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Abstract

The compressible Navier-Stokes equation subject to both adiabatic wall boundary con-
ditions and far-field boundary conditions are studied in this thesis. Although the well-
posedness of these equations is generally unknown, they are of wide interest and are
extensively used in computational fluid dynamics. A result by Strang (1964) states that
if a non-linear problem is discretised using a difference method that is linearly stable,
then this method is convergent for smooth solutions. That is, there exists theory we can
use in the analysis of the Navier-Stokes equations. Thus, we study linear well-posedness
and stability of numerical schemes both in the context of the compressible Navier-Stokes
equations, but also linear partial differential equations as model problems. Furthermore,
entropy estimates are derived for the fully non-linear Navier-Stokes equations, which pose
as an admissibility criterion for the relevant weak solution we seek; it should additionally

satisfy the second law of thermodynamics.

The main focus of this work is the stable imposition of the adiabatic wall and far-field
boundary conditions for the Navier-Stokes equations. In particular, we prove that the
no-slip condition can be imposed strongly and still yield an entropy estimate when used
in combination with diagonal-norm summation-by-parts (SBP) operators with diagonal
boundary operators. Furthermore, we introduce a new methodology for setting far-
field boundary conditions, and prove that it leads to an entropy stable scheme for the
compressible Navier-Stokes equations. The procedure is additionally linearly well-posed.
Throughout, we employ SBP operators due to their remarkable stability properties. We
also prove that a slightly modified version of the finite-volume SBP approximation of the
second-derivative given by Chandrashekar (2016) is (weakly) consistent, thus making it
suitable for discretising the viscous terms of the Navier-Stokes equations on unstructured

grids.
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Sammendrag

I denne avhandlingen studerer vi de kompressible Navier-Stokes-likningene formulert
med bade adiabatiske veggrandvilkar og fjernfeltvilkar. Selv om det er ukjent om disse
likningene er velformulerte er de av stor interesse, og de er mye brukt innen numerisk
fluiddynamikk. Et resultat av Strang (1964) sier at for ikke-linesere problem diskretisert
ved hjelp av en differansemetode som er lineserstabil, er denne metoden konvergent
for glatte lgsninger. Altsa finnes det teori vi kan bruke i analysen av Navier-Stokes-
likningene. Derfor studerer vi her teori for velformulerte linesere problem, og stabilitet
for numeriske metoder. Dette gjores bade for de kompressible Navier-Stokes-likningene,
men ogsa for linesere partielle differensiallikninger som modellproblem. Videre utleder vi
entropiestimat for de ikke-linesere Navier-Stokes-likningene, et estimat som virker som et
kriterium for den svake lgsningen vi leter etter; den skal i tillegg til likningene tilfredsstille

termodynamikkens andre lov.

Hovedfokuset ved dette arbeidet er stabil handtering av de adiabatiske veggrandvilkarene
og fjernfeltvilkar for Navier-Stokes-likningene. Vi beviser at heftelsesvilkaret (eng.: no-
slip condition) kan bli implementert eksakt og fremdeles resultere i et entropiestimat nar
teknikken brukes i kombinasjon med delvissummasjonsoperatorer (SBP-operatorer) som
har diagonale normmatriser og randmatriser. Vi introduserer ogsa en ny metodikk for a
sette fjernfeltvilkar, og beviser at den forer til et entropistabilt skjema for de kompress-
ible Navier-Stokes-likningene. Teknikken er i tillegg linezert velformulert. Gjennom hele
arbeidet bruker vi SBP-operatorer pa grunn av deres gode stabilitetsegenskaper. Vi be-
viser ogsa at en litt endret versjon av SBP-operatoren som tilnseermer den andrederiverte
ved hjelp av endelig-volummetoden gitt av Chandrashekar (2016) er (svakt) konsistent,
noe som gjor den egnet til a diskretisere de viskgse leddene i Navier-Stokes-likningene

pa ustrukturerte gitter.
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Background






1. Introduction

This thesis concerns the numerical approximation of the compressible Navier-Stokes
equations. These equations constitute a system of non-linear partial differential equa-
tions that model the flow of viscous and heat conducting compressible fluids. Herein, we
are interested in the case where the fluid in question is air, and the problems are those
arising in aerodynamics. In particular, the focus is on stable impositions of the adia-
batic wall and far-field boundary conditions. These boundary conditions can be used in

combination, for instance when modelling the airflow past an airplane wing.

When solving initial-boundary-value problems, they should ideally be well-posed such
that the existence of a unique solution depending continuously on the problem data, is
guaranteed. The well-posedness of the compressible Navier-Stokes equations is gener-
ally unknown, but the theory of linear well-posedness, which is well established in the
literature, is often used in the analysis of these equations. Additionally, the theory of
entropy can also be used, providing some form of non-linear stability estimates. Herein,

we discuss the two concepts briefly.

We start by considering the linear well-posedness theory, which can be found in the
books [16, 21]. We study the 1-D advection equation as a model problem to introduce
the topic. We focus on the stability aspect in the definition of well-posedness, that is, we
derive an a priori estimate for the solution. Throughout this thesis, a priori estimates
obtained for linear problems are derived using the energy method, for which integration-
by-parts (IBP) is fundamental. For many linear problems, the existence of a unique
solution is closely related to the derived energy estimates (see [16]). The well-posedness
of the linearised compressible Navier-Stokes equations has been studied in various papers
(see e.g. [18, 28, 29, 37, 35]). However, the a priori estimates derived for the linearised
equations are generally not sufficient to infer well-posedness of the original non-linear

problem.

The theory of entropy is thus sometimes used to obtain non-linear estimates, and we pro-
ceed by discussing this topic. The idea is to introduce an additional entropy inequality
to the problem. In order for a (weak) solution of the original non-linear problem to be
deemed physically relevant (see [40]), it should additionally satisfy this entropy inequal-

ity. When deriving entropy estimates for the compressible Navier-Stokes equations, we
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also rely on integration-by-parts.

Since the ultimate goal is to solve the Navier-Stokes equations numerically, we carry over
the aforementioned concepts to the semi-discrete setting. As previously mentioned, the
use of IBP is common to both linear stability estimates and entropy estimates. Thus,
we utilise summation-by-parts (SBP) operators to approximate the spatial derivatives
in the continuous problem. SBP is the discrete counterpart to IBP, and SBP operators
thus allow us to mimic the continuous estimates. However, in the semi-discrete setting,
difficulties may arise in the imposition of the boundary conditions. To obtain semi-
discrete estimates analogous to the ones derived in the continuous setting, it is therefore

important to use stable boundary procedures.

Throughout this thesis, we focus on semi-discrete schemes, meaning that we keep the
temporal variable continuous. For linearly stable semi-discrete schemes, the fully discre-
tised problem is stable if time is integrated using an appropriate Runge-Kutta method
(see [23]). In Paper A, we have used a strong stability preserving Runge-Kutta method

(see e.g. [13]) for time integration.

The main contribution of this thesis is threefold. First, we show in Paper A ([10]) and
subsequently extend the results in Paper C ([12]), that the injection method for imposing
Dirichlet boundary conditions strongly results in stable schemes when used in combina-
tion with diagonal-norm SBP operators with diagonal boundary operators. Specifically,
we show in Paper C that the combination leads to linearly stable schemes for the ad-
vection and advection-diffusion equations with both homogeneous and in-homogeneous
boundary data. For the compressible Navier-Stokes equations, when the methodology is
used to impose the homogeneous no-slip boundary condition it results in entropy con-
servative/stable schemes. The proof does not impose any restrictions on the accuracy
of the SBP operators. For two specific finite-difference SBP operators, the scheme for
the 1-D equations is shown to be linearly stable in Paper A ([10]). Second, we pro-
pose a new methodology for imposing far-field boundary conditions for the compressible
Navier-Stokes equations. Normally, characteristic far-field boundary conditions are used
(see Section 3.2.1 for a discussion), and they are linearly well-posed. The new method-
ology leads to a boundary procedure that is also linearly well-posed, but additionally,
we can prove that it leads to an entropy estimate. Finally, with the motivation of dis-
cretising the viscous terms of the Navier-Stokes equations using a finite-volume method
on unstructured grids, we study an SBP operator approximating the second derivative
derived in [5]. By showing convergence of a semi-discrete solution to a weak solution
of the heat equation, we establish (weak) consistency of a slightly altered version of the

approximation in Paper B ([11]).



2. The compressible Navier-Stokes

equations

We start by introducing the compressible Navier-Stokes equations, the motivation behind
the work of this thesis.

Let u = {p, m,mn, E} ! denote the vector of conserved variables; density, momentum (in
a- and y-direction, respectively) and total energy. Furthermore, let € represent an open
and bounded polygonal domain in two spatial dimensions, and suppose that a solid body
occupies a subdomain Q° C Q with boundary 9€2°. Then the compressible Navier-Stokes

equations on Q \ 90° can be stated as

ug + f'(u)y +g'(u)y = (U, ug, uy)w + 8" (U, Uy, uy)y. (2.1)

The inviscid terms of (2.1) are given by

puU pv
2
pu”+p puv
fi(u) = ,ogw=|
puv pv°+p
w(E +p) v(E+p)

with v = %, v= % denoting the velocity components in z- and y-direction, respectively,
and p = (v — 1)(E — M) denoting the pressure, where v =  is the ratio of the
specific heats at constant pressure and volume. Furthermore, the viscous fluxes take the

forms
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0
2py + Ay + vy)
fuuy + v)
| 2puu, + (g + vy) + po(uy + vy) + KT,
[ 0
p(uy + vg)
240y + Aug + vy)
| 2100y + Av(ug + vy) + puuy + vg) + KT,

fv(u7 uza Uy) =

gv(u7 Uz, Uy) =

where T' = p% denotes the temperature, and R represents the gas constant. Lastly, x4 and
A are the viscosity parameters, and « is the heat conductivity parameter. Throughout,

we assume Stokes’ hypothesis such that A\ = —% L.

The system of equations (2.1) is augmented by proper boundary and initial conditions
to form an initial-boundary-value problem. Here, we focus on the boundary conditions.
In the field of aerodynamics, the adiabatic wall and far-field boundary conditions are
common. These are used in combination, for example when simulating an external flow
around an airfoil. In this case, the adiabatic wall conditions are used at the boundary
of the airfoil. They take the forms

oT

i 0, on 9, (2.2)

u,v =0,
where % denotes the normal derivative of the temperature. They model the situation
where the fluid velocity at the boundary of the airfoil is zero relative to that of the airfoil,

and the zero heat flux through its boundary.

At a distance far away from the airfoil, we expect the flow to be unaffected by it, and
that all variables approach their free-stream values. However, in practical simulations,
the spatial domain cannot be arbitrarily large. Far-field boundary conditions are used
at the artificial boundaries that occur when the domain is truncated. Ideally, the far-
field boundary conditions would be stated such that the fluid flows through the artificial
boundary as if it is not there . Common far-field boundary conditions for the compressible
Navier-Stokes equations are characteristic boundary conditions that are derived from the
linearised equations, see e.g. [18, 28, 37]. We further discuss the form of the far-field

boundary conditions in Section 3.2.1.



3. Continuous theory

This chapter is devoted to a discussion on linear well-posedness and entropy theory.
Moreover, we present an entropy estimate for the compressible Navier-Stokes equation
(2.1).

3.1 Theory of linear well-posedness

When solving initial-boundary-value problems, we would like them to be well-posed.
Well-posedness guarantees the existence of a unique solution that depends continuously
on the problem data. Generally, we cannot establish well-posedness of the compressible
Navier-Stokes equations. However, if they are linearised, we can prove that they are
linearly well-posed when augmented by proper boundary conditions. It seems reasonable
to require that non-linear problems are linearly well-posed. If a linearised problem is
not stable against perturbations in the problem data, we may expect non-linearities
to further amplify the unbounded effects. In fact, when discussing the linearisation
principle, Gustafsson, Kreiss and Oliger argue that it is doubtful if the solution can be

calculated if the linearised problem is not stable (see [16]).

Although the goal is to solve the compressible Navier-Stokes equations numerically, we
study also their linearised version in this thesis (see Paper A) and other linear PDEs as
they can provide some insights into the non-linear problem, and may be better suited
to exemplify various concepts. In this thesis, the energy method can be used to prove

well-posedness of the linear problems we consider.

We give a brief discussion of linear well-posedness, and refer the interested reader to the

books [16, 21] for a comprehensive introduction.

Let ©Q = (0,1) denote a spatial domain. We consider the linear advection equation as
a model problem, which is often used in the literature. In one spatial dimension, it is

given by
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ug + au, =0, a>0, z €, t >0, (3.1a)
w(0,t) = g(t), t>0, (3.1b)
u(z,0) = f(z), x € Q, (3.1c)

where f € L?(QQ) is the initial data and g is the boundary data. Well-posedness of the
problem (3.1a)-(3.1c) can be defined as follows.

Definition 3.1 (Def. 8.4.1 in [16]). The problem (3.1a)-(3.1c) with g = 0 is well-posed

if there is a unique smooth solution that satisfies the stability estimate

lul T < Ke*T|FC), (3:2)

where K and « are constants that do not depend on f.

Herein, the norm in (3.2) is the usual L2-norm defined by
a0y = [ Jul* da.

We focus on stability proofs, i.e., on proving that the solution to the problems satisfy es-
timates like (3.2). For many problems, existence of solutions are related to these energy
estimates. That is, we can define a difference approximation to the continuous problem
that satisfies analogous discrete estimates. Then we can choose a smooth interpolant to
interpolate the numerical solution that converges to the true solution upon grid refine-
ment (see [16]). Moreover, uniqueness of the solution can also be inferred from the a

priori estimates.

Returning to the linear advection equation (3.1a)-(3.1c), we may prove that it is stable
by using the energy method. That is, we multiply the equation by u and integrate over
Q. This results in

/uutJr/auuwdx:O.
Q Q

Integrating by parts yields
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d
Sl Bl + anlls = 0.

Using the boundary condition (3.1b) with g = 0, we obtain

d

&Hu('?t)uiﬁ(ﬂ) + au?(1,t) =0,

or, alternatively

d
&H“(wﬂ”%?(n) <0.

Integrating in time finally results in an estimate analogous to (3.2):

lu( DIz < IO Z20)-

That is, assuming the existence of a unique smooth solution, the problem (3.1a)-(3.1c) is
well-posed in the sense of Definition 3.1. We will sometimes refer to the estimates (3.2)

as energy estimates.

The above theory also applies to the compressible Navier-Stokes equations when they
are linearised. The linearised Navier-Stokes equations are obtained by first restating the
equations using the primitive variables, (p,u,v,p). Thereafter, the primitive variables
are decomposed into an exact smooth solution and a small known perturbation, e.g.
P = pex + 0, (see e.g. [16, 21]). This results in a variable-coefficient problem, which
is next turned into a constant-coefficient problem by freezing the coefficients. Lastly,
the equations are symmetrised using the matrices in [1]. A rigorous derivation of this
procedure is given in Paper A, [10]. The linear well-posedness of the compressible Navier-
Stokes equations (2.1) have been studied in various papers, see e.g. [30, 35] for wall

boundary conditions and e.g. [18, 28, 37] for far-field boundary conditions.
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3.2 Entropy theory

In addition to linear well-posedness, entropy estimates are often studied when analysing
the compressible Navier-Stokes equations. Generally, entropy estimates can provide
some a priori bounds on the solution of the continuous problem (see e.g. [34]). For
the compressible Navier-Stokes equations, requiring an entropy estimate to hold, means
that we additionally require the solution of the problem to satisfy the second law of

thermodynamics in order for it to be considered physically relevant (see [40]).

We give here a brief overview of the entropy theory needed for the analysis of the com-
pressible Navier-Stokes equations. We follow the presentation given in [40], and refer
to that paper and the references therein for a more comprehensive introduction to the

topic.

In both [17, 40], the theory of entropy is introduced by considering a system of hyperbolic

conservation laws on the form:

u; +f(u), = 0. (3.3)

The equations (3.3) are said to be endowed with a scalar entropy-entropy fluz pair,
(U(u), F(u)) if U(u) is strictly convex (i.e., the Hessian is positive definite, U,,(u) > 0),
and the relation U,(u)f,(u) = F,(u) is satisfied (see [17]). Furthermore, the entropy
variables, w = U,(u) symmetrise (3.3) (see e.g. [27]).

Since (3.3) may not have a unique weak solution, an entropy inequality can be added,
posing as an admissibility criterion for physically relevant weak solutions (see [40]). The

entropy inequality is found by considering the regularised version of (3.3):

ui + f(u®), = e(Pul)s, (3.4)

where P is some admissible viscosity matrix. When Equation (3.4) is multiplied by the

entropy variables, w', and we pass to the limit £ — 0%, we find that

U(u) + F(u), < 0. (3.5)
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In the case of a smooth solution, the above is satisfied with equality (see [17]).

3.2.1 Entropy estimates for the compressible Navier-Stokes

equations

For the compressible Navier-Stokes equations (2.1), affine functions of the specific entropy
S = In(p/p?) are admissible entropy functions (see [20]). Usually, U(u) = —pS is used.
For this particular entropy function, the corresponding entropy flux functions (in the

2-D setting) are F = —mS, G = —nS, and the entropy variables take the form

—co(8 =) — 155

3T
1 u

w = U,(u) = = r : (3.6)
v T
_1
T

It is well-known that the Navier-Stokes equations (2.1) augmented with the adiabatic

wall boundary conditions (2.2) satisfy an entropy estimate on the form

%/ﬂU(u)dQ <0, (3.7)

The derivation can be found in for example [31, 39], but we include it here for the reader’s

convenience.

Let 2 be an open and bounded polygonal 2-D domain with boundary 0. By multiplying
the equations (2.1) by the entropy variables (3.6) and integrating over the spatial domain,

we obtain

/ w'u, dQ + / wif,+wig dQ= / w' ) +wlgydQ.
Q Q Q

Since w = U(u),, we have that w'u, = U(u),u; = U(u), in the first term above. The
integrand of the second term is recognised as the spatial derivatives of the entropy flux

functions, while applying integration-by-parts to the third term, yields
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d

= U(u)dQ+/Fx+Gde

:/ [Wva7WTgV} .ﬁds—/w;fv—i—w;gv dQ,
o9 Q

d S
&/QU(u)dQ+/(9Q {F, G} -7 ds

= / [wa", ngV} -iids — / w, £+ w, g” d. (3.8)
0 Q

In the above, 7 = {nx, ny} denotes the outward pointing unit normal. The integrands

of the boundary terms above read

!
92,
3
|
|
3
o
|
3
2,
3
Il
u<D

|:WT]cv7 WTgV} 0= [_CULTTI7 __K Tyi| = 0,

since u,v = 0 and % = 0 on 9. Thus, the entropy estimate (3.7) is guaranteed as long
as the volume term on the right-hand side of (3.8) is negative semi-definite. Assuming
positivity of the density and temperature, p, T > 0, this can be shown by simply writing

out the terms.

Characteristic far-field boundary conditions

Characteristic far-field boundary conditions are derived from the linearised version of
the compressible Navier-Stokes equations. They lead to a linearly stable problem, but
do not necessarily bound the entropy. In order to show this, we follow the paper [37] in

this section.

After the Navier-Stokes equations (2.1) are linearised and symmetrised, the energy
method can be used to show well-posedness. In the energy analysis, boundary terms
like
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/ w' (Apyw — 2¢FY) dydz,

=0

emerge. (Note that in [37], the equations are considered in 3-D). Above, w denotes the
symmetrised variables obtained after the linearisation procedure is performed. We do

not specify the form of the matrices Ay, ), but refer to [37].

The matrix A;,, is rotated into a diagonal matrix X " 4;,X = A, holding the well-known
eigenvalues (u, u,u,u+c,u—c) (in 3-D), where ¢ represents the speed of sound. Based on
the ingoing/outgoing characteristics, the form of the boundary conditions bounding the
term above can be specified. The diagonal matrix A; is decomposed into two matrices,
one holding the positive eigenvalues and the other the negative eigenvalues, i.e., A; =

AT + A7. The boundary conditions that are studied in [37] are given as

aAf w—eFY =g, (3.10)

1w

where A}, = XA] X and a is a scalar. We recognise that this is a Robin-type boundary

condition since the viscous flux FY includes a spatial derivative.

From this, the easiest way of seeing that the entropy cannot, in general, be bounded
by the characteristic far-field boundary conditions is to consider a supersonic outflow
boundary. At this boundary the number of positive eigenvalues is zero (v < —c) (see
e.g. [15, 37]) and the boundary condition (3.10) is reduced to

_6F1§)/ =9

i.e., a Neumann type boundary condition. Consider the boundary terms emerging from

the inviscid terms in (3.8) in the entropy analysis above:

/89 [F G} 7 ds.

We see that these cannot be bounded by a Neumann type boundary condition. The
fact that the far-field boundary conditions do not bound the entropy was the motivation
behind the work of Paper D. There, a new methodology for imposing far-field boundary

conditions in an entropy stable manner for the compressible Navier-Stokes equations is
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presented.



4. Semi-discrete theory

In this chapter, we introduce the analogous semi-discrete concepts to linear well-
posedness and entropy theory as described in the previous chapter. Additionally, we

introduce the summation-by-parts operators used to approximate spatial derivatives.

4.1 Semi-discrete linear stability

Once a problem is proven well-posedness, we can attempt to solve it numerically. In
order to be confident that the numerical solution approximates the true solution, some
requirements of the chosen numerical scheme must be met. For well-posed linear prob-
lems discretised using a consistent and stable difference scheme, the Lax-Richtmyer’s
equivalence theorem guarantees the convergence of the numerical solution to the true
solution (see [24]). For linearly stable difference schemes approximating non-linear prob-
lems, a similar result applies if the solutions are smooth (see [33]). As in the previous

chapter, we focus on stability proofs for the semi-discrete schemes.

Let €, be a discretisation of Q U 9Q = [0,1] into a set of N + 1 grid points x;, i =
0,1,...,N, and let h denote a typical grid spacing. Bold-face letters denote vector-

valued semi-discrete representations of the corresponding continuous variables, e.g., u =

&
ug(t),ui(t),...,un(t)| , where u; = u(z;,t).

Consider the general semi-discrete approximation of (3.1a)-(3.1c).

uy +aDu =0, t>0, (4.1a)

uo(t) = g(t), t>0, (4.1Db)

u(0) = f. (4.1¢)

Here, D is a consistent approximation of % on the grid points, z;, ¢ = 0,1,..., N, and

-
f= [f(mo), flx1),. .., f(a;N)} . We use the following definition of stability for such a

scheme.
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Definition 4.1 (Def. 11.3.1 in [16]). The approximation (4.1a)-(4.1c) with g = 0 is

stable if, for h < hg, there are constants K, « such that

(Tl < KT £l (4.2)

Generally, the constants, K and « above differs from the ones in the well-posedness
defintion 3.1.

As discussed in Section 3.1, the well-posedness of the linearised compressible Navier-
Stokes equations has been analysed with different boundary conditions in various papers.
However, the linearisation of the schemes approximating the non-linear version has been

studied to a lesser extent.

In Paper A ([10]), the semi-discrete scheme proposed to approximate the 1-D com-
pressible Navier-Stokes equations was linearised, and its linear stability properties were
analysed. In that paper, we found that the scheme for the non-linear equations is indeed

linearly stable in the sense of Definition 4.1.

4.1.1 Summation-by-parts operators

We employ summation-by-parts (SBP) operators to approximate the spatial derivatives
in the problems we study, i.e., the operator D in (4.1a) is assumed to be SBP. SBP
operators are designed to discretely mimic integration-by-parts, which is used in the
energy method. Thus, SBP operators can be used in the discrete energy method to

derive stability estimates analogous to the ones obtained in the continuous setting.

SBP operators were first derived using the finite-difference method in [22] (and we refer
to the review paper [8] for a historic description of the subsequent developments). In
later years, several different numerical methods have been studied in the SBP context.
As a result, also finite-volume methods, discontinuous Galerkin methods and spectral

collocation methods have been shown to lead to SBP operators (see e.g. [2, 5, 9, 29]).

To prove stability for the semi-discrete scheme (4.1a)-(4.1c), we introduce a general
definition of an SBP operator approximating the first derivative. To this end, define

E— |k .k k
"’ = ~1707-7517~~->$n]

Definition 4.2 (Def 1. in [8]). An operator D is a degree p SBP approximation of % if
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1. Dz* = ka1 for all k € [0, p],
2. D = H'Q, where H is symmetric, positive definite, i.e., H=HT > 0,

3. Q+ QT =E = tpth — t;t] = diag(—1,0,...,0,1), where t}, = {0,..,,0, 1] and
t{:[1,07...,0]

The matrix, H, in the definition above, defines an L?-equivalent discrete norm, u"Hu =

el

Together with proper boundary imposition techniques, SBP operators lead to provably
stable numerical schemes. There are different ways of imposing boundary conditions
stably. Here, we consider the simultaneous approximation term (SAT) and the injection
method.

The simultaneous approximation term (SAT)

The simultaneous approximation term (SAT) was introduced by Carpenter, Gottlieb
and Abarbanel in [3]. It imposes boundary (or interface) conditions in a weak manner
by adding a penalty term to the scheme. The penalty term is designed such that the
boundary conditions may not be satisfied exactly. That is, similar to the rest of the
problem, the boundary conditions are approximated, but the SAT does not change the
overall accuracy of the scheme (see [3]). The SAT technique is extensively used in the
SBP community, and SBP-SAT schemes lead to stable approximations for many different
problems (see e.g. [2, 3, 6, 7, 8, 36, 31]).

The following SBP-SAT scheme can be used to approximate the advection problem
(3.1a)-(3.1¢) with g = 0 in (3.1Db).

u; + aDu = SAT, (4.3a)
u(0) = f, (4.3b)

T
The SAT takes the form SAT = —fH ¢t/ (au—0), and f = {f(gco)7 flz),... f(xn)} .
The scheme can be proven stable by using the discrete energy method. That is, we
multiply (4.3a) by u"H to obtain
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u"Hu + au"HDwu = u THSAT.

Recall from Definition 4.2 that HD = Q. Thus, the above reads

1d
iaHuHa +au' Qu = u HSAT.
Next, we split the second term into two equal parts and use Condition 3 of Definition

4.2 on one of these to obtain

1d 1 1
§£||u||a + iauTQu + iauT(E — Q")u = uHSAT,
d
EHUHE' + auEu = 2u"HSAT.
By inserting SAT = —IH7'¢,t] (au — 0), we arrive at

—dtHuHa + au’ — aul = —au},
or alternatively
d 2
<0.
Ll <

Integration in time finally yields a result analogous to the estimate (4.2):

le(TIE < 1111

That is, the scheme (4.3a)-(4.3b) is stable in the sense of Definition 4.1.
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The injection method

The injection method for imposing Dirichlet boundary conditions is straightforward to
use. One simply sets the boundary nodes to the boundary data. It is therefore often
considered a strong imposition technique. Contrary to the SAT, the boundary conditions
are satisfied exactly. However, the technique does not necessarily lead to stable schemes
(see [14, 32]). One of the contributions of this dissertation is the proof that injected
Dirichlet boundary conditions lead to provably stable schemes for different problems
using diagonal-norm, diagonal-E SBP operators (see Paper C, [12]). In the following

example, we use the approach taken in Paper C.

Returning to the advection problem (3.1a)-(3.1c), a stable approximation using the in-
jection method for imposing the boundary condition (3.1b) with ¢ = 0 can be stated

as

u; + aDu = 0, (4.4a)
uy =0, (4.4b)
u(0) = f. (4.4c)

where D is any diagonal-norm, diagonal-E SBP operator, D, with the elements of the
first row (the row acting on the boundary node) set to zero. Due to the form of D, the

equation at the boundary node, z, reads

(uO)t = 0.
Thus, there is no equation updating ug, and it therefore remains zero for all time.

The stability of the scheme is again found by using the discrete energy method. That
is, we multiply (4.4a) by uw'H:

u' Hu, + au"HDu = 0.

Since u(t)o = 0 for all ¢, and H is assumed to be diagonal, we recognise that u"HDu =
u"HDw. That is, the SBP properties of Definition 4.2 apply, and we obtain (by following

the analogous proof for the scheme in the previous subsection)
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d
&Huﬂa + au’ — auj = 0.

Since ug = 0, the above can be recast as

d
Sl <o,

which, after integration in time, results in the estimate

le(TIE < 1111

That is, the scheme (4.4a)-(4.4c) is stable in the sense of Definition 4.1.

A comment on in-homogeneous Dirichlet boundary conditions

The definition of stability, Definition 4.1, is given for g = 0. For linear problems, this is
no restriction, as we can transform a problem with in-homogeneous boundary data into
one with homogeneous boundary data. This is done by introducing a smooth function,
, that satisfies the in-homogeneous boundary condition. Then @ = u — ¢ satisfies the

original PDE with homogeneous boundary conditions (see [16]).

Thus, for linear problems, both SATs and the injection method can be used to stably
approximate problems with in-homogeneous boundary data. For the advection problem
considered above, the SBP-SAT scheme can be proven stable by simply restating the
SAT as

SAT = oH 'tt] (au — g(t)tL),
where o is some constant that is determined from the stability analysis (see [36]).

For the injection method, one could state the scheme as
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up + aDu = 0,
Uy = g(t)v
u(0) = f.

Then, analogous to the continuous problem, we introduce a smooth function, ¢, satis-
fying the boundary condition, such that the above scheme is transformed into one with
homogeneous boundary data. Thereafter, the stability proof from the previous subsec-

tion applies.

4.1.2 Extensions

In the above, we have only considered SBP operators approximating the first derivative in
one spatial dimension. Here, we briefly comment on some extensions to higher dimensions

and to approximations of higher derivatives.

Higher dimensions

Finitie-difference SBP operators defined on a 1-D grid can be extended to several dimen-
sions by using tensor products (see e.g. [36]). Let N, N, be the number of nodes in the z-
and y-direction, respectively, and denote by S = {(z;,y;)}, the set of all N = N, - N,
nodes in the grid. Let D, be a 1-D finite-difference SBP operator approximating a%'
Then

Dz = INU & Dzv

where |y, denotes the N, x N, identity matrix, approximates % on the grid points S.
Similarly, [_)y = D, ® |y, approximates % on S. We refer the reader to the review papers
[8, 36] for more information of the extension of 1-D finite-difference SBP operators to

several dimensions.

Finite-difference SBP operators are well suited for structured grids. On the other hand,
some SBP operators are defined directly on a 2-D (or 3-D) spatial domain, and may
thus be applicable for unstructured grids. These include finite-volume SBP operators

(see [5, 29]), the discontinuous Galerkin method (see e.g. [9]) and spectral collocation
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methods (see e.g. [2]). In Paper C, the definition of a multidimensional SBP operator
given in [19] is used to cover different types of operators. We will give the definition here

for completeness.

We let now S = {(z;,4:)}}X, denote a set of N + 1 grid points on a 2-D domain €2, and
denote by the bold-face letters p, g vector-valued representations of the two polynomials

P,Qon S:

p= [’P(l’o, Yo), P(w1,91), - - - 7P(-TN7yN)} ! )

q= {Q(xo,yo), Oz, y1), .- -5 Q(a:N,yN)}T.

Definition 4.3 (Def. 2.1 in [19]). Let P, Q be two polynomials of degree less than or
equal to p, i.e., P, Q € PP(2). The matrix D, is a degree p SBP approximation of % on
the grid points S, if

1. D,p= 2P on S for all P € PP(Q).

2. D, = H7'Q,, where H is symmetric, positive definite, i.e., H=HT > 0.

3. Q. + Q] = E, where E, satisfies

p'E.g= [ PQOn,ds,
[2}9]

for all P, Q € P7(QQ), where 7 > p, and n, denotes the z-component of the outward

unit normal, 7 = [nz, Nyl

The definition above covers tensor-product SBP operators as well as SBP operators

defined directly on an unstrutured grid, see [19].

Higher derivatives

So far, we have only considered theory suited to approximate first derivatives. How-
ever, to discretise the viscous terms of the Navier-Stokes equations (2.1), we also need
second-derivative approximations. The general form of SBP operators approximating
the second derivative was given in [4], and was further developed in [26], where the

following definition is found.
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Definition 4.4 (Def. 1in [26]). A difference operator Dy = H™!(—A+BS) approximating
g—; is a second-derivative SBP operator if A+ AT > 0, S includes an approximation of

the first-derivative operator at the boundary, and B = diag(—1,0,...,0,1).

There are essentially two ways of defining a second-derivative SBP operator. One ap-

proach is to use a first-derivative SBP approximation twice, i.e.,

Dg = D1D1 - HilQHile

where D; denotes a first-derivative SBP operator. This results in a so-called complete
second-derivative SBP operator (i.e., A = D] HD; in Definition 4.3) (see [26]). However,
this approach results in a second-derivative operator with a wider stencil compared to a
minimal stencil operator (see [26]). Minimal stencil operators are presented in [4, 26],
and the extension to second-derivative approximations with variable-coefficients second

derivatives is found in [25].

4.2 Semi-discrete entropy theory

Since the continuous Navier-Stokes equation (2.1) satisfy an entropy estimate, (3.7) (at
least with adiabatic wall boundary conditions), we would like the schemes we propose
to approximate the equations to satisfy an analogous estimate. Thus, we introduce
the semi-discrete entropy theory. Again following [40], we consider the semi-discrete

conservative scheme approximating the system of hyperbolic conservation laws (3.3):

fi+1/2 - fi—1/2

e =0, (4.6)

(w); +
where f is a consistent and Lipschitz continuous numerical flux, and Az; = %
To obtain a scheme approximating the entropy inequality (3.5), the Equation (4.6) is

multiplied by the entropy variables w, .

T

'wi ('Uq)t +

w;r f¢+1/2 - fi—l/Z —0.

Az;
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Introducing the approximation of the entropy flux function F i/, = % f

Y+ (
2

i+1/2
and correspondingly for F';_;,,) where 1) is the semi-discrete representation of

the entropy flux potential, ¢ = wf — F, the above can be rewritten into

Fi+1/2 - Fi71/2
U,), + iz = Ficye
(Ui + Az,

_ wil, — wjf Y~ w] — w;lf. Y=
QAI'@ +1/2 QA.’IZ'Z 2A"Ll =172 QAQ%

We note that we arrive at the semi-discrete version of the entropy inequality (3.5) if the

right-hand side above is non-positive. That is, we obtain

Fi1o—Fi 1

<0. (4.7)
Depending on whether the inequality is satisfied with equality or not, we distinguish
between entropy stable and entropy conservative schemes.

Theorem 4.5 (Thm. 3.1 in [40]). The scheme (4.6) is entropy stable if

wiT - wiT Vi — Y,
%fz#lﬂ - % <0,

and entropy conservative if

wiT+1 - 'wz'T Vi — Y, -0
ffiJrl/Q* 5 Y

In this introduction, we do not present a specific scheme for the compressible Navier-
Stokes equations. In the papers that make up the scientific results of this thesis, both

entropy conservative and entropy stable schemes have been studied.



5. Summary of papers

5.1 Paper A, [10]

Title: Entropy stability for the compressible Navier-Stokes equations with

strong imposition of the no-slip boundary condition
Authors: A. Gjesteland and M. Svérd
Journal: Journal of Computational Physics, 470, 111572, (2022)

DOI: 10.1016/j.jcp.2022.111572

In Paper A ([10]), we analyse the compressible Navier-Stokes equations subject to the
adiabatic wall boundary conditions (2.2). First, we propose a semi-discrete scheme
to approximate the equations. The scheme is defined using the finite-difference SBP
operator that is second-order accurate in the interior, denoted by D in this section.
The no-slip velocity condition is imposed strongly using the injection method, while the
adiabatic temperature condition is imposed via a SAT. The injected no-slip condition is

the focus of the paper.

For the sake of this summary, consider the 1-D Navier-stokes equations on Q = (0,1)

where x = 0 models a wall.

pe + (pu), =0, (5.1a)
my + (pu? 4+ p)e = (20 + N, (5.1b)
Ei+ (uW(E +p))s = 20+ ) (utty)y + £y (5.1c)
Furthermore, suppose that the domain [0, 1] is discretised into N + 1 equidistant grid
points, x;, i =0,..., N suchthat 0 = zg < 21 < ... < zxy = 1. The no-slip condition u =
is incorporated into the scheme by introducing the Dirichlet-SBP operator corresponding
to D:
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0 0
-1 0
- 110 —-10 0
D=—
2h
0 -1 0 1
| 0 0 0 -2 2

The Dirichlet-SBP operator is used in the momentum equation (5.1b) where the no-slip

condition applies. Due to the form of D, the equation for the node i = 0 reads

(mo); = 0.

Thus, there is no scheme that updates mg, and it remains zero for all time by setting
it to zero initially. However, defining D this way, ruins the structure of the original
SBP operator at the left boundary. This results in a boundary operator, B that is not
diagonal in the upper left corner. (Note that the boundary operator B in this section is

the same as E in Definition 4.2, but the former notation is used in Paper A).

The main contributions of Paper A is a proof that the semi-discrete scheme using D
for imposing the no-slip condition is entropy stable if the interior scheme is assumed
entropy stable. Furthermore, a rigorous linearisation of the scheme approximating the
1-D equations with a local Lax-Friedrichs type artificial dissipation is performed. It is
shown that the entropy stable scheme approximating the fully non-linear equations is also
linearly stable in the sense of Definition 4.1. The linear well-posedness of the continuous
Navier-Stokes equations is often studied, but the present proof also demonstrate that
the scheme proposed to approximate the fully non-linear equations is linearly stable. A

linearly stable third-order scheme is also proposed.
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5.2 Paper B, [11]

Title: Convergence of Chandrashekar’s Second-Derivative Finite-Volume Ap-

proximation
Authors: A. Gjesteland and M. Svérd
Journal: Journal of Scientific Computing, 96:46, (2023)
DOI: 10.1007/s10915-023-02256-9

In Paper A, the spatial domain was discretised into a structured grid for which finite-
difference methods are suitable. For domains with complex geometries, however, we
may wish to define an unstructured grid. The finite-volume method is often used for

this purpose.

In Paper B ([11]), we study the consistency of a finite-volume method approximating the
second derivative. The motivation behind the work is the discretisation of the viscous
terms of the compressible Navier-Stokes equations on unstructured grids. Although the
finite-volume methods are robust, easy to derive and well suited for unstructured grids,
the consistency of second-derivative approximations does not necessarily follow (see e.g.
[38])-

The second-derivative finite-volume approximation that is considered in Paper B was
derived by Chandrashekar in [5]. It is a local approximation in the sense that it only uses
the nearest neighbouring nodes of a grid point i to approximate the second-derivative at
this point. The approximation included Dirichlet boundary conditions that were imposed
in a weak sense. The resulting operator was shown to satisfy the SBP property in [5]. In
Paper B, this operator is slightly altered so as to not include any boundary conditions.
The Laplacian approximation in [5] was built by first approximating the gradient on a

triangle K,, by

Vyu" (un] +un) +wng) . (5.2)

1
2|K|

In the above, i, j, k denotes the three vertices of triangle K, while ﬁf]k represents the
outward pointing normals on the edge opposite of node i, j, k, respectively. Finally, | K,

is the area of the triangle K. See Figure 5.1 for a visualisation of all the components.

Next, the Laplacian operator is approximated as (see [5])
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Figure 5.1: Figure depicting the elements of the gradient approximation (5.2). (Figure
from [11].)

(Ahu)i =

1
2V;

(Z Vyu" - ng + Z Vyu© l;(e)) : (5.3)
neN; ecE;

Here, V; denotes the dual volume of grid point i, N; the set of triangles having grid point
i as a vertex, E; the set of boundary edges having vertex ¢ as an endpoint and I;(e) the

outward normal on a boundary edge e. The components are depicted in Figure 5.2.

m » 4 .
l)}(lz) ¢ liy(l) J

Figure 5.2: Figure depicting the components of the second-derivative approximation
(5.3). (Figure from [11].)

Following the proof of [5], the altered operator is shown to be SBP in Paper B. Using
the 2-D heat equation as a model problem, a priori estimates for the numerical solution
corresponding to the ones obtained for the continuous solution, is found utilising the SBP
property. From the a priori bounds, the solution is shown to converge weakly to a weak
solution of the original problem. Subsequently, strong convergence to the weak solution
is established by employing Aubin-Lions lemma. Thus, the finite-volume approximation

is proven consistent (in a weak sense) on triangulated unstructured grids.
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5.3 Paper C, [12]

Title: Injected Dirichlet boundary conditions for general diagonal-norm SBP

operators
Authors: A. Gjesteland, D. Del Rey Ferndndez and M. Svérd
Preprint: 10.13140/RG.2.2.26067.55843, Under review, (2023)

In Paper C, the definition of the Dirichlet-SBP operator introduced in Paper A is ex-
tended to general diagonal-norm SBP operators with diagonal boundary operators, E.
That is, we use the definition of multidimensional SBP operators (see Definition 4.3)
given in [19] to cover a general class of operators that include tensor-product finite-

difference SBP operators but also operators defined directly on unstructured grids.

The purpose of the Dirichlet-SBP operators is to study the stability properties of SBP
schemes with injected Dirichlet boundary conditions. In Section 4.1 an example for
the linear advection equation is provided. To further introduce the results of Paper C,

consider the 1-D linear advection-diffusion equation.

U + AUy = EUgy,

u(z,0) = f(z).

We consider the problem on 2 = (0,1), and neglect the right boundary. On the left
boundary, we impose the homogeneous boundary condition w(0,¢) = 0, and we let the

initial function, f be bounded in L2.

Remark 5.1. In Paper C, the results where shown for multidimensional SBP operators.
Herein, we consider the 1-D problem to reduce notation. However, the use of multidi-
mensional SBP operators is not restrictive, but rather a generalisation. The important

assumptions are that the norm matrices, H, and the boundary matrices, E, are diagonal.

The following semi-discrete scheme is a stable approximation of the above problem.

u; +aD,u = D, u,

u(0) = f.
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In the above, D approximates the first derivative, and is any diagonal-norm, diagonal-
E SBP operator with the elements of the first row set to zero. Analogously, D, is an
approximation of the second derivative on the form given in Definition 4.4. For simplicity,
we assume that the original second-derivative SBP operator that D,, is defined from is

complete, i.e., Dy, = DD, (see Section 4.1).

To prove that the scheme is stable, we multiply by w™H. This results in

u' Hu, + au"HD,u = su HD,, u.

Since uy = 0, and H is diagonal, the following relations hold, w"HD = w"HD and
wHD,, = uHD,,. From here, the stability proof is the same as for any SBP scheme,

but the resulting boundary terms at z = 0 vanish due to uy = 0.

In Paper C, the above methodology was used to show that semi-discrete schemes defined
using multidimensional SBP operators for the advection and advection-diffusion equa-
tions with both homogeneous and in-homogeneous Dirichlet boundary conditions are
stable. Furthermore, by using the same methodology for imposing the no-slip bound-
ary condition for the compressible Navier-Stokes equations, we prove that the resulting
scheme satisfies an entropy estimate. Contrary to Paper A, there are no assumptions on

the accuracy of the SBP operators used in Paper C.

5.4 Paper D

Title: Entropy stable far-field boundary conditions for the compressible Navier-

Stokes equations
Authors: M. Svird and A. Gjesteland, Submitted, (2023)

The compressible Navier-Stokes equations are commonly used for simulating external
flows, for example air flow past an airplane wing. In this particular case, the wing is a
solid body on which the adiabatic wall boundary conditions (2.2) applies. Sufficiently far
away from the wing, we may assume that the flow is unaffected by the wing. However,
in practical simulations, the spatial domain cannot be arbitrarily large, and it is often
truncated. This introduces “artificial boundaries” for which we must give appropriate
boundary conditions. As described in Section 3.2.1, characteristic far-field boundary
conditions are often used for the Navier-Stokes equations. These are derived from the

linearised equations to yield a linearly well-posed problem. However, as discussed in
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Section 3.2.1, they do not necessarily lead to entropy estimates for the Navier-Stokes

equations.

This is the motivation behind the work in Paper D. Here, we present a new methodology
for setting far-field boundary conditions for the compressible Navier-Stokes equations
that are entropy stable. To introduce the concept, consider the 1-D version of the
Navier-Stokes equations on the infinitely large domain 2 = (0, 00) where x = 0 models

a wall and z — oo models a far-field:

Pt + (pu)z =0,
my + (PU2 + )z = (20 + A)Uas,
Ei+ (w(E+p)e = 2u+ N (uug)s + 6T

The above equations are augmented by the boundary conditions

wall: u=0, T, =0, (5.4)
far-field: P = Poos U = Uoo, T="T,, Telesoo =0, (5.5)

where puo, Uoo, Too denote the constant free-stream values of the respective variables as

T — OQ.

Since affine functions of the specific entropy, S = In(p/p?) are admissible entropy func-
tions for the Navier-Stokes equations (see [20]), we can introduce the renormalised en-

tropy function and entropy flux function:

Uu) = —p(§ = Sx),  F(u) = —m(S — Sx), (5.6)

-
where u = {p,m,E} , and Se = lim, 00 S(x,0) is a constant. The corresponding

+
entropy variables are w = w + {SOO,07O70] , where w denotes the entropy variables

obtained from the commonly used entropy function, U(u) = —pln(p/p?).

The entropy estimate is found as in Section 3.2.1. With the new entropy variables, w,

the boundary terms corresponding to (3.9) that emerges read
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F(u)|8O = }ggo —m(m, t)(S(.”E,t) - Soo) + m(O, t)(S(Oa t) - Soo) = 0,

W (U, )| = — lim —— Ty (2, t) + ————T3(0,£) = 0.

w (U, U.L)|0 wl—)nolc CUT(.I'7t) x(xa )+ C,UT(07t) .l.( ’ )
They vanish due to the wall boundary conditions (5.4) and the fact that S(z,t) = S
and T, (z,t) =0 as z — oo.

In order to derive an entropy estimate in the semi-discrete setting, the infinitely large
domain Q = (0, 00) is transformed to a finite one, where grid points, i = 0,..., N are
placed. Thereafter, the finitely large domain is transformed back to Q = (0,00). Using
a finite-volume method, the grid points in the physical domain is distributed such that
the dual volume for the very last node, Vy — oco. By assuming that the resulting ODE
system can be solved in time, the division by this infinitely large dual volume results in

a scheme for the node ¢ = N that reads

(ui)t =0.

Thus, we use Sy = S, and similarly for the other variables, to obtain estimate analogous

to the one we derive for the continuous problem.

We note that this resembles the injection method, but the arguments that lead to the
stability estimates differ. In Paper D, the far-field conditions (5.5) are set strongly in

the computations.
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imposing the no-slip condition strongly (injection) and the temperature condition weakly
by a simultaneous approximation term. To this end, we propose a low-order summation-
by-parts scheme. By verifying the complete linearisation procedure, we prove linear
stability for the scheme. In addition, and assuming that the interior scheme is entropy

ﬁzz?;dls);)undary condition stable, we also prove entropy stability for the full scheme including the boundary
Injection method treatment. Furthermore, we propose a linearly stable 3rd-order scheme with the same
Entropy stability imposition of the wall conditions. However, the 3rd-order scheme is not provably non-
Linear stability linearly stable. A number of simulations show that the boundary procedure is robust for

both schemes.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The compressible Navier-Stokes equations describe the motion of a compressible, viscous and heat conducting fluid.
Together with appropriate boundary and initial conditions, they model e.g. aerodynamic problems. Here, we consider the
case where the fluid is interacting with solid walls. At walls, the equations are augmented with the no-slip condition leading
to the formation of boundary layers that may become unstable and even generate turbulence. These complex phenomena
are often studied using computational fluid dynamics. To reliably obtain accurate numerical approximations, the problem
must be well-posed and its discrete approximation scheme stable. Unfortunately, well-posedness is, by and large, unknown
for the Navier-Stokes equations. However, for smooth solutions, [24] ensures that numerical solutions produced by linearly
stable schemes converge.

Linear theory is well developed and one can readily employ the energy method to prove well-posedness of initial-
boundary-value problems (IBVP) (see e.g. [8]). Since the continuous energy method relies heavily on the integration-by-parts
rule, spatial operators that satisfy the corresponding discrete property, summation-by-parts (SBP), have been developed (see
e.g. [14], [29], [5]). These are used to prove energy stability and convergence of linear schemes ([9]). The linear theory has
successfully been used to design schemes appropriate for subsonic smooth flows.

In the non-linear regime, however, the linear theory is not sufficient to guarantee stability, let alone well-posedness.
To obtain non-linear bounds on the solution, the second law of thermodynamics, stating that the entropy within a closed
system cannot decrease, can be used. In mathematical terms, this takes the form of an additional inequality and solutions
that satisfy this inequality are termed entropy solutions (see Harten [10] and Tadmor [32] for the Cauchy problem and
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[23,27] for boundary treatments). Analogously, a numerical scheme is termed entropy stable if it satisfies a discrete equivalent
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]).
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly,
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

9
B_L;:P(ax,x,t)u-i-F(x,t), 0<x<1, t>0,
Lu=g(), )
ux,0) = f(x),

where P is a spatial differential operator; F is a forcing function and L is an operator acting on the boundary. We will also
need the standard L2-norm defined by ||u|? = fol [u? dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1) is well-posed if for F = g = 0 there exists a
unique solution satisfying

lu, o)l < Ke* I f ),
where K and « are constants independent of f(x). |
Next, define a computational grid with N + 1 equidistant grid points on the domain 0 < x < 1: x; =ih, h > 0. Let u,

f, F and g be grid functions corresponding to the continuous functions u, f, F and g, respectively. That is, [u(t)]; is the
approximation of u(x;, t) etc. Let

du Dhu+ F

E: h )

Bu=g(), )
u(0) = f,

be a semi-discrete approximation of the IBVP (1). Dy, is an approximation of the differential operator, P, and B an approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L?-norm defined
by ||u\|f, =u"Hu, where H is a symmetric positive-definite matrix with elements of size O (h). Herein, we only consider
diagonal H matrices.

Definition 2.2 (Stability, [8]). The problem (2) is stable if for F = g =0, the solution satisfies

lu®lln < Ke* || fllu,
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where K and « are constants independent of f and h.

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in
time with an appropriate Runge-Kutta method (see [15] for a proof).

Remark. For many problems, stability in the sense of Definition 2.2 for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9] (page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D = H~'Q, where the matrices have the following
properties:

i) H is a symmetric positive-definite matrix with elements of O(h),
ii) Q is an almost skew-symmetric matrix, satisfying the relation Q + QT = B = diag(—1,0,...,0,1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on
the boundary. The operator takes the form

-2 2 0 ... -1 1 O
-1 0 1 -1 0 1
p=1 Q=1 3)
T 2h - ) - ’
-1 0 1 -1 0 1
0o -2 2 0o -1 1

and H =h-diag(1/2,1,...,1,1/2) (this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

Ur+vx=0,
(4)
Ve+uy —2vy =0,
with the boundary condition v =0 at x =1 (neglecting the left boundary for simplicity), and the semi-discretisation
u;+Dv=0, (5)
vi+Du—2Dv=0, (6)

where u and v are the numerical solution vectors.

In the injection method, v(1,t) =0 is enforced by vy =0. A common approach to enforce injection is to remove the
equation for vy from the scheme by removing the boundary element of the solution vector and the last row and column of
the spatial differential operator, D (see e.g. [8]). However, for coupled systems such as (4) this may inadvertently introduce
extra boundary conditions. Here, we enforce injection indirectly by approximating (vy)¢ = 0. To achieve this, we introduce
a new operator by setting all elements in the last row of D in (3) to zero, i.e.,

-2 2 0 ...0
-10 1 ... 0
5_ 1
~ 2h .
-1 0 1
0 0 0

We term D a Dirichlet-SBP operator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

-100 ...00

0 00 ..00

0 00 ..00
0+0T=B= :
0 )

0 00 7 0
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We alter the scheme (5)-(6), to take the boundary condition v(1,t) =0 into account, as follows,

u+Dv=0, (7)
Vi +Du—2Dv=0. (8)

Note that the last row of the v-equation is, (vy); = 0. Thus, since vy(0) =0, it follows that vy (t) = 0. To prove that (7)-(8)
is a stable scheme, we use the energy method (see e.g. [5,29]). For (7) we have

d
Enuu?, =-2u"Qyv,

and for (8), we obtain
d ~ - - -
a||v|\§, =-—v'HDu — wW"HDu)" + 2v"HDv + 2(vTHDv)T,
=-2vTQu+2vT(Q +QT)yv=—2vTQu+2vTBv.
Adding the two estimates (and neglecting the left boundary terms emerging from (7)), we obtain

d i
o (Huni, + ||v||%,) =—2u"Qv—2vIQu—2v2+2vyvn_1. 9)

Since vy = 0 the following relations hold: vyvy_1 =0, vIQu=vT"Qu and vIQu=v'B - QN u=v'Bu—v7QTu=
—vTQTu. Furthermore, —vT QTu = —(u"Qv)7T, and we conclude that vI Qu = —u” Q v. Hence, the two first terms on the
right-hand side of (9) cancel, and our estimate reads

d
= (huli + v ) = —2v§ <o,

which demonstrates that the semi-discrete scheme (7)-(8) is stable.

Remark. Note that the Dirichlet-SBP operator, D, need not be implemented. The same result is achieved by using D every-
where in (7)-(8) and setting vy = 0 after each Runge-Kutta stage. _

4. The linearised compressible Navier-Stokes equations

Consider the compressible Navier-Stokes equations in one spatial dimension. These can be stated as

ur + f(u)x = (U, uy)x, xeQ=(0,1), 0<t<T, (10)

where u = (p,m, E)T are the conserved variables density, momentum (m = pv) and energy, and v denotes the velocity.
f= (m,,ov2 +p, v(E+p))T, is the inviscid flux where p denotes the pressure, which is related to the conserved quan-
tities through p=(y — 1) (E - %pvz), where y = % is the ratio of the specific heats at constant pressure and volume.
Furthermore, ' = (0, (214 + A)Vx, (21t + A)Vvy 4+ kTy)T is the viscous flux, where T denotes the temperature, given by the
ideal gas law T = RL'O, where R is the gas constant. Moreover, i and A denote the viscosity parameters, and we assume

Stokes hypothesis, A = —%/,L, with @ > 0. Lastly, « denotes the thermal conductivity. (Below, we use c to denote the speed
of sound.) The equations are augmented with the adiabatic wall boundary conditions,

v =0 (no-slip)and, Tx=0. (11)

To investigate linear well-posedness, the system (10) may be linearised and subsequently symmetrised with the sym-
metrising matrices found in [1]. (Since the details of the derivations are omitted in [1], we include them in Appendix A.1
for the reader’s convenience.)

We repeat this procedure briefly. To linearise the equations, we decompose the primitive variables, v = (p, v, p)T, into
their exact (known smooth and bounded) solution and a small smooth perturbation, e.g. p = pex + 0/, which yields a
variable-coefficient problem. Then, we freeze the coefficients. Well-posedness of the variable-coefficient problem follows
if all admissible frozen-coefficient problems are well-posed (see [9,13] for further information). The resulting linearised
constant-coefficient problem is

pL+ Vi oy + p vy =0,

2U+Ar
=LV (12)

YUp* s VI
_ Pm*z Pxx + Prp* Pxxs

/ I 1 .7
ve+v vX+7pX

Pr+ YD vy +Vvip, =



A. Gjesteland and M. Svdrd Journal of Computational Physics 470 (2022) 111572

where the star superscript, ‘«’, indicates a frozen coefficient. Finally, we symmetrise the equations using the matrices S,
and 551 from [1]. Using the linearised gas law (see Appendix A.2), we obtain

Wt + AWy = Bwyy, (13)

where

< C* ’ / J/R /) T
w= o,
N AN SN N7

and
* c*
v 0 o 0o o
A= 57 v¥ V;lc* . B=|o 22 o |,
i 0 o0 Z
0 Yoer v Prp*
Y
with Pr= C”” denoting the Prandtl number and ¢, = VR

For completeness we proceed by reviewing the Well posedness analysis found in e.g. [28]. Consider (13) on the spatial
domain € = (0, 1) with L2-bounded initial data. The linearised boundary conditions (11), take the form

v'({0,1},6)=0, v*({0,1},t) =0, T,({0,1},t)=0. (14)

(Note that admissible solutions satisfy the no-slip condition, whence v*({0, 1}, t) = 0.) The energy method and (14) lead to

d
i wli? +2 / W;{BWX dx = ZWTBWX|(1J — WTAwl(l) =
Q

Hence our problem is well-posed in the sense of Definition 2.1.

Remark. The Dirichlet condition T/({0, 1}) = 0 would give the same result, but since the non-linear analysis later in this
article requires T, ({0, 1}) =0, we only consider the latter.

4.1. The semi-discrete scheme

Turning to the semi-discretisation of the problem (12) subject to the boundary conditions (14), we divide the spatial
domain into N + 1 equidistant grid points with grid spacing h = 1/N. Bold-face letters denote the numerical solution
vectors.

To enforce the no-slip condition at both boundaries, the Dirichlet-SBP operator is defined by

1

0 o o 0 -} 0 .. 00

R -1 0 0 ..00

o o 0 0..00
b= . B= =1 . |- 15
I e "

- 1

0 0 0 0 2

0o 0 0 .10

We introduce p = fp*p and T = o fﬁp + /y 1 p*c*p = f*«/’ﬁT and consider the following semi-discrete
numerical scheme to approximate the system (12).

P *r A c* ’_
P+ v Dp+WDv =0, (16)
v+ 'Di) v*Dv' + V—_lc*ﬁ'f‘zz’;:rkf)Dv/, (17)
Ty + c*Dv +v*DT = gk (18)
where
SAT = — i H™'B(DT - 0), (19)

imposes the homogeneous Neumann condition for the temperature weakly. We observe the following

5
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Since v/ =0 at the boundaries initially, the use of the Dirichlet-SBP operator, D, in (17) ensures that Vg, vy remains
zero for all t > 0.

Note that in (16) and (18), po,v and To y are unknowns that are updated in time.

Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side
of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v} = 0.
When implementing the scheme, the D is not necessary. One can equivalently compute all derivatives using D and
reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16) - (18) is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13) was proven in [22].
However, in the present analysis, we use a different methodology for the injection method.

Proof. We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment
resembles the left boundary.) For (16), we obtain

d o~ wnT Tya o 2Ty
bl =-ve'@+ehp-25p"av.
Utilising the SBP-properties and subsequently v* =0 yield

2

—nan—v“ 25p Qv =—2%p"av. (20)

Next, Equation (17) results in

d 2 ct T A 5 y=1 % /TA& *o/T 0 A A Ty 2u+r T A /
allvHH:—Zﬁv Qp72,/7cv QT—v*'v ' (Q+Q )v+27v QDv'.

(21)
A
Using (15), we obtain
A =—v*v'TBv +22““ vT(B—-QNDV,=v*vyv| + 2‘;? (—V/I(Dv’)o —vp(DV) — 2(5v’)THDv’),
and, using vy =0,
v — v/ -
A= 2’;? <—v; 1 - 0 —2(Dv/)THDv’) 2““ (Z(Dv) HDv)
The estimate (21) therefore reduces to
d * - — - -
Env’ui, < —Z%V’TQ/) - 2,/’”71c*v/TQT - 22‘;)—‘f*(Dv’)THDv/. (22)
The energy method for (18) with (19) gives
d . 2 =1 % ’ T T\ YU &T o Y& 7
5 ITIE = -2y ety —viiT + QDT+ 255 T QDT - 244 +TBD%. 23)
Az
Using Q + QT =B and v* =0, yield
Lo (TT(B - Q"Hpt - TTBD%) = v - 24T QT Dt = 2% (DD H(DD).
Hence, (23) results in
d .
EHT”%, =-2 C*T Qv 24 (DTYTH(DT). (24)
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We add all the preliminary estimates (20), (22) and (24) to obtain

d /. A * [ A P - PN p
e (I + VI +1913) < —25 (v +vTQp) — 2/ e (VT T+ 1T Qv)

2042 3/ NT 17 P ay/ 4% T -
—2°2(Dv) HDV' — 255 (DT)THDT.

(25)

Consider the term v'TQ p. As in Example 3.1, it follows from vj =v) =0 that v Qp=vTQp=v'TBp - v7QTp =
—"Qv)T. Since —(pTQv))T is a scalar we obtain v'TQp = —p" Qv'. The same argument holds for the term v'TQ %,
and the two first terms in (25) therefore vanish. Lastly, since (Dv')g =0, we have (Dv)THDv' = (Dv/)THDv’, and we
obtain

d/ . N ~ A
m (18I + VI + 1913 ) + 2242 1DV I + 2 1 DFIE < 0. (26)

Hence, the scheme is stable in the sense of Definition 2.2. O
5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10) is given by

u; + D'f = D'f¥ + SAT, (27)

where u= (p, v, E)7 is the numerical solution vector. The convective term of (10) is, once again ignoring the right boundary,
approximated by

i .
(lel)i = |h/2 ’I 1=0. (28)
fptowe g N1,
where
£ 4+f Sii12 Ui —up)
+1 i+1/2 (Ui+1 i
f|i+1/2: ' 2 - 2 (29)

is the approximation of the inviscid flux and f; = f'(u;). The second term is artificial diffusion and for & sufficiently large,
the approximation is entropy stable in the sense of (52) below (see also [32]). Furthermore, the components of f;, are

fi” = (p.v)o, (30)
fy" =117, (31)
fy' = (v.(E+ P)o. (32)

where the superscripts p, m, E denote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31) implies that the flux difference (28) is identically equal to zero at grid point xo for the momentum
equation.

Next, the diffusive term of (10) is conveniently approximated on matrix form by
~ b,x T
DY = <0, D(2 +2)Dv), D(2u+ 1) v.Dv + KDT)) , (33)
(the definition of b\’/x.Dv is given in (36)-(37)) and the SAT is given by
SAT = (0,0, —H™'B(DT — 0))" . (34)
Remark. The scheme for the momentum equation is m; =0 on the boundary, i.e., mo(t) =0 such that vo =0 for all ¢t > 0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11) is
replaced with KTTX = g. The corresponding SAT would then take the form SAT = H~'(«BDT — Tg), which would yield an

entropy stable scheme for appropriately chosen g.
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In (33) we use

Qubizdobe — g, (Db)o + bo(D@)o = by (D)o + do(Db)o i=0,

(D(a.b)); = ai+1bi+12*hai—lbi—l _ ﬂi+142rai—l (Db); + %(Da)i i=1,...,N—1, (35)
NNV — y (DB) + by (D@)y =by(Da)y + ay(Db)y i=N.

To distinguish between the two boundary rules, we introduce the following notation

=

X

a=(a, %I, ..., W2 gy, (36)
a=(a, Qi N gy ),
and

ao(Db)o, i=0,

b,x

(a.(Db) = %(Db)i, i=1,...N—1, (37)
ay(Db)w, i=N,
a,(Db)o, i=0,

(d.(Db))iz Gt (pp);, i=1,...N—1, (38)
ay-1(Db)n, i=N.

Here, superscript b signifies that a is taken at the boundary node and superscript i signifies that a is taken at the first
neighbouring interior node. A similar relation holds for the averages taken in the y-direction. Using (37) and (38), we can
rewrite (35) as

Dy(a.b) = &.(Dyb) + b.(D,a) = b.(Dya) + &.(Db).

39
b,y iy b.y iy ( )
Dy(a.b)=a.(Dyb)+ b.(Dya) = b.(Dya) + a.(Dyb),
where Dy and Dy approximate the x- and y-derivative, respectively.
Lastly, a similar rule holds for quotients
a1 _do
b1 bg __ bo(Da)o—ao(Db)o __ bi(Da)o—ai(Db)g i=0
Bz bob = boby =0,
a b by bis1+b
ay) _ 5 — i g .
(D(b))z 1+12h i—1 :bi+1]bi71 ( x+12 i I(Da)ifaH’lzal 1(Db)j>, i=1,...,N—1 (40)
aN _ an-1
by " bn—1 __ bn(D@)n—an(Db)y __ bn—1(Da@)n—an—1(Db)n i=N
h - bnbn—1 - bnbn_1 ’ -

The inviscid term in (27) can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised
as a second-derivative SBP operator with variable coefficients (see [18] and [19]). Define Dgs) = H’l(—D(Ta)AD(g) + AS),

where D;‘S), Ds), A= gdiag(él/z,ég,/z,...,(SN_l/z) and A = diag(—80,0,...,0,8y) correspond to the matrices D,, D, B
and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29) can be recast as
-1nT &
AD? = —hH D(S)AD((g)p,
AD™ = —hH™'D {5, AD5)(p.v). (41)
-1nT &
ADf = —hH D((S)AD@)E,

where f)g) is the Dirichlet-SBP operator corresponding to D(Ts), ie, it is D(TB) with the elements of first and last row set to

zero. Then, using the SBP operators (3) and (15), (28) can be restated as,

Df'» — AD”
D'f = 5f|,m — AD" |, (42)
Df'f — ADF

where f* = p.v, f" = p.v.2 + p, and f* = v.(E + p).
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in
Proposition (4.1). Using (41) and (42), the scheme (27) is recast as

P+ D(p.v)+hH D AD(5p =0,
(V)i +D(p.v2+p)+hH'D AD 5 (p.v) = 2+ 2)DDv, (43)

E.+D(v.(E+p)) +hH 'D; AD)E = 21 +)D(V.Dv) + k(DDT — H-1BDT).

In analogy with the continuous problem, we insert into the scheme the decomposition, v = (p, v, p) = (Pexs Vexs Pex) +
(p’, v/, p'). (Smooth exact solution and a perturbation. Cf. Appendix A.1.) In the subsequent linearisation process, we neglect
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form
D&)A’D(a)ﬂex (where B, is any of the independent variables). Due to the form of A ~ v + T, these terms are bounded by
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed
to be bounded or linear in the principal variable in the linearisation are denoted as O(1,v) in the derivations below.) The
linearised equation scheme (43) becomes:

P+ D(Pex-V' + o' Vex) + hH' D5 AD (50" = O(1,v),

Vit 5 D@2PeyVex V' + 0/ Vex? +P) = FED(Pey V' + ' Vex)
7%:.hH*1D(T§)AD(5)p/ + piex,hH”f)(Ta)AD@)(pex.v/ + 0 Vex) = %.DDW +01,v),
Pt =

o7 Ve’ DoV + 0 Ve) ~ Ver DQ2pecVer ¥V 4 p'Ver” + ')

+D (%(V,pex + Vexp/) + %pex-vexy, + %P,Vex-3)
+%vex.2hH*1D£3>AD(5)p’ - vex.thlﬁ(T(;)AD(,;)(pex,v/ + 0 .Vex)

~ / b,x ~
+hH'D (5 AD(5) (5 + Pex-Vex V' + 30/ Vex?) = @i + 1) (D(veX.Dv’) - vex.DDv’>

P PexP.
* %(DD(n—ex - Bt
— H”BD<:J’—E; - ‘;—”2)> +01,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(@ex.b’) = aex.Db’ + zeroth-order terms of b’.

The zeroth-order terms can then be included in the O(1,v) terms. Furthermore, we obtain first-derivative approximations
of v/, p’ and p’ in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal
terms, see Appendix A.1. Hence, the part of the scheme that affects the linear stability reduces to

P+ Pex-DV + Vex.Dp' + hH™' D AD (50" = O(1, v),
V| + Vex. DV + L.Dp’—th*]ﬁT5 AD)v = 242 Bpy + 01, v),
Pex ®) Pex

~ b.x ~
P+ Vex.DP' + ¥ Pex. DV + hH ' D AD(5)p’ = 21 + 1) (¥ — 1)(Vex — Vex).DDV'

+’(—WR’”<L DDp —

Pex- /1 -1 /
P ex-z'DD'O Pex'H BDp

P
+/§%.H*13Dp’> +0Q,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are

constants. Specifically, with vex = constant, the difference (b'vxex — Vex) = 0, since bizxex is an arithmetic mean of vey. This
would immediately take us to (16)-(18) (plus some benign terms), which we already know is stable. However, the method of
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.

9
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Remark. Consider the advection equation, u; + a(x, t)uy = 0 whose estimate is 9ul® + au?|} + fol au®dx =0, and analo-
gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant a within the range of a, and |ay| is
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the

term with (VXex — Vex) in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature
equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript

star). By applying the symmetrising matrices from [1] and introducing p = ﬁp* p and T = fp*\/yci/y—p + C* P =
%T/ to reduce notation, we arrive at
P+ Vv Dp+ va +hH™'D{ AD 5 =O(1,v), (44)
v+ 5D "/ DT+ RHT' D AD ) v = 2L DDV + 01, v), (45)
e+ /L DV + v DT+ hH ' Dy AD syt = fp - 21+ 1) (Vex — ve). DDV
+ £ B L (DDT - H™'BDT) +O(1,v). (46)

Note the resemblance to (16)-(18).
Proposition 5.1. The non-linear scheme (43) is linearly stable.

Proof. Linearising and symmetrising the non-linear scheme (43) leads to (44)-(46). Linear stability can then be established
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition 4.1 are
the artificial diffusion terms, the O(1,v)-terms and the additional (velocity dependent) diffusive term in (46). The last
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the
O(1, v)-terms are handled in the same way in (44) - (45)).

In the energy analysis for equation (46) we multiply by TTH and add the transpose. We focus on the terms that differ
from the scheme (18),

2ht"HH™'DJj AD 5% — 22 2p + )1 H ((”ifex - vex).DDv/> +21tTHO(1,v)

prc*

=2h(D(5)T)TAD(5)T+ZcVC* Qi+ 1) (D(Vex — Ver).T) TH(DV') +2tTHO®, v). (47)

The first term is quadratic with positive sign since A is diagonal and Aii = 8i+1/2 = 0. Moreover, the last term will at most

b, A
contribute with a finite growth in the final estimate. The only term that requires attention is: (D(vxex — vex). T)TH(DV).

Since b\'lxex is an average of the smooth function vy, (birxex — Vex) ~ O(h). Hence, (D(bizxex —vex). T)TH(DV) < CIDT||ILWV)]
where L(v’) represents a vector whose entries are linear combinations of the elements of v’. Hence, these terms do not
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26) as
|IDT|2 and ||v'||? terms.) O

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have
rigorously proven that the non-linear scheme (43) indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43) is obtained as follows: Replace the difference operators D, with the diagonal-norm
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D with its counterpart obtained by
zeroing the first and last row in the (4,2)-operator. (See [8] for information on the (4,2)-operator and [17] for high-order
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18) (now with the
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set
of boundary terms in the energy estimate.)

5.2. Entropy
For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

U+ f(wyx=0, xeR. (48)
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A strictly convex scalar function, U(u), is said to be an entropy function of the problem (48), if it satisfies the relation
Ulffu = Fy, where F is the entropy flux function. U, = w are the entropy variables, which symmetrises the problem (48)
(see e.g. [12]). Furthermore, the scalar function ¢ = w’ f — F is called the entropy potential. By multiplying by the entropy
variables, the equation (48) can be recast as

U@+ Fu)x=0,

which is satisfied for smooth solutions of the problem (48). However, it is well-known that solutions of (48) can develop
shocks (even from continuous data), and we therefore have to consider weak solutions that satisfy

/ e dx — / e W) dx=0

for any ¢ € C*° with compact support. Weak solutions are generally not unique, however, the physically relevant solution
satisfies the Second Law of Thermodynamics, which states that the entropy within a closed system cannot decrease. In
mathematical terms, this can be stated as the entropy inequality

U(u); + F(u)x <0. (49)
Solutions that satisfy the entropy inequality (49) are called entropy solutions (see e.g. [32]).

5.3. Entropy stability

In order to carry the concept of entropy over to the semi-discrete setting, we consider a scheme of the form
8i+1/2 — &i-1/2

(ui)e + ;

=0, (50)
where h; is the distance between grid node i + 1 and i. Furthermore, gi;1/2 = w is the approximation of
the flux f(u), where 8;1/2(uiy1 — u;), with 81,2 >0, is an artificial dissipation term. Schemes such as (50) are termed
entropy stable, if they satisfy the discrete entropy inequality

Fiv12 — Fi—1p2

WUpe + <0, foralli, (51)

i

where Fi 12 =5 ((W,H +w; )g,+1/z) % (Yit+1 + i), and ¥; = ¥ (u;). This holds true for schemes where § is chosen such
that the flux approxlmatlon satlsﬁes Tadmor’s shuffle condition,

(AWit1)2, iv172) < AVit12 = Yig1 — ¥i, (52)
where Awi;1/2 = wiy1 — w;. See [32] for more details.

5.4. Entropy analysis for the 1-D Navier-Stokes equations

Consider the continuous problem (10) augmented with the no-slip wall boundary condition v(0,t) =0, and a Neumann
condition on the temperature; Ty (0, t) = 0 (neglecting the right boundary), and L2-bounded initial data. (The entropy esti-
mate for this problem is derived in e.g. [23] and also [31], but we repeat it here for completeness.)

For the compressible Navier-Stokes equations, there is only one entropy function ([11]); U(u) = —pS with F(u) = —
and ¢ = (y — 1)m, where S =In (%), and S is the specific entropy. For this entropy function, the entropy variables are
given by

1 [v?
T
w=—-—|[=4+cTS—-y),—-Vv,1).
T ( 5 + ¢y T( Y) )

To obtain an entropy estimate, multiply Equation (10) by the entropy variables, w”, and integrate over the spatial domain
Q2=(0,1),

/U(u)t dx—l—/F(u)xdx:/waV(u, Ux)x dX,
Q Q Q

which leads to
/ U dx — Flo=—w''(u, uxlo — / wf(u, uy) dx.
Q Q

11
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Since F = —mS, we have that F(u)|p = 0, due to the no-slip boundary condition. Furthermore, the term w7’ (u, uy)lo
reduces to
Tev (V Dk Tx
w'f'(u,u =0,
( X)}O R T 0
(see e.g. [23]). The last equality is due to the Neumann condition at x = 0. Hence, the estimate reads
1
/uw»mz_/aﬁ(cu+m@T+m@dx (53)
Q Q

Since admissible solutions satisfy T > 0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f satisfies (52) fori =1, ..., N — 1, then the semi-discrete scheme (27)

u; + D'f = D' 4 SAT, (27)
with (28)-(34), approximating system (10) is entropy-stable in the sense of (51).

Remark. The scheme (27) is inspired by the one proposed in [31] and [25].

Remark. Possible entropy stable choices of f' are for instance the local- and global Lax-Friedrichs schemes and entropy-fixed
Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need
8ir172 > 0 for all i, (cf. (47)) which is not necessarily true for entropy conservative fluxes (see [6]). However, the non-linear
analysis presented below holds also for entropy conservative fluxes.

Proof. For each grid point, multiply the scheme (27) by the corresponding entropy variable wiT - T ( + v Ti(Si— ),

—vi, ]) and the norm element Hj; (the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary
for brevity)

N—-1 N-1 N—-1 N—-1
Y wlHi(ue+ Y wlHi(D')i =) wlHa(D'1)i + ) w] HiiSAT;. (54)
i=0 i=0 i=0 i=0

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability
results in [32]. The left-hand side of (54) is recast as

N-1 N-1 N—1 N-1
> wlHi(u)e+ Y wlHa(D'f)i = > Hig(Ui)e + wi Hoo(D't)o + »  w] Hii (D'F),. (55)
i=0 i=0 i=0 i=1

A

Utilising (28) and the theory of [32], we manipulate A as

N-1 N-1
A=wlHo(D'f) — Z Fi_1p2 + Z Fiv12
i=1 i=1
N-1
1 Ta 1
- Z Lowi—winTe_ 2 (1/f,~ —vi0) ) = D {5 Wir =Wt o — S Wi =) )
i=1
T
where Fiy1/2 = W"“;Wi :+1/2 - M All F’s except Fq,2 cancel due to the series’ telescoping nature. Assuming that
Tadmor’s shuffle condition (52) is fulfilled, A reduces to
fin—T
A>wlHoo(D'f)o — Fip = WgHoo/hT —Fip= W(T)(f'uz —10) — F1/2 > —wl ) + o,
where we in the last step have used similar manipulations as for the interior nodes. Thanks to vo =0, the entropy variable
corresponding to the momentum equation is wg = m =0,y =(y —1)(p.v)o=0 and by (30) and (32), f;" = (p.v)o =

and fO = (v.(E 4+ p))o = 0 respectively, such that we obtain A > 0. Equation (54) therefore reduces to

12
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N N N
D HiUe <) w] Hi(D'f)i+ ) w] HiiSAT;. (56)
i=0 i=0 i=0

For the analysis of the diffusive term, we introduce the following vectors

T v v v v T
m __ m m m m — 0 1 2 N
wh=(wg, wi, who wR) =(a% ame an o atw) o
E E E E ENT 1 1 1 1 \T (57)
wh=(wg, wi, wi, ... wy) :<_ch0* T ot o _chN) ;

where the superscript denotes which equation the vector acts on. Using (33) and (34) the right-hand side of (56) can be
restated using matrix notation as

N-1
>~ (W] Ha(D"#); + w] HySAT) = (W) THD (2u + 1) Dv)
i=0 Ar
+wHTH (D <(2/¢L+)»)'J|?X.DV+KDT> fKHleDT>. (58)
Az

Utilising that HD=Q =B — QT =B — (HD)T and (15) we obtain

A1 =Qu+2)wW"HTBDV — 2u + A (Dw™THDv

20+ A .
:_%(wT(Dv)o—l—wg(Dv)])—(2M+k)(Dwm)THDv.
Insert W'{':C:—,},l and vg =0 to obtain
Qu+a 1 .
Aj=— 77 - - -2 A (Dw™ HDv,
1 h Cle\’l(Vl vo) — (2u+ 1) (Dw™) v
2u+A) 1 - -
=—(“27h+)c - v —Qu+1)Dw"HTHDY < —Q2u+ 1) (Dw™THDv. (59)
vil

Next, we turn to A, on the right-hand side of equation (58). Utilising the SBP properties, HD =Q and Q =B — QT
yields

Ay = (W5TB ((zu +A)V.DV + KDT) —k(wHTBDT — (WwHTQT ((zu +)V.DY + KDT) ,
=—(DwH)TH ((2M+x)"if.Dv+KDT>, (60)

where we used ”v*o =vo =0 in the last step.
Combining the preliminary results (56), (59) and (60) leads to

N
Z Hii(Up: < —2u+A) <(Dwm)THDv + (DwE)TH(b'vX.Dv)> —k(DWHTHDT.

i=0 N —
A3 Aq

Using (57) and the discrete product rule (39) result in

- T X
As= L (D(v.T—‘)) HDv — (oY) H(V.Dv),
Cy

Cy
ix T T
1 NP bx ~ g CNT o, b
= <T .Dv) HDv+<v.DT ) HDv —(DT™")" H(V.Dv)
v

ix

T i,x
The first term in the last row is a discrete equivalent of the LZ-norm, (Tl.f)v> HDv = Zf\’:O(T’l);(f)v)iHi,-(Dv)i =

K% T”.Dvl\f, >0, (T > 0). (Note that (Dv)o(Dv)o = (Dv)2 = 0.) Furthermore, it is easily verified that the two last terms
cancel.
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Lastly, by the discrete quotient rule (40), we have

X
1 K(T?)1 K X
As=k(DWHTHDT=——« (DT”)T HDT = i, (DT)T HDT = — ||/ (T2)~1.DT|1%,
Cy Cy Cy
where (%)g =ToT; and ('I")i2 =Ti_1Tit1, i=1,..., N —1. This term is non-negative as long as all T;’s > 0.

Finally, our entropy estimate (54) reads

N y

X - K X
D HiUe = —@u+)IVTLDVIE — — Iy (1) ~1.DTIlE <0,
i=0 v

Hence, we conclude that our scheme is entropy stable. O
5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let 2 =(0,1) x (0, 1) be the spatial domain with boundary 9. The compressible Navier-Stokes equations in two space
dimensions are stated as
U+ gy =1 (U U uyx+ ' (U U Uy, XY EQ=(0,1? 0<t<T, (61)

where u=(p,m,n, E)T are the conserved variables and
| 2 T
f=(m ovi+p pvivaviE+p)

T
g= (n, PV1Vy, pV2 4 p, vy (E + p)) ,

= (0,2uvi, + 4 (Vi +va, ) i (Viy 4+ Vo) Vi Cuvig + 4 (Vi +va,)) + v (viy, + va,) +/<TX)T ,
9" = (0, 1t (Va, 4 V5,) 20475, + A (Vi 4V, ), Vo (21Vay 4+ A (Vi + V2))) 4+ vy (Vi + va,) +6Ty)

are the inviscid and viscous fluxes; n = pv; is the momentum in the y-direction and v, v, denote the velocity components
in the x- and y-directions, respectively. Equation (61) is augmented with no-slip boundary conditions and homogeneous
Neumann conditions for the temperature, i.e.

T
vilse =0, valse =0, %\asz=0, (62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fy = wa'x and Gy = ng'y, where F = —mS and G = —nS.

Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy

inequality (49) (see again [23] or [31] for the derivation in 3-D). That is, multiply equation (61) by the entropy variables
T 1 V%‘FV%

wi=—c5 52 +¢T(S —¥), —v1,—Vv2, 1) and integrate over the spatial domain. Apply integration-by-parts to the

entropy flux function and the viscous flux. Ignoring the boundaries at x=1 and y =1, this results in

/UtdQ— / Fdy — / Gdx=— / witdy — / ngde—/wa"—i-w;g"dQ.

Q 9Q2,x=0 0Q,y=0 9Q2,x=0 0Q,y=0 Q

In view of (62), F = G =0 at the boundaries. Using the temperature condition in (62), the boundary integrals take the form

T T
wa"dy:—£ / dey:O, /ng"dx:—£ / Yax=o0.

Cy Cy T
992,x=0 992,x=0 9Q,y=0 3Q,y=0
Furthermore, by contracting the derivatives of the entropy variables with f' and g", and using A = 7%# we obtain
2 2
1 2 2 Kk Ty +T
Tev T v 2 2,02 4 2,,,,2 X y
wif +wye’ = — (gu (Ve = vay )"+ FUvT + SV, + i (vey + Vo) ) o 20

as long as T > 0. Hence, we have proved that fQ U;dQ <0.
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5.6. Entropy stability for the semi-discrete scheme

For the discretisation in two spatial dimensions, we use the formalism found in e.g. [29]. We divide the spatial domain
into (N 4+ 1)(M + 1) grid points, such that x; =ihy, i =0,1,...N, where hy =1/N and y; =ihy, i=0,1,...,M where
hy =1/M. We denote u; ;(t) as the approximation of u(x;, yj,t), and the solution vectors are ordered in the following way

u’ = (10,0, U1,0, -+ +» UN,05 U0,1, UT,15 -+ +» UN, 15 -+, UO,M> UT, M5 - - - » UN.M)-

The 2-D differential operators are defined by Kronecker products as Dy = I, ® Dy, where I, is the (M + 1) x (M + 1)
identity matrix, and Dy is the (N + 1) x (N 4 1) (2,1)-SBP operator. Similarly, we have Dy =Dy ® Iy.

To impose the no-slip boundary conditions by injection, we introduce the initial velocity solution vectors as

(vH''=(0,0,0,...,0, 0, v} 1, vh1.....0, 0.V} y_ 1. V5 y_goon Vi g, 0,0.0,...,0),

(VZ)T =(0,0,0,...,0, 0, V%J, Vi]a ...,0,0, V%qM_p VE.M,]s cees V?\],M_p 0,0,0,...,0),
i.e., v! and v? have all elements along x=0, x=1, y=0 and y =1 set to zero. In addition, we define the SBP-operators
for the momentum equations so that they do not act on the boundary nodes.

Dy = (I ® Dy). Dy =Du Iy,

where Dy and D,, are Dirichlet-SBP operators corresponding to Dy and Dy, respectively. Moreover, Iy and T, are almost the
identity matrices, but with the upper left and lower right elements set to zero. The norm matrix for the two-dimensional
grid is given by H = Hy ® Hy, where Hy, and Hy are equal to the 1-D norms defined in Section 3, with elements of size hy
and hy and matrix sizes (M +1) x (M + 1) and (N 4+ 1) x (N + 1), respectively.

Similarly as for the one-dimensional case, the SBP operators satisfy a discrete product - (39) and quotient (40) rule.

5.7. Entropy stability for the semi-discrete scheme
The 2-D inviscid fluxes are approximated by

0 B T divya (Uien) — uiy)
i+1/2,j — 2 2 ’

\ G 9 iy (v —uiy)
9ij+12= 5 - 5 ;

and the convective terms by the flux differences

_ fli+1/2,j B flifl/Z,j

(D) ;= ; i=1,...,N—1, j=0,..., M,
X
[ 2 —-g (63)
(D\g)yj= T2 T2 0, N, j=1,...M-1,
hy
in the interior and by
f . —f .
1/2, 0, . .
(Do =212 im0 j=0....m,
e (64)
D g 91290 i—0 N i—o
yg)z,O— 7}1 2 , 1=0,...,N, =0,
y

at the boundaries x =0, y =0 (once again, we neglect the right and upper boundaries to reduce notation). As in the 1-D
case, we have

l,m

1, .m .n .n N
fo;=0-vhos T =t fo; =t fo;=(V'-(E+Poj.

and similarly for g; .
Next, we approximate the viscous terms by

0
. Dy (1x. (2uDxv" + A(Dxv' + Dyv?)))
Dxfu = ﬁx (1x~(l/«(DyV1 +va2))) s (65)

b, b.x
DX(1,‘.(v7 (2uDxv' + A(Dxv' + Dyv?)) 4+ uv*(Dyv' 4 Dyv?)))

15
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0
Dy (1y- (1(Dyv' + Dyv?))
Dyg" = Dy (1y. 24Dy v? + A(Dxv' + Dyv?))) , (66)
b.y b,y
Dy(1y.(v2 (2uDyv? + A(Dxv' + Dyv?)) + uv(Dyv' + Dxv?)))
where we have used the approximation of 1 from [31]:
-1 —1
T 7!
Maij=—, [Mylij=—1 (67)

ix Ly

T T

Note that the operator Dy y uses ﬁx,y for the momentum equations where the no-slip condition is imposed by injection,
and uses Dy, for the continuity equation and the equation for total energy.
Lastly, the approximations of the heat diffusive fluxes are given by
T T

Dyf = (0, 0,0, KDXDXT) , D;g" = (0, 0,0, KDyDyT) . (68)
Then, a semi-discretisation of (61) is given by

u; + Dif + D) g' = Dy + Dy + Dyg” + Dyg“ 4 SAT, (69)
with SAT = (0,0,0, —« ((Iu ® Hy 'B)(DxT — 0) + (H;'B® Iy)(DyT — 0)".
Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].

Proposition 5.3. The 2D semi-discrete scheme (69) approximating the problem (61) is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-

sition (5.2), we perform the calculations for the convective terms using index notation. To this end, we define w!. =

LJ
152 2 32
1 vy )+ o 1 2
oy (f TS =Y Vi Vi 1)

Lemma 5.4. The convective flux approximations (63) and (64) satisfy

N.M N.M
> Wl HUDi+ Y wlHDyg)i >0, (70)
i,j=0 i, j=0

(where k = (j(N + 1) + i) and Hy, denotes the diagonal elements of H).

Proof. (70) follows by applying the same technique as for A in (55) to all j's in the x-direction for f' and to all i’s in the
y-direction for g'. O

For the diffusive terms, we define H=diag(H, H, H, H)T and wT = ((w")T, (w™T, (w7, (WE)T)T where

viv 4 v2v?

p_ 1 m—1 -1

w’ =T (f-l-CVT (S=v,
m __ 11,1

w ——ET v, (7‘1)
n 11 5,2

W= - T v
E 11

and [T’]],-J- = % (Recall that the dot product is the component wise vector multiplication.)
J

Lemma 5.5. Contracting the entropy variables with the viscous fluxes, we obtain

w H(D}f* + Dyg") <0. (72)
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Proof. Consider the viscous flux in the x-direction given by (65). Contracting the vector (65) by the entropy variables in
(71) and H, we obtain
Ay = wlHD)f*,
= (W™ HDx(1x. (2uDxv' + 2(Dxv' + Dyv?) ) + (W) HDy (1. (11(Dyv' + Dyv?))
+ (wf)THDx(u.(:ﬁ. (2uDxv' + A(Dxv' + Dyv?)) + u:é;.(z)yvl + Dxv))).
Utilise that HDy = Hy ® By — Hy ® (HyDy)" = Hy ® By — DI H, and the analogous properties of Dy, to obtain

Ar=W"T(Hy ® By)(1x. (2uDxv" + A(Dxv' + Dyv?)) ) + (W) (Hy ® By) (1. ((Dyv' + Dyv?)) )
By
—(Dxw™ T H1y. (2uDxv' + A(Dxv' + Dyv?)) — (Dxw")"H (u(Dyv' + Dyv?))

b.x b,x

+(WHT(Hy @ By) (1x.(v'. (2Dxv" + A(Dxv' + Dyv?)) + uv?.(Dyv' + Dyv?)))

b.x b.x
—(DxwHTH1,.(v'. (2uDxv" + A(Dxv' + Dyv?)) + v (Dyv' + Dyv?)).

Consider the boundary terms, ;. Using the result (B.1) obtained in Appendix B, we find that

Bi=@u+Mhyw"' (0, By(eDevDin, By(eDyvDia, ... By(eDyvhim_1, 0)

Bi1

+ahy(w"T (0, By(1eDyv?)i1, By(1xDyvdis, ... By(leDyvin-1, 0)
Bi,2

+uhy(WT (0, By(x.Dyvhin, By(xDyvDiz, ... By(1uDyvim-1, 0)
B3

+uhy(WHT (0, By(xDyv?i1, By(LeDxv®is, ... By(LeDxv®in—1, 0)'
B1,4

Consider Bj,1 + Bi,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

M-1 M-1
Bii+Bio=Qu+Mhy Y (W] i(By(x.Dxv")i )+ rhy Y (W] ;(By(1x.Dyv?)i j).
j=1 j=1

Consider an arbitrary node j # {0, M}, and neglect the parameters. Then we have

wi . \NT /0 -looo.o0 (lx-Duq)oA,-
wi; -3 0000..0 (1x-Dxv')1
Bi1+Bi2= : : :

w1 0 ooo0o01} (1x.DxvV)N_1,

W j 0 ..00030 (1x.Dxvh)y j
wii \NT /0 -lo00..0 (1x.Dyv?)o j
wi; -1 0000..0 (1x.Dyv?)y

+ : : . : : ,

wh 0 00001 || QxDyvP o
wi 0 ..000%o (1x.Dyv?)y j

= % <_WT.j(1x‘DxV])0,j - W’(T)1~j(1x~DxV1)1,j + Wm_j(lx-val)N—l,j + Wﬁ,1,j(1x~DxV])N,j>
+% <—WT’j(1x‘DyV2)O,]’ - W’&j(‘l»DyVZ)l,j + Wz‘j(‘l)oDyVZ)N—l.j + W’ﬁ,l.j(‘lx-Dyvz)N.j) .
Since w'g_j = vg)’j =0 and Wﬁ.j = v]NJ =0, due to the no-slip condition, this reduces to

Bi1+Bi2= % <_WT.j(1x-DxV])O,j + W’ﬁ,lvj(]»DxV])N.j - WT’j(1x~DyV2)O.j + W’,\?,lvj(‘l»Dyvz)N.j) .

17
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Next, we insert the specific form of the derivatives, which gives us
1 1
Vi~ Vo
hx

1 1
vN.j -V

N-1,j
hx

2 2
vy — Vs
N, j+1 N,j—1
+ Wl Ty — )
N—1.j "XN.j Zhy

1
Bi,1+ B2 =§(—WTJ1XOJ + Wy Ty

1 2
Vo,j+1 ~ Vo,j-1

—WT,jlxo.j 2h,

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
1 (vll j)2 (V}\I—l ')2
Bii+Bia=—c—1x, —— + 1y ,—2—] <0, Tij>0).
1.1 1,2 T ( Xoj i, i )= (Ti,j > 0)
By analogous manipulations to 51 3 + B1 4, A reduces to
A1 = —(Dxw™) T H1y. (2uDxv' + A(Dxv' + Dyv?)) — (Dxw")" Hly. ((Dyv' + Dxv?))

b,x b.x
+(WHT(Hy ® By)(1x.(v'. (2uDxv' + A(Dxv' + Dyv?)) + uv>.(Dyv' + Dxv?)))

B,

b.x b.x
—(DXWE)THIX.(V’. (2uDxv' + A(Dxv' + Dyv?)) + uv>.(Dyv' 4+ Dxv?)).
The boundary term, 5, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section 3, we know it will

extract boundary terms (in contrast to the Bs, which extract terms along the boundaries and the neighbouring nodes). Since
b,x b.x

v! = v? =0 at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore
A1 < —(Dxw™) Hy. (2uDyxv' + A(Dxv' + Dyv?)) — (Dxw")" Hly. (1(Dyv' + Dyv?))

b,x
1

b.x (73)
—(Dxw®) T H1y.(v (2uDxv' + A(Dxv' + Dyv?)) + uv>.(Dyv' 4+ Dyv?)).

Similarly for the viscous flux in the y-direction, we multiply (66) by the entropy variables and the norm matrix, H, to
end up with

Az < —(Dyw™ T H1y.(u(Dyv' + Dyv?) — (Dyw") " H1,.2uDyv?) + A(Dyv' + Dyv?)

b,y b.y (74)
—(Dwa)THly.(vz,(Z//,Dyv2 + A(DxV' + Dyv?) 4+ uv'.(Dyv' + Dyxv?))

Combining (73) and (74), we obtain
w HD}f" + wHD)g" < —(D,w™" Hlx. (2uDxv' + A(Dxv' + Dyv*)) — (Dxw")" H1y. (1(Dyv' + Dyv?))

b.x b,x

—(waE)THlx.(vl. (2uDxv' + A(Dxv' 4+ Dyv?)) + uv>.(Dyv' + Dyv?))
—(Dyw™ T H1y.(u(Dyv' + Dxv?)) — (Dyw")" H1y.(2uDyv?) + A(Dxv' + Dyv?)

b.y b.y
f(Dwa)THly.(vz.(Z,uDyvz + A(Dxv' 4+ Dyv®)) + uv'.(Dyv' + Dyv?)).
(75)

To recast (75) as a quadratic form, we use the entropy variables (71) and utilise that the derivative operators satisfy the
discrete product rule (39). Then,

v

1 b.x _ ix ~
wlH(D}#" + Dyg") < —— ((v’.DxT] + T*l.val)THlx,(zp,va1 + A(Dxv' + Dyv2))>
C

<

b, ix
(2B 4 T D) H (DY v + vaz))>

1 b.x b.x

+ ((DXT*‘)THlx.(v‘.(zuDle + A(Dxv' + Dyv?)) + uv?.(Dyv' + vaz)))

v
~ Ly ~ T

(v'.DyT '+ T L.Dyv") H1y.((Dyv' + Dyv?))

18



A. Gjesteland and M. Svdrd Journal of Computational Physics 470 (2022) 111572

1 by _ Ly
s <(v2,1)yTl +771.Dyv?) H1y.(2uDyv? + A(Dxv' + Dyvz)))

1 b,y by
+ ((DyT])THly.(VZ.(Z,lLDyVZ +A(Dxv' + Dyv?)) + uv'.(Dyv' + vaz))) .
) MY DyV T UV

A number of terms cancel (see the colour code above), and we end up with

-1 ix N ix -
w H(Dyf*+Dyg") < - ((T1.val)TH1x.(2,,Lva1+A(va1+Dyv2))+(T1.vaz)me.(M(Dyvl+va2)))
v

-l ii/ - ii’ -
—a<(T 1Dy v TH1,.(u(Dyv'+-Dyxv'))+(T 1.Dyvz)Tmy.(z;wyv2+A(va‘+Dyv2))>.

Use the form of 1, and 1, from (67) and Stokes’ hypothesis, 1 = —%,u, to obtain
w H(D}f* + Dyg") < —% (%(ﬁxv])TH(T’l.val) — 2(Dxv)HTH(T™'.Dyv?)
+ (Dxv)TH(TL.Dyv") + (Dxv?)TH(T™'.Dxv?)
+ (DyvHTH(T 1.Dyv") + (77 1.Dyv)TH(Dyv?)
— 2Dy v H(T ™ .Dyv) + g‘(f)yvz)TH(T”.Dyvz)),
which can be further rearranged into
~ T ~ T
e o= (5 (@) (U ) (o) () (i B (o)
+ VT D I} + VT LD ) <0, (0= 0)
i.e,, (72) holds true. O
Lemma 5.6. The diffusive heat fluxes (68) satisfy
w HD{# + w'HD)g* + w HSAT <0. (76)
Proof. Denote the left-hand side of (76) by A, then
A =ic (W5 HDLDT + (WH)THD, Dy T) -+ (w*) HSAT,
=K ((WE)T(Hy ® Hx)(Iy ® Dy)DxT + (W5 (Hy ® Hy)(Dy ® IX)DyT> + (w5)THSAT.
This can be stated more compactly as
A=k (W5 (Hy ® QDT+ (WH (Qu & HDyT) + (W) HSAT.

Utilising that Q =B — QT, we obtain

A=k ( —~wHT(Hy ® QDT — (wHT(Q] ® HDyT

Aq

+ (W5T(Hy ® By)DyT + (WH)T(By ® HX)DyT> + (wF)THSAT.

Ay

Manipulations of A; give us
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A =1 (W (1y ® D) (Hy & HDAT + (W) (Dy ® ) (Hy ® HoDy ),
S ((DXWE)THDXT + (Dwa)THDyT> .

Recall that wt = —CVLT, such that, by using the discrete quotient rule (40), the above is equivalent to

K X _ y _ K X y
Ar=—— (((T2> 1.DyT)THD,T + ((T%) 1.DyT>THDyT>=—E I (T2)~1.D,TIIZ + I (T)~L.DyTI3 | .

v

x y
where (T2)~1 and (T2)~! are vectors containing the coefficients produced by the quotient rule (40).
Next, consider the boundary terms A;, and insert the specific form of the SAT:

Az =1 (W) (Hy ® By)DxT + (W5 (By ® Hx)D,T)

— 1 (W*)" (Hy ® Hy) ((Iy ® Hy ' By)(DxT) + (H; "By ® Iy)(DyT)) ,
=«(W)" ((Hy ® By)DxT + (Byy ® H))DyT — (Hy ® By)DxT — (By ® Hx)DyT) =0.

Hence, we have

K X Y
w HD# + w HD)g" + w HSAT = - IV (T2)=1.D4T|I% + IV (T2)~1.D,T|% | <0. O
v

Proposition 5.7. The semi-discrete scheme (69) is entropy stable in the sense of (52).

1 0! D247 )?
2

Proof. Contract (69) with WxT.j =T +cvTij(Sij— V), 7v}'j, 7v,?,j, 1). and the corresponding diagonal

norm matrix element, Hy, (k= (j(N + 1) +1i)). Then sum over all grid points:

N.M

Z w i Hi(ui j)e + w] Hi (D) j+ w] Hi(Dyg)i

i,j=0

N,M

= 2 (W HiDi), s+ W] D) + W] HDy g+ w] Dy g + w]  HiSAT; ;).

i,j=0
By Lemma 5.4 the inviscid flux approximations on the left-hand side have been demonstrated to be entropy stable, hence
we have

N,M N,M
Z Hy (Ui p)e = Z (W;l:jHk(D;(lf“)i.j"'WZ:jHI(('D;(/fK)i,j‘FW;I:jHI((D;QM)i,j+W{jHI((D;gk)i,j+W{jHkSATi.j)-
i,j=0 i,j=0

Note that the sum on the right-hand side is equivalent to the matrix multiplications:

N,M
Z (WIJ'HR('D;(/fH)i,j + w Hy(DyF)i j + w jHi(Dyg" )i j + w] jHi(Dyg")i j + WZ:]‘HkSATi,j>s
i,j=0

=w'HD}f* + w'HD)g" + w HD{#* + w'HD}g" + w HSAT,
such that we can utilise the results of Lemma 5.5 and 5.6, and obtain

N.M

> HUi e <0. O

i,j=0
6. Numerical simulations

To demonstrate the properties of the schemes with special emphasis on the no-slip condition, we consider both a sub-
sonic and a supersonic case.

20
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(a) (b)

(a) (b)

Fig. 2. (a) v; at t =0.01 obtained with 2572 grid points and « = 0.4. (b) v, at t = 0.01 obtained with 2572 grid points and @ = 0.4.
6.1. Blast wave

Let © =[0,1] x [0, 1], with homogeneous no-slip condition at all walls. We use a similar setup as in [26] with the
following initial conditions

0.01, if(x,y)eQ\B((0.5,0.5),0.35),

=1, vi=0,v2=0, = .
p ! 2 P {1000, if (x, y) € B((0.5,0.5),0.35),

where 5 ((0.5,0.5), 0.35) denotes a disk centred at (x, y) = (0.5, 0.5) with radius r = 0.35. Furthermore, we use the follow-
ing parameters

HCp

y =14, R =286.84, nw=0.1, Pr=20.72, cp = 1005, K= o

We use (69) with, 8i1/2,; =amax(’v}_j‘ +¢ij, ’V}H,j‘ +ci+1,j>. For o = 1, this is the entropy stable local Lax-
Friedrichs scheme, but to stress test the scheme we also run the non-provably entropy stable choice o = 0.4. For time
discretisation, we apply the third-order strong stability preserving Runge-Kutta method (see [7]).

The entropy-stable numerical results computed with 2572 grid points and o = 1 are displayed in Fig. 1a and 1b at time
t =0.01. Fig. 2a and 2b display the numerical results obtained for the same problem, but with reduced artificial diffusion,
a=04.

Lastly, we have run a simulation on a coarse mesh (332 grid points) as a further demonstration of the robustness of the
boundary treatment. The results for the velocity components are displayed in Fig. 3a and 3b.

We have furthermore compared the entropy decay for the cases « =1 and o = 0.4 (for the coarse mesh to highlight the
differences). The plot of the total entropy, i.e., fQ U(u) dS2 is depicted in Fig. 4. We have normalised the entropy at every
time step by subtracting the initial entropy, fn U(u)d52|t=0. As we see from the plot, the entropy is decaying for both values
of o, but the decay is faster for larger diffusion, which is as expected.
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(a) (b)

Fig. 3. (a) vy at t =0.01 obtained with 332 grid points and « = 1. (b) v, at t =0.01 obtained with 332 grid points and « = 0.4.

o
u‘xw T T '

\ Uy a=

r L L L L L i e =2 |
0 0001 0002 0003 0004 0005 0006 0007 0008 0009 001
time

Fig. 4. Plot of the (normalised) total entropy fQ U(u) dQ|t=[ - fQ U(u) dQ\t=0 for the coarse grid with « =1 and o =0.4.

6.2. Lid-driven cavity flow

We have run a similar problem as in [3] on the spatial domain Q = [0, 1] x [0, 1]. The upper wall of the cavity is moving
at a constant speed to the right, such that the boundary conditions for the velocity components become

vi=1,v2=0, aQNn{y=1},

(77)
vi12=0, aQ\ {y =1}

The boundary condition for the temperature is given by (62). Furthermore, the problem parameters are given by Re = 100,
Ma=0.1, Pr=0.72, y = 1.4, and it is initialised by the conditions

_ 1
" Ma2y

p=1, vy, V2 =0, p .

Note that at one wall, the lid-driven cavity problem has a non-homogeneous no-slip condition for one of the velocity
components. Still, an entropy bound for the continuum solution is obtained as only the normal components of the velocities
enter the estimate. (We have not been able to prove entropy stability for the discrete scheme with the boundary conditions
(77).)

Fig. 5a shows the solution at t =2 when using the scheme (69). We have also run the same problem using a 3rd-order
scheme. (See remark at the end of Section 5.1.) We have verified linear stability in one spatial dimension, and the extension
to two dimensions is straightforward. The 3rd-order numerical solution is shown in Fig. 5b.

Fig. 6a shows the solution at t =2 for the lid-driven cavity flow with the heat-entropy flow boundary condition %2% =
g = 2. The solution is qualitatively similar to the adiabatic case where g—g = 0. Fig. 6b depicts the total entropy fQ U(u)ds,
normalised by subtracting the initial entropy [, U(u)|odS2. We note that the entropy increases initially. This does not violate
the entropy inequality since the system is not closed; there is a heat-entropy flow through the boundary.
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(a) (b)

Fig. 5. (a) The velocity field displayed at t = 2 using 2572 grid points and & = 0.15. (Second-order scheme.) (b) The velocity field displayed at t =2 using
1292 grid points. (3rd-order SBP scheme.)

x10*

3 1 T T T T T T T T

(a) (b)

Fig. 6. (a) The velocity field displayed at t =2 using 129% grid points. (Second-order scheme using the heat entropy flow boundary condition.) (b) The
velocity field displayed at t =2 using 1292 grid points. (Second-order scheme using the heat entropy flow boundary condition.)

6.2.1. Comments for the implementation

Since one of the velocity components is non-zero at the boundary y =1 for the lid-driven cavity, we must manually
update this boundary after each Runge-Kutta stage even when using the proposed scheme with the Dirichlet-SBP operator.
This is to take into account the contribution from the continuity equation into the momentum equation at the boundary. The
momentum equation is updated as mlsq (y=1) = Plag,(y=1}V1lse, (y=1), Where plyq (y=1) is given by the continuity equation
and Vi |39,(y=1} =1.

7. Conclusions

In this article, we have investigated the injection method for strongly imposing the no-slip condition for finite-difference
approximations of the compressible Navier-Stokes equations in 1-D and 2-D. Based on standard SBP operators, spatial oper-
ators (which we have termed Dirichlet-SBP operators) facilitating the injection procedure were introduced. The temperature
condition, on the other hand, was enforced by a SAT. Thus, density, pressure and temperature are updated on the bound-
ary while the momentum is no longer a variable in the boundary points. In particular, we have considered the stability
properties of the proposed schemes taking the mixed boundary treatment into account.

When proving linear stability of non-linear problems, it is common to immediately associate the scheme with a lin-
ear symmetric constant-coefficient version. Herein, we have rigorously performed all linearisation steps for two different
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schemes; one with second-order interior accuracy and one with fourth-order. We prove that the procedure is valid for the
proposed 1-D scheme, including the strong-weak imposition of the wall boundary conditions. The linearisation of the 2-D
scheme requires considerable more work, but we do not see any additional difficulties beyond more involved algebra and
it should also reduce to the same form as the 1-D scheme. Moreover, under the assumption that the interior scheme is
entropy stable (52), we have proven that both the proposed 1-D and 2-D 2nd-order schemes, with the mixed boundary
treatment, are non-linearly (entropy) stable. The non-linear stability proofs are straightforwardly extendable to 3-D.

Although our proofs rely on the introduction of the Dirichlet-SBP operator, we stress that this operator is not necessary in
practice, and has only been introduced for purpose of the proofs. In implementations one can simply overwrite the velocity
at the boundary nodes after each Runge-Kutta stage. (This makes the code significantly simpler than with SATs enforcing
no-slip.)

Two numerical test cases have been considered; a blast wave and a lid-driven cavity flow. For the blast wave, two types
of local Lax-Friedrichs type diffusions were considered: an entropy stable diffusion (¢ = 1) and a non-provably entropy
stable diffusion (o« = 0.4). In both cases, the total entropy was decaying, although a faster decay was observed for the more
diffusive scheme (which is as expected). For the lid-driven cavity flow, a reduced local Lax-Friedrichs diffusion (o = 0.15)
was considered for the 2nd-order scheme. Thereafter, the 3rd-order, linearly stable (but not provably non-linearly stable),
scheme was run. The solutions were similar to those obtained in [3]. All test cases demonstrated that the combination of
strongly and weakly imposed boundary conditions is robust, and corroborate the claim that the 2-D scheme is stable.
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Appendix A. Linearisation procedure
A.1 Linearisation of the compressible Navier-Stokes equations in 1D
We present the derivation of the linearised and symmetrised Navier-Stokes equations (13), since the details are not

presented in [1].
We write the Navier-Stokes equations (10) in primitive variables v= (o, v, p)T:

pr+(pv)x=0, (A1)
Ve +VVx + %px = 2/1;1 Vxxs (A.2)
Pe+YPVx+Vpx=(y — DU+ MV +Kk(y — )Tk (A3)

We decompose each variable into its exact (known smooth and bounded) solution and a small smooth perturbation:
0= pex + 0, etc.
(Oex + ') + ((pex +0)(Vex + V,)x) =0,
(Pex)t + ,Ot/ + (pexVex + PexV' + p'Vex + ,O/V/)X =0,
(Pex)t + p{ + (PexVex)x + (Pex)xV' + ,OexV; + ,O;(Vex + 0/ (Vex)x + ,O;LV/ + ,O/V;( =0.
By definition (pex)t + (PexVex)x = 0, and hence
pt/ + (Pex)xV' + pexV;( + p;Vex + 0’ (Vex)x + p;v/ + p/V; =0.

The underlined terms are zeroth-order derivatives of p’ and v/, and hence do not affect the well-posedness of the problem
(see [9]), hence they are omitted. The linearisation is done by neglecting non-linear terms, i.e. pyv’ 4+ p’v}. The final result
is

P+ Pexv; + Vexp)/( =0.
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For the velocity equation, we have

1 2+ A
(Vex + V)t + (Vex + V) (Vex + V)x + ——— (Pex + pHx= £ - (Vex + Vxxs
Pex + L ex + 0
(Pex)x P, (Vex)xx v,
Vex)t + Vi 4+ Vex(Vex)x + Vex Vi + V' (Vex)x + V'V + ———— + X _—Qu+rn|—FL 4 —& ).
(Vex)t t ex(Vex)x exVy (Vex)x X et P pext % ) Pex+ 0 pex+p’
Factorise pex]+p/ = i 1p, , and Taylor expand the second factor; 1p, =1- p"—e; + O((p'/pex)?). Using that the exact

]+E 1+E

solution satisfies Equation (A.2), we have

’ 1 /
Vé + VexV; + V' (Vex)x + V,V; + (Pex)x <_L2 + (9(,0//,05,()> + p; (_ - ,0_2 + O(P'/ng)) s
Pex Pex Pex
/

4 1 p
=Qu+2) ((vex)xx (77 + O«p’)z/pSX)) + Vi (— -5+ 0<<p/>2/p§’x>>) :
Pex Pex Pex
We neglect the non-linear terms and omit zeroth-order terms. This yields
Py 2u+A

In the same way, the equation (A.3) becomes

(Pex + P + ¥ (Pex + PV + V)x + (Vex + V) (Pex + P')x
=(y = D@+ Vex + V)3 + k(¥ = 1)(Tex + Tx,

that after expansion becomes,
(Pex)t + P; + ¥ (Pex) (Vex)x + V(Pex)‘/; + Vp/(Vex)x + VP/V; + Vex(Pex)x + Vexp; + V' (pex)x + V/P;,
= = D1+ 1) (Ve +2(VedxVy + ViZ) + (7 = 1) (Tex + Dax.
Next, consider the linearisation of the temperature

(Pex)xx + Dixx ((Pex)x + Pi) ((Pex)x + 03)

R((Tex)ax + Th) = P 3
FEETET pectp (Pex+ 9)?
4o Pext P (Pe0n + £?  (Pex+ P (Pe)x + 1)
(pex + ')’ (pex + ')’ ’
_ (Pex)xx + Pix _9 (Pex)x(Pex)x + (Pex)xPx + Px(Pex)x + Dy Px
Pex + P’ (Pex + p)?
12 Pex()oex);% + 2pex(:0ex)x,0;/< + Pexp;iz + P/(pex);% + 2P/()Oex)x,0)/¢ + P/P;(z
(Pex + p')3
_ Pex(Pex)xx + Pexp;cx + p/(loex)xx + P,p),fx
(Pex + P')? '
Taylor expanding yields
R((Tex)xx + Tyy)
_ (L N2, 3
= ((Pex)xx + Dx) | — — 5 +OW(P)/ Pex)
Pex  Pex
’ / W] 1 P’ N2 A4
=2 ((Pe)x(Pex)x + (Pex)xPx + Px(Pex)x + DxOx) FoRy + 00/ Pa)
ex ex
2 / ’2 / 2 / / ’ 12 1 p/ N2/ A5
+2 (pex(pex)x + 2pex(Pex)xPx + PexPy” + P (Pex)y + 2P (Pex)xPx + PPy ) —5 -t OW(p)*/pex)
ex ex
/ / Vi 1 p/ N2/ A4
- (pex(pex)xx + DexPxx + P (Pex)xx + D onx) 5 T 3 + O(p) /pex) .
peX pex
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain

_ Pl o (Pe)xpoy + Pi(pex)x n APex(Pex)xPy _ PexPhx

Pex pezx pgx pezx

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with

RT,

XX T

Pr4 Y (Pe)Vy+ YD (Ve)x + ¥ P Vi + VexDy + V' (Pex)x + V' Dy,
= = DAY (20e0vy+ ViZ) + .y = D).

Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and
obtain

/ / ’ K p;(X p /
+ ¥ PexVi + VexPy = — ( —1)(——— )
pt ypEX X expx R y peX pezx IOXX

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the
linearised system
P+ Vi oy +p V=0,
’ EW 1 7 2u+A 7
Ve + VIVt e Dy = T Ve

_yup*
Pr,o*2

pi+ Y PV + VP, = P+ bitg P
(This is the starting point in [1].)
A.2. Linearised gas law

Recall that p = pRT. By the same procedure as above, we linearise this gas law as follows

Pex+p =R (pex + P’) (Tex + T/) =R (PexTex + PexT' + 0 Tex + IO/T/) .

Since pex = R pexTex, by neglecting the non-linear term R p’T’, this reduces to

pP=R (pexT/ + )O/Tex) .

Solving for T’ and freezing the coefficients yields

po L(P P
CR\p* p? )

Appendix B. Kronecker products

Let By be the (N + 1) x (N + 1) matrix given by

0 -1000..0
-1 0000..0
0 0000..0
By=1] : s
0 ..00000O
0 ..00001%
0 ..oo0o0lo

and By the (M + 1) x (M + 1) matrix with the same form as By. Furthermore, let Hy = Hyxly, where Hy = hy -
diag(1/2,1,...,1,1/2) and Iy isthe (N+1) x (N+1) identity matrix, with the upper left and lower right element set
to zero. I:Iy is defined similarly (see Section 5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as

T_ (T T 4T T
wo=(u oo, L wy),

where uiT_j =(uoj u1j uzj ... un,j). This more compact form of writing the vectors will be convenient below.
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The Kronecker products, H y® By and By ® Hy written as matrices can be stated more compactly in the following way

0 0 0 0o ... 0
0 -1 0
-1 o0 0
0 . 0 0 0
0 0 2
1o
: o -1.0
- - _1
Hy®By=hy| o 0 L ) ol
0 03
0 1o
0 0 0 0 o
00 0 ..0
01 0 ..0
0 -3 0 0 0 0
0 .. 0' 10
00 0 0.. 0 00
01 0 .0
1 0 000 0
0.. 0 10
0.. 0 00
0 0 0 0 O 0
By ® Hy=hy . ,
0 0 0 O 0
00 0 ..0
01 0 ..0
0 0 00 0 oo
0.. O. 10
00 0 ..0 0. 000
01 0 ..0
0 00 o0 3| - 0
0.. 0‘ 10
0.. 0 00
where the bold-face zero denotes a matrix of size (N 4+ 1) x (N + 1) with all elements being zero.
Applying these products to a vector, u, yields
~ ~ ~ = ~ T
(Hy®BN)u:hy(Q Byui1 Byuiz ... Byuim—q 9) s (B.1)
- ~ ~ - ~ ~ T
(Bu® Hou=(—3Hami1 —3Haio 0 ... 0 jHaim jHaiv-1) - (B2)

Note that in the above expressions, the underlined bold-face zeros denotes vectors of length N + 1 with all elements being
zero.
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Abstract

We consider a slightly modified local finite-volume approximation of the Laplacian operator
originally proposed by Chandrashekar (Int J Adv Eng Sci Appl Math 8(3):174-193, 2016,
https://doi.org/10.1007/s12572-015-0160-z). The goal is to prove consistency and conver-
gence of the approximation on unstructured grids. Consequently, we propose a semi-discrete
scheme for the heat equation augmented with Dirichlet, Neumann and Robin boundary con-
ditions. By deriving a priori estimates for the numerical solution, we prove that it converges
weakly, and subsequently strongly, to a weak solution of the original problem. A numerical
simulation demonstrates that the scheme converges with a second-order rate.

Keywords Finite volume - Second derivative - Convergence

1 Introduction

The compressible Navier—Stokes equations are the foundation of computational fluid dynam-
ics (CFD) for modelling the flow of viscous compressible fluids. Consequently, numerical
methods for approximating their solutions are vastly studied. For a numerical scheme to
yield a convergent sequence of approximate solutions, it must be a stable discretisation
of the well-posed continuous problem. For linear partial differential equations (PDEs), the
energy method, which depends heavily on integration by parts (IBP), is often used to prove
well-posedness. In the (semi-)discrete setting, analogous stability proofs can be obtained
by using the discrete energy method, where IBP is mimicked using summation-by-parts
(SBP). Numerical methods formulated to satisfy the SBP property are thus frequently used
for various PDEs, including CFD problems (see e.g. [6, 9, 24, 31, 32]).

Different numerical methods can be formulated in the SBP framework. These include
the finite-difference methods (see e.g. [20, 21, 28]), the finite-volume methods (see e.g. [7,
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23, 29]) and the discontinuous Galerkin spectral element methods (see e.g. [12]). The latter
two may be formulated on unstructured grids, that are sometimes preferred for domains with
complex geometries.

Herein, we focus the attention on local finite-volume methods that only use nearest neigh-
bours to approximate the derivatives. These are still the workhorse methods in production
CFD, due to their simplicity and robustness, and since the local structure allows for easier
parallelisation. A well-known drawback is however the difficulty of finding consistent second-
derivative approximations, which hampers their usability for the compressible Navier—Stokes
equations. It was, for example, shown in [29] that a commonly used edge-based approxi-
mation is inconsistent on general unstructured grids. Although proofs of convergence exist
for finite-volume methods, they often rely on admissible meshes (in the sense of Def. 3.1 in
[11], see e.g. [3, 13]), that require normal derivative approximations at volume faces to be
orthogonal to the face. This severely constrains mesh generation. Hence, it is desirable to
design alocal finite-volume scheme that runs on standard unstructured grids such as Delaunay
triangulations.

In the interest of accurately discretising the viscous terms of the compressible Navier—
Stokes equations on such grids, we study the Laplacian approximation proposed by
Chandrashekar in [7]. His approximation incorporated the Dirichlet boundary conditions
weakly, and the resulting operator was shown to satisfy the SBP property. The approxima-
tion was then used to discretise the heat equation, and numerical experiments showed that
the scheme converged with second-order rate on triangulated grids.

In this work, we slightly modify the Laplacian operator from [7], by not including any
boundary conditions directly in the operator. We mimic the proof of Chandrashekar, and
demonstrate that the modified operator maintain the SBP property proved in [7]. To study
the consistency and convergence of the Laplacian approximation, we use the heat equation
as a model equation. We propose a numerical scheme for this equation where the Dirichlet
boundary conditions are imposed strongly by injection (see e.g. [16] for more information
about this technique), and the Neumann and Robin boundary coditions are imposed weakly
similar to [7]. This approach is analogous to the one used in [15] to prove both linear and
non-linear stability for the compressible Navier—Stokes equations augmented with the no-slip
adiabatic wall boundary conditions on structured grids.

The main goal herein is to mathematically prove the convergence of the proposed scheme
for the heat equation, thus also proving the consistency, in a weak sense, of the second-
derivative approximation. By utilising the SBP properties of the Laplacian operator, we find
apriori H! estimates for the numerical solution. These estimates guarantee that the numerical
solution converges weakly (up to a subsequence) to a weak solution of the heat equation.
Furthermore, we show that the numerical solution converges strongly by employing Aubin—
Lions’ lemma, and subsequently show that the weak solution is unique. The present proof is
valid for general triangular grids with Lipschitz boundaries, and does not require admissible
meshes. By using the method of manufactured solutions, we verify by a numerical experiment
that the scheme is convergent.

Remark 1.1 To the best of our knowledge, this is the first convergence proof for a local finite-
volume method for the second-derivative that does not require admissible meshes. We note
that some multi-point flux approximations (MPFA) finite-volume methods have been proven
convergent by identifying them as mixed finite-element approximations (see e.g. [2, 18]).

The proof presented herein is also easily adapted to weakly imposed boundary conditions.
Stability for such a scheme for the heat equation was established in [7], and herein we
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show that injected Dirichlet boundary conditions also yield a stable scheme. That is, both
approaches are applicable, and we have chosen the strong imposition to provide an alternative.
The paper is further organised as follows. Section 2 defines the problem, whereas a priori
estimates for the continuous solution are found in Sect. 3. In Sect. 4 we state the weak for-
mulation of the problem. Section 5 concerns the spatial discretisation and provides the proof
of the slightly altered Laplacian operator being SBP. In Sect. 6, the numerical scheme that
approximates our problem is stated. Furthermore, the SBP properties of the Laplacian oper-
ator are utilised to obtain discrete a priori estimates similar to those found for the continuous
solution. Using these estimates, we show in Sect. 7 that the approximate solution obtained
by the proposed numerical scheme converges weakly to a weak solution of the original prob-
lem. Furthermore, we show in Sect. 8 that the solution indeed converges strongly by using
Aubin-Lions’ lemma. The solution is subsequently shown to be unique in Sect. 9. Finally,
Sect. 10 provides a numerical example that demonstrates the convergence of the scheme.

2 Problem Statement

Consider the heat equation on a two-dimensional open polygonal Lipschitz domain, €2, with
boundary 9€2:

vy =V (uVv), on 2 x (0, T],

v=gP, on 99" x [0, T,
uVv-n=g", on aQN x [0, T, (1)

uVou-n+av=g~, on a0k x [0, T,

V=0 = f, on Q.

The superscripts D, N, R indicate the Dirichlet, Neumann and Robin parts of the boundary
with corresponding boundary data. We assume 9Q° U 9QY U QR = 99, and 3QP N
QN = 9QP N QR = 3QN N IQR = ¢. Furthermore, n denotes the outward unit normal
vector, f € LQ(Q) is the initial data, and & > 0, @ > 0 are constants. We take g” €
H'(0,T; H'/2(32P)) and g"* € L0, T; L*(3QN-R)).

To simplify the forthcoming analysis, we define a function, w, such that w €
L2(0,T; HY(Q)) and w, € L%(0, T: H'(Q)), and wlyop = gP (in the sense of traces).
By the trace theorem, we know there exists sucha w € H L) (see [1]). Lastly, we choose
w to satisfy w|;—o = f, and

uVw-n=0 ondQV,

. @)
uVw-n+aw =0 ondQ".
Then, by introducing u = v — w (see e.g. [1, 17]), (1) can be recast to
uy=V-(uVu) + F, on Q x (0, T], (3a)
u=0, on QP x [0, T, (3b)
uVu-n=g", on aQN x [0, T, (3¢)
uVu -n +ou = g*, on AQR x [0, T, (3d)
uli=0 =0, on Q. (3e)
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Here,
F=V-(uVw) —w, “)
is a forcing function.

Remark 2.1 We could have made all boundary conditions homogeneous by defining w dif-
ferently. However, we choose non-zero Neumann and Robin data to keep the regularity
assumptions on the boundary data to a minimum.

3 A Priori Estimates for the Continuous Problem

To obtain a priori estimates on u, we use the energy method (see e.g. [17]). By inserting F
given in (4) into (3a) and integrating by parts, we obtain

f uuy dx = / u(V-(uVu)+ V- (uVw) — w;) dx,
Q Q
1d )
EEHM(-, SOl = — ; (UVu - (Vu 4+ Vw) + uw,) dx
+/ u(uVu -n+ puVw - n) ds,
a0
= IVl gy = [ (Vi V-t uw) dx
Q

—|—/ u(uVu -n+ uVw -n)ds.
a0

Using Cauchy—Schwarz’s and Young’s inequality on the first integral on the right-hand side,
we obtain

1d € 2 1 2 8 2

+ % ”wl‘ ||L2(Q)

+/ u(uVu-n+ uVw -n) ds.
a0

(5)
By choosing € = 1, the term /L||Vu||L2(Q) 2,u||Vu||L2(Q) =-L ||Vu||L2(Q) Since € is

now determined, 2€/L||Vw||LZ(Q) = 4| Vw|? which is bounded by definition. Hence,

(5) reads

LX(Q)’

5 g 1C Dla) = =5IVulTa g + FIVWIT gy + 2 + 25l Wil Fag)
—|—/ u(uVu-n+ uVw -n) ds.
Q2

Inserting the boundary conditions for w and u given in (2) and (3b)—(3d), respectively, we
obtain

-—llu(nﬂlle(m —5IVulfaq) + 5IVWIZa g + $lullfa g + 25 lwill7ag

—|—/ ug" ds —|—/ (u (gR - otu) —auw) ds.
QN — QR N N

(6)
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Consider the underlined boundary terms above. We follow [19], and bound these terms by
first using the Cauchy—Schwarz inequality:

/ MgN dS +/ Mg —duw dS < ||M||L2(aQN) ”g ||L2(dQN) + ”M”LZ(dQR)”g ||L2(3QR)
QN QR
+oalullzpar lwlzoer),

(N
and then by using the trace theorem, which states that [|u(|;250) < Cllullg1(g), C > 0 (see
e.g. [1]):

||M||L2(aQN)||gN ||L2(39N) + ||u||L2(3QR) (||8R||L2(3QR) + 05||w||L2(aQR))
Sl (1Y 2pav) + 1851 2par + allwlyig) -

Here, we have introduced the notation a < b for a < Ch, where C > 0 is a constant.
By employing Young’s inequality, the boundary terms (7) finally read

N R _ < B 2
/mzfvg ds—|—/mukg auwds S 2”””1—11(9)
+ 55 (18" By + 18" 122 g, + w30, )

The preliminary estimate (6), can then be stated as

571G Dl g S —%nwu;(m + 5 1Vwlga gy + §lull7s g
+ g5 llwill o + Sl g
+ o5 (18" By + 18" 122 0, + M0l 0) ) — /B el ds.

The last term on the right-hand side is negative semi-definite, since « > 0. We neglect it in
the remaining analysis. Hence we have

2 2
Ed_”u( s vt)||L2(Q) M”Vu”LZ(Q) 2||M||L2(Q) 2”””[{1(9)

+ 25 l0n13 200 + 25 (18" 12200m, + 18 B2 gy + @20l g))

®)

Consider the three last terms on the left-hand side of the above inequality. By adding and
subtracting & Sllu 112 12 they can be rewritten as

2 2 2 2 2 — 2

u+a
||M||L2(Q) (9)

— 2
> LBy

By choosing 8 sufficiently small £ BB w2 12(Q)

e > > 0. From (8) we then have

5 211G D2y S B T gy + 51V ) + 251wl Z2 g

+ o5 (18" By + 18" 122 g, + 02020, ) -
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Employing Gronwall’s inequality (see e.g. [10]), we obtain
T
luC - D22 g, < P (nu(., 012 + /0 (IVwI22 g + Hlwrl2 g, ) dt

T
+ fo 3 (18122 00, + 1851 208, + @2 10131 g ) dr) .
The inequality holds for all 0 < ¢ < T. In Sect. 2 we defined w € L*(0, T; H'(Q)),
w, € L*0,T; H(Q)) and g"* e L?(0, T; L>(3QN-®)). Using this, we find that the

right-hand side of the above inequality is bounded. Thus, u € L*°(0, T’; Lz(Q)). Lastly, we
integrate (8) in time to obtain

1 2 r M 2 ) 2 B 2
Sl D2 g +/O (4190l — 31122y — Sl g, ) dt
1
< _u(-. - 2
~ 2””( ) sO)HLZ(Q)
T
+ | (S1Vwiiag + 25llwell;
0 2 L2() T 25 W2
5 (18" 1220w, + 18 gy + @0l ) ) d
g 2 1 2
=/O (4190132, + F5lwrl s g,

5 (18" 2 0gm, + 18 Ba g, + oIl gy )) dr.

where we have used ul;—9 = 0 in the last step. Since f0T||u(-, L D|? dt < constant,
we observe from this inequality that Vu € L%(0, T; L*(R)), and thus we have u €
L*0,T; H(Q)).

4 Weak Formulation of the Heat Equation

Next, we derive the weak formulation of (3). Let H al op (€2) denote the space of H'! functions
0

vanishing at the Dirichlet boundary. Furthermore, let ¢ € H Lo, T; HBIQD (2)) be a test
0
function that satisfies ¢ (x, ) = 0, x € Q. Multiply (3a) by ¢ and integrate over 2.

/ du; dx = / ¢V - (uVu) dx —|—/ ¢ F dx. (10)
Q Q Q
Integrating by parts and inserting the boundary conditions given in (3b)—(3d), give
/(;Sutdx:—/Vd)-uVudx—f—/ ¢>(,uVu-n)ds+/ og" ds
Q Q EloZy ol
+/ ¢(gR—(xu)ds+/¢Fdx,
IQR Q

=—/V¢~uVudx+ ¢gNds+/ (l)(gk—au)ds—l—/qSFdx,
Q QN IQR Q
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where we have used ¢|yqp = 0. Using ¢|,=7 = 0, ul;—o = 0 and partially integrating the
left-hand side in time further yields the weak form of (3):

T T T
/ f o:u dxdt = / / V¢ - uVu dxdt —/ og" dsdt
0o Ja o Ja o Jaqn
T

T
—/ d(g" — au) dsdt—[ /qu dxdt, (11)
0 JaQr 0o Ja
where F given by (4) satisfies

/(;’)Fdx:—f V¢~qudx—/ a¢wds—/d>wtdx. (12)
Q Q aQR Q

Remark 4.1 Since the forcing function is not the main focus of this work, we use fQ ¢F dx
as short-hand notation for (12) and make comments about it where necessary.

Remark 4.2 From (12), we see that w € H!(Q) is sufficient to bound the two first integrals
on the right-hand side. Furthermore, the regularity of w; is determined by the regularity
of the boundary data (see e.g. [17]). Thus, for y(w;) = gP to be satisfied (where y is
the trace function), we must have w;, € H'(S), and that is why we assumed that g° €
HY(0, T: HY2(3QP)) in Sect. 2.

Definition 4.3 A function u satisfying (11) is called a weak solution of the problem (3).

5 Spatial Discretisation

Let Q, be a discretisation of @ = QU 8L into non-overlapping triangles K,,,n =1, ..., N
such that Q;, = Ur]lV= 1 K, and such that there are no hanging nodes in Qy,. The grid functions
are defined on the vertices of the triangles. Furthermore, subdivide €2 into a dual grid
consisting of dual cells, V;, i = 1,..., 1, such that Q, = U{ZIV,-. The dual cells are
polygons surrounding a vertex, i. A dual-volume boundary consists of straight lines drawn
from the mid-point of an edge adjacent to grid point i to the centroid of the triangles adjacent
to the grid point (see Fig. 1). (These are the dual volumes of the standard node-centred
finite-volume method, see e.g. [22]). We introduce the notation

5_2}‘{ : the set of indices for interior and boundary nodes,

Qf : the set of triangles inQy,
Q,‘l/ . the set of indices for interior nodes,
89,‘1/ . the set of indices for boundary nodes,
392’ : the set of indices for boundary nodes on QN ,
895 : the set of indices for boundary nodes on 9Q2¥.

The discretisation of the problem (3) utilises the approximation of the Laplacian and
gradient operator proposed in [7] for the interior scheme. For triangles having at least one
edge along the Dirichlet boundary, the Dirichlet condition was incorporated weakly in the
gradient operator in [7]. Here, we use the approximation for inferior triangles for every
triangle in the grid. The approximation is given by

1

Vi = e Wi+ i)+ i) (13)
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Fig. 1 Example of a triangulation
and the corresponding dual cells

Fig.2 Triangle depicting the k
components of the gradient
approximation (13)

where | K, | is the area of triangle K, ; i, j, k are the vertices of the triangle, and ﬁ?’ j i are the
outward pointing normal vectors of the triangle, opposite of the particular node (see Fig. 2).
The length of the normal vectors, fl,’»" j k> 1s equal to the length of the adjacent edge.
Next, we introduce the following notation.
I,, = {all vertices of trianglen},
N; = {all triangles with vertexi},

E; = {all boundary edges having vertexias an endpoint},

Then the approximation of the Laplacian on a dual volume is found by approximating (see

(7D

/Audx:/ Vu-nds+/ Vu-nds, (14)
Vi AV \oQ aV;NaQ
by
1 1 noAn 1 ne) 7
(Apu); = V13 > V- R} + 3 > v - be) | . (15)
nen; eck;

Here, b(e) denotes the outward pointing normal vector at boundary edge e (see Fig. 3a).
The superscript n(e) signifies the triangle that has the boundary edge e. The components of
the approximation (15) is depicted in Fig. 3b.
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\
\\ ' \\
\ ! \
Y ) \ 5 ; ' \
- m
B(12) i=1 lbu) J lmz) i ll}(l) J
v

Fig. 3 a Example of a vertex i belonging to three triangles (K1, K4, K7) where two of them (K1, K7) have
an edge along the boundary, depicted with the corresponding boundary normals b(e). b Example of a dual
cell, V;, and the components of the Laplace approximation (15)

The approximation of the Laplacian (15) with Dirichlet boundary conditions taken into
account, was demonstrated to satisfy the Summation-by-Parts (SBP) property in Theorem 1
in [7]. Here, we state the analogous result without any boundary conditions.

h h h

Theorem 5.1 Let u” and v" be two grid functions defined on Qp such that u" =
(ui,ua, ..., ur), and correspondingly for v"'. Then the discrete approximation of the Lapla-
cian operator (15) satisfies the SBP property

1 : A
> viViAputyi ==Y V- V' K| + 5 D w (VO by (o)
ieQ) neQf i€y
+ Va2 b 5(e)),

where the subscripts {i, 1} and {i, 2} indicate the two edges adjacent to the boundary node
i

Proof Multiply Eq. (15) by v; V; and sum over all vertices in the grid.

> uiVi(apuh) = % dovi Y Vi Ay +% D ovi Yy V9 - be),

ieQ) ieQ) neNi ieQf €€k
1 n o An 1 n(e) 1
=3 DO vV - +3 D0 > iV ble).  (16)
ieQ) neN; icdQ) e<ki

In the second equality, we have used that the set E; is empty for interior nodes.
For the first term in the above equation, we change the order of summation and move
V,u" outside the summation over the vertices of a triangle K, in (16), to obtain

1 . 1 . 1 .
5 YD VA = 3 DD uVi i = 3 DoV Y vl g
ieQ) neki neQk il neQk iel,

For the boundary nodes, we have

1 A A A
5 2 2 vV b= Y vV by y(e) + Vi - bia(e))  (18)

i€dQ) €€k iedQ)
With (17) and (18), (16) can be written as

1 . 1 ) A
Do Vil =2 Y 0 Vi Y o 5 Y wi (VO by (e)

ieQ) neQf i€l iedQ)
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+ V2@ b 5 (e)),

1 ) A
== 2 V" V" Kal 4 5 D0 wi(Vuu b e)

neQk i€dQ)
+ V2@ - b 5 (e)).

In the last equality we have used the approximation of the gradient (13). O

6 The Numerical Scheme and Discrete A Priori Estimates

To approximate the problem (1) we use (15) for the Laplacian approximation at the interior
nodes. The Dirichlet condition is imposed strongly by injection (see e.g. [15, 16]). The
Neumann and Robin conditions are imposed weakly in the same way as in [7]. That is, by
replacing the last term of (14) with the boundary data, we approximate the Neumann and
Robin boundaries by:

/‘ Vu.-nds % ZeeE,- g;"li)(e)| R if i1is a Neumann boundary node,
AViNIQ % ZeeEi (g} —au;)lb(e)| if iisaRobin boundary node.

Remark 6.1 Imposing the Dirichlet condition by injection means in practice that the Dirichlet
nodes are overwritten by the exact boundary data after each time step. (Equivalently, no
equation is solved at these nodes, since u is equal to the boundary data.)

Remark 6.2 A boundary node is either of Dirichlet, Neumann or Robin type. The entire
dual-cell boundary coinciding with the physical boundary is subsequently approximated as
the same type as the boundary node, see Fig. 4. This means that in the junction between
two boundary types, part of the computational boundary may be approximated as something
different than the actual physical boundary. However, this is an O(h) error of the boundary
integral which tends to zero with decreasing mesh sizes. Note that this is only necessary for
the Dirichlet nodes where the boundary conditions are injected. For Neumann and Robin
nodes, we could split the outer dual-cell boundary into a Neumann and a Robin part since
these boundary conditions are set weakly. However, in the scheme (19) below, we use the
first approach to reduce notation.

The above choices lead to the following discrete approximation scheme of (1)

dv,- . D

= = &), i €0Qp,

dv; 1 nooan 1 N7, : N

zzz—%ZMvhv “h; +2_Vizgi |b(e)|, leaﬂh,
nen; eckE;

dvj 1 nooan 1 R 2 . R (19)

b > uvp - i +2—ViZ(gi —au)|be)|, iedQfk,
neN; eck;

dv,- 1 noan .

@ = 2 o
nen;

Vilt=0 = fi, ieQy.
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Robin boundary

Robin boundary

approximated as

Neumann since
node i is defined

to be Neumann.

Neumann boundary

Fig.4 Example of a grid with corresponding dual cells with an intersection of a Neumann and Robin boundary.
For boundary nodes, the whole dual cell boundary is approximated as the type of the boundary node

Remark 6.3 For readers familiar with the simultaneous approximation term (SAT) (see e.g.
the review papers [8, 30]) we remark that the schemes for the Neumann and Robin nodes are
equivalent to

dv 1 1 .
e N WV R o S V" - be) + SATY, i e a2,

dt 2V; 2V;
neN; ecE;
dv; 1 1 .
d—l;’ = 3w i)+ v 3 1V - be) + SATE, i € af,
L nen; ' ecE;

where the SATSs take the form

SATY =~ (Vi - bie) - glbee))

(20)

SATF = — (Mvhu"(“’) -b(e) — (gF — Olui)|$(3)|) .

—V 2
CE;

1
v o
cE;
Remark 6.4 To simplify following energy analysis, we have defined the Dirichlet nodes in
(19)as (v;); = (gl.D )¢ We emphasise that when implementing the scheme, the Dirichlet nodes

should take the form v; = ¢/ in order to avoid discretisation errors from the time-stepping
algorithm.

As for the continuous problem, we transform the scheme (19) into one that imposes homoge-
neous Dirichlet boundary conditions. That is, we construct a function w as defined in Sect. 2
and introduce u = v — w (see again [1, 17]). Inserting v = u + w into the scheme (19), we
obtain

du,-

— =0 e QP (1
dt L n (2la)
du,‘ 1 R 1 N ]
a 2v Zﬂvhu"'n?Jrz—V_Zg{”Ib(e)Hﬂ, iedQl (21b)

' nen; ! ecE;
dul Z ~n 1 R 7 . R

UV R 4 —— Y (gf —aup)lb(e)| + Fi, i €dQf  (2lo)

dt 2‘11 N; 2‘/1 eckE;
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dui 1 Z nooAn .

—_— = uVpu" -n; + F; i€y, (21d)

dt 2V, o

uily=0 =0, ieQy (2le)
where

v Lonen, 1Viw" - Af — Ll i),

Fi =1 a7 Ynew, WVnw" -] — g Yocp, awilb(o) - G, i €dQf,  (22)
¥ Lonen, WVRW" - RY — G i€ Q.

Remark 6.5 By the Picard-Lindelof theorem (see e.g. [25]), the ordinary differential equation
(21) has a solution if the scheme is stable.

To obtain a priori estimates for the approximate solution uh = (uy,up, ..., uys), we use
the discrete energy method (see e.g. [17] for more details on the energy method). That is, we
multiply the scheme (21) in each node, i, by u; V; and sum over all grid points.

> u,-v,-% = D uiVi % D uVpu i
1

ieQ) ieQ) nen;
1 n An 1 N7,
+ D Vi | gy 2wV i+ oo g lbe)]
icaql " nen; L ecE;
1 . 1 .
+ D0 wiVi | gy 2 aVa ]+ o Y (gl —aui)lb(e))
icaQf | ! nen; ' ecE;
+ ) uiViF;.
ieQ)

Since ), = Q}Y U 89}? U 852,1:’ U 8525, and all the sets are disjoint, and since the scheme for
the Dirichlet nodes is zero, the underlined terms amount to summing over all nodes in the
grid. That is, the above is equivalent to

S v = Y w Y v WL w Y allbe

ieQ) ieQ) neN; icdQll €€k
1 N
R
+5 D i (& —ounlb@l + Y wiViFi.
iedQf  ecEi ieQ)

Using Theorem 5.1, we obtain

1d A o
s 2 Vi == 30 Vnu - p ViKY guigl (b (@) + bia (@)
ieQy neQf iedQl
+ Y 3 (wigk —ou?) (biy (o) + bia@) + Y u;ViFi,
icdQf ieQy
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< - Y Vad"PIK 4 Y Suigl (1bii(e)] + 1bia(e))

neQk icdQl
+ Y SuiCgf(bia(e) + 1bia(e)))
icdQf
+ ) wiViF;, (23)
ieQ)

where we in the last inequality have used that Zieaszf —%auiz(|lAJ,~,|(e)| + |l;i,2(e)|) <0
since « > 0. We can further manipulate the Neumann boundary terms as follows

> quigl(bii(@l + 1bio@) < Y luigl (b1 (e)] + Ibi2(e)]).
ical icd
Using Young’s inequality, we obtain
> Suigl(bia(@l + 1biae)) <5 Y FluilP(bii(e)l + 1bia(e))
ical icdQl
+a5 D 3le Pabii@l + 1bia (o).
ical

The Robin boundary terms can be manipulated the same way. Thus, (23) reads

1d
s 2 Viur = =i 1V PIKal + 5 30 Sl (lbi1 (@) + bia(e))
ieQ) neQk i)
+a5 > 3P Ubii(@)] + 1B a(e))
icdQN
1S I A A (24)
+5 ) Sl (i)l + 1bia(e))
i€dQf
+a5 D 3lefPUbii@)] + 1bia@)) + Y wiViF;.
icdQf ieQ)
We introduce the following notation for the discrete equivalents of the L?-norms:
175 o) = 2 luil*Vi, (25)
lGQV
Va5 o) = D IVt PIKal, (26)
neQk
14135 oy = D 3luilPUbii(e)] + lbia(e)). 27)
icdQb

Using the definitions (25)—(27), we can recast (24) as

h
w2

d
I g < —IVR 15 o) B2 v+ 218" 1 o,

+ 51" 172 ogr, + 258" 72 oy T D uiViFr.

eV
ey
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To obtain an estimate analogous to (8), we must consider the forcing term Zi cav uiViFi.

Except for the time-derivative term in (22), F; takes the same form as the right-hand side of
the scheme (21). By using the SBP property from Theorem 5.1 and Young’s inequality, we
obtain

Z i ViFy < §pl|Viu" ”L2 @t SV ”L2 () gll”h”i%@%’f)

ieQ)
2/3 ”w “Lz(ag Ry 2”” ||L2 ©n) 25 ||wt ||L2 «"

Thus, we have

|| w5 o = —HIVi" I35 o + B 132 oo + 25 18" s ony + 214" 172 y0n)
1 N
218" 172 oan,
+ SV 15 o) + $eIVR0" 155 o) + F1" 172 o,

o hy2 Sy, h hy2
10" 132 om, + 31" 172 o) + 3510112 o

(28)
Similarly as for the continuous problem, if we choose € = 1, we obtain ,u||th || 2@ +
€ h __n h +Byh
SNV o) = =5 190 1, o in(28). Furthermore, Sl 7 o, + 514175 o,

< Blluh ”L2 09" . Hence, we have

d
—Ilu I7 “IIVhM I “IIVhw I7

L2 (Q) L2 (Q) L% (Q)

ﬁ (g™ han oa, + 8" han g + 0" ||L2 2 e

Finally using the trace theorem, we arrive at a similar estimate as in (8):

IIM 125 o + 51Va" |I

h 2 h 2
< Slvaw” ||

L} @ T

1

+ 35 (llg™ han oap) + 18" huLz o + 10" 11 6)) -

Note that we have arrived at a semi-discrete equivalent of (8). Thus, by using Gron-
nwall’s inequality followed by integration in time, as done in Sect. 3, we obtain u" €
L0, T; L? v(€2)) and Vyul € L%, T; L% % (£2)). We may extend the numerical solu-
tion, u”, to the entire domain by a linear 1nterpolat10n on the triangles. Let u? denote
this continuous piecewise linear function. We have that V,u” = Vu” = V,u". Hence
Vu € L2(O T; L2 (2)) (and also, Vuh € LZ(O, T: L*(Q)) since Vuh is piecewise con-
stant) Furthermore the norm ||u 1% can be bounded by [l Thus, we have

ul € L20, T; H'(Q)).

L2(Q) L3(Q)
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7 Weak Convergence to a Weak Solution

Let¢p € H'(0, T Coo op (€2)). Since ¢ is smooth (in space), ¢|v;, which is the restriction of ¢

to adual cell, can be ertten asdly, = ¢(x;, yi, t)+hp; = ¢;+hp;, where h is acharacteristic
mesh size and p; (x;, y;, t) is a function of size O(1). The gradient approximation (13) is
Vidlk, = Vo|k, + O(h). This can easily be checked for equilateral triangles. Thereafter,
one can prove the relation for a general triangle by transforming it to an equilateral one using
a linear transformation.

We denote the right-hand side of the scheme (21) by Lju”. To prove convergence to a
weak solution, we test the numerical scheme (21) against ¢. That is, we calculate

/(bu, dx—/¢(Lhu ) dx,

(29)
—Z/¢mummw
ieQ) vi
We now use that ¢|y, = ¢; + hp; to obtain
IRZEDS / (@ + hpp) (L) dx (30)
ie QV
= }:‘/ i (Lyu")i dx+ ) /'hmehu>,dx
ZEQV lEQV
- /awmw+2/mwwx G31)
ie QV ie QV
where we have used uf’ = Lju” in the last step. Thus
[ =t ax= 3 / B (Lyu"; dx. (32)

zQV

Inserting the specific form of Lj u” (that is, the right-hand side of the scheme (21)) yields

/(¢ h[’)“; dx = Z/tlﬁ, — thu -l | dx

i Qh neN

1 woan 1 e
+ Z 2V, Z uVpu' - n; 4+ v, Zgi lbe)| | dx
zeBQh Vi L neN; ecE;
! woan o, 1 y 3
+ Z /v A ZMth ] +2Vi Z(gi —au;)|b(e)| | dx
tedQR L nen; ecE;
+Z/@ﬂm
teQX Vi

(33)
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Since ¢; is constant on each dual cell, V; and the Laplacian approximation is a scalar constant,
the right-hand side above can be integrated exactly, leading to

1 ~n
/Q((P—hp)uﬁ’ dx = Z o Vi Z_V, Z uVpu" - iy

ieﬂ,‘,/ neN;

1 J | -
+ D0 Vi | 5y D I i+ Y gl lbee)

i i
ieBQﬁ’ nen; eckE;

1 N .
+ D Vi | gy D Vi 4 2o Y (gl — aun)lbe)]

l l
icdQf L nen; ecE;

+ ) ¢iViFi.

L&V
i€,

(34)
As in the discre_zte analysis in Sect. 6, the underlined terms can be written as the sum over all
grid points in 2, as follows

@t ax=3 5 o S uvar i+ 3 X 0% gllbee

ieQ)  neN; icoQl €k
1 (35)
+3 2 4 D8l —awlb@l+ ) piViFi
icdQf  ecEi ey

Using the SBP properties from Theorem 5.1 yields

/Q«zs—hp)u? dx=— Y Vig"  uViu"|Kal + > 1ig) (1bi(e)] + [bi2(e)))

neQf il
+ > 3Gl —aun)(bii()| + bia)) + Y ¢iViFi.
icdQf ieQy
(36)
Since V,¢" and V,u" are constant on each triangle K, we have that — ZnEQIK Vo™ -
uVpu'|K,| = — Z"EQ;',( fKn Vio" - uVyu dx. Thus, (36) can be written as
/(qb — hpyuj dx=— " / Vid" - nVyu dx
@ neQk " "
+ > il (bii (@) + Ibia (o))
icdQl
+ Y 3ei(ef — aun(bii(e)l + 1bia (o))
icdQf
+> / ¢i Fi dx,
ieQ) Vi

= —/ Vid" - uViu dx
Q
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+/ o"F" dx+/ P gt ds+/ " (g%" — au™) ds.
Q aq QR

Partial integration in time yields

T
//(¢ hp)u" dxdt = //vw - uVuu dxdr — / ¢thhdsdt
f/ ¢ (g™ — au”) dsdt — //qs F" dxdi
QR

—/ hpu (T) dx,
Q

(37
where we have used u”|;—o = 0 and ¢"|;—7 = 0.

Remark 7.1 Here, fQ @" F" dx is the short-hand for the semi-discrete form of (12). By using
the SBP property from Theorem 5.1, it can be written as

/¢ Flax= ) $iViFi,

zeQV
== > V" uVuw"|Kal— > agiwi(bi(e)] + [bi2(e)))
neQk icaQk (38)
dw,'
- Z ¢iVi7,
ieQ)

:—/ thbh-uvhwhdx—/ (x(ﬁhwhds—/d)hwhds
Q QR Q

We keep the symbolic expression to reduce notation.
Since ¢|y, = q)h lv; + hp; and V,¢|g, = V¢ + O(h), the weak formulation (37) becomes

T T
/ / (¢ — hpou dxdt = / / (Vo + Oh)) - uVyu" dxdt
0 Q 0 Q

T
—// (¢ — hp)g"" dsdt
0 Jaal

T
—/ / (¢ — hp) (™" — au') dsdt (39
0 Joofk

T

—/ /(¢—hp)Fh dxdt
0 Q

—/ hpu (T) dx.
Q

We utilise the following functional analysis theorem (see e.g. [10], and [5] for a proof).

Theorem 7.2 Let Qr C R”" be an open domain and let {u,} € L*(Qr) be a bounded
sequence. Then there exists a subsequence, {u,;} € L?(Q27) that converges weakly to i €
L2(Q7). That is,

Quy; dx — oudx asn; — oo, for allp € L2(QT).
Qr Qr
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Here, we take Q7 = Q x [0, T']. Consider the O(1) term on the left-hand side of (39). Using
Theorem 7.2, we have that

T T
/ / o dxdt — / / Geit dxdr.
0 Q 0 Q

The other O(1) terms can be treated in a similar way. Turning to the second term in (39), we

have
T
/ / hp,uh dxdt — 0,
0 Q

as h — 0, since u" € L® O, T, Lz(Q)). Using the available bounds, similar arguments
imply that O(h)uVyu®, hpg"-", hpg®" hpu" and hp F" vanish.

Remark 7.3 Since all terms in F (see (38)) are known and bounded in L2(Q27) (see the
assumptions in Sect. 2), the weak convergence of the symbolic expression (38) follows
trivially.

In summary, letting 7 — 0, (39) becomes

T T
/ /¢,12dxdt:/ /Vd)-uv_udxdt
0 Q 0 Q
T

T
_/ $g" dsdr — / d(g" — an) dsdt
0 o Joo

QN
T —_
—/ / o F dxdt, (40)
0 Jo
which is satisfied for all ¢ € H'(0, T; Cgsozp (Q)).
0

Remark 7.4 Note that the boundary integrals over the computational boundaries converge to
the integrals over the physical boundaries as # — 0. That is,

" gV ds — / ¢"g"" ds and
ey QN

¢W<g&h——auh>ds—+t/ ¢"(g"" —au") ds.
aQRk aQR

ash — 0.

Remark 7.5 The term |, ¢u" dx in (39) satisfies

/@szfawM+am
Q Q

(this can be verified by using the specific form of ui’ on each triangle). Since uﬁ’ e H\(Q),

Theorem 7.2 gives
ffp,uﬁ dx — / ot dx,
Q Q

in H'(Q). Thus, Vu = Vi in (40).

Theorem 7.6 Equation (40) holds for all $ € H'(0, T H;QD(Q)).
0
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Proof Since the space H'(0, T’; Coop (Q)) is dense in H'(0, T; HBIQD(SZ)) (see [1]), the
0 0
equality (40) holds for all ¢ € HY0,T: H;QD(Q)). O
0

Hence, u is a weak solution of the problem (3).

8 Strong Convergence to a Weak Solution

Next, we prove strong convergence to the weak solution.

Definition 8.1 (Strong convergence, [10]) A sequence {u,};°

ue X, ie,u, - u,iflim,_ llup, —ullx = 0.

1 € X is said to converge to

We also need the following definition.

Definition 8.2 [25, Definition 6.76] We say that a domain, 2 C R?, has the k-extension
property if there exists a bounded linear mapping E : H*(Q) — H*(R?) suchthat Eu|q = u
for every u € H*(Q).

As we have assumed the spatial domain to be Lipschitz, the following result applies.
Theorem 8.3 (see e.g. [1] or [27]) Any Lipschitz domain has the k-extension property.

For a bounded domain, 2, with the k-extension property, we have that H' (€2) is compactly
embedded in L2(Q) (see e.g. [25]), which in turn is continuously embedded in H -1(Q). To
prove strong convergence, we need the Aubin-Lions Lemma:

Lemma 8.4 (Aubin—Lions, see e.g. [26]) Let X, B and Y be Banach spaces such that X C
B C Y, where the embedding, X C B is compact and B C Y is continuous. Let U =
{fueLPO,T;X)|u € LY10,T;Y)}, 1 < p,q < 0. Then U is compactly embedded in
LP(0,T; B).

A Banach space X is compactly embedded in another Banach space Y, if the following
two conditions hold (see [10]):

1) |lully <Cllullx, (u € X), for some constant C.
(ii) each bounded sequence in X is precompact in Y, i.e., for a bounded sequence {u,}52 |,
there exists a subsequence, {u, }2?:1 C {un};,2 | that converges toa u in Y.

Herein, we use X = HY(Q), B = L%(Q) and Y = H~!(2) in Lemma 8.4. Thus, since we
have u" € L*(0, T, H'()), it suffices to show that (u"), € L'(0, T; H~'()) to establish
the strong convergence. That is, we need to show that the norm (see e.g. [25])

T
Il o751 =/ sup /(u’g)tqs dxdr, A1)
0 geHj(), /¢
19143 =1

is bounded. To this end, we test the scheme (21) with a function ¢ € Cgo ().

/qsu;’ dx:/ ¢ (Lypu"y dx = Z/ dlv, (Lpu™)|y, dx.
Q Q e, Vi
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Note the resemblance to (29) (the only difference being the function ¢ that is now vanishing
on the whole boundary d€2). From derivations analogous to (30)—(35), we can recast the
above equation to

[@—mondax=3 ¥ 6 ¥ wv i+ ¥ 6 Y sllbe

zeQV nen; icoQ) €k
+ Y 6 Y (&f —eulbe) + Y $iViFi.
icdQR  eck; i€y

By using ¢|3q = 0 and the SBP property (see Theorem. 5.1) we have

/(¢ hp)u dx = — Z/ V" uVpu" dx+ Y ¢iViF;

neQk zeQV
—/ Vid" - Vyu dx+/ o"F" dx. (42)
Q Q

Remark 8.5 Here, f Q th F" dx takes the same form as in Remark 7.1, except for the boundary
term |, sl a¢"w" ds which is zero in (42) since ¢ is vanishing on the entire boundary 92
in this case.

Inserting ¢ = o + hp and V¢ = V¢ + O(h), we obtain
/ (@ — hp)u! dx = —/ (v¢ UV + O) - ;Nhuh) dx +/ <¢F” - hth) dx.
Q Q Q

Since Vju" € L0, T; L%( (Q4)) and all terms of F” are properly bounded (see the assump-
tions in Sect. 2), letting & — 0 yields

/qsu?dx:—f v¢-Mde+/¢Fdx,
Q Q Q

as limy,_,0(¢ — hp) = ¢. By inserting the specific form of fQ ¢F dx and using the Cauchy—
Schwarz inequality, we obtain

This holds for all ¢ € Cgo(S_Z), and by density, it follows that the inequality holds for all
¢ e HO1 (£2). Integration in time finally yields

/ sup ¢u, dxdt
0

peH, (Q) Q
19141 2=

T

1 2 .12

5/0 sp 5 (IV9132g) + 1Vl 2 g
$eH (),

\|¢||H1(m:1
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Hence uﬁ’ e L0, T; H~1()), and since (ui?), is u? extended to the entire domain using
a linear interpolant on the triangles, we also have (ué‘), e LY0,T; H'(Q)). Thus, by
Aubin-Lions’ lemma 8.4, the family of functions, U = {uff e L%(0,T; H(Q)) | (ué’), €
L', 7; H! (2))}, is compactly embedded in L2(0, T; L%(Q)), meaning that uif converges
strongly to the weak solution.

9 Uniqueness of the Weak Solution

Assume that there are two weak solutions u, v to the problem (1) satisfying the boundary
and initial data. Then w = u — v is also a weak solution with homogenous data (F = g” =
gV = g® =0). Take ¢ = w in (10) to obtain

/ww,dx:/ w(V - uVw) dx.
Q Q

Integrating the right-hand side by parts, and using the fact that the boundary data is zero, we
obtain

1d 2 2 2
zE”wHLZ(Q) = _M”VIUHLZ(Q) - a”w”LZ(BQR) = O’
lw (s - D2 gy < 1w, - 072, =0
Hence, |wllp2¢0.7:12()) = 4 — vli120.7:12(c)) = O and thus the weak solution is unique

in L2(0, T; LE(Q)).

10 Numerical Simulations

We implement the scheme (1) and consider the manufactured solution used in [7]. That is,
the exact solution is given by

— 872t —327%t

ulx,y,t)y=e sin(2rx) sin2wy) + e sin(4mx) sin(4mwy), (44)

which yields a zero forcing function. Furthermore, we let © = o = 1. We consider a square
domain Q = [0, 1] x [0, 1] containing a hole. The hole is located at (x, y) = (0.5,0.5),
and has radius r = %. We pose Dirichlet boundary conditions on the boundary of the hole,
Neumann boundary conditions on y = 0, y = 1 and Robin boundary conditions on x = 0,
x = 1. The boundary data is given by (44). r = 0.05 is used as the final time. The scheme was
run on grids containing 398, 1394, 5097, 19457 and 76166 nodes. A typical grid is depicted
in Fig. 5a. All grids were generated using Gmsh (see [14]). The scheme was implemented
using the Julia programming language (see [4]).

Figure 5b shows the convergence rate together with a reference line representing second-
order convergence. We conclude that the scheme converges at approximately a rate of two.

11 Conclusion

Herein, we have considered a slightly modified local finite-volume approximation of the
Laplacian operator proposed by Chandrashekar in [7] for discretising the heat equation in
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a b

-8+

-9}

log(error)

—10 b

-11 f

—@— convergence rate
— — — 2nd-order reference

e i > >
log(hmax)

Fig. 5 a A typical mesh. b Convergence rate obtained for simulations using N = 398, 1394, 5097, 19457,
76166 grid points

two spatial dimensions on general triangular grids. The equation was augmented with Dirich-
let, Neumann and Robin boundary conditions. The Dirichlet boundary condition was imposed
strongly by injection, while the Neumann and Robin conditions were imposed weakly. We
demonstrated that this modification satisfies the SBP property proved in [7]. By using the
energy method, a priori estimates for the numerical solution were derived. From these esti-
mates, we were able to prove the weak convergence of the numerical solution to a weak
solution of the heat equation. Thus, consistency, in a weak sense, of the Laplacian opera-
tor was established. Subsequently, we demonstrated that the numerical solution converges
strongly to a weak solution by using Aubin—Lions’ lemma. Finally, the weak solution was
shown to be unique. To the best of our knowledge, this is the first proof of convergence
for a local finite-volume method for the Laplacian on general triangular grids. The theory
presented here is straightforwardly applicable to three spatial dimensions, provided that the
Laplacian approximation can be generalised to such domains.

A numerical simulation, which included Dirichlet, Neumann and Robin conditions was run
on an unstructured triangulated grid containing a hole. By using the method of manufactured
solutions, we demonstrated that the numerical solution converged with a second-order rate.
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