 15.77 15.75 2.60
DRLMA 15.91 15.87 1.75
DRLH+DRLMA 15.75 15.74 2.73

Table 6.3: Average performance for CVRP-100.

Solution method Average Cost Best Cost % Improvement
ALNS 30.87 30.77 0.00
RRT 31.20 31.15 -1.08
DRLH 29.20 29.17 5.40
DRLMA 29.92 29.83 3.09
DRLH+DRLMA 29.20 29.19 5.39

Table 6.4: Average performance for CVRP-200.

Solution method Average Cost Best Cost % Improvement
ALNS 358.4 358.1 0.00
RRT 354.4 354.0 1.13
DRLH 354.9 354.7 0.98
DRLMA 358.3 357.8 0.02
DRLH+DRLMA 351.1 351.0 2.04

Table 6.5: Average performance for PJSP-20.

Solution method Average Cost Best Cost % Improvement
ALNS 1028.5 1027.5 0.00
RRT 1017.2 1015.5 1.10
DRLH 1017.8 1015.2 1.05
DRLMA 1016.7 1015.8 1.15
DRLH+DRLMA 969.7 969.0 5.72

Table 6.6: Average performance for PJSP-50.

Solution method Average Cost Best Cost % Improvement
ALNS 1983.5 1981.6 0.00
RRT 1972.0 1970.5 0.58
DRLH 1961.1 1959.6 1.13
DRLMA 1909.5 1900.4 3.73
DRLH+DRLMA 1845.5 1844.5 6.96

Table 6.7: Average performance for PJSP-100.

Solution method Average Cost Best Cost % Improvement
ALNS 5796.8 5783.6 0.00
RRT 5836.0 5831.0 -0.68
DRLH 5648.1 5646.0 2.57
DRLMA 5563.8 5551.4 4.02
DRLH+DRLMA 5480.6 5477.4 5.46

Table 6.8: Average performance for PJSP-300.

6.3 Performance Results

This section takes a closer look on the characteristics of the performance of ALNS, DRLH,

DRLMA and DRLH+DRLMA on the two problems. More specifically, we study how the

best cost found develops as the search progresses, that is, how quickly a solution method

is able to achieve high performance as well as the general performance itself. Figure 6.3

displays the best cost development averaged across all test instances and random num-

ber generator seeds. It is apparent from the figure that the solution methods possessing

DRLMA is able to discover good solutions early in the search, significantly more quickly

than their SA acceptance criteria counterparts. Note that DRLH+DRLMA reaches

ALNS-level performance in less than 200 iterations. This suggests that the DRLMA-

criteria emphasizes intensification early on in the search to a larger extent than ALNS.

However, it is clear from the figure that the strategy is effective, since the DRLMA so-

lution methods is able to reach a notably lower minimum than ALNS by the end of the

search. Here we chose size 100 of both problems to illustrate our points, and the perfor-

mance follows more or less the same pattern for all sizes. We refer the reader to Appendix

A for similar performance plots for all sizes of the two problems.

6.4 Move Acceptance Behaviour

Now we wish to gain some insight into the behaviour of the DRLMA move acceptance

strategy itself. Figure 6.4 shows how the acceptance probability of ALNS, DRLMA and

DRLH+DRLMA changes during the course of the search on CVRP-50. Here, we have

only included the probability for uphill moves when the probability is determined by the

core part of the acceptance criteria - the Boltzmann function in case of ALNS, and the

RL agent in case of DRLMA and DRLH+DRLMA. Figure 6.4a shows the probabilities

averaged over all test instances and random number generator seeds. As expected, the

53

54

(a) CVRP, 100 orders

(b) PJSP, 100 jobs

Figure 6.3: Average performance of ALNS, DRLH, DRLMA and DRLH+DRLMA on
the two problems.

probability of ALNS is slowly decreasing with time - the characteristic of the SA accep-

tance criteria. Interestingly enough, the behaviour of all three approaches differ quite

significantly from each other. For both DRLMA and DRLH+DRLMA, the search starts

out with quite low acceptance probabilities, explaining why they are able to find good

solutions early on, as observed in Section 6.3. The difference in behaviour of DRLMA and

DRLH+DRLMA is likely due to their difference in reward function, as shown in Table 5.3.

The DRLH+DRLMA agent is punished quite severely for accepting uphill moves that

doesn’t lead to future improvement, so the learnt policy becomes very reserved - ”scepti-

cal” of candidate solutions. Figures 6.4b and 6.4c shows how the acceptance probabilities

changes during the search on some arbitrary instance of the CVRP-50, the former show-

ing a moving average of the probabilities while the latter showing actual probabilities.

Although the latter figure seems messy at first glance, it seems clear that learnt policies

have low entropy associated with them. Essentially, the agents are very certain in their

choices, yielding an acceptance probability close to either 1.0 or 0.0 depending on the

situation. The DRLH+DRLMA agent, for instance, gives a probability of close to zero in

most cases, and an occasional probability close to 1.0. This seems to indicate that there

are certain patterns in the state space that ”convinces” the agent that a certain action,

either ”accept” or ”reject”, is likely to lead to an improvement in the near future. We

chose CVRP-50 to illustrate our points regarding the move acceptance behaviour, but

since each problem and problem size corresponds to a unique environment there are no

guarantee that the agents learns a similar policy in different settings. However, in our ex-

perience the agent shows similar behaviour as this in all of our experiments, although the

acceptance probability seems to decrease in general as the size of the problem increases.

55

56

(a) Average acceptance probability, smoothed.

(b) Acceptance probability on arbitrary problem instance, smoothed.

(c) Actual acceptance probability on the same problem instance (unsmoothed).

Figure 6.4: Acceptance probabilities for ALNS, DRLMA and DRLH+DRLMA on CVRP-
50.

Chapter 7

Conclusion and Future Work

In this thesis we propose DRLMA, a move acceptance for solving combinatorial opti-

mization problems. Located within the hyperheuristic setting, DRLMA consists of a

Deep Reinforcement Learning agent trained to decide whether to accept or reject worse

candidate solutions produced by the selected low-level heuristic. We claim DRLMA to

be a general solution framework in two different senses. Firstly, it can be inserted into

any hyperheuristic framework, which we display by combining it with both ALNS and

DRLH, producing solution methods we have called DRLMA and DRLH+DRLMA re-

spectively. Secondly, it can be used to solve many different combinatorial optimization

problems, as DRLMA bases its decisions on problem-independent information regard-

ing the search process. In our experiments, we strengthen this last claim of generality

by solving two different combinatorial optimization problems, namely CVRP and PJSP.

We compare the performance of both DRLMA and DRLH+DRLMA with three different

baselines, namely ALNS, RRT and DRLH. Our results show that DRLMA is an effective

move acceptance, as the two DRLMA-based solution methods is able to outperform their

”main competitive” baselines (meaning equivalent hyperheuristic used) in most of the

cases, performing about on par with their baselines in the worst cases. Moreover, the

increase in performance compared to ALNS seems to be most prominent for large prob-

lem instances in general, which indicates that DRLMA is best fit for real-world problem

instances. The results also show a general trend of both DRLMA and DRLH+DRLMA

finding high-quality solutions earlier on in the search than their baselines. As for com-

paring Deep RL-based heuristic selection (DRLH) to Deep RL-based move acceptance,

our results are mixed, with DRLMA outperforming DRLH on the PJSP and vice versa

on the CVRP.

57

Future research should first and foremost experiment with the effectiveness of DRLMA

and DRLH+DRLMA on other combinatorial optimization problems to further strengthen

our claim of its superiority and generalization. In spirit of generalization, there is also

the incentive to find stable reward design for DRLMA that generalizes to all hyperheuris-

tics, which we simply were unable to achieve in this thesis. Furthermore, we are curious

to whether DRLMA would be able to outperform the baselines in the scenario where

the stopping criteria for all solution methods are extended to for instance 5000 or 10000

solve iterations. Another potential research direction would be to explore the character-

istics of the learnt move acceptance policy beyond our own analysis. In this thesis we

have emphasized the importance of balancing intensification and diversification, with the

common belief being that diversification is suitable in the beginning of the search and

diversification towards the end of the search. However, our learnt policies doesn’t seem

to behave in accordance with this belief, which directs our curiosity towards the nature

of the learnt policy. Now, understanding the decision-making of a Deep RL agent to

gain insights into its policy is a challenging task. A natural place to start would be to

examine the state-action pairs for clear patters. One could also employ common feature

importance techniques, such as studying SHAP values, to identify which features have

the most significant influence on the chosen actions. Lastly, we would like to suggest

the Multi-Agent RL approach that we have briefly mentioned, meaning training both

the heuristic selector agent and the move acceptance agent simultaneously. Its worth

mentioning here that we made a brief, naive attempt on this approach using the same

hyperparameters that had worked well for both agents in the single-agent setting - but

without any luck. Admittedly a weak attempt, we still believe this direction to be a

quite challenging one, likely requiring a lot of experimentation and knowledge on topic

of MARL. However, we simultaneously believe that the MARL approach has the biggest

potential for obtaining a superior solution method, and is thus arguably worth exploring

in greater depths.

58

List of Acronyms and Abbreviations

ALNS Adaptive Large Neighborhood Search.

DDQN Double Deep Q-Network.

DNN Deep neural networks.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

DRLH Deep Reinforcement Learning Hyperheuristic.

ILTA Iteration Limited Threshold Acceptance.

LNS Large Neighborhood Search.

MARL Multi-Agent Reinforcement Learning.

MLP Multi-Layered Perceptron.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

RRT Record-to-Record Travel.

SA Simulated Annealing.

TRPO Trust Region Policy Optimization.

59

Bibliography

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan

Mané. Concrete problems in ai safety, 2016.

R. Bellman. The theory of dynamic programming. Bulletin of the American Mathematical

Society, 60(6):503–515, 1954.

Mauro Birattari, Luis Paquete, and Thomas Stützle. Classification of metaheuristics and

design of experiments for the analysis of components. 03 2003.

Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa,

Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. Journal

of the Operational Research Society, 64(12):1695–1724, Dec 2013. ISSN 1476-9360. doi:

10.1057/jors.2013.71.

URL: https://doi.org/10.1057/jors.2013.71.

Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to

scheduling a sales summit. In Edmund Burke and Wilhelm Erben, editors, Practice

and Theory of Automated Timetabling III, pages 176–190, Berlin, Heidelberg, 2001.

Springer Berlin Heidelberg. ISBN 978-3-540-44629-3.

Y. Crama and M. Schyns. Simulated annealing for complex portfolio selection problems.

European Journal of Operational Research, 150(3):546–571, 2003. ISSN 0377-2217. doi:

https://doi.org/10.1016/S0377-2217(02)00784-1.

URL: https://www.sciencedirect.com/science/article/pii/S0377221702007841. Financial

Modelling.

Zvi Drezner, Peter M. Hahn, and Éeric D. Taillard. Recent advances for the quadratic

assignment problem with special emphasis on instances that are difficult for meta-

heuristic methods. Annals of Operations Research, 139(1):65–94, Oct 2005. ISSN

1572-9338. doi: 10.1007/s10479-005-3444-z.

URL: https://doi.org/10.1007/s10479-005-3444-z.

60

https://doi.org/10.1057/jors.2013.71
https://www.sciencedirect.com/science/article/pii/S0377221702007841
https://doi.org/10.1007/s10479-005-3444-z

Gunter Dueck. New optimization heuristics: The great deluge algorithm and the record-

to-record travel. Journal of Computational Physics, 104(1):86–92, 1993. ISSN 0021-

9991. doi: https://doi.org/10.1006/jcph.1993.1010.

URL: https://www.sciencedirect.com/science/article/pii/S0021999183710107.

Ahmad Hemmati and Lars Magnus Hvattum. Evaluating the importance of randomiza-

tion in adaptive large neighborhood search. International Transactions in Operational

Research, 24(5):929–942, 2017. doi: https://doi.org/10.1111/itor.12273.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12273.

Karla Hoffman and Ted Ralphs. Integer and combinatorial optimization. Encyclopedia

of Operations Research and Management Science, 01 2013. doi: 10.1007/978-1-4419-

1153-7 129.

Holger H. Hoos and Thomas Stützle. Stochastic local search: Foundations and appli-

cations. In Holger H. Hoos and Thomas Stützle, editors, Stochastic Local Search,

The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, San Fran-

cisco, 2005. ISBN 978-1-55860-872-6. doi: https://doi.org/10.1016/B978-155860872-

6/50018-4.

URL: https://www.sciencedirect.com/science/article/pii/B9781558608726500184.

M Hyde, G Ochoa, T Curtois, and JA Vazquez-Rodriguez. A hyflex module for the

maximum satisfiability (max-sat) problem. School of Computer Science, University of

Nottingham, Tech. Rep, 2010.

Warren G. Jackson, Ender Özcan, and Robert I. John. Move acceptance in local search

metaheuristics for cross-domain search. Expert Systems with Applications, 109:131–151,

2018. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2018.05.006.

URL: https://www.sciencedirect.com/science/article/pii/S0957417418302835.

Jakob Kallestad, Ramin Hasibi, Ahmad Hemmati, and Kenneth Sörensen. A general deep

reinforcement learning hyperheuristic framework for solving combinatorial optimization

problems. European Journal of Operational Research, 309(1):446–468, 2023. ISSN 0377-

2217. doi: https://doi.org/10.1016/j.ejor.2023.01.017.

URL: https://www.sciencedirect.com/science/article/pii/S037722172300036X.

Todd R. Kelley. Optimization, an important stage of engineering design. The Technology

Teacher, 69(5):18–23, 2010.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

URL: https://www.science.org/doi/abs/10.1126/science.220.4598.671.

61

https://www.sciencedirect.com/science/article/pii/S0021999183710107
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12273
https://www.sciencedirect.com/science/article/pii/B9781558608726500184
https://www.sciencedirect.com/science/article/pii/S0957417418302835
https://www.sciencedirect.com/science/article/pii/S037722172300036X
https://www.science.org/doi/abs/10.1126/science.220.4598.671

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing prob-

lems!, 2019.

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in

policy optimization, 2020.

URL: https://openreview.net/forum?id=B1lqDertwr.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving

vehicle routing problems. In International Conference on Learning Representations,

2020.

URL: https://openreview.net/forum?id=BJe1334YDH.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-

trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,

Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level

control through deep reinforcement learning. Nature, 518(7540):529–533, Feb 2015.

ISSN 1476-4687. doi: 10.1038/nature14236.

URL: https://doi.org/10.1038/nature14236.

David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell.

Branch-and-bound algorithms: A survey of recent advances in searching, branch-

ing, and pruning. Discrete Optimization, 19:79–102, 2016. ISSN 1572-5286. doi:

https://doi.org/10.1016/j.disopt.2016.01.005.

URL: https://www.sciencedirect.com/science/article/pii/S1572528616000062.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takáč. Re-

inforcement learning for solving the vehicle routing problem, 2018.

Ender Özcan, Mustafa Misir, Gabriela Ochoa, and Edmund K. Burke. A reinforce-

ment learning-great-deluge hyper-heuristic for examination timetabling. 1(1):39–59,

jan 2010. ISSN 1947-8283. doi: 10.4018/jamc.2010102603.

URL: https://doi.org/10.4018/jamc.2010102603.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40:455–472,

11 2006. doi: 10.1287/trsc.1050.0135.

Alberto Santini, Stefan Ropke, and Lars Magnus Hvattum. A comparison of acceptance

criteria for the adaptive large neighbourhood search metaheuristic. Journal of Heuris-

tics, 24(5):783–815, Oct 2018. ISSN 1572-9397. doi: 10.1007/s10732-018-9377-x.

URL: https://doi.org/10.1007/s10732-018-9377-x.

62

https://openreview.net/forum?id=B1lqDertwr
https://openreview.net/forum?id=BJe1334YDH
https://doi.org/10.1038/nature14236
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://doi.org/10.4018/jamc.2010102603
https://doi.org/10.1007/s10732-018-9377-x

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Number v. 1 in

Algorithms and Combinatorics. Springer, 2003. ISBN 9783540443896.

URL: https://books.google.no/books?id=mqGeSQ6dJycC.

Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and Gunter Dueck.

Record breaking optimization results using the ruin and recreate principle. Journal of

Computational Physics, 159(2):139–171, 2000. ISSN 0021-9991. doi: https://doi.org/

10.1006/jcph.1999.6413.

URL: https://www.sciencedirect.com/science/article/pii/S0021999199964136.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-

imal policy optimization algorithms, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-

dimensional continuous control using generalized advantage estimation, 2018.

Paul Shaw. A new local search algorithm providing high quality solutions to vehicle

routing problems. 1997.

David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,

Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis

Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,

529:484–489, 01 2016. doi: 10.1038/nature16961.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, second edition, 2018.

URL: http://incompleteideas.net/book/the-book-2nd.html.

Kenneth Sörensen and Fred Glover. Metaheuristics, pages 960–970. 01 2013. ISBN

978-1-4419-1137-7. doi: 10.1007/978-1-4419-1153-7 1167.

Renata Turkeš, Kenneth Sörensen, and Lars Magnus Hvattum. Meta-analysis of meta-

heuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood

search. European Journal of Operational Research, 292(2):423–442, 2021. ISSN 0377-

2217. doi: https://doi.org/10.1016/j.ejor.2020.10.045.

URL: https://www.sciencedirect.com/science/article/pii/S037722172030936X.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double q-learning, 2015.

63

https://books.google.no/books?id=mqGeSQ6dJycC
https://www.sciencedirect.com/science/article/pii/S0021999199964136
http://incompleteideas.net/book/the-book-2nd.html
https://www.sciencedirect.com/science/article/pii/S037722172030936X

Hao-nan Wang, Ning Liu, Yi-yun Zhang, Da-wei Feng, Feng Huang, Dong-sheng Li,

and Yi-ming Zhang. Deep reinforcement learning: a survey. Frontiers of Information

Technology & Electronic Engineering, 21(12):1726–1744, Dec 2020. ISSN 2095-9230.

doi: 10.1631/FITEE.1900533.

URL: https://doi.org/10.1631/FITEE.1900533.

Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe.

Boosting metaheuristic search using reinforcement learning. Studies in Computational

Intelligence, 434:433–452, 01 2013. doi: 10.1007/978-3-642-30671-6-17.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125.

doi: 10.1007/BF00992696.

URL: https://doi.org/10.1007/BF00992696.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.585893.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and

Yi Wu. The surprising effectiveness of ppo in cooperative, multi-agent games, 2022.

Wei Zhang and Thomas G. Dietterich. A reinforcement learning approach to job-shop

scheduling. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence - Volume 2, IJCAI’95, page 1114–1120, San Francisco, CA, USA, 1995.

Morgan Kaufmann Publishers Inc. ISBN 1558603638.

Yuchang Zhang, Ruibin Bai, Rong Qu, Chaofan Tu, and Jiahuan Jin. A deep reinforce-

ment learning based hyper-heuristic for combinatorial optimisation with uncertainties.

European Journal of Operational Research, 300(2):418–427, 2022. ISSN 0377-2217. doi:

https://doi.org/10.1016/j.ejor.2021.10.032.

URL: https://www.sciencedirect.com/science/article/pii/S0377221721008821.

64

https://doi.org/10.1631/FITEE.1900533
https://doi.org/10.1007/BF00992696
https://www.sciencedirect.com/science/article/pii/S0377221721008821

Appendix A

Additional Performance Plots

Figures A.1 and A.2 show the performance of ALNS, DRLH, DRLMA and DRLH-

DRLMA averaged over the test set for both CVRP and PJSP, respectively. More specif-

ically, they show how the minimum cost develops as the search progresses. Overall, the

figures show that using DRLMA as acceptance criterion makes the solution methods,

both DRLMA and DRLH-DRLMA, discover good solution faster than their main com-

petitive baselines, namely ALNS and DRLH respectively, as well being able to find better

(or as good) solutions overall.

65

66

(a) CVRP, 20 orders

(b) CVRP, 50 orders

(c) CVRP, 100 orders

(d) CVRP, 200 orders

Figure A.1: Average performance of ALNS, DRLH, DRLMA and DRLH-DRLMA on the
CVRP.

67

(a) PJSP, 20 jobs

(b) PJSP, 50 jobs

(c) PJSP, 100 jobs

(d) PJSP, 300 jobs

Figure A.2: Average performance of ALNS, DRLH, DRLMA and DRLH-DRLMA on the
PJSP.

	Introduction
	Context and Motivation
	Thesis outline

	Background and Related Work
	Combinatorial Optimization
	Solution Methods
	Exact approach
	Heuristic approach
	Metaheuristics

	Hyperheuristics
	Adaptive Large Neighborhood Search
	Simulated Annealing Acceptance Criteria

	Reinforcement Learning
	Introduction to Reinforcement Learning
	Deep Reinforcement Learning

	Related Work
	Metaheuristics and Reinforcement Learning
	Move Acceptance
	Move Acceptance and Reinforcement Learning

	Problem Sets
	Capacitated Vehicle Routing Problem (CVRP)
	Parallel Job Scheduling Problem (PJSP)

	DRLMA
	The Hyperheuristic Setup
	Heuristics
	Solution Representation and Initial Solution
	Stopping Condition
	Deep Reinforcement Learning in the Hyperheuristic setting

	Deep RL Move Acceptance (DRLMA)
	State Representation
	Reward function

	DRLH+DRLMA: A comment on Design Choice

	Experimental Setup
	Experimental Environment
	Dataset Generation
	CVRP
	PJSP

	Baseline Solution Methods
	Adaptive Large Neighborhood Search (ALNS)
	Deep Reinforcement Learning Hyperheuristic (DRLH)

	Hyperparameter Selection
	Adaptive Large Neighborhood Search (ALNS)
	DRLMA

	Results
	Results of CVRP
	Results of PJSP
	Performance Results
	Move Acceptance Behaviour

	Conclusion and Future Work
	List of Acronyms and Abbreviations
	Bibliography
	Additional Performance Plots

