Optimization

Convexity, convolution and competitive equilibrium

Sjur Didrik Flåm

To cite this article: Sjur Didrik Flåm (10 Jul 2023): Convexity, convolution and competitive equilibrium, Optimization, DOI: 10.1080/02331934.2023.2231001

To link to this article: https://doi.org/10.1080/02331934.2023.2231001

Convexity, convolution and competitive equilibrium

Sjur Didrik Flåm
University of Bergen, Informatics Department, Bergen, Norway

Abstract

This paper considers a chief interface between mathematical programming and economics, namely: money-based trade of perfectly divisible and transferable goods. Three important and related features are singled out here: first, convexity enters via acceptable payments, second, convolution of monetary criteria secures Pareto efficiency, and third, competitive equilibrium obtains when agents' subdifferentials intersect.

ARTICLE HISTORY

Received 19 January 2023
Accepted 1 May 2023

KEYWORDS

Convexity; convolution; competitive equilibrium

AMER.SOC. CLASSIFICATIONS
90C25; 91B26;91B50

1. Introduction

To start simple, first consider just one generic economic agent. Seen as prototype, he holds money reserve - or liquid bank roll - $r \in \mathbb{R}$ alongside a bundle y of perfectly divisible and transferable goods. Construe and record that bundle as a vector in a real Euclidean space \mathbb{Y}. The pair $(r, y)=: w$ denotes the agent's wealth or his endowment. Write $\mathbb{R} \times \mathbb{Y}=: \mathbb{W}$ for the endowment space.

While holding wealth $w \in \mathbb{W}$, if the agent contemplates to transact - that is, to sell or buy - a real-good bundle $\Delta y \in \mathbb{Y}$ for money, he uses a monetary criterion

$$
\begin{equation*}
\Delta y \in \mathbb{Y} \mapsto c(\Delta y \mid w) \in \mathbb{R} \cup\{+\infty\} \tag{1}
\end{equation*}
$$

- seen as cost - to calculate or express own economic interest. ${ }^{1}$

Enters next a fixed finite ensemble I of such economic agents, not necessarily many, but certainly more than one. Its members are consumers, producers or traders of diverse sorts. Together they form an economy in which member $i \in I$ has 'cost' criterion $c_{i}(1)$ and wealth $w_{i} \in \mathbb{W}$.

Typically, somebody owns, to his taste, too little of at least one good but comparatively too much of another. Therefore, using money as means of payment, agents trade. That activity may fit into the idealized form of an infimal convolution

$$
\begin{equation*}
c_{I}(\Delta y \mid \mathbf{w}):=\inf \left\{\sum_{i \in I} c_{i}\left(\Delta y_{i} \mid w_{i}\right) \mid \sum_{i \in I} \Delta y_{i}=\Delta y\right\}, \tag{2}
\end{equation*}
$$

[^0]featuring $\Delta y=0$ and $\mathbf{w}:=\left(w_{i}\right)$. That is, given a wealth profile $\mathbf{w}=\left(w_{i}\right)$ for which overall cost $c_{I}(0 \mid \mathbf{w})$ is finite, some real-good redistribution $\left(\Delta y_{i}\right)$, $\sum_{i \in I} \Delta y_{i}=0$, should, if any, minimize that cost. Thereby, a best choice would be Pareto efficient.

This optic on market interactions motivates the present paper to inquire: Might the agents themselves solve problem (2)? ${ }^{2}$ Can Pareto efficiency be characterized by prices? For that, what role does convexity play? Because convolution (2) reflects trade, how might market equilibrium be described? And, while the economy still stays out of equilibrium, which mechanisms drive trade?

Addressing these questions, the paper is planned as follows. Following [1], Section 2 elaborates on the monetary nature of the individual agent's criterion (1). Section 3 uses convolution (2) of such criteria to define price-taking balance of markets. What comes up there is a novel and remarkably simple description of competitive equilibrium (Thm. 3.1). Section 4 briefly considers out-of-equilibrium trade.

The paper bridges between selected parts of mathematical optimization and economics. Central in those fields are issues as to convexity, convolution and differential calculus of the agents' criteria. Reflecting on those issues - as they relate to convolution (2) - this paper seeks to:

* emphasize where convexity enters most constructively,
* justify extremal convolution by way of monetary criteria, ${ }^{3}$
* reinforce the importance of differential calculus - albeit generalized here,
* describe competitive equilibrium by the annulment of pure profits, and finally, to
indicate that agent-based, decentralized deals may bring about such equilibrium.

The paper's motivation is composite. It's practical because differences between agents' economic margins drive trade; it's theoretical because trade continues until agents' subdifferentials intersect. Put differently: transactions proceed as long as some bid-ask spreads prevail, each reflecting a gap between subdifferentials. Novelties come by:

- characterizing competitive equilibrium as a steady state which annuls profits, - the role that disjoint subdifferentials play as chief drivers of trade, and by
- a unifying view on agents themselves getting to equilibrium.

The paper addresses mathematically inclined optimizers and economists especially those concerned with agent-driven dynamics, distributed optimization or price emergence [2]. Yet, as invitation to consider interfaces between diverse fields, it presumes almost no special knowledge.

2. The agent's preferences and criterion

This section steps back to derive the generic agent's cost criterion (1) from his underlying preferences. These are captured by a binary order \succsim over the endowment space \mathbb{W}. Write $w \in$ dom \succsim iff the upper level, preferred set

$$
\begin{equation*}
\{\hat{w} \in \mathbb{W} \mid \hat{w} \succsim w\} \tag{3}
\end{equation*}
$$

contains w. Hence, \succsim is reflexive on dom \succsim. By hypothesis, it's also transitive there.

Of chief interest are eventual changes in the agent's holding of transferable goods - changes accepted and rationalized by pecuniary payments in the opposite direction.

Specifically, if the agent holds $(r, y)=w \in d o m \succsim$, and contemplates an improved position $(\hat{r}, \hat{y})=\hat{w} \succsim w(3)$ - by receiving revenue $\Delta r:=\hat{r}-r$ for supply $\Delta y:=-(\hat{y}-y)$ - he asks no less money for the latter than

$$
\begin{equation*}
c(\Delta y \mid w):=\inf \{\Delta r \in \mathbb{R} \mid \hat{w}=(\Delta r,-\Delta y)+w \succsim w\} \in \mathbb{R} \cup\{+\infty\} \tag{4}
\end{equation*}
$$

[The customary convention inf $\varnothing=+\infty$ applies.] By contrast, if he holds wealth $w \in$ dom \succsim, but rather is a customer who demands $\Delta y \in \mathbb{Y}$, he would bid no more money for that bundle than

$$
\begin{equation*}
b(\Delta y \mid w):=\sup \{\Delta r \in \mathbb{R} \mid \hat{w}=(-\Delta r, \Delta y)+w \succsim w\} \in \mathbb{R} \cup\{-\infty\} \tag{5}
\end{equation*}
$$

Since expense is negative revenue, and demand is negative supply - and formally, because $b(\Delta y \mid w)=-c(-\Delta y \mid w)$ - henceforth let c (1) be a unifying criterion, derived by (4) and construed as cost. Henceforth assuming $c>-\infty$, it follows forthwith:

Proposition 2.1 (on monetary criteria): For each $w \in$ dom \succsim it holds that $c(0 \mid w) \leq 0$ - to the effect that $c(\cdot \mid w)$ is proper, meaning finite somewhere.

Provided the preferred set (3) be closed (convex), the cost criterion $\Delta y \in \mathbb{Y} \mapsto$ $c(\Delta y \mid w)(1)$ also becomes closed ${ }^{4}$ (resp. convex).

As function, $c(\cdot \mid w)$ extends additively in the money variable from \mathbb{Y} to \mathbb{W} by

$$
\begin{align*}
\Delta \hat{w} & :=(\Delta \hat{r}, \Delta \hat{y}) \Rightarrow c(\Delta \hat{w} \mid w):=\inf \{\Delta r \mid(\Delta r, 0)-\Delta \hat{w}+w \succsim w\} \\
& =\Delta \hat{r}+c(\Delta \hat{y} \mid w) \tag{6}
\end{align*}
$$

(6) tells that $\operatorname{cost} c(\cdot \mid w)$ is linear in money on its domain. So, benefit b (5), seen as utility $u(\cdot)=-c(-\cdot)$, becomes quasilinear there - a property long and widely presumed in analysis of benefits versus costs [1].

Let $y^{*} \in \mathbb{Y}^{*}$ be shorthand for a linear price regime $y \in \mathbb{Y} \mapsto y^{*} y:=y^{*}(y) \in \mathbb{R}$. If the agent faces a fixed price $y^{*} \in \mathbb{Y}^{*}$, he may aim at non-negative, price-taking
profit

$$
\begin{equation*}
c^{*}\left(y^{*} \mid w\right):=\sup \left\{y^{*} \Delta y-c(\Delta y \mid w) \mid \Delta y \in \mathbb{Y}\right\} \in \mathbb{R}_{+} \cup\{+\infty\} \tag{7}
\end{equation*}
$$

Fenchel conjugate (7) speaks in plain economic terms. Further, its attainment links directly to calculus and optimality conditions. To clarify this, call $y^{*} \in \mathbb{Y}^{*}$ a subgradient of $c(\cdot \mid w)$ at Δy, written $y^{*} \in \partial c(\Delta y \mid w)$, iff

$$
\Delta y \in \arg \max \left\{y^{*}-c(\cdot \mid w)\right\} \text { with finite maximal value. }
$$

Equivalently,

$$
\begin{equation*}
y^{*} \in \partial c(\Delta y \mid w) \Longleftrightarrow y^{*} \Delta y=c^{*}\left(y^{*} \mid w\right)+c(\Delta y \mid w) \in \mathbb{R} . \tag{8}
\end{equation*}
$$

That is, price-taking revenue $y^{*} \Delta y$ should equal profit $c^{*}\left(y^{*} \mid w\right)$ atop full cover of $\operatorname{cost} c(\Delta y \mid w)$.

Proposition 2.2 (on profit and expenditure): In terms of any price regime $\left(r^{*}, y^{*}\right)=w^{*} \in \mathbb{W}^{*}:=\mathbb{R}^{*} \times \mathbb{Y}^{*}$ on \mathbb{W}, infimal expenditure

$$
\mathcal{E}\left(w^{*} \mid w\right):=\inf \left\{w^{*} \hat{w} \mid \hat{w} \succsim w\right\}
$$

and supremal profit

$$
c^{*}\left(w^{*} \mid w\right):=\sup \left\{w^{*} \hat{w}-c(\hat{w} \mid w) \mid \hat{w} \in \mathbb{W}\right\}
$$

satisfy

$$
\begin{equation*}
c^{*}\left(w^{*} \mid w\right)=w^{*} w-\mathcal{E}\left(w^{*} \mid w\right) \text { if } r^{*}=1,+\infty \text { otherwise. } \tag{9}
\end{equation*}
$$

Thus, if money commands fixed unit price $r^{*}=1$ - that is, when $w^{*}=\left(1, y^{*}\right)$:

$$
\begin{equation*}
c^{*}\left(w^{*} \mid w\right)=c^{*}\left(y^{*} \mid w\right) \tag{10}
\end{equation*}
$$

Proof: Recall (6) to see that $\left(r^{*}, y^{*}\right)=w^{*}$ yields (9) by

$$
\begin{aligned}
c^{*}\left(w^{*} \mid w\right) & =\sup \left\{w^{*} \Delta w-\Delta r \mid \hat{w}:=(\Delta r, 0)-\Delta w+w \succsim w, \Delta w \in \mathbb{W}, \Delta r \in \mathbb{R}\right\} \\
& =\sup \left\{w^{*}(w-\hat{w})+\left(r^{*}-1\right) \Delta r \mid \hat{w} \succsim w, \Delta r \in \mathbb{R}\right\} \\
& =\sup \left\{w^{*}(w-\hat{w}) \mid \hat{w} \succsim w\right\} \text { if } r^{*}=1 \text {, and }+\infty \text { otherwise } \\
& =w^{*} w-\mathcal{E}\left(w^{*} \mid w\right) \text { if } r^{*}=1 \text {, and }+\infty \text { otherwise. }
\end{aligned}
$$

Now (10) follows from (6) and (9).

Remarks: Propositions 2.1 and 2.2 indicate two lines of subsequent arguments. First, for analysis, it would be convenient to have the agent's cost criterion $c(4)$ subdifferentiable, meaning $\partial c(\Delta y \mid w) \neq \varnothing$ (8) for each feasible pair $(\Delta y, w) \in$ $\mathbb{Y} \times \mathbb{W}$ of interest. Second, for intuition, one might expect that his pure profit $c^{*}\left(y^{*} \mid w\right)(7)$ will dwindle by way of repeated trades.

It seems, however, more realistic to hope that these features be satisfied in the large - that is, by the convoluted items c_{I}, c_{I}^{*} (2), (13), but not necessarily in the small, at the level of each pair $c_{i}, c_{i}^{*}(7)$. Also, because convolution tends to regularize data, the said features appear easier to justify in the aggregate.

Anyway, (2) leads directly to a novel definition of price-taking behavior and steady states in markets - as considered next.

3. Competitive equilibrium

This section aims at a simple and speaking concept of competitive equilibrium.
As data, presume that agent $i \in I$ has a reflexive and transitive preference order \succsim_{i} over a non-empty subset $d o m \succsim_{i}$ of the endowment space \mathbb{W}. Given any $w_{i} \in \operatorname{dom} \succsim_{i}$, he derives his cost criterion $\Delta y_{i} \in \mathbb{Y} \mapsto c_{i}\left(\Delta y_{i} \mid w_{i}\right) \in \mathbb{R} \cup\{+\infty\}$ as explained in Section 2. For interpretation, it's convenient to regard him here as a producer.

At the outset, the economy features a wealth profile $i \in I \mapsto w_{i}^{0} \in d o m \succsim_{i}$. Let

$$
\begin{equation*}
\mathbf{W}:=\left\{\mathbf{w}=\left(w_{i}\right) \in \mathbb{W}^{I} \mid w_{i} \in \operatorname{dom} \succsim_{i} \& \sum_{i \in I} w_{i}=\sum_{i \in I} w_{i}^{0}\right\} \tag{11}
\end{equation*}
$$

be the set of feasible profiles. With $\mathbf{w}=\left(w_{i}\right) \in \mathbf{W}$ fixed, the inf-convolution

$$
c_{I}(0 \mid \mathbf{w}):=\inf \left\{\sum_{i \in I} c_{i}\left(\Delta y_{i} \mid w_{i}\right) \mid \sum_{i \in I} \Delta y_{i}=0\right\}
$$

models best change in overall cost, obtained by reallocation $\left(\Delta y_{i}\right), \sum_{i \in I} \Delta y_{i}=0$, of goods. In particular, by (4), because $c_{i}\left(0 \mid w_{i}\right) \leq 0$, it follows that $c_{I}(0 \mid \mathbf{w}) \leq 0$.

Thus, the special instance $c_{I}(0 \mid \mathbf{w})=0$ stands out. Then, potential reduction of aggregate cost is already minimal and nil, with each $c_{i}\left(\Delta y_{i} \mid w_{i}\right)=0$ realized by a best choice $\Delta y_{i}=0$. In short, no improvement is possible, be it in the large or the small; Pareto efficiency prevails already.

If moreover, a common price $y^{*} \in \mathbb{Y}^{*}$ yields $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=0$, no added surplus can be had: aggregate profit is also minimal and nil. Together these simple observations motivate the following:

Definition 3.1 (competitive equilibrium): A price-cum-allocation $\left(y^{*}, \mathbf{w}\right) \in$ $\mathbb{Y}^{*} \times \mathbf{W}(11)$ constitutes a competitive equilibrium iff $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=0$.

Theorem 3.1 (on competitive equilibrium): For any competitive equilibrium $\left(y^{*}, \mathbf{w}\right)$ it holds:
(1). Overall surplus $c_{I}^{*}(\cdot \mid \mathbf{w})$ is globally minimal and null at the equilibrium price y^{*}. Consequently, $0 \in \partial c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$.
(2). No agent can collect additional profit: $c_{i}^{*}\left(y^{*} \mid w_{i}\right)=0$ and $0 \in \partial c_{i}^{*}\left(y^{*} \mid w_{i}\right)$ $\forall i \in I$.
(3). No more trade is undertaken: $c_{i}\left(\Delta y_{i} \mid w_{i}\right)=0$ with a best choice $\Delta y_{i}=0$ $\forall i \in I$.
(4). If $c_{I}(\cdot \mid \mathbf{w})$ (2) coincides with its closed convex envelope at $\Delta y=0$, equilibrium pricing is common, meaning

$$
\begin{equation*}
y^{*} \in \partial c_{I}(0 \mid \mathbf{w}) \subseteq \cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right) \tag{12}
\end{equation*}
$$

Conversely, if a price be common in that $y^{*} \in \cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)$, then $\partial c_{I}(0 \mid \mathbf{w}) \supseteq$ $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)$, and $\left(y^{*}, \mathbf{w}\right)$ is a competitive equilibrium.

Proof: Since $w_{i} \in \operatorname{dom} \succsim_{i}$ implies $c_{i}\left(0 \mid w_{i}\right) \leq 0$, it follows from (7) and $c_{i}^{*}\left(y^{*} \mid w_{i}\right) \geq y^{*} 0-c_{i}\left(0 \mid w_{i}\right) \geq 0$ that $c_{i}^{*}\left(y^{*} \mid w_{i}\right) \geq 0$ for each $y^{*} \in \mathbb{Y}^{*}$. Therefore, given any wealth profile $\left(w_{i}\right)=\mathbf{w} \in \mathbf{W}$ (11), because

$$
\begin{equation*}
c_{I}^{*}(\cdot \mid \mathbf{w})=\sum_{i \in I} c_{i}^{*}\left(\cdot \mid w_{i}\right) \geq 0 \tag{13}
\end{equation*}
$$

$c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=0$ is indeed minimal in equilibrium - to the effect that $0 \in \partial c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$, with each $c_{i}^{*}\left(y^{*} \mid w_{i}\right)=0$, and thereby $0 \in \partial c_{i}^{*}\left(y^{*} \mid w_{i}\right)$. This takes care of assertions 1\&2). For 3) let $c_{I}^{* *}(\cdot \mid \mathbf{w})$ be the Fenchel conjugate of $c_{I}^{*}(\cdot \mid \mathbf{w})$. Then $c_{I}^{* *}(0 \mid \mathbf{w}) \leq$ $c_{I}(0 \mid \mathbf{w}) \leq 0$ and

$$
\begin{aligned}
& y^{*} 0=c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)+c_{I}^{* *}(0 \mid \mathbf{w})=0 \Longrightarrow \\
& c_{I}^{* *}(0 \mid \mathbf{w})=0 \Longrightarrow c_{I}(0 \mid \mathbf{w})=0 \Longrightarrow \text { each } c_{i}\left(0 \mid w_{i}\right)=0
\end{aligned}
$$

For 4) invoke an auxiliary result - one which presumes no convexity:
Lemma 3.1 (on subdifferentials of inf-convolutions): Given a real vector space \mathbb{Y} and finite family of proper functions $f_{i}: \mathbb{Y} \mapsto \mathbb{R} \cup\{+\infty\}, i \in I$, for any profile $\left(y_{i}\right)$ that solves

$$
\begin{equation*}
f_{I}\left(y_{I}\right):=\inf \left\{\sum_{i \in I} f_{i}\left(y_{i}\right) \mid \sum_{i \in I} y_{i}=y_{I}\right\} \tag{14}
\end{equation*}
$$

it follows that $\partial f_{I}\left(y_{I}\right)=\cap_{i \in I} \partial f_{i}\left(y_{i}\right)$.
Proof: from [3] is included for convenience. If $\left(y_{i}\right)$ solves (14) and $\sum_{i \in I} \hat{y}_{i}=$: $\hat{y}_{I} \in \mathbb{Y}$, then $y^{*} \in \partial f_{I}\left(y_{I}\right)$ implies

$$
\begin{equation*}
\sum_{i \in I} f_{i}\left(\hat{y}_{i}\right) \geq f_{I}\left(\hat{y}_{I}\right) \geq f_{I}\left(y_{I}\right)+y^{*}\left(\hat{y}_{I}-y_{I}\right)=\sum_{i \in I}\left[f_{i}\left(y_{i}\right)+y^{*}\left(\hat{y}_{i}-y_{i}\right)\right] \tag{15}
\end{equation*}
$$

In this string, posit $\hat{y}_{j}=y_{j}$ for each $j \in I \backslash i$ to get

$$
\begin{equation*}
f_{i}\left(\hat{y}_{i}\right) \geq f_{i}\left(y_{i}\right)+y^{*}\left(\hat{y}_{i}-y_{i}\right) . \tag{16}
\end{equation*}
$$

Since $i \in I$ and $\hat{y}_{i} \in \mathbb{Y}$ were arbitrary, it follows that $y^{*} \in \partial f_{i}\left(y_{i}\right)$ for all $i \in I$, hence $\partial f_{I}\left(y_{I}\right) \subseteq \cap_{i \in I} \partial f_{i}\left(y_{i}\right)$.

For the turned-around inclusion, given any $y^{*} \in \cap_{i \in I} \partial f_{i}\left(y_{i}\right)$ with $\sum_{i \in I} y_{i}=$ y_{I}, summation of (16) across I, subject to $\sum_{i \in I} \hat{y}_{i}=y_{I}$, proves the optimality of allocation $\left(y_{i}\right)$. Further, the same summation of (16), but now with $\sum_{i \in I} \hat{y}_{i}=\hat{y}_{I}$, gives the two inequalities in (15) - and thereby $y^{*} \in \partial f_{I}\left(y_{I}\right)$, hence $\cap_{i \in I} \partial f_{i}\left(y_{i}\right) \subseteq$ $\partial f_{I}\left(y_{I}\right)$.

Returning to claim 4), first let $\check{c}_{I}(\cdot \mid \mathbf{w})$ denote the closed convex envelope of $c_{I}(\cdot \mid \mathbf{w})$. The conjugate of the said envelope equals that of $c_{I}(\cdot \mid \mathbf{w})$. Consequently, $0 \in \partial c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right) \Longrightarrow y^{*} \in \partial \check{c}_{I}(0 \mid \mathbf{w}) \subseteq \partial c_{I}(0 \mid \mathbf{w})$. As upshot, $\partial c_{I}(0 \mid \mathbf{w})$ is non-empty. Now, use Lemma 3.1 with

$$
f_{i}=c_{i}\left(\cdot \mid w_{i}\right), y_{i}=0, \quad \text { and } \quad f_{I}(0)=c_{I}(0 \mid \mathbf{w})=\sum_{i \in I} c_{i}\left(0 \mid w_{i}\right)=\sum_{i \in I} f_{i}(0)
$$

to see that existence of any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$ implies $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})=\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)$. This proves the theorem.

Corollary 3.1 (on improvement and equilibrium): Given any equilibrium allocation \mathbf{w}, aggregate cost can not be reduced: $c_{I}(0 \mid \mathbf{w})=0$. Conversely, given $c_{I}(0 \mid \mathbf{w})=0$, then $\left(y^{*}, \mathbf{w}\right)$ is a competitive equilibrium for any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})=$ $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)$.

Proof: The first assertion was already proven. For the second, $c_{I}(0 \mid \mathbf{w})=0$ implies that $c_{I}(0 \mid \mathbf{w})=\sum_{i \in I} c_{i}\left(0 \mid w_{i}\right)=0$. Thus by Lemma 3.1, $\partial c_{I}(0 \mid \mathbf{w})=$ $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)$. Further, for any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$ it holds $0=y^{*} 0=c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)+$ $c_{I}(0 \mid \mathbf{w})$. Consequently, $c_{I}(0 \mid \mathbf{w})=0$ implies $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=0$.

Remarks (On closure and convexity): Closure (alias lower semicontinuity) of $c_{I}(\cdot \mid \mathbf{w})$ at 0 obtains when $\partial c_{I}(0 \mid \mathbf{w})$ is non-empty. Convolution $c_{I}(\cdot \mid \mathbf{w})$ (2) would be convex if each term $c_{i}\left(\cdot \mid w_{i}\right)$ were so. But convexity entered here just for $c_{I}(\cdot \mid \mathbf{w})$ and just at 0 .
(On Debreu versus Walras). Definition 3.1 reports the wealth profile ex post, in equilibrium, as did Debreu [4]. Accordingly, Theorem 3.1 obviates trade or dispenses with it. All transactions have already been undertaken - out of equilibrium. By contrast, Walras fixed the wealth profile ex ante, out of equilibrium, prior to trade, by liquidating the initial endowments at equilibrium prices. This done, he allowed trade, but only in equilibrium at corresponding prices.

Thus, regarding competitive markets, two sorts of steady states have been conceptualized as polar extremes. It appears fitting therefore to ask: If any, how might a competitive equilibrium emerge? That question have generated a large literature with no simple answers [3,5-10]. The next section concludes by considering these matters.

4. Getting to equilibrium

Adam Smith (1776) alluded to an 'invisible hand', and Leon Walras (1874) suggested 'tâtonnement' in prices. These metaphors remain largely fictional because neither offers any clear or constructive guidance. Moreover, they make no mention of market mechanisms or money.

Yet (12) tells that disequilibrium prevails iff subdifferentials do not insect; that is, iff $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)=\varnothing$. For this event, it suffices that just two agents disagree in fact, even when they value just one good. The next proposition, which spells this out, can be skipped, but it motivates Theorem 4.1.

Proposition 4.1 (on strict improvements and direct deals): Omitting mention of wealth, let the criteria $c_{i}=c_{i}\left(\cdot \mid w_{i}\right)$ all be convex, finite near 0 , with $c_{i}(0) \leq$ 0 , and suppose $\cap_{i \in I} \partial c_{i}(0)=\varnothing$. Then $c_{I}(0)<0$, and still $\cap_{i} \partial c_{i \in I}\left(\Delta y_{i}\right)=\varnothing$ for sufficiently small Δy_{i}.

In that case, with $I=\{i, j\}$ and $\mathbb{Y}=\mathbb{R}$, a unit price y^{*} - between $\partial c_{i}(\Delta y)$ and $\partial c_{j}(-\Delta y)$ - applied to some suitably small quantity Δy, gives more revenue to the seller and less expense to the buyer, hence strict improvement for either party.

Proof: Invoke Lemma 3.1 to see that infimal $\operatorname{cost} c_{I}(0)(2)$ can not be attained by choosing all $\Delta y_{i}=0$. Small perturbations Δy_{i} maintain disjoint subdifferentials because these are outer semicontinuous [11]. Finally - for a strictly improving, single-good, bilateral and direct deal - let agent:

- i be a seller (4) who asks unit price $y_{i}^{*}=\max \partial c_{i}\left(\Delta y_{i}\right)$, or more, for quantity $\Delta y_{i}>0$, and let
- j be a buyer (5) who uses supdifferential $\hat{\partial}(\cdot):=-\partial(-\cdot)$ and bids unit price $y_{j}^{*}=\min \hat{\partial} b_{j}\left(\Delta y_{j}\right)$, or less, for quantity $\Delta y_{j}>0$. Then, given spread $y_{j}^{*}-$ $y_{i}^{*}>0$, any unit price $y^{*} \in\left(y_{i}^{*}, y_{j}^{*}\right)$ for the quantity $\Delta y:=\min \left\{\Delta y_{i}, \Delta y_{j}\right\}$, gives
seller i revenue $r_{i}:=y^{*} \Delta y>c_{i}(\Delta y)$ and buer j expense $r_{j}:=y^{*} \Delta y<b_{j}(\Delta y)$.

Indeed, from $y_{i}^{*}<y^{*}, c_{i}(0) \leq 0$ and $\partial c_{i} \leq y_{i}^{*}$ on $[0, \Delta y]$ it follows that

$$
\begin{aligned}
r_{i} & -c_{i}(\Delta y)>y_{i}^{*} \Delta y-c_{i}(\Delta y) \geq y_{i}^{*} \Delta y-\left[c_{i}(\Delta y)-c_{i}(0)\right] \\
& =\int_{0}^{\Delta y}\left[y_{i}^{*}-\partial c_{i}\right] \geq 0
\end{aligned}
$$

The second inequality in (17) is proven likewise, using the concavity of $-c_{j}(\cdot)=$ $b_{j}(-\cdot)$.

An auxiliary result adds to Proposition 4.1 and prepares for Theorem 4.1.

Lemma 4.1 (bid-ask spreads): Suppose the member $i \in I$ uses a price set $Y_{i}^{*} \subset$ \mathbb{Y}^{*}. Let $\Delta Y_{i} \subset \mathbb{Y}$ be a bounded symmetric neighborhood of 0 . Then, if all these sets are non-empty closed and convex, ensemble I features a non-negative bid-ask spread

$$
\begin{equation*}
S_{I}:=\inf _{\left(y_{i}^{*}\right)} \sup _{\left(\Delta y_{i}\right)}\left\{\sum_{i \in I} y_{i}^{*}\left(\Delta y_{i}\right) \mid y_{i}^{*} \in Y_{i}^{*}, \Delta y_{i} \in \Delta Y_{i} \& \sum_{i \in I} \Delta y_{i}=0\right\} . \tag{18}
\end{equation*}
$$

That spread is nil if there is a common price $y^{*} \in \cap_{i \in I} Y_{i}^{*}$. Conversely, let at least one set Y_{i}^{*} be compact. Then, disagreement on prices, meaning $\cap_{i \in I} Y_{i}^{*}=\varnothing$, implies that $S_{I}>0$. Thus, granted at least one compact price set Y_{i}^{*},

$$
\cap_{i \in I} Y_{i}^{*}=\varnothing \Longleftrightarrow S_{I}>0 .
$$

Proof: For $S_{I} \geq 0$, just take each $\Delta y_{i}=0$. Given any $y^{*} \in \cap_{i \in I} Y_{i}^{*}$, clearly, $\sum_{i \in I} \Delta y_{i}=0$ implies $\sum_{i \in I} y^{*}\left(\Delta y_{i}\right)=0$.

For the converse, let C equal the product set $\Pi_{i \in I} Y_{i}^{*}$. So defined, C is a closed convex and non-empty subset of $\mathbb{Y}^{* I}$. If needed for compactness, intersect each Y_{i}^{*} with one among these which is compact. This done, C becomes compact. Now, $\cap_{i \in I} Y_{i}^{*}=\varnothing$ iff C is doesn't intersect the diagonal $D:=\left\{\left(y_{i}^{*}\right) \mid\right.$ all $y_{i}^{*} \in$ \mathbb{Y}^{*} are equal $\}$. Then, C and D are strictly separated by some non-zero $\left(\Delta y_{i}\right) \in \mathbb{Y}^{I}$, meaning

$$
\sup \left\{\sum_{i \in I} y_{i}^{*}\left(\Delta y_{i}\right) \mid y_{i}^{*} \in Y_{i}^{*}\right\}<\inf \left\{\sum_{i \in I} y^{*}\left(\Delta y_{i}\right) \mid y^{*} \in \mathbb{Y}^{*}\right\} .
$$

This inequality can not hold unless $\sum_{i \in I} \Delta y_{i}=0$ - whence the right hand side equals 0 . By suitable scaling (if necessary), it entails no loss to presume that each $\Delta y_{i} \in \Delta Y_{i}$. Now conclude because by (18):

$$
\begin{aligned}
-S_{I} & =\sup _{\left(y_{i}^{*}\right)} \inf _{\left(\Delta \hat{y}_{i}\right)}\left\{\sum_{i \in I} y_{i}^{*}\left(\Delta \hat{y}_{i}\right) \mid y_{i}^{*} \in Y_{i}^{*}, \Delta \hat{y}_{i} \in \Delta Y_{i} \& \sum_{i \in I} \Delta \hat{y}_{i}=0\right\} \\
& \leq \sup _{\left(y_{i}^{*}\right)}\left\{\sum_{i \in I} y_{i}^{*}\left(\Delta y_{i}\right) \mid y_{i}^{*} \in Y_{i}^{*}\right\}<0 .
\end{aligned}
$$

Theorem 4.1 (disequilibrium and trade): Given a wealth profile $\mathbf{w}=\left(w_{i}\right) \in \mathbf{W}$, suppose agent $i \in I$ uses a closed convex price set Y_{i}^{*} which contains $\partial c_{i}\left(0 \mid w_{i}\right) \neq \varnothing$, and he contemplates a transaction Δy_{i} within a bounded closed convex, symmetric neighborhood ΔY_{i} of 0 . Then, provided at least one Y_{i}^{*} be bounded, if
$\cap_{i \in I} Y_{i}^{*}=\varnothing$, there exists a redistribution $\left(\Delta y_{i}\right) \neq 0, \sum_{i \in I} \Delta y_{i}=0$, such that

$$
\begin{equation*}
\sup \left\{\sum_{i \in I} y_{i}^{*}\left(\Delta y_{i}\right) \mid y_{i}^{*} \in \partial c_{i}\left(0 \mid w_{i}\right)\right\} \leq \sup \left\{\sum_{i \in I} y_{i}^{*}\left(\Delta y_{i}\right) y_{i}^{*} \in Y_{i}^{*}\right\}<0 \tag{19}
\end{equation*}
$$

In particular, if each $\partial c_{i}\left(0 \mid w_{i}\right)=Y_{i}^{*}$ is compact, then $\sum_{i \in I} c_{i}^{\prime}\left(0 ; \Delta y_{i} \mid w_{i}\right)<0$, and for a possibly shortened profile $\left(\Delta y_{i}\right) \longleftarrow\left(s \Delta y_{i}\right), s>0$,

$$
\begin{equation*}
c_{I}(0 \mid \mathbf{w}) \leq \sum_{i \in I} c_{i}\left(\Delta y_{i} \mid w_{i}\right)<\sum_{i \in I} c_{i}\left(0 \mid w_{i}\right) \leq 0 \tag{20}
\end{equation*}
$$

So, modulo suitable, zero-sum money transfers $\left(\Delta r_{i}\right) \neq 0, \sum_{i \in I} \Delta r_{i}=0$, each $\Delta r_{i}>c_{i}\left(\Delta y_{i} \mid w_{i}\right)$. Clearly, such trade complies with agents' incentives.

Proof: Invoke Lemma 4.1 and use $c_{i}^{\prime}\left(0 ; \Delta y_{i} \mid w_{i}\right)=\sup \left\{y_{i}^{*}\left(\Delta y_{i}\right) \mid y_{i}^{*} \in \partial c_{i}\left(0 \mid w_{i}\right)\right\}$ in (19). Finally, for (20), provided $s>0$ and $\varepsilon>0$ both be sufficiently small,

$$
\begin{aligned}
c_{I}(0 \mid \mathbf{w}) & \leq \sum_{i \in I} c_{i}\left(s \Delta y_{i} \mid w_{i}\right) \leq \sum_{i \in I}\left[c_{i}\left(0 \mid w_{i}\right)+s c_{i}^{\prime}\left(0 ; \Delta y_{i} \mid w_{i}\right)+s \varepsilon\right] \\
& <\sum_{i \in I} c_{i}\left(0 \mid w_{i}\right) \leq 0
\end{aligned}
$$

Remarks (On active or restrictive traders): In Lemma 4.1 and Theorem 4.1 a strictly smaller ensemble $\mathcal{I} \subset I, \# \mathcal{I} \geq 2$, could come onto stage. Moreover, its members might just trade goods recorded in a lower-dimensional commodity space $Y \subset \mathbb{Y}$. Also, instead of demanding that at least one price set Y_{i}^{*} be nonempty compact, it suffices that $\bigcap_{i \in \mathcal{I}} Y_{i}^{*}$ be such for some subset $\mathcal{I} \subsetneq I$.
(On market mechanisms). Anyway, trade proceeds via various mechanisms say, via auctions, direct deals or order markets. Most likely, active traders vary, maybe randomly, in their names, numbers or proximity - or in their focus on selected goods.
(On incentive compatibility). Reasonably, no party ever accepts a set-back compared to his pre-trade position. That is, each deal should be voluntary:

Assumption 4.1 (on acceptable deals and updates): If agent $i \in I$ enters a deal with endowment $\left(r_{i}, y_{i}\right)=: w_{i} \in$ dom $\succsim i$, he exits with an 'improved' updated version $\left(\hat{r}_{i}, \hat{y}_{i}\right)=$:

$$
\begin{equation*}
\hat{w}_{i}=: w_{i}^{+1}=\left(\Delta r_{i},-\Delta y_{i}\right)+w_{i} \succsim_{i} w_{i} \tag{21}
\end{equation*}
$$

featuring a money transfer $\Delta r_{i}:=\hat{r}_{i}-r_{i}$ for some bundle $\Delta y_{i}:=\hat{y}_{i}-y_{i}$ such that

$$
\begin{equation*}
\Delta r_{i} \geq \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right) \quad \text { and } \quad \sum_{i \in I}\left(\Delta r_{i}, \Delta y_{i}\right)=(0,0) \tag{22}
\end{equation*}
$$

As modelled, trade complies with incentives because $\Delta r_{i} \geq \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$, and the actions are purely redistributive in that $\sum_{i \in I}\left(\Delta r_{i}, \Delta y_{i}\right)=(0,0)$. Write $\hat{w}_{i} \succ_{i} w_{i}$ if $\Delta r_{i}>\partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$. These features motivate the following:

Assumption 4.2 (on trades): Agents' transactions fit the algorithmic form

$$
\begin{equation*}
\mathbf{w} \in \mathbf{W} \rightrightarrows A(\mathbf{w}):=\left\{\mathbf{w}^{+1}=\left(w_{i}^{+1}\right) \in \mathbf{W} \mid w_{i}^{+1} \succsim_{i} w_{i} \forall i \in I\right\} . \tag{23}
\end{equation*}
$$

Any instance A has the solution set

$$
\mathbf{E}:=\left\{\mathbf{w} \in \mathbf{W} \mid\left(y^{*}, \mathbf{w}\right) \text { is a competitive equilibrium for some } y^{*} \in \mathbb{Y}^{*}\right\} .
$$

Proposition 4.2 (on existence of equilibrium): Suppose each upper level set $\left\{. \succsim_{i}\right.$ $\left.w_{i}\right\}$ (3) is convex. With \mathbf{W} compact, also suppose the correspondence $A(\cdot)$ is outer semicontinous. Then - by Kakutani's theorem [11] - there exists an equilibrium.

Proposition 4.3 (on strictly improving trades): Suppose $_{c_{I}}(0 \mid \mathbf{w})$ is attained and $\partial c_{I}(0 \mid \mathbf{w})$ be non-empty for each $\mathbf{w} \in \mathbf{W}$ with at least one $\partial c_{i}\left(0 \mid w_{i}\right)$ compact. Let $\mathbf{w} \in \mathbf{W}$ qualify for update by A (23) iff $S_{I}(\mathbf{w})>0$ (18) or $c_{I}(0 \mid \mathbf{w})<0$. Then some $\mathbf{w}^{+1} \in A(\mathbf{w})$ satisfies $w_{i}^{+1} \succ_{i} w_{i}$ for each $i \in I$. Otherwise, if $S_{I}(\mathbf{w})=0$ and $c_{I}(0 \mid \mathbf{w})=0$, then $\left(y^{*}, \mathbf{w}\right)$ is an equilibrium for any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$.

Proof: From $S_{I}(\mathbf{w})>0$ and Theorem 3.1 it follows that $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}\right)=\varnothing$. Hence by (20) in Theorem 4.1 it holds $c_{I}(0 \mid \mathbf{w})<0$ and the system

$$
w_{i}^{+1}=\left(\Delta r_{i},-\Delta y_{i}\right)+w_{i}, \quad \Delta r_{i}>c\left(\Delta y_{i} \mid w_{i}\right), \quad \forall i \in I,
$$

is solvable. Then $\mathbf{w}^{+1} \in A(\mathbf{w})$ with each $w_{i}^{+1} \succ_{i} w_{i}$.
Otherwise, if $S_{I}(\mathbf{w})=0$, the intersection $\cap_{i \in I} \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$ is non-empty for some allocation $\left(\Delta y_{i}\right), \sum_{i \in I} \Delta y_{i}=0$. Then, by Lemma 3.1, $\partial c_{I}(0 \mid \mathbf{w})=$ $\cap_{i \in I} \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$. Now, for any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$ the conclusion follows from

$$
0=y^{*} 0=c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)+c_{I}(0 \mid \mathbf{w})=c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right) .
$$

Suppose the market features non-overlapping, sequential sessions, each closing by clearance or clock. Also for argument, suppose that when a session closes, the very last transactions (21) are rationalized expost - at closure time - by the parties themselves, and by Lemma 3.1, as follows:

Assumption 4.3 (on session closure): Each market session closes by some last reallocation $\left(\Delta y_{i}\right), \sum_{i \in I} \Delta y_{i}=0$, supported by a clearing price $y^{*} \in$ $\cap_{i \in I} \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$ and revenues $r_{i}=y^{*} \Delta y_{i}$ (21). Immediately thereafter, agent i updates his holding to $\hat{w}_{i}=w_{i}^{+1}$ (21). With that update he enters the subsequent session. If worthwhile, the latter begins with $\cap_{i \in I} \partial c_{i}\left(0 \mid w_{i}^{+1}\right)=\varnothing$.

What stands sharply out is the special case where $w_{i}^{+1}=w_{i}$ and $\cap_{i \in I} \partial c_{i}$ $\left(0 \mid w_{i}\right) \neq \varnothing$.

Then, another session has no effect: a best option for every agent, given his endowment, is to stay put. Can iterated sessions bring the agents towards such a state? Recall that, given any $y^{*} \in \mathbb{Y}^{*}$ and $\mathbf{w}=\left(w_{i}\right) \in \mathbf{W}$, total profit equals

$$
c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=\sum_{i \in I} c_{i}^{*}\left(y^{*} \mid w_{i}\right) \text { with each } c_{i}^{*}\left(y^{*} \mid w_{i}\right) \geq 0
$$

Specialize here to session closure with $y^{*} \in \cap_{i \in I} \partial c_{i}\left(\Delta y_{i} \mid w_{i}\right)$ and $\sum_{i \in I} \Delta y_{i}=0$. So, to focus the above question, I rather ask: will total profit $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$ decrease from one session to the subsequent? Indeed, it does, as is confirmed by the following:

Proposition 4.4 (monotone decreasing profit): Passing from the penultimate price-cum-endowment profile $\left(y^{*}, \boldsymbol{w}\right)$, at the closure of one session, to its version $\left(y^{*+1}, \boldsymbol{w}^{+1}\right)$ when the subsequent session closes, it holds $c_{I}^{*}\left(y^{*+1} \mid \mathbf{w}^{+1}\right) \leq c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$.

Proof: from [3]. By (21) $w_{i}^{+} \succsim_{i} w_{i}$ for each $i \in I$. So, granted transitive preference orders, expenditures 'increase': $\mathcal{E}_{i}\left(\cdot \mid w_{i}^{+}\right) \geq \mathcal{E}_{i}\left(\cdot \mid w_{i}\right)$ for all $i \in I$. The implication $y^{*} \in \partial c_{I}(0 \mid \mathbf{w}) \Longrightarrow 0 \in \partial c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$ tells that $c^{*}(\cdot \mid \mathbf{w})$ is minimal at y^{*}. Collecting these facts, and letting $y^{0}:=\sum_{i \in I} y_{i}^{0}$ with initial endowments $\left(r_{i}^{0}, y_{i}^{0}\right)=w_{i}^{0}$, it follows that from Lemma that:

$$
\begin{aligned}
c_{I}^{*}\left(y^{*+} \mid \mathbf{w}^{+}\right) & =\inf _{\hat{y}^{*}}\left\{\hat{y}^{*} y^{0}-\sum_{i \in I} \mathcal{E}_{i}\left(\hat{y}^{*} \mid w_{i}^{+}\right)\right\} \\
& \leq\left\{y^{*} y^{0}-\sum_{i \in I} \mathcal{E}_{i}\left(y^{*} \mid w_{i}\right)\right\}=c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)
\end{aligned}
$$

Theorem 4.2 (convergence to competitive equilibrium): For any $\boldsymbol{w} \in \mathbf{W}$ and $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$ with $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)>0$, suppose that $\mathcal{E}_{i}\left(\cdot \mid w_{i}^{+}\right) \geq \mathcal{E}_{i}\left(\cdot \mid w_{i}\right) \forall i \in$ I implies

$$
\begin{equation*}
\inf _{y^{*}} c_{I}^{*}\left(y^{*} \mid \mathbf{w}^{+}\right)<c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right) \tag{24}
\end{equation*}
$$

Also suppose $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$ is jointly closed, meaning lower semicontinuous in $\left(y^{*}, \boldsymbol{w}\right)$. Then, by iterated sessions, total profit $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)$ converges to 0 . That is, each cluster point \boldsymbol{w} of the generated sequence $\left(\boldsymbol{w}^{k}\right)$ qualifies as competitive equilibrium $\left(y^{*}, \boldsymbol{w}\right)$ for any $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$.

Proof: Consider the sequence $\left(\boldsymbol{w}^{k}\right)$ emanating from $\boldsymbol{w}^{0}=\left(w_{i}^{0}\right) \in \mathbf{W}$, where $\boldsymbol{w}^{k}=\left(w_{i}^{k}\right)$ is the penultimate endowment profile just prior to closure of session k. During that session each agent i may have secured finitely many 'improving' updates (21). These can be seen as interim spacer steps; see [12] Theorem 7.3.4. By Proposition 5.1, the sequence $c_{I}^{*}\left(y^{k *} \mid \mathbf{w}^{k}\right)$ decreases monotonically. Being bounded below by 0 , total surplus converges to some limit $L \geq 0$.

Consider any cluster point \boldsymbol{w} of $\left(\boldsymbol{w}^{k}\right)$. It suffices by Proposition 4.2 to show that $c_{I}^{*}\left(y^{*} \mid \mathbf{w}\right)=0$ for each $y^{*} \in \partial c_{I}(0 \mid \mathbf{w})$. But otherwise, (24) would yield the contradiction $\lim c_{I}^{*}\left(y^{* k+1} \mid \mathbf{w}^{k+1}\right)<L=\lim c_{I}^{*}\left(y^{k *} \mid \mathbf{w}^{k}\right)$.

Notes

1. Throughout, the 'difference operator' Δ helps to emphasize change and dynamics.
2. At best, no auctioneer, invisible hand or system operator would be needed.
3. Two 'mechanisms' meet here - one rather modern, the other ancient - namely: the mathematics of inf-convolution [11] versus the economics of money [10].
4. That is, lower semicontinuous.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Luenberger DG. Microeconomic theory. New York: McGraw-Hill; 1995.
[2] Flåm SD. Emergence of price-taking behavior. Econ Theory. 2020;70:847-870. doi: 10.1007/s00199-019-01232-5
[3] Flåm SD. Towards competitive equilibrium by double auctions. Pure Appl Funct Anal. 2021;6(6):1211-1225.
[4] Debreu G. Valuation equilibrium and pareto optimum. Proc Nat Acad Sci. 1954;40: 588-592. doi: 10.1073/pnas.40.7.588
[5] Feldman AM. Bilateral trading processes, pairwise optimality, and pareto optimality. Rev Econ Stud. 1972;40(4):463-473. doi: 10.2307/2296581
[6] Flåm SD. Market equilibria and money. Fixed Point Theory Algo Sci Eng. 2021;2021: Article Id 20. doi: 10.1186/s13663-021-00705-4
[7] Gintis H. Individuality and entanglement. Princeton, NJ: Princeton Univ Press; 2017.
[8] Keisler HJ. Getting to competitive equilibrium. Econometrica. 1996;64(1):29-49. doi: 10.2307/2171923
[9] Negishi T. Welfare economics and existence of equilibrium for a competitive economy. Metroeconomica. 1960;12:92-97. doi: 10.1111/meca.1960.12.issue-2-3
[10] Shapley L, Shubik M. Trade using one commodity as means of payment. J Pol Econ. 1977;85:937-968. doi: 10.1086/260616
[11] Borwein JM, Lewis AS. Convex analysis and nonlinear optimization. Berlin: Springer; 2000.
[12] Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming: theory and algorithms. 3rd ed., New York: Wiley-Interscience; 2016.

[^0]: CONTACT Sjur Didrik Flåm sjur.flaam@uib.no
 © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor \& Francis Group.
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

