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Abstract

We investigate an approach for extracting occupational gender bias in the form of logical

rules from Large Language Model (LLM)s based on Angluin’s exact learning model with

membership and equivalence queries to an oracle. In our approach, the oracle is a LLM

and we show the changes that are necessary to use Angluin’s algorithm with such an

oracle. In our experiments, we extract occupational gender bias with the adapted algo-

rithm from BERT and roBERTa models and compare our results to an established bias

extraction method, which is template-based probing. Our goal is to use a new method

to combine multiple attributes in a template sentence and to study their relationship to

the gender in a sentence. We achieve this by using our rule extraction approach with a

variable template containing multiple attributes. The extracted rules show a similar bias

as previous bias extraction methods but also give insight into more complex relationships

between attributes.
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Chapter 1

Introduction

Artificial Intelligence (AI) models are widely used across many domains. Especially lan-

guage models started to be available to everyone with LLMs and the recent developments

towards conversational language models like ChatGPT from OpenAI, which is based on

a LLM architecture. Most of these models are black boxes, and despite efforts to develop

them unbiasedly, these systems can encode some harmful bias, often stemming from the

training data [16]. When being used by a wide range of users, the biases in language

models, and systems based on them, can become harmful and should be revealed and

addressed.

Stereotypical biases in language models can often be exposed with a template-based

probing approach. The templates are pre-defined sentence structures that combine a

predicate with an attribute, depending on the task and the targeted bias [30, 10, 24, 7].

For the probing, the token of interest in the sentence is masked and then predicted by a

model. An example template is “[predicate] works as [description]” [33] and with

a pronoun or noun as a predicate and an occupation as the description, masking and pre-

dicting the pronoun is a way to detect occupational gender bias. It has been shown that

these templates can be sensitive to grammatical changes, for example, a change in the

grammatical tense [32], which motivates the development of more stable methods.

In an effort to contribute to explainable AI, we want to unravel the knowledge hidden

in LLMs and find biases encoded in the models. Parts of this work are also submitted in

an article [5]. Based on Anlguin’s exact learning model, we investigate an approach to

using it to extract knowledge from a LLM in the form of logical rules.

The exact learning model describes identifying an abstract target concept via interaction

with a teacher (oracle) through queries. More specifically, a minimally adequate teacher
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is an oracle that answers membership and equivalence queries about the target concept.

For our case, a membership query is a variable assignment the learner gives that the

oracle has to classify as either satisfied or not satisfied by the target. An equivalence

query takes a hypothesis given by the learner as input, and the oracle decides whether it

is equivalent to the target. The answer to the query is then the answer to the equivalence

query and, in the case of a “no”, an example of the difference. One specific application

of exact learning is the HORN algorithm presented by Angluin et al. [3], which can

learn rules as a Horn formula in polynomial time from a minimally adequate teacher.

The algorithm starts with an empty Horn formula as a hypothesis and adds Horn clauses

through negative examples. Those examples in the hypothesis that are not implied by

the target Horn formula are removed through positive examples.

The HORN algorithm with a machine learning model acting as the oracle is the basis for

our method [27, 28]. We extend it by using specifically a LLM as an oracle and apply

it to extract rules that reflect occupational gender biases encoded in the model. This

method is then compared to a template-based probing approach using the same set-up

of attributes and the same template. We analyze the shared biases and highlight the rule

extraction method’s differences, benefits, and downsides.

In general, we want to achieve three goals. The first goal is to use the HORN

algorithm to extract meaningful, logical rules from LLMs and, with that, find rules that

describe the decision process of the underlying black-box machine learning model. With

this method, we want to fulfill our second goal of introducing a different approach

to template-based bias extraction, addressing the sensitivity of template-based probing

approaches to changes in the template. The last goal is to use this method with a flexible

template containing multiple attributes to compare the relationship of different attributes

to the gender of an entity in a sentence. We want to find out if “gender” is generally

more often explained by specific attributes and to find relationships including multiple

attributes to describe an entity’s gender.

Our contribution is a new method that combines Anlguin’s HORN algorithm with

LLMs to extract logical rules. These rules reflect the biases encoded in the language

models. We combine multiple attributes to study their relationship to the gender in a

sentence and therefore find a method to extract complex relationships between attributes

in a sentence.

In the following, we will first give the necessary background information to under-

stand our method in Chapter 2. We will cover the HORN algorithm (algorithm 1) and

its extensions and bias in machine learning, specifically bias in Natural Language Pro-

cessing (NLP). In Chapter 3, we further describe the idea behind our method, including
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problems of using the HORN algorithm for this specific task and their solutions. Detailed

descriptions of all experiments are given in Chapter 4. We first develop a dataset for a

template-based probing approach and a base for developing the attributes used for our

rule extraction approach. Then we show the results of the template-based probing ap-

proach with our template and set of attributes, followed by the rule extraction approach

using the HORN algorithm. We state all results and comment on them. In Chapter 5,

we show related works on exact learning and bias in language models. In the end, we

give a conclusion in Chapter 6 that summarizes the experiment results and evaluates the

goals of this work. We also provide suggestions for extensions and improvements.
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Chapter 2

Background

In the following, we define relevant concepts and notions to understand the fundamentals

of the approach we present in this work. Some more common concepts are defined shortly,

as we assume the reader to be familiar with the concepts (for example neural networks).

2.1 Neural Language Models

2.1.1 Neural Networks

Generally speaking, a neural network is a set of simple nodes that are connected over

(multiple) layers and that process data to learn some task [13]. A fully connected layer

is some input x = [x1, ..., xn] and output o = [o1, ..., om] where the calculation of each

output oj depends on all inputs xi [39]. This is shown in figure 2.1.

Figure 2.1: Visualization of one hidden layer with 4 input and 3 output nodes by Zhang
et al. [39]
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Figure 2.2: A Multi Layer Perceptron (MLP) with one hidden layer as visualized by Zhang
et al. [39]

A MLP is a stack of multiple fully connected layers on top of each other, shown in

figure 2.2. The outputs of a hidden layer are called hidden representations and are a lin-

ear combination of the previous layer’s hidden representations. To use the full potential

of deep architectures, each layer has a non-linear activation function [39].

A variation to this architecture is residual connections, where the input of one layer, in

addition to being propagated through a block of layers, is also added to the output of the

block layers. This allows a network architecture to learn the identity function easier [39].

There are many different techniques to regularize neural network architectures. The

one that is relevant here is called layer normalization, which is applied to one represen-

tation (hidden representation or input) x at a time by normalizing its entries [39].

2.1.2 Language Models

The core objective of a language model is to estimate the joint probability of a sequence

x1, x2, ..., xT of T tokens P (x1, x2, ..., xT ). A sequence of tokens can be any sequence; in

the context of natural language processing, this is often the mapping of tokens to words

or characters [39]. This can be very useful in a perfect scenario because a language model

could generate natural text or meaningful dialogues [39]. If the model that estimates the

probability of a sequence is a neural network (of some kind), it is called neural language

modeling. This work focuses on transformer-based language models, specifically the

encoder-only language models BERT and RoBERTa.

The input and output of a language model can take different shapes. They are con-

sidered to be aligned if input and output show some kind of step-by-step correspondence,

and unaligned if they don’t.
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2.1.3 Transformer Architecture

A core building block of the transformer architecture is the attention mechanism [35],

which is a function that maps a query q and a set of key-value pairs D = {(k1, v1), ..., (km, vm)}
to an output, which can generally be expressed as [39]

Attention(q,D) =
m∑
i=1

α(q, ki)vi (2.1)

For the transformer architecture [35], the attention function α is called Scaled Dot-

Product Attention and is calculated simultaneously for a seq of queries. With query

matrix Q ∈ R⋉×ℸ , key matrix K ∈ Rm×dk and value matrix V ∈ Rm×dv , the scaled

dot-product attention is defined as

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (2.2)

This attention function is used as self-attention, where queries, keys, and values all

come from the same sequence. Another method is called multi-head attention, where the

queries, keys, and values are transformed h times with different, learned linear projections.

Then there are h parallel attention computations, whose results are concatenated and

projected onto the final values [35].

Scaled dot-product and multi-head attention are visualized by Vaswani et al. [35] and

shown in figure 2.3.

The transformer architecture [35] is an example of an encoder-decoder architecture

dealing with unaligned inputs and outputs of varying lengths. The encoder transforms a

variable-length sequence into a fixed-shape state, and the decoder uses this output and

the leftwards context of already generated targets to predict the next token. They are

connected through a multi-head attention layer called encoder-decoder attention, which

uses the output from the encoder as keys and values, while the output of the previous

decoder layer acts as the queries.

A transformer adds positional encodings to the word embeddings of the input, which

encode information about the relative or absolute position of tokens. In the original

architecture, Vaswani et al. [35] use sine and cosine functions of different frequencies as
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Figure 2.3: Scaled Dot-Product Attention and Multi-Head Attention as described and
visualized by Vaswani et al. [35].

the positional encodings, calculated based on the position pos of the token and dimension

in the embedding i.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

The encoder consists of multiple identical layers, each having two sublayers. First, a

multi-head self-attention pooling layer and then a position-wise feed-forward neural net-

work (all sequence positions are transformed with the same MLP). Both sublayers also

have residual connections and are each followed by layer normalization.

The decoder has a similar structure. The multi-head attention in the decoder is a masked

scaled dot-product attention, meaning that each position is only allowed to attend to posi-

tions to the left of it to preserve the auto-regressive nature of the decoder. This is achieved

by masking the values of connections between positions that are not allowed [35]. In ad-

dition, after the first multi-head attention, the encoder-decoder attention connects the

encoder and decoder values as previously described. Apart from that, the architecture of

the decoder is the same as that of the encoder. The architecture of the whole transformer

is shown in figure 2.4.
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Figure 2.4: Transformer Architecture [35]

2.1.4 BERT and RoBERTa

BERT stands for Bidirectional Encoder Representations from Transformers [9]. It is a

language model built from transformer encoders that can be used for various tasks due to

general pre-training and fine-tuning on specific tasks. Pre-training describes the training

of the underlying (in this case) transformer encoder architecture. With fine-tuning, a

task-specific output layer is added, and both the output layer and the pre-trained ar-

chitecture are then trained again with a task-specific training process. This is a form

of transfer learning which allows models to be used for various tasks without explicitly

training the whole model for each of them. BERT encodes context bidirectionally, which

is also reflected in the pre-training objective. An output layer can be added and trained

during fine-tuning for any downstream task.

The input to BERT consists of a single text or text pairs marked by certain tokens be-

tween test examples. Any input sequence starts with the <cls> token, followed by the

input text and a <sep> token. If the input is a single text example, it ends with the

<sep> token. Otherwise, it will be followed by the second text of the text pair and

another <sep> token. As an example, the BERT input of the sequence pair “She is

a researcher.” “Her field of research is machine learning.” would be “<cls> She is a

researcher. <sep> Her field of research is machine learning. <sep>”. This sequence of
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tokens is then transformed with learned embeddings, which are then added to learnable

positional embeddings.

The model is a multi-layer bidirectional transformer encoder defined in two sizes by the

original authors [9]. BERT-base has 110 million parameters, spread over 12 transformer

blocks with a hidden size of 768 and 12 attention heads. With 340 million parameters,

BERT-large is more than double that size. It has 24 transformer blocks, a hidden size

1024, and 15 attention heads.

BERT’s pre-training is conducted on the BookCorpus (800 million words) [40] and En-

glish Wikipedia (2500 million words). It is done in an unsupervised fashion with two

objectives. The first objective is Masked Language Modeling (MLM), a pre-training

for the bidirectional representations, in which 15% of the input tokens will be masked

randomly and predicted by the model. To mitigate a mismatch between training and

fine-tuning due to the <MASK> token, it will only be used 80% of the time. 10% of

the time, a random token will be filled in, and for the last 10%, the token will remain

unchanged. The MLM objective allows for word-filling or sentence completion tasks on

the pre-trained model without fine-tuning, as the model can be asked to return the most

likely token. We use this property to do all of our inference on the raw pre-trained model

without fine-tuning. To also understand the relationships between two sentences, BERT

is trained with a second objective called Next Sentence Prediction (NSP), in which the

model has to decide if a sentence B is the actual next sentence that follows the other

given sentence A. To generate the pre-training examples, in 50% of the cases the two

sentences are actually consecutive sentences and in the other 50% sentence A is followed

by a random sentence from the corpus.

RoBERTa [19] is a modification of BERT with changes to the fine-tuning process and

different training data. First, the RoBERTa models have longer training and use bigger

batches and more data. To be more specific, it uses 160GB of uncompressed text with the

following corpora: CC-NEWS [11], BookCorpus [40], OpenWebText [12] and Stories [34].

The authors also remove next-sentence prediction as a pre-training objective and show

that this does not result in a performance loss. Additionally, the training is conducted

on longer sequences. While BERT is trained on sequences of length 128 for the first 90%

of updates, RoBERTa is consistently trained on sequences of length 512.

Through many different studies, large language models have been shown to display

harmful biases. BERT displays societal biases in sentiment analysis [4] and its core task

of masked language modeling [18]. Both BERT and RoBERTa display stereotypical bias

in next sentence prediction [22] and show harmful behavior in sentence completion for

LGBTQIA+ individuals [24].
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2.1.5 Bias in Language Models

Gender bias is a “systematic, unequal treatment based on one’s gender” [31]. For NLP, a

definition of gender bias in the context of language is helpful.Hitti et al. [15] give such a

definition as “the use of words or syntactic constructs that connote or imply an inclination

or prejudice against one gender”. In this work, we talk about a contextual bias, namely

societal stereotypes, as we consider occupations and the gender they are stereotypically

related to.

(Gender) Bias in language models can be measured by a template-based approach that

measures how much more a model prefers associating a certain attribute with a certain

gender. For this, templates, for example, of the form “[TARGET] is a [ATTRIBUTE]” [18]

are created. The attribute could be anything like an occupation or a descriptive adjec-

tive. An example would be the association between the target “male” and the attribute

“programmer” with the template sentence “[MASK] is a programmer”. The likelihood

to fill the [MASK] token with “he” ptgt is weighed with the prior bias of the model to-

wards the “he” token pprior. This prior bias is calculated by removing the attribute from

the template sentence, giving the prior template “[MASK] is a [MASK]”. The probabil-

ity for the sentence “He is a [MASK]” is pprior. With that and ptgt, the association of

a target with an attribute is then calculated as log( ptgt
pprior

). The difference between these

two measures for two targets is called log probability bias score and a measure of bias [18].

Munro and Morrison [21] use a similar approach but exchange the difference of log prob-

abilities with a ratio of actual probabilities.

Fatemi et al. [10] introduce the PPBS, which takes the difference of the actual probabil-

ities for the pronouns.

ppbs = pHe − pShe (2.3)

They use the probability given by the model to fill a masked position with the pronoun

“she” (or “he”), while Touileb et al. [33] first normalize the probabilities to add up to one.

Template-based approaches are an easy way to test a language model for bias. However,

they are sensitive to the formulation of the templates. Altering the grammatical tense of

a template has been shown to affect the correlation between gender and occupation [32].

A study on BERT-base with the 60 most biased professions [10] shows how thePPBSis

used to detect bias. Figure 2.5 shows thePPBSfor 60 occupations, where negative values

correspond to female-biased occupations and positive values correspond to male-biased

occupations. Most scores are closer to the lower half of their spectrum (−0.5 to −1 and

0.5 to 1). Especially the male-biased occupations all have a PPBS of over 0.7.
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Figure 2.5: PPBS of the 60 most biased profession words (according to [6]) in the BERT-
base model as seen in [10].

2.2 Computational Learning Theory

Computational learning theory is concerned with formalizing frameworks that describe

learning tasks. Those frameworks can then, for example, define the class of learnable

concepts or give information about the sample complexity of a learning algorithm or

general constraints [20]. It provides theoretical considerations for the machine learning

algorithms that are being used every day.

2.2.1 PAC learning

In a Probably Approximately Correct (PAC) learning setting [29], a learner tries to

identify some target concept t by creating a hypothesis h that approximates t and the

probability that h misclassifies an example is supposed to be bounded [26]. First, we give

the necessary definitions.

Definition 1 (Learning Framework as defined by Konev et al. [17]). A learning framework

F is a triple (E ,H, µ) with a set of examples E and a set of concepts H. µ is a mapping

from the set of concepts H to 2E .

For a learning framework F = (E ,H, µ), D is a probability distribution over E .

Definition 2 (Example Query as defined by Ozaki [26]). An example oracle is an oracle

EXD
F,t that for a target t ∈ H outputs a classified example (x, lt(x)) where x ∈ E is sampled

according to the probability distribution D and lt(x) is the label with lt(x) = 1 if x ∈ µ(t)

and lt(x) = 0 if x ̸∈ µ(t). An example query is a call to an example oracle.
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An example oracle can be used to generate a sample S, a set of independently and

identically distributed examples according to D.

Definition 3 (PAC learnability[26, 29]). Let F be a learning framework with hypothesis

space H and EXD
F,t and example oracle. The learning framework F is PAC learnable

if there exists a function f : (0, 1)2 → N and a learning algorithm with the following

property: For every ϵ, δ ∈ (0, 1), every probability distribution D on E and every target

t ∈ H, when running the learning algorithm on m ≥ f(ϵ, δ) examples generated by EXD
F,t,

the algorithm always halts and returns a hypothesis h ∈ H such that, with a probability

of at least 1− δ over the choice of m examples, we have that D(µ(h)⊕ µ(t)) ≤ ϵ, with ⊕
being the symmetric set difference.

Because the learner is constantly working with finite samples S to approximate t,

there is always a chance that the learned hypothesis may not reflect the target perfectly.

Nevertheless, to achieve a PAC solution, the function f : (0, 1)2 → N determines the

minimum amount of required examples, the sample complexity based on the accuracy and

confidence parameters ϵ, δ and the hypothesis class H. In the case of a finite hypothesis

class, it depends on the log of the size of H. As shown by Shalev-Shwartz and Ben-David

[29], every finite hypothesis class is PAC learnable with sample complexity

f(ϵ, δ) ≥
⌈
1

ϵ
log(

|H|
δ

)

⌉
(2.4)

2.2.2 Exact Learning

Angluin [1] describes the problem of exactly identifying an unknown target concept t

while having access to a set of oracles that can answer queries about t. First, we give

relevant definitions for exact learning [17].

Definition 4 (Learning Framework as defined by Konev et al. [17]). A learning framework

F is a triple (E ,H, µ) with a set of examples E and a set of concepts H. µ is a mapping

from the set of concepts H to 2E .

An example x ∈ E is a positive example for a concept h ∈ H if x ∈ µ(h) and,

conversely, a negative example if x ̸∈ µ(h).
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Definition 5 (Memberhsip Query[17]). A membership oracle is an oracle MEMF,t that

takes as input an example x ∈ E and returns “yes” if x ∈ µ(t) and “no” otherwise. A

call to MEMF,t with an example x ∈ E is a membership query for example x.

For two concepts t, h ∈ H, a counterexample x ∈ E is an example that is a posi-

tive example for t and a negative example for h (positive counterexample) or vice-versa

(negative counterexample). Formally this means that x ∈ µ(h)⊕ µ(t).

Definition 6 (Equivalence Query[17]). A equivalence oracle is an oracle EQF,t that takes

as input a hypothesis concept t ∈ H and returns “yes” if µ(h) = µ(t) and a counterexample

x otherwise. A call to the equivalence oracle EQF,t with a hypothesis h ∈ H is an

equivalence query for hypothesis h.

Definition 7 (Exact Learning [17, 1]). A target concept t is exactly learnable by a

learning algorithm for the learning framework F if the algorithm takes no input, is deter-

ministic, always halts and outputs a hypothesis h ∈ H with µ(t) = µ(t) by only posing

queries to certain oracles.

If a learning algorithm uses only membership and equivalence oracles MEMF,t and

EQF,t, it is called a minimally adequate teacher [1].

The exact learning model is connected to the PAC learning model by extension with

membership queries through the following theorem [26]:

Theorem 1 ([1, 26]). If a learning framework is exactly learnable in polynomial time,

then it is PAC learnable with membership queries in polynomial time 1 If only equivalence

queries are used, then it is PAC learnable without membership queries in polynomial time.

2.3 Learning from Neural Networks

The learning frameworks described in 2.2 are general frameworks that describe the learn-

ability of general, finite hypothesis spaces. They build a basis for more specified algo-

rithms tailored toward specific hypothesis spaces. One example is the application of the

exact learning framework to a specific hypothesis space, like the set of all propositional

Horn formulas.

1This also requires that deciding whether an example is positive can be done in polynomial time,
which is the case for propositional Horn.
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2.3.1 Learning Conjunctions of Horn Clauses

Angluins algorithm [3] learns the class of propositional Horn formulas in polynomial time

in the exact learning model through membership and equivalence queries.

Before we describe the algorithm, we provide basic notions relevant to the definition

of propositional Horn logic [28]. Let V = {v1, ..., vn} be a set of Boolean variables. A

literal is a variable v ∈ V (positive literal) or its negation ¬v (negative literal). A clause

over V is a disjunction of literals called Horn if, at most, one literal is positive. A Horn

formula (or theory) is a conjunction of Horn clauses. The antecedent(c) of a Horn clause

c is the set of negated variables in c or the constant symbol ⊤. The consequent(c) of c

contains either its unnegated variable if it exists or the constant symbol ⊥. An example

of a Horn clause c is ¬a ∨ ¬b ∨ ¬c ∨ d, which is, as all Horn clauses, logically equivalent

to an implication of the form antecedent(c) → consequent(c) ⇔ a ∧ b ∧ c → d.

An interpretation I over V is a subset of V . It satisfies a variable v ∈ V if v ∈ I (written

I ⊨ v) and otherwise falsifies it. The reverse holds for a negative literal ¬v. I satisfies a

clause c iff it satisfies at least one literal in c (I ⊨ c) and satisfies a formula t iff it satisfies

every clause in t (I ⊨ t). For a theory t and clause c, if, for every I, we have that I ⊨ t

implies I ⊨ c, then t ⊨ c and t entails c. If t entails every clause in a theory t′, then t ⊨ t′

and if also t′ ⊨ t, then t and t′ are logically equivalent (written t ≡ t′).

In this setup, a learning framework is a triple (E ,H, µ) with H being the set of all

formulas in propositional logic, E the set of all interpretations over V and µ defined as

µ(t) = {I ∈ E | I ⊨ t}. With this, we can redefine the notions given in Section 2.2.2.

For any h ∈ H, a positive example is an interpretation I that satisfies h (I ⊨ h). A

negative example is an interpretation I with I ⊭ h. For any two formulas t, h ∈ H, a

positive (negative) counterexample for t and h is an interpretation I ∈ E such that I ⊨ t

and I ⊭ h (I ⊨ h and I ⊭ t). In the context of the algorithm, we would talk about a

target t and hypothesis h.

The algorithm uses equivalence and membership queries to follow the exact learning

framework with a minimally adequate teacher (2.2.2). A membership query in this con-

text is defined as a call to the membership oracle MQF,t that takes an interpretation I
and outputs yes if I ⊨ t and no otherwise. An equivalence query is similarly defined as

a call to the equivalence oracle EQF,t, which takes a hypothesis h ∈ H and outputs yes if

h ≡ t and outputs no and a counterexample for t and h otherwise.

Algorithm 1 learns a target Horn theory t in the learning framework F by posing

membership and equivalence queries. Every negative counterexample I, an equivalence
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query outputts, violates some clause in t. The idea of the algorithm is to pose equiv-

alence queries until the hypothesis h is equal to the target h ≡ t. For every negative

counterexample it receives, it would like to add the corresponding violated clauses to its

hypothesis, because every negative counterexample can be explained by a set of different

Horn clauses. Every positive counterexample exposes clauses that were wrongfully added.

Clauses added by negative counterexamples might be too weak. Therefore, the algorithm

curates a sequence S of negative counterexamples to generate its hypothesis. Instead of

adding all clauses for a given negative counterexample, the algorithm first tries to refine

previous negative counterexamples by intersection. The counterexamples in S approxi-

mate distinct clauses of the target t. Hence only the first possible counterexample in S

is refined by a new negative counterexample.

Algorithm 1 exactly identifies every Horn theory with m clauses over n variables in

time O(m3n4) using O(m2n2) equivalence queries and O(m2n) membership queries [3].

Algorithm 1: HORN

1 It is assumed that the algorithm knows F
2 Let S be the empty sequence
3 Denote with Ii the i-th element of S
4 Let h be the empty hypothesis
5 while EQF,t(h) returns a counterexample I do
6 if there is a c ∈ h such that I ⊭ c then
7 remove all c ∈ h such that I ⊭ c
8 else
9 if there is Ii ∈ S such that Ii ∩ I ⊂ Ii and MQF,t(Ii ∩ I) = ’no’ then

10 replace the first such Ii with Ii ∩ I in S
11 else
12 append I to S
13 end
14 h :=

⋃
I∈S{(

∧
v∈I∪{⊤} v) → u | u ∈ (V ∪ {⊥} \ I)}

15 end

16 end
17 Return h

2.3.2 Extracting Horn Theories from Neural Networks

The HORN algorithm (algorithm 1) learns a Horn theory given a Horn oracle, but it

can be adapted to learn from neural networks as well [28]. The goal is to extract rules

hidden in a “black-box machine learning model” using the HORN algorithm with a neural
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network acting as the oracle. This requires redefining the queries in the context of the

oracle.

In addition to the preliminaries given in Section 2.3.1, a neural network model N is a

function N : {0, 1}|V | −→ {0, 1} that takes a binary vector in the |V | dimensional spaces

and outputs its classification [28]. Interpretations are mapped to vectors by assuming

a total order on the elements of V , and the vector for any interpretation I is then

vector(I) ∈ {0, 1}|V |, with the element at position i being 1 if vi ∈ I and 0 otherwise.

For every neural network N (trained on a given dataset), there exists a propositional

formula tN such that N(vector(I)) = 1 ↔ I ⊨ tN .

To extract the rules hidden in a given neural network model, it is assumed that the

underlying learning framework (E ,H) is Horn.

Membership queries are simulated by directly using the classifier N . If N(vector(I)) = 1,

then I ⊨ tN and the answer to the query is “yes” (’no’ otherwise).

Equivalence queries are more complex, as the neural network model cannot answer di-

rectly if a hypothesis h is equivalent to tN . One strategy for simulating equivalence

queries is to create a sample of random interpretations and classify them through mem-

bership queries. If the hypothesis misclassifies any generated examples, it can be used

as a counterexample, and the answer to the equivalence query is “no”. Otherwise (if all

examples are classified correctly by the hypothesis), there is, with high probability, little

difference between tN and the hypothesis h. A small difference means the total number

of misclassified interpretations is low, considering the entire space of possible interpreta-

tions. With this idea, it can be guaranteed that the hypothesis is PAC (Section 2.2.1)

by choosing an appropriate sample size. Angluin [1] shows that the number of examples

that are sampled randomly after the i-th equivalence query has to be greater or equal to

⌈1
ϵ
(ln 1

δ
+ i ln 2)⌉ with error ϵ and confidence δ. This formula holds for finite or countable

hypothesis spaces. The sample complexity for PAC learning from a finite hypothesis

space H, taking its size into account, is further specified in 2.2.1 as
⌈
1
ϵ
log( |H|

δ
)
⌉
.

The adapted version of the algorithm also allows for background knowledge to be

used [27]. Instead of the empty hypothesis, the algorithm starts with a pre-defined set of

Horn formulas that are assumed to be true properties of the domain. This is useful for

encoding properties of the input variables or general prior knowledge about the target

before starting the algorithm.

With membership and equivalence queries set up, the last obstacle is that a neural

network might not encode a Horn theory, as it may return counterexamples like a non-

Horn oracle, even when trained on a Horn theory [28]. Because of this, the algorithm
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HORN may not terminate, as it assumes the oracle to be Horn. A solution is to check

after every positive counterexample if every example I ∈ S falsifies the hypothesis. The

examples that satisfy the hypothesis are marked and not returned in subsequent equiv-

alence queries. This ensures that the algorithm does not get stuck in an infinite loop,

producing the same counterexample repeatedly [28][14].

An example given by Persia et al. [28] is the set of variables V = {v1, v2} and an oracle

N that classifies ∅ as 0 and {v1} and {v2} as 1, which means N does not encode a Horn

theory. The algorithm 1 starts with the empty hypothesis. With the first equivalence

query, it gets ∅ as a negative counterexample. This results in the hypothesis h = {⊤ →
v1,⊤ → v2,⊤ → ⊥}. Following that, the two positive counterexamples {v1} and {v2}
can be returned to refine the hypothesis, which will then be ∅ again. Now ∅ may be

returned as a negative counterexample again, and the algorithm is in an infinite loop.

2.4 Intersection over Union

To measure the similarity of two sets A and B, we introduce their IoU value (also called

Jaccard index ) [39]. It is defined by

J(A,B) =
|A ∩B|
|A ∪B|

(2.5)

A value of 1 means that A and B are identical, while a value of 0 means that the

sets do not overlap. If A and B are, as in our case, sets of logical rules, their intersection

A ∩ B is all those rules that are identical in both sets, given that all rules are Horn

clauses c of the form antecedent(c) → consequent(c). For example with the sets A =

{v1∧v2 → v3, v1∧v3 → ⊥} and B = {v1∧v3 → ⊥ v1∧v4 → v2} their intersection would be

A∩B = {v1∧v3 → ⊥} and their union is A∪B = {v1∧v2 → v3, v1∧v3 → ⊥, v1∧v4 → v2},
which gives an IoU value of J(A,B) = |A∩B|

|A∪B| =
1
3
.
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Chapter 3

Learning from Language Models

The HORN algorithm —(algorithm 1) uses a Horn-oracle to answer equivalence and

membership queries to learn Horn rules. There are, however three obstacles to be

considered to apply that learning algorithm to language models. The first obstacle is the

mismatch of input and output formats. The language model takes as input a sentence in

natural language and outputs a probability distribution over word tokens. In contrast,

in Angluin’s algorithm, the oracle works with the given boolean interpretations and gives

boolean answers to the queries. The second obstacle is having the language model answer

equivalence queries. The third obstacle is that a language model as an oracle is unlikely

to represent a Horn theory. It is addressed in our article [5], which is currently under

review.

3.1 Input and Output Conversion

We want to use a language model as the oracle in Angluin’s algorithm. Specifically, we

use a language model for the task of pronoun prediction, which is possible due to the

MLM objective of recent large language models. That means the language model (as the

oracle) takes as input natural language, in our case, one sentence with a masked token.

The output is a probability distribution over possible word tokens to fill the masked

position. In the case of pronoun prediction, we focus on the gendered pronouns “He” and

“She” as predicted tokens. These input and output formats are incompatible with the

oracle’s boolean interpretations and output in Angluin’s algorithm.
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We propose a conversion by creating a boolean function that can map boolean inter-

pretations, interpreted as vectors with binary entries, to natural language. This function

has to be task-specific, as mapping to natural language would otherwise require an infea-

sible large amount of boolean variables to encode all possible words without restrictions.

In addition, the variables for the algorithm should be meaningful so that we can extract

meaningful rules, which is why using some sort of embedding is not feasible. For this

reason, we set up a search space consisting of specific attributes and their discrete values

and a template sentence. We use a lookup table to convert a set amount of boolean vari-

ables, represented by a binary vector, into natural language attributes. These attributes

are then set into the template sentence that is predefined and used for all conversions.

The attributes can be anything of interest to the task at hand. Concerning pronoun

prediction to detect occupational bias, the main attributes are occupation and gender.

The latter is masked in the template sentence but later used to evaluate the results. In

addition, we want to introduce attributes like birth year and nationality to compare

them to occupation. Discrete attributes can be encoded directly by creating as many

boolean variables as there are different values for that attribute. Every value is then as-

signed to one boolean variable as a one-hot encoding. That means that no two variables

corresponding to a single attribute can simultaneously be set to true = 1. If all vari-

ables corresponding to an attribute are set to 0, the attribute takes its “unknown” value,

which must also be defined beforehand. This has been done for our task’s occupation

and nationality attributes, as shown in table A.1.

Continuous variables, such as birth year, may be represented by dividing their values

into predetermined intervals and assigning any concrete variable the value of its cor-

responding interval. This transforms a continuous variable into a discrete one, which

can then be encoded as such. In our task, this has been done for birth year, dividing

possible values into five intervals as shown in table A.1. This also allows changing the

accuracy of the rules regarding one specific attribute, as one can change how the intervals

are defined.

The prediction of the language model needs to be converted back to a binary result to

answer membership queries with either true or false. We added gender as an attribute

to the variables so that one interpretation represents a complete sentence, including the

gendered pronoun, and the target theory is about sentences being correct or incorrect.

We interpret correct as most likely in the sense of the language model. A membership

query then answers whether a given interpretation (and the underlying sentence) is correct

and therefore valid. This is illustrated with an example: Given any valid interpretation,

we would convert it to natural language as described above. With the language model,

we predict the most likely pronoun and compare its gender to the gender given as an
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attribute in the interpretation. If they match, the membership query for that example

returns true. The membership query returns false if they don’t match.

The described conversion acts as a function that maps the boolean interpretations

to natural language (and back). This task-specific conversion is characterized by the

chosen attributes, their encoding, and the template sentence. For similar tasks, this can

be applied to different scenarios in a comparable matter, for example, by choosing other

attributes or increasing/decreasing the number of distinct values per attribute. Different

tasks might require a different conversion, and our approach is specific to our task and

not universal.

3.2 Answering Equivalence Queries

Given a proper conversion between interpretations and natural language, a language

model can easily answer membership queries (the exact definition of that depends on

the task, as described in Section 3.1) by querying it with the example in question. An

equivalence query is, however, not directly answerable. An equivalence query to a lan-

guage model can be simulated like an equivalent query for a general neural network, as

described in 2.3.2. That approach uses sampling and membership queries to simulate an

equivalence query. Therefore, as long as membership queries are possible, it is possible to

use this approach. The amount of samples depends on the hypothesis space so that the

extracted hypothesis is probably approximately correct (2.2.1). More precisely, it means

that for the hypothesis to be PAC, the number of samples for each equivalence query

should be greater or equal to [29]
1

ϵ
log2(

|H|
δ

). (3.1)

The size of the hypothesis space |H| is, at most, the number of possible formulas

(disregarding that the formulas should also be Horn). Because of the way that the

conversions are done, as described above, this number is very restricted. There are a

total of 24 variables, giving a hypothesis space of size |H| = 2(2
24). But due to the

conversion, those variables represent one-hot-encoded attributes. That makes it possible

to assume that for each attribute, there are only a limited amount of possible variable

assignments. For example, the first five variables represent the time period, and there are

six possible assignments to the variables, as they are mutually exclusive. This holds for
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the continent and occupation attributes as well. The gender variables have two possible

assignments. This gives a total of 6 · 10 · 9 · 2 = 1080 variable assignments and

|H| = 21080 (3.2)

possible formulas, which is a strong restriction on the hypothesis space with all possible

formulas. It is important to note that this number is particular to the given task and

changes with the design of attributes and variables.
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Chapter 4

Experiments

In this section we introduce the different experiments we conducted in order to test our

rule extraction approach and to compare it to template-based probing. All experiments

are done on a PowerEdge R7525 Server and the code can be found on GitHub.

A simple and common way to detect stereotypical bias in language models is by using

probing approaches, for example by using a template-based approach [30, 10, 24, 7]. As

previously described in Section 2.1.5, a template is a simple sentence that includes a

pronoun and some kind of description, for example “[Pronoun] is a nurse.” [18]. In

this example, the description is a noun that refers to an occupation and the pronoun is

the target. This is the setup that is also used here.

To detect occupational gender bias, one can try to predict a masked pronoun (pronoun

prediction) given a sentence that includes a biased occupation [10]. In this work, we try

to extract occupational gender bias through a template-based probing approach (4.2) and

compare that to a template-based rule extraction algorithm (4.3).

4.1 Dataset

We want to collect a dataset of entities and their attributes that can be filled into a given

template sentence. The dataset is used to probe LLMs for pronouns to calculate a PPBS

(2.1.5) for each occupation as a baseline to compare our new method to. In addition,

the distribution of attributes in the dataset serves as a baseline to determine attribute

ranges that are used for binarization and dimensionality reduction.
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As the data serves only the purpose of inference to detect bias and is not used to train

or fine-tune a language model, it is not gender balanced or in any other way modified

to balance out inequalities, but based on actual persons and their occupations so that

the resulting sentences represent true data and not artificially difficult examples. This

is achieved by using Wikidata as a source for data points. Each data point is an entity

with a certain occupation and is extracted with certain attributes.

4.1.1 Extraction

Every sentence in this dataset is an entity from the Wikidata knowledge base that has

a specific occupation (from a list of occupations). In addition to the occupation, the

birth year and nationality of each entity are also extracted. As one of the goals of our

method in 4.3 is to find out if gender and occupation are more often correlated than

gender and other attributes, we add these additional attributes. They are very simple

attributes, that are easy to compress and can represent an entity’s cultural background.

As stereotypes shifted over time and are also different all over the world, we assume birth

year and nationality to be attributes that can influence occupational gender bias.

All entities of the dataset are of a pre-defined occupation. For this, we use occupations

that are shown to be biased towards one gender in BERT-base[10, 6]. Out of those

occupations, not all can be used in the dataset for different reasons. Firstly, occupations

that don’t appear in Wikidata, as for example major leaguer, are left out. Additionally,

those occupations that have a female version are not included, as their bias arises naturally

for linguistic reasons. The words themselves would not be gender neutral and can give a

language model a hint towards a correct gender. Those occupations are: “actor”, “priest”,

“sportsman”, “baron”, “fisherman”, “headmaster” and “policeman”.. For the remaining

occupations, some are renamed for the extraction according to their Wikidata entries

(table 4.1), and all corresponding Wikidata ids are noted and used to collect the dataset.

The query (A.1) extracts, for each occupation, every entity that has this occupation

and the corresponding nationality, gender, and birth year. For post-processing purposes,

the id of the nationality is also saved. This is necessary to filter out later wrong data

points that have invalid countries and to compress the nationality attribute. From these

results, only those without missing information in the data are saved, meaning that the

occupations “counselor”, “marshal”, “infielder”, “goalkeeper”, “sergeant” and “solicitor

general” are also removed due to the absence of data. In addition, all dates of birth
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old name Wikidata name
wrestler professional wrestler
footballer American football player

Table 4.1: Occupations that have a different name in Wikidata and are therefore changed
in the context of the query.

are converted so that they are only the birth year, for example, the value “-0452-01-

01T00:00:00Z” gets converted to “0452 BC”. All data is then saved for further processing

steps.

To get clean data for sentence building, further processing is necessary.

First, all countries have to be filtered for false labels. For example, one data point is as-

signed the country “bicycle kick”. Therefore the country of every extracted data point is

checked again by posing another query to Wikidata. This query returns a boolean, repre-

senting if a country is an instance of “administrative territorial entity” or a subclass

of an entity that is an instance of “administrative territorial entity”. The class of

“administrative territorial entity” is a superclass that sums up all kinds of countries,

including historical countries and states. It is important to mention that the considered

countries are historically accurate and therefore the same geographical position can be

labeled with many different country names, depending on the time of its appearance.

In the next step, all data points of duplicate names are removed. This ensures that every

entity is only used in at most one data point per occupation so that the dataset does

not get bloated by the same kind of entities and is as diverse as possible. Sometimes an

entity is included multiple times because of multiple assigned genders or nationalities.

In the last step, the gender of each data point is reduced to one of three options: “fe-

male”, “male”, or “diverse”. For the task of pronoun prediction, the main focus will be

on the female and male pronouns “she” and “he”. Every other gender will be summarized

under the diverse label and given the pronoun “they”. This is a strong simplification of

reality and does not reflect in any way the gender identity of many individuals. Diverse

gender representation, especially in NLP, is an additional, active field of research and

has revealed problematic behaviour towards LGBTQIA+ individuals [24]. The “female”

gender includes entities with a gender labeled as “female”, “transgender female”, and

“cisgender female”. The “male” gender includes entities with a gender labeled as “male”,

“transgender male”, and “cisgender male”. Every other possible gender label is consid-

ered as “diverse”. The processing disregards many data points that are simply labeled

incorrectly or imprecisely in Wikidata, and could otherwise be viable data points (by

for example annotating the country by hand with the correct form). We are (mostly)

automatically creating an accurate dataset out of the subset of data that has been labeled
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completely and correctly in Wikidata.

For the method in 4.3, we need attributes that are able to be one-hot encoded, mean-

ing attributes with discrete values. In addition, the dimensionality of the one-hot-encoded

attributes should not be too large. As we want to compare the template-based probing

to the rule extraction approach, both should be used with the same data format. There-

fore, we introduce our method for dimensionality introduction here and show, how we

transform the extracted dataset to achieve it.

In the non-reduced form, the birth year attribute can take any value, negative and pos-

itive, up to the present. For the discrete representation, we list the year values of every

data point up in ascending order and divide it in the desired amount of intervals, we

use 5. The lowest and highest number of the middle intervals define the border of the

interval. For the lowest and highest one, the highest and lowest numbers respectively

are the border, and all numbers below or above that respectively are sorted into these

intervals. The result of this partition is shown in table A.1. The intervals are rewritten in

natural language that fits the template sentence. For the country, we reduce the dimen-

sionality by matching each country with its corresponding continent. For that, we use

Wikidata again to determine the continent for each unique country (using the countries’

nid). The resulting list of unique continents is then reduced again by summarizing con-

tinents by hand, for example, “Latin America” and “Central America” are summarized

into “Americas” and “Oceania” includes “Insular Oceania”. Each data point then needs

to be assigned one unique continent and those that have more than one continent assigned

are annotated by hand. Both nationality and birth year also have an unknown value

that is assigned a natural language version to fill into a template.

All information is then put together into one sentence containing a pronoun based on

the logged gender, the continent of birth, and the time period of the birth of the entity as

well as the given occupation. The template for these sentences is “[Pronoun] was born

[birth year] in [nationality] and is a/an [occupation].”.

4.1.2 Structure of the dataset

The entire dataset consists of 445181 sentences and 46 gender-biased occupations (figure

4.1). The amount of data points for each occupation varies drastically and for further

calculations, like the rule extraction, (Section 4.3) only a subset is used.
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Figure 4.1: The amount of data points extracted for each occupation in our dataset.

4.2 Template-based Probing for Bias Extraction

Probing Language Models with a template-based approach is a common method to detect

gender bias as described in 2.1.5. The method has been established as an evaluation

method and is therefore used as a comparison for the rule extraction approach. It serves

as a baseline and sanity check. We establish certain occupations (the same as in the

dataset) with their bias and score them. This quantifies the influence of occupation

on gender. We will compare the results to the extracted rules to find similarities and

differences in the extracted bias.

4.2.1 Background and Approach

In Section 2.1.5 we describe the common approach of template-based probing to detect

gender bias in pre-trained language models. We extend the approach with our dataset

and adapt it for comparability with the method in Section 4.3. Instead of using a single

template sentence filled with only the target occupation, we use the generated dataset

from 4.1 to prompt the language model with one sentence for each data point. That

means that each sentence contains different variations of attributes in addition to the

target occupation and pronoun. It will also allow us to generate confusion matrices for
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each occupation so that the evaluation does not only depend on the predicted probabilities

but also takes some kind of ground truth into account. In a use-case scenario, it is likely

that only the final, first prediction is used and the underlying probability distribution

is not shown. In addition, using multiple examples provides more stable estimates for

the PPBS per occupation , as it is averaged over multiple examples instead of just one.

Probing with templates is known to be sensitive to small changes in the template and the

score for one occupation can therefore differ a lot with only slightly different templates.

The variation in attributes introduces this variation into the score and the averaging

combines that, making the score more stable regarding small template variations.

4.2.2 Experimental setup

As language models, we use BERT-base and BERT-large [9] as well as RoBERTa-base and

RoBERTa-large [19]. All models are used with their implementations on and accessed via

the API of Huggingface 1. As the RoBERTa models are cased models, meaning they are

case-sensitive, we also use the cased versions of the BERT models for better comparison.

In this experiment, we probe each language model for each datapoint from our dataset

(Section 4.1). We get the probability distribution from the model, including the prediction

(the token with the highest assigned probability), and save both for each data point. The

categorical prediction is used to fill a confusion matrix for each occupation while the

probability distribution is used to calculate the PPBS.

attribute extracted attribute transformed attribute
name Ernst Zierke Ernst Zierke
gender male male

birth year 1905 between 1892 and 1934
nationality Germany Europe

Table 4.2: One data point example for the occupation “nurse”, showing both the extracted
attributes and their transformed version after dimensionality reduction.

As an example, we will look at the datapoint given in table 4.2. The precise at-

tributes given in the first column are transformed according to the dimensionality re-

duction method mentioned in Section 4.1, as shown in the second column. The at-

tributes are then filled into the template sentence “<mask>was born [birth year] in

[nationality] and is a/an [occupation].”. The mask token changes according to

the model that is used. For the RoBERTa models, the mask token is <mask> whereas

1https://huggingface.co/
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for the BERT models, it is [MASK]. For our example, the sentences that are used as

input for the models are “<mask>was born between 1892 and 1934 in Europe and

is a nurse.” and “[MASK] was born between 1892 and 1934 in Europe and is a

nurse.” for the RoBERTa and BERT models respectively. Every data point in the

dataset is handled this way and used to query the language models to fill the masked

token.

input sentence label p(He) p(She) p(They)
<mask>was born between
1892 and 1934 in Europe
and is a nurse.

“he” 0.070167 0.786434 0.0

Table 4.3: Template-based probing results for the example data point given in table 4.2

The resulting probability distribution (of the top 5 results) and prediction of each

language model is then saved. Table 4.3 shows the results for the given example for

illustration purposes, while the full results are discussed in Section 4.2.3. For each example

we get the probability distribution over the three possible pronouns as shown as well as

the token that gets assigned the highest probability, which ends up being the models

prediction. In this case, the prediction is the token “She”. For each occupation we count

the predictions over all examples and fill them into a confusion matrix together with

their true label. To calculate the PPBS, we first get absolute probabilities out of the

probability distribution of a specific example i of occupation occ. We disregard the third

possible pronoun “They” as it has never been predicted and work with only a binary

gender model 2. We take the probability distribution for the “He” and “She” tokens

di(She) and di(He) and calculate absolute probabilities for them as shown in (4.1) and

(4.2). di(pronoun) is the probability in the probability distribution and pi,occ(Pronoun)

is the absolute probability.

pi,occ(She) =
di,occ(She)

di,occ(She) + di,occ(He)
(4.1)

pi,occ(He) =
di,occ(He)

di,occ(She) + di,occ(He)
(4.2)

With these binary, absolute probabilities we can now calculate the PPBS according

to equation 2.3. As this is a PPBS over only one example, we denote it with ppbsi(occ)

for example i of occupation occ.

2The topic of bias towards other gender realities is a very important one, but not handled in this
work. It is worth its own research and is not taken into account for this specific work. We acknowledge
that this does not reflect the reality for everyone.
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ppbsi(occ) = pi,occ(He)− pi,occ(She) (4.3)

The final ppbsocc for an occupation occ is then calculated by averaging over all Nocc

examples that were used for that specific occupation (4.4).

ppbsocc =
1

Nocc

Nocc∑
i=1

ppbsi(occ) (4.4)

4.2.3 Results

The evaluation of the probing approach includes confusion matrices as a measure for the

predictions as well as the PPBS.

Confusion Matrices

The confusion matrices for selected occupations are shown in figure 4.2. The occupations

that are shown there are selected as a subset in the rule extraction method and their

selection criteria are described in 4.3.2. Given the confusion matrices it becomes clear

that all four language models predict the pronouns in a similar way. For the occupations

“nurse”, “footballer”, “industrialist”, and “boxer”, all models exclusively predict the

stereotypical gender as the most likely pronoun for every single data point. That is

similar for “fashion designer” except for the BERT-base model, which predicts “He” as a

pronoun for a majority of the examples, in contrast to the other models. For the “singer”

occupation, the base models and large models agree on their predictions respectively with

the base models predicting “He” for the majority of the examples and the large models

predicting “She” instead. Similarly, the large models agree for “dancer” and predict

“She” for all examples. Here, the base models are slightly different, with RoBERTa-base

predicting more examples as “He”. Overall, the results match with the expectations for

the most biased occupations. The only outliers are BERT-base for “fashion designer”

and the different classifications for “singer”. Given the relatively even PPBS for “singer”

in [10], this behaviour is expected. All models are sure in their predictions and for a

given occupation, they mostly predict one gender. The exception to that is RoBERTa-

base for “dancer”, where the predictions are better distributed between the genders, but

even there, the amount of false predictions for each gender is higher than the correct

predictions. This leads us to believe that the additional attributes in each sentence do

not help in the models predictions.
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Pronoun Prediction Bias Score

Figure 4.3 shows PPBS for all language models. It is overall similar to the expectation,

given the PPBS for BERT-base from [10] shown in figure 2.5. It is already visible, that

the bias is generally weaker in our probing experiment. Especially the large models have

lower absolute PPBS (meaning they are generally closer to 0). The RoBERTa models

have overall less biased scores than the BERT models as well, making RoBERTa-large

the “fairest” of the models in this experiment. The original PPBS in figure 2.5 come from

the BERT-base model. In comparison, our experiment on BERT-base is the one with the

results closest to that. Nevertheless, some originally female biased occupations are close

to neutral in our experiment, while they are still biased in the other. “Violinist” is even

considered as male biased with a score of 0.566, whereas it was female biased in figure

2.5 with a score of approximately −0.3. This hints towards the findings of Touileb [32],

that template-based approaches are sensitive to changes in the templates, given that our

template differs from the template used by Fatemi et al. [10].

The average PPBS over all the language models (figure 4.4) shows the same tendencies

as figure 2.5, but the bias for many occupations is weaker. It is important to note, that

the number of examples for the occupations is very different. Figure 4.5 focusses on the

occupations with at least 2500 examples in the dataset, as the effect of averaging over

multiple examples to smooth the scores is better. It shows that out of those, most of the

occupations are less biased than in the work of Fatemi et al. [10]. This could be caused

by a different template, that introduces more information in the form of attributes, as

well as averaging over multiple examples.
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Figure 4.2: Confusion Matrices for selected occupations and all language models. The
true label is shown on the horizontal axis, while the vertical axis represents the prediction
of the language model.
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Figure 4.3: The PPBS for all LLMs and all occupations. The PPBS is averaged over all
examples in the dataset per occupation.

Figure 4.4: The PPBS averaged over all four languages models for all occupations.
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Figure 4.5: The PPBS averaged over all four LLMs for all occupations with at least 2500
examples in the dataset.



4.3 Rule Extraction

The template-based probing approach has drawbacks, for example, sensitivity to small

grammatical changes [32]. This is a motivation to develop a different method to extract

gender bias.

It is possible to extract Horn rules from binary neural networks, having a binary input

and output (2.3.2). We use that algorithm on pre-trained language models to provide

a different method to expose gender bias. We analyse the extracted rules as well as

the runtime for different hyperparameter setups with the same attribute setup as in the

template-based probing (Section 4.2).

The goal is to showcase the applicability of the HORN algorithm for pre-trained language

models and to find out if “occupation” is generally more often linked to “gender” than

other attributes.

4.3.1 Background and Approach

Using the HORN algorithm with a pre-trained language model as the oracle, we want to

extract rules that show the relationship between different attributes. This allows us to

take multiple attributes with different values into account to find possible relationships

between them and the gender of the pronoun in a sentence, which increases the variation

in comparison with the simple probing approach described in 2.1.5 and creates direct

connections between attributes that don’t show with the method in 4.2. The score from

the probing is only taking into account the gender and occupation and characterizes

their relationship, whereas we hope to find all kinds of relationships at the same time

by extracting them as logical rules. In addition to occupation, we choose to focus on

nationality (in the form of a continent) and birth year as additional attributes. They

are a good comparison for occupation, as they describe fundamental characteristics, like

culture and age of a person, that may play a role in how they are perceived (by a language

model).

We described (chapter 3) how to use HORN with pre-trained language models. Next to

the conversion between natural language and binary vectors, the simulation of equivalence

and membership queries is a central problem in adapting the algorithm to language

models.
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4.3.2 Experimental Setup

In the first step, to reduce the dimensionality of the occupations, we only use a subset

of the occupations that have been used in the template-based probing. This subset

is based on the amount of data available for the specific occupation, as this means the

corresponding PPBS from the template-based probing is a more stable estimate of the bias

and, therefore, a better baseline for comparison. In addition, we choose those occupations,

that are the most biased towards female and male respectively as well as two occupations

that are close to neutral. We consider all occupations that have 2500 or more datapoints

available in our dataset, they are shown with their average PPBS on all considered LLMs

in figure 4.5. We pick the 3 most female and 3 most male perceived occupations as

our subset, which are “nurse”, “fashion designer”, “dancer”, “boxer”, “industrialist” and

“footballer”. In addition, we add the most neutral male and female perceived occupations,

which are “singer” and “violinist”.

The basis for the experiments is the implementation of the adapted HORN algorithm

for extraction from Neural Networks (Section 2.3.2). It is extended and adapted to be

used on pre-trained language models in multiple steps.

The first step is the conversion from binary interpretations to natural language, which

is based on the description in 3.1. Every interpretations represents the four attributes

birth year, nationality, occupation and gender (the same attributes as in 4.2). As

nationality and occupation are discrete variables, they are encoded as one-hot vectors

with an additional “unknown” state (all values set to 0). The value of each variable and

its corresponding natural language replacement as well as its “unknown” value are listed

in the lookup table A.1. As a continuous variable, the birth year attribute is divided

into 5 time intervals. In addition to the attributes that are filled into a sentence, we also

define a gender attribute in each interpretation. It is a 2-dimensional attribute, that can

take the value [1, 0] for female and [0, 1] for male and is needed for the membership query

output (also described in 3.1).

The variable set V is therefore defined as V = {v0, v1, ..., v23} and |V | = 24. As the

attributes are one-hot encoded, their variables need to be mutually exclusive. This can

be encoded in background knowledge for the algorithm. The background is

b ={¬(v ∧ w) for all v, w ∈ Vbirth year} ∪ {¬(v ∧ w) for all v, w ∈ Vnationality}

∪ {¬(v ∧ w) for all v, w ∈ Voccupation} ∪ {¬(v ∧ w) for all v, w ∈ Vgender}
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with Vbirth year = {v0, ..., v4}, Vnationality = {v5, ..., v13}, Voccupation = {v14, ..., v21} and

Vgender = {v22, ..., v23}. The full background is displayed in the appendix B.3.9.

To illustrate the conversion process, we give an example. We consider a vector

with correctly used one-hot encodings, meaning for every attribute there is at most one

1, as valid. Assume the following vector vector(I) given by a valid interpretation I
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]. It has the value 1 at positions 2,

21, 23 and represents the interpretation I = {v2, v21, v23}. In the vector, the first 5

position represent the birth year, position 5 to 13 the nationality, position 14 to

21 the occupation and positions 22 and 23 the gender. It can be seen as 4 separate

attribute vectors (illustrated in table 4.4). Together with the lookup table A.1, we get

attribute vector natural language
time period [0, 0, 1, 0, 0] between 1925 and 1951
continent [0, 0, 0, 0, 0, 0, 0, 0, 0] an unknown place
occupation [0, 0, 0, 0, 0, 0, 0, 1] violinist
gender [0, 1] male

Table 4.4: One example interpretation converted to natural language according to the
lookup table.

the natural language versions of the four attributes, which are also given in the table,

that can be inserted into the template sentence. The final prompt for the language model

is then “<mask>was born between 1925 and 1951 in an unknown place and is a

violinist”.

The next step is simulating membership queries. Given an assignment a, which is a

vector representation of some interpretation I, we convert the first three attributes into

natural language with the lookup table and fill the template sentence. With this, the

language model is queried to fill the mask token in the template. The output of the

language model is a probability distribution over all possible tokens, but we are only

interested in the pronouns “He” and “She” (in uppercase, as it is the beginning of the

sentence). We compare the predicted probabilities for both tokens and choose the one

with the higher probability as the prediction and retrieve the predicted gender from it.

Then we check if the predicted gender matches with the gender given in a. If it does, the

membership query returns true, otherwise, it returns false.

Similarly, we need to simulate equivalence queries. As described in 3.2, we use a

sampling strategy to guarantee that the extracted hypothesis is probably approximately

correct. According to this, we need to consider NEQ = 1
ϵ
log2(

|H|
δ
) samples with |H| =
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26∗10∗9∗2 = 21080, which is implemented with hyperparameters ϵ and δ.

Instead of sampling and classifying all NEQ samples at once, we sample one random

example at a time, classify it and check if it is a counterexample. This saves time, as

every classification requires a query to the language model, which is costly. To create a

random sample, we create a random value for each attribute through sampling a random

number in the range of |Vattribute|+1 to get an equal probability for all possible assignments

(all values and the unknown value). The random number refers to the index that is set

to 1 for the attribute or, if it is out of range for the amount of values, leave all values

at 0. For the gender attribute we don’t allow an unknown value, as we stick to binary

gender only. In the end, all attribute vectors are concatenated into the sample vector,

which is classified through a membership query.

Given the adapted membership and equivalence queries as well as the conversion, it

is possible to use the algorithm from 2.3.2 to extract rules from language models. We

conduct experiments with the same four language models as in 4.2: BERT-base, BERT-

large, RoBERTa-base and RoBERTa-large. We set the hyperparameters δ = 0.1 and

ϵ = 0.2 and keep them fixed. This results in the sample size NEQ = 5416 for equivalence

queries. One focus of the experiments is to analyze the extracted rules with regard to

the number of equivalence queries that have been done. That means, that we interrupt

the algorithm after a set amount of equivalence queries and look at the hypothesis at

that point. For the early stopping we consider interrupting after the following numbers

of equivalence queries: #EQ = [50, 100, 150, 200]. A given value for #EQ with a given

language model is one experimental configuration. For each experimental configuration,

10 rounds of experiments are run, and the resulting rules are counted to see, in how many

out of 10 rounds they have been extracted. This gives a way to measure how consistent

one rule is in a given configuration. In addition to that, we measure the runtime for each

iteration, and how many samples were needed before a counterexample was found.

Furthermore, we also let the algorithm run until termination for each language model,

we refer to this as the full run for a language model. The full run is treated as a baseline

to evaluate how good the approximation of early stopping is.

We evaluate the experiments with early stopping in comparison to their full run. We

define a rule as correct if it has been extracted in the full run, as we consider the full run

to be the ground truth. We define correctness as the ratio of extracted correct rules to

all extracted rules for a given configuration. Treating the full run as the ground truth

comes with the restriction of the PAC learning framework, as the result of the algorithm

is only probably approximately correct. Although we treat the full run as the ground
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truth, it is only an approximation of the actual ground truth. From now on, by referring

to ground truth, we refer to the probably approximately correct ground truth, which is

the full run for each configuration.

4.3.3 Results

First, we want to point out logical equivalences for the extracted rules. All rules are

extracted in the format body → head. If the head is empty body → ⊥, the rule can be

rewritten as ¬(body).
We want to clarify this with the example that the body consists of one gender attribute

and one other attribute attribute ∧ female → ⊥. Keeping in mind, that we work with

binary gender, which means that male ≡ ¬female, we can formulate the following equiv-

alences:

attribute ∧ female → ⊥

⇔ ¬(attribute ∧ female)

⇔ ¬attribute ∨ ¬female

⇔ ¬attribute ∨male

⇔ attribute → male

(4.5)

In the extracted rules, there are often rules of the form body → ⊥ and then in addition

rules body → head with the same body. Because the first rule is equivalent to ¬body, it
means that rules of the second kind are redundant, as they will always evaluate to true

if the first rule is true. We call these rules redundant implications in our evaluation and

a set of rules, that has all redundant implications removed, is called non-redundant set.

The evaluation is done grouped in the language model classes, meaning first we eval-

uate the RoBERTa models and compare them, and then after that the BERT models.

The first part of the evaluation is about the correctness of the extracted rules in com-

parison with the full run of a certain experiment configuration. We consider different

values of k, where k is a threshold for the number of experiments, in which a rule has

been extracted. Every rule that has been extracted in k or more experiments (out of

10) is called a relevant rule. We evaluate each configuration by calculating the IoU with

the corresponding full run, as well as the overlap between the two sets and the ratio of
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overlap to all extracted rules. IoU measures, how well the full run is approximated and

allows for false rules to be included as a trade-off with more true rules. To determine how

many of the extracted rules are true, we use the ratio between overlap and amount of

rules. The full run for each language model serves here as an approximation of the ground

truth according to the PAC framework. Using two separately conducted full runs, their

IoU is 1 for all language models, indicating their stability. They are, with confidence of

1 − δ = 0.9, approximating the ground truth with a maximum error of ϵ = 0.2. For the

second part, we use the IoU and ratio values to choose an appropriate k to compare the

concrete rules and compare the different equivalence query approximations as well as the

full run. The rules that are displayed here are taken from the non-redundant rule sets.

In the end, we also comment on the runtimes.

RoBERTa

The rules extracted in the full run of RoBERTa-base are displayed in B.3.5. It took

66 hours to complete this experiment and the algorithm extracted 1167 rules in total.

Removing redundant implications, there are only 62 non-redundant rules.

Figure 4.6 shows the IoU values between all EQ amounts and the full run for different

values of k as well as the overlap-rule-ratio for RoBERTa-base. The IoU score increases

with increasing k, but decreases after some time. This is due to the fact that with lower

k, there are more rules included that have been extracted in only a small amount of

experiments, which are more likely to be false rules that haven’t been removed from the

hypothesis yet. With higher k, there are fewer rules included. Especially rules, that

are true but have not been extracted with a negative counterexample in some of the

experiments, may be removed by choosing a higher k. It is not necessarily true, that the

IoU is the highest only when all extracted rules are true. It may be beneficial to include

a few false rules to get an overall better approximation (as there are also more true rules

included).

It is visible, that the best IoU is achieved with 200 equivalence queries and k = 5. At

the same time, with k ≥ 5 the correctness is always 1. As k matches both objectives, we

choose k = 5 for further evaluation of the RoBERTa-base model.

The rules extracted in the full run of RoBERTa-large are displayed in B.3.6. It took

47 hours to complete this experiment and the algorithm extracted 930 rules in total.

Removing redundant implications, there are only 52 non-redundant rules.
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(a) Full Set IoU (b) Full Set Ratio

(c) Non-redundant Set IoU (d) Non-redundant Set Ratio

Figure 4.6: The IoU and the ratio between rules and overlap over all equivalence query ex-
periments for RoBERTa-base. The comparison is always to the full run. k is the number of
experiments in which a certain rule must have appeared to be included in the extracted rules.

Figure 4.7 shows the IoU and overlap ratio for all k ∈ [1, 10] and #EQ configurations

for RoBERTa-large. It shows that the IoU is generally decreasing with increasing k,

but the decrease is flatter than with the RoBERTa-base model. The higher amounts of

EQs are having an overall slightly lower IoU than with RoBERTa-base, so the algorithm

is slightly better at approximating RoBERTa-base than RoBERTa-large when stopping

early. For 200 equivalence queries, a lower k gives a better approximation, whereas, for 50

equivalence queries, a slightly higher k is more beneficial. Similarly to the RoBERTa-base

model, there is a tradeoff between IoU and ratio. A good IoU value is reached for lower

k while a good ratio (all rules are true) only appears for larger k. As we prioritize true

rules over a good approximation, the choice of k for RoBERTa-large would be k = 8 for

the non-redundant rules and k = 7 for the full rules.

Using k = 5 and k = 8 for RoBERTa-base and RoBERTa-large respectively, tables

4.5, 4.6, 4.7 and 4.8 show all rules extracted in at least 5 for RoBERTa-base and 8 for

RoBERTa-large out of 10 experiments for 50, 100, 150 and 200 equivalence queries. They

40



(a) Full Set IoU (b) Full Set Ratio

(c) Non-redundant Set IoU (d) Non-redundant Set Ratio

Figure 4.7: The IoU and the ratio between rules and overlap over all equivalence query ex-
periments for RoBERTa-large. The comparison is always to the full run. k is the number of
experiments in which a certain rule must have appeared to be included in the extracted rules.

include the rules for RoBERTa-base as well as RoBERTa-large next to each other for

direct comparison.

With 50 equivalence queries (table 4.5), all true extracted rules are of the simple for-

mat occupation ∧ gender → ⊥ and therefore directly relate gender with an occupation,

exposing stereotypical bias encoded in the model. For RoBERTa-base, 4 out of 8 occupa-

tions are extracted within these rules; for RoBERTa-large, there are 2 out of 8 occupations

present. The common stereotype for both models is fashion designer∧male → ⊥, which

means that male fashion designers don’t exist or, equivalently, fashion designers are fe-

male. In addition, in RoBERTa-large, male dancers don’t exist, while for RoBERTa-base,

it is female footballers, female industrialists, and female boxers that aren’t possible.

Stopping after 100 equivalence queries (table 4.6) extracts more core rules of the

format occupation∧gender → ⊥ as true rules. In addition to the rules extracted after 50

equivalence queries, in RoBERTa-base female violinists are not possible. For RoBERTa-

large, there are now 6 occupations related to gender, adding female footballers, male
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rule base large
dancer ∧male → ⊥ - 9

fashion designer ∧male → ⊥ 5 9
footballer ∧ female → ⊥ 5 -

industrialist ∧ female → ⊥ 5 -
boxer ∧ female → ⊥ 5 -

Table 4.5: Rules extracted with RobERTa-base and RoBERTa-large for 50 equivalence
queries and k = 5 and k = 8 respectively.

rule base large
dancer ∧male → ⊥ - 10

fashion designer ∧male → ⊥ 10 10
footballer ∧ female → ⊥ 9 10
violinist ∧ female → ⊥ 9 -
nurse ∧male → ⊥ - 10

industrialist ∧ female → ⊥ 8 10
boxer ∧ female → ⊥ 8 10

Table 4.6: Rules extracted with RobERTa-base and RoBERTa-large for 100 equivalence
queries and k = 5 and k = 8 respectively.

nurses, female industrialists and female boxers to the list of impossible combinations.

All of these rules in RoBERTa-large were extracted in every single experiment, while for

RoBERTa-base some of the rules were less confident. However, as shown before, all of

these are true rules in comparison to the full runs. Both models share most of these

stereotypes, but male dancers and male nurses are only impossible in RoBERTa-large,

whereas male violinists are a stereotype only in RoBERTa-base.

After 150 equivalence queries, the algorithm starts to extract more complex relation-

ships in addition to the core rules from before. Given the threshold for k, those rules

are so far only extracted for RoBERTa-base. They contain “male” and “nurse” as well

as “male” and “dancer” with an additional attribute, in this case always the nationality.

This means that, according to the algorithm, in RoBERTa-base there exist male nurses,

but they can’t be from Australia or the Americas. Similarly, male dancers can’t be from

Australia or Europe.

With 200 equivalence queries, the extracted rules include even more complex relation-

ships, relating gender and occupation to a third attribute, which can be both a nationality

or a birth year. Again because of the choice of k to guarantee only true rules, there are

many complex rules for RoBERTa-base, but only two for RoBERTa-large. These are

particularly interesting. One of these rules states that female violinists born before 1875
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rule base large
dancer ∧male → ⊥ - 10

fashion designer ∧male → ⊥ 10 10
footballer ∧ female → ⊥ 10 10

nurse ∧male → ⊥ - 10
industrialist ∧ female → ⊥ 10 10

boxer ∧ female → ⊥ 10 10
violinist ∧ female → ⊥ 9 -

Australia ∧ nurse ∧male → ⊥ 8 -
Australia ∧ dancer ∧male → ⊥ 7 -
Europe ∧ dancer ∧male → ⊥ 5 -
Americas ∧ nurse ∧male → ⊥ 5 -

Table 4.7: Rules extracted with RobERTa-base and RoBERTa-large for 150 equivalence
queries and k = 5 and k = 8 respectively.

do not exist. This specifies the core stereotype of male violinists that is also extracted

from RoBERTa-base. The other rule states that male singers born between 1925 and

1951 don’t exist. This is interesting because it specifies the stereotype of female singers.

At the same time, for RoBERTa-base there are multiple rules that specify the oppo-

site stereotype, which is that female singers with some additional attribute do not exist.

There are also more complex rules that relate “dancer” and “male” as well as “nurse”

and “male”.

The full run of RoBERTa-base shows, that the core rules are standing as they are,

and for the occupations “boxer”, “violinist”, “industrialist”, “footballer”, and “fashion

designer”, the gender is enough by itself to identify them. For the occupations “nurse”,

“dancer” and “singer”, there are more complex relationships including one or more extra

attributes, only concluding that very specific combinations are not possible. For both

“nurse” and “dancer”, there exist rules related to both genders, being balanced for dancer

and leaning towards the stereotype of female nurses. “Singer”, although not covered in a

core rule, is only ever appearing with female in the negations, meaning that entities that

are amongst other things female singers don’t exist. This does in turn mean, that female

singers with other attribute configurations can exist.

For RoBERTa-large the full run adds multiple complex rules for “singer” and “violin-

ist” while the core rules are identical to the shorter runs. Amongst the negations, there

are around half of the rules relating “violinist” and “singer” to “male” and the other

half to “female”. This shows that in RoBERTa-large, the gender is not relevant when

determining violinist or singer as the occupation and only in combination with other at-

tributes gives information about it. For example, a female violinist from South America,
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rule base large
dancer ∧male → ⊥ - 10

fashion designer ∧male → ⊥ 10 10
footballer ∧ female → ⊥ 10 10

nurse ∧male → ⊥ - 10
industrialist ∧ female → ⊥ 10 10

boxer ∧ female → ⊥ 10 10
violinist ∧ female → ⊥ 10 -

before 1875 ∧ violinist ∧ female → ⊥ - 10
between 1951 and 1970 ∧ singer ∧ female → ⊥ 9 -

Australia ∧ dancer ∧male → ⊥ 8 -
Americas ∧ nurse ∧male → ⊥ 8 -
Africa ∧ nurse ∧male → ⊥ 8 -
Africa ∧ dancer ∧male → ⊥ 8 -

between 1925 and 1951 ∧ singer ∧male → ⊥ - 8
Oceania ∧ dancer ∧male → ⊥ 7 -

between 1875 and 1925 ∧ singer ∧ female → ⊥ 7 -
Europe ∧ dancer ∧male → ⊥ 6 -

South America ∧ nurse ∧male → ⊥ 6 -
after 1970 ∧ singer ∧ female → ⊥ 6 -
Oceania ∧ singer ∧ female → ⊥ 5 -
Australia ∧ nurse ∧male → ⊥ 5 -

between 1925 and 1951 ∧ singer ∧ female → ⊥ 5 -

Table 4.8: Rules extracted with RobERTa-base and RoBERTa-large for 200 equivalence
queries and k = 5 and k = 8 respectively.

born after 1970 doesn’t exist, but male violinists from South America born between 1925

and 1951 also don’t exist. This showcases that the gender of a violinist doesn’t determine

alone if it can exist or not.

After stopping at 50 equivalence queries, the algorithm already extracts core rules

from both models that continue to appear the longer the algorithm runs. They are those

rules, that directly connect gender and occupation as a stereotype. After 100 equivalence

queries, all such core rules are extracted, and running the algorithm for a longer time

extracts more complex relationships between multiple attributes and gender. The set of

true non-redundant rules for each amount of equivalence queries is a superset of the lower

amounts of equivalence queries. That means that for example, the set of non-redundant

rules after 150 equivalence queries is a superset of those after 100 equivalence queries.

Table 4.9 shows the gender associations of the models according to the algorithm next

to the PPBS from 4.2. Most of the algorithm predictions match the calculated PPBS

from the probing. In general, the strongly male-perceived occupations (PPBS >0.8)
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RoBERTa-base RoBERTa-large
occupation algorithm PPBS algorithm PPBS

nurse both -0.77 female -0.85
fashion designer female -0.28 female -0.67

dancer both -0.01 female -0.63
footballer male 0.95 male 0.93

industrialist male 0.82 male 0.86
boxer male 0.82 male 0.85
singer male 0.09 both -0.26
violinist male 0.29 both 0.06

Table 4.9: Gender associations compared to the PPBS for the RoBERTa-models. The
bold text highlights those genders that has been extracted in a core rule in the algorithm.

are always extracted as such from both models. For the female-perceived occupations

(PPBS <−0.5), RoBERTa-base associates “nurse” with both “male” and “female” in

multi-attribute rules, whereas the algorithm extracts rules that fit the PPBS stereotype

for RoBERTa-large. “Fashion designer” and “dancer” both have a PPBS closer to zero for

RoBERTa-base. While “fashion designer” with a slightly more female PPBS is extracted

in a core rule by the algorithm, the very neutral “dancer” is extracted as both male and

female. “Singer” is extracted as male in RoBERTa-base although its PPBS ist entirely

neutral, so the methods don’t match here. “Violinist” is more male-perceived according

to its PPBS, but not enough to be considered strongly male. It is, however, extracted as

male in a core rule, so that algorithm and PPBS also don’t match here. In RoBERTa-

large, both “singer” and “violinist” have a (close-to) neutral PPBS and are also extracted

as both by the algorithm. Out of all occupations, only the extraction of “nurse”, “fashion

designer”, and “violinist” in RoBERTa-base doesn’t match the corresponding PPBS. The

rule extraction method as a technique for bias extraction works similarly to a template-

based probing approach for RoBERTa-large but has slightly different outcomes for female

or neutral occupations in RoBERTa-base.

It is important to point out, that the absence of rules doesn’t guarantee the absence of

the corresponding stereotype. As with many bias detection methods, with this method,

we can only detect the presence of bias, but because the algorithm gives only a certain

guarantee according to the PAC-learning framework, we can’t guarantee the absence of

all other stereotypes. In addition, the implications only give information about one very

specific combination of attributes and are therefore not included when talking about

the more general attribute relationships of gender and occupation. Instead, they give

insight into exceptions. For example in RoBERTa-base, one of the core rules is that male

fashion designers don’t exist. In addition, the implications show that given a very specific
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combination of attributes with female, it implies that an entity is a fashion designer. That

means not only do the rules eliminate the possibility of male fashion designers, but they

also give more specifics to when a female definitely is a fashion designer (and nothing

else).

BERT

The rules extracted in the full run of BERT-base are displayed in B.3.7. It took 50 hours

to complete this experiment and the algorithm extracted 989 rules in total. Removing

redundant implications, there are only 58 non-redundant rules.

(a) Full Set IoU (b) Full Set Ratio

(c) Non-redundant Set IoU (d) Non-redundant Set Ratio

Figure 4.8: The IoU and the ratio between rules and overlap over all equivalence query experi-
ments for BERT-base. The comparison is always to the full run. k is the number of experiments
in which a certain rule must have appeared to be included in the extracted rules.

Figure 4.8 shows the IoU values between all EQ amounts and the full run for different

values of k, as well as the overlap-rule-ratio for BERT-base. For k = 6 and k = 7, all

extracted rules are true for the full and non-redundant rule sets respectively. Similarly

to the RoBERTa-models, the IoU decreases with increasing k, but for the higher EQ
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values, it peaks around k = 2/k = 3. There is not a significant difference between the

full and non-redundant sets of rules. The tradeoff between a good approximation and

true rules is visible as well. Because we prioritize truthfulness, we choose k = 7 for the

set of non-redundant rules for further evaluation.

(a) Full Set IoU (b) Full Set Ratio

(c) Non-redundant Set IoU (d) Non-redundant Set Ratio

Figure 4.9: The IoU and the ratio between rules and overlap over all equivalence query experi-
ments for BERT-large. The comparison is always to the full run. k is the number of experiments
in which a certain rule must have appeared to be included in the extracted rules.

The rules extracted in the full run of BERT-large are displayed in B.3.8. It took

18 hours to complete this experiment and the algorithm extracted 505 rules in total.

Removing redundant implications, there are only 30 non-redundant rules.

Figure 4.9 shows the IoU and ratio for BERT-large ranging over different k for all

EQ configurations. To extract only true rules, k has to be set to 5 for both the full and

non-redundant sets. This is ignoring the outlier of 50 EQs that only achieves a ratio

of 1 for exactly k = 9. The IoU is, in comparison to BERT-base, flatter and decreases

less with increasing k and is also overall higher than for the BERT-base model. This

means that algorithm approximates the BERT-large model faster and better than the

BERT-base model when stopping early.
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Using k = 5, tables 4.10, 4.11, 4.12 and 4.13 show all rules extracted in at least 5

out of 10 experiments and 50, 100, 150 and 200 equivalence queries for BERT-base and

BERT-large.

rule base large
dancer ∧male → ⊥ - 9
singer ∧male → ⊥ - 9
nurse ∧male → ⊥ - 8
boxer ∧ female → ⊥ - 7

footballer ∧ female → ⊥ - 8
fashion designer ∧male → ⊥ 9 8
industrialist ∧ female → ⊥ - 7

Table 4.10: Rules extracted with BERT-base and BERT-large for 50 equivalence queries
and k = 5 for both models.

Because of the choice of k, the rules extracted after 50 equivalence queries for BERT-

large are not necessarily all true and could contain false rules. More specifically, at 50

equivalence queries, the overlap between the set of nun-redundant rules and the full run

is 6, while the set of extracted rules has a size of 7. This entails that one extracted rule

is false: the rule nurse ∧male → ⊥.

rule base large
dancer ∧male → ⊥ - 10
singer ∧male → ⊥ - 10
boxer ∧ female → ⊥ 10 10

footballer ∧ female → ⊥ 10 9
violinist ∧ female → ⊥ 10 -

fashion designer ∧male → ⊥ 10 10
industrialist ∧ female → ⊥ 10 10

Table 4.11: Rules extracted with BERT-base and BERT-large for 100 equivalence queries
and k = 5 for both models.

After 100 equivalence queries, all extracted rules for all models are true, and the rules

are the core rules, relating occupation to gender without considering other attributes.

In particular, the algorithm extracts rules for both models that state that female boxers,

footballers, industrialists, and male fashion designers don’t exist. In addition, for BERT-

base, one rule states that violinists have to be male; for BERT-large, dancers and singers

are always female. Almost all of these rules (except footballer∧female → ⊥ for roBERa-

large) are extracted in every experiment.

The set of rules in experiments that terminate after 150 equivalence queries is similar

to that after 100. For BERT-large, the rule footballer ∧ female → ⊥ is now extracted
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rule base large
dancer ∧male → ⊥ - 10
singer ∧male → ⊥ - 10
boxer ∧ female → ⊥ 10 10

footballer ∧ female → ⊥ 10 10
violinist ∧ female → ⊥ 10 -

fashion designer ∧male → ⊥ 10 10
industrialist ∧ female → ⊥ 10 10

after 1970 ∧ violinist ∧male → ⊥ - 5

Table 4.12: Rules extracted with BERT-base and BERT-large for 150 equivalence queries
and k = 5 for both models.

in all of the experiments, and another rule is added that states male violinists born after

1970 don’t exist. This is the first rule to appear with three or more attributes.

rule base large
dancer ∧male → ⊥ - 10
singer ∧male → ⊥ - 10
boxer ∧ female → ⊥ 10 10

footballer ∧ female → ⊥ 10 10
violinist ∧ female → ⊥ 10 -

fashion designer ∧male → ⊥ 10 10
industrialist ∧ female → ⊥ 10 10

between 1925 and 1951 ∧ nurse ∧ female → ⊥ 9 -
Eurasia ∧ violinist ∧male → ⊥ - 9

between 1875 and 1925 ∧ nurse ∧ female → ⊥ 8 -
North America ∧ dancer ∧male → ⊥ 8 -

Australia ∧ dancer ∧male → ⊥ 7 -
Oceania ∧ dancer ∧male → ⊥ 7 -

South America ∧ dancer ∧male → ⊥ 7 -
Australia ∧ violinist ∧male → ⊥ - 7
after 1970 ∧ violinist ∧male → ⊥ - 6

Table 4.13: Rules extracted with BERT-base and BERT-large for 200 equivalence queries
and k = 5 for both models.

After 200 equivalence queries, the set of non-redundant rules contains all core rules

from the previous runs and several more complex rules that relate occupation and gender

to an additional attribute. For BERT-base, the algorithm relates “dancer” or “nurse”

and “male” to nationalities like “Australia”, giving rules of the form continent∧dancer∧
male → ⊥ or continent∧nurse∧male → ⊥. In addition, the algorithm extracts rules of

the form attribute∧singer∧female → ⊥, relating “singer” and “female” to nationalities

and birth years. For BERT-large, there are two additional rules, one including “violinist‘”
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and “female” and the other including “singer” and “male”.

In the full run of BERT-base (Appendix B.3.7), the core rules are the same as the

ones extracted with the manually terminated runs. All negations with multiple attributes

related to a gender and occupation include those occupations that do not appear in the

core rules, which are “dancer”, “singer” and “nurse”. On the other hand, the implications

specify some rules for a female entity that imply fashion designer as an occupation.

In addition to stating that fashion designers can’t be male, the rules extracted by the

algorithm give certain attribute combinations for females that imply that that entity is

a fashion designer. In some instances, it is, according to the rules, possible to deduct

an entity’s occupation based on the three attributes of birth year, nationality, and

gender. In contrast to the negation, this doesn’t simply state that an entity cannot

appear but a direct relationship between attributes and occupation.

The full run of BERT-large also has the same core rules as extracted with the man-

ually terminated runs. All other negations relate “violinist” or “nurse” to multiple

other attributes. It is interesting to point out that the only negation with “nurse” is

before1875∧Americas∧nurse∧female → ⊥ and in the implication, there are the rules

nurse∧male → before1875 and nurse∧male → Americas. Although the rules are not

equivalent (and therefore redundant), they state similar facts and are related. Generally,

many additional rules include the specific birth year “before 1875” and specify entities

born at that time that are either nurses or violinists. Overall, through these rules, we get

more specific information about the relationships of the attributes than rules that state

a gender and occupation generally don’t appear together.

Table 4.14 shows the gender associations of the BERT models in comparison to their

PPBS from Section 4.2. Once again, for all strongly male-perceived occupations, the

extracted rules from the algorithm match the PPBS, as they are all extracted as core

rules. The same holds for “fashion designer”, “dancer” and “singer” in BERT-large. The

extracted rules concerning “violinist” in BERT-large don’t show a clear, direct relation

between gender and the occupation, which is also reflected in the PPBS. The one signif-

icant outlier here is that “nurse” has a PPBS of −0.95 in BERT-large and is, therefore,

an extremely female-perceived occupation. Nevertheless, the extracted rules are not re-

flecting that, as they only specify that male nurses must be born before 1875 or from

the Americas. This means male nurses are indeed existing, while other occupations with

a less clear PPBS (such as “fashion designer” and “dancer”) get extracted as a female

occupation. For BERT-base, “singer” and “violinist” are extracted in a way that reflects

their PPBS. More neutral occupations (according to their PPBS) are “fashion designer”
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and “dancer”, but both are extracted (primarily) being perceived as female. Especially

“fashion designer” appears in a core rule but has a very neutral PPBS. Although “nurse”

has a clearly female PPBS, it is perceived as both female and male in the extracted rules.

This is not as extreme compared to BERT-large, as the score is technically lower but

high enough to be a mismatch. Overall, for BERT-base, 5 out of 8 occupations match in

extracted rules and PPBS, and for BERT-large it is 7 out of 8 that are matching.

It is interesting to point out that for both RoBERTa-base and BERT-base the PPBS

and extracted rules don’t match for “nurse” and “fashion designer” in a similar way.

RoBERTa-large and BERT-large match in more occupations to the PPBS than their

corresponding base versions. This, in addition to the IoU scores, points towards the

algorithm approximating the large models better than their base versions.

BERT-base BERT-large
occupation algorithm ppbs algorithm ppbs

nurse both -0.74 none -0.95
fashion designer female 0.08 female -0.48

dancer female -0.06 female -0.56
footballer male 0.91 male 0.91

industrialist male 0.88 male 0.96
boxer male 0.90 male 0.91
singer both 0.12 female -0.49
violinist male 0.57 both -0.16

Table 4.14: Gender associations compared to the PPBS for the BERT-models. The bold
text symbolizes gender extracted in a core rule in the algorithm that only relates gender
and occupation with each other.

Runtime and Sample Analysis

Table 4.15 shows the average runtime over all conducted experiments (10 for the early

stopping runs, 2 for the full) for all models. It shows that for the early stopping runs, the

runtime of BERT-large is higher than that of BERT-base, while it is lower for RoBERTa-

large than for RoBERTa-base. Comparing RoBERTa directly to BERT, the correspond-

ing models have a similar runtime. In the full runs, the total runtime is higher for the

base models and BERT, generally lower than for RoBERTa.

Figure 4.10 shows the runtime for each iteration of the full runs (averaged between

the two experiments per model). For all models, the runtime generally increases with

increasing iterations as the hypothesis size and the number of examples maintained by the
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# EQs BERT-base BERT-large RoBERTa-base RoBERTa-large
50 14.18 15.51 14.30 16.81
100 57.54 63.13 59.25 60.67
150 167.93 171.69 170.61 161.51
200 342.63 371.63 423.05 361.57
full 3044.01 1082.95 3957.34 2808.52

Table 4.15: Average runtime for one experiment iteration [in minutes]

algorithm also grow. The higher the size of the set S in algorithm 1, the more membership

queries the algorithm has to make for a negative counterexample. One membership query

means one prediction with the given language model. Each prediction alone does not take

very long, but the number of predictions done over the whole algorithm makes for a long

total runtime of 18 to 66 hours. The number of samples that are needed before finding a

counterexample, therefore, naturally also influences the runtime of each iteration. Figure

4.11 show the number of samples needed to find a counterexample at each iteration. It

shows that for the first few hundred iterations (depending on the language model), the

algorithm finds a counterexample fast (under 500 samples), and only toward the end are

there higher sample numbers before sampling the whole 5416 samples in the last iteration.

This means that in the beginning, the runtime fluctuates (after some iterations). However,

the sample numbers during these iterations stay very stable (the peaks in samples are also

visible as peaks in runtime). This is caused by the algorithm getting either a positive or

negative counterexample, as with a negative counterexample, the algorithm does multiple

additional membership queries (algorithm 1, line 9), while for a positive counterexample,

it only checks if an interpretation satisfies a clause. As mentioned, multiple membership

queries (and therefore multiple inference calls on the language models) add to a higher

runtime than the other operations.

Considering the runtimes, using a setup with multiple early stopping runs can be

beneficial when the goal is only to extract simple relationships and biases, like the rules

that only relate one occupation with a gender. Sometimes, doing just one full run is

not much slower but gives a complete set of rules so one doesn’t have to deal with the

uncertainty not already considered in the PAC approximation.
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Figure 4.10: Average runtime needed per iteration in the HORN algorithm for all LLMs.
The runtime is averaged over both full runs for each language model.

# EQs BERT-base BERT-large RoBERTa-base RoBERTa-large
50 7× 14.18 = 99.26 5× 15.51 = 77.55 4× 14.30 = 57.20 5× 16.81 = 84.05
100 6× 57.54 = 345.24 4× 63.13 = 252.52 4× 59.25 = 237.00 7× 60.67 = 424.69
150 4× 167.93 = 671.72 5× 171.69 = 858.45 5× 170.61 = 853.05 8× 161.51 = 1292.08
200 4× 342.63 = 1370.52 9× 371.63 = 3344.67 5× 423.05 = 2115.25 7× 361.57 = 2531.99
full 3044.01 1082.95 3957.34 2808.52

Table 4.16: Runtime needed to extract only true rules (according to the full run as the
ground truth).
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Figure 4.11: Average number of samples needed per iteration in the HORN algorithm
for all LLMs. The number of samples is averaged over both full runs for each language
model.



Chapter 5

Related Work

Our work uses the exact learning framework from Angluin [1] to extract rules that reflect

occupational gender bias from LLM. Exact learning has also been used in other research,

which we discuss in Section 5.1. Research on bias in general in NLP is discussed in

Section 5.1.

5.1 Exact Learning

The first time the problem of exact learning Horn formulas was studied was by Angluin

et al. [3], showing a polynomial time algorithm to learn Horn formulas with a minimally

adequate teacher. In the more general case of k-CNF, CNF formulas in which each clause

has k literals have been shown to be learnable with a polynomial time algorithm with

even only membership or only equivalence queries. In contrast, the learnability of general

CNF formulas in polynomial time is still unknown [1]. Hermo and Ozaki [14] try to push

the boundary between Horn and CNF by showing that multivalued dependency formulas,

which non-trivially extend Horn, are polynomial time learnable from interpretations.

Recent work (and the basis for this work) focussed on extending Angluins algorithm [3]

to be used with a neural network as the oracle for both membership and equivalence

queries [27]. They adjusted the original algorithm to terminate even though the oracle

could be non-Horn and used a sampling strategy for simulating equivalence queries.

In a similar work, Weiss et al. [38] extract automata from Recurrent Neural Network

(RNN) with an exact learning algorithm for learning a deterministic finite-state automa-

ton (DFA) introduced by Angluin [2]. They aimed to extract a DFA that classifies
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sequences equivalent to a RNN through membership and equivalence queries. Instead of

using random sampling, they simulate equivalence queries with a finite abstraction of the

RNN, keeping two hypotheses of the ground truth RNN. When the hypotheses disagree

on an example, it is classified with the RNN and, according to the classification, either

used as a counterexample or to refine the finite abstraction. Wei et al. [37] point out

the infeasibility of this exact learning approach for learning from RNNs in the domain of

natural language. The exact learning approach is limited in its scalability to construct

abstract models for natural language tasks because of its computational complexity[37].

5.2 Bias in Natural Language Processing

Machine learning models can learn different types of biases from training data [16], which

can result in undesired effects [6] in downstream tasks. Especially in pre-trained large

language models, these biases can come from the pre-training data or the data used for

fine-tuning, but they also appear in word embedding methods like word2vec [6]. There

are various works on the topic of exploring these biases in pre-trained language models

on different tasks. For example, Bhaskaran and Bhallamudi [4] analyzed occupational

stereotypes in the BERT language model on the sentiment analysis task. They found

that sentences containing male pronouns are predicted with a higher probability for the

positive class than those having female pronouns. In addition, they found societal stereo-

types concerning occupations (white collar vs. blue collar jobs) and gendered stereotypes.

They gave the example of “pilot” being a male-dominated profession, whereas “flight at-

tendant” is a female-dominated profession.

A common method for extracting gender bias from language models is a template-

based probing approach. The templates used for this are pre-defined sentence structures

that combine some predicate, often a gendered pronoun or noun, with some attribute.

An example of this is the template “[predicate] works as [description]”, where

the description could refer to an occupation or descriptive adjective, depending on the

goal/task [30, 10, 24, 7].

Fatemi et al. [10] used a template-based approach to evaluate the occupational gender

stereotypes in the BERT-base model and proposed a method to reduce the bias inherent

in the model without reducing its performance. Gender Equality Prompt (GEEP) is a

method of second-phase pre-training to reduce bias with a new, gender-neutral dataset,

which they collect from the English Wikipedia Corpus. The difference to other second-

phase pre-training [36, 8] is that with GEEP, all previous model parameters are frozen,
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and only new word/token embeddings for profession names are trained with the gender-

neutral data and BERT-base. They show that this reduces the occupational gender bias

in BERT-base while maintaining its performance on downstream tasks.

While most work on gender bias in language models focuses on the binary gender

model and only distinguishes “male” and “female”, Nozza et al. [24] use a template-

based approach to evaluate the harmfulness of sentence completion for entities of the

LGBTQIA+ community in BERT and RoBERTa models. They generate a set of

LGBTQIA+ identity terms and measure toxicity and harmfulness with two template-

based evaluation frameworks [25, 23]. In 13% of the cases, the most likely generated

sentence by a LLM is an identity attack, and for some specific identities, this is in up to

87% of the cases.

Although template-based approaches are popular and proven to help explore biases

in pre-trained language models, they also suffer from sensitivity to the formulation of

the templates regarding grammar. For example, it has been shown that a different

grammatical tense can affect the results of bias probing [32].
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude our work by discussing the results of our experiments and

our contribution in Section 6.1. Possible improvements and extensions are discussed in

Section 6.2 to give an outlook on possible future work on this topic.

6.1 Conclusion

With this work, we tried to achieve different goals, as mentioned in Chapter 1. The first

goal was extracting meaningful, logical rules from LLMs using the HORN algorithm 1.

We achieved this goal with our method and extracted rules that relate different attributes

to each other with the HORN algorithm. By comparing the extracted rules to a template-

based probing approach (Section 4.2), we find that most of the rules match the results

from the probing. This leads us to believe that the extracted rules are meaningful for

bias extraction. In comparing rule extraction and template-based probing, we can not

tell which method has the “correct” bias extracted; we can only show the differences

between them.

The second goal was to find an alternative approach to template-based bias extraction

and address the sensitivity to changes in the template. Our method also used templates,

making it a template-based approach and, therefore, not a real alternative to template-

based bias extraction. Nevertheless, we believe that introducing more variance into the

template by adding attributes with different values results in a more stable estimate

when it comes to template-based probing and rule extraction. Both methods incorporate
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a changing template by, for example, averaging in the probing approach, and address the

problem of sensitivity to changes in the template. However, this does not eliminate the

problem, and finding a method that is free of using templates can further improve this.

Using the HORN algorithm, we incorporated templates into a new method, allowing

us to study the relationship with multiple attributes, which was the third goal. Using

multiple attributes in combination with “gender” and encoding them as variables in

HORN results in rules that explain more complex relationships between the different

values of those attributes. This is not possible to achieve with a simple template-based

probing approach. Not only can we extract bias with our method, but we can also identify

the influence of other attributes on a particular bias. For example, according to the PPBS

calculated in Section 4.2, in the RoBERTa-large model “violinist” is a neutral profession

with a PPBS of 0.6. Our method can extract rules that clarify what neutral means for

“violinist”. The rules state that with different attribute combinations of “birth year” and

“nationality”, an entity can be female and a violinist or male and a violinist. Occupation

and gender are related, but only when taking more context into account. These more fine-

grained descriptions help identify the bias structure instead of just having one number

to quantify it.

We studied the influence of early stopping on the algorithm’s results. The longer the

algorithm runs, the more true specific rules are extracted. With only a single run, one

cannot determine which rules are true or false when the run is stopped early, and there is

no ground truth to compare it to. By conducting ten experiments for each configuration,

we could see that with a certain number of experiments, the rules extracted by a certain

amount of experiments can approximate the ground truth. This number is high if we

prefer the rules to be all true. A lower number of experiments is sufficient if we want a

good approximation but accept false rules to be extracted. This is a trade-off between

truthfulness and approximation; the choice depends on the task. For bias extraction, we

chose to only look at true rules. When considering runtimes, we have shown that multiple

early-stopped experiments can be faster if the goal is only to extract a few simple rules.

Most often, a full run might take longer, but it gives a better guarantee and is complete.

If we want to trust the PAC-guarantee and get a complete set of rules, doing a full run is

preferable. This is strongly dependent on the task and general runtime of the algorithm,

given the number of variables.

We have shown that there are many redundant rules in the final result of a full run, and

the set of non-redundant rules is much smaller than all rules extracted by the algorithm.

These redundancies are partly a result of one-hot encoded attributes and are coming,

logically, from negations.
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6.2 Future Work

One of the main problems of using the HORN algorithm on the language model is the

number of membership queries that must be done. Each membership query makes an

inference on the language model. While a single inference does not take especially long,

the amount of membership queries that must be done adds up. An improvement could

be made by batching membership queries to parallelize the language model inference,

which is already implemented with most LLMs. Each equivalence query sample could

be divided into mini-batches and processed like that. For negative counterexamples, the

membership queries on the intersection of the counterexample and examples in S (algo-

rithm 1, line 9) could be summarized into mini-batches as well. This should speed up the

time used on membership queries and, therefore, the execution of the algorithm.

Another improvement concerning runtime would be using the algorithm HORN1, a more

efficient version of algorithm 1 described by Angluin et al. [3]. The improved algorithm

has an improved runtime guarantee that reduces the number of necessary equivalence

queries. This would speed up the execution significantly, as we have to draw several

samples for each equivalence query and classify them with the language model, which

greatly influences the runtime.

Another interesting extension would be the exploration of different attribute setups in

the context of bias extraction. We show one possible choice of attributes, but the influence

of the choice of attributes on the results is considerable, as the extracted rules depend

on them. Therefore, choosing a different set of attributes or studying the influence of the

choice of values for each attribute will most likely change the outcome of the experiments.

In the same way, one can study the effect of the template on this specific method, changing

the template grammatically and measuring the impact this has on the extracted biases.

As it is already shown to influence a template-based probing approach, we would expect

a similar influence on our method. In our approach to extract bias, we only consider

binary gender, and therefore extending it by introducing more diverse gender options is

another exciting extension.

60



Glossary

ChatGPT ChatGPT is a model developed by OpenAI, which interacts in a conversa-

tional way. “The dialogue format makes it possible for ChatGPT to answer followup

questions, admit its mistakes, challenge incorrect premises, and reject inappropriate

requests.” (https://openai.com/blog/chatgpt).

Wikidata Wikidata is a free and open knowledge base that can be read and edited by

both humans and machines. Wikidata acts as central storage for the structured

data of its Wikimedia sister projects including Wikipedia, Wikivoyage, Wiktionary,

Wikisource, and others. (https://www.wikidata.org/).
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List of Acronyms and Abbreviations

AI Artificial Intelligence.

DFA deterministic finite-state automaton.

GEEP Gender Equality Prompt.

IoU Intersection over Union.

LLM Large Language Model.

MLM Masked Language Modeling.

MLP Multi Layer Perceptron.

NLP Natural Language Processing.

NSP Next Sentence Prediction.

PAC Probably Approximately Correct.

PPBS Pronoun Prediction Bias Score.

RNN Recurrent Neural Network.
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Appendix A

Code for Dataset Extraction

Listing A.1: Query for Wikidata Extraction
1 PREFIX wikibase: <http:// wikiba.se/ontology#>
2 PREFIX wd: <http://www.wikidata.org/entity/>
3 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
4 PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
5
6 SELECT ?individual ?gender ?birth ?nationality ?nid WHERE {
7 ?id wdt:P106 {occ} .
8 ?id wdt:P27 ?nid .
9 ?id wdt:P21 ?gid .
10
11 OPTIONAL{
12 ?id wdt:P569 ?birth .
13 }
14 OPTIONAL {
15 ?nid rdfs:label ?nationality filter (lang(? nationality) =

↪→ "en") .
16 }
17 OPTIONAL {
18 ?id rdfs:label ?individual filter (lang(? individual) =

↪→ "en") .
19 }
20 OPTIONAL {
21 ?gid rdfs:label ?gender filter (lang(? gender) = "en") .
22 }
23 }
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position value
time period

0 before 1875
1 between 1975 and 1925
2 between 1925 and 1951
3 between 1951 and 1970
4 after 1970
- in an unknown time period

continent
5 North America
6 Africa
7 Europe
8 Asia
9 South America
10 Oceania
11 Eurasia
12 Americas
13 Australia
- an unknown place

occupation
14 nurse
15 fashion designer
16 dancer
17 footballer
18 industrialist
19 boxer
20 singer
21 violinist
- not known occupation

gender
22 female
23 male

Table A.1: Lookup table. Each attribute is one hot encoded into a finite set of options
and assigned a natural language version that fits into a template sentence. For each
attribute, at most one of the positions can be chosen (setting its value to 1 in the vector).
If none is chosen, the value with ”-” is used.



Appendix B

Full Results

This chapter shows all extracted rules for each experimental configuration. For the runs

with early stopping, the number in front of a rule shows how many out of 10 experiments

extracted this specific rule. Those rules that were only extracted in a single run are left

out, as they are of no relevance.

B.1 50 EQs

B.1.1 BERT-base

9 : fashion designer ∧male → ⊥
6 : boxer ∧ female → ⊥
6 : footballer ∧ female → ⊥
5 : violinist ∧ female → ⊥
4 : industrialist ∧ female → ⊥
3 : between 1875 and 1925 ∧ female → ⊥
2 : singer ∧ female → ⊥
2 : female ∧ North America → ⊥
2 : Australia → male

2 : nurse → female
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B.1.2 BERT-large

9 : dancer ∧male → ⊥
9 : singer ∧male → ⊥
8 : fashion designer ∧male → ⊥
8 : nurse ∧male → ⊥
8 : footballer ∧ female → ⊥
7 : industrialist ∧ female → ⊥
7 : boxer ∧ female → ⊥
2 : boxer ∧ female ∧ Asia → ⊥
2 : violinist → female

B.1.3 RoBERTa-base

5 : footballer ∧ female → ⊥
5 : fashion designer ∧male → ⊥
5 : boxer ∧ female → ⊥
5 : industrialist ∧ female → ⊥
4 : violinist ∧ female → ⊥
3 : between 1951 and 1970 → male

2 : Americas → ⊥
2 : Eurasia ∧ boxer ∧ female → ⊥
2 : female ∧ South America → ⊥
2 : Australia ∧ nurse ∧male → ⊥
2 : Eurasia ∧ nurse ∧male ∧ between 1951 and 1970 → ⊥
2 : Oceania ∧ female → ⊥
2 : North America → male

2 : singer → male

2 : South America → male

B.1.4 RoBERTa-large

9 : fashion designer ∧male → ⊥
9 : dancer ∧male → ⊥
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7 : nurse ∧male → ⊥
7 : footballer ∧ female → ⊥
6 : boxer ∧ female → ⊥
5 : industrialist ∧ female → ⊥
4 : singer ∧male → ⊥
2 : Eurasia ∧ female → dancer

2 : Australia ∧ female → between 1875 and 1925

2 : singer → female

B.2 100 EQs

B.2.1 BERT-base

10 : fashion designer ∧male → ⊥
10 : boxer ∧ female → ⊥
10 : violinist ∧ female → ⊥
10 : footballer ∧ female → ⊥
10 : industrialist ∧ female → ⊥
3 : female ∧ between 1951 and 1970 ∧ North America → ⊥
3 : female ∧ Asia → fashion designer

3 : Eurasia ∧ female → fashion designer

2 : nurse ∧ between 1925 and 1951 ∧ female → ⊥
2 : nurse ∧male ∧ after 1970 ∧ Africa → ⊥
2 : between 1875 and 1925 ∧ nurse ∧ female → ⊥
2 : Oceania ∧ dancer ∧ between 1925 and 1951 ∧male → ⊥
2 : singer → male

2 : between 1875 and 1925 ∧ female → dancer

B.2.2 BERT-large

10 : fashion designer ∧male → ⊥
10 : dancer ∧male → ⊥
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10 : singer ∧male → ⊥
10 : boxer ∧ female → ⊥
10 : industrialist ∧ female → ⊥
9 : footballer ∧ female → ⊥
4 : nurse ∧male → ⊥
4 : nurse → female

3 : violinist ∧male ∧ after 1970 → ⊥
2 : before 1875 ∧ violinist ∧ female ∧ South America → ⊥
2 : Oceania ∧ female ∧ after 1970 → ⊥
2 : female ∧ after 1970 ∧ Europe → ⊥
2 : before 1875 ∧ violinist ∧ female → ⊥
2 : violinist ∧male ∧ South America → ⊥
2 : female ∧ between 1951 and 1970 ∧ Asia → ⊥

B.2.3 RoBERTa-base

10 : fashion designer ∧male → ⊥
9 : violinist ∧ female → ⊥
9 : footballer ∧ female → ⊥
9 : industrialist ∧ female → ⊥
8 : boxer ∧ female → ⊥
3 : Australia ∧ nurse ∧male → ⊥
3 : dancer ∧male ∧ Africa → ⊥
2 : Eurasia ∧ nurse ∧male → ⊥
2 : Oceania ∧ nurse ∧male ∧ between 1951 and 1970 → ⊥
2 : nurse ∧male ∧ South America → ⊥
2 : between 1875 and 1925 ∧ singer ∧ female → ⊥
2 : dancer ∧male ∧ Europe → ⊥
2 : between 1875 and 1925 ∧ Australia ∧ nurse ∧male → ⊥
2 : singer ∧ female → ⊥
2 : nurse ∧male ∧ Africa → ⊥
2 : Eurasia ∧ dancer ∧ between 1925 and 1951 ∧male → ⊥
2 : singer → male

2 : female ∧ Asia → fashion designer

2 : female ∧ South America → fashion designer
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B.2.4 RoBERTa-large

10 : fashion designer ∧male → ⊥
10 : nurse ∧male → ⊥
10 : boxer ∧ female → ⊥
10 : footballer ∧ female → ⊥
10 : dancer ∧male → ⊥
10 : industrialist ∧ female → ⊥
6 : singer ∧male → before 1875

2 : before 1875 ∧ violinist ∧ female → ⊥
2 : Eurasia ∧ violinist ∧ female ∧ after 1970 → ⊥
2 : between 1875 and 1925 ∧ violinist ∧ female → ⊥
2 : Australia ∧ violinist ∧male ∧ between 1951 and 1970 → ⊥
2 : violinist ∧ female ∧ between 1951 and 1970 ∧ Africa → ⊥
2 : between 1875 and 1925 ∧ Australia ∧ female → ⊥
2 : before 1875 ∧ Australia ∧ female → ⊥
2 : Americas → female

2 : between 1925 and 1951 ∧ violinist → female

2 : violinist ∧ female ∧ after 1970 → Americas

B.3 150 EQs

B.3.1 BERT-base

10 : fashion designer ∧male → ⊥
10 : violinist ∧ female → ⊥
10 : boxer ∧ female → ⊥
10 : footballer ∧ female → ⊥
10 : industrialist ∧ female → ⊥
5 : dancer ∧male ∧ North America → ⊥
5 : dancer ∧male ∧ Europe → ⊥
5 : Eurasia ∧ female → fashion designer

5 : singer ∧ female → Australia

5 : dancer ∧ after 1970 → female
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4 : dancer ∧male ∧ South America → ⊥
4 : Oceania ∧ dancer ∧male → ⊥
3 : Australia ∧ singer ∧male ∧ between 1951 and 1970 → ⊥
3 : between 1875 and 1925 ∧ female ∧ Asia → ⊥
3 : before 1875 ∧ female ∧ North America → ⊥
3 : nurse ∧ female ∧ Asia → ⊥
3 : Americas ∧ dancer ∧male → ⊥
3 : dancer ∧male ∧ Africa → ⊥
3 : Australia ∧ dancer ∧male → ⊥
3 : nurse ∧ between 1925 and 1951 ∧ female → ⊥
3 : between 1875 and 1925 ∧ female ∧ Europe → ⊥
3 : Americas ∧ nurse ∧ female → ⊥
3 : between 1875 and 1925 ∧ female ∧ South America → dancer

3 : singer ∧ female → between 1951 and 1970

3 : nurse ∧male ∧ North America → between 1925 and 1951

2 : between 1875 and 1925 ∧Oceania ∧ female → ⊥
2 : before 1875 ∧ female ∧ Asia → ⊥
2 : before 1875 ∧Oceania ∧ female → ⊥
2 : nurse ∧ Europe → ⊥
2 : between 1875 and 1925 ∧ nurse ∧ female → ⊥
2 : before 1875 ∧ female ∧ Europe → ⊥
2 : nurse ∧ female ∧ Europe → ⊥
2 : dancer ∧male ∧ between 1951 and 1970 ∧ South America → ⊥
2 : Australia ∧ female ∧ after 1970 → ⊥
2 : female ∧ between 1951 and 1970 ∧ North America → ⊥
2 : before 1875 ∧ nurse ∧ female → ⊥
2 : nurse ∧male ∧ Africa → ⊥
2 : Oceania ∧ dancer ∧ between 1925 and 1951 ∧male → ⊥
2 : nurse ∧ North America → female

2 : before 1875 ∧ female ∧ South America → fashion designer

2 : Oceania ∧ between 1925 and 1951 ∧ female → dancer

2 : nurse ∧ after 1970 → female

2 : Americas ∧ female → dancer

2 : singer ∧ female → between 1925 and 1951

2 : dancer ∧ between 1925 and 1951 → female

2 : Australia ∧ between 1951 and 1970 → female

2 : female ∧ Asia → fashion designer
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2 : dancer ∧ between 1951 and 1970 → female

B.3.2 BERT-large

10 : singer ∧male → ⊥
10 : fashion designer ∧male → ⊥
10 : boxer ∧ female → ⊥
10 : footballer ∧ female → ⊥
10 : dancer ∧male → ⊥
10 : industrialist ∧ female → ⊥
5 : violinist ∧male ∧ after 1970 → ⊥
4 : Eurasia ∧ violinist ∧male → ⊥
3 : violinist ∧male ∧ Europe → ⊥
3 : Australia ∧ violinist ∧male → ⊥
3 : violinist ∧male ∧ South America → ⊥
2 : Oceania ∧ between 1925 and 1951 ∧ female → ⊥
2 : violinist ∧male ∧ between 1951 and 1970 ∧ North America → ⊥
2 : between 1875 and 1925 ∧ violinist ∧male ∧ South America → ⊥
2 : nurse ∧male → ⊥
2 : between 1875 and 1925 ∧ violinist ∧male ∧ Asia → ⊥
2 : violinist ∧male ∧ Asia → ⊥
2 : before 1875 ∧ violinist ∧ female → ⊥
2 : between 1875 and 1925 ∧ Americas ∧ female → ⊥
2 : Oceania ∧ female ∧ after 1970 → fashion designer

2 : Oceania ∧ violinist ∧male → between 1875 and 1925

2 : nurse → female

2 : between 1925 and 1951 ∧ violinist → female

2 : violinist ∧male ∧ North America → before 1875

2 : Americas ∧ violinist ∧male → between 1875 and 1925

2 : female ∧ after 1970 ∧ Europe → dancer

B.3.3 RoBERTa-base

10 : fashion designer ∧male → ⊥
10 : boxer ∧ female → ⊥

77



10 : footballer ∧ female → ⊥
10 : industrialist ∧ female → ⊥
9 : violinist ∧ female → ⊥
8 : Australia ∧ nurse ∧male → ⊥
7 : Australia ∧ dancer ∧male → ⊥
5 : dancer ∧male ∧ Europe → ⊥
5 : Americas ∧ nurse ∧male → ⊥
4 : between 1925 and 1951 ∧ female ∧ Europe → ⊥
4 : dancer ∧male ∧ Africa → ⊥
4 : Oceania ∧ dancer ∧male → ⊥
4 : before 1875 ∧ singer ∧ female → ⊥
3 : between 1925 and 1951 ∧ singer ∧ female → ⊥
3 : female ∧ after 1970 ∧ North America → ⊥
3 : nurse ∧male ∧ South America → ⊥
3 : nurse ∧male ∧ Africa → ⊥
3 : Eurasia ∧ dancer ∧male → ⊥
3 : between 1875 and 1925 ∧ singer ∧ female → ⊥
2 : Oceania ∧ nurse ∧male → ⊥
2 : singer ∧ female ∧ after 1970 → ⊥
2 : Americas ∧ dancer ∧male ∧ between 1951 and 1970 → ⊥
2 : between 1875 and 1925 ∧ female ∧ Africa → ⊥
2 : before 1875 ∧ dancer ∧male ∧ Europe → ⊥
2 : between 1925 and 1951 ∧ female ∧ North America → ⊥
2 : nurse ∧male ∧ between 1951 and 1970 ∧ Asia → ⊥
2 : nurse ∧male ∧ between 1951 and 1970 ∧ South America → ⊥
2 : singer ∧male ∧ North America → ⊥
2 : singer ∧ female ∧ between 1951 and 1970 → ⊥
2 : between 1875 and 1925 ∧ Australia ∧ female → ⊥
2 : nurse ∧male ∧ between 1951 and 1970 ∧ Africa → ⊥
2 : before 1875 ∧ female ∧ South America → ⊥
2 : singer ∧male ∧ Africa → ⊥
2 : Americas ∧ between 1925 and 1951 → ⊥
2 : between 1925 and 1951 ∧ female ∧ Asia → ⊥
2 : dancer ∧ between 1925 and 1951 → female

2 : singer ∧ female → Eurasia

2 : singer ∧male ∧ South America → before 1875
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B.3.4 RoBERTa-large

10 : fashion designer ∧male → ⊥
10 : nurse ∧male → ⊥
10 : boxer ∧ female → ⊥
10 : footballer ∧ female → ⊥
10 : dancer ∧male → ⊥
10 : industrialist ∧ female → ⊥
7 : singer ∧male → before 1875

3 : before 1875 ∧ violinist ∧ female → ⊥
3 : female ∧ after 1970 ∧ Africa → ⊥
2 : before 1875 ∧ Eurasia ∧ singer ∧male → ⊥
2 : between 1925 and 1951 ∧ singer ∧male → ⊥
2 : Eurasia ∧ singer ∧male → ⊥
2 : Oceania ∧ singer ∧male → ⊥
2 : between 1875 and 1925 ∧ violinist ∧ female → ⊥
2 : female ∧ between 1951 and 1970 ∧ South America → ⊥
2 : Americas ∧ between 1925 and 1951 ∧ female → ⊥
2 : violinist ∧male ∧ South America → ⊥
2 : violinist ∧ South America → female

2 : before 1875 ∧ female ∧ Asia → nurse

2 : female ∧ after 1970 ∧ North America → nurse

2 : before 1875 ∧ female ∧ South America → nurse

2 : before 1875 ∧ female ∧ Europe → fashion designer

2 : between 1875 and 1925 ∧ violinist → male

2 : violinist ∧ female ∧ after 1970 → Americas

B.3.5 RoBERTa-base with termination

Simple negations

boxer ∧ female → ⊥
violinist ∧ female → ⊥
industrialist ∧ female → ⊥
footballer ∧ female → ⊥
fashion designer ∧male → ⊥
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Triple negations

nurse ∧male ∧ Africa → ⊥
dancer ∧male ∧ Africa → ⊥
Oceania ∧ dancer ∧male → ⊥
Oceania ∧ singer ∧ female → ⊥
Americas ∧ singer ∧ female → ⊥
singer ∧ female ∧ after 1970 → ⊥
before 1875 ∧ singer ∧ female → ⊥
singer ∧ female ∧ between 1951 and 1970 → ⊥
Australia ∧ dancer ∧male → ⊥
nurse ∧male ∧ South America → ⊥
between 1875 and 1925 ∧ singer ∧ female → ⊥
Australia ∧ nurse ∧male → ⊥
between 1925 and 1951 ∧ singer ∧ female → ⊥
Americas ∧ nurse ∧male → ⊥
dancer ∧male ∧ Europe → ⊥
Eurasia ∧ dancer ∧ female ∧ between 1951 and 1970 → ⊥
before 1875 ∧ nurse ∧male ∧ Europe → ⊥
dancer ∧ female ∧ between 1951 and 1970 ∧ South America → ⊥
nurse ∧male ∧ after 1970 ∧ Asia → ⊥

Quadruple negations

dancer ∧ female ∧ between 1951 and 1970 ∧ Asia → ⊥
Americas ∧ dancer ∧male ∧ between 1951 and 1970 → ⊥
between 1875 and 1925 ∧ Americas ∧ dancer ∧male → ⊥
between 1875 and 1925 ∧ nurse ∧male ∧ Europe → ⊥
Eurasia ∧ nurse ∧male ∧ after 1970 → ⊥
between 1875 and 1925 ∧ nurse ∧male ∧ North America → ⊥
between 1875 and 1925 ∧ dancer ∧male ∧ South America → ⊥
before 1875 ∧ Eurasia ∧ dancer ∧male → ⊥
nurse ∧ between 1925 and 1951 ∧ female ∧ Europe → ⊥
Eurasia ∧ nurse ∧male ∧ between 1951 and 1970 → ⊥
between 1875 and 1925 ∧ Eurasia ∧ nurse ∧male → ⊥
before 1875 ∧ Americas ∧ dancer ∧ female → ⊥
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before 1875 ∧ dancer ∧ female ∧ South America → ⊥
dancer ∧ female ∧ after 1970 ∧ South America → ⊥
between 1875 and 1925 ∧ Eurasia ∧ dancer ∧male → ⊥
Eurasia ∧ nurse ∧ between 1925 and 1951 ∧ female → ⊥
Eurasia ∧ dancer ∧ female ∧ after 1970 → ⊥
dancer ∧ between 1925 and 1951 ∧ female ∧ South America → ⊥
between 1875 and 1925 ∧ nurse ∧male ∧ Asia → ⊥
between 1875 and 1925 ∧ dancer ∧male ∧ Asia → ⊥
Americas ∧ dancer ∧ female ∧ after 1970 → ⊥
Eurasia ∧ dancer ∧ between 1925 and 1951 ∧male → ⊥
between 1875 and 1925 ∧ dancer ∧male ∧ North America → ⊥
dancer ∧ female ∧ after 1970 ∧ Asia → ⊥
nurse ∧ female ∧ after 1970 ∧ Europe → ⊥
nurse ∧male ∧ between 1951 and 1970 ∧ Asia → ⊥
Americas ∧ dancer ∧ between 1925 and 1951 ∧male → ⊥
before 1875 ∧ Eurasia ∧ nurse ∧ female → ⊥
nurse ∧ female ∧ between 1951 and 1970 ∧ Europe → ⊥
Oceania ∧ nurse ∧ between 1925 and 1951 ∧ female → ⊥

Implications

female ∧ after 1970 ∧ North America → fashion designer

dancer ∧ female ∧ North America → between 1875 and 1925

between 1925 and 1951 ∧ female ∧ North America → fashion designer

before 1875 ∧ female ∧ North America → fashion designer

between 1925 and 1951 ∧ female ∧ Asia → fashion designer

female ∧ between 1951 and 1970 ∧ North America → fashion designer

Oceania ∧ nurse ∧male → between 1925 and 1951

before 1875 ∧ female ∧ Asia → fashion designer

B.3.6 RoBERTa-large with termination

Simple negations

nurse ∧male → ⊥
industrialist ∧ female → ⊥
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dancer ∧male → ⊥
boxer ∧ female → ⊥
footballer ∧ female → ⊥
fashion designer ∧male → ⊥

Triple negations

between 1951 and 1970 ∧ singer ∧male → ⊥
before 1875 ∧ violinist ∧ female → ⊥
Oceania ∧ singer ∧male → ⊥
Eurasia ∧ singer ∧male → ⊥
between 1925 and 1951 ∧ singer ∧male → ⊥
after 1970 ∧ singer ∧male → ⊥

Quadruple negations

between 1925 and 1951 ∧ Asia ∧ violinist ∧ female → ⊥
after 1970 ∧ North America ∧ violinist ∧ female → ⊥
between 1925 and 1951 ∧ Eurasia ∧ violinist ∧male → ⊥
before 1875 ∧ North America ∧ singer ∧ female → ⊥
after 1970 ∧ Asia ∧ violinist ∧ female → ⊥
after 1970 ∧ Americas ∧ violinist ∧male → ⊥
after 1970 ∧ Australia ∧ violinist ∧male → ⊥
between 1951 and 1970 ∧ Americas ∧ violinist ∧male → ⊥
before 1875 ∧ Americas ∧ singer ∧ female → ⊥
between 1951 and 1970 ∧ North America ∧ violinist ∧male → ⊥
between 1951 and 1970 ∧ South America ∧ violinist ∧male → ⊥
between 1951 and 1970 ∧ Africa ∧ violinist ∧ female → ⊥
before 1875 ∧ Asia ∧ singer ∧ female → ⊥
before 1875 ∧ Europe ∧ singer ∧ female → ⊥
between 1951 and 1970 ∧ Australia ∧ violinist ∧male → ⊥
after 1970 ∧ Africa ∧ violinist ∧ female → ⊥
between 1925 and 1951 ∧ Africa ∧ violinist ∧ female → ⊥
after 1970 ∧ Eurasia ∧ violinist ∧ female → ⊥
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before 1875 ∧ Australia ∧ singer ∧ female → ⊥
between 1951 and 1970 ∧ Europe ∧ violinist ∧male → ⊥
between 1951 and 1970 ∧ Eurasia ∧ violinist ∧male → ⊥
between 1951 and 1970 ∧ Asia ∧ violinist ∧ female → ⊥
after 1970 ∧ South America ∧ violinist ∧ female → ⊥
before 1875 ∧ Africa ∧ singer ∧ female → ⊥
after 1970 ∧ Europe ∧ violinist ∧ female → ⊥
between 1925 and 1951 ∧ South America ∧ violinist ∧male → ⊥
between 1925 and 1951 ∧ North America ∧ violinist ∧male → ⊥
between 1925 and 1951 ∧ Europe ∧ violinist ∧male → ⊥
between 1925 and 1951 ∧ Australia ∧ violinist ∧male → ⊥
before 1875 ∧ South America ∧ singer ∧ female → ⊥
between 1925 and 1951 ∧ Americas ∧ violinist ∧male → ⊥

Implications

Americas ∧ singer ∧male → before 1875

Asia ∧ singer ∧male → before 1875

Europe ∧ singer ∧male → before 1875

South America ∧ singer ∧male → before 1875

Australia ∧ singer ∧male → before 1875

North America ∧ singer ∧male → before 1875

Oceania ∧ violinist ∧male → before 1875

Africa ∧ singer ∧male → before 1875

between 1875 and 1925 ∧ violinist ∧ female → Oceania

B.3.7 BERT-base with termination

Simple negations

industrialist ∧ female → ⊥
violinist ∧ female → ⊥
footballer ∧ female → ⊥
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boxer ∧ female → ⊥
fashion designer ∧male → ⊥

Triple negations

Asia ∧ nurse ∧ female → ⊥
after 1970 ∧ singer ∧ female → ⊥
Australia ∧ dancer ∧male → ⊥
between 1925 and 1951 ∧ nurse ∧ female → ⊥
before 1875 ∧ singer ∧ female → ⊥
North America ∧ singer ∧ female → ⊥
Europe ∧ singer ∧ female → ⊥
between 1875 and 1925 ∧ nurse ∧ female → ⊥
South America ∧ dancer ∧male → ⊥
Eurasia ∧ nurse ∧ female → ⊥
Americas ∧ nurse ∧ female → ⊥
between 1875 and 1925 ∧ singer ∧ female → ⊥
Africa ∧ dancer ∧male → ⊥
Eurasia ∧ singer ∧ female → ⊥
Asia ∧ singer ∧ female → ⊥
North America ∧ dancer ∧male → ⊥
Europe ∧ dancer ∧male → ⊥
Oceania ∧ dancer ∧male → ⊥
Africa ∧ singer ∧ female → ⊥
Americas ∧ singer ∧ female → ⊥
Americas ∧ dancer ∧male → ⊥

Quadruple negations

after 1970 ∧ North America ∧ nurse ∧male → ⊥
after 1970 ∧ South America ∧ nurse ∧male → ⊥
between 1951 and 1970 ∧ Australia ∧ singer ∧male → ⊥
between 1925 and 1951 ∧ Australia ∧ singer ∧male → ⊥
after 1970 ∧ Eurasia ∧ dancer ∧male → ⊥
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after 1970 ∧ Europe ∧ nurse ∧male → ⊥
between 1951 and 1970 ∧ Africa ∧ nurse ∧ female → ⊥
between 1951 and 1970 ∧ Asia ∧ dancer ∧male → ⊥
between 1951 and 1970 ∧ South America ∧ singer ∧male → ⊥
after 1970 ∧ Australia ∧ nurse ∧male → ⊥
after 1970 ∧ Asia ∧ dancer ∧male → ⊥
between 1951 and 1970 ∧ Australia ∧ nurse ∧male → ⊥
between 1951 and 1970 ∧Oceania ∧ nurse ∧ female → ⊥
between 1951 and 1970 ∧ North America ∧ nurse ∧male → ⊥
after 1970 ∧ Africa ∧ nurse ∧male → ⊥
between 1951 and 1970 ∧ South America ∧ nurse ∧male → ⊥
before 1875 ∧ Australia ∧ nurse ∧male → ⊥
after 1970 ∧Oceania ∧ nurse ∧male → ⊥
between 1951 and 1970 ∧Oceania ∧ singer ∧male → ⊥

Implications

between 1875 and 1925 ∧ Asia ∧ female → fashion designer

before 1875 ∧ Eurasia ∧ female → fashion designer

before 1875 ∧ nurse ∧ female → Australia

between 1925 and 1951 ∧ Asia ∧ female → fashion designer

South America ∧ singer ∧ female → between 1951 and 1970

between 1875 and 1925 ∧ Eurasia ∧ female → fashion designer

before 1875 ∧ Asia ∧ female → fashion designer

Eurasia ∧ dancer ∧ female → after 1970

Europe ∧ nurse ∧ female → after 1970

Oceania ∧ singer ∧ female → between 1951 and 1970

between 1925 and 1951 ∧ Eurasia ∧ female → fashion designer

between 1951 and 1970 ∧ Eurasia ∧ female → fashion designer

between 1925 and 1951 ∧ singer ∧ female → Australia
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B.3.8 BERT-large with termination

Simple negations

industrialist ∧ female → ⊥
singer ∧male → ⊥
dancer ∧male → ⊥
footballer ∧ female → ⊥
boxer ∧ female → ⊥
fashion designer ∧male → ⊥

Triple negations

after 1970 ∧ violinist ∧male → ⊥
Australia ∧ violinist ∧male → ⊥
Eurasia ∧ violinist ∧male → ⊥

Quadruple negations

before 1875 ∧ Africa ∧ violinist ∧ female → ⊥
before 1875 ∧ Americas ∧ violinist ∧ female → ⊥
between 1951 and 1970 ∧ Americas ∧ violinist ∧male → ⊥
before 1875 ∧ Americas ∧ nurse ∧ female → ⊥
between 1925 and 1951 ∧Oceania ∧ violinist ∧male → ⊥
before 1875 ∧ South America ∧ violinist ∧ female → ⊥
before 1875 ∧ North America ∧ violinist ∧ female → ⊥
before 1875 ∧Oceania ∧ violinist ∧ female → ⊥
between 1875 and 1925 ∧Oceania ∧ violinist ∧ female → ⊥
before 1875 ∧ Asia ∧ violinist ∧ female → ⊥
before 1875 ∧ Europe ∧ violinist ∧ female → ⊥
between 1951 and 1970 ∧Oceania ∧ violinist ∧male → ⊥
between 1875 and 1925 ∧ Americas ∧ violinist ∧ female → ⊥
between 1925 and 1951 ∧ Americas ∧ violinist ∧male → ⊥
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Implications

nurse ∧male → before 1875

nurse ∧male → Americas

North America ∧ violinist ∧male → before 1875

Africa ∧ violinist ∧male → before 1875

Asia ∧ violinist ∧male → before 1875

Europe ∧ violinist ∧male → before 1875

South America ∧ violinist ∧male → before 1875

B.3.9 Background

The full background that is used in the HORN algorithm is: b = {(¬v0 ∧ v1), (¬v0 ∧
v2), (¬v0 ∧ v3), (¬v0 ∧ v4), (¬v1 ∧ v2), (¬v1 ∧ v3), (¬v1 ∧ v4), (¬v2 ∧ v3), (¬v2 ∧ v4), (¬v3 ∧
v4), (¬v5 ∧ v6), (¬v5 ∧ v7), (¬v5 ∧ v8), (¬v5 ∧ v9), (¬v5 ∧ v10), (¬v5 ∧ v11), (¬v5 ∧ v12), (¬v5 ∧
v13), (¬v6∧v7), (¬v6∧v8), (¬v6∧v9), (¬v6∧v10), (¬v6∧v11), (¬v6∧v12), (¬v6∧v13), (¬v7∧
v8), (¬v7∧v9), (¬v7∧v10), (¬v7∧v11), (¬v7∧v12), (¬v7∧v13), (¬v8∧v9), (¬v8∧v10), (¬v8∧
v11), (¬v8∧v12), (¬v8∧v13), (¬v9∧v10), (¬v9∧v11), (¬v9∧v12), (¬v9∧v13), (¬v10∧v11), (¬v10∧
v12), (¬v10 ∧ v13), (¬v11 ∧ v12), (¬v11 ∧ v13), (¬v12 ∧ v13), (¬v14 ∧ v15), (¬v14 ∧ v16), (¬v14 ∧
v17), (¬v14 ∧ v18), (¬v14 ∧ v19), (¬v14 ∧ v20), (¬v14 ∧ v21), (¬v15 ∧ v16), (¬v15 ∧ v17), (¬v15 ∧
v18), (¬v15 ∧ v19), (¬v15 ∧ v20), (¬v15 ∧ v21), (¬v16 ∧ v17), (¬v16 ∧ v18), (¬v16 ∧ v19), (¬v16 ∧
v20), (¬v16 ∧ v21), (¬v17 ∧ v18), (¬v17 ∧ v19), (¬v17 ∧ v20), (¬v17 ∧ v21), (¬v18 ∧ v19), (¬v18 ∧
v20), (¬v18 ∧ v21), (¬v19 ∧ v20), (¬v19 ∧ v21), (¬v20 ∧ v21), (¬v22 ∧ v23), }
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