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In this paper, we present a novel variant of the Covering Tour Problem (CTP), called the Covering 
Tour Problem with Varying Coverage (CTP-VC). We consider a simple graph 𝐺 = (𝑉 , 𝐸), with 
a measure of importance assigned to each node in 𝑉 . A vehicle with limited battery capacity 
visits the nodes of the graph and has the ability to stay in each node for a certain period of 
time, which determines the coverage radius at the node. We refer to this feature as stay-dependent 
varying coverage or, in short, varying coverage. The objective is to maximize a scalarization of 
the weighted coverage of the nodes and the negation of the cost of moving and staying at the 
nodes. This problem arises in the monitoring of marine environments, where pollutants can 
be measured at locations far from the source due to ocean currents. To solve the CTP-VC, we 
propose a mathematical formulation and a heuristic approach, given that the problem is NP-hard. 
Depending on the availability of solutions yielded by an exact solver, we evaluate our heuristic 
approach against the exact solver or a constructive heuristic on various instance sets and show 
how varying coverage improves performance. Additionally, we use an offshore CO2 storage site 
in the Gulf of Mexico as a case study to demonstrate the problem’s applicability. Our results 
demonstrate that the proposed heuristic approach is an efficient and practical solution to the 
problem of stay-dependent varying coverage. We conduct numerous experiments and provide 
managerial insights.

1. Introduction

The importance of a healthy marine environment is reflected in the UN’s declaration of the 2020 s as the ocean decade and 
the increasing focus on holistic management of the oceans through Ecological-based Marine Spatial Planning [1]. An intrinsic part 
of achieving this will be a better understanding of the marine ecosystem [2], including habitat mapping (e.g. [3]) and continuous 
observations (such as the Ocean Observatories Initiative [4]).

Offshore activities have to monitor the local environment, in order to verify compliance with their license, such as their Envi-

ronmental Impact Assessments. Such monitoring programs can consist of a combination of fixed installations and regular surveys 
with moving platforms. Technologies for marine surveys are developing fast, and with the recent Lab on Chip Technology (see, for 
instance, [5]), the measurements can be analyzed in real-time. Since the early 1980 s, the capabilities and use of moving platforms 
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such as Autonomous Underwater Vehicles (AUVs) have been steadily increasing. Modern AUVs can operate in water depths of up 
to 6000 meters and have hovering capabilities [6]. Here we will use monitoring programs related to offshore geological storage of 
CO2 as an example. Carbon Capture and Storage (CCS) is a greenhouse gas mitigating technology in which CO2 is captured from 
large emission points, transported, and injected into geological formations for permanent storage. In particular, offshore geological 
formations provide vast CO2 storage potential, [7–9].

Since the offshore geological storage complexes are selected and managed to assure long-term confinement, migration of injected 
CO2 out of the storage formation is considered unlikely [7]. Still, there is a small chance that subsurface pathways, such as faults, 
stratigraphic traps, and spill points, might allow parts of the stored CO2 to migrate to the surface, [10–14]. So in order to comply 
with regulatory requirements [15] and to ensure public acceptance of CCS technology, e.g., [16–18], environmental monitoring of 
storage sites is essential, see [19] for a recent review of Monitoring and Verification related to geological storage of CO2. With the 
insight gained from studying the processes involved when CO2 seeps through the seafloor as bubbles or droplets gradually dissolve 
into the seawater [20–22], we expect that the local environment will experience reduced pH with a potential impact on the biota 
[11].

Since the area to be surveyed can be large, needs to be monitored for several years, and we are looking for a weak change in CO2
content, the marine monitoring program will impose additional costs and challenges to storage projects [10–14]. Hence, technologies 
and procedures to design adequate and cost-efficient monitoring programs have been pursued for the last few years. Recently several 
in-situ experiments [13,23,24] have been performed to assist in developing programs to detect CO2 seeps through the seafloor. With 
the right combinations of sensors and platforms, the aim is to develop cost-efficient and adequate marine monitoring [25].

Hvidevold et al. [26] studied optimal deployment strategies for fixed installations on the seafloor using the probability of detecting 
a leak as a metric, while Oleynik et al. [27] addressed the same problem through a set cover problem. Here we focus on using AUVs, 
and extend the results from [28]. The use of AUVs for various underwater exploration applications has been growing in popularity, 
including in commercial, military, and industrial applications. As a result, a large number of AUVs have been developed for various 
purposes, such as surveillance, ocean exploration and bathymetric study, mapping of the ocean floor, environmental monitoring, 
tracking of oil spills and gas leaks, and repair and maintenance in the industry [29]. For scientific applications, AUVs like Maya 
[30] are used in marine biology studies and environmental monitoring, while Fòlaga [31] is a low-cost AUV employed for coastal 
oceanographic purposes. Spilled Oil Tracking Autonomous Buoy (SOTAB) [32], on the other hand, is designed to track spilled oil 
autonomously and gather oceanographic data. In [33], researchers investigated the use of AUVs for environmental monitoring of 
offshore facilities to improve and expand overall monitoring programs. Our focus in this article is not on certain aspects related to 
AUVs’ navigation and path control, as we assume that an AUV follows straight-line paths at a constant speed without drift or the 
effect of currents. For more information on AUV path planning in the presence of ocean currents, we refer readers to [34] and [35].

This article introduces the Covering Tour Problem with Varying Coverage (CTP-VC), which considers a finite number of locations, 
or nodes, in the area to be monitored. These nodes could be, for example, abandoned wells or a grid of the area. An AUV with 
mounted chemical sensors travels between nodes with the option of staying at one node and taking repeated measurements. This not 
only provides information about the exact node but also tracks the history of nearby locations due to transport processes. A node is 
considered covered if the AUV obtains information about it from the measurements at another node. The coverage radius increases 
with the time spent at the node, up to a certain limit. We refer to this feature as stay-dependent varying coverage or in short, 
varying coverage. The limit on the coverage is determined by how much information can be effectively collected from a distance. 
Additionally, the AUV uses battery power for traveling and staying while taking measurements. The main goal of this work is to 
design an optimal AUV tour that takes into account the importance of nodes, traveling distances, duration of stay in visited nodes, 
and AUV battery capacity. The coverage that varies with time spent in each node, distinguishes this problem from other routing 
problems, and hence, we call it the Covering Tour Problem with Varying Coverage. This problem can be reduced to a Covering Tour 
Problem, which is NP-hard [36] and cannot be solved using exact methods in a reasonable time for a large number of nodes.

In combinatorial optimization problems, finding an optimal solution is often infeasible due to the vast solution space. Conse-

quently, heuristics are employed to approximate the optimal solution within a reasonable time frame. However, these heuristics are 
usually tailored to specific problems and cannot be readily applied to other types of combinatorial optimization problems. Although 
they may deliver favorable results for a given test instance, they cannot handle different (still similar) problems and they might not 
provide promising results for different instances of the same problem.

Recently, a metaheuristic framework called Adaptive Large Neighborhood Search (ALNS) has gained traction in the field of combi-

natorial optimization, owing to its ability to adapt to various problem types and explore a considerable portion of the solution space 
in a structured manner. ALNS is widely regarded as one of the most effective single-solution metaheuristics for discrete optimization 
[37], having delivered state-of-the-art results for routing problems [38].

Initially designed as an approach specific to routing problems, the ALNS framework has been expanded in recent years, with 
a growing number of studies applying it to other problem types, such as scheduling problems [39]. The ALNS framework boasts 
numerous advantages. For most optimization problems, a range of high-performing heuristics already exists, which can serve as 
the operators in the ALNS framework. The diversity of the neighborhoods that the ALNS algorithm explores allows for structured 
exploration of large portions of the solution space. As a result, ALNS is highly robust, capable of adapting to the individual charac-

teristics of different problem instances and avoiding local optima [40]. We have developed an algorithm that is inspired by the ALNS 
framework, but we have made several modifications to it. While we have incorporated the core concept (adaptive layer) behind the 
ALNS approach, we have omitted the Large Destroy and Repair component. Furthermore, we have introduced new operators that 
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differ substantially from those used in the original ALNS framework, as proposed by [41].
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Our research is inspired by the need to monitor offshore locations, but we believe that incorporating the element of time into the 
decision-making process for the classical Covering Salesman Problem or Covering Tour Problem could improve planning for mobile 
healthcare delivery systems or disaster relief teams. When delivering healthcare products to rural areas, not everyone can travel to a 
central location to collect them. As a result, healthcare workers or volunteers must deliver the goods, and this requires factoring in 
the time it takes to reach the farthest location within the station’s reach (the covering distance). This will clearly lead to the necessity 
to take into account the time that it takes to reach the farthest location within the covering distance, since it might not be necessary 
to spend the time to reach the maximum covering distance in many chosen locations to stop.

In summary, this paper presents several significant contributions. Firstly, a new variant of CTP is proposed, which takes into 
account the realistic assumption of varying coverage. Secondly, the problem is formulated as an Integer Programming problem. 
Thirdly, a metaheuristic approach is developed to solve the problem, and its efficacy is demonstrated through experiments. Finally, 
extensive computational experiments are conducted to examine the impact of varying coverage and provide managerial insights.

This article is organized as follows. In Section 2 we place the problem in the context of routing problems and review the relevant 
literature. In particular, we introduce and discuss three special cases of our problem. We give a mathematical formulation of CTP-VC 
and its modifications that lead to the special cases in Section 3. We describe the Adaptive Metaheuristic designed for CTP-VC in detail 
in Section 4. In Section 5 we test the designed algorithm and an exact solver on different instance sets and investigate the benefits of 
varying coverage. In particular, we solve the problem using a case study of an offshore CO2 storage site near the coast of Houston, 
Texas. We make a conclusion and discuss avenues for future work in Section 6.

2. Related work

CTP-VC can be approached from various perspectives. On the one hand, it extends the Prize-Collecting Traveling Salesman 
Problem by incorporating the notion of coverage. On the other hand, it improves upon the Covering Tour Problem by incorporating 
time and introducing varying coverage. We place our problem first in connection with the Profitable Tour Problem, and later in 
connection with the Covering Tour Problem. Moreover, as part of our experiments, we compare our problem with the Covering 
Salesman Problem, in which all the nodes need to be covered or visited. Therefore we give an overview of this problem and its 
generalizations, applications, and solving methods in the literature.

Our problem is tightly linked to the Traveling Salesman Problem (TSP) [42], one of the most well-known problems in the field of 
combinatorial optimization. TSP and its variations and generalization have been extensively studied, for an overview see [43] and 
[44]. In one of the variants, TSP with profits [45], there is a profit associated with each node, and the constraint on visiting all the 
nodes is lifted. The problem has two competing goals, namely collecting as much profit as possible and causing as little travel cost 
as possible, which means that this is a bi-objective optimization problem. One way to deal with such a problem is to consider both 
objective functions simultaneously and seek a set of non-dominated solutions. The authors in [46] and [47] have used this method in 
similar problems related to monitoring using an Unmanned Surface Vehicle (USV). The other way to deal with this type of problem is 
to convert the multi-objective problem to a single-objective optimization problem. This is commonly done using the Weighted-Sum 
Approach, which scalarizes the different objectives into one, and the 𝜖-constraint method, which optimizes one of the objectives and 
sets bounds for the rest [48]. The Profitable Tour Problem (PTP) [49] chooses the former as the objective function. Each node in 
PTP is associated with a penalty that is to be paid if the said node is not visited, and traversing each edge has a specific cost. The 
objective then is minimizing the summation of penalties and costs. Our problem can be viewed as a generalization of the PTP. We 
have implemented a similar objective function with a scalarization of the collected importance of nodes and the cost of visiting and 
staying at nodes, with the difference that we consider a coverage distance for each stop point.

CTP-VC can also be viewed as a generalization of the Covering Tour Problem [36]. CTP is defined on a graph 𝐺 = (𝑉 ∪𝑊 , 𝐸), 
where 𝑊 is a set of vertices that must be covered and 𝑇 ⊂ 𝑉 is a set of vertices that must be visited. CTP aims to determine a 
minimum-length Hamiltonian cycle on a subset of 𝑉 such that every vertex of 𝑊 is within a pre-specified distance from a vertex 
on the cycle. A special case of CTP-VC is when the function describing the coverage radius is constant in time, evaluated as the 
maximum coverage radius in CTP-VC. We call this problem the Covering Tour Problem with Fixed Coverage (CTP-FC). If in CTP-FC 
we set the costs per unit of time and the importance of all nodes to be zero and consider unlimited battery capacity, the problem is 
reduced to a CTP in which there are no nodes that need to be covered nor visited.

The classical routing problems, such as the TSP and the Covering Salesman Problem (CSP) [50], enforce the obligation to visit 
or cover all the nodes. In our analysis, we consider a special case of CTP-VC where the limit on the energy source is lifted, and 
the necessity of covering all the nodes is required. This problem is called the Covering Salesman Problem with Varying Coverage 
(CSP-VC), and its objective is to minimize the cost of operation while ensuring full coverage of all nodes. If the covering radius is 
constant in time, the corresponding problem is called the Covering Salesman Problem with Fixed Coverage (CSP-FC). By setting the 
cost per unit of time to zero in CSP-FC, the problem is simplified to CSP.

The CSP was introduced by Current and Schilling [50] as a general form of Traveling Salesman Problem, where instead of the 
obligation to visit every node, all the nodes need to be either visited or within a pre-specified distance of visited nodes. The mentioned 
distance is known as covering distance which is fixed as a parameter in the problem. The CSP is NP-hard since it can be reduced 
to the TSP by setting the covering distance smaller than the distance of the closest nodes in the node-set. Therefore, a heuristic 
procedure is proposed in [50].

A generalized CSP (GCSP) is introduced in [51], where there is a minimum number of times for each node to be covered and 
a cost associated with visiting each node. They further propose two local search heuristics to be applied to GCSP variants. Another 
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covering a given number of customers, with potential application in humanitarian relief transportation and telecommunication 
networks. They have proposed two mathematical models and two metaheuristic algorithms to solve the problem. A time-constrained 
maximal covering salesman problem with weighted demand and partial coverage was studied by [53]. The authors propose four 
branch-and-cut schemes to solve the problem.

There are several applications that can be considered for CSP. Bowerman et al. [54] studied the urban school bus routing problem, 
in which students need to be picked up from stops within a maximum walking distance of their residence. They develop a heuristic 
solution method that groups the students into clusters, and then finds the route to be taken by the bus.

A similar problem as ours has been put forward by Ma and Yang [55], where the aim is to introduce a new data gathering 
mechanism for mobile collectors. They call the problem Single-hop Data Gathering, and the aim is to find a minimum-length tour 
in a set of polling points, where each polling point has a fixed set of adjacent sensors, which all need to be covered by at least one 
neighboring polling point. In the special case where the neighboring set can be modeled as a disk area, this problem could be reduced 
to CSP. More recently, Tripathy et al. [56] have studied a CSP with 2-coverage which ensures the availability of services such as 
blood supply chain, border surveillance using Unmanned Aerial Vehicles (UAVs), etc., in case one provider fails at any point.

Extensive studies have been conducted on methods for solving the CSP, including [57], combining the ant colony algorithm and 
dynamic programming to solve the CSP and demonstrate the results on benchmark instances. Li et al. [58] have used an unsupervised 
deep reinforcement learning approach to learn the structural patterns and give an approximate solution. Lu et al. [59] propose a 
hybrid evolutionary algorithm (HEA) that exceeds the state-of-the-art methods for several benchmark instances and can be adapted 
to be used in the Generalized Covering Salesman Problem as well. A branch-and-cut framework combining exact and heuristic 
algorithms, and using a set of valid inequalities, proves effective in [60].

In all the mentioned cases of studies of covering problems, the covering distance or covering set of nodes was pre-specified. There 
are no studies addressing the time-expanding coverage, which has many potential applications, as mentioned in the introduction. 
Here we bridge this gap by introducing the coverage radius as a function of the duration of stay in each location. Therefore, the 
CTP-VC contains the additional complexity of determining the optimal duration of stay at nodes, which we show can be effectively 
addressed by the introduced Adaptive Metaheuristic.

3. Mathematical formulation

We consider a simple weighted graph 𝐺 = (𝑉 , 𝐸) where 𝑉 = {𝑣𝑖, 𝑖 = 0, 1, … , 𝑛, 𝑛 +1}, 𝑛 ∈ℕ is the set of 𝑛 + 2 vertices or nodes, and 
𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. Each node 𝑣𝑖 ∈ 𝑉 is associated with an importance 𝑊𝑖 ≥ 0, and each edge (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 is prescribed a 
weight 𝐷𝑖𝑗 ≥ 0. Each node represents a point in ℝ2 and 𝐷𝑖𝑗 are Euclidean distances between these points. For simplicity, we refer to 
nodes by their indices in the node-set, e.g. writing 𝑗 ∈ 𝑉 is equivalent to 𝑣𝑗 ∈ 𝑉 and (𝑖, 𝑗) ∈ 𝐸 to (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. The nodes 𝑣0 and 𝑣𝑛+1
are reserved for the starting and ending position of the vehicle path and, thus, have zero importance, i.e., 𝑊0 =𝑊𝑛+1 = 0, and are 
connected to all the other nodes in 𝑉 . Moreover, let 𝑇 =

{
𝑇0 + 𝑘Δ𝑇 ,𝑘 = 0,… , ℎ

}
, ℎ ∈ℕ, be a discrete bounded time set. Here 𝑇0 is an 

initial time, and the time step, Δ𝑇 , can be measured in e.g., seconds or hours, and is application-specific.

A vehicle can traverse edges, moving from one node to another, with a cost 𝐶𝑖𝑗 proportional to 𝐷𝑖𝑗 . It can also spend time at a 
node 𝑣𝑖 with a cost 𝐶̂𝑖 per Δ𝑇 , to cover nodes within a coverage distance. This coverage distance is a time-dependent function. Here 
we assume it to be piece-wise linear and given as

𝑟(𝑡) =

{
𝛼𝑡+ 𝛽, 0 ≤ 𝑡 < 𝑡max

𝑅, 𝑡 ≥ 𝑡max
, 𝑅 = 𝛼𝑡max + 𝛽, 𝛼, 𝛽 ≥ 0. (1)

The function 𝑟(𝑡) could be made node-dependent, which will not change the mathematical formulation of the problem.

The vehicle starts a tour at 𝑣0 and finishes at 𝑣𝑛+1, and aims to either visit or cover some nodes so as to maximize the objective 
function, defined as a scalarization of total importance and negation of the total cost of staying and moving.

We formulate the problem as an Integer Programming problem. The parameters, sets, and decision variables are given in the 
Table 1. In particular, the main decision variables 𝑥𝑖𝑗𝑡 are binary, where 𝑥𝑖𝑗𝑡 = 1 if and only if the vehicle moves from node 𝑣𝑖 to 
node 𝑣𝑗 at time 𝑡. The binary variables 𝑦𝑖 determine if the node 𝑣𝑖 is on the visiting route, and 𝑧𝑖 indicate if the node 𝑣𝑖 is covered by 
another node and not visited. The importance 𝑊𝑖 is collected when node 𝑣𝑖 is visited or covered, i.e. when either 𝑦𝑖 = 1 or 𝑧𝑖 = 1.

The duration of stay at node 𝑣𝑗 is computed as

𝑡𝑗 =
∑
𝑘∈𝑁𝑗

∑
𝑡∈𝑇

𝑡𝑥𝑗𝑘𝑡 −
∑
𝑖∈𝑁𝑗

∑
𝑡∈𝑇

(𝑡+ 𝑇𝑖𝑗 )𝑥𝑖𝑗𝑡, 𝑗 ∈ 𝑉 ⧵ {𝑣0, 𝑣𝑛+1}, (2)

where 𝑁𝑗 is the set of nodes 𝑖 for which the edge (𝑖, 𝑗) belongs to the edge set, 𝐸.

When dealing with the varying coverage radius 𝑟𝑗 = 𝑟(𝑡𝑗 ), it is convenient to introduce auxiliary variables 𝑠𝑖𝑗 over the edge set 𝐸
as

𝑠𝑖𝑗 =

{
1, if 𝑟𝑗 ≥𝐷𝑖𝑗

0, otherwise
, (𝑖, 𝑗) ∈𝐸. (3)

The Integer Programming model for CTP-VC accounts for the flow conservation and keeping track of time, as well as varying 
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coverage and the limit to it, whether or not a specific node is covered, and the battery capacity of the vehicle, and is given by
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Table 1

Notation used in the mathematical model of CTP-VC.

Sets

𝑉 Set of all the nodes of the graph, 𝑉 =
{
𝑣0 , 𝑣1 ,… , 𝑣𝑛+1

}
𝐸 Set of all the edges of the graph, including the edges to 𝑣0 and 𝑣𝑛+1
𝑁𝑖 Set of indices for all the nodes adjacent to node 𝑣𝑖, 𝑁𝑖 = {𝑗 ∣ (𝑖, 𝑗) ∈𝐸, 𝑗 ∈ 𝑉 } , 𝑖 = 0,1,… , 𝑛+ 1
𝑇 Set of time steps, 𝑇 =

{
𝑇0 + 𝑘Δ𝑇 ,𝑘 = 0,… , ℎ

}
Parameters

𝑛 Number of nodes

𝐶𝑖𝑗 Cost associated with edge (𝑖, 𝑗) ∈𝐸
𝐶̂𝑖 Cost of staying at node 𝑣𝑖 per time step

𝑊𝑖 importance of node 𝑣𝑖
𝐷𝑖𝑗 The shortest distance between node 𝑣𝑖 and node 𝑣𝑗
sp Speed with which the vehicle moves

𝑇𝑖𝑗 The time it takes to move from node 𝑣𝑖 to node 𝑣𝑗 , 𝑇𝑖𝑗 = ⌈ 𝐷𝑖𝑗
𝑠𝑝

⌉
𝑅 Maximum coverage distance

𝜔 Scaling parameter corresponding to importance coverage in the objective function compared to the costs

𝐵 Battery capacity of the vehicle

𝑈 Battery usage of the vehicle per kilometer while moving

𝑈̂ Battery usage of the vehicle per time step while staying in a location

𝑀1 A large enough number, 𝑀1 ≥max{𝐷𝑖𝑗 , (𝑖, 𝑗) ∈𝐸}
𝑀2 A large enough number, 𝑀2 ≥ 𝑛− 1

Decision Variables

𝑥𝑖𝑗𝑡 Binary variable; 1 if the vehicle starts moving from node 𝑖 to node 𝑗, (𝑖, 𝑗) ∈𝐸, at time step 𝑡; 0 otherwise.

𝑦𝑖 Binary variable; 1 if node 𝑣𝑖 is directly visited by the vehicle; 0 otherwise.

𝑠𝑖𝑗 Binary variable; 1 if node 𝑣𝑖 is covered by node 𝑣𝑗 , (𝑖, 𝑗) ∈𝐸; 0 otherwise.

𝑧𝑖 Binary variable; 1 if node 𝑣𝑖 is indirectly covered by staying in another node; 0 otherwise.

𝑟𝑖 The radius of coverage for node 𝑣𝑖 as a function of the duration of stay at the node. 𝑟𝑖 = 𝑟(𝑡𝑖).

maximize 𝜔
∑
𝑗∈𝑉

𝑊𝑗 (𝑦𝑗 + 𝑧𝑗 ) −

( ∑
(𝑖,𝑗)∈𝐸

𝐶𝑖𝑗

∑
𝑡∈𝑇

𝑥𝑖𝑗𝑡 +
∑
𝑗∈𝑉

𝐶̂𝑗 𝑡𝑗

)
(4)

subject to (2) and∑
𝑗∈𝑁0

𝑥0,𝑗,𝑇0 = 1, (5)

∑
𝑖∈𝑁𝑛+1

∑
𝑡∈𝑇

𝑥𝑖,𝑛+1,𝑡 = 1, (6)

𝑡𝑗 ≥ 0, 𝑗 ∈ 𝑉 ⧵ {𝑣0, 𝑣𝑛+1}, (7)∑
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗𝑡 ≤ 1, 𝑡 ∈ 𝑇 , (8)

∑
𝑖∈𝑁𝑗

∑
𝑡∈𝑇

𝑥𝑖𝑗𝑡 −
∑
𝑘∈𝑁𝑗

∑
𝑡∈𝑇

𝑥𝑗𝑘𝑡= 0, 𝑗 ∈ 𝑉 ⧵ {𝑣0, 𝑣𝑛+1}, (9)

𝑈
∑

(𝑖,𝑗)∈𝐸
𝐷𝑖𝑗

∑
𝑡∈𝑇

𝑥𝑖𝑗𝑡 + 𝑈̂
∑
𝑗∈𝑉

𝑡𝑗 ≤ 𝐵, (10)

𝑦𝑗 =
∑
𝑖∈𝑁𝑗

∑
𝑡∈𝑇

𝑥𝑖𝑗𝑡, 𝑗 ∈ 𝑉 , (11)

𝑟𝑗 −𝐷𝑖𝑗 +𝑀1(1 − 𝑠𝑖𝑗 ) ≥ 0, (𝑖, 𝑗) ∈𝐸, (12)∑
(𝑖,𝑗)∈𝐸

𝑠𝑖𝑗 +𝑀2(1 − 𝑧𝑖) − 1 ≥ 0, 𝑖 ∈ 𝑉 , (13)

∑
(𝑖,𝑗)∈𝐸

𝑠𝑖𝑗 −𝑀2𝑧𝑖 ≤ 0, 𝑖 ∈ 𝑉 , (14)

𝑦𝑖 + 𝑧𝑖 ≤ 1, 𝑖 ∈ 𝑉 , (15)

𝑥𝑖𝑗𝑡, 𝑠𝑖𝑗 , 𝑦𝑖, 𝑧𝑖 ∈ {0,1}. (16)

The objective function in (4) represents a total gain associated with nodes visited or covered including losses associated with these 
operations. Constraints (5) and (6) ensure the route starts and ends at specific nodes. Constraint (7) enforces non-negative durations 
of stay in each node, as defined in (2), and (8) allows only one activity per time step. Constraint (9) ensures that the vehicle leaves 
the node it has entered. The battery capacity of the vehicle must not be exceeded. This is ensured by (10). We also need to satisfy ∑
𝑖∈𝑁𝑗

∑
𝑡∈𝑇 𝑥𝑖𝑗𝑡 ≤ 1 for 𝑗 ∈ 𝑉 , to ensure that no node is visited more than once. This requirement is however already met by defining 
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the binary variable 𝑦𝑖. Constraint (11) states that a node 𝑣𝑗 is visited when the vehicle moves from one of the nodes adjacent to 𝑣𝑗
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to 𝑣𝑗 at any time step. Constraint (12) makes sure that 𝑠𝑖𝑗 = 0 when node 𝑖 is not covered by node 𝑣𝑗 and accounts for (3) in the 
mathematical model. Conversely, when node 𝑖 is within the coverage radius of another, the value of 𝑠𝑖𝑗 will be determined based on 
the value of 𝑦𝑖. If the node is visited, its importance is already counted in the objective function, thus 𝑠𝑖𝑗 = 0. Otherwise, the objective 
function pushes 𝑠𝑖𝑗 to take the value 1. Constraints (13) and (14) make sure that 𝑧𝑖 = 1 when for at least one 𝑗 ∈ 𝑉 we have 𝑠𝑖𝑗 = 1. 
Constraint (15) prevents double-counting of the importance of a node when it is both visited and covered by another node. Finally, 
(16) sets all the decision variables to be binary.

3.1. Formulation for the special cases

In this section, we mathematically formulate three special cases of CTP-VC mentioned in Section 2, namely CTP-FC, CSP-VC, and 
CSP-FC.

The mathematical formulation for CSP-VC is given in a very similar model to that of CTP-VC. The only changes to make are to 
use (17) as the objective function, lift the battery limitation (10), and replace (15) with (18). The mathematical model for CSP-VC is 
given by

minimize
∑

(𝑖,𝑗)∈𝐸
𝐶𝑖𝑗

∑
𝑡∈𝑇

𝑥𝑖𝑗𝑡 +
∑
𝑗∈𝑉

𝐶̂𝑗 𝑡𝑗 (17)

subject to

𝑦𝑖 + 𝑧𝑖 = 1, 𝑖 ∈ 𝑉 , (18)

and (5)–(9), (11)–(14), and (16).

In order to model CSP-FC and CTP-FC we consider the graph 𝐺 = (𝑉 , 𝐸) introduced in Section 3. The main decision variables 
are the binary 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐸 which take the value 1, only when the edge (𝑖, 𝑗) is traversed by the vehicle. The variables 𝑦𝑖 and 𝑧𝑖 are 
defined the same way as defined for CTP-VC in Table 1. In these problems, the duration of stay in each node is pre-specified, as it is 
in the classical CSP. This value is determined by 𝑡𝑚𝑎𝑥 = ⌊(𝑅 −𝛽)∕𝛼Δ𝑇 ⌋. Thus, the two parameters 𝐶̃𝑗 and 𝑈̃𝑗 are defined as 𝐶̃𝑗 = 𝑡𝑚𝑎𝑥𝐶̂𝑗
and 𝑈̃ = 𝑡𝑚𝑎𝑥𝑈̂ , respectively. Moreover, the set of the nodes covered by each node is given by 𝑆𝑗 =

{
𝑖 ∈ {1,…𝑛} ∣𝐷𝑖𝑗 ≤𝑅

}
. CTP-FC is 

given by

maximize 𝜔
∑
𝑗∈𝑉

𝑊𝑗 (𝑦𝑗 + 𝑧𝑗 ) −

( ∑
(𝑖,𝑗)∈𝐸

𝐶𝑖𝑗𝑥𝑖𝑗 +
∑
𝑗∈𝑉

𝐶̃𝑗𝑦𝑗

)
(19)

subject to∑
𝑗∈𝑁0

𝑥0𝑗 = 1, (20)

∑
𝑖∈𝑁𝑛+1

𝑥𝑖,𝑛+1 = 1, (21)

∑
𝑖∈𝑁𝑗

𝑥𝑖𝑗 −
∑
𝑘∈𝑁𝑗

𝑥𝑗𝑘= 0, 𝑗 ∈ 𝑉 , (22)

𝑈
∑

(𝑖,𝑗)∈𝐸
𝐷𝑖𝑗𝑥𝑖𝑗 +

∑
𝑗∈𝑉

𝑈̃𝑗𝑦𝑗 ≤𝐵, (23)

𝑦𝑗 =
∑
𝑖∈𝑁𝑗

𝑥𝑖𝑗 , 𝑗 ∈ 𝑉 , (24)

𝑧𝑗 ≤
∑
𝑖∈𝑆𝑗

𝑦𝑖, 𝑗 ∈ 𝑉 , (25)

𝑦𝑖 + 𝑧𝑖 ≤ 1, 𝑖 ∈ 𝑉 , (26)∑
(𝑖,𝑗)∈𝐸
𝑖,𝑗∈𝑆

𝑥𝑖𝑗 ≤ |𝑆|− 1, 𝑆 ⊆ 𝑉 ⧵ {𝑣0, 𝑣𝑛+1},2 ≤ |𝑆|, (27)

𝑦𝑖, 𝑧𝑖, 𝑥𝑖𝑗 ∈ {0,1}. (28)

In this formulation, (19) to (24) are corresponding to (4) through (6), and (9) to (11). Constraint (25) ensures that a node is 
considered covered when at least one of the nodes in its 𝑅-radius is visited. Constraint (26) plays the same role as (15). Constraint 
(27) states that we are looking for solutions without subtours. The size of 𝑆 ⊆ 𝑉 need not be limited from above, since 𝑣0 and 𝑣𝑛+1
are not included in the subsets of 𝑉 . Constraint (28) sets all the decision variables to be binary.

The mathematical formulation for CSP-FC uses the exact same equations as CTP-FC, except for taking (29) as the objective 
function, removing the battery constraint (23), and replacing (26) by (30) to ensure that all nodes are either directly visited or 
284

indirectly covered by visiting another node. Thus the mathematical formulation for CSP-FC is given by
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minimize
∑

(𝑖,𝑗)∈𝐸
𝐶𝑖𝑗𝑥𝑖𝑗 +

∑
𝑗∈𝑉

𝐶̃𝑗𝑦𝑗 (29)

subject to

𝑦𝑖 + 𝑧𝑖 = 1, 𝑖 ∈ 𝑉 , (30)

and (20)–(22), (24), (25), (27), and (28).

4. Adaptive metaheuristic algorithm

As mentioned in Section 2, CTP-VC is a generalization of CTP, which is an NP-hard problem. Therefore, heuristic-based methods 
are needed to solve this problem. Later in Section 5, we show CPU time for running experiments that confirm this. In this section, 
we describe the developed Adaptive Metaheuristic algorithm for CTP-VC, given in Algorithm 1, and its components.

Algorithm 1 Adaptive Metaheuristic algorithm for CTP-VC.

Require: maximum iterations 𝑖𝑚𝑎𝑥 , segment iterations 𝑖𝑠 , warm-up iterations 𝑖𝑤𝑢 , maximum non-improving iterations 𝑖𝑒𝑠𝑐 , objective function 𝑓 , heuristic set , initial 
heuristic weights ℎ,0

Ensure: 𝑠𝑏𝑒𝑠𝑡
Generate an initial solution 𝑠 as described in Section 4.2

𝑠𝑐 ← 𝑠, 𝑠𝑏𝑒𝑠𝑡 ← 𝑠

𝑖𝑛𝑖 ← 0 set iterations passed since 𝑠𝑏𝑒𝑠𝑡 was updated

for i = 1 to 𝑖𝑚𝑎𝑥 do

if i = 𝑖𝑤𝑢 then

Find 0 and 𝛾 as described in Section 4.5

else if i < 𝑖𝑤𝑝 then

𝑃 ← 𝑝𝑠

else

𝑖+1 ← 𝛾𝑖
end if

if 𝑖𝑛𝑖 ≥ 𝑖𝑒𝑠𝑐 then

𝑠𝑐 ← result of performing the escape algorithm from Section 4.6

𝑖𝑛𝑖 ← 0
end if

Select a heuristic ℎ̂ from  listed in Section 4.3based on ℎ,𝑖

𝑠𝑛𝑒𝑤 ← result of applying ℎ̂ on 𝑠𝑐 .
if 𝑠𝑛𝑒𝑤 is feasible then

Δ𝐸← 𝑓 (𝑠𝑛𝑒𝑤) − 𝑓 (𝑠𝑐 )
if acceptance criteria from Section 4.5is met then

𝑠𝑐 = 𝑠𝑛𝑒𝑤
if 𝑓 (𝑠𝑛𝑒𝑤) > 𝑓 (𝑠𝑏𝑒𝑠𝑡) then

𝑠𝑏𝑒𝑠𝑡 ← 𝑠𝑛𝑒𝑤 , 𝑖𝑛𝑖 ← 0
else

𝑖𝑛𝑖 ← 𝑖𝑛𝑖 + 1
if 𝑖 < 𝑖𝑤𝑢 then

store Δ𝐸
end if

end if

end if

Update 𝜋ℎ,𝑖 according to Table 3

end if

if iterations in a segment is ended then

update heuristic weights 𝑖,ℎ as described in Section 4.4

end if

end for

4.1. Solution representation

There are three concurrent decisions to be made when solving the CTP-VC problem. Namely the set of nodes to be visited, the 
order in which they are visited, and the duration of stay in each node. The solution representation is designed to consider the three 
decisions in two vectors. The first vector reflects the first two decisions, while the second shows the values corresponding to the third 
decision.

The first vector has size 𝑛 + 1 and presents the nodes the vehicle visits in the order of their visit, followed by a separator and 
the nodes that are not visited. The number of nodes that the vehicle visits is 𝑛𝑣. Note that the nodes that come after the separator, 
i.e., unvisited nodes, might be covered or not, depending on the duration of stay in the visited nodes and their distance from the 
unvisited node in question. The second vector has the size 𝑛𝑣, and is concerned with how many time steps the vehicle stays in each 
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node it visits. When the dependence of the radius of coverage and the duration of stay is described using (1), the possible values 
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Fig. 1. A sample solution.

Table 2

Heuristics.

Heuristic number Description

H1 Shaw remove and Insert greedy with the best duration

H2 Shaw remove and Insert greedy with zero duration

H3 Random remove and Insert greedy with the best duration

H4 Random remove and Insert greedy with zero duration

H5 Worst remove and Insert greedy with the best duration

H3 Worst remove and Insert greedy with zero duration

H7 Improve duration greedy

H8 Improve duration by 1 time step

for the entries of this vector are integers between 0 and ⌊(𝑅 − 𝛽)∕(𝛼Δ𝑇 )⌋. An example of a solution is given in Fig. 1, for which the 
solution representation consists of the two vectors [5,8,9,2,4,7,𝑋,6,3,1] and [0,5,3,0,0,0].

4.2. Initial solution

The algorithm starts with a feasible initial solution which is obtained by clustering nodes using the k-means method and adding 
the nodes closest to the centers of clusters to the visiting path (as many as feasibility allows). The initial values for the duration of 
stay for these nodes are set to zero. The number of clusters is chosen as the best number between two and min{𝑛, 10}, according 
to the silhouette analysis [61]. The silhouette analysis attempts to find the optimal number of clusters in a data set. The silhouette 
coefficient or silhouette score is a measure of similarity of a data point within-cluster, compared to other clusters. In our analysis, 
we set the number of clusters, 𝑘 to each value in the range two to min{𝑛, 10} and compute this coefficient for all data points in the 
solution of the k-means method. The average value of silhouette coefficients is a measure of goodness for the clustering for a specific 
value of 𝑘. Finally, the 𝑘 which yields a clustering with the largest average silhouette score is picked and used to generate the initial 
solution.

4.3. Heuristics

There are eight heuristics that are designed to alter the solutions at each iteration of the algorithm. Each of them works on chang-

ing the solution either in the visiting path or the duration of stay at nodes or both vectors. The first six heuristics are combinations of 
one removal and one insertion heuristic. They first choose a random integer, 𝑞, between 2 and 5, then use their removal heuristic to 
remove 𝑞 nodes from the incumbent solution, and finally insert the 𝑞 nodes using their insertion heuristic. An overview of the eight 
heuristics is given in Table 2.

4.3.1. Random remove

This heuristic chooses 𝑞 random nodes from the first part of the solution representation and removes them from the solution. In 
case any of the nodes on the visiting path are to be removed, their corresponding stay duration elements are also removed.

4.3.2. Shaw remove

This removal heuristic is inspired by the one introduced by Shaw [62,63]. Here we attempt to remove 𝑞 similar nodes, measured 
by their distance in this problem. We start by selecting one random node to be removed, let us call it 𝑣𝑠. Then we sort the nodes 
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based on their proximity to 𝑣𝑠 and call this list 𝐿.
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Table 3

Scoring system.

Score Condition

1 If the heuristic yields a feasible solution

2 If the solution produced by the heuristic is accepted according to acceptance criteria

4 If the heuristic has produced a solution that has a larger objective value than the incumbent solution

We choose a random number 𝑦 ∈ [0, 1) and consider a randomization parameter 𝑝 = 6 to avoid repeating the same sequences and 
introduce randomness in the process. We choose the node in the position 𝑦𝑝|𝐿| in 𝐿 to add to the list of nodes we want to remove. 
This process continues until 𝑞 nodes are chosen to be removed. Finally, the chosen nodes are removed from the solution and in case 
they had been on the visiting path before removal, their corresponding duration of stay elements are also removed.

4.3.3. Worst remove

This removal heuristic removes 𝑞 different nodes based on the change in the objective function when they are removed from their 
respective positions in the incumbent solution, i.e. 𝑐𝑜𝑠𝑡(𝑖, 𝑠) = 𝑓 (𝑠) −𝑓 (𝑠′), where 𝑓 is the objective function, 𝑠 the incumbent solution 
and 𝑠′ the solution obtained by removing node 𝑖 from 𝑠. This means the nodes which result in the highest cost for the incumbent 
solutions are most likely to be removed. However, this removal is randomized in the same way as Section 4.3.2, with sorting the 
nodes and choosing a random number that determines the node to be removed.

4.3.4. Insert greedy with the best duration

This heuristic aims to insert the removed nodes into a non-complete solution, in order to gain the most possible benefit to the 
objective function. We insert one node at a time at the position which is the least costly to the objective function. The chosen node 
is the one that increases the objective function the most. If this location is on the visiting path for the vehicle, the best duration of 
stay for the said node is also set, with the same algorithm as in Section 4.3.6.

4.3.5. Insert greedy with zero duration of stay

This heuristic is a special case of heuristic in Section 4.3.4. Here, if the inserted node is on the visiting path, the duration of stay 
at the node is set to zero.

4.3.6. Improve duration greedy

This heuristic chooses one random node in the visiting path, and for this specific node, changes the duration of stay to the best 
possible value, while keeping other parts of the solution. In other words, if by increasing the stay duration the benefit of covering 
the additional nodes compensates for the additional staying cost, changes the staying duration to such value that gains the most in 
the objective function, and vice versa in case of decreasing staying duration.

4.3.7. Improve duration by 1 time step
This heuristic works in the same manner as the one in Section 4.3.6, except that it attempts a change of one time step. Here we 

choose a random node in the visiting path and change the duration of stay in it by only one time step so that it benefits the objective 
function the most. If neither increasing nor decreasing the duration of stay by one time step is beneficial, the duration remains the 
same as before.

4.4. Adaptive weight adjustment

At each iteration of the algorithm, one heuristic is chosen to act upon the incumbent solution. The selection is based on the 
roulette wheel selection [64] method. The probability with which each heuristic is selected is 𝑃ℎ,𝑖 defined as

𝑃ℎ,𝑖 =
ℎ,𝑖∑
𝑔∈ 𝑔,𝑖

,

where  is the set of available heuristics, and ℎ,𝑖 denotes the weight of heuristic ℎ at segment 𝑖.
This weight depends on its performance in the previous iterations [41]. For this reason, we will divide the iterations into segments, 

and when one segment of iterations is over and the scores of heuristics have been collected, update these weights using

ℎ,(𝑖+1) = (1 − 𝑟)ℎ,𝑖 + 𝑟
𝜋ℎ,𝑖

𝜃ℎ,𝑖
,

where 𝑟 is the reaction factor which determines how much the change in performance of a heuristic in the recent segment is reflected 
in its weight in the next segment. 𝜋ℎ,𝑖 show the score that heuristic ℎ has gained during segment 𝑖 and 𝜃ℎ,𝑖 is the number of times the 
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heuristic ℎ is used during segment 𝑖. The scoring system used in this study is given in Table 3.
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4.5. Acceptance criteria and stopping condition

The stopping criterion is reaching the maximum number of iterations. When a new solution is obtained using a heuristic, we 
need to decide whether or not we should update our incumbent solution. If we accept any new solution irrespective of its objective, 
we would end up with Random Search. On the other hand, in case we only accept solutions that improve objective function, we are 
performing a Local Search.

By introducing the acceptance criteria of Simulated Annealing [65] we begin our search in the solution space by a larger probabil-

ity of accepting new worse solutions and as the iterations increase, we move towards more intensification. This can be implemented 
using the cooling schedule suggested in [66], whereby the probability of acceptance of a solution 𝑠′ when the incumbent solution is 
𝑠, with 𝑓 (𝑠′) ≤ 𝑓 (𝑠) is given by Boltzmann probability, exp((𝑓 (𝑠′) − 𝑓 (𝑠))∕ where 𝑓 is the objective function and the temperature, 
is updated each iteration 𝑖 by 𝑖+1 = 𝛾𝑖.

The cooling schedule should start by setting the temperature to a starting temperature, 0. Moreover, the cooling rate 𝛾 should be 
determined. Here we have used warm-up iterations in order to set a baseline. In these iterations, the acceptance probability is a fixed 
𝑝𝑠 = 0.8 and we keep account of Δ𝐸 = 𝑓 (𝑠′) − 𝑓 (𝑠) whenever 𝑓 (𝑠′) ≤ 𝑓 (𝑠). Then the starting temperature, 0, is computed as

0 =
Δ𝐸
ln(𝑝𝑠)

,

where Δ𝐸 is the average of Δ𝐸 over the iterations in the warm-up phase. To compute the cooling rate, we consider the final 
temperature, 𝑓 = 0.1 which is the desired temperature by the last iteration. Thus 𝛾 can be obtained using

𝛾 =
(
𝑓

0

) 1
𝑖𝑐𝑑

,

where cool down iterations, 𝑖𝑐𝑑 , is the difference of maximum iterations and warm-up iterations, 𝑖𝑐𝑑 = 𝑖𝑚𝑎𝑥 − 𝑖𝑤𝑢.

4.6. Escape algorithm

In order to prevent the algorithm to get stuck in a local optimum point, especially when the nodes are spread out in an instance, 
an escape heuristic is introduced. It is called to act upon the incumbent solution whenever the algorithm has not improved the 
best solution for 500 iterations. Its objective is to introduce new solutions that can potentially lead to an improved overall solution, 
thereby enhancing the algorithm’s robustness. This serves as an additional diversification component within the algorithm. This 
heuristic essentially forces 𝑞 nodes to be added to the visiting path, in the best possible positions, and with a duration of stay of 0.

5. Computational experiments

In this section, we describe the conducted computational experiments in Section 5.1, and give their results in Section 5.2.

We use a time limit of 10000 seconds whenever we run the exact solver on an instance. We set the inputs of Algorithm 1 as 
follows. Maximum number of iterations 𝑖𝑚𝑎𝑥 = 10000, segment iterations 𝑖𝑠 = 100, warm-up iterations 𝑖𝑤𝑢 = 100, maximum non-

improving iterations 𝑖𝑒𝑠𝑐 = 500, and initial heuristic weights ℎ,0 = 1∕|| are uniform among all given heuristics. The parameters 𝑝, 
𝑟, 𝑝𝑠, and 𝑇𝑓 undergo a process of parameter tuning to determine appropriate values. The complete range of combinations, including 
𝑝 ∈ {5, 6, 7, 8}, 𝑟 ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, 𝑝𝑠 ∈ {0.75, 0.8, 0.85}, and 𝑇𝑓 ∈ {0.001, 0.01, 0.1}, is exhaustively tested using 30 validation 
instances. Through this analysis, the optimal parameter values are identified as (𝑝, 𝑟, 𝑝𝑠, 𝑇𝑓 ) = (6, 0.2, 0.8, 0.1).

The computational experiments consist of four parts, and we use three instance sets described in Section 5.1 to conduct them. 
Section 5.2.1 discusses the extent to which the varying coverage improves the solutions compared with the case of fixed coverage, 
with three values for 𝑅 > 0. To that end, CTP-VC, CTP-FC, CSP-VC, and CSP-FC are solved for instances in the instance set 1. In 
Section 5.2.2 the performance of Adaptive Metaheuristic 1 is demonstrated by solving CTP-VC on instances in instance sets 1 to 
3. Instances of size 20 from instance set 1 are solved in Section 5.2.3 and Section 5.2.4. In Section 5.2.3 the effect of parameters 
representing battery consumption and battery capacity, as well as the ones relevant to varying coverage, is studied. In Section 5.2.4

we discuss how much can be gained when the varying coverage is incorporated into the classical fashion in which the AUVs take 
measurements.

5.1. Instance sets

There are three sets of instances used in this study to look into the different features of the problem and demonstrate the 
performance of the proposed Adaptive Metaheuristic algorithm. The aim of studying the first set is to form a baseline for solving the 
problem and identify the limits of solving the problem with an exact method. However, in practice, we normally encounter instances 
with a very large number of nodes. Thus in the second set, we increase the number of nodes in instances without changing other 
parameters. Since we reach the limits of the exact solver in the first instance set, this set also acts as an indicator of the performance 
of the Adaptive Metaheuristic Algorithm 1 in terms of running time and solution quality when increasing the size of the problem. 
Finally, the third set includes instances that are derived from the application that has formed our inspiration, and we utilize the 
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developed algorithm in a real-world case study.
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Fig. 2. Map of the monitoring area location.

For all the instance sets, the graph is considered to be complete, since the possibility of existing obstacles in the ocean is small. 
The end point is set to be the same as the start point for all instances.

Instance set 1 contains instances with size 𝑛 = 5, 6, … , 20. For each size, 5 different instances are generated by setting the origin 
as the start and end point of the vehicle’s planned mission and choosing 𝑛 locations uniformly at random in a 50 × 50 area. Further, 
𝐶̂𝑖 for each node is a random integer between 0 and 10, and 𝑊𝑖 is a random integer between 1 and 100. The baseline values for the 
remaining parameters are 𝐶𝑖𝑗 =𝐷𝑖𝑗 , 𝛼 = 1.5, 𝛽 = 0, 𝑅 = 15, 𝐵 = 400, 𝑠𝑝 = 1, 𝜔 = 1, 𝑈 = 2, and 𝑈̂ = 1. This set comprises a total of 80
instances.

Instance set 2 is made up of instances with sizes 𝑛 = 50, 100, 150, 200, 250. For each size 5 instances are generated. In total, this 
set consists of 25 instances. We generate instances in this set in the same way as instance set 1.

Instance set 3 contains 5 instances per each size, with 𝑛 = 50, 100, 150, 200, 250. The area is located in the western Gulf of 
Mexico, just outside of Galveston Bay, see Fig. 2.

The probability for leakage in the area indicated in Fig. 2 has been obtained from geological risk mapping, which is a part of the 
ACTOM1 toolbox, for details see [67,68]. The nodes are randomly chosen from this probability distribution, and their importance is 
taken to be proportional to the probability of leakage. The time step Δ𝑇 is set to 6 minutes, and distance is measured in meters. As for 
the AUV-related parameters, we use those of a double-hull Sabertooth.2 A double-hull Sabertooth has the forward speed of 4 knots, 
which gives 𝑠𝑝 = 740.8 m∕Δ𝑇 . It has battery capacity of 30 kWh and the endurance of 14 h. From this, we estimate the battery usage 
while moving as 𝑈 = 2.89 ×10−4kWh∕m and while staying as 𝑈̂ = 2.14 ×10−2kWh∕Δ𝑇 . The latter is obtained as 10% of 𝑈 recalculated 
in kWh∕Δ𝑇 units with 𝑠𝑝 given above.

The varying cover, 𝑟(𝑡), is based on simulations of gas seep in the Gulf of Mexico [67,68], see Fig. 2. Transport and dilution of 
CO2 from 75 seep locations were simulated, based on current conditions from a General Circulation Model (GCM) hindcast for the 
Gulf of Mexico [69]. We neglect the anisotropy in the resulting footprints and calculate the average increase in CO2 concentration as 
a function of distance to the source for the seeps, Δ𝜇(𝑟). From standard power analysis, we can estimate how many measurements, 
𝑁𝑚(𝑟), we need at a given distance 𝑟 from the source, to reject the null hypothesis that there is no seep in the area, i.e., 𝐻0 ∶ Δ𝜇(𝑟) = 0, 
i.e., no seep present, as opposed to the alternative 𝐻1 ∶ Δ𝜇(𝑟) ≠ 0, there is a seep nearby:

𝑁𝑚(𝑟) =

(
𝑍1−(T-I)∕2+𝑍1−(T-II)(

Δ𝜇(𝑟)
𝜎(𝑟)

)
)2

, (31)

where 𝑍1−(T-I)∕2 = 1.96 and 𝑍1−(T-II) = 0.84. Here we have used T-I and T-II instead of the commonly used 𝛼 and 𝛽, representing Type 
I and Type II errors in statistical hypothesis testing, in order to distinguish them from the notation used in (1). Thus 𝑍1−(T-I)∕2 and 
𝑍1−(T-II) are the values from the normal distribution reflecting the confidence levels for, respectively, avoiding type I (wrongfully 
rejecting 𝐻0) and type II (failing to reject it) errors. We have used the frequently used T-I = 0.95 and T-II = 0.8.

1 https://actom .w .uib .no.
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2 https://www .saabseaeye .com /solutions /underwater -vehicles /sabertooth -double -hull.

https://actom.w.uib.no
https://www.saabseaeye.com/solutions/underwater-vehicles/sabertooth-double-hull


Applied Mathematical Modelling 124 (2023) 279–299P. Torabi, A. Oleynik, A. Hemmati et al.

Fig. 3. Radius of coverage as a function of number of measurements, an indirect time.

For 𝜎 we have used the standard deviation in measured variability of CO2 concentration from the GOMECC-1 cruise, 𝜎 =
41 μmol/kg𝑠𝑤 [70]. Since the transport simulations are non-dimensionalized, we scaled 𝑁𝑚(𝑟0) = 1, with 𝑟0 = 25 m, i.e. the flux 
rate is high enough for a leak to be detected immediately if a measurement is taken within the 25 m radius distance from the source.

We set 𝑅 = 120 m, and removed the outliers. Then the data was fitted to a linear function using the Least Squares method. See 
Fig. 3, in which the points indicated by dots are obtained from the GCM simulations and (31). The outlier, shown in orange, was 
neglected in the linear least square fitting of the straight line, 𝑟(𝑁𝑚) = 0.45𝑁𝑚 − 11.97. We obtain 𝑟(𝑡) as in (1) with 𝛼 = 2.24 m∕Δ𝑇
and 𝛽 = 26.83 m. The values are rounded off to two decimals. The other parameters are set as 𝐶𝑖𝑗 = 740 ×𝐷𝑖𝑗 , 𝐶̂ = 1, and 𝜔 = 100.

5.2. Computational results

Here the computational results are given for the four categories of experiments described in Section 5. For experiments in 
Section 5.2.1, all instances in instance set 1 are attempted to be solved using Gurobi 9.5.0, with the time limit set to 10000 seconds. 
For some instances, no feasible solution was found for CSP-VC using Gurobi. Thus, the Adaptive Metaheuristic was adjusted to this 
problem and run for the instances to report non-trivial solutions. The given results are obtained using Gurobi for CTP-FC and CSP-FC, 
and the best-known solution between Gurobi and Adaptive Metaheuristic for CTP-VC and CSP-VC.

In Section 5.2.2 all instances are attempted to be solved using Gurobi with a time limit of 10000 seconds. Some of these attempts 
result in reaching the time limit in instance set 1, and all of them in instance sets 2 and 3 terminate due to memory issues and do 
not return any feasible solutions. Therefore, we use a constructive heuristic as a baseline for instance sets 2 and 3. All instances are 
solved using the Adaptive Metaheuristic and the performance is compared to baseline values.

Section 5.2.3 describes the effect of changing a few parameters on solutions, and since the number of different experiments is very 
large, 410 experiments run in total, the Adaptive Metaheuristic 1 is used to run these experiments. In Section 5.2.4 we investigate 
the gained collected importance or saved costs, when in the process of data-gathering, we choose to have repeated measurements in 
a place, incorporating the varying coverage.

5.2.1. Effect of the varying coverage

For any 𝑅 ≤ 15, an optimal solution of a problem (CTP or CSP) with fixed coverage is a feasible solution of the problem with 
varying coverage. Thus, the objective value for CTP-VC is always greater than or equal to that of CTP-FC. Similarly, the objective 
value for CSP-VC is less or equal to the objective value of CSP-FC.

Here we investigate how much more gain is obtained by CTP-VC and how much cost is saved by CSP-VC. We also touch upon the 
CPU time used by the exact solver for finding the solutions.

Let 𝑓𝑇
𝑉

be the objective value of the best-known solution of CTP-VC in (4) with 𝑅 = 15, and 𝑓𝑇
𝐹 ,𝑅

the objective value of the solution 
of CTP-FC in (19) with fixed 𝑅 ∈ {5, 10, 15}. Similarly, 𝑓𝑆

𝑉
is the objective value of the solution of CSP-VC defined in (17), and 𝑓𝑆

𝐹 ,𝑅

is the objective value of the solution of CSP-FC given in (29) with 𝑅 ∈ {5, 10, 15}.

For each instance, the percentage improvement in objective function when CTP-VC is used instead of CTP-FC is defined as

𝑇
𝑓𝑇
𝑉
− 𝑓𝑇

𝐹 ,𝑅
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Λ
𝑅
=

𝑓𝑇
𝐹 ,𝑅

× 100%, 𝑅 = 5,10,15.



Applied Mathematical Modelling 124 (2023) 279–299P. Torabi, A. Oleynik, A. Hemmati et al.

Fig. 4. Improvement of objective value, when using varying coverage instead of fixed coverage, with different values of R.

When comparing CSP-VC and CSP-FC with the minimizing objective function, the improvement in the objective value is defined 
as

Λ𝑆
𝑅
= −

𝑓𝑆
𝑉
− 𝑓𝑆

𝐹 ,𝑅

𝑓𝑆
𝐹 ,𝑅

× 100%, 𝑅 = 5,10,15.

As expected, both CTP and CSP with VC outperform the corresponding problem with FC for all instances, for any of the three 
tested values for 𝑅.

The Λ𝑇
𝑅

values for instances in instance set 1 are given in Fig. 4a. On average, CTP-VC yields objective values that are 43.1% 
more than CTP-FC with 𝑅 = 5. The corresponding average improvement for the case of 𝑅 = 10 and 𝑅 = 15 are 39.3% and 35.3%, 
respectively. While we cannot make a general statement about the objective values of CTP-FC with different values of 𝑅 for every 
individual instance, under the implicit assumption that the cost of staying is relatively low and there is a greater emphasis on the 
node coverage than the cost, it is expected that increasing 𝑅 will lead to an increase in the objective value. This trend is observed 
when averaging over all instances in instance set 1, as the average improvement resulted from the varying coverage decreases with 
increasing 𝑅 values, indicating that with fixed coverage, the larger 𝑅 results in better objective values.

The values of Λ𝑆
𝑅

are shown in Fig. 4b. Taking the average over all instances in instance set 1, CSP-VC gives objective values that 
are 45.4%, 45.4%, and 41.6% less than the ones obtained from CSP-FC with 𝑅 = 5, 10, 15, respectively. The CSP-FC performs slightly 
better with the larger value of 𝑅 when considering average improvements.

It is worth noting the average CPU time taken for Gurobi to solve the instances of CTP and CSP with both varying coverage and 
fixed coverage, for the same value of 𝑅, given in Table 4. As expected, the varying coverage immensely affects the complexity of the 
problem and thus the CPU time. This confirms the necessity of approaching this problem with heuristics, see Section 4. We discuss 
the effectiveness of Algorithm 1 in Section 5.2.2.

5.2.2. Effectiveness of the adaptive metaheuristic

Here we focus on solving our original problem, namely CTP-VC. The exact solver is run to solve this problem using the mathemat-

ical model with Gurobi for all instances in all instance sets. While the exact solver yielded solutions for the first instance set, optimal 
or otherwise, it ran out of memory for all instances in instance sets 2 and 3 and was not able to find any feasible solutions. Thus, we 
use a constructive heuristic as the baseline for these two sets and bring the results separately. We call the constructive heuristic LKH 
& Radius Improvement.

The Adaptive Metaheuristic Algorithm 1 was run 10 times with different random seeds for each problem instance. The objective 
value from each run and average CPU time over the 10 runs have been reported. We calculate two measures for each of the instances. 
The best-known objective value and the Gap to Best Known. The best-known objective value is the maximum of all the 10 objective 
values and the objective value from the exact solver if existing. Gap to Best Known is defined as GBK = −(𝑓 (𝑠) − 𝑓 (𝑏𝑘))∕𝑓 (𝑏𝑘), where 
𝑓 is the objective function evaluated in the solution 𝑠 of a single run of Adaptive Metaheuristic, and 𝑓 (𝑏𝑘) is the best-known objective 
value for the instance. The averages over 5 instances per size of the minimum and average of GBK for instance set 1 as well as the 
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results of the exact solver are given in Table 5.
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Table 4

Average CPU time for exact solver on CSP and CTP for each size.

Problem 
Size

CTP CSP

Fixed Coverage 
seconds

Varying Coverage 
seconds

Fixed Coverage 
seconds

Varying Coverage 
seconds

5 0.04 29.68 0.23 32.63

6 0.05 67.98 0.04 57.51

7 0.05 99.37 0.04 110.80

8 0.07 270.86 0.09 176.48

9 0.09 275.19 0.10 480.92

10 0.19 690.52 0.18 531.14

11 0.30 699.80 0.29 749.85

12 0.49 2149.85 0.81 1849.92

13 1.05 2515.60 1.18 3139.95

14 3.18 3878.06 4.04 7420.64

15 9.42 5641.09 8.93 7012.44

16 22.18 6659.05 30.17 8605.37

17 48.01 4781.51 58.77 6761.19

18 183.63 8571.05 122.95 6505.32

19 229.65 9813.56 255.04 8736.40

20 1060.36 9266.68 580.06 8963.39

Table 5

Average results for instance set 1.

Problem 
Set

#nodes Exact Solver Adaptive Metaheuristic

Duality 
Gap (%)

Gap to Best 
Known (%)

Seconds Minimim Gap to 
Best Known (%)

Average Gap to 
Best Known (%)

Seconds

1

5 0 0 50.4 0 0 9.61

6 0.86 0 218.1 0 0 9.96

7 0 0 93.9 0 0 10.82

8 0 0 395.8 0 0 11.32

9 0 0 569.2 0 0 12.98

10 0 0 498.2 0 0 12.18

11 0 0 931.1 0 0 11.69

12 0 0 2822.4 0 0 13.82

13 0 0 3796.9 0 0 14.71

14 0 0 2434.5 0 0 14.95

15 1.66 0.56 6258.3 0 0 14.03

16 17.87 8.36 5928.6 0 0 18.78

17 0 0 5528.0 0 0.03 16.36

18 4.45 2.27 8566.2 0 0.83 16.50

19 0.53 0.26 7031.7 0 0.33 17.35

20 3.41 0.66 7501.0 0 0.04 18.74

Attempting to solve the problem using the exact solver, we see that for the first set, the optimal solution is found in small sizes, 
but with increasing size, it tends to reach the time limit without reaching the optimal solution. In particular, of the 5 instance of each 
size, one instance with size 6, one instance with size 15, two instances with size 16, 3 instances with size 18, one instance with size 
19, and three instances with size 20 are not solved to optimality. From the results, we report the average Duality Gap for 5 instances 
per size.

For the instances of size 5 through 14 and size 17, the exact solver reaches the best-known solution, but beyond this size, the 
Adaptive Metaheuristic Algorithm 1 outperforms the exact solver. The average results for this set are given in Table 5.

As mentioned at the beginning of this section, we are unable to get solutions from the exact solver for instance sets 2 and 3. 
Instead, we use a constructive heuristic called LKH & Radius Improvement as a baseline for our heuristic. This heuristic makes 
decisions on the tour and the duration of stay in each node consecutively. We first solve a TSP using Lin-Kernighan heuristic [71]

implemented by Keld Helsgaun (LKH) [72]. Next, we optimize the duration of stay in each node by running a loop through all the 
nodes in the TSP tour. This step aims to remove some nodes from the tour and cover them with the least possible cost. The algorithm 
takes care of the feasibility of solutions, considering battery capacity and unnecessary node coverage. While this algorithm is not 
expected to reach an optimal solution, it can provide a lower bound. The averages over 5 instances per size of the minimum and 
average of GBK for instance sets 2 and 3 are given in Table 6.

The solutions of two instances in instance sets 1 and 2 are shown in Fig. 5. The background color is an indicator of the importance 
of each point, particularly the nodes. The circles show the coverage of each node. The solution for one instance in instance set 3 with 
100 nodes is shown in Fig. 6. Since the area is very large, we have zoomed in on one part of the tour. Moreover, to distinguish the 
different coverage radius values, the coverage area for the nodes in which the duration of stay is non-zero is shown with a thicker 
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line-width.
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Table 6

Average results for instance sets 2 and 3.

Problem 
Set

#nodes LKH & Radius Improvement Adaptive Metaheuristic

Gap to Best 
Known (%)

Seconds Minimim Gap to 
Best Known (%)

Average Gap to 
Best Known (%)

Seconds

2

50 10.01 13.90 0 1.18 19.32

100 12.03 32.52 0 1.55 28.34

150 7.95 43.57 0 1.53 30.60

200 11.63 48.47 0 1.71 46.94

250 14.29 103.67 0 1.81 40.65

3

50 65.98 144.64 0 0.24 69.09

100 82.20 154.65 0 0.18 127.89

150 84.52 171.35 0 0.30 183.89

200 79.73 176.67 0 0.80 227.81

250 87.30 206.24 0 1.12 302.02

Fig. 5. The solution shown in Figure (a) traverses four nodes with a duration of stay [4,0,10,0]. The solution shown in Figure (b) traverses the 12 nodes with a 
duration of stay [9,8,10,0,0,0,0,0,0,0,0,10]. The color bar represents the importance of the nodes.

5.2.3. Impacts of parameter changes on the solutions

Here we investigate how different parameters impact the solution of CTP-VC. In particular, we focus on the covering radius, that 
is, 𝛼 and 𝑅, and the battery consumption 𝑈∕𝑈̂ and 𝐵. We use the instances with size 20 from instance set 1, and the baseline values 
𝛼 = 1.5, 𝑅 = 15, 𝑈 = 2, 𝑈̂ = 1, 𝐵 = 400 which we mark in boldface further on.

First, we consider the parameters associated with the radius. The 𝑅 parameter represents the maximum coverage radius of the 
moving vehicle, in our application the maximum coverage of the sensors. It directly affects the solution in the sense of determining 
the maximum duration of stay in each node, 𝑡𝑚𝑎𝑥. It is obvious that an increase in the value of this parameter can only improve the 
objective value, since CTP-VC provides flexibility for the duration of stay. Therefore, if given more freedom to choose the value for 
this variable, i.e. given a larger 𝑅 value, in the worst-case scenario, it will obtain a solution with the duration of stay less than 𝑡𝑚𝑎𝑥
in all the nodes.

When considering the linear function (1) to describe 𝑅, we can look into the effect of 𝛼 on the solution. However, changing 𝛼
when keeping the 𝑅 value constant implies changing 𝑡𝑚𝑎𝑥 indirectly. Thus it is more convenient to consider the independent values, 
𝛼 and 𝑡𝑚𝑎𝑥, and determine 𝑅 based on them for each experiment using (1).

We consider the values {1, 1.2, 1.4, 1.5, 1.6, 1.8, 2} for 𝛼 and {10, 12, 14, 16, 18, 20} for 𝑡𝑚𝑎𝑥 and solve the problem for all the combi-

nations of these values. The average improvement of the objective value over baseline for 5 instances is given in Fig. 7. It can be seen 
that for any fixed 𝛼, with increasing 𝑡𝑚𝑎𝑥 by two time steps, the objective value is improved by 1% on average. This is equivalent to 
an increment in 𝑅 value, keeping 𝛼 constant, discussed above. Similarly, when 𝛼 is increased by 0.2 with a fixed value of 𝑡𝑚𝑎𝑥, the 
objective value is improved by 1% on average. The improvement is expected, since the radius of coverage increases without imposing 
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any additional costs for a longer duration of stay.
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Fig. 6. The solution of an instance with 100 nodes, in the area shown in Fig. 2. Circles with larger line-width indicate a non-zero duration of stay.

Fig. 7. Average percentage change in the objective function compared to baseline values, when varying 𝛼.

Next, we investigate the parameters related to the battery. Here we focus on two parameters, namely the battery capacity of the 
vehicle, 𝐵, and the battery consumption while moving proportioned to when the vehicle stays in a place, 𝑈∕𝑈̂ . Different parameter 
values taken into account are {360, 370, 380, 390, 400, 410, 420, 430} for 𝐵 and {1, 1.5, 2, 2.5, 3} for 𝑈 when keeping 𝑈̂ = 1. In Fig. 8

can be seen that if 𝑈 is decreased from the baseline value by 0.5 a unit, the solution is independent of the 𝐵 value which indicates 
that for these values in the tested instances, the constraint on battery limitation is non-binding. When increasing 𝑈 and keeping 𝐵
constant, the objective function clearly declines, since it becomes increasingly more costly, in terms of battery usage, to move among 
nodes. On average, by increasing 𝑈 by 0.5 a unit, the objective value declines by 4.6%. Changing the battery capacity of the vehicle, 
the improvement in the objective value highly relies on the value for the battery usage while moving and is on average 0.62% for 10
units increase in the capacity.

5.2.4. Implications for monitoring: insights from the study

Here we demonstrate the improvement that the varying coverage can make on the monitoring, both in terms of cost and coverage. 
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We show the results on instances of size 20 from instance set 1. To this end, we consider CTP-FC, with 𝑅 = 0, i.e. when the AUV 
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Fig. 8. Average percentage change in the objective function compared to baseline values, when varying 𝑈 .

Table 7

Average percent improvements of CTP-VC over L-PTP.

Relative improvement ∞-Battery CTP-VC, 𝐵 =𝐵PTP
max

L-PTP, 𝐵 =𝐵VC
max

Objective-value 2.71 2.71 19.78

Cost of moving and staying 9.22 9.22 -7.23

Importance coverage of nodes 0.00 0.00 16.93

Battery consumption 13.92 — —

moves to pre-specified points and takes measurements that can only inform the monitoring operators about that specific location. This 
problem is essentially a Profitable Tour Problem with limited tour length. We call this problem L-PTP and compare its performance 
with CTP-VC.

We make this comparison under different assumptions. First, we remove the battery consumption constraint for both L-PTP and 
CTP-VC. In this case, the objective value for the CTP-VC solution improves on average by 2.71% compared to the L-PTP solution. The 
cost of moving and staying decreases by 9.22% and battery consumption by 13.92%. The total importance of covered or visited nodes 
remains the same for both cases. We notice that although both solutions covered the same monitoring area, the CTP-VC solution 
saves battery and requires less operational cost. An interesting observation is that both CTP-VC and L-PTP have partial coverage in 
the best-known solution for three of the tested instances. On average, 99.23% of the total sum of importance was collected. This might 
indicate an area too far away from the other points of interest, or with negligible importance that can be overlooked for the benefit 
of the objective. In Fig. 9a we display the improvement for each of the five instances. In Table 7, see the first column, we provide a 
summary of these, taking the average over instances.

In the setting above, the battery consumed by the solution of CTP-VC is denoted by 𝐵VC
max and the battery consumed by the solution 

of L-PTP is denoted by 𝐵PTP
max. We set the CTP-VC battery limit to 𝐵PTP

max. We observe that the improvements are the same as the first 
column, which is due to the fact that in the previous case, for all instances the battery consumption of CTP-VC was less than that of 
L-PTP. This makes this constraint non-binding for CTP-VC, and we get the exact same results as the first case. The results of this case 
are displayed in Fig. 9b. The average improvements of CTP-VC over L-PTP are reported in the second column of Table 7.

Finally, we restrict the battery consumption of L-PTP to 𝐵VC
max. We observe that the objective value and the total importance are 

improved by 19.78%, and 16.93%, respectively. At the same time, the cost of moving and staying is increased by 7.23%, see the third 
column in Table 7. This is expected as L-PTP now visits fewer nodes and thereby saves on cost. The improvement in the objective 
value here is more substantial compared to the previous two cases. However, this improvement is gained by covering larger areas 
rather than saving on costs. For detailed results of this case, see Fig. 9c.

This suggests that in the case the area required to be monitored is large, i.e., an AUV is unable to visit all nodes with the given 
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battery capacity, CTP-VC gives a better monitoring plan than a Profitable Tour Problem.
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Fig. 9. Improvement of CTP-VC over L-PTP in various battery capacity scenarios.

6. Conclusion

We have presented a generalized Covering Tour Problem by introducing stay-dependent varying coverage. This was motivated 
by offshore monitoring, in particular CCS, where varying coverage naturally appears due to the dispersion of pollutants in the 
ocean environment. Improvement of monitoring and sampling strategies is necessary in order to support CCS as a climate mitigation 
technology and to ensure the health of the ocean, and the CTP-CV is a step in that direction.

In this paper, we have formulated CTP-VC as an Integer Programming model and conducted numerical experiments. First, we 
investigated the impact of the varying coverage on a set of small-size instances, for which an exact solution was available in almost 
all cases. The flexibility provided by the varying coverage resulted in 41.7% improvement in the objective function, on average, 
compared to the case of fixed coverage. The cost of such an improvement was clearly indicated in the significant increase in the 
solving time.

Next, we considered large instance sizes for which the exact solver was unable to produce a feasible solution in a given time limit. 
In order to establish a baseline for such instances, we introduced a constructive heuristic, named LKH & Radius Improvement.

Finally, all the instances were solved using the Adaptive Metaheuristic, the method that we have developed inspired by ALNS 
[41]. The Adaptive Metaheuristic has shown promising results in terms of both the objective function and the CPU time. In particular, 
it reaches or surpasses the baseline objective values for all instances and shows robustness to embedded randomness. Moreover, the 
Adaptive Metaheuristic has shown to be a rather flexible method, meaning that it can be used not only for solving CTP-VC, but also 
for special cases, i.e. CTP-FC, CSP-VC, CSP-FC, and L-PTP, which we considered in our experiments in the paper.

It is worth mentioning that one set of large instances was based on the data from a CCS storage site in the Gulf of Mexico. For 
these instances, we modeled the expansion radius using a simplified transport model and the least squares fitting. This modeling 
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has been done assuming isotropic properties of CO2 dispersion. However, storage sites typically have quite different currents and 
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naturally occurring CO2 baseline characteristics. Thus, the CO2 dispersion, and consequently the varying coverage, could be modeled 
in a more realistic manner. The isotropic assumption could be lifted in further studies. This would complicate the mathematical 
formulation, but will not affect the metaheuristic significantly.

We have explored the impacts of parameter change, particularly the parameters related to the varying coverage and battery. The 
results show that the objective value improves with an increase in the maximum coverage and with the rate of coverage expansion, 
which is rather expected. In particular, when the rate of change in the coverage is fixed, 1% increment in the maximum covering 
distance results in 0.05% improvement in the objective function. The corresponding value when increasing the rate of change by 1%, 
with a fixed maximum duration of stay, is 0.1%. A similar analysis is done on the battery capacity and battery usage while moving. 
Not surprisingly, it indicates that decreasing battery capacity or increasing the battery usage rate both result in declined objective 
value. Particularly, an improvement of 0.06% can be seen in the objective value when decreasing the battery usage rate while moving 
by 1%, with a fixed battery capacity. When the battery capacity is improved by 1%, the objective value has 0.25% improvement.

The implications of varying coverage have been analyzed with respect to monitoring cost and the total area coverage. Most 
importantly, we have shown that a vehicle uses less battery to cover the same total importance area when the varying coverage is 
added to the model.

The model and metaheuristic could be developed even further by including multiple AUVs with different characteristics, intro-

ducing stationary or moving re-charging stations, or AUVs-carrying ship paths. These developments should however be done in 
close cooperation with operators and stakeholders. Finally, the applications of CTP-VC are not limited to marine monitoring. The 
tour design for mobile healthcare delivery systems or disaster relief teams could benefit from incorporating varying coverage in the 
planning process.
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