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Abstract
Studies assessing potential measures to counteract the marine deoxygenation attributed to
anthropogenic activities have been conducted in a few coastal environments and at regional scale,
but not yet on a global scale. One way toward global scale artificial oxygenation would be to use
oxygen produced as a by-product from hydrogen-production through electrolysis. The low-carbon
footprint renewable production of hydrogen from offshore wind energy offers such a possibility.
Here, we assessed the potential of this artificial oxygenation method on a global scale using a
coupled physical-biogeochemical numerical model. The anthropogenic oxygen source scenario
assumes worldwide adoption of hydrogen, considering demographic changes and the feasibility of
offshore wind turbine deployment. Following this scenario, artificial oxygenation had a negligible
effect on the overall oxygen inventory (an increase of 0.07%) but showed a reduction in the overall
volume of Oxygen Minimum Zones (OMZs) between 1.1% and 2.4%. Despite the decrease in the
mean OMZ volume globally, OMZs display distinct and contrasting regional patterns notably due
to the oxygen impacts on the nitrogen cycle. Artificial oxygenation can inhibit denitrification
resulting in a net gain of nitrate that promotes locally and remotely increased biological
productivity and consequent respiration. Increased respiration could ultimately lead to an oxygen
loss at and beyond injection sites as in the Tropical Pacific and Indian Ocean and particularly
expand the Bay of Bengal OMZ. In contrast, the tropical OMZ shrinkage in the Atlantic Ocean is
attributed to oxygen enrichment induced by advective transport into the OMZ, while the absence
of denitrification in this area precludes any biochemical feedback effect on oxygen levels. These
results suggest that the impacts of artificial oxygenation on oxygen concentrations and ecosystems
are highly non-linear. It can produce unexpected regional responses that can occur beyond the
injection sites which make them difficult to forecast.

1. Introduction

Oxygen availability is important to marine ecosys-
tems notably because of its control on biological
respiration and organic matter (OM) remineraliza-
tion. The dissolved oxygen (O2) supply to the ocean
occurs through atmospheric air–sea gas exchange
and release from photosynthesis [1]. While oxygen
is abundant in the upper ocean, vast zones of the

ocean display naturally low oxygen concentrations
known as Oxygen Minimum Zones (OMZs). These
OMZs occur in poorly ventilated areas, below pro-
ductive surface regions (between 200 and 600 m) and
are defined by O2 thresholds representing different
stress levels on the marine ecosystem. In this study,
we followed Bopp’s and Cocco’s definition [2, 3] with
thresholds defined as 80mmolm−3, 50mmolm−3

and 5mmolm−3, corresponding to distinctive effects
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on biogeochemistry (respectively oxygen stress for
marine organisms including Atlantic Ocean’s species,
hypoxia: a shortage of oxygen for life processes, and
suboxia: O2 conditions conducting to denitrification
and anaerobic ammonium oxidation). OMZs have
been shown to expand in the context of a global
ocean deoxygenation attributed to global changes
[4–8]. The upper ocean has lost 0.5%–3.3% of oxy-
gen since the 1970s [9]. Moreover, the deoxygena-
tion and OMZs expansion is expected to continue
throughout the 21st century. This additional deoxy-
genation taking place over the next 100 years is estim-
ated between 1%–7% of the current global invent-
ory according to ocean climate model projections
and different climatic scenarios [2, 10], but is poten-
tially underestimated according to the recent Coupled
Model Intercomparison Project (CMIP6) [11]. In
addition, decreasing marine O2 has been shown
to intensify marine hypoxia, thereby compressing
the habitat of aerobic organisms [12], influencing
biogeochemical processes (e.g. the remineralization
of OM and the nitrogen cycle, [13]) and ecosystem
diversity, leading to potentially severe socioeconomic
impacts [14].

Although the ultimate solution would be to
drastically reduce anthropic greenhouse gases (GHG)
and nutrient pollution, anthropogenic reoxygenation
has been proposed as a potential mean to mitig-
ate deoxygenation. Despite the uncertainties regard-
ing the origin of hypoxia, engineering methods have
been tested to mitigate their expansion (with mod-
eling and in-situ approaches) in some lakes [15]
and coastal marine environments, with contradictory
results [16]. For example, similar conceptual oxygen-
ation techniques (artificial downwelling of oxygen-
rich water) were carried out in two different regions
resulting in either an in situ deep water oxygen restor-
ation in the By Fjord [17] or amodeled Pacific desoxy-
genation and changes in biological activity beyond
the experimental sites [1].

An evaluation of the direct O2 injection effects
at global scale has, to our knowledge, never been
carried out. Thanks to the electrolysis of water used
to produce green hydrogen, which generates O2 as
a byproduct, the injection of O2 is now conceiv-
able at global scale into the ocean. Indeed, hydro-
gen produced by water electrolysis from renewable
energy (e.g. from offshore wind farms) is now widely
seen as green hydrogen given its low environmental
footprint [18] and has therefore been recently sub-
jected to high investment by developed countries
and foreseen to be widely used among the global
population.

The current study aims to assess the potential of
this anthropogenic oxygen (AO) injection into the
ocean and its environmental impact using a specific-
ally designed global scenario with a coupled physical-
biogeochemical model.

2. Experimental setup

2.1. Numerical models used
We used the Nucleus for European Modelling of
the Ocean (NEMO) platform (version 4.0). The
NEMO platform comprises an ocean dynamical
(NEMO-OCE in a ORCA2 configuration [19]), a
sea ice (NEMO-ICE) and a biogeochemical model
(NEMO-PISCES) to simulate the ocean at global
scale. The biogeochemical component, namedPelagic
Interaction Scheme for Carbon and Ecosystem
Studies (PISCES-v2), is an intermediate complexity
marine ecosystemmodel simulating themain biogeo-
chemical cycles and the first trophic levels. Four main
living compartments are simulated (two phytoplank-
ton and two zooplankton functional groups) as well
as detritus (including two size classes, small and large
organic particulate carbon (POC)), nutrients and O2

[20]. As an extensive description and validation of
the model has been published in [20], therefore only
the relevant parts of the model are recalled here.

In the model, air–sea O2 exchange is com-
puted using the commonly used Wanninkhof ’s
parameterization [21]. O2 concentration in the ocean
depends mostly on photosynthesis (O2 production)
and remineralization (O2 consumption) with a O2/C
Redfield ratio equal to 1.34 [22]. Denitrification pro-
cess (i.e. the use of the oxygen from nitrate (NO3)
when O2 concentration lower than 6 µM [23]) is
explicitly simulated in PISCES.

The relative complexity of the O2 cycle in the
NEMO-PISCES model results in good abilities to (i)
represent volumes of low oxygenated waters at global
scale [2] (figure C1(b)), and (ii) simulate a reasonable
mean state compared to other global biogeochemical
models [24, 25] used in CMIP. These good perform-
ances explain our choice of using the NEMO-PISCES
model for the present study.

2.2. Simulation setup
We used the PISCESmodel forced offline by an ocean
dynamical seasonal climatology as in [20]. Themodel
spatial horizontal resolution is 2◦ by 2◦ cosϕ (where
ϕ is the latitude) with a meridional resolution refined
to 0.5◦ near the equator. The vertical grid is com-
posed of 31 layers of widths varying between 10 m
near the surface to 500 m at depth. Prior to our
experiments, we have spun up the biogeochemical
model for 2000 years, starting from observed clima-
tologies for nutrients [26] and from uniform low
values for ecological tracers, until quasi-equilibrium
was reached. After this spin-up, 100 additional years
were simulated in two different configurations: (1)
a control simulation (CTRL) without AO perturba-
tion, (2) a simulation with an added AO (OXYBIO).
A third configuration, named OXYNOBIO, simulates
AO as a conservative passive tracer regardless of the
oxygen cycle, with the exact same source of AO than
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Figure 1. Spatial distribution of (a) annual anthropogenic oxygen flow injected by each station (see section 2.2) and

(b) anthropogenic oxygen stations (orange dots) with the ‘correspondence’ (R) between O
(OXYBIO−CTRL)
2 and OOXYNOBIO

2 in
background, where R∼0 : the dominance of AO dynamic transport over biological activity, R∼1 : the transport and the
biogeochemical processes are of similar importance, R>1 : the dominance of biological activity over dynamic transport (for more
details on the method, see appendix A).

the one used in OXYBIO. The aim of simulating the
OXYNOBIO tracer is to track the transport of AO
over a span of 100 years.

The experimental scenario used for the AO injec-
tion was based on the theoretical economical viability
and industrial feasibility of offshore implantation of
hydrogen ProductionUnits (PUs). Offshore locations
have been gauged considering socioeconomic and
technological data mainly in line with the forecasts
from the International Energy Agency [27]. These
theoretical locations were provided by the LHYFE
company [28] which is a producer and supplier of
green hydrogen. This idealized scenario was designed
to give an upper bound of an AO injection by assum-
ing a global adoption of hydrogen as a key compon-
ent of renewable energy supply chains by 2030, which
corresponds to the highest level of plausible green
hydrogen use.

For this study, the assumed number of hydrogen
plants installed over the next 50 years follow roughly
the same deployment than the offshore oil platforms
between 1975 and 2020: approximately 20 000 plat-
forms. A scenario allowing the deployment of 17 936
PUs has therefore been defined. The PUs have been
distributed within 304 selected model grid points
(each covering about 400 000 km2, called hereafter
‘stations’), resulting in an average of 59 PUs permodel
grid point. These stations were distributed along the
world’s coasts (figure 1) according to the combina-
tion of two criteria: (i) an average wind speed prefer-
ably between 12–17 ms−1 (optimal operation of the
wind turbines) or between the minimum and max-
imumwind speed needed to operate the wind turbine
(5–25 ms−1 [27, 29]), and (ii) a population dens-
ity that is presumed to exceed 2000 people km−2

(related to the size of the energy market), or dis-
play a constant or even positive natural evolution
of the population by 2050 [27, 30]. As a result, the
locations of the PUs are not necessarily positioned
near known OMZs. Finally, we chose an injection
depth of 150 m, except in areas with shallower bathy-
metry where the AOwas injected at the greatest depth

possible. Indeed, injection at a depth exceeding 150m
(e.g. close to the core of the OMZ) would have been
more costly and would therefore not be economically
viable. Nevertheless, the depth chosen here remains
close to the upper limit of the OMZ [31] (figure C1).

Currently, the green hydrogen production can
reach or even exceed 129 000 t H2 y−1, depending on
the PU [28]. During the production of hydrogen by
electrolysis, the H2/O2 ratio is 2:1 [32]. This amounts
to 8 kg ofO2 per 1 kg ofH2 produced. Thus, according
to LHYFE’s forecasts, each of the PUs would produce
70 000 t O2 y−1 (figure 1(a)), i.e. 39.2 Tmoly−1 glob-
ally, which corresponds to∽0.86% of the overall bio-
genic O2 production in the CTRL simulation between
0–150 m (4.56 Pmoly−1).

It is important to note that the idealized setup
of our experimental design leaves aside engineering
injection details (discussed in section 3.5) that may
impact the efficiency of the AO injection.

3. Results and discussion

3.1. (De)oxygenation and OMZs widespread
changes induced by anthropogenic oxygen
injection
After 100 years of AO injection (OXYBIO run), the
global O2 inventory increased by 0.07% with respect
to the CTRL run (estimated to be 233.1 Pmol, a
value close to that obtained from the observations by
[8]: 227.4 Pmol). Yet, the AO injection reduced the
volume ofOMZs by between 1.1%and 2.4%, depend-
ing on the O2 concentration threshold used (table 1).
This suggests that the overall evolution of the OMZ
volume is weakly sensitive to the chosen threshold.
However, the global average hides significant regional
disparities.

The OMZs that shrank the most are the least
extended (figure 2(a), table 1): in the Atlantic
Ocean and the Arabian Sea (AS), that shrank
by 13.3%–35.6% and 3.4%–6.1% respectively
(80mmolm−3 and 50mmolm−3 thresholds). The
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Table 1. The proportion of the volume of each OMZ to the overall volume of OMZs (volume contribution) at the last simulated year of
the CTRL run and averaged between 200 and 600 m depth, and change (OXYBIO minus CTRL) in volume of the oxygen-poor water
(generically referred to as OMZs) after 100 years of AO injection. The volumes are defined by oxygen thresholds 80mmolm−3,
50mmolm−3 and 5mmolm−3. Free fields (∗) represent the absence of water masses with O2 concentrations below 5mmolm−3 and
bold indicates values for OMZs at global scale (sum of OMZs).

OMZ 80mmolm−3 50mmolm−3 5mmolm−3

% Change
Volume
contribution Change

Volume
contribution Change

Volume
contribution

Global −2,4 100 −1,1 100 −1,1 100
Atlantic Ocean −13,3 6,6 −34,6 4 0 2,4
Pacific Ocean −2,3 81,3 −0,6 86,1 −2 94,6
Bay of Bengal +5,5 8,1 +11,6 7,9 +25,3 3
Arabian Sea −3,4 4,1 −6,1 2 ∗ ∗

Figure 2. (a) Spatial distribution of the annual mean O2 concentration of the last simulated year of the CTRL run (mmol m−3)
averaged between 200 and 600 m depth, the typical depth range of the main OMZs. The area of concentration below
80mmolm−3 is outlined in grey. (b)–(f) Changes in annual mean O2 concentration (OXYBIO minus CTRL) after 100 years of
AO injection (b) averaged between 200 and 600 m depth (mmolm−3), and (c)–(f) along meridional sections (%), in (c) the
Atlantic Ocean at 2 ◦E, (d) the Pacific Ocean at 120 ◦W, (e) the Bay of Bengal at 90◦E and (f) the Arabian Sea at 70 ◦E. In (c)–(f),
the isopleths at 50 and 80mmolm−3 are shown in blue for the CTRL simulation and in orange for the OXYBIO simulation, and
the black solid lines show the isopycnals that delimit the water masses based on water masses definition in the appendix B.

smallest shrinkage (0.6%–2.3%) is that of the Pacific
OceanOMZ (table 1). Themost striking consequence
of the AO injection is simulated in the Bay of
Bengal (BoB) where the OMZ expands counterin-
tuitively, its volume increases by 5.5%–11.6% for the
80mmolm−3 and 50mmolm−3 thresholds, and even
25.3% for the 5mmolm−3 threshold (table 1 and
figure 2(b)).

Contrary to the global assessment, the volume
variation of regional OMZs depends strongly on the

threshold that is considered to define them. The
harshest thresholds specific to each region allow us
to determine the evolution of the OMZ core. Thus,
excluding the Pacific OMZ, the volume change is the
most relevant in the OMZ core (i.e. a larger volume
variation for the threshold of 50mmolm−3 in the
Atlantic Ocean and 5mmolm−3 in the AS and BoB
than for 80mmolm−3, table 1). However, the eval-
uation of the structure of an OMZ requires to also
consider its upper and lower boundaries (oxyclines)
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[31]. OXYBIO configuration simulated a slight deep-
ening of the upper oxycline of all OMZs (figures 2(c)–
(f)), more marked in the Atlantic Ocean. Thus, their
thickness thins by an average of 42 m (for the Atlantic
Ocean) and 13 m (for the AS) between 0 and 600 m
while that of the BoB thickens by 11 m despite the
substantial increase in O2 between 100 and 200 m,
which can exceed 100% (figure 2(e)). The shift of the
horizontal boundaries position of the OMZs in addi-
tion to the deepening of the vertical boundaries, char-
acterize the strongest shrinkage of the OMZs, namely
in the Atlantic Ocean, and to a lesser extent in the AS
(figures 2(c) and (f)).

3.2. Mechanisms involved in the evolution of OMZs
A wide range of ecosystem processes interacting with
the three-dimensional circulation determine the dis-
tribution of O2 concentrations in the ocean [33]. The
analyses in section 3.1 suggest a regional disparity
in the mechanisms causing O2 variation. OOXYNOBIO

2

(AO in the OXYNOBIO configuration) tracks exclus-
ively the transport of AO without any air–sea
exchanges and biogeochemical reactions. The corres-
pondence (R) between the variation of OOXYNOBIO

2

and that ofO(OXYBIO−CTRL)
2 (i.e. O2 change) addresses

the relative importance of biological activity and
transport to O2 variation in OXYBIO (figure 1 (b),
equation (1) and appendix A).

R=
Variance

(
O(OXYBIO−CTRL)

2 −OOXYNOBIO
2

)
Variance

(
OOXYNOBIO

2

) . (1)

R contrasts O2 changes due to biological response

(i.e. O(OXYBIO−CTRL)
2 minus OOXYNOBIO

2 ) to AO trans-
port (OOXYNOBIO

2 ). Thus, in (figure 1(b)) themechan-
isms are categorized as follow:

(i) R∽0 indicates the dominance of AO dynamic
transport over biological activity as a mechan-
ism for the variation of O2,

(ii) R∽1 indicates that transport and biogeochem-
ical processes are of similar importance to
the O2 changes. This suggests either a biolo-
gical change concomitant with AO transport or
transport of what result from remote biological
response,

(iii) R>1 indicates the dominance of biological
activity over dynamic transport to explain the
variation of O2 consecutive to AO injection.

Along the coastlines with injection sites, in
the Atlantic Ocean and across the North Pacific
Equatorial Current, the correspondence is high
(R∽0). In the Atlantic Ocean, the OMZ shrank
even where it is devoid of AO stations (figure 1(b)).
Advective transport is therefore the driving factor
feeding AO into this OMZ. Since this OMZ is
included in the North Atlantic Central Water

(figure C2) and has its top located in the Subtropical
Mode Water (figure 2(c)), it could benefit from an
efficient supply of AO. This OMZ would therefore
be fed by the small cell-dominated by meridional
surface transport as well as by the upper limb of
the Atlantic Meridional Overturning Circulation
(AMOC, figure C2). An exact quantification of this
would require a dedicated study. In the South Pacific
Ocean and the Costa Rica Dome, a combined effect
of biogeochemical feedbacks and dynamic transport
(R∽1) seems to explain the response to AO injection
(figure 1(b)).

In the Indian Ocean, biogeochemical feedbacks
dominate, especially in the BoB (R>1, figure 1(b))
where they appear to explain the counter-intuitive
reduction of O2 concentration in the OXYBIO sim-
ulation with respect to CTRL (figure 2(b)) as treated
in section 3.3. It is noteworthy that the differ-
ent biogeochemical responses between the AS and
BoB is likely due to different levels of oxygen
deficiency [34].

3.3. Impacts on nutrient recycling and biological
activities
In the ocean, O2 is consumed by biological res-
piration, including OM remineralization. When the
waters become suboxic, oxygen from NO3 is used
for remineralization, a process called denitrifica-
tion. OM remineralization is thus an internal source
of ‘recycled’ fixed nitrogen (N) except in suboxic
waters where denitrification is a sink of bioavailable
nitrogen. In this section we investigate the potential
cascading effects of the AO on the denitrification,
remineralization, andNet Primary Production (NPP)
(figures 3 and 4).

Denitrification is absent in the Atlantic Ocean
OMZ (figure C3) due to relatively greater nat-
ural ventilation than in the other OMZs. The
decrease (up to 10% in the Pacific Ocean) or even
total inhibition (in the BoB) of denitrification in
response to AO injection (figure 3(a)) reduces the
NO3 sink in initially (before AO injection) suboxic
areas (figure 3, orange line). Note that at the sur-
face, nutrients decrease except NO3 which increases
(figure 3(c)), while at the subsurface all nutrients
increase (figures C4, C5 and 3(d)). This suggests that
the reduction of denitrification is likely to increase the
availability of NO3 inducing the stimulation of NPP
(figure 4(b)), thus increasing the exported production
(figure 5(a)). As remineralization is constrained by
OM [35–37], the additional supply of OM can thus
amplify and maintain high remineralization leading
to an increase in deep nutrient stocks [1]. Indeed, the
seasonal thermocline of BoB is amajor nutrient reser-
voir through the intense remineralization of expor-
ted OM [38]. However, by increasing NPP, nutrient
uptake is amplified. Thus, the originally non-limiting
nutrients may decrease until depletion [39] as in the
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Figure 3. Changes after 100 years of AO injection (OXYBIO minus CTRL), of the annual mean of the (a) denitrification,
(b) remineralization integrated on depth in %, (c) surface and (d) subsurface (between 200 and 600 m) nitrate concentration in
mmolm−3. In (a) and (b) the orange line indicates the maximum extent of the area where denitrification occurs, and which
corresponds to minimum denitrification. In (b) the red (blue) line is the increase (decrease) of 1% of the remineralization.

Figure 4. The Net Primary Production integrated over the first 100 m is shown in (a)–(b). On the left, the NPP annual average of
the last simulated year of the CTRL run, and in grey dotted line, is represented the Chlorophyll concentration of 0.08mgm−3

which defines the oligotrophic zones. On the right, the changes after 100 years of AO injection (OXYBIO minus CTRL) where the
red (blue) line is the increase (decrease) of 1% of the NPP, and the black line demarcates the denitrification rise zone showed in
figure 3(a).

BoB where NO3 limitation shifts to phosphate limita-
tion for nanophytoplankton and changes from silicate
to phosphate limitation for diatoms (figure C6).

In conclusion, the expansion of OMZ indicates
an imbalance between oxygen supply and biological
O2 consumption, as in the case of BoB. Despite con-
tinuous oxygenated water injection and O2 transport
through ocean dynamics, biological activity can still
drive an expansion of an OMZ in some regions. The
suppression of the nitrate sink (by inhibiting denitri-
fication) and enhancing nutrient recycling (through
remineralization) particularly at the seasonal ther-
mocline is the cause. Moreover, the decline of the
denitrification results in a decrease in nitrogen fix-
ation (N2-fixation, roughly 50% in the vicinity of
BoB) (figure C7). Landolfi’s study [40] emphasized
the vicious cycle induced by the spatial coupling of

denitrification and N2-fixation. Due to stoichiomet-
ric imbalance, The NO3 loss through denitrification
versus the nitrogen gain through the OM remineral-
ization derived from N2-fixation leads to a net loss
of fixed nitrogen that further stimulates N2-fixation.
Counter-intuitively, the reduction in N2-fixation in
the OXYBIO simulation, through the ihnibition of
denitrification, could thus contribute to an increase
in fixed nitrogen.

The other consequence particularly notable is
the nonlocal environmental effects of AO injec-
tion. The AO stimulates biological activities beyond
the zones of O2 change, especially in the Indian
and tropical Pacific Oceans, except in the Northern
Hemisphere where O2 changes and biological activit-
ies tally (figure 1(b)). While denitrification changes
are mainly confined to the continental margins

6
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Figure 5. Changes after 100 years of AO injection (OXYBIO minus CTRL). In (a) is the carbon export at 100 m (gC m−2 y−1),
the green (magenta) line is the increase (decrease) of 1% of the carbon export. In (b) is the e-ratio (Export/NPP), the red (blue)
line is the increase (decrease) of 1% of the ratio and in grey dotted line is represented the chlorophyll concentration of
0.08mgm−3 which defines the oligotrophic zones.

(figure 3(a)), remineralization changes are remotely
triggered (figure 3(b)). Whether it is related to aer-
obic respiration (figure 3(b)) or NPP (figure 4(b)),
biogeochemical changes follow the pathways of the
advective currents (i.e. circulation of the subtropical
gyres) (figures 1(b) and 4). In the Eastern Pacific
Equatorial zone, phytoplankton is mainly Fe-limited
in the CTRL simulation (figure C6). Thus, the gain
in NO3 (figures 3(c) and (d)), due to reduced deni-
trification in this zone, would feed the initially NO3-
limited phytoplankton communities in the areas sur-
rounding the Pacific cold tongue and along the
Central American coasts (figures C6(a) and (c)),
through lateral surface transport. As a result, NPP
increases north of the equator (figure 4(b)) along the
Central American coasts (from the Gulf of Panama
to the Mexican coast), where there are no injection
stations (figure 1). This local NPP increase would
trigger O2-consuming remineralization (figure 3(b)).
Thus, the Costa Rica Dome, an eddy structure partic-
ularly influenced by the Costa Rica Coastal Current
from the south, would be subject to exacerbated deni-
trification (up to 5%, figure 3(a)) due to this stim-
ulation of remineralization bordering the dome. In
the Tropical South Pacific Ocean, the edges of the
denitrification zones (where it is lowest (figure C3),
indicated by the orange line in figure 3(a)), show
the largest decrease in denitrification, by 4%. Beyond
these edges, the NPP remote response (rising to+3%
off Chile (figure 4(b)) is triggered by the new sup-
ply of NO3 in zones that can be limited in NO3

(figure C6), which could explain the lack of NPP
response near coasts where phytoplankton is mainly
limited by Fe and Si (figure C6). Hence, these biogeo-
chemical changes would be transported along the
South Equatorial Current, feeding the subtropical
gyre through the lateral transport [41].

Another striking region is the Indian Subtropical
oligotrophic gyre (figure 4(a)), where the biological
response is opposite to all other basins (figures 3(b)
and 4). In BoB, the strong increase in NPP res-
ults in increased nutrient consumption (figure C4).
This drop in nutrients could lead to a reduction in

the supply of nutrients to the Indian Subtropical
gyre through the South Java Current and explain the
NPP decrease. In such a ‘regenerative loop’ regime
[42] where most production is driven by recycled
nutrients [43], the small reduction in OM reminer-
alization may also explain the decrease in NPP in a
chain-reaction.

3.4. Overview of the carbon cycle implications
Fertilization, whether natural [44] or artificial [45],
can favor exported production through the devel-
opment of ecosystems prone to exceptional blooms.
These ecosystems are based on a biomass dom-
inated by large cells (e.g. diatom [46–48]) and
a NPP provided jointly by small and large cells
[49]. TheAO injection-induced denitrification inhib-
ition does not appear to lead a change in the
phytoplankton community despite NO3 enrichment
(figure C8). Besides phytoplankton community com-
position, estimation of NPP is important for infer-
ring the additional sequestered carbon. AO injection-
induced NPP increase (+0.7%) is close to the mag-
nitude of the decrease predicted by the low-emission
scenario SSP1-2.6 (−0.56± 4.12%) but is less than
the decrease predicted by the high emission scen-
ario SSP5-8.5 (−2.99± 9.11%) by 2100 [11], which
assumes a potentially negligible effect on the overall
air–sea CO2 flux.

Because of the ability of artificial oxygenation
to increase nitrogen concentration, it can also be
suggested as an indirect means of fertilization by
industry to stimulate the carbon pump. Yet, iron fer-
tilization experiments revealed inconsistent export
of production despite increased NPP [50]. In our
study, despite the joint increase in NPP and expor-
ted production (figures 4(b) and 5(a)), the e-ratio
decreases between 1%–14% depending on the region
(figure 5(b)), which indicates a decrease in the effi-
ciency of carbon export. Thus, due to a regionally
variable duality between remineralization processes
and OM export beyond injection sites, the effect of
AO on carbon storage should not be overlooked in
future studies.
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3.5. Uncertainties regarding the AO injection
impacts and the representation of biogeochemical
processes
Several sources of uncertainty are possible when ana-
lyzing the effects of AO injection on the global ocean.
The deployment scenario used in this study may
represent one of them and may affect the results.
For example, the choice of injection depth is con-
strained by structural robustness and cost. However,
at 1000 m the oxygen utilization rate is 10 to 50 times
lower than at 100 m [10, 51–54]. Hence, depth is
an important causal parameter in the biogeochem-
ical and ecosystem response to AO injection. The
coarse resolution of the model used (2◦ resolution)
prevents us from documenting technologies required
to inject AO, which come under sub-grid processes
but may affect AO efficiency [1, 15]. Yet, we can
infer that AO should be undersaturated at the injec-
tion sites (figure C9). Thus, O2 saturation at injec-
tion sites (with no technical limitation taken into
account) would allow the full dissolution of the AO.
In addition, the spatial resolution implies process-
related biases below the mesoscale spectrum [55].
Regional modeling of the AS highlighted the import-
ance of eddy-induced advection on vertical and lateral
O2 transport [56]. Increasing the resolution improves
the explicit representation of eddy mixing that would
be involved in the biased volume representation of
OMZs in noneddy resolving ocean models. Thus,
eddy mixing may be crucial in shaping marine hab-
itats of oxygen-sensitive species [57].

Numerical modeling of OMZs and their ecosys-
tems is an important socioeconomic issue because
they are important fishing areas [58–60]. However,
the current ocean microbiome modeling remains
simple compared to the complexity that emerges from
observations [61]. Also, AO injection showed that the
evolution of carbon transfer to the deep ocean [62] as
well as the fate of the OMZs, and consequently of the
fisheries [58–60], require the analysis of phytoplank-
ton and zooplankton communities. In our study, the
microbial recycling mechanisms are parameterized
lacking an explicit representation of bacterial com-
munities despite the influence of O2 on controlling
the availability of fixed nitrogen in the ocean [63, 64].
Regionally, explicit modeling of some ecosystems can
improve the simulation of these processes, such as the
diazotrophic community in the Tropical Pacific [65],
especially since the anaerobic to aerobic transition
in the ocean can cause strong negative feedback on
nitrogen fixation [64].Ultimately, ecosystemdiversity
differs according to the model used, and uncertain-
ties in their applications remain [3, 61, 66, 67] and
limit management or geoengineering decisions that
are based solely on the use of models [68].

Despite these uncertainties, our results describe
changes in biogeochemical processes in linewith pub-
lished regional studies on the effects of changing

oxygen levels (e.g. in the Arabian Sea [57]). In the
Pacific ocean, oxygenation through the modifica-
tion of modeled vertical water exchange have also
ultimately resulted in a deoxygenation and remote
changes in biological activity [1]. However, given that
biogeochemical processes tend towards a new equi-
librium state after 20 to 40 years of simulation, as in
BoB (not shown), we do not prejudge the effects of
extending the experiment, nor of stopping the injec-
tion, either during or after the 100 year experiment,
which could potentially lead to a global and regional
new state.

4. Concluding remarks

Although model limitations must be kept in mind,
ourAO injection scenario reveals weak global oxygen-
ation (+0.07%). Comparatively, CMIP models pre-
dict deoxygenation between 2.2% (SSP1-2.6 scen-
ario), i.e. 30 times the oxygenation induced by AO,
and 4.5% (SSP5-8.5 scenario) [11]. However, OMZs
shrinkage (table 1) is in the lower limit of the
OMZs expansion predicted by the RCP-8.5 scen-
ario (between 1%–16% depending on the differ-
ent CMIP5 models and thresholds [2]). Regionally,
our study reveals deoxygenation and subsequent BoB
OMZ expansion related to the dominance of biogeo-
chemical processes, as well as non-local environ-
mental effects in the Pacific and IndianOceans, where
biogeochemical and dynamic processes may be of
similar importance. They are the result of the dis-
ruption of the nitrogen cycle through the inhibition
of denitrification. The response of the Atlantic OMZ,
devoid of denitrification, is marked by the AO trans-
port allowing its shrinkage.

Given the uncertainties that may arise from both
the scenario and the tools used, as discussed in
section 3.5, regional and high-resolution studies are
therefore needed to better understand the effects and
risks of AO on benthic and pelagic ecosystems, higher
trophic levels, and microbial communities, even on
fisheries.
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Appendix A. Calculation of the
correspondence

By analogy with the method used by Vinogradova
et al 2007 and Bingham and Hughes 2008, we
employed correspondence analysis to determine the
extent to which anthropogenic O2 transport is
involved in the variability of O2 over the 100 year
injection period. Let OOXYNOBIO

2 be the evolution of
the AO concentration during the 100 years of injec-
tion (O2 as a passive tracer), and OOXYBIO

2 the evol-
ution of the O2 concentration during the 100 years
of injection (i.e. oxygen varying with transport, bio-
logical activity, air-sea exchange, and in response to
the AO injection). The correspondence is an adi-
mentional value based on the estimation of the
ratio between the variance of the difference between
OOXYBIO−CTRL

2 and OOXYNOBIO
2 and the variance of

OOXYNOBIO
2 alone. Thus, we can compare whether:

(i) R∽0 indicates minor variation in biological

activity (O(OXYBIO−CTRL)
2 - OOXYNOBIO

2 ) com-
pared to dynamic transport (OOXYNOBIO

2 ),
as well as concomitant variation in
O(OXYBIO−CTRL)

2 and OOXYNOBIO
2 , revealing the

preponderance of dynamic transport of AO
over biological activity as a mechanism for the
variation of O2;

(ii) R∽1 indicates that the factors that differenti-
ateOOXYNOBIO

2 fromO(OXYBIO−CTRL)
2 vary sim-

ilarly to OOXYNOBIO
2 , so that biological activ-

ity varies similarly to the passive tracer trans-
port. Thus, changes in OOXYBIO

2 are related to
the transport of the biological activity outcome
(such as organic matter (OM) and nutrients)

(iii) R>1 corresponds to a strong discrepancy

between O(OXYBIO−CTRL)
2 and OOXYNOBIO

2 , and
the variation of biological activities is greater
than that of dynamic transport. Consequently,
the mechanisms that cause OOXYBIO

2 change
are more related to biological activity than to

dynamic transport, whether it is that of AO
or that of biochemical elements. These vari-
ous responses imply contrasted evolution of
OMZs.

Appendix B. Definitions of water masses

The black solid lines in figures 2(c)–(f) show the iso-
pycnes that delimit the water masses based on Talley
et al 2011 and Pollard and Pu, 1985 (figure C2). In
figure 2(c) Atlantic section at 2◦E, the potential dens-
ityσ0 = 25 kgm−3 is the lower boundary to define the
Subtropical Underwater (STUW), the North Atlantic
Central Water is bounded between σ0 = 26.5 kg
m−3 and 27.3 kg m−3 and including South Atlantic
Central Water, between σ0 = 27.3–27.7 kg m−3 is the
Intermediate Water. In (d) Pacific section at 120◦W,
between σ0 = 24.5–26.5 kgm−3 it is the ‘thermocline’
which includes subtropical mode waters and between
σ0 = 26.5–27.65 kg m−3 the ‘intermediate waters’
which includes subantarctic mode waters and North
Pacific Intermediate Waters, and below is the ‘deep
ocean’. In (e) Bay of Bengal at 90 ◦E and (f) Arabian
Sea at 70 ◦E, aboveσ0 = 26 kgm−3 it is the STUW, the
Subtropical Mode Water is between σ0 = 26–26.8 kg
m−3, below σ0 = 26.8 kg m−3 these are the ‘interme-
diate waters’ these are the intermediate waters which
include, in the Arabian Sea, the Red Sea waters.
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Appendix C. Additional figures

Figure C1. The annual mean depth (m) of the upper limit of the Oxygen Minimum Zone of the 80mmolm−3 threshold (a)
above 600 m over the last simulated year of the CTRL run, (b) according to the climatology of WOA data, 2018 product [70].

Figure C2.Meridional section (zonal average) of the annual mean of the passive tracer OOXYNOBIO
2 (mmolm−3) after 100 years of

AO injection (OXYNOBIO run) in the Atlantic Ocean. In dashed lines, the meridional overturning stramfunction in the classical
latitude-depth coordinates. In blue (red), clockwise (counterclockwise) transport. In the Atlantic, the Atlantic Meridional
Overturning Circulation (AMOC) cell is located above 3000 m and above the cell linked to the Antarctic bottom water (AABW).
The Subtropical Underwater (STUW) framed in white, the North Atlantic Central Water (NACW), and South Atlantic Central
Water (SACW) are described in the appendix B.

Figure C3. Depth-integrated denitrification averaged over the last year of CTRL simulation. The red lines correspond to the
isopleth of 20mmolm−3 of O2 concentration between 200 and 600 m of depth (CTRL run).
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Figure C4. Annual mean surface concentrations of phosphate (PO4), nitrate (NO3), silicate (SiO2), iron (Fe) over the last
simulated year of the CTRL run (in mmolm−3 and ′µmolm−3 for Fe) (a)–(d). Changes after 100 years of AO injection
(OXYBIO-CTRL), of the annual mean surface concentrations of these nutrients (e)–(h).
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Figure C5. Annual mean subsurface concentrations of phosphate (PO4), nitrate (NO3), silicate (SiO2), iron (Fe) over the last
simulated year of the CTRL run (in mmolm−3 and µmolm−3 for Fe) (a)–(d). Changes after 100 years of AO injection
(OXYBIO-CTRL), of the annual mean subsurface concentrations of these nutrients (e)–(h).
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Figure C6. Spatial distribution of each limiting nutrient (in brown the Phosphates, in purple the Iron, in cyan the Nitrates, and in
red Silicate) of the surface nanophytoplankton (top) and diatoms (bottom) growth during the boreal (North Hemisphere) and
Southern (South Hemisphere) summer of the last simulated year of the CTRL run (the left panels), and after 100 years of AO
injection (right panels). Shades of opacity are given as an indicator of the level of total nutrient limitations. The limitation terms
are defined according to [20].

Figure C7. Annual mean N2 fixation rates (mmol N−2y−1) over the last simulated year of the CTRL run, and (b) changes after
100 years of AO injection (OXYBIO-CTRL).

Figure C8. Relative abundance of diatoms in %, the left panel represents the last simulated year of the CTRL run, the right panel
is the change after 100 years of AO injection (OXYBIO-CTRL) (the red solid line corresponds to+1%). In grey dotted line, is
represented the Chlorophyll concentration of 0.08 mg m−3 which defines the oligotrophic zones.
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Figure C9. The left panel represents the annual mean of oxygen saturation at 150 m depth in CTRL simulation at the last
simulated year. The right panel represents the percent AO saturation (the percent ratio of AO concentration to O2 saturation) at
150 m depth at each station after 100 years of AO injection at a rate of 2.2× 106 mol y−1.
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