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Abstract

This master thesis delves into the exploration of document ranking models, with a par-

ticular focus on architectures based on BERT (Bidirectional Encoder Representations

from Transformers). The primary objective of the thesis is to train these ranking mod-

els using textual data extracted from systematic reviews. The purpose is to develop a

tool that can assist researchers in conducting systematic reviews by prioritizing the most

relevant studies, thus eliminating the need to screen non-relevant studies when looking

for evidential information. The study includes the creation of a labeled dataset from a

collection of systematic reviews by fetching additional textual content from PubMed. In

addition, the study presents a training framework for training various document ranking

models. The results indicate that the models can capture the underlying patterns within

the training data. However, they exhibit suboptimal performance when presented with

unseen data. This overfitting phenomenon could be attributed to the dataset’s dissimilar

writing styles. Furthermore, the similarity between the text in relevant and non-relevant

studies might also contribute to this performance disparity.
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Chapter 1

Introduction

The World Health Organization (WHO) is a worldwide organization trying to promote

health, keep the world safe, and serve vulnerable populations [25]. Despite its efforts,

a significant portion of the global population lacks access to essential health services,

especially in low and middle-income countries. This has a significantly negative impact,

leading to an alarming number of deaths or unnecessary loss of life. As for now, at least

half of the people in the world do not receive the health services they need, and about

100 million people are forced into extreme poverty, mainly due to spending out-of-pocket

money on health care [26].

The United Nations (UN) are promoting better living standards and human rights for

everyone. They have therefore developed the Sustainable Development Goals (SDG) to

transform our world. SDG Target 3.8 relates to the lacking health services and extreme

poverty around the world [24].

SDG Target 3.8: Achieve universal health coverage, including financial risk

protection, access to quality essential health-care services, and safe, effective,

quality, and affordable essential medicines and vaccines for all.

A step towards SDG Target 3.8 is to offer Universal Health Coverage, meaning ev-

eryone can access the health services they need without suffering financial hardship [26].

In low-income and low-middle-income countries with limited health budgets, challeng-

ing choices must be made regarding including medical interventions in health benefits

packages (HBP), encompassing the government’s provision of specific interventions, ei-

ther free or at a reduced cost. Due to some countries’ limited money and resources,
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deciding which intervention to include in the HBP is difficult. In determining the inclu-

sion of interventions in a health benefits package (HBP), cost-effectiveness—calculated

as the ratio of cost to effect—is typically the primary criterion. Consequently, having

accurate and comprehensive information regarding all interventions’ costs and health ef-

fects is crucial for transparency and fairness. Insufficient information increases the risk

of excluding cost-effective interventions from the HBP or including interventions that are

not cost-effective. If the government should fulfill SDG 3.8, it is essential to prioritize

interventions transparently and fairly.

An HBP can be developed by employing strategic planning and management tools

[23, p. 10]. One such management tool is the University of Bergen’s FairChoices - DCP

Analytics Tool, from now on referred to as FairChoices. FairChoices is a user-friendly tool

intended to assist countries with limited resources in prioritizing investments in the health

sector. Its main function is to estimate different parameters of interests, such as cost-

effectiveness, equity impact, and financial risk protection of various medical interventions

[22]. Medical intervention is any action to enhance human health, whether it involves

preventing illnesses, treating or mitigating the severity or length of an ongoing disease, or

reinstating function compromised due to an injury or illness [33, Ch. 2]. For FairChoices

to do this, it is entirely dependent on key input parameters for a particular medical

intervention. Key input parameters are usually found in health study publications and

summarized in Evidence Briefs.

Evidence Briefs are used as input data for the FairChoices tool to estimate parameters

of interest. For FairChoices to evaluate every existing intervention, it needs input data

from every existing intervention, meaning it needs an Evidence Brief from each medical

intervention. The main information included in Evidence Brief concerns the cost and

effect of the particular intervention. Costs are measured per intervention for one person

for a whole year. Effect represents improved survival if you get infected by the dis-

ease, improved life quality, and reduced disease occurrence. This information is retrieved

from health studies literature, such as Randomized Controlled Trials (RCT), observa-

tional studies, and patient-reported outlines, which can be found in medical databases.

I will, throughout the report, refer to them as documents. Currently, researchers from

the University of Bergen create Evidence Briefs by conducting a Rapid Review, which

involves surveying existing medical publications about a particular medical intervention.

Instead of surveying all publications, the researchers survey until they have found suffi-

cient evidence to state parameters of interest. For many interventions, an abundance of

information is available. Medical literature containing new evidence is constantly being
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published, and some of these publications may contain relevant information, whereas oth-

ers may not. Due to the lack of existing Evidence Briefs and the fact that Rapid Reviews

have many similarities to Systematic Reviews, I will mainly focus on Systematic Reviews

in this thesis.

The Systematic Review approach follows a step-by-step method that summarizes

evidence from a series of related documents on a particular topic. It is done in a rigorous,

transparent, and standardized methodology to identify, critically appraise, and synthesize

all relevant documents on a specific topic [17].

The Cochrane Library is a database collection containing different types of high-

quality and independent evidence-based documents. These documents are intended to

inform healthcare decision-making [15] and are used by medical researchers when con-

ducting a Systematic Review for a particular intervention. A Systematic Review mainly

includes four steps [17]:

1. Identification of relevant documents from several sources.

2. Selection of documents based on clear, predefined criteria.

3. Systematic collection of data.

4. Appropriate synthesis of data.

When identifying relevant documents, also called screening, researchers may have to

evaluate thousands of articles, making the task extremely time-consuming. The average

time for conducting a Systematic Review is 15 months, risking the review being outdated

before it is finished [6, p. 1]. In addition, it should be noted that the proportion of

relevant documents obtained during the screening phase can be as low as 1% of the

overall search yield. [6, p. 1]. Search yield refers to the number of documents identified

through the search process that meet the criteria for inclusion in the review. And with

the ever-increasing amount of articles published, the screening stage will become an even

more significant bottleneck if no tools are provided.

As mentioned, conducting a Systematic Review is complex and challenging without

tools. Susan Sykes highlights a series of challenges researchers will face when starting

a Systematic Review process, including logistics and coordination, human error, lack

of time, and searching for solutions [34]. In this work, I have focused on the third

challenge, concerning the time aspect of doing a Systematic Review of searching and
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screening medical documents. As for now, the screening step is often a manual job where

researchers have to browse through results from scholars. It is also known that researchers

have lacked comprehensive guidance on which search systems are suitable for systematic

searches [19, p. 2]. The scholar can be search-based, such as PubMed, Cochrane, or

Google Scholar, where the researcher inputs a search query to a search engine, and a

ranked list of documents is returned. However, these search engines are not optimized

for conducting Systematic Reviews. Documents containing information needed by the

researcher conducting the Systematic Review may be ranked far down the list. This

is because search engines tend not to rank newly published articles as high as older

papers with more citations and click-rate. This makes it more difficult for researchers

to find newly published evidence relevant to the type of interventions examined in the

Systematic Review. Another way to find relevant documents is to use search engines

with word-matching techniques and logarithmic operators. The user then has an initial

idea of which words should be included and which should not be for a study relevant to

the examined intervention. The search engine will only return documents that satisfy

the user’s logarithmic search input. Synonyms and related terms are used to increase the

sensitivity of the search. This method is also time-consuming and lacks performance due

to difficulties defining appropriate inclusion criteria.

Thus, a model optimized for ranking the most related documents that include evidence

to estimate parameters of interest higher than non-related documents for a particular

medical intervention is needed. The primary purpose of the ranking model is to support

researchers in the search and screening step of a Systematic Review.

Different document ranking models have been developed and have shown promising

results. However, there are no publications on applying these document ranking algo-

rithms to Systematic Review datasets. Why has this not been attempted? There are

many reasons why document ranking algorithms haven’t been trained on scientific health

data. Firstly, research on document ranking algorithms has increased exponentially and

has only recently proven to have great results. Thus, there has not been much time to

research the possibility of training them on a Systematic Review task. Secondly, the out-

come may not reflect the effort in developing the document ranking algorithm for their

task. Other factors also determine why document ranking has not emerged as widely

in healthcare as in other fields. Some factors include complex and diverse data, lack of

standardization, limited resources, and the need for human interpretation.
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1.1 Objectives

How can document ranking algorithms be trained to assist researchers when

conducting Systematic Reviews? Is it possible to develop a useful document

ranking model that assists researchers in conducting a systematic review?

This thesis seeks to determine if existing machine learning models can be trained

to assist users when conducting Systematic Reviews. The desired outcome is to rank

documents based on textual input. The ranked result should provide documents that

fulfill the inclusion criteria and contain evidence related to the user input at a higher

rank than those that do not. Specifically, the objectives of this thesis are:

(A) To review the current state-of-the-art transformer-based BERT models and how they

can be used for document ranking.

(B) To create a dataset that facilitates training neural ranking models.

(C) To design, implement, and evaluate different ways of using the BERT model, includ-

ing interaction and representation-based approaches for ranking health documents,

comparing their performance to other approaches such as TF-IDF in combination

with Logistic Regression, BM25, and PubMed ranking.

(D) To investigate the use of various textual features in documents, including the related

documents’ titles and abstracts. Also, to evaluate the impact on various hyperpa-

rameters relevant to BERT-based models of the task-specific neural network.

(E) To analyze the study results, draw conclusions, and make recommendations for future

research, especially in using transformer-based models, such as BERT, in ranking

health documents.

By accomplishing these objectives, the thesis aims to provide an in-depth understand-

ing of different ways of using the BERT model in the ranking of health documents and

its comparison to other models. The results of this research will contribute to develop-

ing more effective and efficient tools for healthcare professionals and researchers to find

relevant health documents when conducting a Systematic Review of a particular medical

intervention. It will determine the possibility of using Systematic Review data from the

Cochrane Library to train document ranking models.
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1.2 Thesis Outline

This thesis is structured into seven chapters, each dedicated to exploring different aspects

of the research question: How can machine learning algorithms improve document ranking

when conducting Systematic Reviews? Is it possible to develop a useful document ranking

model that assists researchers in conducting a systematic review?

Chapter 1 briefly introduces the topic and presents the problem: document ranking

in Systematic Reviews. It outlines the research questions and the objective of the study.

Chapter 2 details all the theoretical frameworks and concepts relevant to the study.

This chapter examines previous research on document ranking and sets the stage for the

following empirical analysis.

Chapter 3 details the Systematic Review data used in the study, gathered from

Cochrane Library and PubMed. This chapter discusses the research design and how

to create a labeled dataset suitable for the task.

Chapter 4 talks about the proposed solutions for training document ranking models.

It goes in-depth on implementation details and considerations. This chapter discusses

the algorithms used and how they were implemented.

Chapter 5 presents the results of the study. This chapter discusses the empirical anal-

ysis, with a focus on the effectiveness of the algorithms in improving document ranking

in Systematic Reviews.

Chapter 6 provides a discussion of the results and their implications. It examines the

strengths and limitations of the study, as well as proposes future research directions.

Chapter 7 concludes the thesis by summarizing the key findings, discussing their

significance, and offering recommendations for future research. It draws together the key

themes from the study and highlights their importance in document ranking in Systematic

Reviews.
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Chapter 2

Background

The background chapter includes all the theoretical and technical concepts needed to

understand this thesis fully. I am describing the theoretical aspects of machine learning

and natural language processing. I am finishing this chapter by elaborating on related

works, including neural ranking models and existing ML tools to help the systematic

review process.

2.1 Machine Learning

This section discusses machine learning (ML) concepts used in this research. Many

concepts are described based on the book The Hundred-Page ML Book by Andriy Burkov

[7].

ML allows computer systems to learn and improve from experience without being

explicitly programmed. It involves using algorithms and statistical models that enable

a computer to learn from data and make predictions on new data. We divide ML into

supervised, semi-supervised, unsupervised, and reinforcement subcategories. We will, in

this section, only explain supervised and unsupervised.
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2.1.1 Supervised Learning

In supervised learning, we have a labeled dataset containing information on what we

want to predict in the future. We refer to this dataset as {(xi, yi)}Ni=1 where xi is the

observation represented as a feature vector, yi is the actual value (referred to as label), i

is the index of the particular data point and N is the total number of data points. The

feature vector xi typically contains numerical values that describe the observed entity

or phenomenon. For instance, in a classification problem of classifying customer reviews

as positive or negative, the feature vector could represent the length of the review, the

presence of specific keywords, the number of exclamation marks, and the average word

length. The label yi represents the class membership we want to predict, where yi =

1 corresponds to a positive review and yi = 0 corresponds to a negative review. If the

problem involves predicting the sentiment of a review as either positive or negative, it is

called a binary classification problem. In this case, the label yi corresponds to the two

possible classes: positive or negative sentiment.

Figure 2.1: Basic architecture for customer review classification using machine learning.
The customer review is inputted, and a feature vector is generated. This feature vector
is then used as input for the machine learning model, which predicts the sentiment of the
customer review.

Figure 2.1 illustrates how a particular feature vector xi representing a customer review

is provided as input to the classification model. The model then generates a prediction,

denoted as ŷi, indicating whether the review is positive or negative. The prediction may
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or may not match the actual label, yi, which represents the true sentiment of the review.

Supervised ML aims to train the algorithm using a labeled dataset, enabling it to learn

the underlying patterns between the input feature vector (review characteristics) and the

output label (review sentiment). The trained model can make accurate predictions on

new, unseen customer reviews.

2.1.2 Unsupervised Learning

In contrast to supervised learning, the labels are left out for unsupervised learning. The

dataset is thus a collection of {(xi)}Ni=1 where xi is a single vector of data features, i is the

index of a particular data point and N is the total number of data points. The primary

goal of unsupervised learning is to discover patterns or structures in the data without

prior knowledge of some output labels. A standard unsupervised learning method is

clustering, which aims to group similar data points into clusters based on their feature

vectors. Once the clustering algorithm is trained on the dataset, we can use the resulting

clusters to predict the categorical class of new data points. Another type of unsupervised

learning is training language models using extensive collections of raw texts. Section 2.4.6

explains these unsupervised learning methods in detail.

2.1.3 Parameters vs Hyperparameters

Standard for almost all ML models is that they have both parameters and hyperparam-

eters. These terms are used throughout the whole thesis and cannot be interchangeable.

Parameters are internal variables of the model that are learned during the training pro-

cess. They represent the model’s internal data representation and capture the patterns

and relationships within the training dataset. If the model is trained iteratively, the

values of parameters are updated through optimization algorithms. The training aims to

find the optimal values for parameters that best fit the training data and generalize well

to unseen data. When considering neural networks, we some times refer to the parameters

as weights and biases.

On the other hand, hyperparameters are external variables set before the learning

process begins. They define the structure and configuration of the learning algorithm.

Examples of hyperparameters include the learning rate, dropout value, number of layers or

units in a neural network, batch size, and activation functions. Hyperparameters influence

9



how the model learns and generalizes from the training data but are not learned from

it. Instead, they are chosen by the practitioner based on intuition, domain knowledge,

or through experimentation and tuning. Selecting appropriate hyperparameter values

is crucial, as they directly impact the model’s capacity to learn, convergence speed,

generalization ability, and overall performance.

2.1.4 Machine Learning Pipeline

The following subsection comprehends the process involved in the execution of an ML

project. The first step is data collection. Occasionally, you might receive a dataset from

someone else or need to collect the data yourself. The dataset is used to train, select

and evaluate the model. The next is data preparation and feature engineering. This step

prepares the data for training by cleaning, transforming, and sometimes normalizing the

data. This step is critical to ensure the data is suitable for the model and avoid errors

or biases. The next step is model type selection. A model type is selected for training

based on the specific problem and the nature of the data. Once a model type is selected,

we can start training an instance of the selected model type. One option is to train one

model with fixed hyperparameters. Unfortunately, the hyperparameters resulting in the

best model are not something we know beforehand. And it is thus common to train a

series of models with different hyperparameters to pick the best model. Various factors

influence the best model, usually related to the problem we are trying to solve. The

most common approach is to hold out a portion of the dataset before training, making it

possible to evaluate how the model performs on data it has not seen before. We usually

refer to this portion of the data as validation data, which is usually around 15% of the

total dataset but can vary depending on how much data we have. When we have chosen

a model based on some performance criteria, we evaluate the model on another hold-out

portion of the dataset. We refer to this portion of the dataset as the test set, which is

usually the same size as the validation set. This evaluation is needed to get an unbiased

estimate of how the chosen model performs. Section 2.1.8 describes different performance

measures, especially related to document ranking.

2.1.5 Generalization

Generalization is a critical aspect when training ML models, which refers to the ability

of the model to perform well on new, unseen data. The goal of training a model is not
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to memorize the training data but to learn patterns that can be applied to new data.

Suppose you want to build an ML model that can classify movie reviews as positive or

negative based on their text. Consider that the dataset is in the same format as explained

in 2.1.1. Now, you train a neural network on this dataset to achieve high accuracy on

the training data. The model learns to recognize patterns in the text, such as the words’

sentiment, the review’s tone, and the sentences’ length. However, if the model memorizes

the training data, it cannot generalize to new, unseen reviews. For example, suppose the

model learns to recognize a specific set of words or phrases overrepresented in the training

data. In that case, it may perform poorly on reviews that use different word phrases to

express the same meaning. The model must learn to recognize more general patterns

found in training and validation data to achieve good generalization. For instance, the

model should be able to identify sentiment-carrying words, such as good, bad, great,

terribly, and so on, and understand how they contribute to the overall sentiment of the

review. However, the model should also consider that if the word terribly is used in

combination with good, this is a positive indication. In summary, the model must learn

general patterns that apply to many scenarios, not just the specific examples in the

training data to achieve generalization.

2.1.6 Overfitting vs Underfitting

The bias-variance tradeoff is significant in ML. We say that when the model performs

poorly on the training and validation set the model is underfitting. The model is thus

not able to learn anything from the training data. This behavior can occur if the model

is too simple or the engineered data features are not informative enough. Contrarily,

overfitting happens when the model performs well on the training data but poorly on

either validation or test data. The model has then learned the patterns in the training

data too well and cannot generalize to unseen data. This behavior can happen if the model

is too complex or the data contains too many features and insufficient data samples. It’s

about finding the right balance between two types of errors: underfitting and overfitting.

To achieve good generalization, a balance between simplicity and complexity is needed.

Various models with different hyperparameters must often be trained to find the best.

2.1.7 Logistic Regression

Logistic regression is a supervised learning model used for binary classification tasks. The

goal is to predict a binary output (e.g., yes or no, 1 or 0) based on input features. In
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logistic regression, the output is modeled as a function of the input features, and the goal

is to learn the parameters of this function that best fit the data.

Let’s define how logistic regression works using a single data point. We have from

section 2.1.1 defined a single data point for supervised learning as a xi, yi pair where in

this case xi is a numerical vector and yi is either 0 or 1. The logistic regression model

assumes that the probability of the positive class (e.g., yes, 1) is a logistic function of a

linear combination of the input features using a logistic function with the name sigmoid:

ŷ = P (ŷ = 1|z) = 1

1 + exp(−z)
= simgmoid(z) (2.1)

where ŷ is the binary predicted output and z is a linear combination of the input

features weighted by a set of learned parameters. This function will output a single

numerical number representing the probability of xi being true. We can then say that if

the value is above 0.5, the final prediction is 1. If the value is below, then the prediction

is 0. Lets look closer at how z is calculated:

z(xi, w) =
K∑
j

xij ∗ wj (2.2)

where xij is a specific value in the feature vector, w is the learnable weights defined

as a vector, and wj is a specific learnable weight. K is the total number of specific

features in xi. The sigmoid function is applied to this z value to obtain the probability of

the positive class. You can see that the sigmoid function maps any real-valued number

to a value between 0 and 1, which makes it helpful in modeling probabilities or binary

classification tasks.
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Figure 2.2: Graph showing how sigmoid function maps any positive or negative number
to a number between 0 and 1.

The formulas 2.1 and 2.2 cover a forward pass of a single data point. The next step

is to adjust the parameters wi using a backward pass. The parameters w are learned by

optimizing a loss function that measures the difference between the predicted probabilities

and the actual binary labels in the training data. The most commonly used loss function

for logistic regression is the cross-entropy loss, described in more detail in 2.1.9. The

parameters wi can be learned using optimization algorithms such as stochastic gradient

descent, which iteratively updates the parameters in the direction of the negative gradient

of the loss function with respect to wi. Section 2.3 describes how these parameters are

learned in more detail.

2.1.8 Performance Measures

As mentioned in section 2.1.7 on logistic regression, the model makes a prediction ŷi where

we can derive if the model predicts 1 or 0. This prediction happens both during training

and evaluation. And since we have a labeled dataset containing the actual binary values,

we can calculate different performance measures to determine the quality of the model.

Many such performance measures are related to a confusion matrix. A confusion matrix

is a table that summarizes the predicted and actual values for a binary classification task.

The matrix has four cells, which represent the four possible combinations of predicted

and actual values:
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Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)

Table 2.1: A confusion matrix is a table that summarizes the performance of a classifica-
tion model by showing the counts of true positive, true negative, false positive, and false
negative predictions.

• True Positive (TP): The predicted class is positive and the actual class is also

positive.

• False Positive (FP): The predicted class is positive but the actual class is negative.

• False Negative (FN): The predicted class is negative but the actual class is positive.

• True Negative (TN): The predicted class is negative and the actual class is also

negative.

Using the confusion matrix, we can calculate various performance measures, such as

accuracy, precision, recall, and F1-score [4]. The following formulas give them:

Accuracy =
TN + TP

TN + FP + TP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1Score = 2 ∗ Precision ∗Recall

Precision+Recall
.

(2.3)

But what exactly do these performance measures mean? Consider the same example

as previously, where the task is to train a model to classify movie reviews as positive or

negative. Let’s prefill the table with some numbers. The values in the confusion matrix

are thoughtfully selected to demonstrate a specific scenario and emphasize a particular

aspect.

Predicted Negative Predicted Positive
Actual Negative 20 10
Actual Positive 7 5

Table 2.2: Confusion matrix filled with some numbers. There are, in total, 42 predictions,
and each prediction belongs to a particular cell.

Using the numbers from the confusion matrix, we can calculate the performance

measures just described.
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• Accuracy: This is the proportion of correctly classified instances out of the total

number of instances. In this case, the accuracy is 20+5
20+10+5+7

= 0.6.

• Precision: This is the proportion of true positive predictions out of all positive

predictions. In this case, the precision is 5
5+10

= 0.33.

• Recall: This is the proportion of true positive predictions out of all positive in-

stances. In this case, the recall is 5
5+7

= 0.42.

• F1-score: This is the harmonic mean of precision and recall and is often used

to summarize the classifier’s performance. In this case, the F1-score will be 2 ∗
0.33∗0.42
0.33+0.42

= 0.37

This example highlights the importance of not always using (and trusting) the ac-

curacy measure since it can be misleading. In the example, we have an accuracy of

0.6, whereas recall, precision, and F1-score are drastically lower. In scenarios where the

dataset has an imbalanced portion of false positives and false negatives are not equal,

precision and recall become essential measures to assess the model’s performance.

Consider using these performance measures for a document ranking task. None of

them consider the ordering of documents; therefore, they aren’t helpful for document

ranking tasks. In document ranking, the goal is to retrieve the most relevant documents

for a given query and present them in a ranked order.

While traditional performance measures focus on the correctness of individual predic-

tions, document ranking requires a more nuanced approach that considers the position

of relevant documents in the ranking. For example, a ranking that places relevant docu-

ments at the top of the list is more valuable than one that places them at the bottom,

even if both rankings have the same precision and recall.

Therefore, performance measures such as Mean Average Precision (MAP) are used in

document ranking. MAP considers each document’s relevance in ranking and weighs the

importance of documents according to their position. MAP also accounts for users who

often only examine the top few documents in the ranking. It is beneficial when the goal

is to return a ranked list of relevant documents in response to a user’s query.

The subsequent equations establish the definition of MAP:

AP (q) =
1

GTP

D∑
k=1

P (k) ∗ rel(k) (2.4)
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MAP =
1

Q

Q∑
q=1

AP (q) (2.5)

In Equation 2.5, Q indicates the total number of queries. In equation 2.4, GTP refers

to ground truth positives, D indicates total number of documents for the particular query,

P (K) refers to the precision at cut-off k in the document list and rel(k) refers to the

relevance at rank k. The rel(k) function returns the value 1 if the document at rank k has

an actual label = 1 and 0 otherwise. The P (k) is the same precision formula explained

in 2.3 with the difference of only looking at the top k results.

To understand MAP, we first need to understand Average Precision AP . Suppose a

search engine retrieves documents for a particular query. The search engine retrieves ten

documents, of which four are actually relevant to the query. The documents are ranked

based on their relevance score, with the most relevant document at the top.

To calculate Average Precision (AP), we first calculate the P (k) for each relevant

document in the ranking given the document’s ranking k. AP is the average of all

documents’ P (k) values multiplied by the relevance function. Precision is the number of

relevant documents retrieved at a given rank divided by the total number of documents

retrieved at rank k. For example, the precision at rank 4 is 3/4 because we have three

positive predictions at level k = 4, and the total number of documents is 4.

k Document True Label P(k) P(k)*rel(k)
1 Doc1 1 1/1 1
2 Doc2 1 2/2 1
3 Doc3 0 2/3 0
4 Doc4 1 3/4 3/4
5 Doc5 0 3/5 0
6 Doc6 0 3/6 0
7 Doc7 1 4/7 4/7
8 Doc8 0 4/8 0
9 Doc9 0 4/9 0
10 Doc10 0 4/10 0

Table 2.3: In this table, we elaborate the calculations needed to calculate the AP for a
handful of ranked documents. Assume that an ML model has ranked the document in
order of k and that each document has a true label. The right-most column highlights
that the score is reduced if documents with true labels are placed at a lower stage than
false label documents.
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Now that we have calculated every P (k)∗ rel(k) values, we can complete the formula,

given in 2.4 to retrieve the AP for a particular query:

GTP = 4 ,

AP = AP =
1 + 1 + 3

4
+ 4

7

4
= 0.83 .

(2.6)

Then this calculation needs to be done for all queries along with its documents and

the ranking models’ prediction. Assume that we calculated AP for three queries and

calculated the AP score with the results AP1 = 0.83, AP2 = 0.79, and AP3 = 0.90. The

MAP score is obtained by calculating the mean of all individual scores:

MAP =
0.83 + 0.79 + 0.90

3
= 0.84 . (2.7)

2.1.9 Binary Cross-Entropy Loss

Binary cross-entropy loss is a popular loss function used in binary classification tasks to

measure the dissimilarity between predicted and actual probability distributions. It is

also referred to as binary log loss.

The binary cross-entropy loss function measures the difference between the predicted

probability distribution and the true probability distribution. In the case of binary clas-

sification, we want to predict the probability of the positive class (i.e., class 1) given

an input instance. The output of a neural network for binary classification is often the

probability of the positive class. This output value can be seen as a probability distribu-

tion over the two classes: the probability of the positive class and the probability of the

negative class (i.e., class 0).

Suppose we have a binary classification problem where the labels are either 0 or 1,

and we have a single output neuron that predicts the probability of the positive class.

Let ŷ be the predicted probability of the positive class for an input instance, and y be

the true label (either 0 or 1) for the same input instance. The binary cross-entropy loss

function is defined as follows:

BCE = − 1

N

N∑
i

yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi)

17



where N is equal to the total number of data points. The first term (y ∗ log(ŷ))

measures the loss when the true label is positive (i.e., y=1). We want the predicted

probability ŷ to be as close to 1 because the true label is 1. Therefore, if the predicted

probability is close to 1, the loss will be close to 0, and if the predicted probability is

close to 0, the loss will be large.

The second term ((1−y)∗ log(1− ŷ)) measures the loss when the true label is negative

(i.e., y=0). We want the predicted probability ŷ to be as close to 0 as possible because

the true label is 0. Therefore, if the predicted probability is close to 0, the loss will be

close to 0, and if the predicted probability is close to 1, the loss will be large.

The binary cross-entropy loss function is a smooth and continuous convex function in

ŷ. Therefore, it is suitable for optimization using gradient-based methods such as SGD

and other gradient descent-based optimization methods. During training, the model

updates its parameters to minimize the binary cross-entropy loss, encouraging the model

to make better predictions on unseen data.

2.1.10 Cosine Similarity

Cosine similarity is a mathematical measure that calculates the similarity between two

vectors. It is a widely used technique used in various fields of ML. To compute cosine

similarity, we first normalize the vectors to have unit lengths and then calculate the dot

product of the two vectors, dividing it by the product of their Euclidean lengths. This

results in a value between -1 and 1, where 1 indicates complete similarity, 0 indicates no

similarity, and -1 indicates complete dissimilarity, allowing us to compare and measure

the similarity between different data points.

More mathematically, cosine similarity between two numerical vectors is calculated

using the following formula:

cosine similarity(A,B) =
A ·B

||A|| ∗ ||B||
(2.8)

where · represents the dot product operation, ||A|| represents the Euclidean length or

magnitude of vector A, and ||B|| represents the Euclidean length or magnitude of vector

B.
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The formula for calculating the dot product operation between two vectors A and B is

done by taking the sum of the element-wise products of the two vectors. The Euclidean

length or magnitude of a vector A is computed as the square root of the sum of the

squared elements of the vector.

A ·B =
d∑
i

(Ai ∗Bi) (2.9)

||A|| =

√√√√ d∑
i

A2
i (2.10)

where Ai and Bi represent the i-th element of vectors A and B, respectively. d is the

total number of elements in the vector.

For example, suppose we have two numerical vector representations, one for the word

cat and another for the word dog. We can compute their cosine similarity using the

formula described above. If the cosine similarity of the two vectors is close to 1, it

suggests that cat and dog are similar in meaning, likely due to their shared attributes as

household pets. If the cosine similarity is closer to 0, it suggests that cat and dog are less

similar in meaning. Finally, suppose the cosine similarity is close to -1. In that case, it

suggests that cat and dog are highly dissimilar in meaning.

2.1.11 Gestalt Pattern Matching

Gestalt pattern matching is a concept in psychology that describes how our brains nat-

urally group visual elements into meaningful patterns or wholes. It’s based on the idea

that we perceive objects as a whole rather than a collection of individual parts.

When comparing two strings using Gestalt pattern matching, we can apply the same

principles by looking at the overall shape and structure of the words rather than just the

individual letters. In other words, we can try to match the ”gestalt” of one string to the

other.

To calculate the similarity between two strings, you count the number of matching

characters, the longest common substring, plus any matching characters on either side
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of that substring. Then multiply that number by two and divide it by the number of

characters in both strings.

Let’s say we have two strings, A and B. We can represent each string as a set of

characters:

A = {a1, a2, ..., ax} ,

B = {b1, b2, ..., by} .
(2.11)

The similarity of two strings is defined as:

D =
2Km

x+ y
. (2.12)

where the similarity metric, D is given a value between zero and one. Closer to one

indicates a higher string similarity. Km is the number of matching characters.

For example, let’s say we have the strings farmvill and faremvie. We can represent

these strings as sets of characters:

A = {”f”, ”a”, ”r”, ”m”, ”v”, ”i”, ”l”, ”l”}

B = {”f”, ”a”, ”r”, ”e”, ”m”, ”v”, ”i”, ”e”}

We can then calculate the gestalt pattern similarity like this:

D =
2 ∗ (|{”f”, ”a”, ”r”}|+ |{”m”, ”v”, ”i”}|)

x+ y
=

2 ∗ (3 + 3)

8 + 8
= 0.75

2.2 Natural Language Processing

Natural Language Processing (NLP) is a field of study that deals with the interaction

between computers and human language. It involves using computational methods and

algorithms to process, analyze, and generate human language in written and spoken forms.

NLP is highly interdisciplinary, drawing on computer science, linguistics, mathematics,

20



psychology, and other disciplines. We will look into NLP concepts related to the ML field

and mainly focus on the language model BERT.

NLP and ML are often used in various applications, as ML provides a robust set

of techniques for training models to recognize patterns in language data. Examples of

such applications are Sentiment Analysis, Machine Translation, Text Classification, and

Question Answering.

2.2.1 Data Cleaning

Data cleaning and pre-processing are crucial steps in NLP ML projects. It involves trans-

forming raw text data into a clean and usable format that can be input into an ML algo-

rithm. Reasons to do data cleaning and pre-processing could be improving performance

by reducing noise and handling missing data. There are several aspects to consider when

cleaning and pre-processing to transform the data to a more suitable format. You may

encounter over-cleaning, where you remove important information or alter the meaning

of the text, resulting in a lack of performance. Another aspect to consider is complexity

and ambiguity. Natural language may use complex combinations of words to express its

meaning; some words may express different meanings in different contexts. It can there-

fore be difficult to identify and standardize all the variations of the text combinations.

Bias can also be introduced if, for example, a decision to remove or change certain words

or phrases influences the outcome of the ML algorithm.

There are several standard methods for data cleaning in NLP. The first is stopword

removal. Stopwords are common words in a language that is not informative for analysis,

such as the, and, and of.

Stemming and lemmatization are other techniques to reduce inflected words to their

base or root form. Stemming involves stripping the suffixes from words to reduce them

to a standard stem. For example, the word jumping, after stemming, would result in the

word jump. Lemmatization involves mapping words to their base form. For example, the

word were would be turned into be after lemmatizing it.

Removing special characters and punctuation is beneficial and will sometimes in-

crease performance. This can be done using regular expressions or string manipulation.

Although, removing these may also result in a lack of performance if these tokens are

informative for the particular task.
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2.2.2 Tokenization

Word tokenization is breaking a piece of text into individual words or tokens and is a

fundamental step in NLP. It is typically performed as a pre-processing step to prepare text

data for further analysis or ML algorithms. A series of techniques have been proposed to

achieve better performance on model when tokenizing raw text as input. Some techniques

include whitespace tokenization and subword tokenization. Whitespace tokenization is

the most basic one, where the algorithm only looks for whitespaces in the text, and all

characters between the spaces will result in a token.

WordPiece tokenization is a subword tokenization technique used in modern language

models. It creates a vocabulary of the most frequent subwords in the training corpus

using an algorithm called Byte Pair Encoding (BPE). The subwords are obtained by

iteratively merging pairs of adjacent characters or subwords based on their frequency

in the corpus until a predefined vocabulary size is reached. Here is an example of how

BPE works. Remember that BPE uses the whole training set and will typically produce

a richer vocabulary than the one I create in this example. Consider that the following

sentence is our entire corpus:

it is boring to see the previous model pretraining with a slow training speed

Then we find the most frequent pair of consecutive words. We can easily see that

the adjacent character combination ing occurs three times. We can also notice that the

character combination pre and train occurs two times. Our corpus will thus include the

following tokens: it, is, bor, ##ing, to, see, the, pre, ##vious, model, ##train, with, a,

slow, train, speed. Notice that the word previous, pretraining, and training is not in the

corpus at all since we recreate them with the subwords in the corpus. The hashtag in

front of some of the words indicates that these words are subwords and proceed by other

words. We intentionally omit subsequent hashtags for the starting subword to treat it

as a standalone word. For example, the subword pre will be treated the same as if pre

occurred alone.

We can tokenize new texts now that we have used the BPE technique to create the

vocabulary. The input text is first split into words using a whitespace tokenizer. Each

word is then further split into subwords using the WordPiece vocabulary. If a word is

absent in the vocabulary, it is split into individual characters. Tokenizing our sentence
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will thus result in the following tokens: [it, is, bor, ##ing, to, see, the, prev, ##ious,

model, pre, ##train, ##ing, with, a slow, train, ##ing, speed]

The WordPiece tokenization scheme has several advantages over basic tokenization

techniques. It can handle out-of-vocabulary words by breaking them into subwords,

improving the model’s performance on rare or unseen words. It also allows the model

to learn meaningful representations of morphologically rich languages, where words can

have many inflected forms and word boundaries are not always clear. It can also handle

misspellings since it can break down the words into subwords where the subwords can be

regarded as the same.

2.2.3 Word Embeddings

Word embeddings are distributed representations for words that capture the semantic

and syntactic similarity between words. They are dense vectors or matrices trained from

large text corpora using neural network-based models.

Before explaining word embeddings, let’s look at One-hot vectors. One-hot vectors

represent words as sparse one-hot vectors. The vector size is typically set to the number of

tokens in the vocabulary, sometimes up to 30 000 or even 50 000 tokens. A one-hot vector

representation for a particular token will have a single 1 value at the word’s vocabulary

position and all other values 0. This vector can then be used as input to a model. Word

embeddings are another way of representing words by representing them as continuous

vectors in a low-dimensional space to capture the semantic meaning of words. The size

of these vectors is drastically smaller than the size of the vocabulary and is much richer

in density. Word embeddings are usually trained in a fashion resulting in similar words

being located close to each other in the embedding space. Their relations and similarities

can be computed using mathematical operations, such as cosine similarity, explained in

2.1.10.

One of the advantages of word embeddings is that they can be pre-trained on large text

corpora and then fine-tuned on smaller task-specific datasets, saving computational time

and resources. However, word embeddings come with some limitations. One limitation

is that they are context-independent and may not capture the nuances and variations

of word meanings across different contexts and domains. This can lead to biases and

errors in downstream tasks. Various methods have been proposed to address this issue

by incorporating contextual information, such as contextualized word embeddings, to
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capture words’ rich and diverse meanings in different contexts and domains. In section

2.4.6, we will describe how BERT handles this problem by creating contextualized word

embeddings. Also, Word embeddings cannot represent phrases, sentences, or documents

as embeddings and are thus limited to only representing single tokens or words.

2.2.4 Term Frequency–Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TF-IDF) is a statistical method that re-

flects a term’s importance to a document within a collection of documents. It is com-

monly used in NLP for text classification, information retrieval, and other tasks that

involve processing and analyzing text. In this research, I will use TF-IDF to train a

logistic regression model for binary classification.

TF-IDF is calculated by multiplying Term Frequency (TF) and Inverse Document

Frequency (IDF). TF measures the frequency of a term in a document. It is calculated

by dividing the number of times a term appears in a document by the total number of

terms in the document. The resulting value is often normalized to prevent bias towards

longer documents.

TF (t, d) =
Number of occurrences of term t in document d

|d|
(2.13)

where |d| is the total number of terms in document d. We can consider TF as a

percentage of a term’s frequency in a given document. Now why can’t we use TF alone

and skip the IDF? Usually, a particular document will contain many connection words

like the, a, and of, which are included for connecting more meaningful words. So these

words will get a higher TF score than the special words we are more interested in since

the connection words occur more often.

IDF measures a term’s significance in the entire collection of documents (training set).

It is calculated by taking the logarithmic function of the total number of documents in

the corpus divided by the number of documents that contain the term.

IDF (t) = log

(
|D|

Number of documents with term t

)
(2.14)
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where |D| is the total number of documents. The TF-IDF score for a term t in a

document d is calculated by multiplying the TF and IDF values.

TF IDF (t, d) = TF(t, d) ∗ IDF(t) (2.15)

The score will be higher when a term frequently appears in a document (high TF)

and is rare in the collection of documents (high IDF), indicating that the term is more

significant and relevant to the document.

Let’s try to understand TF-IDF with an example. Consider that our dataset contains

the following documents:

• Document 1: A randomized, double-blind placebo-controlled clinical trial with peni-

cillin V in general practice

• Document 2: Prescription strategies in acute uncomplicated respiratory infections.

A randomized clinical trial

• Document 3: A randomized controlled trial of antibiotics on symptom resolution in

patients with a sore throat

For this example, we split the document by spaces and consider all characters between

the splits as terms. The following calculates the TF-IDF score for the term randomized

in Document 2:

TF (randomized, Document 2) =
1

11

IDF (randomized) = log(3/3) = 0

TF IDF (randomized, Document 2) =
1

11
∗ 0 = 0

Looking at the documents at hand, we can see that we will get a TF-IDF score equal

to 0 for the term randomized in all documents because the IDF score is 0. But what

would the TF-IDF be for the word respiratory in document 2?

TF (respiratory, Document 2) =
1

11

IDF (respiratory) = log(3/1) = 0.477
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TF IDF (respiratory, Document 2) =
1

11
∗ 0.477 = 0.043

Considering the whole document collection, we get a higher score for the term respira-

tory than the word randomized in document 2. This is because respiratory only appears

in this document and not in any other, indicating a rare word. TF-IDF scores can be

further used as features to train ML models.

2.2.5 Document Ranking

Document ranking is a task in information retrieval that involves ordering a set of docu-

ments based on their relevance to a given query.

Given a query and a collection of documents, the goal is to rank the documents

according to their relevance to the query, with the most relevant document at the top of

the list. This task is typically performed using a ranking model that assigns a score to

each document based on its relevancy to the query.

In the early days of information retrieval, document ranking relied on simple keyword

matching and frequency of query terms. Term weighting and TF-IDF were introduced to

improve ranking. ML methods expanded the range of features considered. Deep learning,

including transformer models, recently revolutionized document ranking, achieving state-

of-the-art results by learning complex representations and handling large datasets.

The task of using ML to train document ranking algorithms is called the Learning

To Rank (LTR) framework. The following explanation of using the LTR framework

to train document ranking algorithms is based on the article Neural ranking models for

document retrieval [20]. LTR is based on the observation that relevance is a subjective and

complex concept that depends on various factors, such as the user’s context, preferences,

and information needs. Therefore, LTR aims to learn a ranking model to capture these

factors and provide personalized and context-sensitive document ranking.

We divide the different LTR methods into pointwise, pairwise, and listwise. In point-

wise methods, each document is treated as a single data point, and the model is learned to

predict the relevance score of each document independently. This means the model takes

a document and a query as input and predicts a relevance score as output. The most

commonly used pointwise method is the logistic regression-based method, which involves

learning a regression model that maps the features of a document and query to a relevance
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score. In pairwise methods, each pair of documents is treated as a single data point, and

the model is learned to predict the relative order of two documents. This means that the

model takes two documents and a query as input and predicts which of the two documents

is more relevant to the query. Pairwise methods require labeled data containing pairs of

documents and corresponding relevance judgments. In listwise methods, the model is

learned to optimize the ranking of an entire list of documents. Thus this method requires

labeled data containing entire lists of documents and relevance judgments.

Things to be aware of using the pointwise training approach is that it does not consider

the relative order of the documents. It may not capture the nuanced differences in

relevance among documents or ordinal or continuous relevance labels. It can also be

sensitive to class imbalance, where the number of relevant and non-relevant documents

vastly differs.

2.3 Neural Network

In this section, we delve into Neural Networks, a powerful class of ML models inspired by

the human brain. We explore their architecture, functioning, and how they can effectively

learn from data to solve complex tasks.

2.3.1 Basics of Neural Networks

Neural networks are a type of ML model that consists of layers of interconnected nodes,

or neurons, that process input data and generate output predictions.

The basic building block of a neural network is a neuron, which takes one or more

input values, multiplies them with a numerical number (further referred to as a weight),

summarizes the individual results, and applies an activation function to the result. The

activation function is a non-linear function that introduces non-linearity into the network

and allows it to model complex relationships between the input and output variables.

Section 2.3.5 explains activation functions in more detail.

The goal of training the model is to minimize the difference between the predicted

and actual values. And how can we achieve this? Neural networks are typically trained

using a gradient descent-based optimizer, explained in more detail in section 2.3.2 and
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2.3.3, which updates the parameters of the network to minimize a loss function. By

minimizing the loss function, we aim to find the optimal set of parameters to predict the

output data with the smallest possible error. Minimizing the loss function is correlated

with minimizing the difference between the predicted and true values because the loss

function measures this difference.

The architecture of a neural network can vary widely depending on the task it is

designed to solve. Some common types of neural networks include Feedforward neural

networks (FFNN), Convolutional neural networks, and Recurrent neural networks. We

will mainly focus on FFNN in this research. FFNN is the simplest type of neural network,

where the information flows in one direction, from the input layer through one or more

hidden layers to the output layer.

FFNNs are widely used for supervised learning tasks such as classification and re-

gression. They consist of one or more layers of neurons that process the input data and

generate output predictions. Every FFNN has an input layer, a series of hidden layers,

and an output layer.

Figure 2.3: Illustration of a feed-forward network. The computational flow goes from
the input layer to the hidden layer and finally to the output layer. The lines between
two neurons are a single weight. The output value from one neuron is multiplied by this
weight and then passed on. If a neuron has more than one line as input, the values from
each line are summed together before an activation function is applied.
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Figure 2.3 shows the basic building block of a feedforward neural network. The circles

represent neurons that take one or more input values, multiply them by weight (the black

lines), sum all values, and then apply an activation function to the result. The neuron’s

output is then passed as input to the next layer of neurons. FFNNs typically consist of

an input layer, one or more hidden layers, and an output layer. The input layer takes

the raw input data, such as a sequence of text, and passes it to the first hidden layer.

Each subsequent hidden layer processes the previous layer’s output using a set of learned

weights and biases and applies an activation function to the result. The output layer

generates the final prediction based on the output of the last hidden layer.

In a neural network, the weights and biases determine the strength of the connections

between neurons. The network weights are learned during the training process and are

used to adjust the behavior of the network to achieve better performance on a given

task. The weights in a neural network are typically represented as matrices or vectors,

depending on the architecture of the network. For example, in a fully connected feed-

forward neural network, the weights between the input layer and the first hidden layer

are represented as a matrix. Each matrix element corresponds to the weight between a

specific input neuron and a specific hidden or output neuron.

2.3.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization technique that optimizes an ob-

jective function. It is a stochastic optimization algorithm that estimates the gradient of

the loss function based on a random subset of the training data. SGD iteratively updates

the model parameters by taking small steps in the direction of the negative gradient of

the loss function.

Let’s consider a simple example of using SGD to minimize the loss function of a logistic

regression model. Suppose we have a dataset of n training examples (x1, y1), ..., (xn, yn),

where xi is the input feature vector and yi is the corresponding binary class label (either

0 or 1). We want to train a binary classification model using logistic regression to predict

the probability of an input belonging to class 1. Keep in mind how we calculated z in

logistic regression, ref 2.1.7 where z was equal to the sum of element-wise multiplication

of weights and feature values. ŷ = p(y = 1|x) is sigmoid(z), meaning that we map

the output z to a value between 0 and 1, now representing a probability. J(w) is the

training data’s negative log-likelihood and logistic regression loss function for a binary

classification task. Stochastic gradient descent aims to find the optimal values of the
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weights, w, that minimizes the loss function J(w). Let’s define how the algorithm work

when considering just a single data point. Usually, there is always a bias term, b, which is

an additional neuron and is usually represented as a constant value instead of a learnable

weight. We will only focus on the updating the weights, w, in this example

1. Initialize the model parameters w to random values. For t from 1 until converge.

2. Choose (xi, gi) at random and compute the gradient of the loss function concerning

the model parameters w, which is given by:

gt = (p(y = 1|xi)− yi) ∗ xi

3. Update the model parameters using the gradients and a learning rate α, which

controls the size of the steps taken in the direction of the negative gradient:

wt = wt−1 − α ∗ gt

4. Repeat steps 2 and 3 until the loss function converges or a maximum number of

iterations is reached. The t parameter increases iteratively throughout the training

sequence.

Steps 2 and 3 are referred to as backpropagation. Step 2 is computing the gradients of

the loss function for a single data point. Step 3 is optimizing the weights by subtracting

the gradients multiplied with a learning rate α from the original weights. We are thus

updating the weights to provide a function with minimum loss.

In each iteration of SGD, the gradients are estimated based on a random subset of

the training data, which introduces stochasticity into the optimization process. This

randomness helps to prevent the algorithm from getting stuck in local minima and can

improve the model’s generalization performance.

2.3.3 ADAM Optimizer

The Adam optimizer is a popular SGD optimization algorithm. The name Adam stands

for adaptive moment estimation, which refers to the optimizer adapting its learning rate

based on the parameters’ past gradients and second moments. To fully understand
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ADAM, let’s first look at other optimization techniques based on SGD, namely SGD

with momentum and RMS.

SGD with momentum is a technique used to accelerate the convergence of the opti-

mization process. Momentum is a moving average of the gradients that accumulates the

past gradients in the current gradient’s direction, smoothing out the variations in the

gradient descent process and helping to overcome local minima. Keeping in mind that

the weight updating phase was given by wt = wt−1−α∗gt in 2.3.2, where α is the learning

rate, gt is the gradient of the loss function and t is the current iteration step. SGD with

momentum is different from SGD in the way it uses the moving average of the gradients

instead of only the gradient of the current step. The weight update will therefore look

like this:

mt = β1 ∗mt−1 + (1− β1) ∗ gt ,

wt = wt−1 − α ∗mt .
(2.16)

where β1 is the momentum coefficient, typically set to a value between 0.8 and 0.99.

The momentum term β1 ∗ mt−1 acts as a kind of inertia, which helps the optimizer to

smooth out the variations in the gradient descent process and overcome sticking in local

minima.

Root Mean Square (RMS) is another gradient descent optimization. It differs from

SGD in that it adjusts the learning rate of each parameter based on the magnitude of

its gradients. RMS also considers the recent history of the gradients to improve the

optimization process further. This is achieved with the following formulas:

vt = β2 ∗ vt−1 + (1− β2) ∗ g2t ,

wt = wt−1 −
α√
vt + ϵ

∗ gt ,
(2.17)

where β2 is the decay rate, which is typically set to a value between 0.9 and 0.999, g2t

denotes element-wise squaring, and ϵ is a small constant added for numerical stability.

The denominator
√
vt + ϵ scales the step size according to the magnitude of the gradients

so that large gradients result in smaller steps and small gradients result in more giant

steps.
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Now that we know how SGD with momentum and RMS works, we can move on to

the ADAM optimizer, a combination of these two. In each iteration step t, the following

variables are calculated:

mt = β1 ∗mt−1 + (1− β1) ∗ gt ,

vt = β2 ∗ vt−1 + (1− β2) ∗ g2t ,
(2.18)

where β1 and β2 are the exponential decay rates for the first and second moments,

respectively, and g2t denotes element-wise squaring. We then calculate the bias-corrected

estimates of the first and second moments:

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

.
(2.19)

Finally, we update the parameters wt using the bias-corrected estimates of the mo-

ments:

wt = wt−1 − α ∗ m̂√
v̂t + ϵ

(2.20)

where ϵ is a small constant added for numerical stability,
√
v̂t + ϵ denotes element-

wise square root. The Adam algorithm combines the ideas of momentum and RMS

by calculating the first and second moments of the gradients and then updating the

parameters based on the bias-corrected estimates of these moments.

2.3.4 Linear Schedule Warmup

A linear schedule warmup is used in training deep learning models that adjust the learning

rate over time. In particular, it is used to gradually increase the learning rate at the

beginning of training before allowing it to decrease later.

The basic idea behind a linear schedule warmup is that at the start of training, the

model’s parameters are likely to be far from optimal, and the learning rate needs to be

high enough to ensure that the model can rapidly converge toward a better solution.
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However, if the learning rate is set too high initially, the model may diverge or oscillate

around the solution, slowing the learning process.

To balance these concerns, a linear schedule warmup gradually increases the learning

rate from a small initial value to a higher target value over a fixed number of training

steps. This period of gradual increase allows the model to explore a larger space of

solutions and helps it find a good starting point for optimization. Once the warmup

period is complete, the learning rate is allowed to decrease gradually, using a standard

schedule or decay function.

The length of the warmup period and the target learning rate can be adjusted de-

pending on the specific problem and architecture being used.

2.3.5 Activation Functions

An activation function is a non-linear function that is applied to the output of a neuron

in a neural network. The activation function introduces non-linearity into the network

and allows it to model complex relationships between the input and output variables.

Without an activation function, a neural network would be a linear function of its inputs,

limiting its ability to model non-linear relationships.

Different activation functions are used in neural networks, each with advantages and

disadvantages. We have already described Sigmoid, but others exist, such as Rectified

Linear Unit (ReLU) and Gaussian Error Linear Unit (GELU). ReLU is one of the most

popular activation functions used in neural networks and is defined as f(x) = max(0, x)

and looks as follows:
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Figure 2.4: ReLU function plot illustrating the commonly used activation function in
neural networks, where input values below zero are mapped to zero, while positive val-
ues remain unchanged, facilitating non-linearity and feature extraction in deep learning
models.

ReLU has the advantage of being simple and computationally efficient, and it has

been shown to work well in practice. It also has the desirable sparsity property, meaning

that only a subset of the neurons will be active for any given input, which can help reduce

overfitting.

The Gaussian Error Linear Unit (GELU) is an activation function that has been

demonstrated to be effective in deep neural networks. It computes the product of its

input and the cumulative density function of the normal distribution at that input. The

error function is frequently employed to calculate the cumulative distribution function

of a Gaussian. Therefore, GELU is defined as the Gaussian Error Linear Unit using the

following approximation [32]:

GELU(x) = 0.5 ∗ x ∗
(
1 + tanh

(
x√
2

))
tanh(x) =

ex − e−x

ex + e−x
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Figure 2.5: GELU function plot illustrating the Gaussian Error Linear Unit activation
function, which smoothly approximates the identity function for small input values and
introduces non-linearity for larger input values, enhancing the expressive power of neural
networks in various machine learning tasks.

GELU has the advantage of being smooth and continuous, which can help improve

the gradient flow during training. It also has a similar sparsity property as ReLU but

with a smoother transition between active and inactive neurons.

2.3.6 Backpropagation

Section 2.3.2 explains how weights are updated for a single datapoint for a single linear

layer. When considering backpropagation in neural networks, the concept of chain rule

refers to how the gradients of the loss function propagate backward through the network.

When performing backpropagation, the gradients are calculated with respect to the pa-

rameters (weights) of the network. These gradients indicate the direction and magnitude

of the adjustments required to minimize the loss function. The gradients are computed

using the chain rule, which allows the error signal to flow backward from the output layer

to the input layer.

Let’s consider a simplified feedforward network with multiple layers to understand

how the chain rule is propagated in backpropagation. Each layer consists of weighted

connections, followed by an activation function. The network takes an input, propagates

it through the layers, and produces an output. During the forward pass, the input signal

is successively transformed by each layer’s weights and activation functions until the final
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output is generated. The intermediate outputs of each layer are stored for later use in

the backward pass. In the backward pass, the chain rule comes into play. Starting from

the final output layer, the derivative of the loss function with respect to the output is

computed. This derivative represents the sensitivity of the loss function to changes in

the output.

Loss scaling is necessary for deep neural networks because gradients decrease as they

pass through multiple layers. This occurs because each layer multiplies the gradients, and

this multiplication can cause the gradients to become very small. When small gradients

propagate through the network, it can result in slower convergence or even vanishing

gradients, which means they become too tiny to update the network’s parameters effec-

tively. One way to address the loss scaling issue is to use the specialized optimization

algorithms, SGD with momentum, RMS, and ADAM to dynamically adjust each param-

eter’s learning rate based on its historical gradients. These methods can effectively scale

the gradients to improve convergence and training efficiency.

2.3.7 Dropout

Dropout is a generalization technique used in neural networks where we avoid using the

output from all neurons at every forward pass. By not allowing all neurons to contribute

in a forward pass, we avoid making the model learn the training data too well and force

it to learn general patterns. Dropout is used by setting a parameter as a percentage

of how many neurons to exclude at random. And which particular neurons to exclude

varies from each forward pass. For example, we have a linear layer of 10 neurons where

a dropout layer with a percentage parameter of 0.1 follows. This implies that 10% of

the neurons, which is 1, will be excluded in a particular forward pass. Regarding which

dropout parameter to choose, this usually has to be empirically tested and chosen using

the models’ performance on validation set [7][p. 112].

2.4 Transformers

The following section is described based on how Sudharsan Ravichandiran explains in

the book Getting Started with Google BERT [28]. Also, the figures used throughout this

section are from the same sources with the publisher’s permission.
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Transformers, introduced in the paper Attention Is All You Need [3], is one of the

most prominent techniques used in NLP today. By showing more significant results, it

has replaced Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM)

in many downstream tasks, such as machine translation and text generation. BERT

is among the algorithms used for these tasks and utilizes the transformers technique.

One of the problems with RNN and LSTM that transformers solve is catching long-term

dependencies in sentences. The transformers are based on the attention mechanism,

which is self-attention and multi-head attention. Let us delve further into the transformer

model, exploring its underlying mechanisms and components in greater detail.

Figure 2.6: Illustration of Transformer Architecture. Transformers are built up of en-
coders and decoders. This figure shows the input and output interaction between them.

The transformer consists of encoders and decoders. As seen in Figure 2.6. The

figure shows how the encoder takes an input sentence and outputs a sentence as a fixed

representation. Then the decoder takes this representation generated by the encoder and

generates a target sentence (a prediction). So if the task is to use the model for machine

translation, you can input a raw sentence, and the transformer will output a predicted

sentence on the language it is trained for.
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2.4.1 Encoder

Figure 2.7: Encoders stacked on top of each other. The text is passed as input to the
first encoder and its output is passed as input to the next encoder. The final output is a
representation of the input sentence.

Figure 2.7 shows how encoders are stacked on top of each other in the transformer, where

the output of one encoder is fed as input to the other. The same applies to the decoders.

The encoder and decoder are essential components in a transformer and perform multiple

mathematical operations. Let’s first look at the encoder and its ability to transform the

raw text into a representation of numbers. To understand this, we need to dive into the

different components of the encoder, namely the multi-head attention and feedforward

network.

2.4.2 Attention Mechanism

The attention mechanism is used to understand how much each word in a sentence relates

to all the other words. The encoders use multi-head attention, which is a series of

self-attentions. Let’s first look at how a single self-attention works with an example.

Considering the following sentence:
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The man couldn’t lift his son because he was so heavy

For a native-speaking English person, the preceding sentence is easy to understand.

But it might not be easy to interpret for someone just learning English. In our case, it

is an ML model we want to learn English from scratch. In the given sentence, multiple

words can be interpreted in the wrong ways. Look at the pronoun he. It is unclear that

it relates to the word son. This relation is due to the following word heavy indicating

that the son is too heavy to be lifted. If we substitute the word heavy with weak, the

word he suddenly changes relation and now relates to the word man. The grammatical

structure of the sentence is still the same. For such a case, self-attention will help us out.

Figure 2.8: Example of the Self-attention mechanism for a particular sentence. The
lines represent relational strength between the word he and all the other words in the
sentence. You can see that the line between he and son is thicker than the others,
indicating a stronger relationship between these two words in the sentence.

For a given sentence, we compute a numerical representation for each word. While

computing this representation, the model computes a relation between each word and
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all the other words in the sentence. So for our example-sentence, when computing the

representation for the word he, the model also computes a relation between the word

he and all the other words in the sentence, and thus also the word son. Hopefully,

throughout the learning phase, the model will calculate a higher relation for this word

pair than others in the sentence. Figure 2.8 highlights this more substantial relation

between he and son with a bolder line than the others.

Now let’s look at how this work in more detail. Given the input sentence I am good,

first, we retrieve the word embeddings for each word. This is done using a lookup table

where each word is mapped to a feature vector representation in the embedding matrix.

Figure 2.9 shows an example word embeddings for the sentence I am good, where the first

row in the matrix is the word embedding (vector) for the word I and so on. We can thus

represent a sentence numerically by stacking up a series of word embeddings, resulting in

a matrix.

Figure 2.9: Sentence represented using word embeddings. For this example, the word
embedding for each word is 512 numerical values, and since the input sentence contains
three words, the input matrix has a size of 3x512. This matrix can be referred to as input
matrix, embedding matrix, or just X.

Next, we are creating three new matrices, query, Q, key, K, and value, V . To create

these three matrices, we need three additional weight matrices which contain trainable

parameters. Each matrix is computed by multiplying the input matrix with the corre-

sponding weight matrix.
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Figure 2.10: Creation of the Q, K and V matrices. Figure shows how the Q, K, and V
matrices are created by multiplying the input matrix with the associated weight matrices
WQ, WK and W V

Figure 2.10 shows how this matrix multiplication is done. But why exactly are we

doing this? How are these matrices used to calculate the self-attention of the input

sentence? First, we need to calculate the words’ similarity in the sentence. This is done

by the formula QKT , where we calculate the dot product between the Q matrix and

transposed K matrix. In this operation, we calculate for each embedded representation

of input words the dot product between the embedded representation of all other words.

A dot product is used because it represents how similar two vectors are. Next, we need

some operations to avoid exploding gradients. Therefore QKT is divided by the square

root of the dimension of the K matrix,
√
dk. Thus, we have now calculated QKT

√
dk

.
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Figure 2.11: Illustration of word similarity matrix within a sentence, with scaling. We

are calculating QKT
√
dk

that results in the matrix on the figure.

Figure 2.11 shows the calculation of how similar each word in the sentence is to each

other with a scaling factor. And that’s great, but we don’t know which values are referred

to as high similarity or low similarity. There is thus a need to perform normalization.

The next step is thus to apply a softmax operation on the entire matrix.

Figure 2.12: Illustration of word similarity matrix within a sentence, normalized. In more

detail, we are calculating softmax(QKT
√
dk

), which is applying softmax on the matrix shown

in Figure 2.11

Figure 2.12 shows how the softmax function has changed the values from 2.11 to range

between 0 and 1 on each row. After softmax, the sum of each row can be summed to

1, meaning that each row contains similarity values for all words in the sentence. The

highest value index represents the most similar word for the word associated with the

given row.
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To finish up the self-attention calculation, we multiply the newly calculated softmax(QKT
√
dk

)

with the value matrix V. By doing this, we will get the sum of the value vectors in V,

weighted by the scores calculated in softmax(QKT
√
dk

). For example, for the first word I,

we will obtain the values from V weighted by how important the words are to the word

I. Thus the final equation for calculating the self-attention z is:

z = softmax

(
QKT

√
dk

)
V . (2.21)

Now let’s move on to multi-head attention. Multi-head attention is self-attention

multiple times. If we only use single self-attention, the impact of some words will be

dominated by others. Look at Figure 2.12. The numbers in the matrix show that they

only contain 7% from the word am and only 3% from the word good. This scenario is

excellent for ambiguous words, meaning they can express multiple meanings (or refer to

multiple words in the sentence). We will then have a clear idea of which other words it

is related to. But for words that (almost) always express the same meaning, we want an

accurate result and thus calculate multiple self-attentions and concatenate them.

MultiHeadAttention(Q,K, V ) = Concatenate(Z1, Z2, ..., Zi)W0 (2.22)

The concatenated value containing multiple self-attention matrices is multiplied with

a new weight matrix, W 0, from Equation 2.22, which will be learned during training. The

output from the multi-head attention, z, are then passed on to two densely connected

feedforward layer. By densely connected, we mean that every neuron from the previous

layer is connected to every neuron in the current layer. The multi-head attention and

feedforward component uses the ReLU activation function on their outputs. Now that

we know how the encoder learns how each word in a sentence relates to the other words,

we need to know how the encoder considers each word’s position.

2.4.3 Positional Encoding

The positional encoding is part of the encoder that learns the position of each word’s

impact on the whole sentence. As mentioned earlier, words are passed in parallel to

the model, both for increasing training time and learning long-term dependencies. But

how exactly can the encoder understand the meaning of a sentence if it doesn’t know

43



the position of each word? The positional encoding handles this by adding element-wise

addition information to the word embeddings. So before feeding the word embeddings

to the multi-head attention component, we add a P matrix. The P Matrix is calculated

using the following equations:

P (pos, 2i) = sin

(
pos

1000
2i

dmodel

)
(2.23)

P (pos, 2i+ 1) = cos

(
pos

1000
2i

dmodel

)
(2.24)

Equation 2.23 and 2.24 are the equations used to calculate the positional encoding

matrix. In these equations, pos is the position of the words in the sentence, whereas i

implies the position of the embedding for the word. For the particular sentence I am

good, where I is the 0th position, and so on. We can substitute the variables and will

get the following matrix. We will thus get a unique number for a word on a particular

position.

Figure 2.13: Example of P matrix

2.4.4 Add-And-Norm

The add-and-norm component in the encoder refers to a step in which residual connections

and layer normalization are applied. After the multi-head self-attention and feed-forward

neural network layers within an encoder, the output is combined with the input using

an element-wise addition. This allows the model to preserve important information from

44



the input throughout the encoding process. Following the addition, layer normalization

is performed to normalize the output and improve the stability and performance of the

model. The add-and-norm operation aids in information flow and gradient propagation,

contributing to the effectiveness of the transformer encoder.

2.4.5 Encoder summed up

Figure 2.14 sum up the main building blocks in the encoder. The illustration includes

two encoders, and the first one is expanded. The text is passed as input to generate

an embedded representation of the text. Then the positional encoding is applied by

element-wise adding additional information. Then the embedding is passed on to a series

of encoders, each applying multi-head attention and Add norm techniques.
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Figure 2.14: Illustration of the encoder architecture in a transformer model. The input
sentence undergoes an initial embedding process, followed by the addition of positional
encoding. This processed input is then fed into the first encoder, which includes a multi-
head attention mechanism. Subsequently, the output passes through an add-and-norm
component, followed by a feedforward neural network layer and another add-and-norm
operation. The resulting output from encoder 1 serves as the input for encoder 2, enabling
sequential encoding and enhancing the model’s ability to capture complex relationships
within the input sequence.

2.4.6 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained lan-

guage model developed by Google. It is a deep learning model designed to generate

high-quality representations of natural language text for a wide range of natural lan-

guage processing (NLP) tasks. BERT is built on the Transformer architecture. See

section 2.4 for more details.

Although BERT is built using the Transformer architecture, it only uses the encoder

layers, not the decoder layers. In the Transformer architecture, the encoder layers take
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as input a sequence of tokens and generate a sequence of hidden representations, which

are then fed to the next layer. The final encoder layer produces the contextualized

representations for each token in the input sequence.

In the case of BERT, the model is pre-trained on a large corpus of text using two un-

supervised learning tasks known as masked language modeling (MLM) and next sentence

prediction (NSP).

MLM aims to train the language model to predict missing words in a sentence by

masking out a randomly selected portion of the input sequence and training the model to

predict the missing words. During the MLM training task, a portion of the input tokens

in a sentence is randomly selected and replaced with a particular [MASK] token. For

example, in the sentence I like to eat apples and oranges, a portion of the tokens might be

masked as [MASK] like to eat [MASK] and oranges. The masked tokens are then passed

through the pre-trained BERT model, which generates a contextualized representation for

each token in the input sequence, including the [MASK] tokens. The model is then trained

to predict the original tokens masked out based on the contextualized representations

generated by the model. The model generates a prediction for the masked tokens by

applying a linear transformation (via a fully connected layer) to the corresponding token

representation. The training loss is calculated as the cross-entropy loss between the

predicted and original tokens. The objective of the MLM task is to minimize this loss

and train the BERT model to generate high-quality contextualized representations for

each token in the input sequence.

The NSP task is a pre-training task used to learn the relationship between pairs of

sentences. The NSP task aims to train the language model to predict whether a given

sentence follows another sentence in a text sequence. During NSP training, pairs of

consecutive sentences are fed as input sequences to the model. Each sentence pair is

labeled as a next sentence pair or a random sentence pair. In the case of a next sentence

pair, the second sentence directly follows the first sentence in the text sequence. In the

case of a random sentence pair, the second sentence is chosen randomly from the text

sequence. The BERT model is then trained to predict whether a given sentence pair is

a next sentence pair or a random sentence pair. A [CLS] token is added as a starting

token and the sentence pair are separated with a [SEP] token. The model’s output

representation corresponding to the [CLS] token is then used for the NSP task. A fully

connected layer takes this representation as input and performs binary classification to

predict whether the next sentence follows the context sentence. The model is trained to

minimize the binary cross-entropy loss between predicted and actual labels. The NSP
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task is crucial because it helps the BERT model learn the relationship between sentence

pairs, a key component of many natural language processing tasks.

After pre-training, the BERT model can be fine-tuned for specific NLP tasks. During

fine-tuning, the pre-trained BERT model is combined with a task-specific output layer

and trained on a labeled dataset for the specific task. One of the critical features of BERT

is its ability to generate high-quality contextualized word embeddings, which capture the

meaning of words based on their surrounding context.

2.5 Related Work

2.5.1 BM25

BM25 (Best Match 25), further referred to as BM25 is a ranking algorithm used in

information retrieval for ranking documents based on their relevance to a given query

and is an improved version of TF-IDF. It calculates a score given a query and document

using the following formula:

TF IDF (D,Q) =
n∑

i=1

IDF (qi) ∗
f(qi, D) ∗ (k1 + 1)

f(qi, D) + k ∗
(
1− b+ b ∗ |D|

avgdl

)
where f(qi, D) is the frequency of the query term qi in the document D, |D| is the

length of the document D, avgdl is the average document length in the corpus. Both k

and b are tuning parameters. IDF (qi) is the inverse document frequency of the query

term qi.

BM25 is designed to balance precision and recall by considering the frequency of the

query terms in the document, the document length, and the frequency of the term in

the entire corpus. The formula uses a term frequency normalization factor (k) and a

document length normalization factor (b) to prevent over-representing long documents

and highly frequent terms. The IDF factor down weights highly frequent terms and up

weights rare terms, which can be more informative for the retrieval task.

Let’s consider a simple example to illustrate how BM25 works. Suppose we have a

collection of three documents:
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• The quick brown fox jumps over the lazy dog.

• The quick brown dog is in love.

• The lazy dog is quick.

Suppose we want to rank these documents based on their relevance to the query quick

brown fox. Let’s calculate the IDF.

IDF (”quick”) = log(3/3) = 0

IDF (”brown”) = log(3/2) = 0.1761

IDF (”fox”) = log(3/1) = 0.4771

Next, we calculate the term frequency of each query term in each document:

• Document 1: f(”quick”) = 1, f(”brown”) = 1, f(”fox”) = 1

• Document 2: f(”quick”) = 1, f(”brown”) = 1, f(”fox”) = 0

• Document 3: f(”quick”) = 1, f(”brown”) = 0, f(”fox”) = 0

I choose to use values that have turned out to work pretty well for most corpora,

setting k = 1.2 and b = 0.75 [9]. The average document length in the corpus, avgdl = 7.

We can calculate the relevance score for each document using the BM25 formula. Let’s

first look at the score for Document 1.

Score(Document1, ”quick”) = 0 ∗ (1 ∗ (1.2 + 1))

(1 + 1.2 ∗ (1− 0.75 + 0.75 ∗ (9/7)))
= 0

Score(Document1, ”brown”) = 0.1761 ∗ (1 ∗ (1.2 + 1))

(1 + 1.2 ∗ (1− 0.75 + 0.75 ∗ (9/7)))
= 0.16

Score(Document1, ”fox”) = 0.4771 ∗ (1 ∗ (1.2 + 1))

(1 + 1.2 ∗ (1− 0.75 + 0.75 ∗ (9/7)))
= 0.43

Score(Document1, ”quickbrownfox”) = 0 + 0.16 + 0.43 = 0.59

If we do the same for documents 2 and 3, we will get the following scores:

Score(Document2, ”quickbrownfox”) = 0 + 0.18 + 0 = 0.18
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Score(Document3, ”quickbrownfox”) = 0 + 0 + 0 = 0

Therefore, according to the BM25 score, Document 1 is the most relevant to the query

quick brown fox, followed by Document 2 and then Document 3. This shows how BM25

can be used to rank documents based on their relevance to a query, even when there are

differences in the documents’ contents and lengths.

One of the advantages of BM25 is that it is easy to implement and can be applied to

large-scale collections efficiently. It also provides good ranking quality for a wide range of

retrieval tasks. However, BM25 has several limitations, such as the difficulty of selecting

the optimal hyperparameters k and b for a given collection and the lack of support for

modeling phrases.

2.5.2 TF-IDF with Logistic Regression

Combining TF-IDF with logistic regression to train a binary classifier is a practical ap-

proach that can be used for sentiment analysis on textual data. Previous research exper-

iments using Twitter data to classify the text’s opinion on news and scope the task to

classify whether a text is happy or unhappy oriented. Their results show that a logistic

regression classifier with SGD optimization and TF-IDF produces the most optimal result

[2, Yousaf et al.].

TF-IDF, combined with logistic regression, has also been tested on the classification of

short texts. Researchers have compared and evaluated different feature selection methods

like TF-IDF, word2vec, and paragraph2vec in combination with classifiers like Naive

Bayes, Logistic Regression, and Decision Trees. They conclude that combining TF-

IDF and logistic regression with TF-IDF is among the methods that attain the highest

accuracy [35, Wang et al.].

TF-IDF is a numerical method for measuring the importance of a word in a docu-

ment corpus and is described in section 2.2.4. As described in subsection 2.1.7, logistic

regression is a model used for binary classification tasks that predicts the probability of

the positive class as a logistic function of a linear combination of input features. TF-IDF

with logistic regression used in binary prediction tasks works as follows: The data needed

to train this model would be raw text and a binary label. The TF-IDF technique is then

applied to convert the raw text into a numerical representation that captures the impor-

tance of each word in the document. Once the text has been transformed into a numerical
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Word 1 ... Word M
Document 1 0.2 0.01 0
... 0 0.11 0.04
Document N 0 0 0.38

Table 2.4: TF-IDF Matrix showing documents along with TF-IDF values. Each row in
the matrix represents a document, whereas a column represents a word. Make a note of
the matrix sparsity that is because not all words are represented in all documents.

representation using TF-IDF, the logistic regression algorithm trains a binary classifier

that can predict the binary label. Each row in the matrix corresponds to a document in

the corpus, and the columns correspond to the words in the vocabulary. Each element in

the matrix will therefore represent a TF-IDF value of a word in a document. The matrix

is typically extensive and sparse since most documents only contain a small subset of the

words in the vocabulary. We now use the output of the TF-IDF model as training data

for the logistic regression model.

During training, the model learns to identify relevant patterns and features in the TF-

IDF vectors associated with the binary labels. This learning process involves adjusting

the weights and biases of the model’s parameters using a loss function and the SGD

optimization algorithm.

2.5.3 Passage re-ranking with BERT

Pre-trained BERT models have previously been shown to help develop passage re-ranking

models [29]. This research looks at the task as a question-answering task where the user

inputs a query and wants the passages returned ordered by the most relevant to the

user’s need. The algorithm is divided into steps. The first step involves using a standard

mechanism like BM25 to obtain an initial set of passages. This set may contain thousands

of potentially relevant passages from a more significant hub of passages. The next step

is calculating each passage’s score using the proposed model. It is then possible to do a

re-ranking based on these passage scores. The final step is to pick the top ten or twenty

passages with the highest score.

Their proposed method uses a pre-trained BERT model and adds a task-specific feed-

forward layer with a single neuron as output. Keeping in mind that the [CLS] token holds

the contextualized representation of the whole input, the feed-forward layer is added to

this representation. The output of the model score si is an estimation of how relevant the
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passage di is to a query q. They treat the query as Sentence A and the passage text as

Sentence B. They are using truncation techniques if either query or passages exceed the

limits. Notice that since we are concatenating the query and passage before feeding it to

the model, the final ranking output score includes all term pair interactions between the

query and document through all the transformer layers, making it an interaction-based

model.

The model uses the pre-trained BERTLARGE and is fine-tuned for passage re-ranking

using the cross-entropy loss. They train their model on two benchmark datasets, MS

MARCO, and TREC-CAR, and compare their results with existing state-of-the-art mod-

els. Their approach outperforms all ranking models by significant margins on two per-

formance measures, showing that the BERT model can be used as a passage re-ranker.

This interaction-based approach is recommended as a way to do fine-tune of the BERT

model [12].

2.5.4 Representation Based Ranking with BERT

In contrast to the approach mentioned in 2.5.3, other representation-based approaches

have been tested [36]. This research explores multiple ways of using the BERT model for

document ranking. This approach uses the [CLS] token representation whose embeddings

are treated as a representation of the input text. It is thus possible to input a query q

and a document d in separate models, whereas the ranking score can be applied to both

[CLS] tokens. This approach is representation-based since the query and document are

fed individually without interaction. They research if it is possible to use a similarity

measure like the cosine similarity function as a ranking score. The results are thus not

comparable to the recommended interaction-based approach for fine-tuning BERT. They

conclude that the model’s performance is nearly random and highlight that BERT is an

interaction-based matching model.

2.5.5 Tools for Systematic Review

There are multiple ways of finding relevant studies when creating a Systematic Review for

a particular medical intervention. One way is to use search engines like Google Scholar.

The researcher uses this tool by typing in a query and browsing the ranked results of

documents. The browsing can be done by iteratively evaluating the title and abstract
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of the study and then considering whether this study contains information related to

the particular medical intervention. The best case for the researcher would be that all

the relevant articles would be listed in the top results, avoiding him using unnecessary

time to evaluate non-relevant studies. Unfortunately, this is not the case, mainly due

to how Google Scholar is optimized. The objective of Google Scholar is to evaluate

the importance of academic documents using researchers’ criteria. It considers various

features, such as the document’s text, features from the author, the publication source,

and the frequency and recentness of citations in other scholarly literature [30]. These

features are gathered by robots or crawlers that run on the internet [31]. The score from

each feature, as well as a weight specifying the importance of the feature, determines

the search engine ranking results. It would be interesting to evaluate the search engines’

exact ranking algorithm but unfortunately, Google has never released this information

[10, p. 2]. Google Scholar is thus, in addition to considering the document text itself,

also considering other features resulting in a ranking optimized towards different user’s

needs. Another limitation is the search engines’ lack of reproducing the same result over

some time. Studies have shown that Google Scholar did not satisfy reproducibility in

reporting identical results for repeated identical queries [19, p.28]. Due to this and other

factors, Google Scholar is considered a supplementary tool for finding relevant studies for

systematic review [19, p. 16].

PubMed and Cochrane are considered principal tools for finding considered for find-

ing relevant studies. [19, p.30]. With a series of filter options available, these search

engines provide a highly organized database that is particularly advantageous for exe-

cuting structured searches in medicine. Common filters include publication date, study

type, article type, language, species, and age group. Using different boolean operators,

they also allow users to create custom filters based on specific search criteria. Although,

this functionality may be great if the researcher knows the specific search criteria of the

study he is looking for. Usually, the researcher doesn’t know these and only relies on a

single search query.

Figure 2.16 shows the result from the Cochrane search engine when performing the

search query in Figure 2.15. As you can see, 42 studies satisfy the defined criteria in the

search. Using this search approach can enhance the precision of the results, but it may also

reduce sensitivity. Consequently, the user may be unable to locate all relevant studies for

a given medical intervention due to researchers’ terminology and writing style variations.

This approach may not be ideal for finding relevant studies on medical interventions unless

the researcher is aware of the specific terminology used in all related studies, which is

highly unlikely. While utilizing the Cochrane search engine does ensure the retrieval of
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health-related studies, there is no guarantee that the top result will be the ones containing

information needed in the Systematic Review.

Figure 2.15: Example of a search query using Cochrane search engine. Three search
criteria are defined and combined using the boolean AND operator. The first specifies a
term that must be included in the study’s title, and the other two specific terms must
be present in the abstract section. Since the AND operator is used between them, the
retrieved results of studies must satisfy all rows defined.
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Figure 2.16: Figure showing a Cochrane search result that satisfies a filter criterion defined
by a user. The highlighted words in purple are defined by the user to be included in the
title of all returned results.

Covidence is another screening tool and the primary tool when authors from Cochrane

are conducting systematic review[8]. The tool is a web-based software platform designed

to help users with tasks like abstracts and full-text screening, conducting risk of bias, and

performing data extraction. It works by first importing a series of citations (or studies)

and then continuing with the title and abstract screening. The tool also facilitates the

data extraction phase to become more manageable and seamless by providing a marking

tool and inviting multiple users. The tool is thus great for managing the title and abstract

screening, but it does not say which studies should be included. It depends on which

studies the user upload to the tool and doesn’t implement ML techniques for intelligence.

Rayyan.ai [21] is similar to Covidence by providing a web-based platform for uploading

a list of studies and having humans in the loop. The tool differs by having multiple ML

functionality, making it easier to screen titles and abstract. For example, you can detect

duplicate studies, where each detected duplicate returns a percentage of how sure it is. It

is up to the user to either trash or keep the suggested duplicate. Also, the tool facilitates
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an ML functionality for determining which studies to be included and which not. This is

done by first making the user screen all studies and mark them as relevant, non-relevant,

or undecided. Then, the tool extracts textual and meta-data features for each relevant

and non-relevant document. This feature representation of a document is then used as

input to a random forest classifier to predict accurately included studies with high recall

[18]. Then the human label is used for training resulting in a binary prediction problem.

Then, for each study labeled as undecided, the tool can calculate the probability of the

study being included based on how the labeled data trained the model [1, p. 1-2].
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Chapter 3

Data

This chapter introduces and discusses the data used in the present thesis, including the

data source from which it was gathered. The chapter highlights the processing steps

required to arrange the data in the desired format. Furthermore, the chapter concludes

by offering an analysis of the data, which underscores the data’s characteristics and

potential limitations.

The code implementation can be found in the following GitHub repository: Master

Thesis.

3.1 Systematic Review Data

Systematic reviews are an essential tool for healthcare professionals and policymakers to

make informed decisions about the effectiveness of different interventions. Cochrane, a

global independent network of researchers, professionals, patients, and carers, has pro-

duced high-quality systematic reviews [16].

The systematic review data from Cochrane’s are valuable for researchers to gain valu-

able insights into the latest research findings on a wide range of health topics, ranging

from the efficacy of different medications to the effectiveness of particular medical inter-

ventions. This dataset includes approx. 10 000 Systematic Reviews, each including the

systematic review’s title and the list of related and non-related studies. A systematic re-

view contains a comprehensive overview of for a particular research question, the methods

used to address it, and the main findings. The dataset also includes other information,

but only the title and the list of related and non-related studies are interesting for my

task.
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3.1.1 Dataset

The dataset obtained from Cochrane comes with some challenges. One is that the re-

lated and non-related studies are only given by the study’s title, year, and list of authors.

Whereas what we need is the abstract of the study. The dataset requires further process-

ing to access the abstract of each study.

PubMed is a free online database of biomedical literature and citations. It provides

access to over 35 million citations from MEDLINE, life science journals, and online books.

PubMed provides access to many medical studies and other literature, making it an

important tool for researchers, clinicians, and healthcare professionals [27]. In addition,

they have developed a Python library, making it possible for a Python program to search

for studies.

Thus, obtaining a particular study’s abstract is possible using the PubMed Python

library. Hopefully, the abstract will provide additional information better to understand

the relationships between the systematic review title and gain a deeper understanding of

the study presented. Later in this chapter, you will see how to retrieve a study’s abstract

in PubMed using a string-based query from the Cochrane data.

This thesis focuses on document ranking models that are trained using the so-called

pointwise learning-to-rank method. See Chapter 2, section 2.2.5 for more details on

pointwise training. Using the pointwise method for study ranking, a binary classification

model can assign a binary score (e.g., 1 or 0) to each study based on its relevance to

the query. This model can be trained on a dataset of studys and their corresponding

relevance labels.

The processing algorithm works as follows. We start by iterating over all systematic

reviews. For each systematic review, we want to iterate over all associated studies. Keep

in mind that an associated study can be either related or non-related. We now want to

determine if we can find the correct study in PubMed. We then use the title of the study

as an input query towards the PubMed library. The PubMed library allows specifying

how many search results we want in return. Based on the returned studies, we need

to determine which study is the correct reference in the Systematic Review data. It is

important that the correct study returned from PubMed results are the actual study

listed in the systematic review. If not, then the dataset will be misleading and useless.

Keep in mind that it is not guaranteed that the study exists in the PubMed database,

and thus, I cannot just pick the top result. Also, keep in mind that there may exist
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studies with very similar titles to the one I am looking for. Also, remember that in the

returned results from PubMed, the correct study may not be listed as the first. All these

factors are important when developing a data creation algorithm.

Table 3.1 highlights some titles from the PubMed data that are close to similar to the

Systematic Review data. The yellow color coding show that there are minor differences.

These differences may indicate two different studies or inconsistency in how the data

sources have included the same study in their database. Thus, further analysis of the

study’s author and year is required to determine if the studies are the same.

Title (from Systematic Review) Title (from PubMed)
The effects of abdominal

decompression on pregnancy
complicated by the small-for-dates

fetus

Letter: The effects of abdominal
decompression on pregnancy

complicated by the small for dates
fetus.

[Repair of episiotomies with synthetic
suture material]. [Bulgarian]

[Repair of episiotomies with synthetic
suture material].

Failure of naloxone to modify the
anti-tobacco effect of acupuncture

[Failure of naloxone to modify the
anti-tobacco effect of acupuncture

(author’s transl)].
Impact of home patient telemonitoring
on use of beta-blockers in congestive

heart failure

Impact of home patient telemonitoring
on use of β-blockers in congestive heart

failure.
Group discussions with parents have
long-term positive benefits on the
management of asthma with good

cost-benefit

Group discussions with parents have
long-term positive effects on the
management of asthma with good

cost-benefit.

Table 3.1: Samples of document titles that are almost similar in the Systematic Review
and PubMed data. The yellow coding highlights the differences in the titles and tells that
the differences are minor. For these type of cases, other features have to be considered to
determine if the article from PubMed is the same as the one in the Systematic Review.

Further analysis needs to be considered for cases where the title is not similar enough.

Let’s look at the similarity between the authors listed in the Systematic Review and

PubMed.
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Authors (from Systematic
Review)

Authors (from PubMed)

Varma TR, Curzen P Curzen P
Nikolov A, Dimitrov A, Iliev D,

Krsteva K
Nikolov A, Dimitrov A, Iliev D,

Krǔsteva K
Boureau F, Willer JC Boureau F, Willer J C

Antonicelli R, Mazzanti I, Abbatecola
AM, Parati G

Antonicelli Roberto, Mazzanti Ilaria,
Abbatecola Angela M, Parati

Gianfranco
Hederos CA, Janson S, Hedlin G Hederos C-A, Janson S, Hedlin G

Table 3.2: Samples of documents where the authors that are almost similar in the Sys-
tematic Review and PubMed data. The yellow coding highlights the differences. The
table shows that the authors of some studies are written differently.

Table 3.2 highlights how authors for a particular study are listed in the Systematic

Review Data and PubMed data. The rows in the Table are authors from the same

documents as in Table 3.1, listed in the same order. The yellow color shows the differences

where differences may be spacings, dashes, special characters, and if the last name is

written all out.

Based on the mentioned considerations, I developed a precision-related generation

algorithm to create the dataset. By precision-related, I mean that it is better to include

the datapoint if I am close to 100% sure that it is correct. This may cause a risk of

not including all potentially correct studies with the tradeoff of being quite sure that the

ones collected are correct. Comparable data features for a particular study included in

the Systematic Review, and PubMed are the title, year, and authors. The most optimal

way of choosing the correct study would be to compare all these three features and see

if they are all equal. Unfortunately, this is not possible for multiple reasons. First, it

varies if the year of publication is included in the PubMed study. Second, it varies how

the authors are listed. Sometimes, all authors are listed with both first and last names.

Sometimes, all authors are listed by only their last names. Regarding the title, this should

be identical unless stored differently in the different database systems.

I have therefore chosen to use both the author and title when considering finding the

correct study. And the similarity criteria are as follows: Calculate the pattern similarity

between the titles using Gestalt Pattern Matching, see 2.1.11 for more details. If the

similarity is above 0.98 (98% in similarity), the PubMed study is the right one. Otherwise,

if the similarity is above 0.85, the study may be the right one, and we need to look at
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the authors and year. If the year is the same and the author similarity is above 0.75, the

PubMed study is the right one.

The final step is to make the label. If the study is relevant, the label is equal to

1. If non-relevant, the label is equal to 0. To make the dataset even more fine-grained,

only queries with a minimum number of 30 associated documents were included. This

was with the intention of having multiple relevant and non-relevant documents making

it possible for models to learn general patterns across many documents per query.
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Figure 3.1: Flowshart showing how the dataset is created. In short, the script is first
iterating over all systematic reviews. Next, we iterate over all relevant and non-relevant
documents for the particular systematic review. Then, we search PubMed for each doc-
ument, trying to identify the correct document. If a returned document from PubMed
satisfies similarity criteria, we retrieve the document features and analyze the next doc-
ument.

We now have all we need to create a data point: the title of the systematic re-

view(Query), the title of the study(Document Title), the abstract (Document Ab-

stract), and label. We will further refer to these three features as our text features.

Some BERT-based models are dependent on passing in an extra-relevant abstract as in-
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put to the model. Therefore, an extra text feature is created which is basically just a

random sample of a true labeled document abstract for the particular query. Table 3.3

shows how the final dataset looks, where each row corresponds to a data point.

Query Document Title Document
Abstract

Label

Antibiotics for
treatment of sore
throat in children

and adults

Do patients with
sore throat benefit
from penicillin? A

randomised
double-blind

placebo-controlled
clinical trial with
penicillin V in
general practice

The effect of
antibiotic therapy
in sore throat is
questionable and
this dilemma has
been complicated
by the emergence

of multiple
resistant strains of
micro-organisms...

1

Antibiotics for
treatment of sore
throat in children

and adults

Aetiology of acute
pharyngitis and
clinical response
to empirical
therapy with
erythromycin

versus amoxicillin

One hundred and
eighty-nine adults

with acute
pharyngitis had
culture and
serological

evaluation for
group A beta
haemolytic
streptococci
(GABHS),
Mycoplasma

pneumoniae, and
Branhamella
catarrhalis...

0

Table 3.3: Pre-processed systematic review data with three text features and one label.
The table includes two data points, one positive and one negative sample. It shows that
for a particular systematic review title, we have two different studies associated with it
where one of them is related, and the other is not. The data points in this table are
randomly collected data points.

An alternative to this automatic data creation algorithm is to manually iterate through

the Systematic Review data, evaluate the title, year, and authors, and then ensure the

correct study is selected. However, this would take an extremely long time and is not

within the scope of this thesis.
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3.1.2 Exploratory Data Analysis

By analyzing these metrics, we can gain a deeper understanding of the characteristics

of the text data and how they relate to the research questions you are investigating.

Since, the BERT model has a maximum sequence length of 512 tokens, which restricts

the length of input sequences, it is interesting to determining the word counts for each

text feature. The analysis therefore compute, after applying whitespace tokenization,

the average number of words in each text feature. In addition, it is preferred with

an analysis of the distribution as plots of histograms. Altough, counting words using

whitespace tokenization is only relevant for methods using this tokenization approach.

For the methods using BERT based approaches we need to do the same analysis but

tokenizing the text using WordPiece tokenization. Since this method divide words into

subwords, the number of tokens is likely to increase.

3.1.3 Exploratory Data Analysis Results

I will now delve into the results from the exploratory data analysis, with a specific focus

on the word and token counts in the different text features.

The dataset comprised a total of 94 823 data points. After applying a split ratio of

85, 7.5 and 7.5 for the train, val and test set respectively, the total points were 80268,

7633, and 6922, respectively. The further analysis then only analyzed the training data.

Whether this quantity of datapoints is sufficient for training a model for the task at hand

remains uncertain.

The Figure 3.2 shows a histogram of word count for the queries using whitespace

tokenization. The results show that the most of the queries falls within the 5-15 word

count range, with a mean of 10 words per query. This observation suggests that the query

uses a relatively small portion of the input tokens to the BERT model to accommodate

longer document tokens while preserving meaningful information.
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Figure 3.2: Histogram of word counts in systematic review titles. The y-axis displays
the number of documents, and the x-axis shows the range of word counts. The mean of
words per title is 10.

The word count distribution of the document titles in the dataset exhibits similarity

with that of the queries, with a mean of 16 words per title. Thus, including the document

title feature in Sentence 2 when training a BERT model won’t use up a lot of input tokens

to the BERT model and may provide a greater ranking.
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Figure 3.3: Histogram of word count in document titles. The y-axis displays the number
of titles, and the x-axis shows the range of word counts. The mean of words per title is
16.

In contrast to the small mean of word counts in the queries and document titles, the

histograms of token length for document abstracts show a distribution with a mean of

230 words per abstract.
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Figure 3.4: Histogram of word count length in the document abstracts. The y-axis
displays the number of abstracts, and the x-axis shows the range of word counts. The
mean of words per title is 230.

Figure 3.5 shows a histogram of the count of the BERT tokenized concatenation of

query and document abstract. The figure demonstrates a clear increase in the length

with a mean of 359. Both because we are concatenating two text features and the use

of a subword tokenizer by BERT. These findings suggest that the subword tokenization

process significantly increases the length of the input sequences, which can impact the

ability to process and analyze the data using the BERT model. The percentage of dat-

apoints that is truncated is 12%. Furthermore, when combining the text features query,

document title, and document abstract, an even greater proportion of the dataset exceeds

the 512-token limit. Specifically, 16% of the data points will be truncated. Figure 3.6

shows this distribution.
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Figure 3.5: This histogram shows the distribution of token counts when combining the
query and document abstract. It is the count of tokens after tokenization with the BERT-
tiny tokenizer has been applied. The y-axis displays the number of data points, while the
x-axis shows the number of token counts. The histogram shows a skewed distribution,
with a median of 359 tokens. Notably, a significant proportion of the data points hits the
512-token limit, indicating that many documents have been truncated during processing.
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Figure 3.6: This histogram shows the distribution of token count in the combination of
query, document title, and document abstract after tokenization with the BERT-base
tokenizer. The y-axis displays the number of abstracts, while the x-axis shows the range
of token counts. The histogram shows a skewed distribution, with a median of 380 tokens.
Notably, a significant proportion of the data points hits the 512-token limit, indicating
that many documents have been truncated during processing.

These findings highlight the importance of considering the impact of subword tok-

enization on the length of input sequences, particularly when using the BERT model

for text analysis. Effective preprocessing and handling of input sequences are critical

to ensure that important information is not lost during the modeling process. Possible

strategies to handle longer input sequences include cleaning the data by removing stop-

words to reduce the number of tokens or truncating the text feature before tokenizing

it to avoid truncation in the middle of subword tokens. Another possibility is splitting

the data and inputting it into individual BERT models. However, using individual mod-

els may sacrifice BERT’s interaction characteristics, as multiple text features are not

inputted into the same model.

Figure 3.7 shows a slight predominance towards the False labels. This makes regarding

that there are usually a lot more non-relevant documents than relevant documents when

creating the systematic review. Although it is optimal with a close to equal distribution

of the binary labels, this distribution is totally fine to train a neural network. The

distribution is 65% to 35% in favor of the non-relevant documents.
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Figure 3.7: Histogram showing the number of True and False labels. The y-axis shows
the number of datapoints whereas the x-axis shows the label, ranging from 0 to 1. The
histogram shows a slight predominance towards the False labels with a distribution of
65% to 35%.
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Chapter 4

Method

The method chapter describes the various approaches implemented for document ranking,

utilizing binary classification as the underlying methodology. The research aims to im-

prove the MAP of document ranking for Systematic Review data by employing different

techniques, where we consider reducing a loss function equivalent to increasing the MAP

score. The first two approaches, Pubmed Ranker and BM25, serve as baseline models for

comparison. Then I describe the first approach, namely TF-IDF with logistic regression.

Additionally, a series of approaches are explored that leverage the power of pre-trained

BERT models. These approaches utilize different strategies and variations of BERT

models to enhance the ranking performance. I will refer to them as Interaction-BERT,

Representation-BERT, Dual-Interaction-BERT, and Triple-Representation-BERT.

It is important to note that several elements of the methodology were held constant

across all our methods. These included the type of optimizer, train-test split, and loss

function. A series of pre-trained BERT models are available. This thesis only examines

the use of the Tiny-BERT [5], the minor type of BERT that uses only two encoders and

has a hidden dimension size of 128.

Initially, the dataset was split into a train, val, and test set with proportions 85%,

7.5%, and 7.5% respectively. The size of the different sets was approx. 80 000 for the

test set, 7 000 for the dev set, and 7 000 for the test set. The mean loss, accuracy, and

MAP were calculated after each epoch.

The implementation utilizes the Python library PyTorch as a training framework for

training neural networks. It also uses the transformer library that facilitates loading

pre-trained language models.

The code implementation can be found in the following GitHub repository: Master

Thesis.
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4.1 Pre-Processing

The preprocessing section of this study plays a pivotal role in preparing the data for

document ranking, considering the different methods utilized. The first method, which

employs TF-IDF, involves training a TF-IDF model using a corpus of text documents.

With the available data, namely the query, document title, and document abstract, mul-

tiple ways exist to combine these elements and create an interaction-based model.

In the case of using TF-IDF as an interaction-based model, one approach is to con-

catenate the query, document title, and document abstract into a single text document.

This merging process allows the different textual components to interact, capturing po-

tential relationships and semantic information within the document. By considering the

document as a whole rather than separate entities, the TF-IDF model can better capture

the context and relationships between the textual elements. This comprehensive repre-

sentation enhances the analysis for document ranking. It enables more accurate word

importance and relevance assessments within the document. The text for a single data

point will therefore look like either of these:

QA = query + document abstract ,

QTA = query + document title + document abstract ,

where QA stands for Query-Abstract and QTA stands for Query-Title-Abstract. For

the Interaction-BERT models, the preprocessing steps differ slightly. Remember that

BERT was trained using the NSP where two sentences were concatenated with a [SEP]

token. In the interaction-based models, we must place this [SEP] token in the prepro-

cessing step. In an interaction-based model, where multiple texts are inputted into a

single BERT model, the query is always considered Sentence 1. To form Sentence 2,

two combinations of the remaining text features are explored. This includes using only

the document abstract or concatenating of document title and abstract. The query and

document are concatenated to tokenize the input using a [SEP] token. The text feature

will therefore look like either of these:

QA = query + [SEP ] + document abstract ,

QTA = query + [SEP ] + document title + document abstract ,
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where QA is read ’Query-Abstract’ and QTA is read ’Query-Title-Abstract.’ In con-

trast, for the Representation-BERT approach, each text feature is separately fed into the

BERT model during preprocessing. This means the query, document title, and docu-

ment abstract are treated as individual inputs to the BERT model, enabling separate

representations for each feature. The text feature will therefore look like this:

xi =


query

document title

document abstract .

Let’s look at a model architecture we refer to as Dual-Interaction-BERT. The text

features are now preprocessed differently for this architecture when creating the input

data. The data will be processed in the following manner:

xi =

query + [SEP ] + document abstract

query + [SEP ] + relevant abstract .

Finally, we have the triple representation-based BERT model, where the text must be

handled differently. The main difference between this and Representation BERT is that

we drop the document title and feed a relevant abstract instead. Therefore the data is

preprocessed in the following way:

xi =


query

document abstract

relevant abstract .

Overall, the preprocessing section encompasses the specific steps undertaken for each

method. These preprocessing strategies are essential in preparing the data for subsequent

analysis and ranking of documents.

Moving on to text cleaning, an optional step in the preprocessing phase, we have

implemented one cleaning function that can be applied to the text features. Cleaning is

applied before concatenating the texts to avoid messing with the [SEP] token. Each text

feature can undergo no or complete cleaning and is set before training a model. This is
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thus a hyperparameter to be set to either True or False. The cleaning method involves

converting the text to lowercase, removing line breaks, eliminating links, removing stop-

words, removing numbers, and performing lemmatization. The Python package nltk is

used to retrieve a list of English stopwords. The package provides a list with a total of

179 stopwords, including i, me, my, and myself. Also, in the lemmatization step, a class

from the nltk library is used, namely WordNetLemmatizer. This method aims to create

a cleaner and more standardized representation of text features.

The text can be passed to the BERT tokenizer when it is in the desired format.

This tokenizer adds the [CLS] token at the start and an [SEP] at the end in addition to

tokenizing the whole text using the BERTs subword tokenization technique. Although it

does not add the separator token since it doesn’t know where the first sentence ends and

the second sentence start. This is therefore added at an earlier stage.

4.2 PubMed Ranker

Since the PubMed Ranker is already trained, I don’t need to consider preprocessing any

text for training. The PubMed Ranker implemented in this study focuses on ordering

documents retrived from PubMed. It submits each query to PubMed and evaluates the

resulting document rankings. To interact with PubMed using Python, the pymed library

is employed. Initially, the number of studies retrieved from PubMed is set to 1000, to

make sure to fetch all possible relevant documents. The library will return a lower amount

of documents if the search engine is not capable of finding the given amount. To ensure

comparability with the systematic review, any documents published more recently than

the publication date of the review are excluded. This ensures that the ranker aligns

with the information available to the systematic review researchers. Since the documents

obtained from PubMed are already ordered, this order is maintained and considered

the final ranking. Furthermore, based on the analysis presented in Chapter 3 of the

thesis, it was observed that the distribution of relevant and non-relevant documents is

65% towards 35%. Therefore, the top 65% of the documents are labeled as 1 (relevant),

while the remaining documents are labeled as 0 (non-relevant). This labeling scheme

proves helpful when calculating both MAP and accuracy. In cases where PubMed returns

documents that cannot be found in our dataset, these documents are assumed to have a

true label of 0 since they were available when the systematic review was conducted but

was not included in the relevant or non-relevant document lists.
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4.3 BM25

Implementing the BM25 ranker utilizes an external library called rank-bm25 instead of

being developed from scratch. This library offers a convenient class named BM25Okapi,

which simplifies the training and utilization of the BM25 model. The documentation from

the library does not include which k and b parameters they use. The class requires a list

of tokens as input, where each item represents a tokenized document. In this particular

implementation, both the query and document abstract were combined, cleaned, and

tokenized using whitespace tokenization and the same cleaning function as described

initially in this chapter. It is important to note that this approach does not rely on a

training model but instead applies statistics to a collection of documents. Therefore, the

evaluation of its performance was solely based on its performance on the val set.

4.4 Optimizer

The same optimizer was used on all BERT-based and logistic regression-based models.

During training, I used the ADAM optimizer with a linear schedule warmup, where the

warmup was set to 20% of the training steps. Pytrch Adam optimizer was used.

4.5 TF-IDF with Logistic Regression

Moving on to TF-IDF with logistic regression, a systematic procedure is followed. This

architecture is similar to related work 2.5.2 with the difference of treating the task as

a ranking task instead of a classification task. After the splits, the data is cleaned

individually if cleaning is chosen.

Next, the TF-IDF model is trained using the training data. This was done using a

Python library sklearn where the class TfidfVectorizer was used. This facilitates training

TFIDF models by just passing a list of texts. The trained TF-IDF model returns a TF-

IDF matrix with dimensions n x m. Here, n represents the total number of documents

in the training set, while m signifies the number of tokens. The hyperparameters chosen

were a min df = 8, a threshold for skipping terms with a lower frequency of the given

value. We also set the ngram range = (1,3), which specifies how many combinations of
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terms we should create a TF-IDF value for. By setting ngram range = (1,3), we create

TF-IDF terms on two and three-word combinations given that they occur more than the

min df, threshold resulting in a richer TF-IDF vocabulary.

Following this, the logistic regression model is introduced. The TF-IDF matrix serves

as the input for training the logistic regression model. A batch size of 16 is set for efficient

training. Multiple models with different hyperparameters were trained to identify the

best-performing model.

4.6 Interaction-BERT

This method is based on the approach presented in related work, 2.5.3. I use the query as

Sentence 1 and experiment with different variants of the document features as sentence

two. If the document is related, we have a training sample with label 1 indicating an

is-next label. If the label is 0, the training sample is an is-not-next label.

The first step is data preprocessing, explained in detail in 4.1. The next step is

initializing the model. The pre-trained BERT model is initialized with its pre-trained

weights, and then a task-specific output layer is added on top of the model’s R[CLS].

The type of task-specific neural network, including the amount of feed-forward layers

and activation function, depends on whether the BERT parameters are frozen or not,

explained in more detail in Section 4.5. Since we have a binary classification task, the

linear feedforward layer must have one output neuron, which is used to predict the binary

classification output.
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Figure 4.1: The model architecture combines a query concatenation and a document as
input. The R[CLS] representation of the BERT model is then passed to a feedforward
network, which generates a binary prediction of 0 or 1. The output will be used the rank
all documents for a given query.

Figure 4.1 shows how the tokenized data is fed as input to the pre-trained BERT

model. The model will return a contextualized representation for each input token, but

we are only utilizing the representation of the [CLS] token on the last hidden layer.

This is fed as input to the untrained feedforward neural network, which outputs a single

numerical prediction for a particular data point.

Now that the customized BERT model is defined, it must be trained. It is now

possible to only train the whole model, thus optimizing the parameters of the pre-trained

BERT model and the newly initialized untrained neural network. Or we can freeze the

parameters of the pre-trained BERT model and only train the untrained network added

on top. The model is trained on the binary classification task data using backpropagation

and gradient descent. The weights are updated to adapt to the task-specific data.
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4.7 Representation-BERT

Another way to use pre-trained BERT-based models for binary classification is to use

the model as a language representation tool to extract contextual information from text

inputs. This method is similar to related work 2.5.4 with the difference of adding a neural

network on top of the concatenation of the output representation instead of using com-

parison metrics, making it suitable for a ranking model. As mentioned in the explanation

of BERT, 2.4.6, the [CLS] token holds the contextualized embedded representation of the

whole input text. Instead of concatenating the query and document and feeding it into

a single BERT model, we can feed each input to individual BERT models. The BERT

models generate embeddings for each input sequence, which are then passed through the

output layer of the model to extract the [CLS] token representation. This token captures

the overall meaning of the input text and serves as a summary representation of the

input.

Figure 4.2: By leveraging individual BERT models and combining their R[CLS] tokens,
a representation-based approach is achieved. The Figure shows three different text fea-
tures that are passed into individual BERT models where the concatenated features flow
through feedforward layers, culminating in a single neuron, predicting 0s and 1s.
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Figure 4.2 illustrate how we can feed each text feature separately to obtain a con-

textualized representation. The [CLS] token representations extracted from each input

sequence are combined into a single vector before being fed to the neural network com-

ponent.

4.8 Dual-Interaction-BERT

Using two dual BERT models involves incorporating both the query and document in-

formation and a relevant document to enhance the document re-ranking process. This

approach takes advantage of the unique insights provided by including a relevant docu-

ment as an input feature.

The query and document are concatenated in the first BERT model using the [SEP]

token as a separator. This concatenated input allows the model to capture the contextual

information from both the query and the document simultaneously. The BERT model

processes this concatenated input, and the R[CLS] token representation, which contains

the aggregated information of the entire text sequence, is extracted. The query is con-

catenated with a relevant document in the second BERT model. This relevant document

serves as an additional input feature, providing specific contextual information that is

known to be relevant to the query. By including this relevant document, the model can

benefit from the knowledge contained within it, potentially leading to improved under-

standing and ranking accuracy. Similarly, the BERT model processes this concatenated

input, extracting the R[CLS] token representation.

The [CLS] token representations from the first and second dual Concat-BERT mod-

els are then concatenated. The concatenated representation is subsequently passed to

the neural network component, which performs a binary classification task to predict a

relevance score of 0 or 1.

Including a relevant document as input can be beneficial for several reasons. Firstly,

the relevant document provides additional context to help the model better understand

the query and the target document. It serves as a reference point, providing information

about what constitutes relevance for a particular query. It allows the model to learn from

the similarities and differences between the relevant document and other documents,

intentionally leading to improved performance when ranking new, unseen documents.
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Figure 4.3: Illustration of a Dual BERT Model for Document Re-ranking. This archi-
tecture employs two interaction-based BERT models to enhance document ranking. The
first BERT model receives a concatenated input of a query and a document, while the
second receives a concatenated input of a query and a relevant document. The R[CLS]

outputs from both models are concatenated and fed into a feedforward network, which
generates a binary prediction of 0 or 1.

4.9 Triple-Representation-BERT

The Representation-Based BERT Model Ensemble is designed to leverage the power of

BERT in capturing contextual information from multiple text features, namely the query,

document, and relevant document. In this approach, the query, document, and relevant

document are separately passed through their respective BERT models.

The R[CLS] token representation, which captures the aggregated information of the

entire input sequence, is extracted from each BERT model. These representations are

then concatenated to create a combined representation of the query, document, and

relevant document. The concatenated representation is subsequently fed to the neural

network component, which is responsible for making a binary prediction of 0 or 1.
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Figure 4.4: Illustration of a Triple Representation-Based BERT Model. This model archi-
tecture utilizes three individual BERT models, each dedicated to processing a different
text feature: query, document abstract, and relevant document abstract. These text
features are separately fed into their respective BERT models, and the R[CLS] token rep-
resentation from each model is concatenated. This concatenated representation is then
passed through a feedforward network, which generates a binary prediction of 0 or 1.

4.10 Feed Forward Network

As mentioned, all BERT-based models utilize a feed-forward network on top of the R[CLS]

token or the concatenation of the R[CLS] tokens. The feed-forward network component

is slightly different depending on whether the BERT parameters are frozen. By freezing,

I mean freezing the parameters such that the parameters aren’t updated throughout the

training phase. Only the feedforward parameters are.

If the BERT parameters are not frozen, the model uses a dropout layer and a fully

connected feed-forward layer with one single neuron as output. Contrarily, if the BERT

parameters are frozen, the feed-forward network is a bit deeper. For this case, the model

uses three fully connected layers with dropout and ReLU activation functions between

them. The size of the linear layers is reduced by one-quarter throughout the network.

All models finish up with a softmax layer. Figure 4.5 shows the two variants.
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Figure 4.5: Two variants of the feed-forward component. The one to the left applies
when the BERT parameters are frozen, whereas the one to the right is not. We apply a
larger feed-forward component when freezing the BERT parameters because of focusing
on updating the neural network parameters instead. The output from the BERT model
is fed as input to the feed-forward component from the bottom to the final softmax layer.

Table 4.1 shows a list of possibly tunable hyperparameters that could be used.

Hyperparameters - BERT-based models
Hyperparameter Potential Values
Text Feature Combination QA, QTA
Cleaning True, False
Learning Rate ∈ R : [0.001, 0.00001]
Batch Size ∈ Z : [1, 256]
Min-Max Abstract Length ∈ Z : [0, 1000]
Dropout ∈ R :< 0, 1 >
Freeze True, False

Table 4.1: List of hyperparameters relevant to all BERT-based models.
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Chapter 5

Results

The results section presents the findings obtained from the diverse methods described in

the method chapter. To evaluate their performance, a thorough exploration of different

hyperparameters was conducted to maximize the model’s performance on unseen data.

5.1 Training

Initially, TF-IDF models with logistic regression were employed, utilizing a learning rate

of 0.0001 and a batch size 16. Two variations were evaluated, one with text cleaning and

another without. The training process spanned 20 epochs. Figure 5.1 show the training

performance throughout a series of epochs. The hyperparameters considered for this

model were using QA or QTA as text combination as well as with and without cleaning.

The name of the models is defined in the following manner:

′{text feature combination}−{model name}− lr−{lr}−clean−{cleaning type}−
batch−size−{batch size}max−abs−len−{max abs len}−dropout−{dropout value}′ ,

where the fields within the curly brackets are hyperparameters.
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Figure 5.1: This plot showcases the performance of various variants of the TF-IDF with
a logistic regression model, with each line representing a different combination of hy-
perparameters. The x-axis represents the number of epochs, while the y-axis represents
the loss. The upper plot demonstrates the training performance, while the lower plot
illustrates the validation performance. You cannot clearly see all model performances
because they behave the same and thus are plotted on top of each other.

Next is the initial training sequence of the different BERT-based models. Here 8

different models were trained. Figure 5.2 show the performance of the models on both

training and validation data. To distinguish the different architectures along with hyper-

parameters each model is given a name.
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Figure 5.2: This plot illustrates the loss performance of the different BERT-based ap-
proaches, showcasing a series of models with different hyperparameters in the same plot.
The x-axis represents the number of epochs, while the y-axis displays the loss values.
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Figure 5.3: This plot illustrates the MAP performance of the different BERT-based
approaches, showcasing a series of models with different hyperparameters in the same
plot. The x-axis represents the number of epochs, while the y-axis displays the MAP
values.

Based on the insights gained from the first iteration of training BERT-based models,

knowledge was gained to fine-tune the hyperparameters in order to improve the perfor-

mance of the models in iteration 2. The actions were to modify the abstract’s learning

rate, batch size, and maximum abstract length. The learning rate was reduced, the batch

size was increased, and the abstract length was set to avoid truncating texts after they

are tokenized. Figure 5.4 show the results of loss performances of different models.
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Figure 5.4: This plot visualizes the performance of different variants of the BERT models,
showcasing two subplots of losses over a series of epochs. Each subplot represents the
training and validation loss, respectively.
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Figure 5.5: Visualization of MAP performance of different variants of the BERT models,
showcasing two subplots of losses over a series of epochs. Each subplot represents the
training and validation loss, respectively. The labels show the hyperparameters used.

More hyperparameter tuning was done based on the results from the training iteration

2, shown in 5.4. Figure 5.6 show the training and validation performance of different

BERT-based models where the main change from earlier is that the BERT parameters

are frozen.
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Figure 5.6: This plot visualizes the performance of different variants of the BERT models
where the BERT parameters are frozen. The plot shows two subplots of losses over a
series of epochs. Each subplot represents the training and validation loss, respectively.
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Figure 5.7: This plot visualizes the MAP performance of different variants of the BERT
models where the BERT parameters are frozen. The plot shows training and validation
in separate subplots over a series of epochs.

5.2 Model Selection

Model selection is based on how well the different models perform on the unseen vali-

dation data. I choose the model that scores the best validation MAP score. Table 5.1

shows the base models along with the BERT models scoring best on validation data in

each training iteration. Don’t exchange the definition of training iteration and epochs.

Training iteration is a fully completed training session of models throughout all defined

epochs.
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Method MAP Accuracy
Base Models

BM25 0.42 0.19
PubMed Ranker 0.04 0.006

Iteration 1
BERT-interaction 0.54 0.66

Iteration 2
BERT-interaction 0.53 0.66

Iteration 3
BERT-interaction 0.50 0.67

Table 5.1: Results from the two basemodels, BM25 and PubMed Ranker. Each model
has calculated MAP and accuracy on the validation set.

We can see that the model resulting in the highest MAP on validation data is the

BERT interaction from the first training iteration of BERT models. This model was

trained with the following hyperparameters:

• Text Combination = QA

• Learning Rate = 0.0001

• Cleaning = False

• Batch Size = 16

• Max Abstract Length = None

• Freeze = False

Now that we know which model to choose, let’s try to understand why the different

models perform as they do by retrieving some samples. Let’s first consider PubMed

ranker using some samples from the validation data. The model validation is done using

a document-return rate of at most 1000 documents.

For this query with qid = 2183 there exists 84 non-related documents and 30 related

queries. When querying PubMed it returns a list of 45 documents where only two of the

documents from the returned list appear in the validation set. As explained in 4.2, we

assume that documents returned by PubMed and not included in our dataset are having

a ground truth label of 0. Thus for this example, we have 43 documents does not exists in

our dataset and are treated as having a ground truth label of 0. Table 5.2 shows the the

returned documents from PubMed but only including the ones existing in our dataset.
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Qid PubMed Rank Label
2183 8 1
2183 10 0

Table 5.2: Sample of ranked documents using PubMed Ranker. The result shows the
returned documents for the query with qid equal to 2183 that exists in the validation set.

Looking at another sample of evaluating a query from the validation set, a similar

behavior occurs. For the query with qid = 2860, 48 documents with ground truth label

= 1 and 47 with truth label = 0 exist. The PubMed search engine returns a document

list of 106 documents, where 4 of the documents exist in our dataset. Table 5.3 shows

the returned documents when querying qid 2860, only showing the ones included in the

validation set.

Qid PubMed Rank Label
2860 21 0
2860 50 1
2860 71 0
2860 105 0

Table 5.3: Sample of ranked documents using PubMed Ranker. The result shows the
returned documents for the query with qid equal to 2860 that exists in the validation set.

Continuing with the document with qid equal to 2860, let’s see how the BERT-based

model makes predictions with the best MAP score on the validation set. Figure 5.4 shows

the top 10 ranked results along with the ground truth labels.

Qid BERT-interaction-
rank

Label

2860 1 1
2860 2 1
2860 3 1
2860 4 1
2860 5 0
2860 6 0
2860 7 0
2860 8 1
2860 9 1
2860 10 0

Table 5.4: Sample of ranking all documents for a particular query using Interaction-
BERT. The figure shows the top 10 ranked documents for the query with qid equal to
2860.
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5.3 Model Evaluation

The chosen model is now evaluated on the test set where its MAP and accuracy perfor-

mance is calculated. The results are shown in Figure 5.5. The hold-out test set has a

size of 6922 datapoints. The model’s performance on this set represents an estimate of

how well the model is expected to perform on new, unseen data in real-world scenarios.

Method MAP Accuracy
BERT-interaction 0.51 0.62

Table 5.5: Table of the chosen models’ performance on the test set. The model’s score
on MAP and accuracy are calculated.
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Chapter 6

Discussion

6.1 Base Models

Starting the discussion chapter, let’s first analyze and discuss the findings of the base

models, namely the BM25 and PubMed Ranker. Based on the MAP score obtained from

PubMed, it is evident that the ranking performance is exceptionally low, reaching as low

as 0.04. This signifies a poor quality of ranking.

A primary factor contributing to this poor performance is the significant number of

documents in the test set that PubMed did not return. This deficiency in document

retrieval severely impacts ranking accuracy. However, when considering the accuracy

metric, there is a slight improvement due to the labeling approach used, where the top

35% of the results are labeled as 1 and the remaining as 0. There is also an assumption

that the actual value of the documents not found in the dataset has a label equal to 0,

thus resulting in a higher accuracy relative to the MAP score.

6.2 BERT-Based Models

Based on the training and validation performed on the graphs in Chapter 5 it is observed

that all the models exhibit similar behavior. The trend performs exceptionally well on

the training data but demonstrates poor performance on the validation data. Several

factors could contribute to this behavior.
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One possible reason is the difference in the tokens and patterns used in the training

data compared to the validation data. There might be substantial variations between

these two datasets, leading the models to learn specific patterns that are only prevalent

in the training data. As a result, when faced with unseen or validation data, the models

struggle to generalize their learned patterns effectively.

Another factor to consider is the similarity in text content between related and non-

related documents. It is often observed that the text content in both types of documents

is quite similar. This similarity poses a challenge, as the models find it difficult to discern

whether the entire article contains relevant information solely based on the information

provided in the abstract. This suggests that medical study authors may write the re-

lated and non-related document abstracts in the same fashion, making it challenging

to accurately interpret the relevance of the whole article based on abstract information

alone.

Furthermore, it is essential to highlight that BERT-based models have demonstrated

impressive capabilities in sentiment analysis tasks, where identifying positive or nega-

tive sentiments in a text is relatively straightforward. However, when labeling medical

abstracts as relevant or non-relevant to a systematic review title, the task becomes sig-

nificantly more complex. The challenge arises from the fact that sentiment analysis relies

on the explicit sentiment expressed within the text, whereas determining the relevance

of a medical study to a research question goes beyond the information provided in the

abstract alone.

A possible limitation of choosing the tiny-BERT is that it is only trained on general

data [13]. Health data may contain different words and ways of writing than the data it

is trained, resulting in a more difficult task of fine-tuning it. The tiny-BERT has a fixed

vocabulary, meaning that words appearing in training data and not in the vocabulary

will be regarded as unknown tokens. A possible solution for further work would be to

train the BERT-based models on pre-trained BERT models such as Bio Clinical BERT

[11]. This model has 12 encoders and a hidden size of 768, which is considerably larger

than tiny-bert and would have taken longer to train.

A comprehensive exploration of various hyperparameters, such as learning rate, batch

size, text cleaning, maximum abstract lengths, and parameter freezing, was conducted in

the context of the BERT-based models. The results consistently revealed a trend of lower

training loss but higher validation loss, thus overfitting. I would, therefore, not suggest

further empirical experiments on hyperparameter optimization.
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A crucial finding arising from these results is that using the title of the systematic

review as the input query for the PubMed search engine proves to be far from optimal.

Thus, relying on the systematic review title alone does not yield satisfactory document

retrieval and ranking results.

6.3 Dataset

A big part of this study is related to creating a dataset that can be used to train document

ranking models optimized for a particular type of user need. The study shows how it is

possible to create a labeled dataset from a collection of systematic reviews by utilizing

the open-source PubMed library to fetch additional information, such as the abstract

of documents. Based on the results, we can see that it is possible to fine-tune exist-

ing pre-trained language models on this dataset, although with a lacking generalization

performance. Therefore, it has to be questioned whether the textual information in the

abstract of a particular medical document is sufficient when determining the document’s

relation to a systematic review title. The work on dataset creation serves as an initial

point to train document ranking for the task. A richer dataset with additional features

from each medical document is still to be researched.

6.4 Future Work

As mentioned, there is no need to experiment on the available hyperparameters in this

study. I would rather see an implementation of the ensamble method K-fold cross-

validation, a technique used to evaluate a machine learning model’s performance and

generalization ability. It involves dividing the dataset into k subsets, training the model

on k-1 folds, and evaluating its performance on the remaining fold. This process is re-

peated k times, with each fold serving as the validation set, and the results are averaged

to provide a robust estimation of the model’s performance.

Since this study mainly focuses on training neural ranking models using the LTR

framework point-wise training, other LTR framework approaches are still to be examined.

These approaches come with the additional work of creating a suitable dataset. For the

pairwise approach, each data point would include an input query, two medical documents

(one more relevant than the other), and a binary label. The model would then predict
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the relative order of the documents. This could be developed upon my dataset creation

model by combining a positive and negative data point for a particular query. The listwise

approach would make less sense because it requires a labeled dataset of a relative ranking

of all associated documents for a particular query. And by keeping in mind that, in

reality, the end user determines all evaluated documents as either related or non-related,

it doesn’t make sense to label a dataset of relative order.

Moving forward, an important next step would be to do more research on creating a

richer dataset of more features from the medical document. This dataset could facilitate

developing models that incorporate additional meta-data alongside raw text. Meta-data

could include information such as author names, citations, the number of tables, or

the presence of numerical features. By integrating these contextual factors, the model

could gain a more comprehensive understanding of the relevance of medical abstracts to

systematic review titles.

Furthermore, exploring the development of a neural network that combines the con-

textualized representation of the text with numerical features could prove beneficial. This

hybrid approach would leverage the rich semantic information captured by BERT-based

models and the informative nature of numerical features, leading to a more holistic and

accurate relevance assessment. Previous research has defined an effective package for

training models using transformers and tabular data [14].

A future work when the ranking algorithm works as expected is to develop information

retrieval algorithms that extract relevant information from the relevant studies. Usually,

the information needed in these studies is found in the article itself. Thus, the whole

text of the study needs to be analyzed. Named Entity Recognition (NER) or Topic

Modelling (TM) are possible extraction techniques that could be suitable. NER is a

natural language processing technique that identifies and extracts specific named entities,

such as people, places, organizations, and other types of entities, from unstructured text.

NER is typically performed using machine learning models trained on annotated text

data to recognize and classify named entities accurately. Thus, I would have to consider

using a pre-trained NER model or collecting an annotated dataset. TM is a machine

learning technique that identifies topics or themes in documents or text data. It works

by analyzing the frequency and distribution of words within the documents and grouping

them into clusters of related topics. This method does not require any labeled dataset

and could be applied directly to collecting unstructured documents.
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6.5 Objectives and Contributions

The method employed, and its corresponding results successfully achieve a substantial

portion of the objectives outlined in this thesis. To tackle objective (A), the background

chapter highlights the existing theoretical methods available for document ranking, in-

cluding the related work. The study explains in-depth how the contextualized BERT

language model works and how it can be used as a binary classifier. The LTR framework

and the related work section describe how treating a binary classification problem as a

ranking problem that suits the task at hand is possible.

Objective (B) is fulfilled by utilizing a collection of systematic reviews where the main

work concerns fetching additional textual data from the PubMed library. The algorithm

for creating the dataset carefully selects the most likely correct document avoiding errors

in the data.

Based on the related work, the study is implementing various types of BERT-based

models as well as TF-IDF with logistic regression. Additionally, the BM25 and PubMed

Ranker is implemented as models for comparison. The solution facilitates training, eval-

uating, and selecting the best-performing model using the MAP metric. Storing the

different model’s performances during training and evaluation makes it possible to com-

pare when finished. This part is thus answering objective (C).

Objective (D) is handled in the data creation part and how the training framework is

developed. The data creation algorithm fetches both document titles and abstracts, and

the solution makes it possible to train various models with different text feature combi-

nations. The training framework also facilitates specifying different hyperparameters for

training the models. Since each model is stored by adding the different hyperparameters

in the model name, it is easy to compare their training and validation performances in a

single plot.

The discussion, solution, and results chapters tackle objective (E), which concerns

analyzing the results and performances of the models. The discussion highlights the

strengths and weaknesses of why the result turned out as it did.

When considering the work done in this study along with the related work presented

in 2.5, clear contributions can be found. BM25 model still serves as a base model that

can reduce the number of documents by filtering out the most non-related documents.

This work applies many of the same methodologies as passage re-ranking with BERT.
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Similarities include using BERT as an interaction-based model for reranking and adding a

task-specific layer. The main difference concerns training the model on another dataset.

This work also contributes to the related work that uses representation-based ranking

with BERT, concatenating the contextualized representation and adding a task-specific

layer instead of using a comparison score. In addition, I am highlighting the limitations

of existing tools for systematic reviews, especially focusing on PubMed Ranker. The

query samples drawn in the model section show that only a small portion of the true

labeled documents (in our dataset) is fetched from PubMed, even by setting a high limit

for the documents returned. Figures from the results show an example of this limitation

where out of 106 documents returned, only a single document is regarded as related and

occurs in the 50th position of the ranking. Imagine the time of screening 49 non-related

documents before reaching a related document.

Finally, let us contextualize this work within the problem highlighted in the introduc-

tion. The issue revolves around minimizing the time spent screening irrelevant documents

when conducting a systematic review of a specific medical intervention. While the algo-

rithms proposed in this research do not necessarily rank all relevant documents at the top,

this may not always be essential. Particularly in time-sensitive situations, such as during

the initial phase of a pandemic, policymakers face the challenge of making rapid deci-

sions, leaving little time for comprehensive document screening. Nevertheless, employing

an algorithm capable of ranking documents at high speed with a reasonably accurate

assessment can be advantageous. This approach facilitates fast evidential analysis of rel-

evant documents, prioritizing those most likely to yield valuable insights. Although my

solution may not fully meet the performance criteria for ranking, it serves as a stepping

stone for leveraging trained ranking models.
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Chapter 7

Conclusion

This thesis aims to determine how existing document ranking algorithms can be trained

to assist researchers conducting systematic reviews. The findings show that training

many document ranking algorithms is possible by treating the problem as a binary clas-

sification task. The research shows how to create a labeled dataset from a collection of

systematic reviews by retrieving additional textual features from PubMed. Further, the

research develops a document ranking framework including base models such as BM25

and PubMed ranker, TF-IDF with logistic regression, and a series of BERT-based mod-

els. The BERT-based models take advantage of existing pre-trained models and fine-tune

them by adding task-specific linear layers.

A big part of the research then focuses on utilizing the training framework to train

several types of BERT-based models with different hyperparameters. The results show

that all BERT-based models can learn patterns in the training data but struggle to

generalize to perform well on unseen data. These findings show significant differences in

the training and validation data resulting from the model’s ability to learn the patterns of

80268 data points but failing to perform well on a hold-out set of 7633. The results show

that the abstract of medical content does not provide sufficient information to regard its

relevance to a systematic review title.

A possible reason for overfitting is the dataset used to train the document ranking

algorithms. More research must create a richer dataset that includes more content from

the actual document, not only the abstract. Leveraging all textual, numerical, tables,

and listings from the medical document opens up many opportunities for combining

BERT-based models and other non-language models.
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Given the available resources, the research process could not have been done dif-

ferently regarding the type of LTR framework used and how the dataset was created.

However, I am critical to my choice of developing a series of BERT-based models when it

turned out that they all behaved quite similarly. After developing the Interaction-BERT

model, it would be better to research other pre-trained models and task-specific layers and

experiment with other hyperparameters related to the training procedure. This could,

for example, include other types of optimizers, K-fold cross-validation, and adjustable

learning rate.

To sum up, this research provides a first-ever attempt at training existing pre-trained

language models on a custom dataset created from a collection of systematic reviews and

PubMed. It also provides deep research on training these models using the pointwise bi-

nary prediction training approach. The developed training framework facilitates training

the implemented models on a new type of data as well as using the existing data format

to train new models.
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