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ABSTRACT: Precision medicine focuses on adapting care to the individual
profile of patients, for example, accounting for their unique genetic makeup. Being
able to account for the effect of genetic variation on the proteome holds great
promise toward this goal. However, identifying the protein products of genetic
variation using mass spectrometry has proven very challenging. Here we show that
the identification of variant peptides can be improved by the integration of
retention time and fragmentation predictors into a unified proteogenomic pipeline.
By combining these intrinsic peptide characteristics using the search-engine post-
processor Percolator, we demonstrate improved discrimination power between
correct and incorrect peptide-spectrum matches. Our results demonstrate that the
drop in performance that is induced when expanding a protein sequence database
can be compensated, hence enabling efficient identification of genetic variation
products in proteomics data. We anticipate that this enhancement of
proteogenomic pipelines can provide a more refined picture of the unique proteome of patients and thereby contribute to
improving patient care.
KEYWORDS: proteogenomics, single amino acid variation, peptide identification, peptide feature predictors

■ INTRODUCTION
Genomic variation can affect proteins, their expression,
structure,1 degradation rates, or even completely prevent
their production.2 Consequently, cellular functions can be
altered, possibly participating in the development of diseases.3

Therefore, monitoring the proteomic profiles of patients is
seen as a promising technique for the development of precision
medicine approaches.4 However, in mass spectrometry (MS)-
based proteomics, spectra are usually matched to a one-
database-fits-all set of protein sequences. Projecting all data
onto a database that does not capture the diversity of
proteomic samples can yield false positive identifications,5

but more importantly, it creates a bias toward populations of
study participants based on their genetic similarity with the
reference database.
The personalization of proteomic searches using genomic

information is an active field of research in proteogenomics.6

Typically, proteomic MS data are matched against a database
of sequences capturing the products of genomic sequence
variation. These databases can be constructed based on
genomic or transcriptomic sequencing data or, when no
genomic data are available, using variants from knowledge
bases like Ensembl.7 However, expanding protein sequence
databases using sequence variation poses major challenges to
the current bioinformatic methods for protein identification:
(i) the search space of possible peptides used to match spectra

is enlarged, yielding higher processing time and increasing the
likelihood of matching a false positive at a given score8 and (ii)
variant peptides containing the product of an amino acid
substitution are highly similar to canonical or modified
peptides and thus difficult to confidently identify.9−11 These
issues, combined with the low sequence coverage of
proteomics, make the detection of the products of genetic
variation a challenging task, with recent publications showing
low identification rates of variant peptides compared to what
was expected after analysis at the DNA and RNA level.12,13

And when variant peptides are matched to spectra, the
evaluation of results remains challenging, often requiring costly
experimental validation.12

The confidence in peptide identification is evaluated by
search engines through the matching of the measured spectra
with expected fragment ions and returned as a score. The score
is translated as a statistical metric, for example, a false discovery
rate (FDR), e-value, or posterior error probability, after
comparison with the estimated null distribution of scores.
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The reference method for the estimation of the null
distribution of scores is the target-decoy strategy, where
incorrect sequences, the decoy sequences, for example,
randomized, shuffled, or reversed, are inserted in the database
and compete equally with the sequences of interest, the target
sequences.14 However, these scores rely on limited information
on the peptides, typically only predicted fragment masses, and
usually only consider the most intense peaks in the measured
spectra. Bioinformatic approaches were therefore developed
that allow re-scoring the matches based on more peptide
features and implemented in bioinformatic tools like
Percolator,15 Scavager,16 and AlphaPept.17 Notably, the
inclusion of predicted retention time18,19 and predicted
intensities of fragment ions20−23 have been demonstrated to
increase spectrum identification rates, for example, with
application in immunopeptidomics.24

In this work, we investigate how the inclusion of common
germline variations affects the performance of proteomic
searches. We demonstrate how variant and canonical peptides
distribute in the predicted retention time and fragmentation
feature space and how these can be used to increase the share
of confidently identified variant peptides. Together, our results
show that with careful curation of the protein sequence
database and using the available tools for post-processing MS
data, we can gain better coverage of the variation of the
proteome.

■ EXPERIMENTAL SECTION

Data Samples

The processed samples were published by Wang et al.12 and
downloaded from the PRIDE repository25 with the identifier
PXD010154. From this dataset, the chosen subset of samples
consists of 106 MS raw files of healthy tonsil tissues acquired
from 3 different experiments with identifiers P010747,
P010694, and P013107. Briefly, the proteins were digested
with trypsin and analyzed by tandem MS coupled with liquid
chromatography (LC−MS/MS) using a Q Exactive Plus mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany)
coupled to a nanoflow LC system (NanoLC-Ultra 1D+,
Eksigent, USA) using a 110 min gradient, yielding 5,085,477
MS/MS spectra (Exp. P010747: 1,834,613 MS/MS spectra,
Exp. P010694: 1,695,460 MS/MS spectra, Exp. P013107:
1,555,404 MS/MS spectra). MS1 scans were acquired at a
resolution of 70,000, and MS2 scans were acquired for up to
20 precursors after HCD fragmentation. For more details on
the data generation, please refer to the original publication by
Wang et al.12 A quality control of the raw data was performed
using the software tool viQC,26 and the results for each used
raw file can be found at the GitHub repositorya.
Protein Databases

The search was done against four different protein databases,
three that included the canonical human proteome and/or
protein isoforms and one that also included genetic variation
products. The three canonical databases were (i) the homo
sapiens complement of the UniProtKB27 database downloaded
on September 20, 2022 (20,398 distinct protein sequences),
(ii) the homo sapiens complement of the UniProtKB database
including protein isoforms downloaded on January 9, 2023
(42,397 distinct protein sequences), and (iii) the canonical
database of protein isoforms of homo sapiens taken from
Ensembl v.10428 (92,558 distinct sequences).

The extended database included the protein products of
genetic variants, appended with the canonical database of
protein isoforms taken from Ensembl v.104 (248,518 distinct
sequences). We included variants with a minor allele frequency
>1%, taken from Ensembl v.104, and six-frame translations of
variant cDNA were obtained using the Python tool py-pgatk.7

We then included only translations of the main open reading
frame (mORF) in each transcript, as annotated per Ensembl
v.104. Translations of cDNA without an annotated mORF
were not included in the database. Decoy sequences were
generated using the algorithm DecoyPYrat,29 implemented by
py-pgatk.
All databases were supplemented with sample contaminants

from the common Repository of Adventitious Proteins (cRAP,
thegpm.org/crap). In order to compare the tryptic peptides
contained in the extended database with those in UniProtKB,
both databases were digested in silico following the cleavage
pattern of trypsin with up to two missed cleavage sites,
retaining peptides of length between 8 and 40 residues. The
two lists of peptide sequences were then merged, and each
peptide was assigned a list of proteins between which the
peptide is shared. Peptides shared between the extended
database and UniProtKB were labeled.
Proteomic Search

The RAW files were converted to mzML files using
ThermoRawFileParser version 1.3.4.30 The mzML files were
searched using the X!Tandem search engine31 operated
through the SearchGUI interface version 4.0.41.32 Search
settings were (1) specific cleavage by trypsin with a maximum
number of 2 missed cleavages; (2) carbamidomethylation of C
as fixed and oxidation of M, deamidation of N and Q, and
acetylation of protein N-terminus as variable modifications;
(3) peptide maximum length of 40 amino acids; and (4)
precursor and fragment ion tolerance of 10 ppm. The
refinement step of X!Tandem was disabled. PeptideShaker
version 2.2.2533 was used to process the output of X!Tandem
and generate standardized PSM exports.
Peptide Feature Predictors and Confidence Scoring

Percolator15 version 3.5 was used for the statistical evaluation
of the resulting peptide-to-spectrum matches (PSMs). For
each PSM, a set of features commonly used for Percolator34

was generated using PeptideShaker, referred to as the standard
set of features, and described in Supporting Information, Table
1. This standard set of features was extended with novel
features capturing the agreement between PSMs and predicted
retention times and fragmentation, resulting in a new set of
features referred to as the extended set of features and
described in Supporting Information, Table 2.
DeepLC version 1.1.219 was used to compute predictions of

the retention time of each theoretic peptide of each PSM. To
tackle the problem of the large range of possible elution times
of a peptide, the peak of the elution (i.e., RT apex) was used
for each PSM instead of the time of MS2 acquisition. For each
spectrum, the RT apex was calculated with the software tool
Proline,35 and in case the apex was not found, the measured
retention time as available in the spectrum files was used
instead. The retention times of the confident (q-value ≤0.01)
PSMs according to Percolator using the standard features were
used to calibrate the predictions of DeepLC. These were then
compared with the retention time apex reported for the
matched spectrum and three different metrics (absolute
distance, square distance, and logarithmic distance) were
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calculated and used as PSM features. An additional feature was
the absolute distance between the measured RT and the apex.
The retention time error used in the figures of the Results
section correspond to the residuals of a linear regression model
computed on the RT apex and predicted retention times of the
confident target hits from Percolator run using the standard set
of features.
The peptide fragmentation predictions were obtained from

MS2PIP version 3.6.321 using the HCDch2 pretrained model
and were compared against the peaks of the experimental
spectrum after matching the predicted and observed fragment
peaks using a 10 ppm threshold and the normalization of the
intensities of the peaks. The features used to evaluate the
concordance between experimental and predicted spectra were
(1) the percentage of predicted peaks matched with an
observed one, (2) the logarithmic distance, (3) the cosine and
angular similarity, and (4) the cross entropy between the
spectra. These features were calculated when taking into
account the predicted b and y ions separately and also with all
ions combined. In addition, the number of consecutive amino
acids matched from the N and C termini were computed for
the b and y ions, respectively.
Code Availability
All steps of the proteogenomic pipeline described above are
implemented in a Snakemake36 workflow (version 6.8.0). The
post-processing of the results of Percolator and the creation of
the figures were conducted using custom scripts available at the
GitHub repository of the paper. A list with the required
software packages together with further documentation and
links to supplementary data are also included in that GitHub
repository. The used databases and other supplementary data
are available in Zenodo (doi:10.5281/zenodo.8214353)

■ RESULTS
To investigate the influence of including germline variation on
the performance of proteomic search engines, four different
protein sequence databases were used, the standard Uni-
ProtDB, UniProt with isoforms, Ensembl with isoforms, and
Ensembl with isoforms extended with common amino acid
substitutions. Three samples of healthy tonsil tissue by Wang
et al.12 were searched against these four databases using X!
Tandem.31 The identification results from X!Tandem were

then post-processed by Percolator15 using a set of features
proposed in the literature.34 See the Experimental Section for
details.
Including Germline Variation Does Not Impair the
Identification Rate

When germline variation and isoforms are included in the
database, there is a substantial increase in the number of
sequences that the search engine has to match each spectrum
with. In such a case, one would expect a decrease in search
performance. However, identification rates at a given FDR
were nearly identical for the different databases for all three
tonsil samples from Wang et al.12 for both PSMs and peptides
(Figure 1A,B, respectively). In our hands, the different tonsil
experiments yielded different numbers of PSMs and peptides
(Figure 1). While we could not explain the source of this
difference in yield between experiments, the performance was
consistent for all databases in all experiments.
The similar or even better performance displayed by the

variant-aware Ensembl database indicates that the increase in
the number of protein sequences does not create a massive
increase in the number of peptides that can match a spectrum.
Indeed, after an in-silico digestion of the extended database,
76.15% of the tryptic peptides were canonical sequences
included in UniProt DB, and only 23.85% were newly
introduced peptide sequences. This is also reflected by very
similar score distributions for the searches against the
canonical UniProt database and the extended Ensembl one
(Supporting Information Figure S4). The high level of
similarity between isoforms and variant proteins might explain
that a high number of sequences does not result in a much
enlarged search space, in contrast to, for example, including
three-frame translations of untranslated regions (UTRs) or
non-coding sections of the genome. Together, these results
demonstrate that extending proteomic sequence databases
using common germline variation does not compromise
identification rates while enabling a broader coverage of
populations.
Fragmentation and Retention Time Prediction Allows
Discriminating Random Matches

Introducing variant sequences, however, increases the risk of
one peptide being difficult to distinguish or even identical to

Figure 1. Comparison of the performance when matching spectra to reference databases and extended databases. We searched three different sets
of spectra against four different human protein sequence databases. The number of hits obtained at a given FDR threshold is displayed for (A)
PSMs and (B) peptide sequences.
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another, possibly from a different protein. The mass difference
of an amino acid substitution might even be indistinguishable
from a chemical or post-translational modification, yielding

equal search scores for the two versions of a peptide that can
be encoded by this variant.9 This further increases the need for
post-search validation of the identifications that can tease apart

Figure 2. Comparison of PSM feature distributions between target and decoy sequences. Density plots that compare the distributions of the
retention time prediction error and spectra angular similarity between measured and predicted values of target and decoy hits from the extended
DB. PSMs pooled from the 3 used samples.

Figure 3. 2D-density plot of PSM agreement with retention time and fragmentation predictors. The retention time vs fragmentation distance to
prediction of all (A) target, (B) decoy, (C) canonical, and (D) variant PSMs obtained when searching against the extended protein sequence
database. PSMs with no matched peaks are not represented, and their prevalence is listed under the plot. Pooled PSMs from the 3 used samples are
presented.
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highly similar peptides. Such tools take advantage of a large
number of features to evaluate the quality of PSMs. The
features are based on characteristics of the peptide and the
spectrum, such as the length of the peptide or the difference
between the measured and the theoretic mass over charge ratio
of the precursor and fragment ions. In case two peptidoforms,
for example, a variant and a modified peptide, have the exact
same atomic composition, they will be indistinguishable by
mass. But if such peptidoforms elute at different retention
times or produce fragments of different intensities, and if such
differences can be tracked by state-of-the-art predictors, then
these can be used to distinguish true from false hits. These two
characteristics are therefore expected to be a valuable source of
information to evaluate the confidence in variant peptide
estimations.
For each PSM obtained on the tonsil data by Wang et al.,12

we compared the measured values of retention time and
fragmentation with predictions made by DeepLC19 and
MS2PIP,21 see the Experimental Section for details. For
peptide retention times, the distances between measured and
predicted values were wider for decoys than for target peptides,
confirming that excluding PSMs with high deviation in
retention time compared to prediction would reduce the
prevalence of random matches (Figure 2A and Supporting
Information, Figures S5A and S6A). It is important to note
that both distributions are centered close to zero, which means
that there is a substantial number of decoy hits where by
chance the retention times expected to be measured for the set
of amino acids of these decoy sequences are very close to the
measured retention times of the corresponding spectra
(Supporting Information, Figure S3).
For peptide fragment intensities, target hits had a higher

share of PSMs with a high similarity between the measured and
predicted spectra, and most decoy hits had a very poor
agreement between the measured and predicted spectra
(Figure 2B and Supporting Information, Figures S5B and
S6B). This can be explained by the fact that several peptides of
different compositions may coelute but still fragment differ-
ently; fragmentation patterns are thus more discriminative than
retention times. A random match is therefore much less likely
to present a good spectrum similarity than a low retention time
difference. This indicates that selecting PSMs with high
similarity would enrich the dataset for high-quality matches.
For many PSMs, no measured peak could be matched to
predicted peaks, yielding the lowest similarity score (0.5)
(117,580 PSMs from the variant-aware Ensembl database:
85,004 targets and 32,576 decoys). This can be due to a
completely wrong match or to the predictor failing to predict
the intensity of some peaks for the given peptide. Given the
high prevalence of decoys with very low similarity scores, it can
be anticipated that most PSMs with low scores will be
incorrect matches, but one cannot rule out that some good
matches will present low similarity scores due to the
performance of the fragmentation predictor.
For both retention time and peptide fragmentation, no

relevant difference was observed between the different
databases (Supporting Information, Figures S5 and S6). The
similarity of the distributions of the investigated features for
the four sequence databases’ decoy PSMs indicates that there
is no obvious bias between the databases. Also, the nearly
identical distributions of target PSMs confirms that using the
larger databases does not substantially increase the prevalence
of hits of lower quality.

When focusing on the joint distributions of both PSMs’
features, for the results obtained on the variant-aware database,
as expected from Figure 2, the decoy hits distribute
symmetrically around the zero retention time deviation, with
most hits at the lowest spectrum similarity, with the density of
hits decreasing with the similarity. The distribution of RT
errors of decoy hits did not seem to depend on the angular
similarity (Figure 3B). On the other hand, the target hits
display a similar background of hits supplemented with a dense
cloud of PSMs with a small retention time deviation and high
spectrum similarity, which is likely to contain the best matches.
When separating the target PSMs between those mapping to a
canonical protein (97.6%) and those solely mapping to variant
peptides (2.4%), one can see that for medium to low spectra
similarities the distribution of variant PSMs resembles that of
decoy hits, with the most dense area being close to a spectra
similarity of 0.5 and spanning to a broad range of RT
prediction error centered around zero (Figure 3D). However,
there is also a marked cloud of PSMs with a high spectrum
similarity (upper part of the plot) where the RT prediction
error is very small for the majority of the hits. This
demonstrates that even though the variant peptides present a
higher prevalence of PSMs presenting poor agreement with the
predictors than the canonical PSMs, they also have a
substantial share of high-quality matches. Therefore, the
agreement with predictors can help discriminate them from
the random matches.
Percolator Combined with Predictors Increases the
Identification Rate of Variant Peptide Sequences

As demonstrated in ref 24, since the retention time and
fragmentation pattern features capture different aspects of the
quality of the match between a spectrum and a theoretical
peptide, their inclusion can enhance the discriminative power
of Percolator. We investigated whether this increased perform-
ance would improve the identification of the product of
germline variation, which is particularly challenging due to its
similarity with the reference proteome. We extended the set of
features given to Percolator to capture the agreement between
experimental peptide retention time and fragmentation and
predicted values, making a total of 40 features compared to 18
in the standard set (full list of PSM features available in
Supporting Information). For all three tonsil samples from
Wang et al.,12 and despite performance differences in the
overall yield, identification rates were consistently improved
when using the extended features (Figure 4). At a global 1%
FDR threshold, Percolator using the new set of features
increased the prevalence of PSMs with low retention time and
fragmentation deviation from the predicted values and rejected
PSMs with poor retention time or fragmentation pattern
matching (Figure 5).
When summarizing the identifications from all three

samples, for peptides mapping to a canonical protein sequence,
20,844 PSMs (1.5%) of the original matches were not retained
using the extended features and 112,472 were newly included,
representing an increase of 6.65% (Figure 6 and Table 1).
When considering distinct peptide sequences, 4,450 sequences
(2.2%) were not retained and 19,104 were newly included,
yielding a 7.3% increase. For variant peptides, 898 PSMs
(12.5%) were not retained and 1,470 PSMs were newly
included, making a 8% increase. When considering distinct
peptide sequences, 235 sequences (14%) were not retained
and 306 were newly included, making a 4.2% increase. Thus,
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using the extended features increased the identification rates
for all matches.
Even though the share of variant PSMs and peptide

sequences that are gained by the extended set of features is
slightly smaller for variant sequences than canonicals, there is a
substantially larger percentage of variant PSMs and peptide
sequences that are not retained from the standard search.
Therefore, the proposed approach manages to eliminate a
larger share of random hits mapping to variant sequences from
the final confident identifications. Given that variant peptides
can be more difficult to distinguish from others, for example,
due to post-translational modification, it is expected that these
will benefit best from an increased ability to assess the quality
of a match. The agreement between PSMs and peptide
sequences further indicates that the increase is not only due to
the redundant sampling of the same sequence.
The variant PSMs that are not retained using the extended

features are mainly the ones that show a large disagreement
with the prediction for retention time and/or fragmentation,
which makes them less reliable (Figure 7C). While, on the
other hand, the PSMs that are gained (Figure 7E) together
with the ones that are accepted by both sets of features (Figure
7D) display a much better agreement with the predictors: for
the majority of them, the retention time of the measured
spectrum is very close to the predicted one, and also intensities

of the measured spectrum are highly similar to the predicted
fragmentation pattern of the theoretic peptide. Extending the
features therefore not only increases the identification rate for
variant peptides, it also improves the agreement with predicted
retention time and fragmentation. When extending the
standard features with only fragmentation pattern or retention
time information, the gain in retention time or fragmentation
agreement is minimal, as shown in Figure 7A,B, respectively.
This further supports the need to extend the features both with
retention time and fragmentation features, as these two have a
complementary contribution to Percolator’s rescoring proce-
dure. Therefore, the gained PSMs are more reliable when both
peptide characteristics are used, rather than either of them
separately.

■ CONCLUSIONS AND DISCUSSION
This work focuses on the search for the product of common
genetic variation in proteomic data. For this purpose, we
evaluated the combination of retention time and fragmentation
predictors (Supporting Information, Figure S1). We tested the
performance of this approach on a dataset of healthy tonsil
tissue samples available from Wang et al.12 Testing on a peer-
reviewed reference public dataset provides the advantage of
generating independent results that should be better general-
izable to other proteogenomic datasets. The search was
performed against an Ensembl-based protein database,
enriched with the products of common genetic variants and
sample contaminants. In order to improve the identification
rate for canonical and especially variant sequences, the
retention time and fragmentation pattern of the peptides
were used for the computation of additional features for
Percolator. The results presented in this paper show that there
is indeed a significant influence of these two characteristics on
the outcomes of our analysis. By taking them into account,
Percolator is able to retrieve a set of accepted PSMs with a
greater prevalence of high-quality matches, leading to an
increased number of identified peptide sequences.
Combining different features for peptide scoring and

evaluation to improve the filtering of false positives has been
used since the early days of mass spectrometry-based
proteomics,22,37−39 and modern prediction tools have enabled
the routine usage of retention time and fragmentation
predictors for PSM rescoring. Notably, the Prosit rescoring
method40 and MS2Rescore24 demonstrated impressive per-
formance improvements for the identification of immunopep-
tides. Given the intrinsic difficulty in identifying variant
peptides, we here evaluated the value of adding features

Figure 4. Comparison of the performance of Percolator given the
standard and the extended set of features. For all three different sets of
spectra that were searched against the extended protein sequences
database, the number of PSMs retained at a given FDR threshold is
plotted using the standard and extended sets of features for all
thresholds up to 5% FDR.

Figure 5. 2D-density plot of PSM agreement with retention time and fragmentation predictors for confident PSMs separated based on the set of
features supporting their identification. The retention time vs fragmentation distance to prediction of target PSMs retained at a 1% FDR when
Percolator was provided with (A) only the standard set of features, (B) either the standard or extended set of features, and (C) only the extended
set of features. PSMs pooled from the 3 used samples.
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capturing agreement with retention time or/and fragmentation
predictors to proteogenomic pipelines. Our results strongly
encourage the usage of such state-of-the-art PSM rescoring
tools in proteogenomics searches, as this allows the
identification of more unique peptide sequences while also
increasing the quality of the matches between spectra and
peptides, leading to a broader coverage of the proteome. For
this, proteogenomic pipelines can be extended with tools
featuring the built-in support of such predictors like Prosit40 or
MS2Rescore.24 Further gain is expected from the tuning of the
features of such tools for proteogenomic applications, notably
to distinguish variant peptides from similar and possibly

modified reference peptides, which was beyond the scope of
our study.
The performance of peptide identification search engines is

strongly affected by the protein sequence database used. In this
work, the focus was on products of common germline
sequence variations which increase the database size but do
not yield a search space explosion compared to rare or somatic
mutations. If rare (MAF ≤ 1%) or somatic variants were also
included, then for most of the proteins there would be orders
of magnitude more unique sequences that would need to be
included in the extended database. Similarly, if the products of
UTRs or non-coding variants were included, then the massive
size of the resulting database would pose several challenges,
and the prevalence of false positive hits would increase
significantly. In these cases, the improvement of Percolator’s
evaluation with the additional features of retention time and
fragmentation pattern is likely to also have a positive influence
on the performance of a proteogenomics pipeline. Another
factor impacting the identification of common germline
variants in comparison to somatic and non-coding peptides
is the fact that, by nature, these are very similar to reference
peptides and unlikely to alter the function of proteins or be
pathogenic. Common variant peptides are thus more likely to
be mistaken with another peptide, and such errors are less

Figure 6. Venn diagrams of the number of PSMs and peptide sequences obtained using different sets of features. The number of PSMs and peptide
sequences retained using the standard set of features only, either the standard or extended set of features, and the extended set of features only are
provided for canonical and variant sequences, as listed in Table 1. PSMs and identified peptides pooled from the 3 used samples.

Table 1. Number of Matches Retained by Percolator Using
Different Sets of Featuresa

standard feature
set

both feature
sets

extended feature
set

canonical PSMs 20,844 1,357,319 112,472
canonical peptides 4450 195,302 19,104
variant PSMs 898 6273 1470
variant peptides 235 1449 306
aThe number of PSMs and peptide sequences retained using the
standard set of features only, either the standard or extended set of
features, and the extended set of features only are provided for
canonical and variant sequences.
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likely to be monitored by error rates using random peptides to
model the null distribution of scores.
Our study focused solely on the identification of PSMs and

peptide sequences. Accounting for common germline variation
remains to be integrated with PTM detection and localization
methods to enable the identification of peptides. Similarly, new
methods and tools need to be developed to consolidate
variant-aware peptide information at the gene or protein level.
But overall, our results support that current proteomic
pipelines have the potential to account for products of
germline genetic variants. Routinely including genetic variation
in proteomic analyses holds the promise to increase their value
in medical and population studies, and especially in precision
medicine approaches. It also provides a simple alternative to
projecting all data onto an arbitrary reference genome, hence
enabling a better and fairer coverage of populations.
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