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Abstract

The compressible Navier-Stokes equation subject to both adiabatic wall boundary con-

ditions and far-field boundary conditions are studied in this thesis. Although the well-

posedness of these equations is generally unknown, they are of wide interest and are

extensively used in computational fluid dynamics. A result by Strang (1964) states that

if a non-linear problem is discretised using a difference method that is linearly stable,

then this method is convergent for smooth solutions. That is, there exists theory we can

use in the analysis of the Navier-Stokes equations. Thus, we study linear well-posedness

and stability of numerical schemes both in the context of the compressible Navier-Stokes

equations, but also linear partial differential equations as model problems. Furthermore,

entropy estimates are derived for the fully non-linear Navier-Stokes equations, which pose

as an admissibility criterion for the relevant weak solution we seek; it should additionally

satisfy the second law of thermodynamics.

The main focus of this work is the stable imposition of the adiabatic wall and far-field

boundary conditions for the Navier-Stokes equations. In particular, we prove that the

no-slip condition can be imposed strongly and still yield an entropy estimate when used

in combination with diagonal-norm summation-by-parts (SBP) operators with diagonal

boundary operators. Furthermore, we introduce a new methodology for setting far-

field boundary conditions, and prove that it leads to an entropy stable scheme for the

compressible Navier-Stokes equations. The procedure is additionally linearly well-posed.

Throughout, we employ SBP operators due to their remarkable stability properties. We

also prove that a slightly modified version of the finite-volume SBP approximation of the

second-derivative given by Chandrashekar (2016) is (weakly) consistent, thus making it

suitable for discretising the viscous terms of the Navier-Stokes equations on unstructured

grids.

Abstract

ThecompressibleNavier-Stokesequationsubjecttobothadiabaticwallboundarycon-

ditionsandfar-fieldboundaryconditionsarestudiedinthisthesis.Althoughthewell-

posednessoftheseequationsisgenerallyunknown,theyareofwideinterestandare

extensivelyusedincomputationalfluiddynamics.AresultbyStrang(1964)statesthat

ifanon-linearproblemisdiscretisedusingadifferencemethodthatislinearlystable,

thenthismethodisconvergentforsmoothsolutions.Thatis,thereexiststheorywecan

useintheanalysisoftheNavier-Stokesequations.Thus,westudylinearwell-posedness

andstabilityofnumericalschemesbothinthecontextofthecompressibleNavier-Stokes

equations,butalsolinearpartialdifferentialequationsasmodelproblems.Furthermore,

entropyestimatesarederivedforthefullynon-linearNavier-Stokesequations,whichpose

asanadmissibilitycriterionfortherelevantweaksolutionweseek;itshouldadditionally

satisfythesecondlawofthermodynamics.

Themainfocusofthisworkisthestableimpositionoftheadiabaticwallandfar-field

boundaryconditionsfortheNavier-Stokesequations.Inparticular,weprovethatthe

no-slipconditioncanbeimposedstronglyandstillyieldanentropyestimatewhenused

incombinationwithdiagonal-normsummation-by-parts(SBP)operatorswithdiagonal

boundaryoperators.Furthermore,weintroduceanewmethodologyforsettingfar-

fieldboundaryconditions,andprovethatitleadstoanentropystableschemeforthe

compressibleNavier-Stokesequations.Theprocedureisadditionallylinearlywell-posed.

Throughout,weemploySBPoperatorsduetotheirremarkablestabilityproperties.We

alsoprovethataslightlymodifiedversionofthefinite-volumeSBPapproximationofthe

second-derivativegivenbyChandrashekar(2016)is(weakly)consistent,thusmakingit

suitablefordiscretisingtheviscoustermsoftheNavier-Stokesequationsonunstructured

grids.
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med b̊ade adiabatiske veggrandvilk̊ar og fjernfeltvilk̊ar. Selv om det er ukjent om disse

likningene er velformulerte er de av stor interesse, og de er mye brukt innen numerisk

fluiddynamikk. Et resultat av Strang (1964) sier at for ikke-lineære problem diskretisert

ved hjelp av en differansemetode som er lineærstabil, er denne metoden konvergent

for glatte løsninger. Alts̊a finnes det teori vi kan bruke i analysen av Navier-Stokes-
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men ogs̊a for lineære partielle differensiallikninger som modellproblem. Videre utleder vi

entropiestimat for de ikke-lineære Navier-Stokes-likningene, et estimat som virker som et

kriterium for den svake løsningen vi leter etter; den skal i tillegg til likningene tilfredsstille
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Hovedfokuset ved dette arbeidet er stabil h̊andtering av de adiabatiske veggrandvilk̊arene

og fjernfeltvilk̊ar for Navier-Stokes-likningene. Vi beviser at heftelsesvilk̊aret (eng.: no-

slip condition) kan bli implementert eksakt og fremdeles resultere i et entropiestimat n̊ar
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har diagonale normmatriser og randmatriser. Vi introduserer ogs̊a en ny metodikk for å

sette fjernfeltvilk̊ar, og beviser at den fører til et entropistabilt skjema for de kompress-

ible Navier-Stokes-likningene. Teknikken er i tillegg lineært velformulert. Gjennom hele

arbeidet bruker vi SBP-operatorer p̊a grunn av deres gode stabilitetsegenskaper. Vi be-

viser ogs̊a at en litt endret versjon av SBP-operatoren som tilnærmer den andrederiverte

ved hjelp av endelig-volummetoden gitt av Chandrashekar (2016) er (svakt) konsistent,

noe som gjør den egnet til å diskretisere de viskøse leddene i Navier-Stokes-likningene
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B.A.GjestelandandM.Svärd.ConvergenceofChandrashekar’sSecond-Derivative

Finite-VolumeApproximation,JournalofScientificComputing96,46,2023.

C.A.Gjesteland,D.DelReyFernándezandM.Svärd.InjectedDirichletboundary
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1. Introduction

This thesis concerns the numerical approximation of the compressible Navier-Stokes

equations. These equations constitute a system of non-linear partial differential equa-

tions that model the flow of viscous and heat conducting compressible fluids. Herein, we

are interested in the case where the fluid in question is air, and the problems are those

arising in aerodynamics. In particular, the focus is on stable impositions of the adia-

batic wall and far-field boundary conditions. These boundary conditions can be used in

combination, for instance when modelling the airflow past an airplane wing.

When solving initial-boundary-value problems, they should ideally be well-posed such

that the existence of a unique solution depending continuously on the problem data, is

guaranteed. The well-posedness of the compressible Navier-Stokes equations is gener-

ally unknown, but the theory of linear well-posedness, which is well established in the

literature, is often used in the analysis of these equations. Additionally, the theory of

entropy can also be used, providing some form of non-linear stability estimates. Herein,

we discuss the two concepts briefly.

We start by considering the linear well-posedness theory, which can be found in the

books [16, 21]. We study the 1-D advection equation as a model problem to introduce

the topic. We focus on the stability aspect in the definition of well-posedness, that is, we

derive an a priori estimate for the solution. Throughout this thesis, a priori estimates

obtained for linear problems are derived using the energy method, for which integration-

by-parts (IBP) is fundamental. For many linear problems, the existence of a unique

solution is closely related to the derived energy estimates (see [16]). The well-posedness

of the linearised compressible Navier-Stokes equations has been studied in various papers

(see e.g. [18, 28, 29, 37, 35]). However, the a priori estimates derived for the linearised

equations are generally not sufficient to infer well-posedness of the original non-linear

problem.

The theory of entropy is thus sometimes used to obtain non-linear estimates, and we pro-

ceed by discussing this topic. The idea is to introduce an additional entropy inequality

to the problem. In order for a (weak) solution of the original non-linear problem to be

deemed physically relevant (see [40]), it should additionally satisfy this entropy inequal-

ity. When deriving entropy estimates for the compressible Navier-Stokes equations, we
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also rely on integration-by-parts.

Since the ultimate goal is to solve the Navier-Stokes equations numerically, we carry over

the aforementioned concepts to the semi-discrete setting. As previously mentioned, the

use of IBP is common to both linear stability estimates and entropy estimates. Thus,

we utilise summation-by-parts (SBP) operators to approximate the spatial derivatives

in the continuous problem. SBP is the discrete counterpart to IBP, and SBP operators

thus allow us to mimic the continuous estimates. However, in the semi-discrete setting,

difficulties may arise in the imposition of the boundary conditions. To obtain semi-

discrete estimates analogous to the ones derived in the continuous setting, it is therefore

important to use stable boundary procedures.

Throughout this thesis, we focus on semi-discrete schemes, meaning that we keep the

temporal variable continuous. For linearly stable semi-discrete schemes, the fully discre-

tised problem is stable if time is integrated using an appropriate Runge-Kutta method

(see [23]). In Paper A, we have used a strong stability preserving Runge-Kutta method

(see e.g. [13]) for time integration.

The main contribution of this thesis is threefold. First, we show in Paper A ([10]) and

subsequently extend the results in Paper C ([12]), that the injection method for imposing

Dirichlet boundary conditions strongly results in stable schemes when used in combina-

tion with diagonal-norm SBP operators with diagonal boundary operators. Specifically,

we show in Paper C that the combination leads to linearly stable schemes for the ad-

vection and advection-diffusion equations with both homogeneous and in-homogeneous

boundary data. For the compressible Navier-Stokes equations, when the methodology is

used to impose the homogeneous no-slip boundary condition it results in entropy con-

servative/stable schemes. The proof does not impose any restrictions on the accuracy

of the SBP operators. For two specific finite-difference SBP operators, the scheme for

the 1-D equations is shown to be linearly stable in Paper A ([10]). Second, we pro-

pose a new methodology for imposing far-field boundary conditions for the compressible

Navier-Stokes equations. Normally, characteristic far-field boundary conditions are used

(see Section 3.2.1 for a discussion), and they are linearly well-posed. The new method-

ology leads to a boundary procedure that is also linearly well-posed, but additionally,

we can prove that it leads to an entropy estimate. Finally, with the motivation of dis-

cretising the viscous terms of the Navier-Stokes equations using a finite-volume method

on unstructured grids, we study an SBP operator approximating the second derivative

derived in [5]. By showing convergence of a semi-discrete solution to a weak solution

of the heat equation, we establish (weak) consistency of a slightly altered version of the

approximation in Paper B ([11]).
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2. The compressible Navier-Stokes

equations

We start by introducing the compressible Navier-Stokes equations, the motivation behind

the work of this thesis.

Let u =
[
ρ,m, n,E

]⊤
denote the vector of conserved variables; density, momentum (in

x- and y-direction, respectively) and total energy. Furthermore, let Ω represent an open

and bounded polygonal domain in two spatial dimensions, and suppose that a solid body

occupies a subdomain ΩS ⊂ Ω with boundary ∂ΩS. Then the compressible Navier-Stokes

equations on Ω \ ∂ΩS can be stated as

ut + f I(u)x + gI(u)y = fV(u, ux, uy)x + gV(u, ux, uy)y. (2.1)

The inviscid terms of (2.1) are given by

f I(u) =




ρu

ρu2 + p

ρuv

u(E + p)



, gI(u) =




ρv

ρuv

ρv2 + p

v(E + p)



,

with u = m
ρ
, v = n

ρ
denoting the velocity components in x- and y-direction, respectively,

and p = (γ − 1)(E − ρu2+ρv2

2
) denoting the pressure, where γ = cp

cv
is the ratio of the

specific heats at constant pressure and volume. Furthermore, the viscous fluxes take the

forms
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fV(u, ux, uy) =




0

2µux + λ(ux + vy)

µ(uy + vx)

2µuux + λu(ux + vy) + µv(uy + vx) + κTx



,

gV(u, ux, uy) =




0

µ(uy + vx)

2µvy + λ(ux + vy)

2µvvy + λv(ux + vy) + µu(uy + vx) + κTy



,

where T = p
ρR denotes the temperature, andR represents the gas constant. Lastly, µ and

λ are the viscosity parameters, and κ is the heat conductivity parameter. Throughout,

we assume Stokes’ hypothesis such that λ = −2
3
µ.

The system of equations (2.1) is augmented by proper boundary and initial conditions

to form an initial-boundary-value problem. Here, we focus on the boundary conditions.
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3. Continuous theory

This chapter is devoted to a discussion on linear well-posedness and entropy theory.

Moreover, we present an entropy estimate for the compressible Navier-Stokes equation

(2.1).

3.1 Theory of linear well-posedness

When solving initial-boundary-value problems, we would like them to be well-posed.

Well-posedness guarantees the existence of a unique solution that depends continuously

on the problem data. Generally, we cannot establish well-posedness of the compressible

Navier-Stokes equations. However, if they are linearised, we can prove that they are

linearly well-posed when augmented by proper boundary conditions. It seems reasonable

to require that non-linear problems are linearly well-posed. If a linearised problem is

not stable against perturbations in the problem data, we may expect non-linearities

to further amplify the unbounded effects. In fact, when discussing the linearisation

principle, Gustafsson, Kreiss and Oliger argue that it is doubtful if the solution can be

calculated if the linearised problem is not stable (see [16]).

Although the goal is to solve the compressible Navier-Stokes equations numerically, we

study also their linearised version in this thesis (see Paper A) and other linear PDEs as

they can provide some insights into the non-linear problem, and may be better suited

to exemplify various concepts. In this thesis, the energy method can be used to prove

well-posedness of the linear problems we consider.

We give a brief discussion of linear well-posedness, and refer the interested reader to the

books [16, 21] for a comprehensive introduction.

Let Ω = (0, 1) denote a spatial domain. We consider the linear advection equation as

a model problem, which is often used in the literature. In one spatial dimension, it is

given by
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8 Continuous theory

ut + aux = 0, a > 0, x ∈ Ω, t > 0, (3.1a)

u(0, t) = g(t), t ≥ 0, (3.1b)

u(x, 0) = f(x), x ∈ Ω, (3.1c)

where f ∈ L2(Ω) is the initial data and g is the boundary data. Well-posedness of the

problem (3.1a)-(3.1c) can be defined as follows.

Definition 3.1 (Def. 8.4.1 in [16]). The problem (3.1a)-(3.1c) with g = 0 is well-posed

if there is a unique smooth solution that satisfies the stability estimate

∥u(·, T )∥ ≤ KeαT ∥f(·)∥, (3.2)

where K and α are constants that do not depend on f .

Herein, the norm in (3.2) is the usual L2-norm defined by

∥u∥2L2(Ω) =

∫

Ω

|u|2 dx.

We focus on stability proofs, i.e., on proving that the solution to the problems satisfy es-

timates like (3.2). For many problems, existence of solutions are related to these energy

estimates. That is, we can define a difference approximation to the continuous problem

that satisfies analogous discrete estimates. Then we can choose a smooth interpolant to

interpolate the numerical solution that converges to the true solution upon grid refine-

ment (see [16]). Moreover, uniqueness of the solution can also be inferred from the a

priori estimates.

Returning to the linear advection equation (3.1a)-(3.1c), we may prove that it is stable

by using the energy method. That is, we multiply the equation by u and integrate over

Ω. This results in

∫

Ω

uut +

∫

Ω

auux dx = 0.

Integrating by parts yields

8Continuoustheory
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estimates.Thatis,wecandefineadifferenceapproximationtothecontinuousproblem
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3.1 Theory of linear well-posedness 9

d

dt
∥u(·, t)∥2L2(Ω) + au2|10 = 0.

Using the boundary condition (3.1b) with g = 0, we obtain

d

dt
∥u(·, t)∥2L2(Ω) + au2(1, t) = 0,

or, alternatively

d

dt
∥u(·, t)∥2L2(Ω) ≤ 0.

Integrating in time finally results in an estimate analogous to (3.2):

∥u(·, T )∥2L2(Ω) ≤ ∥f(·)∥2L2(Ω).

That is, assuming the existence of a unique smooth solution, the problem (3.1a)-(3.1c) is

well-posed in the sense of Definition 3.1. We will sometimes refer to the estimates (3.2)

as energy estimates.

The above theory also applies to the compressible Navier-Stokes equations when they

are linearised. The linearised Navier-Stokes equations are obtained by first restating the

equations using the primitive variables, (ρ, u, v, p). Thereafter, the primitive variables

are decomposed into an exact smooth solution and a small known perturbation, e.g.

ρ = ρex + ρ′, (see e.g. [16, 21]). This results in a variable-coefficient problem, which

is next turned into a constant-coefficient problem by freezing the coefficients. Lastly,

the equations are symmetrised using the matrices in [1]. A rigorous derivation of this

procedure is given in Paper A, [10]. The linear well-posedness of the compressible Navier-

Stokes equations (2.1) have been studied in various papers, see e.g. [30, 35] for wall

boundary conditions and e.g. [18, 28, 37] for far-field boundary conditions.
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10 Continuous theory

3.2 Entropy theory

In addition to linear well-posedness, entropy estimates are often studied when analysing

the compressible Navier-Stokes equations. Generally, entropy estimates can provide

some a priori bounds on the solution of the continuous problem (see e.g. [34]). For

the compressible Navier-Stokes equations, requiring an entropy estimate to hold, means

that we additionally require the solution of the problem to satisfy the second law of

thermodynamics in order for it to be considered physically relevant (see [40]).

We give here a brief overview of the entropy theory needed for the analysis of the com-

pressible Navier-Stokes equations. We follow the presentation given in [40], and refer

to that paper and the references therein for a more comprehensive introduction to the

topic.

In both [17, 40], the theory of entropy is introduced by considering a system of hyperbolic

conservation laws on the form:

ut + f(u)x = 0. (3.3)

The equations (3.3) are said to be endowed with a scalar entropy-entropy flux pair,

(U(u), F (u)) if U(u) is strictly convex (i.e., the Hessian is positive definite, Uuu(u) ≻ 0),

and the relation Uu(u)fu(u) = Fu(u) is satisfied (see [17]). Furthermore, the entropy

variables, w = Uu(u) symmetrise (3.3) (see e.g. [27]).

Since (3.3) may not have a unique weak solution, an entropy inequality can be added,

posing as an admissibility criterion for physically relevant weak solutions (see [40]). The

entropy inequality is found by considering the regularised version of (3.3):

uεt + f(uε)x = ε(Puεx)x, (3.4)

where P is some admissible viscosity matrix. When Equation (3.4) is multiplied by the

entropy variables, w⊤, and we pass to the limit ε→ 0+, we find that

U(u)t + F (u)x ≤ 0. (3.5)
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In the case of a smooth solution, the above is satisfied with equality (see [17]).

3.2.1 Entropy estimates for the compressible Navier-Stokes

equations
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S = ln(p/ργ) are admissible entropy functions (see [20]). Usually, U(u) = −ρS is used.

For this particular entropy function, the corresponding entropy flux functions (in the

2-D setting) are F = −mS, G = −nS, and the entropy variables take the form
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1
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


−cv(S − γ)− u2+v2

2T
u
T
v
T

− 1
T



. (3.6)

It is well-known that the Navier-Stokes equations (2.1) augmented with the adiabatic

wall boundary conditions (2.2) satisfy an entropy estimate on the form

d

dt

∫

Ω

U(u) dΩ ≤ 0. (3.7)

The derivation can be found in for example [31, 39], but we include it here for the reader’s

convenience.
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Since w = U(u)u, we have that w⊤ut = U(u)uut = U(u)t in the first term above. The

integrand of the second term is recognised as the spatial derivatives of the entropy flux

functions, while applying integration-by-parts to the third term, yields
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d

dt

∫

Ω

U(u) dΩ +

∫

Ω

Fx +Gy dΩ

=

∫

∂Ω

[
w⊤fV,w⊤gV

]
· n⃗ ds−

∫

Ω

w⊤
x f

V + w⊤
y g

V dΩ,

d

dt

∫

Ω

U(u) dΩ +

∫

∂Ω

[
F, G

]
· n⃗ ds

=

∫

∂Ω

[
w⊤fV,w⊤gV

]
· n⃗ ds−

∫

Ω

w⊤
x f

V + w⊤
y g

V dΩ. (3.8)

In the above, n⃗ =
[
nx, ny

]
denotes the outward pointing unit normal. The integrands

of the boundary terms above read

[
F, G

]
· n⃗ =

[
−mS,−nS

]
· n⃗,

[
w⊤fV,w⊤gV

]
· n⃗ =

[
− κ

cvT
Tx,− κ

cvT
Ty

]
· n⃗.

(3.9)

With the adiabatic wall boundary conditions (2.2), they reduce to

[
F, G

]
· n⃗ =

[
−mS,−nS

]
· n⃗ = 0,

[
w⊤fV,w⊤gV

]
· n⃗ =

[
− κ

cvT
Tx,− κ

cvT
Ty

]
· n⃗ = 0,

since u, v = 0 and ∂T
∂n⃗

= 0 on ∂Ω. Thus, the entropy estimate (3.7) is guaranteed as long

as the volume term on the right-hand side of (3.8) is negative semi-definite. Assuming

positivity of the density and temperature, ρ, T > 0, this can be shown by simply writing

out the terms.

Characteristic far-field boundary conditions

Characteristic far-field boundary conditions are derived from the linearised version of

the compressible Navier-Stokes equations. They lead to a linearly stable problem, but

do not necessarily bound the entropy. In order to show this, we follow the paper [37] in

this section.

After the Navier-Stokes equations (2.1) are linearised and symmetrised, the energy

method can be used to show well-posedness. In the energy analysis, boundary terms

like
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emerge. (Note that in [37], the equations are considered in 3-D). Above, w denotes the

symmetrised variables obtained after the linearisation procedure is performed. We do

not specify the form of the matrices A1w, F
V
w , but refer to [37].

The matrix A1w is rotated into a diagonal matrix X⊤A1wX = Λ1 holding the well-known

eigenvalues (u, u, u, u+c, u−c) (in 3-D), where c represents the speed of sound. Based on

the ingoing/outgoing characteristics, the form of the boundary conditions bounding the

term above can be specified. The diagonal matrix Λ1 is decomposed into two matrices,

one holding the positive eigenvalues and the other the negative eigenvalues, i.e., Λ1 =

Λ+
1 + Λ−

1 . The boundary conditions that are studied in [37] are given as

αA+
1ww − ϵF V

w = g, (3.10)

where A+
1w = XΛ+

1X
⊤ and α is a scalar. We recognise that this is a Robin-type boundary

condition since the viscous flux F V
w includes a spatial derivative.

From this, the easiest way of seeing that the entropy cannot, in general, be bounded

by the characteristic far-field boundary conditions is to consider a supersonic outflow

boundary. At this boundary the number of positive eigenvalues is zero (u < −c) (see

e.g. [15, 37]) and the boundary condition (3.10) is reduced to

−ϵF V
w = g,

i.e., a Neumann type boundary condition. Consider the boundary terms emerging from

the inviscid terms in (3.8) in the entropy analysis above:

∫

∂Ω

[
F, G

]
· n⃗ ds.

We see that these cannot be bounded by a Neumann type boundary condition. The

fact that the far-field boundary conditions do not bound the entropy was the motivation

behind the work of Paper D. There, a new methodology for imposing far-field boundary

conditions in an entropy stable manner for the compressible Navier-Stokes equations is
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4. Semi-discrete theory

In this chapter, we introduce the analogous semi-discrete concepts to linear well-

posedness and entropy theory as described in the previous chapter. Additionally, we

introduce the summation-by-parts operators used to approximate spatial derivatives.

4.1 Semi-discrete linear stability

Once a problem is proven well-posedness, we can attempt to solve it numerically. In

order to be confident that the numerical solution approximates the true solution, some

requirements of the chosen numerical scheme must be met. For well-posed linear prob-

lems discretised using a consistent and stable difference scheme, the Lax-Richtmyer’s

equivalence theorem guarantees the convergence of the numerical solution to the true

solution (see [24]). For linearly stable difference schemes approximating non-linear prob-

lems, a similar result applies if the solutions are smooth (see [33]). As in the previous

chapter, we focus on stability proofs for the semi-discrete schemes.

Let Ω̄h be a discretisation of Ω ∪ ∂Ω = [0, 1] into a set of N + 1 grid points xi, i =

0, 1, . . . , N , and let h denote a typical grid spacing. Bold-face letters denote vector-

valued semi-discrete representations of the corresponding continuous variables, e.g., u =[
u0(t),u1(t), . . . ,uN(t)

]⊤
, where ui ≈ u(xi, t).

Consider the general semi-discrete approximation of (3.1a)-(3.1c).

ut + aDu = 0, t > 0, (4.1a)

u0(t) = g(t), t ≥ 0, (4.1b)

u(0) = f . (4.1c)

Here, D is a consistent approximation of ∂
∂x

on the grid points, xi, i = 0, 1, . . . , N , and

f =
[
f(x0), f(x1), . . . , f(xN)

]⊤
. We use the following definition of stability for such a

scheme.

4.Semi-discretetheory

Inthischapter,weintroducetheanalogoussemi-discreteconceptstolinearwell-

posednessandentropytheoryasdescribedinthepreviouschapter.Additionally,we

introducethesummation-by-partsoperatorsusedtoapproximatespatialderivatives.

4.1Semi-discretelinearstability

Onceaproblemisprovenwell-posedness,wecanattempttosolveitnumerically.In

ordertobeconfidentthatthenumericalsolutionapproximatesthetruesolution,some

requirementsofthechosennumericalschememustbemet.Forwell-posedlinearprob-

lemsdiscretisedusingaconsistentandstabledifferencescheme,theLax-Richtmyer’s

equivalencetheoremguaranteestheconvergenceofthenumericalsolutiontothetrue

solution(see[24]).Forlinearlystabledifferenceschemesapproximatingnon-linearprob-

lems,asimilarresultappliesifthesolutionsaresmooth(see[33]).Asintheprevious

chapter,wefocusonstabilityproofsforthesemi-discreteschemes.
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Definition 4.1 (Def. 11.3.1 in [16]). The approximation (4.1a)-(4.1c) with g = 0 is

stable if, for h ≤ h0, there are constants K,α such that

∥u(T )∥H ≤ KeαT ∥f∥H. (4.2)

Generally, the constants, K and α above differs from the ones in the well-posedness

defintion 3.1.

As discussed in Section 3.1, the well-posedness of the linearised compressible Navier-

Stokes equations has been analysed with different boundary conditions in various papers.

However, the linearisation of the schemes approximating the non-linear version has been

studied to a lesser extent.

In Paper A ([10]), the semi-discrete scheme proposed to approximate the 1-D com-

pressible Navier-Stokes equations was linearised, and its linear stability properties were

analysed. In that paper, we found that the scheme for the non-linear equations is indeed

linearly stable in the sense of Definition 4.1.

4.1.1 Summation-by-parts operators

We employ summation-by-parts (SBP) operators to approximate the spatial derivatives

in the problems we study, i.e., the operator D in (4.1a) is assumed to be SBP. SBP

operators are designed to discretely mimic integration-by-parts, which is used in the

energy method. Thus, SBP operators can be used in the discrete energy method to
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1. Dxk = kxk−1 for all k ∈ [0, p],

2. D = H−1Q, where H is symmetric, positive definite, i.e., H = H⊤ ≻ 0,

3. Q + Q⊤ = E = tRt
⊤
R − tLt⊤L = diag(−1, 0, . . . , 0, 1), where t⊤R =

[
0, . . . , 0, 1

]
and

t⊤L =
[
1, 0, . . . , 0

]
.

The matrix, H, in the definition above, defines an L2-equivalent discrete norm, u⊤Hu :=

∥u∥2H.

Together with proper boundary imposition techniques, SBP operators lead to provably

stable numerical schemes. There are different ways of imposing boundary conditions

stably. Here, we consider the simultaneous approximation term (SAT) and the injection

method.

The simultaneous approximation term (SAT)

The simultaneous approximation term (SAT) was introduced by Carpenter, Gottlieb

and Abarbanel in [3]. It imposes boundary (or interface) conditions in a weak manner

by adding a penalty term to the scheme. The penalty term is designed such that the

boundary conditions may not be satisfied exactly. That is, similar to the rest of the

problem, the boundary conditions are approximated, but the SAT does not change the

overall accuracy of the scheme (see [3]). The SAT technique is extensively used in the

SBP community, and SBP-SAT schemes lead to stable approximations for many different

problems (see e.g. [2, 3, 6, 7, 8, 36, 31]).

The following SBP-SAT scheme can be used to approximate the advection problem

(3.1a)-(3.1c) with g = 0 in (3.1b).

ut + aDu = SAT, (4.3a)

u(0) = f , (4.3b)

The SAT takes the form SAT = −1
2
H−1tLt

⊤
L(au−0), and f =

[
f(x0), f(x1), . . . f(xn)

]⊤
.

The scheme can be proven stable by using the discrete energy method. That is, we

multiply (4.3a) by u⊤H to obtain
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u⊤Hu+ au⊤HDu = u⊤HSAT.

Recall from Definition 4.2 that HD = Q. Thus, the above reads

1

2

d

dt
∥u∥2H + au⊤Qu = u⊤HSAT.

Next, we split the second term into two equal parts and use Condition 3 of Definition

4.2 on one of these to obtain

1

2

d

dt
∥u∥2H +

1

2
au⊤Qu+

1

2
au⊤(E− Q⊤)u = u⊤HSAT,

d

dt
∥u∥2H + au⊤Eu = 2u⊤HSAT.

By inserting SAT = −1
2
H−1tLt

⊤
L(au− 0), we arrive at

d

dt
∥u∥2H + au2

N − au2
0 = −au2

0,

or alternatively

d

dt
∥u∥2H ≤ 0.

Integration in time finally yields a result analogous to the estimate (4.2):

∥u(T )∥2H ≤ ∥f∥2H.

That is, the scheme (4.3a)-(4.3b) is stable in the sense of Definition 4.1.
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The injection method

The injection method for imposing Dirichlet boundary conditions is straightforward to

use. One simply sets the boundary nodes to the boundary data. It is therefore often

considered a strong imposition technique. Contrary to the SAT, the boundary conditions

are satisfied exactly. However, the technique does not necessarily lead to stable schemes

(see [14, 32]). One of the contributions of this dissertation is the proof that injected

Dirichlet boundary conditions lead to provably stable schemes for different problems

using diagonal-norm, diagonal-E SBP operators (see Paper C, [12]). In the following

example, we use the approach taken in Paper C.

Returning to the advection problem (3.1a)-(3.1c), a stable approximation using the in-

jection method for imposing the boundary condition (3.1b) with g = 0 can be stated

as

ut + aD̃u = 0, (4.4a)

u0 = 0, (4.4b)

u(0) = f . (4.4c)

where D̃ is any diagonal-norm, diagonal-E SBP operator, D, with the elements of the

first row (the row acting on the boundary node) set to zero. Due to the form of D̃, the

equation at the boundary node, x0, reads

(u0)t = 0.

Thus, there is no equation updating u0, and it therefore remains zero for all time.

The stability of the scheme is again found by using the discrete energy method. That

is, we multiply (4.4a) by u⊤H:

u⊤Hut + au⊤HD̃u = 0.

Since u(t)0 = 0 for all t, and H is assumed to be diagonal, we recognise that u⊤HD̃u =

u⊤HDu. That is, the SBP properties of Definition 4.2 apply, and we obtain (by following

the analogous proof for the scheme in the previous subsection)
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N − au2
0 = 0.

Since u0 = 0, the above can be recast as

d

dt
∥u∥2H ≤ 0,

which, after integration in time, results in the estimate

∥u(T )∥2H ≤ ∥f∥2H.

That is, the scheme (4.4a)-(4.4c) is stable in the sense of Definition 4.1.

A comment on in-homogeneous Dirichlet boundary conditions

The definition of stability, Definition 4.1, is given for g = 0. For linear problems, this is

no restriction, as we can transform a problem with in-homogeneous boundary data into

one with homogeneous boundary data. This is done by introducing a smooth function,

φ, that satisfies the in-homogeneous boundary condition. Then ū = u − φ satisfies the

original PDE with homogeneous boundary conditions (see [16]).

Thus, for linear problems, both SATs and the injection method can be used to stably

approximate problems with in-homogeneous boundary data. For the advection problem

considered above, the SBP-SAT scheme can be proven stable by simply restating the

SAT as

SAT = σH−1tLt
⊤
L(au− g(t)tL),

where σ is some constant that is determined from the stability analysis (see [36]).

For the injection method, one could state the scheme as
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which,afterintegrationintime,resultsintheestimate
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Thatis,thescheme(4.4a)-(4.4c)isstableinthesenseofDefinition4.1.

Acommentonin-homogeneousDirichletboundaryconditions

Thedefinitionofstability,Definition4.1,isgivenforg=0.Forlinearproblems,thisis

norestriction,aswecantransformaproblemwithin-homogeneousboundarydatainto

onewithhomogeneousboundarydata.Thisisdonebyintroducingasmoothfunction,

φ,thatsatisfiesthein-homogeneousboundarycondition.Thenū=u−φsatisfiesthe

originalPDEwithhomogeneousboundaryconditions(see[16]).

Thus,forlinearproblems,bothSATsandtheinjectionmethodcanbeusedtostably

approximateproblemswithin-homogeneousboundarydata.Fortheadvectionproblem

consideredabove,theSBP-SATschemecanbeprovenstablebysimplyrestatingthe

SATas

SAT=σH−1tLt
⊤
L(au−g(t)tL),

whereσissomeconstantthatisdeterminedfromthestabilityanalysis(see[36]).

Fortheinjectionmethod,onecouldstatetheschemeas
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ut + aD̃u = 0,

u0 = g(t),

u(0) = f .

Then, analogous to the continuous problem, we introduce a smooth function, φ, satis-

fying the boundary condition, such that the above scheme is transformed into one with

homogeneous boundary data. Thereafter, the stability proof from the previous subsec-

tion applies.

4.1.2 Extensions

In the above, we have only considered SBP operators approximating the first derivative in

one spatial dimension. Here, we briefly comment on some extensions to higher dimensions

and to approximations of higher derivatives.

Higher dimensions

Finitie-difference SBP operators defined on a 1-D grid can be extended to several dimen-

sions by using tensor products (see e.g. [36]). Let Nx, Ny be the number of nodes in the x-

and y-direction, respectively, and denote by S = {(xi, yi)}Ni=1 the set of all N = Nx ·Ny

nodes in the grid. Let Dx be a 1-D finite-difference SBP operator approximating ∂
∂x
.

Then

D̄x = INy ⊗ Dx,

where INy denotes the Ny × Ny identity matrix, approximates ∂
∂x

on the grid points S.

Similarly, D̄y = Dy⊗ INx approximates ∂
∂y

on S. We refer the reader to the review papers

[8, 36] for more information of the extension of 1-D finite-difference SBP operators to

several dimensions.

Finite-difference SBP operators are well suited for structured grids. On the other hand,

some SBP operators are defined directly on a 2-D (or 3-D) spatial domain, and may

thus be applicable for unstructured grids. These include finite-volume SBP operators

(see [5, 29]), the discontinuous Galerkin method (see e.g. [9]) and spectral collocation
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methods (see e.g. [2]). In Paper C, the definition of a multidimensional SBP operator

given in [19] is used to cover different types of operators. We will give the definition here

for completeness.

We let now S = {(xi, yi)}Ni=0 denote a set of N + 1 grid points on a 2-D domain Ω, and

denote by the bold-face letters p, q vector-valued representations of the two polynomials

P ,Q on S:

p =
[
P(x0, y0),P(x1, y1), . . . ,P(xN , yN)

]⊤
,

q =
[
Q(x0, y0),Q(x1, y1), . . . ,Q(xN , yN)

]⊤
.

Definition 4.3 (Def. 2.1 in [19]). Let P ,Q be two polynomials of degree less than or

equal to p, i.e., P ,Q ∈ Pp(Ω). The matrix Dx is a degree p SBP approximation of ∂
∂x

on

the grid points S, if

1. Dxp = ∂
∂x
P on S for all P ∈ Pp(Ω).

2. Dx = H−1Qx, where H is symmetric, positive definite, i.e., H = H⊤ ≻ 0.

3. Qx + Q⊤
x = Ex where Ex satisfies

p⊤Exq =

∫

∂Ω

PQnx ds,

for all P ,Q ∈ Pτ (Ω), where τ ≥ p, and nx denotes the x-component of the outward

unit normal, n⃗ =
[
nx, ny

]
.

The definition above covers tensor-product SBP operators as well as SBP operators

defined directly on an unstrutured grid, see [19].

Higher derivatives

So far, we have only considered theory suited to approximate first derivatives. How-

ever, to discretise the viscous terms of the Navier-Stokes equations (2.1), we also need

second-derivative approximations. The general form of SBP operators approximating

the second derivative was given in [4], and was further developed in [26], where the

following definition is found.
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24 Semi-discrete theory

Introducing the approximation of the entropy flux function F i+1/2 =
w⊤

i +w⊤
i+1

2
f i+1/2 −

ψi+ψi+1

2
(and correspondingly for F i−1/2) where ψ is the semi-discrete representation of

the entropy flux potential, ψ = wf − F , the above can be rewritten into

(U i)t +
F i+1/2 − F i−1/2

∆xi

=
w⊤

i+1 −w⊤
i

2∆xi
f i+1/2 −

ψi+1 −ψi

2∆xi
+
w⊤

i −w⊤
i−1

2∆xi
f i−1/2 −

ψi −ψi−1

2∆xi

We note that we arrive at the semi-discrete version of the entropy inequality (3.5) if the

right-hand side above is non-positive. That is, we obtain

(U i)t +
F i+1/2 − F i−1/2

∆xi
≤ 0. (4.7)

Depending on whether the inequality is satisfied with equality or not, we distinguish

between entropy stable and entropy conservative schemes.

Theorem 4.5 (Thm. 3.1 in [40]). The scheme (4.6) is entropy stable if

w⊤
i+1 −w⊤

i

2
f i+1/2 −

ψi+1 −ψi

2
≤ 0,

and entropy conservative if

w⊤
i+1 −w⊤

i

2
f i+1/2 −

ψi+1 −ψi

2
= 0.

In this introduction, we do not present a specific scheme for the compressible Navier-

Stokes equations. In the papers that make up the scientific results of this thesis, both

entropy conservative and entropy stable schemes have been studied.
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In Paper A ([10]), we analyse the compressible Navier-Stokes equations subject to the

adiabatic wall boundary conditions (2.2). First, we propose a semi-discrete scheme

to approximate the equations. The scheme is defined using the finite-difference SBP

operator that is second-order accurate in the interior, denoted by D in this section.

The no-slip velocity condition is imposed strongly using the injection method, while the

adiabatic temperature condition is imposed via a SAT. The injected no-slip condition is

the focus of the paper.

For the sake of this summary, consider the 1-D Navier-stokes equations on Ω = (0, 1)

where x = 0 models a wall.

ρt + (ρu)x = 0, (5.1a)

mt + (ρu2 + p)x = (2µ+ λ)uxx, (5.1b)

Et + (u(E + p))x = (2µ+ λ)(uux)x + κTxx. (5.1c)

Furthermore, suppose that the domain [0, 1] is discretised into N + 1 equidistant grid

points, xi, i = 0, . . . , N such that 0 = x0 < x1 < . . . < xN = 1. The no-slip condition u =

is incorporated into the scheme by introducing the Dirichlet-SBP operator corresponding

to D:
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.

The Dirichlet-SBP operator is used in the momentum equation (5.1b) where the no-slip

condition applies. Due to the form of D̃, the equation for the node i = 0 reads

(m0)t = 0.

Thus, there is no scheme that updates m0, and it remains zero for all time by setting

it to zero initially. However, defining D̃ this way, ruins the structure of the original

SBP operator at the left boundary. This results in a boundary operator, B̃ that is not

diagonal in the upper left corner. (Note that the boundary operator B in this section is

the same as E in Definition 4.2, but the former notation is used in Paper A).

The main contributions of Paper A is a proof that the semi-discrete scheme using D̃

for imposing the no-slip condition is entropy stable if the interior scheme is assumed

entropy stable. Furthermore, a rigorous linearisation of the scheme approximating the

1-D equations with a local Lax-Friedrichs type artificial dissipation is performed. It is

shown that the entropy stable scheme approximating the fully non-linear equations is also

linearly stable in the sense of Definition 4.1. The linear well-posedness of the continuous

Navier-Stokes equations is often studied, but the present proof also demonstrate that

the scheme proposed to approximate the fully non-linear equations is linearly stable. A

linearly stable third-order scheme is also proposed.
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conditionapplies.DuetotheformofD̃,theequationforthenodei=0reads

(m0)t=0.

Thus,thereisnoschemethatupdatesm0,anditremainszeroforalltimebysetting

ittozeroinitially.However,definingD̃thisway,ruinsthestructureoftheoriginal

SBPoperatorattheleftboundary.Thisresultsinaboundaryoperator,B̃thatisnot

diagonalintheupperleftcorner.(NotethattheboundaryoperatorBinthissectionis

thesameasEinDefinition4.2,buttheformernotationisusedinPaperA).

ThemaincontributionsofPaperAisaproofthatthesemi-discreteschemeusingD̃

forimposingtheno-slipconditionisentropystableiftheinteriorschemeisassumed

entropystable.Furthermore,arigorouslinearisationoftheschemeapproximatingthe

1-DequationswithalocalLax-Friedrichstypeartificialdissipationisperformed.Itis

shownthattheentropystableschemeapproximatingthefullynon-linearequationsisalso

linearlystableinthesenseofDefinition4.1.Thelinearwell-posednessofthecontinuous

Navier-Stokesequationsisoftenstudied,butthepresentproofalsodemonstratethat

theschemeproposedtoapproximatethefullynon-linearequationsislinearlystable.A

linearlystablethird-orderschemeisalsoproposed.
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The Dirichlet-SBP operator is used in the momentum equation (5.1b) where the no-slip

condition applies. Due to the form of D̃, the equation for the node i = 0 reads

(m0)t = 0.

Thus, there is no scheme that updates m0, and it remains zero for all time by setting

it to zero initially. However, defining D̃ this way, ruins the structure of the original

SBP operator at the left boundary. This results in a boundary operator, B̃ that is not

diagonal in the upper left corner. (Note that the boundary operator B in this section is

the same as E in Definition 4.2, but the former notation is used in Paper A).

The main contributions of Paper A is a proof that the semi-discrete scheme using D̃

for imposing the no-slip condition is entropy stable if the interior scheme is assumed

entropy stable. Furthermore, a rigorous linearisation of the scheme approximating the

1-D equations with a local Lax-Friedrichs type artificial dissipation is performed. It is

shown that the entropy stable scheme approximating the fully non-linear equations is also

linearly stable in the sense of Definition 4.1. The linear well-posedness of the continuous

Navier-Stokes equations is often studied, but the present proof also demonstrate that

the scheme proposed to approximate the fully non-linear equations is linearly stable. A

linearly stable third-order scheme is also proposed.
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In Paper A, the spatial domain was discretised into a structured grid for which finite-

difference methods are suitable. For domains with complex geometries, however, we

may wish to define an unstructured grid. The finite-volume method is often used for

this purpose.

In Paper B ([11]), we study the consistency of a finite-volume method approximating the

second derivative. The motivation behind the work is the discretisation of the viscous

terms of the compressible Navier-Stokes equations on unstructured grids. Although the

finite-volume methods are robust, easy to derive and well suited for unstructured grids,

the consistency of second-derivative approximations does not necessarily follow (see e.g.

[38]).

The second-derivative finite-volume approximation that is considered in Paper B was

derived by Chandrashekar in [5]. It is a local approximation in the sense that it only uses

the nearest neighbouring nodes of a grid point i to approximate the second-derivative at

this point. The approximation included Dirichlet boundary conditions that were imposed

in a weak sense. The resulting operator was shown to satisfy the SBP property in [5]. In

Paper B, this operator is slightly altered so as to not include any boundary conditions.

The Laplacian approximation in [5] was built by first approximating the gradient on a

triangle Kn by

∇hu
n =

1

2|Kn|
(
uin̂

n
i + ujn̂

n
j + ukn̂

n
k

)
. (5.2)

In the above, i, j, k denotes the three vertices of triangle Kn while n̂n
i,j,k represents the

outward pointing normals on the edge opposite of node i, j, k, respectively. Finally, |Kn|
is the area of the triangle Kn. See Figure 5.1 for a visualisation of all the components.

Next, the Laplacian operator is approximated as (see [5])

5.2PaperB,[11]27

5.2PaperB,[11]

Title:ConvergenceofChandrashekar’sSecond-DerivativeFinite-VolumeAp-

proximation

Authors:A.GjestelandandM.Svärd
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outward normal on a boundary edge e. The components are depicted in Figure 5.2.
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(5.3). (Figure from [11].)

Following the proof of [5], the altered operator is shown to be SBP in Paper B. Using

the 2-D heat equation as a model problem, a priori estimates for the numerical solution

corresponding to the ones obtained for the continuous solution, is found utilising the SBP

property. From the a priori bounds, the solution is shown to converge weakly to a weak

solution of the original problem. Subsequently, strong convergence to the weak solution

is established by employing Aubin-Lions lemma. Thus, the finite-volume approximation

is proven consistent (in a weak sense) on triangulated unstructured grids.
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solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation
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28Summaryofpapers

i

j

k

Kn

n̂n
i

n̂n
k

n̂n
j

Figure5.1:Figuredepictingtheelementsofthegradientapproximation(5.2).(Figure
from[11].)

(∆hu)i=
1

2Vi

(∑

n∈Ni

∇hu
n·n̂n

i+
∑

e∈Ei

∇hu
n(e)·b̂(e)

)
.(5.3)

Here,Videnotesthedualvolumeofgridpointi,Nithesetoftriangleshavinggridpoint

iasavertex,Eithesetofboundaryedgeshavingvertexiasanendpointandb̂(e)the

outwardnormalonaboundaryedgee.ThecomponentsaredepictedinFigure5.2.

ij

k

K1

e=1

l

m
e=12

K7

b̂(1) b̂(12)

Vi

n̂1
i

n̂4
i

n̂7
i

K4

Figure5.2:Figuredepictingthecomponentsofthesecond-derivativeapproximation
(5.3).(Figurefrom[11].)

Followingtheproofof[5],thealteredoperatorisshowntobeSBPinPaperB.Using

the2-Dheatequationasamodelproblem,aprioriestimatesforthenumericalsolution

correspondingtotheonesobtainedforthecontinuoussolution,isfoundutilisingtheSBP

property.Fromtheaprioribounds,thesolutionisshowntoconvergeweaklytoaweak

solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation

isprovenconsistent(inaweaksense)ontriangulatedunstructuredgrids.

28 Summary of papers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure 5.1: Figure depicting the elements of the gradient approximation (5.2). (Figure
from [11].)

(∆hu)i =
1

2Vi

(∑

n∈Ni

∇hu
n
· n̂

n
i +

∑

e∈Ei

∇hu
n(e)

· b̂(e)
)
. (5.3)

Here, Vi denotes the dual volume of grid point i, Ni the set of triangles having grid point

i as a vertex, Ei the set of boundary edges having vertex i as an endpoint and b̂(e) the

outward normal on a boundary edge e. The components are depicted in Figure 5.2.

i j

k

K1

e = 1

l

m
e = 12

K7

b̂(1)b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure 5.2: Figure depicting the components of the second-derivative approximation
(5.3). (Figure from [11].)

Following the proof of [5], the altered operator is shown to be SBP in Paper B. Using

the 2-D heat equation as a model problem, a priori estimates for the numerical solution

corresponding to the ones obtained for the continuous solution, is found utilising the SBP

property. From the a priori bounds, the solution is shown to converge weakly to a weak

solution of the original problem. Subsequently, strong convergence to the weak solution

is established by employing Aubin-Lions lemma. Thus, the finite-volume approximation

is proven consistent (in a weak sense) on triangulated unstructured grids.

28 Summary of papers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure 5.1: Figure depicting the elements of the gradient approximation (5.2). (Figure
from [11].)

(∆hu)i =
1

2Vi

(∑

n∈Ni

∇hu
n
· n̂

n
i +

∑

e∈Ei

∇hu
n(e)

· b̂(e)
)
. (5.3)

Here, Vi denotes the dual volume of grid point i, Ni the set of triangles having grid point

i as a vertex, Ei the set of boundary edges having vertex i as an endpoint and b̂(e) the

outward normal on a boundary edge e. The components are depicted in Figure 5.2.

i j

k

K1

e = 1

l

m
e = 12

K7

b̂(1)b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure 5.2: Figure depicting the components of the second-derivative approximation
(5.3). (Figure from [11].)

Following the proof of [5], the altered operator is shown to be SBP in Paper B. Using

the 2-D heat equation as a model problem, a priori estimates for the numerical solution

corresponding to the ones obtained for the continuous solution, is found utilising the SBP

property. From the a priori bounds, the solution is shown to converge weakly to a weak

solution of the original problem. Subsequently, strong convergence to the weak solution

is established by employing Aubin-Lions lemma. Thus, the finite-volume approximation

is proven consistent (in a weak sense) on triangulated unstructured grids.

28Summaryofpapers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure5.1:Figuredepictingtheelementsofthegradientapproximation(5.2).(Figure
from[11].)

(∆hu)i=
1

2Vi

(∑

n∈Ni

∇hu
n
·n̂

n
i+

∑

e∈Ei

∇hu
n(e)

·b̂(e)
)
.(5.3)

Here,Videnotesthedualvolumeofgridpointi,Nithesetoftriangleshavinggridpoint

iasavertex,Eithesetofboundaryedgeshavingvertexiasanendpointandb̂(e)the

outwardnormalonaboundaryedgee.ThecomponentsaredepictedinFigure5.2.

ij

k

K1

e=1

l

m
e=12

K7

b̂(1) b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure5.2:Figuredepictingthecomponentsofthesecond-derivativeapproximation
(5.3).(Figurefrom[11].)

Followingtheproofof[5],thealteredoperatorisshowntobeSBPinPaperB.Using

the2-Dheatequationasamodelproblem,aprioriestimatesforthenumericalsolution

correspondingtotheonesobtainedforthecontinuoussolution,isfoundutilisingtheSBP

property.Fromtheaprioribounds,thesolutionisshowntoconvergeweaklytoaweak

solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation

isprovenconsistent(inaweaksense)ontriangulatedunstructuredgrids.

28Summaryofpapers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure5.1:Figuredepictingtheelementsofthegradientapproximation(5.2).(Figure
from[11].)

(∆hu)i=
1

2Vi

(∑

n∈Ni

∇hu
n
·n̂

n
i+

∑

e∈Ei

∇hu
n(e)

·b̂(e)
)
.(5.3)

Here,Videnotesthedualvolumeofgridpointi,Nithesetoftriangleshavinggridpoint

iasavertex,Eithesetofboundaryedgeshavingvertexiasanendpointandb̂(e)the

outwardnormalonaboundaryedgee.ThecomponentsaredepictedinFigure5.2.

ij

k

K1

e=1

l

m
e=12

K7

b̂(1) b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure5.2:Figuredepictingthecomponentsofthesecond-derivativeapproximation
(5.3).(Figurefrom[11].)

Followingtheproofof[5],thealteredoperatorisshowntobeSBPinPaperB.Using

the2-Dheatequationasamodelproblem,aprioriestimatesforthenumericalsolution

correspondingtotheonesobtainedforthecontinuoussolution,isfoundutilisingtheSBP

property.Fromtheaprioribounds,thesolutionisshowntoconvergeweaklytoaweak

solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation

isprovenconsistent(inaweaksense)ontriangulatedunstructuredgrids.

28Summaryofpapers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure5.1:Figuredepictingtheelementsofthegradientapproximation(5.2).(Figure
from[11].)

(∆hu)i=
1

2Vi

(∑

n∈Ni

∇hu
n
·n̂

n
i+

∑

e∈Ei

∇hu
n(e)

·b̂(e)
)
.(5.3)

Here,Videnotesthedualvolumeofgridpointi,Nithesetoftriangleshavinggridpoint

iasavertex,Eithesetofboundaryedgeshavingvertexiasanendpointandb̂(e)the

outwardnormalonaboundaryedgee.ThecomponentsaredepictedinFigure5.2.

ij

k

K1

e=1

l

m
e=12

K7

b̂(1) b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure5.2:Figuredepictingthecomponentsofthesecond-derivativeapproximation
(5.3).(Figurefrom[11].)

Followingtheproofof[5],thealteredoperatorisshowntobeSBPinPaperB.Using

the2-Dheatequationasamodelproblem,aprioriestimatesforthenumericalsolution

correspondingtotheonesobtainedforthecontinuoussolution,isfoundutilisingtheSBP

property.Fromtheaprioribounds,thesolutionisshowntoconvergeweaklytoaweak

solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation

isprovenconsistent(inaweaksense)ontriangulatedunstructuredgrids.

28Summaryofpapers

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

Figure5.1:Figuredepictingtheelementsofthegradientapproximation(5.2).(Figure
from[11].)

(∆hu)i=
1

2Vi

(∑

n∈Ni

∇hu
n
·n̂

n
i+

∑

e∈Ei

∇hu
n(e)

·b̂(e)
)
.(5.3)

Here,Videnotesthedualvolumeofgridpointi,Nithesetoftriangleshavinggridpoint

iasavertex,Eithesetofboundaryedgeshavingvertexiasanendpointandb̂(e)the

outwardnormalonaboundaryedgee.ThecomponentsaredepictedinFigure5.2.

ij

k

K1

e=1

l

m
e=12

K7

b̂(1) b̂(12)

Vi

n̂
1
i

n̂
4
i

n̂
7
i

K4

Figure5.2:Figuredepictingthecomponentsofthesecond-derivativeapproximation
(5.3).(Figurefrom[11].)

Followingtheproofof[5],thealteredoperatorisshowntobeSBPinPaperB.Using

the2-Dheatequationasamodelproblem,aprioriestimatesforthenumericalsolution

correspondingtotheonesobtainedforthecontinuoussolution,isfoundutilisingtheSBP

property.Fromtheaprioribounds,thesolutionisshowntoconvergeweaklytoaweak

solutionoftheoriginalproblem.Subsequently,strongconvergencetotheweaksolution

isestablishedbyemployingAubin-Lionslemma.Thus,thefinite-volumeapproximation

isprovenconsistent(inaweaksense)ontriangulatedunstructuredgrids.



5.3 Paper C, [12] 29

5.3 Paper C, [12]

Title: Injected Dirichlet boundary conditions for general diagonal-norm SBP

operators

Authors: A. Gjesteland, D. Del Rey Fernández and M. Svärd
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In Paper C, the definition of the Dirichlet-SBP operator introduced in Paper A is ex-

tended to general diagonal-norm SBP operators with diagonal boundary operators, E.

That is, we use the definition of multidimensional SBP operators (see Definition 4.3)

given in [19] to cover a general class of operators that include tensor-product finite-

difference SBP operators but also operators defined directly on unstructured grids.

The purpose of the Dirichlet-SBP operators is to study the stability properties of SBP

schemes with injected Dirichlet boundary conditions. In Section 4.1 an example for

the linear advection equation is provided. To further introduce the results of Paper C,

consider the 1-D linear advection-diffusion equation.

ut + aux = εuxx,

u(x, 0) = f(x).

We consider the problem on Ω = (0, 1), and neglect the right boundary. On the left

boundary, we impose the homogeneous boundary condition u(0, t) = 0, and we let the

initial function, f be bounded in L2.

Remark 5.1. In Paper C, the results where shown for multidimensional SBP operators.

Herein, we consider the 1-D problem to reduce notation. However, the use of multidi-

mensional SBP operators is not restrictive, but rather a generalisation. The important

assumptions are that the norm matrices, H, and the boundary matrices, E, are diagonal.

The following semi-discrete scheme is a stable approximation of the above problem.

ut + aD̃xu = εD̃xxu,

u(0) = f .
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approximation of the second derivative on the form given in Definition 4.4. For simplicity,

we assume that the original second-derivative SBP operator that D̃xx is defined from is

complete, i.e., Dxx = DxDx (see Section 4.1).

To prove that the scheme is stable, we multiply by u⊤H. This results in

u⊤Hut + au⊤HD̃xu = εu⊤HD̃xxu.

Since u0 = 0, and H is diagonal, the following relations hold, u⊤HD̃ = u⊤HD and

u⊤HD̃xx = u⊤HDxx. From here, the stability proof is the same as for any SBP scheme,

but the resulting boundary terms at x = 0 vanish due to u0 = 0.

In Paper C, the above methodology was used to show that semi-discrete schemes defined

using multidimensional SBP operators for the advection and advection-diffusion equa-

tions with both homogeneous and in-homogeneous Dirichlet boundary conditions are

stable. Furthermore, by using the same methodology for imposing the no-slip bound-

ary condition for the compressible Navier-Stokes equations, we prove that the resulting

scheme satisfies an entropy estimate. Contrary to Paper A, there are no assumptions on

the accuracy of the SBP operators used in Paper C.

5.4 Paper D

Title: Entropy stable far-field boundary conditions for the compressible Navier-

Stokes equations

Authors: M. Svärd and A. Gjesteland, Submitted, (2023)

The compressible Navier-Stokes equations are commonly used for simulating external

flows, for example air flow past an airplane wing. In this particular case, the wing is a

solid body on which the adiabatic wall boundary conditions (2.2) applies. Sufficiently far

away from the wing, we may assume that the flow is unaffected by the wing. However,

in practical simulations, the spatial domain cannot be arbitrarily large, and it is often

truncated. This introduces “artificial boundaries” for which we must give appropriate

boundary conditions. As described in Section 3.2.1, characteristic far-field boundary

conditions are often used for the Navier-Stokes equations. These are derived from the

linearised equations to yield a linearly well-posed problem. However, as discussed in
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Section 3.2.1, they do not necessarily lead to entropy estimates for the Navier-Stokes

equations.

This is the motivation behind the work in Paper D. Here, we present a new methodology

for setting far-field boundary conditions for the compressible Navier-Stokes equations

that are entropy stable. To introduce the concept, consider the 1-D version of the

Navier-Stokes equations on the infinitely large domain Ω = (0,∞) where x = 0 models

a wall and x→ ∞ models a far-field:

ρt + (ρu)x = 0,

mt + (ρu2 + p)x = (2µ+ λ)uxx,

Et + (u(E + p))x = (2µ+ λ)(uux)x + κTxx.

The above equations are augmented by the boundary conditions

wall: u = 0, Tx = 0, (5.4)

far-field: ρ = ρ∞, u = u∞, T = T∞, Tx|x→∞ = 0, (5.5)

where ρ∞, u∞, T∞ denote the constant free-stream values of the respective variables as

x→ ∞.

Since affine functions of the specific entropy, S = ln(p/ργ) are admissible entropy func-

tions for the Navier-Stokes equations (see [20]), we can introduce the renormalised en-

tropy function and entropy flux function:

Ũ(u) = −ρ(S − S∞), F̃ (u) = −m(S − S∞), (5.6)

where u =
[
ρ,m,E

]⊤
, and S∞ = limx→∞ S(x, 0) is a constant. The corresponding

entropy variables are w̃ = w +
[
S∞, 0, 0, 0

]⊤
, where w denotes the entropy variables

obtained from the commonly used entropy function, U(u) = −ρ ln(p/ργ).

The entropy estimate is found as in Section 3.2.1. With the new entropy variables, w̃,

the boundary terms corresponding to (3.9) that emerges read
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F̃ (u)|∞0 = lim
x→∞

−m(x, t)(S(x, t)− S∞) +m(0, t)(S(0, t)− S∞) = 0,

w̃⊤fV(u, ux)|∞0 = − lim
x→∞

κ

cvT (x, t)
Tx(x, t) +

κ

cvT (0, t)
Tx(0, t) = 0.

They vanish due to the wall boundary conditions (5.4) and the fact that S(x, t) = S∞

and Tx(x, t) = 0 as x→ ∞.

In order to derive an entropy estimate in the semi-discrete setting, the infinitely large

domain Ω = (0,∞) is transformed to a finite one, where grid points, i = 0, . . . , N are

placed. Thereafter, the finitely large domain is transformed back to Ω = (0,∞). Using

a finite-volume method, the grid points in the physical domain is distributed such that

the dual volume for the very last node, VN → ∞. By assuming that the resulting ODE

system can be solved in time, the division by this infinitely large dual volume results in

a scheme for the node i = N that reads

(ui)t = 0.

Thus, we use SN = S∞, and similarly for the other variables, to obtain estimate analogous

to the one we derive for the continuous problem.

We note that this resembles the injection method, but the arguments that lead to the

stability estimates differ. In Paper D, the far-field conditions (5.5) are set strongly in

the computations.
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[10] A. Gjesteland and M. Svärd. Entropy stability for the compressible Navier-Stokes

equations with strong imposition of the no-slip boundary condition. Journal of

Computational Physics, 470:111572, 2022. doi: 10.1016/j.jcp.2022.111572.
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[11]A.GjestelandandM.Svärd.ConvergenceofChandrashekar’sSecond-Derivative

Finite-VolumeApproximation.JournalofScientificComputing,96(46),2023.doi:

10.1007/s10915-023-02256-9.

[12]A.Gjesteland,D.DelReyFernández,andM.Svärd.InjectedDirich-
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letboundaryconditionsforgeneraldiagonal-normSBPoperators.DOI:

10.13140/RG.2.2.26067.55843,2023.

[13]S.Gottlieb,C.-W.Shu,andE.Tadmor.StrongStability-PreservingHigh-Order

TimeDiscretizationMethods.SIAMReview,43(1):89–112,2001.

[14]B.Gustafsson.HighOrderDifferenceMethodsforTimeDependentPDE.Springer

SeriesinComputationalMathematics.Springer,BerlinHeidelberg,2008.ISBN

978-3-540-74993-6.doi:10.1007/978-3-540-74993-6.

[15]B.GustafssonandA.Sundström.Incompletelyparabolicproblemsinfluiddynam-

ics.SIAMJournalonAppliedMathematics,35(2),1978.

[16]B.Gustafsson,H.-O.Kreiss,andJ.Oliger.Time-dependentproblemsanddifference

methods.Wiley,NewJersey,2edition,2013.ISBN978-0-470-90056-7.

[17]A.Harten.OntheSymmetricFormofSystemsofConservationLawswithEntropy.

JournalofComputationalPhysics,49:151–164,1983.

[18]J.S.HesthavenandD.Gottlieb.Astablepenaltymethodforthecompressible

Navier-Stokesequations:I.openboundaryconditions.SIAMJournalonScientific

Computing,17(3):579–612,1996.

[19]J.E.Hicken,D.C.DelReyFernández,andD.W.Zingg.Multidimensional

summation-by-partsoperators:generaltheoryandapplicationtosimplexele-

ments.SIAMJournalonScientificComputing,38(4):A1935–A1858,2016.doi:

10.1137/15M1038360.

34BIBLIOGRAPHY

ofpartialdifferentialequations.Computers&Fluids,95:171–196,2014.doi:10.

1016/j.compfluid.2014.02.016.

[9]G.J.Gassner.Askew-symmetricdiscontinuousGalerkinspectralelementdis-

cretizationanditsrelationtoSBP-SATfinitedifferencemethods.SIAMJournal

onScientificComputing,35(3):A1233–A1253,2013.doi:10.1137/120890144.
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[34]M.Svärd.AnalysisofanalternativeNavier-Stokessystem:Weakentropysolutions

andaconvergentnumericalscheme.MathematicalodelsandMethodsinApplied

Sciences,32(13):1601–2671,2022.
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[35] M. Svärd and J. Nordström. A stable high-order finite difference scheme for the

compressible Navier-Stokes equations: no-slip wall boundary conditions. Journal of

Computational Physics, 227:4805–4824, 2008. doi: 10.1016/j.jcp.2007.12.028.
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[34]M.Svärd.AnalysisofanalternativeNavier-Stokessystem:Weakentropysolutions

andaconvergentnumericalscheme.MathematicalodelsandMethodsinApplied

Sciences,32(13):1601–2671,2022.
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We consider the compressible Navier-Stokes equations subject to no-slip adiabatic wall 
boundary conditions. The main goal is to investigate stability properties of schemes 
imposing the no-slip condition strongly (injection) and the temperature condition weakly 
by a simultaneous approximation term. To this end, we propose a low-order summation-
by-parts scheme. By verifying the complete linearisation procedure, we prove linear 
stability for the scheme. In addition, and assuming that the interior scheme is entropy 
stable, we also prove entropy stability for the full scheme including the boundary 
treatment. Furthermore, we propose a linearly stable 3rd-order scheme with the same 
imposition of the wall conditions. However, the 3rd-order scheme is not provably non-
linearly stable. A number of simulations show that the boundary procedure is robust for 
both schemes.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The compressible Navier-Stokes equations describe the motion of a compressible, viscous and heat conducting fluid. 
Together with appropriate boundary and initial conditions, they model e.g. aerodynamic problems. Here, we consider the 
case where the fluid is interacting with solid walls. At walls, the equations are augmented with the no-slip condition leading 
to the formation of boundary layers that may become unstable and even generate turbulence. These complex phenomena 
are often studied using computational fluid dynamics. To reliably obtain accurate numerical approximations, the problem 
must be well-posed and its discrete approximation scheme stable. Unfortunately, well-posedness is, by and large, unknown 
for the Navier-Stokes equations. However, for smooth solutions, [24] ensures that numerical solutions produced by linearly 
stable schemes converge.

Linear theory is well developed and one can readily employ the energy method to prove well-posedness of initial-
boundary-value problems (IBVP) (see e.g. [8]). Since the continuous energy method relies heavily on the integration-by-parts 
rule, spatial operators that satisfy the corresponding discrete property, summation-by-parts (SBP), have been developed (see 
e.g. [14], [29], [5]). These are used to prove energy stability and convergence of linear schemes ([9]). The linear theory has 
successfully been used to design schemes appropriate for subsonic smooth flows.

In the non-linear regime, however, the linear theory is not sufficient to guarantee stability, let alone well-posedness. 
To obtain non-linear bounds on the solution, the second law of thermodynamics, stating that the entropy within a closed 
system cannot decrease, can be used. In mathematical terms, this takes the form of an additional inequality and solutions 
that satisfy this inequality are termed entropy solutions (see Harten [10] and Tadmor [32] for the Cauchy problem and 
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1. Introduction

The compressible Navier-Stokes equations describe the motion of a compressible, viscous and heat conducting fluid. 
Together with appropriate boundary and initial conditions, they model e.g. aerodynamic problems. Here, we consider the 
case where the fluid is interacting with solid walls. At walls, the equations are augmented with the no-slip condition leading 
to the formation of boundary layers that may become unstable and even generate turbulence. These complex phenomena 
are often studied using computational fluid dynamics. To reliably obtain accurate numerical approximations, the problem 
must be well-posed and its discrete approximation scheme stable. Unfortunately, well-posedness is, by and large, unknown 
for the Navier-Stokes equations. However, for smooth solutions, [24] ensures that numerical solutions produced by linearly 
stable schemes converge.

Linear theory is well developed and one can readily employ the energy method to prove well-posedness of initial-
boundary-value problems (IBVP) (see e.g. [8]). Since the continuous energy method relies heavily on the integration-by-parts 
rule, spatial operators that satisfy the corresponding discrete property, summation-by-parts (SBP), have been developed (see 
e.g. [14], [29], [5]). These are used to prove energy stability and convergence of linear schemes ([9]). The linear theory has 
successfully been used to design schemes appropriate for subsonic smooth flows.

In the non-linear regime, however, the linear theory is not sufficient to guarantee stability, let alone well-posedness. 
To obtain non-linear bounds on the solution, the second law of thermodynamics, stating that the entropy within a closed 
system cannot decrease, can be used. In mathematical terms, this takes the form of an additional inequality and solutions 
that satisfy this inequality are termed entropy solutions (see Harten [10] and Tadmor [32] for the Cauchy problem and 
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[23,27] for boundary treatments). Analogously, a numerical scheme is termed entropy stable if it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t
= P (∂x, x, t)u + F (x, t), 0 < x < 1, t ≥ 0,

Lu = g(t),

u(x,0) = f (x),

(1)

where P is a spatial differential operator; F is a forcing function and L is an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2 = ∫ 1

0 |u|2 dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1) is well-posed if for F = g = 0 there exists a 
unique solution satisfying

‖u(·, t)‖ ≤ Keαt‖ f (·)‖,
where K and α are constants independent of f (x). �

Next, define a computational grid with N + 1 equidistant grid points on the domain 0 ≤ x ≤ 1: xi = ih, h > 0. Let u, 
f , F and g be grid functions corresponding to the continuous functions u, f , F and g , respectively. That is, [u(t)]i is the 
approximation of u(xi, t) etc. Let

du

dt
= Dhu + F ,

Bu = g(t),

u(0) = f ,

(2)

be a semi-discrete approximation of the IBVP (1). Dh is an approximation of the differential operator, P , and B an approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H = uT Hu, where H is a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal H matrices.

Definition 2.2 (Stability, [8]). The problem (2) is stable if for F = g = 0, the solution satisfies

‖u(t)‖H ≤ Keαt‖ f ‖H ,
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imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies

‖u(t)‖H≤Keαt‖f‖H,
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[23,27]for boundary treatments). Analogously, a numerical scheme is termed entropy stableif it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t
=P(∂x,x,t)u+F(x,t),0<x<1,t≥0,

Lu=g(t),

u(x,0)=f(x),

(1)

where Pis a spatial differential operator; Fis a forcing function and Lis an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2=∫1

0|u|2dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1)iswell-posedif for F=g=0there exists a 
unique solution satisfying

‖u(·,t)‖≤Keαt‖f(·)‖,
where Kand αare constants independent of f(x). �

Next, define a computational grid with N+1equidistant grid points on the domain 0 ≤x ≤1: xi=ih, h >0. Let u, 
f, Fand gbe grid functions corresponding to the continuous functions u, f, Fand g, respectively. That is, [u(t)]iis the 
approximation of u(xi, t)etc. Let

du

dt
=Dhu+F,

Bu=g(t),

u(0)=f,

(2)

be a semi-discrete approximation of the IBVP (1). Dhis an approximation of the differential operator, P, and Ban approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies

‖u(t)‖H≤Keαt‖f‖H,
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[23,27] for boundary treatments). Analogously, a numerical scheme is termed entropy stable if it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t = P (∂x, x, t)u + F (x, t), 0 < x < 1, t ≥ 0,

Lu = g(t),

u(x,0) = f (x),

(1)

where P is a spatial differential operator; F is a forcing function and L is an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2 = ∫ 1

0 |u|2 dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1) is well-posed if for F = g = 0 there exists a 
unique solution satisfying

‖u(·, t)‖ ≤ Ke
αt

‖ f (·)‖,
where K and α are constants independent of f (x). �

Next, define a computational grid with N + 1 equidistant grid points on the domain 0 ≤ x ≤ 1: xi = ih, h > 0. Let u, 
f , F and g be grid functions corresponding to the continuous functions u, f , F and g , respectively. That is, [u(t)]i is the 
approximation of u(xi, t) etc. Let

du

dt = Dhu + F ,

Bu = g(t),

u(0) = f ,

(2)

be a semi-discrete approximation of the IBVP (1). Dh is an approximation of the differential operator, P , and B an approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H = uT Hu, where H is a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal H matrices.

Definition 2.2 (Stability, [8]). The problem (2) is stable if for F = g = 0, the solution satisfies

‖u(t)‖H ≤ Ke
αt

‖ f ‖H ,
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[23,27] for boundary treatments). Analogously, a numerical scheme is termed entropy stable if it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t = P (∂x, x, t)u + F (x, t), 0 < x < 1, t ≥ 0,

Lu = g(t),

u(x,0) = f (x),

(1)

where P is a spatial differential operator; F is a forcing function and L is an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2 = ∫ 1

0 |u|2 dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1) is well-posed if for F = g = 0 there exists a 
unique solution satisfying

‖u(·, t)‖ ≤ Ke
αt

‖ f (·)‖,
where K and α are constants independent of f (x). �

Next, define a computational grid with N + 1 equidistant grid points on the domain 0 ≤ x ≤ 1: xi = ih, h > 0. Let u, 
f , F and g be grid functions corresponding to the continuous functions u, f , F and g , respectively. That is, [u(t)]i is the 
approximation of u(xi, t) etc. Let

du

dt = Dhu + F ,

Bu = g(t),

u(0) = f ,

(2)

be a semi-discrete approximation of the IBVP (1). Dh is an approximation of the differential operator, P , and B an approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H = uT Hu, where H is a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal H matrices.

Definition 2.2 (Stability, [8]). The problem (2) is stable if for F = g = 0, the solution satisfies

‖u(t)‖H ≤ Ke
αt
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[23,27]for boundary treatments). Analogously, a numerical scheme is termed entropy stableif it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t=P(∂x,x,t)u+F(x,t),0<x<1,t≥0,

Lu=g(t),

u(x,0)=f(x),

(1)

where Pis a spatial differential operator; Fis a forcing function and Lis an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2=∫1

0|u|2dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1)iswell-posedif for F=g=0there exists a 
unique solution satisfying

‖u(·,t)‖≤Ke
αt

‖f(·)‖,
where Kand αare constants independent of f(x). �

Next, define a computational grid with N+1equidistant grid points on the domain 0 ≤x ≤1: xi=ih, h >0. Let u, 
f, Fand gbe grid functions corresponding to the continuous functions u, f, Fand g, respectively. That is, [u(t)]iis the 
approximation of u(xi, t)etc. Let

du

dt=Dhu+F,

Bu=g(t),

u(0)=f,

(2)

be a semi-discrete approximation of the IBVP (1). Dhis an approximation of the differential operator, P, and Ban approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies

‖u(t)‖H≤Ke
αt

‖f‖H,
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[23,27]for boundary treatments). Analogously, a numerical scheme is termed entropy stableif it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t=P(∂x,x,t)u+F(x,t),0<x<1,t≥0,

Lu=g(t),

u(x,0)=f(x),

(1)

where Pis a spatial differential operator; Fis a forcing function and Lis an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2=∫1

0|u|2dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1)iswell-posedif for F=g=0there exists a 
unique solution satisfying

‖u(·,t)‖≤Ke
αt

‖f(·)‖,
where Kand αare constants independent of f(x). �

Next, define a computational grid with N+1equidistant grid points on the domain 0 ≤x ≤1: xi=ih, h >0. Let u, 
f, Fand gbe grid functions corresponding to the continuous functions u, f, Fand g, respectively. That is, [u(t)]iis the 
approximation of u(xi, t)etc. Let

du

dt=Dhu+F,

Bu=g(t),

u(0)=f,

(2)

be a semi-discrete approximation of the IBVP (1). Dhis an approximation of the differential operator, P, and Ban approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies

‖u(t)‖H≤Ke
αt

‖f‖H,
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[23,27]for boundary treatments). Analogously, a numerical scheme is termed entropy stableif it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t=P(∂x,x,t)u+F(x,t),0<x<1,t≥0,

Lu=g(t),

u(x,0)=f(x),

(1)

where Pis a spatial differential operator; Fis a forcing function and Lis an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2=∫1

0|u|2dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1)iswell-posedif for F=g=0there exists a 
unique solution satisfying

‖u(·,t)‖≤Ke
αt

‖f(·)‖,
where Kand αare constants independent of f(x). �

Next, define a computational grid with N+1equidistant grid points on the domain 0 ≤x ≤1: xi=ih, h >0. Let u, 
f, Fand gbe grid functions corresponding to the continuous functions u, f, Fand g, respectively. That is, [u(t)]iis the 
approximation of u(xi, t)etc. Let

du

dt=Dhu+F,

Bu=g(t),

u(0)=f,

(2)

be a semi-discrete approximation of the IBVP (1). Dhis an approximation of the differential operator, P, and Ban approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies
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[23,27]for boundary treatments). Analogously, a numerical scheme is termed entropy stableif it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t=P(∂x,x,t)u+F(x,t),0<x<1,t≥0,

Lu=g(t),

u(x,0)=f(x),

(1)

where Pis a spatial differential operator; Fis a forcing function and Lis an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2=∫1

0|u|2dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1)iswell-posedif for F=g=0there exists a 
unique solution satisfying

‖u(·,t)‖≤Ke
αt

‖f(·)‖,
where Kand αare constants independent of f(x). �

Next, define a computational grid with N+1equidistant grid points on the domain 0 ≤x ≤1: xi=ih, h >0. Let u, 
f, Fand gbe grid functions corresponding to the continuous functions u, f, Fand g, respectively. That is, [u(t)]iis the 
approximation of u(xi, t)etc. Let

du

dt=Dhu+F,

Bu=g(t),

u(0)=f,

(2)

be a semi-discrete approximation of the IBVP (1). Dhis an approximation of the differential operator, P, and Ban approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2H=uTHu, where His a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal Hmatrices.

Definition 2.2 (Stability, [8]). The problem (2)isstableif for F=g=0, the solution satisfies

‖u(t)‖H≤Ke
αt

‖f‖H,

2
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where K and α are constants independent of f and h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15] for a proof).

Remark. For many problems, stability in the sense of Definition 2.2 for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9] (page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D = H−1Q , where the matrices have the following 
properties:

i) H is a symmetric positive-definite matrix with elements of O(h),
ii) Q is an almost skew-symmetric matrix, satisfying the relation Q + Q T = B = diag(−1, 0, . . . , 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

−2 2 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 −2 2

⎞
⎟⎟⎟⎟⎟⎠ , Q = 1

2

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ , (3)

and H = h · diag(1/2, 1, . . . , 1, 1/2) (this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut + vx = 0,

vt + ux − 2vx = 0,
(4)

with the boundary condition v = 0 at x = 1 (neglecting the left boundary for simplicity), and the semi-discretisation

ut + Dv = 0, (5)

vt + Du − 2Dv = 0, (6)

where u and v are the numerical solution vectors.
In the injection method, v(1, t) = 0 is enforced by vN = 0. A common approach to enforce injection is to remove the 

equation for vN from the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D (see e.g. [8]). However, for coupled systems such as (4) this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t = 0. To achieve this, we introduce 
a new operator by setting all elements in the last row of D in (3) to zero, i.e.,

D̃ = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

−2 2 0 . . . 0
−1 0 1 . . . 0

. . .

−1 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

We term D̃ a Dirichlet-SBP operator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

Q̃ + Q̃ T = B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 1
2

0 0 0 . . . 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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where Kand αare constants independent of fand h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15]for a proof).

Remark. For many problems, stability in the sense of Definition2.2for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9](page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D =H−1Q, where the matrices have the following 
properties:

i)His a symmetric positive-definite matrix with elements of O(h),
ii)Qis an almostskew-symmetric matrix, satisfying the relation Q+QT=B =diag(−1, 0, ..., 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D=1

2h

⎛
⎜⎜⎜⎜⎜⎝

−220...

−101...

...
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0−22
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2
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−110...

−101...

...

−101
0−11

⎞
⎟⎟⎟⎟⎟⎠,(3)

and H=h ·diag(1/2, 1, ..., 1, 1/2)(this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut+vx=0,

vt+ux−2vx=0,
(4)

with the boundary condition v =0at x =1(neglecting the left boundary for simplicity), and the semi-discretisation

ut+Dv=0,(5)

vt+Du−2Dv=0,(6)

where uand vare the numerical solution vectors.
In the injection method, v(1, t) =0is enforced by vN=0. A common approach to enforce injection is to remove the 

equation for vNfrom the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D(see e.g. [8]). However, for coupled systems such as (4)this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t=0. To achieve this, we introduce 
a new operator by setting all elements in the last row of Din (3)to zero, i.e.,

D̃=1

2h

⎛
⎜⎜⎜⎜⎜⎝

−220...0
−101...0

...

−101
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⎟⎟⎟⎟⎟⎠.

We term D̃a Dirichlet-SBPoperator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

Q̃+Q̃T=B̃=
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−100...00
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000...1
20
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⎟⎟⎟⎟⎟⎟⎟⎠

.
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where Kand αare constants independent of fand h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15]for a proof).

Remark. For many problems, stability in the sense of Definition2.2for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9](page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D =H−1Q, where the matrices have the following 
properties:

i)His a symmetric positive-definite matrix with elements of O(h),
ii)Qis an almostskew-symmetric matrix, satisfying the relation Q+QT=B =diag(−1, 0, ..., 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D=1
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⎛
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and H=h ·diag(1/2, 1, ..., 1, 1/2)(this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut+vx=0,

vt+ux−2vx=0,
(4)

with the boundary condition v =0at x =1(neglecting the left boundary for simplicity), and the semi-discretisation

ut+Dv=0,(5)

vt+Du−2Dv=0,(6)

where uand vare the numerical solution vectors.
In the injection method, v(1, t) =0is enforced by vN=0. A common approach to enforce injection is to remove the 

equation for vNfrom the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D(see e.g. [8]). However, for coupled systems such as (4)this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t=0. To achieve this, we introduce 
a new operator by setting all elements in the last row of Din (3)to zero, i.e.,

D̃=1

2h

⎛
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...
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000

⎞
⎟⎟⎟⎟⎟⎠.

We term D̃a Dirichlet-SBPoperator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):
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where K and α are constants independent of f and h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15] for a proof).

Remark. For many problems, stability in the sense of Definition 2.2 for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9] (page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D = H−1Q , where the matrices have the following 
properties:

i) H is a symmetric positive-definite matrix with elements of O(h),
ii) Q is an almost skew-symmetric matrix, satisfying the relation Q + Q T = B = diag(−1, 0, . . . , 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D =
1

2h

⎛
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.
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0 −1 1

⎞
⎟⎟⎟
⎟⎟⎠ , (3)

and H = h · diag(1/2, 1, . . . , 1, 1/2) (this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut + vx = 0,

vt + ux − 2vx = 0,
(4)

with the boundary condition v = 0 at x = 1 (neglecting the left boundary for simplicity), and the semi-discretisation

ut + Dv = 0, (5)

vt + Du − 2Dv = 0, (6)

where u and v are the numerical solution vectors.
In the injection method, v(1, t) = 0 is enforced by vN = 0. A common approach to enforce injection is to remove the 

equation for vN from the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D (see e.g. [8]). However, for coupled systems such as (4) this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t = 0. To achieve this, we introduce 
a new operator by setting all elements in the last row of D in (3) to zero, i.e.,

D̃ =
1

2h

⎛
⎜⎜⎜
⎜⎜⎝

−2 2 0 . . . 0
−1 0 1 . . . 0

. .
.

−1 0 1
0 0 0

⎞
⎟⎟⎟
⎟⎟⎠ .

We term D̃ a Dirichlet-SBP operator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

Q̃ + Q̃
T

= B̃ =

⎛
⎜⎜⎜
⎜⎜⎜
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−1 0 0 . . . 0 0
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where K and α are constants independent of f and h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15] for a proof).

Remark. For many problems, stability in the sense of Definition 2.2 for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9] (page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D = H−1Q , where the matrices have the following 
properties:

i) H is a symmetric positive-definite matrix with elements of O(h),
ii) Q is an almost skew-symmetric matrix, satisfying the relation Q + Q T = B = diag(−1, 0, . . . , 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D =
1

2h

⎛
⎜⎜⎜
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2

⎛
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−1 1 0 . . .
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. .
.

−1 0 1
0 −1 1

⎞
⎟⎟⎟
⎟⎟⎠ , (3)

and H = h · diag(1/2, 1, . . . , 1, 1/2) (this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut + vx = 0,

vt + ux − 2vx = 0,
(4)

with the boundary condition v = 0 at x = 1 (neglecting the left boundary for simplicity), and the semi-discretisation

ut + Dv = 0, (5)

vt + Du − 2Dv = 0, (6)

where u and v are the numerical solution vectors.
In the injection method, v(1, t) = 0 is enforced by vN = 0. A common approach to enforce injection is to remove the 

equation for vN from the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D (see e.g. [8]). However, for coupled systems such as (4) this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t = 0. To achieve this, we introduce 
a new operator by setting all elements in the last row of D in (3) to zero, i.e.,

D̃ =
1

2h

⎛
⎜⎜⎜
⎜⎜⎝

−2 2 0 . . . 0
−1 0 1 . . . 0
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.

−1 0 1
0 0 0
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⎟⎟⎟
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We term D̃ a Dirichlet-SBP operator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

Q̃ + Q̃
T

= B̃ =

⎛
⎜⎜⎜
⎜⎜⎜
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where Kand αare constants independent of fand h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15]for a proof).

Remark. For many problems, stability in the sense of Definition2.2for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9](page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D =H−1Q, where the matrices have the following 
properties:

i)His a symmetric positive-definite matrix with elements of O(h),
ii)Qis an almostskew-symmetric matrix, satisfying the relation Q+QT=B =diag(−1, 0, ..., 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form
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and H=h ·diag(1/2, 1, ..., 1, 1/2)(this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut+vx=0,

vt+ux−2vx=0,
(4)

with the boundary condition v =0at x =1(neglecting the left boundary for simplicity), and the semi-discretisation

ut+Dv=0,(5)

vt+Du−2Dv=0,(6)

where uand vare the numerical solution vectors.
In the injection method, v(1, t) =0is enforced by vN=0. A common approach to enforce injection is to remove the 

equation for vNfrom the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D(see e.g. [8]). However, for coupled systems such as (4)this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t=0. To achieve this, we introduce 
a new operator by setting all elements in the last row of Din (3)to zero, i.e.,

D̃=
1
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We term D̃a Dirichlet-SBPoperator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):
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where Kand αare constants independent of fand h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15]for a proof).

Remark. For many problems, stability in the sense of Definition2.2for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9](page 82).
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An SBP operator approximating the first derivative takes the form D =H−1Q, where the matrices have the following 
properties:

i)His a symmetric positive-definite matrix with elements of O(h),
ii)Qis an almostskew-symmetric matrix, satisfying the relation Q+QT=B =diag(−1, 0, ..., 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 
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and H=h ·diag(1/2, 1, ..., 1, 1/2)(this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut+vx=0,

vt+ux−2vx=0,
(4)

with the boundary condition v =0at x =1(neglecting the left boundary for simplicity), and the semi-discretisation

ut+Dv=0,(5)

vt+Du−2Dv=0,(6)

where uand vare the numerical solution vectors.
In the injection method, v(1, t) =0is enforced by vN=0. A common approach to enforce injection is to remove the 

equation for vNfrom the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D(see e.g. [8]). However, for coupled systems such as (4)this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (vN)t=0. To achieve this, we introduce 
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where Kand αare constants independent of fand h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15]for a proof).

Remark. For many problems, stability in the sense of Definition2.2for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9](page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D =H−1Q, where the matrices have the following 
properties:

i)His a symmetric positive-definite matrix with elements of O(h),
ii)Qis an almostskew-symmetric matrix, satisfying the relation Q+QT=B =diag(−1, 0, ..., 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form
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1

2h

⎛
⎜⎜⎜
⎜⎜⎝

−220...

−101...

..
.

−101
0−22

⎞
⎟⎟⎟
⎟⎟⎠,Q=

1

2

⎛
⎜⎜⎜
⎜⎜⎝

−110...

−101...

..
.

−101
0−11

⎞
⎟⎟⎟
⎟⎟⎠,(3)

and H=h ·diag(1/2, 1, ..., 1, 1/2)(this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut+vx=0,

vt+ux−2vx=0,
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We alter the scheme (5)-(6), to take the boundary condition v(1, t) = 0 into account, as follows,

ut + Dv = 0, (7)

vt + D̃u − 2D̃v = 0. (8)

Note that the last row of the v-equation is, (vN )t = 0. Thus, since vN(0) = 0, it follows that vN (t) ≡ 0. To prove that (7)-(8)
is a stable scheme, we use the energy method (see e.g. [5,29]). For (7) we have

d

dt
‖u‖2H = −2uT Q v,

and for (8), we obtain

d

dt
‖v‖2H = −vT H D̃u − (vT H D̃u)T + 2vT H D̃v + 2(vT H D̃v)T ,

= −2vT Q̃ u + 2vT (Q̃ + Q̃ T )v = −2vT Q̃ u + 2vT B̃v.

Adding the two estimates (and neglecting the left boundary terms emerging from (7)), we obtain

d

dt

(
‖u‖2H + ‖v‖2H

)
= −2uT Q v − 2vT Q̃ u − 2v20 + 2vN vN−1. (9)

Since vN ≡ 0 the following relations hold: vN vN−1 = 0, vT Q̃ u = vT Q u and v T Q u = vT (B − Q T )u = vT Bu − vT Q T u =
−v T Q T u. Furthermore, −vT Q T u = −(uT Q v)T , and we conclude that v T Q̃ u = −uT Q v . Hence, the two first terms on the 
right-hand side of (9) cancel, and our estimate reads

d

dt

(
‖u‖2H + ‖v‖2H

)
= −2v20 ≤ 0,

which demonstrates that the semi-discrete scheme (7)-(8) is stable.

Remark. Note that the Dirichlet-SBP operator, D̃ , need not be implemented. The same result is achieved by using D every-
where in (7)-(8) and setting vN = 0 after each Runge-Kutta stage. �

4. The linearised compressible Navier-Stokes equations

Consider the compressible Navier-Stokes equations in one spatial dimension. These can be stated as

ut + fI(u)x = fV(u,ux)x, x ∈ � = (0,1), 0 < t < T , (10)

where u = (ρ, m, E)T are the conserved variables density, momentum (m = ρv) and energy, and v denotes the velocity. 
fI = (

m,ρv2 + p, v(E + p)
)T

, is the inviscid flux where p denotes the pressure, which is related to the conserved quan-
tities through p = (γ − 1) 

(
E − 1

2ρv2
)
, where γ = cp

cv
is the ratio of the specific heats at constant pressure and volume. 

Furthermore, fV = (0, (2μ + λ)vx, (2μ + λ)vvx + κTx)
T is the viscous flux, where T denotes the temperature, given by the 

ideal gas law T = p
Rρ , where R is the gas constant. Moreover, μ and λ denote the viscosity parameters, and we assume 

Stokes hypothesis, λ = − 2
3μ, with μ > 0. Lastly, κ denotes the thermal conductivity. (Below, we use c to denote the speed 

of sound.) The equations are augmented with the adiabatic wall boundary conditions,

v = 0 (no-slip) and, Tx = 0. (11)

To investigate linear well-posedness, the system (10) may be linearised and subsequently symmetrised with the sym-
metrising matrices found in [1]. (Since the details of the derivations are omitted in [1], we include them in Appendix A.1
for the reader’s convenience.)

We repeat this procedure briefly. To linearise the equations, we decompose the primitive variables, v = (ρ, v, p)T , into 
their exact (known smooth and bounded) solution and a small smooth perturbation, e.g. ρ = ρex + ρ ′ , which yields a 
variable-coefficient problem. Then, we freeze the coefficients. Well-posedness of the variable-coefficient problem follows 
if all admissible frozen-coefficient problems are well-posed (see [9,13] for further information). The resulting linearised 
constant-coefficient problem is

ρ ′
t + v∗ρ ′

x + ρ∗v ′
x = 0,

v ′
t + v∗v ′

x + 1
ρ∗ p′

x = 2μ+λ
ρ∗ v ′

xx,

p′
t + γ p∗v ′

x + v∗p′
x = − γμp∗

Prρ∗2 ρ ′
xx + γμ

Prρ∗ p′
xx,

(12)
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We alter the scheme (5)-(6), to take the boundary condition v(1, t) = 0 into account, as follows,

ut + Dv = 0, (7)

vt + D̃u − 2D̃v = 0. (8)

Note that the last row of the v-equation is, (vN )t = 0. Thus, since vN(0) = 0, it follows that vN (t) ≡ 0. To prove that (7)-(8)
is a stable scheme, we use the energy method (see e.g. [5,29]). For (7) we have

d

dt ‖u‖2H = −2u
T
Q v,

and for (8), we obtain

d

dt ‖v‖2H = −v
T
H D̃u − (v

T
H D̃u)

T
+ 2v

T
H D̃v + 2(v

T
H D̃v)

T
,

= −2v
T
Q̃ u + 2v

T
(Q̃ + Q̃

T
)v = −2v

T
Q̃ u + 2v

T
B̃v.

Adding the two estimates (and neglecting the left boundary terms emerging from (7)), we obtain

d

dt

(‖u‖2H + ‖v‖2H)= −2u
T
Q v − 2v

T
Q̃ u − 2v2

0 + 2vN vN−1. (9)

Since vN ≡ 0 the following relations hold: vN vN−1 = 0, vT Q̃ u = vT Q u and v T Q u = vT (B − Q T )u = vT Bu − vT Q T u =
−v T Q T u. Furthermore, −vT Q T u = −(uT Q v)T , and we conclude that v T Q̃ u = −uT Q v . Hence, the two first terms on the 
right-hand side of (9) cancel, and our estimate reads

d

dt

(‖u‖2H + ‖v‖2H)= −2v2
0 ≤ 0,

which demonstrates that the semi-discrete scheme (7)-(8) is stable.

Remark. Note that the Dirichlet-SBP operator, D̃ , need not be implemented. The same result is achieved by using D every-
where in (7)-(8) and setting vN = 0 after each Runge-Kutta stage. �
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ideal gas law T =
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Rρ , where R is the gas constant. Moreover, μ and λ denote the viscosity parameters, and we assume 
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3μ, with μ > 0. Lastly, κ denotes the thermal conductivity. (Below, we use c to denote the speed 
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v = 0 (no-slip) and, Tx = 0. (11)
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We alter the scheme (5)-(6), to take the boundary condition v(1, t) =0into account, as follows,

ut+Dv=0,(7)

vt+D̃u−2D̃v=0.(8)

Note that the last row of the v-equation is, (vN)t=0. Thus, since vN(0) =0, it follows that vN(t) ≡0. To prove that (7)-(8)
is a stable scheme, we use the energy method (see e.g. [5,29]). For (7)we have

d

dt‖u‖2H=−2u
T
Qv,

and for (8), we obtain

d
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T
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T
HD̃u)
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T
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T
HD̃v)

T
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T
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T
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T
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T
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T
B̃v.

Adding the two estimates (and neglecting the left boundary terms emerging from (7)), we obtain
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Since vN≡0the following relations hold: vNvN−1=0, vTQ̃u=vTQuand vTQu=vT(B −QT)u=vTBu−vTQTu=
−vTQTu. Furthermore, −vTQTu=−(uTQv)T, and we conclude that vTQ̃u=−uTQv. Hence, the two first terms on the 
right-hand side of (9)cancel, and our estimate reads

d

dt

(‖u‖2H+‖v‖2H)=−2v2
0≤0,

which demonstrates that the semi-discrete scheme (7)-(8)is stable.

Remark. Note that the Dirichlet-SBP operator, D̃, need not be implemented. The same result is achieved by using Devery-
where in (7)-(8)and setting vN=0after each Runge-Kutta stage. �

4. The linearised compressible Navier-Stokes equations
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2ρv2), where γ=
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Furthermore, f
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=(0,(2μ+λ)vx,(2μ+λ)vvx+κTx)Tis the viscous flux, where Tdenotes the temperature, given by the 

ideal gas law T =
p

Rρ, where Ris the gas constant. Moreover, μand λdenote the viscosity parameters, and we assume 
Stokes hypothesis, λ =−2

3μ, with μ >0. Lastly, κdenotes the thermal conductivity. (Below, we use cto denote the speed 
of sound.) The equations are augmented with the adiabatic wall boundary conditions,

v=0(no-slip)and,Tx=0.(11)

To investigate linear well-posedness, the system (10)may be linearised and subsequently symmetrised with the sym-
metrising matrices found in [1]. (Since the details of the derivations are omitted in [1], we include them in AppendixA.1
for the reader’s convenience.)
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where the star superscript, ‘∗’, indicates a frozen coefficient. Finally, we symmetrise the equations using the matrices Sp

and S−1
p from [1]. Using the linearised gas law (see Appendix A.2), we obtain

wt +Awx = Bwxx, (13)

where

w =
(

c∗
√

γ ρ∗ ρ ′, v ′, γR
c∗√γ

√
γ − 1

T′
)T

and

A =

⎛
⎜⎜⎝

v∗ c∗√
γ 0

c∗√
γ v∗

√
γ −1
γ c∗

0
√

γ −1
γ c∗ v∗

⎞
⎟⎟⎠ , B =

⎛
⎜⎝0 0 0

0 2μ+λ
ρ∗ 0

0 0 γμ
Prρ∗

⎞
⎟⎠ ,

with Pr = cpμ
κ denoting the Prandtl number and cp = γR

γ −1 .
For completeness, we proceed by reviewing the well-posedness analysis found in e.g. [28]. Consider (13) on the spatial 

domain � = (0, 1) with L2-bounded initial data. The linearised boundary conditions (11), take the form

v ′({0,1}, t) = 0, v∗({0,1}, t) = 0, T′
x({0,1}, t) = 0. (14)

(Note that admissible solutions satisfy the no-slip condition, whence v∗({0, 1}, t) = 0.) The energy method and (14) lead to

d

dt
‖w‖2 + 2

∫
�

wT
x Bwx dx = 2wTBwx|10 − wTAw|10 = 0.

Hence our problem is well-posed in the sense of Definition 2.1.

Remark. The Dirichlet condition T′({0, 1}) = 0 would give the same result, but since the non-linear analysis later in this 
article requires T′

x({0, 1}) = 0, we only consider the latter.

4.1. The semi-discrete scheme

Turning to the semi-discretisation of the problem (12) subject to the boundary conditions (14), we divide the spatial 
domain into N + 1 equidistant grid points with grid spacing h = 1/N . Bold-face letters denote the numerical solution 
vectors.

To enforce the no-slip condition at both boundaries, the Dirichlet-SBP operator is defined by

D̃ = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , B̃ = Q̃ + Q̃ T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 0 . . . 0 0

− 1
2 0 0 . . . 0 0

0 0 0 . . . 0 0
...

. . .
...

0 1
2

0 0 0 . . . 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

We introduce ρ̂ = c∗√
γ ρ∗ ρ ′ and T̂ = − c∗

ρ∗√
γ

√
γ −1

ρ ′ +
√

γ
γ −1

1
ρ∗c∗ p′ = γR

c∗√
γ

√
γ −1

T′ and consider the following semi-discrete 
numerical scheme to approximate the system (12).

ρ̂t + v∗Dρ̂ + c∗√
γ Dv ′ = 0, (16)

v ′
t + c∗√

γ D̃ρ̂ + v∗ D̃v ′ +
√

γ −1
γ c∗ D̃T̂= 2μ+λ

ρ∗ D̃Dv ′, (17)

T̂t +
√

γ −1
γ c∗Dv ′ + v∗DT̂= γμ

Prρ∗ DDT̂+ SAT, (18)

where

SAT = − γμ
Prρ∗ H−1B(DT̂− 0), (19)

imposes the homogeneous Neumann condition for the temperature weakly. We observe the following
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Hence our problem is well-posed in the sense of Definition2.1.

Remark. The Dirichlet condition T′({0, 1}) =0would give the same result, but since the non-linear analysis later in this 
article requires T′x({0, 1}) =0, we only consider the latter.

4.1. The semi-discrete scheme

Turning to the semi-discretisation of the problem (12)subject to the boundary conditions (14), we divide the spatial 
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vectors.
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• Since v ′ ≡ 0 at the boundaries initially, the use of the Dirichlet-SBP operator, D̃ , in (17) ensures that v ′
0, v

′
N remains 

zero for all t ≥ 0.
• Note that in (16) and (18), ρ̂0,N and T̂0,N are unknowns that are updated in time.
• Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v ′
x = 0.

• When implementing the scheme, the D̃ is not necessary. One can equivalently compute all derivatives using D and 
reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16) - (18) is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13) was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof. We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt
‖ρ̂‖2H = −v∗ρ̂T

(Q + Q T )ρ̂ − 2 c∗√
γ ρ̂T Q v ′.

Utilising the SBP-properties and subsequently v∗ = 0 yield

d

dt
‖ρ̂‖2H = v∗ρ̂2

0 − 2 c∗√
γ ρ̂T Q v ′ = −2 c∗√

γ ρ̂T Q v ′. (20)

Next, Equation (17) results in

d

dt
‖v ′‖2H = −2 c∗√

γ v ′ T Q̃ ρ̂ − 2
√

γ −1
γ c∗v ′ T Q̃ T̂−v∗v ′ T (Q̃ + Q̃ T )v ′ + 22μ+λ

ρ∗ v ′ T Q̃ Dv ′︸ ︷︷ ︸
A1

.
(21)

Using (15), we obtain

A1 = −v∗v ′ T B̃v ′ + 22μ+λ
ρ∗ v ′ T (B̃ − Q̃ T )Dv ′,= v∗v ′

0v
′
1 + 2μ+λ

ρ∗
(
−v ′

1(Dv ′)0 − v ′
0(Dv ′)1 − 2(D̃v ′)T HDv ′) ,

and, using v ′
0 = 0,

A1 = 2μ+λ
ρ∗

(
−v ′

1
v ′
1 − v ′

0

h
− 2(D̃v ′)T HDv ′

)
≤ − 2μ+λ

ρ∗
(
2(D̃v ′)T HDv ′) .

The estimate (21) therefore reduces to

d

dt
‖v ′‖2H ≤ −2 c∗√

γ v ′ T Q̃ ρ̂ − 2
√

γ −1
γ c∗v ′ T Q̃ T̂− 22μ+λ

ρ∗ (D̃v ′)T HDv ′. (22)

The energy method for (18) with (19) gives

d

dt
‖T̂‖2H = −2

√
γ −1
γ c∗T̂Q v ′ −v∗T̂T (Q + Q T )T̂+ 2 γμ

Prρ∗ T̂T Q DT̂− 2 γμ
Prρ∗ T̂T BDT̂︸ ︷︷ ︸

A2

.
(23)

Using Q + Q T = B and v∗ = 0, yield

A2 = v∗T̂2
0 + 2 γμ

Prρ∗
(
T̂T (B − Q T )DT̂− T̂T BDT̂

)
= v∗T̂2

0 − 2 γμ
Prρ∗ T̂T Q T DT̂= −2 γμ

Prρ∗ (DT̂)T H(DT̂).

Hence, (23) results in

d

dt
‖T̂‖2H = −2

√
γ −1
γ c∗T̂T Q v ′ − 2 γμ

Prρ∗ (DT̂)T H(DT̂). (24)

6

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′
0, v

′
Nremains 

zero for all t≥0.
•Note that in (16)and (18), ˆρ0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′
x=0.

•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 
reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt
‖ρ̂‖2H=−v∗ρ̂T

(Q+QT)ρ̂−2c∗ √
γρ̂TQv′.

Utilising the SBP-properties and subsequently v∗=0yield

d

dt
‖ρ̂‖2H=v∗ˆρ2

0−2c∗ √
γρ̂TQv′=−2c∗ √

γρ̂TQv′.(20)

Next, Equation (17)results in

d

dt
‖v′‖2H=−2c∗ √

γv′TQ̃ρ̂−2
√

γ−1
γc∗v′TQ̃T̂−v∗v′T(Q̃+Q̃T)v′+22μ+λ

ρ∗v′TQ̃Dv′ ︸︷︷︸
A1

.
(21)

Using (15), we obtain

A1=−v∗v′TB̃v′+22μ+λ
ρ∗v′T(B̃−Q̃T)Dv′,=v∗v′

0v
′
1+2μ+λ

ρ∗
(

−v′
1(Dv′)0−v′

0(Dv′)1−2(D̃v′)THDv′),

and, using v′
0=0,

A1=2μ+λ
ρ∗

(
−v′

1
v′

1−v′
0

h
−2(D̃v′)THDv′

)
≤−2μ+λ

ρ∗
(

2(D̃v′)THDv′).

The estimate (21)therefore reduces to

d

dt
‖v′‖2H≤−2c∗ √

γv′TQ̃ρ̂−2
√

γ−1
γc∗v′TQ̃T̂−22μ+λ

ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives

d

dt
‖T̂‖2H=−2

√
γ−1

γc∗T̂Qv′−v∗T̂T(Q+QT)T̂+2γμ
Prρ∗T̂TQDT̂−2γμ

Prρ∗T̂TBDT̂ ︸︷︷︸
A2

.
(23)

Using Q+QT=Band v∗=0, yield

A2=v∗T̂2
0+2γμ

Prρ∗
(

T̂T(B−QT)DT̂−T̂TBDT̂
)

=v∗T̂2
0−2γμ

Prρ∗T̂TQTDT̂=−2γμ
Prρ∗(DT̂)TH(DT̂).

Hence, (23)results in

d

dt
‖T̂‖2H=−2

√
γ−1

γc∗T̂TQv′−2γμ
Prρ∗(DT̂)TH(DT̂).(24)
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•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′
0, v

′
Nremains 

zero for all t≥0.
•Note that in (16)and (18), ˆρ0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′
x=0.

•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 
reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt
‖ρ̂‖2H=−v∗ρ̂T

(Q+QT)ρ̂−2c∗ √
γρ̂TQv′.

Utilising the SBP-properties and subsequently v∗=0yield

d

dt
‖ρ̂‖2H=v∗ˆρ2

0−2c∗ √
γρ̂TQv′=−2c∗ √

γρ̂TQv′.(20)

Next, Equation (17)results in

d

dt
‖v′‖2H=−2c∗ √

γv′TQ̃ρ̂−2
√

γ−1
γc∗v′TQ̃T̂−v∗v′T(Q̃+Q̃T)v′+22μ+λ

ρ∗v′TQ̃Dv′ ︸︷︷︸
A1

.
(21)

Using (15), we obtain

A1=−v∗v′TB̃v′+22μ+λ
ρ∗v′T(B̃−Q̃T)Dv′,=v∗v′

0v
′
1+2μ+λ

ρ∗
(

−v′
1(Dv′)0−v′

0(Dv′)1−2(D̃v′)THDv′),

and, using v′
0=0,

A1=2μ+λ
ρ∗

(
−v′

1
v′

1−v′
0

h
−2(D̃v′)THDv′

)
≤−2μ+λ

ρ∗
(

2(D̃v′)THDv′).

The estimate (21)therefore reduces to

d

dt
‖v′‖2H≤−2c∗ √

γv′TQ̃ρ̂−2
√

γ−1
γc∗v′TQ̃T̂−22μ+λ

ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives

d

dt
‖T̂‖2H=−2

√
γ−1

γc∗T̂Qv′−v∗T̂T(Q+QT)T̂+2γμ
Prρ∗T̂TQDT̂−2γμ

Prρ∗T̂TBDT̂ ︸︷︷︸
A2

.
(23)

Using Q+QT=Band v∗=0, yield

A2=v∗T̂2
0+2γμ

Prρ∗
(

T̂T(B−QT)DT̂−T̂TBDT̂
)

=v∗T̂2
0−2γμ

Prρ∗T̂TQTDT̂=−2γμ
Prρ∗(DT̂)TH(DT̂).

Hence, (23)results in

d

dt
‖T̂‖2H=−2

√
γ−1

γc∗T̂TQv′−2γμ
Prρ∗(DT̂)TH(DT̂).(24)
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• Since v ′ ≡ 0 at the boundaries initially, the use of the Dirichlet-SBP operator, D̃ , in (17) ensures that v ′0, v ′N remains 
zero for all t ≥ 0.

• Note that in (16) and (18), ρ̂0,N and T̂0,N are unknowns that are updated in time.
• Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v ′x = 0.
• When implementing the scheme, the D̃ is not necessary. One can equivalently compute all derivatives using D and 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16) - (18) is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13) was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof. We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt ‖ρ̂‖2H = −v∗ρ̂T
(Q + Q

T
)ρ̂ − 2 c∗

√γ ρ̂
T
Q v ′.

Utilising the SBP-properties and subsequently v∗ = 0 yield

d

dt ‖ρ̂‖2H = v∗ρ̂2
0 − 2 c∗

√γ ρ̂
T
Q v ′ = −2 c∗

√γ ρ̂
T
Q v ′. (20)

Next, Equation (17) results in

d

dt ‖v ′‖2H = −2 c∗
√γ v ′ T Q̃ ρ̂ − 2√ γ −1

γ c∗v ′ T Q̃ T̂−v∗v ′ T (Q̃ + Q̃
T
)v ′ + 2

2μ+λ
ρ∗ v ′ T Q̃ Dv ′

︸ ︷︷ ︸A1

.
(21)

Using (15), we obtain

A1 = −v∗v ′ T B̃v ′ + 2
2μ+λ
ρ∗ v ′ T (B̃ − Q̃

T
)Dv ′,= v∗v ′0v ′1 +

2μ+λ
ρ∗ (−v ′1(Dv ′)0 − v ′0(Dv ′)1 − 2(D̃v ′)T HDv ′) ,

and, using v ′0 = 0,

A1 =
2μ+λ
ρ∗ (−v ′1 v ′1 − v ′0

h − 2(D̃v ′)T HDv ′)≤ −
2μ+λ
ρ∗ (2(D̃v ′)T HDv ′) .

The estimate (21) therefore reduces to

d

dt ‖v ′‖2H ≤ −2 c∗
√γ v ′ T Q̃ ρ̂ − 2√ γ −1

γ c∗v ′ T Q̃ T̂− 2
2μ+λ
ρ∗ (D̃v ′)T HDv ′. (22)

The energy method for (18) with (19) gives

d

dt ‖T̂‖2H = −2√ γ −1
γ c∗T̂Q v ′ −v∗T̂T

(Q + Q
T
)T̂+ 2

γμ
Prρ∗ T̂

T
Q DT̂− 2

γμ
Prρ∗ T̂

T
BDT̂

︸ ︷︷ ︸A2

.
(23)

Using Q + Q T = B and v∗ = 0, yield

A2 = v∗T̂2
0 + 2

γμ
Prρ∗ (T̂T

(B − Q
T
)DT̂− T̂

T
BDT̂)= v∗T̂2

0 − 2
γμ
Prρ∗ T̂

T
Q

T
DT̂= −2

γμ
Prρ∗ (DT̂)

T
H(DT̂).

Hence, (23) results in

d

dt ‖T̂‖2H = −2√ γ −1
γ c∗T̂T

Q v ′ − 2
γμ
Prρ∗ (DT̂)

T
H(DT̂). (24)
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• Since v ′ ≡ 0 at the boundaries initially, the use of the Dirichlet-SBP operator, D̃ , in (17) ensures that v ′0, v ′N remains 
zero for all t ≥ 0.

• Note that in (16) and (18), ρ̂0,N and T̂0,N are unknowns that are updated in time.
• Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v ′x = 0.
• When implementing the scheme, the D̃ is not necessary. One can equivalently compute all derivatives using D and 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16) - (18) is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13) was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof. We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt ‖ρ̂‖2H = −v∗ρ̂T
(Q + Q

T
)ρ̂ − 2 c∗

√γ ρ̂
T
Q v ′.

Utilising the SBP-properties and subsequently v∗ = 0 yield

d

dt ‖ρ̂‖2H = v∗ρ̂2
0 − 2 c∗

√γ ρ̂
T
Q v ′ = −2 c∗

√γ ρ̂
T
Q v ′. (20)

Next, Equation (17) results in

d

dt ‖v ′‖2H = −2 c∗
√γ v ′ T Q̃ ρ̂ − 2√ γ −1

γ c∗v ′ T Q̃ T̂−v∗v ′ T (Q̃ + Q̃
T
)v ′ + 2

2μ+λ
ρ∗ v ′ T Q̃ Dv ′

︸ ︷︷ ︸A1

.
(21)

Using (15), we obtain

A1 = −v∗v ′ T B̃v ′ + 2
2μ+λ
ρ∗ v ′ T (B̃ − Q̃

T
)Dv ′,= v∗v ′0v ′1 +

2μ+λ
ρ∗ (−v ′1(Dv ′)0 − v ′0(Dv ′)1 − 2(D̃v ′)T HDv ′) ,

and, using v ′0 = 0,

A1 =
2μ+λ
ρ∗ (−v ′1 v ′1 − v ′0

h − 2(D̃v ′)T HDv ′)≤ −
2μ+λ
ρ∗ (2(D̃v ′)T HDv ′) .

The estimate (21) therefore reduces to

d

dt ‖v ′‖2H ≤ −2 c∗
√γ v ′ T Q̃ ρ̂ − 2√ γ −1

γ c∗v ′ T Q̃ T̂− 2
2μ+λ
ρ∗ (D̃v ′)T HDv ′. (22)

The energy method for (18) with (19) gives

d

dt ‖T̂‖2H = −2√ γ −1
γ c∗T̂Q v ′ −v∗T̂T

(Q + Q
T
)T̂+ 2

γμ
Prρ∗ T̂

T
Q DT̂− 2

γμ
Prρ∗ T̂

T
BDT̂

︸ ︷︷ ︸A2

.
(23)

Using Q + Q T = B and v∗ = 0, yield

A2 = v∗T̂2
0 + 2

γμ
Prρ∗ (T̂T

(B − Q
T
)DT̂− T̂

T
BDT̂)= v∗T̂2

0 − 2
γμ
Prρ∗ T̂

T
Q

T
DT̂= −2

γμ
Prρ∗ (DT̂)

T
H(DT̂).

Hence, (23) results in

d

dt ‖T̂‖2H = −2√ γ −1
γ c∗T̂T

Q v ′ − 2
γμ
Prρ∗ (DT̂)

T
H(DT̂). (24)
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•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′0, v′Nremains 
zero for all t≥0.

•Note that in (16)and (18), ρ̂0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′x=0.
•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt‖ρ̂‖2H=−v∗ρ̂T
(Q+Q

T
)ρ̂−2c∗

√γρ̂
T
Qv′.

Utilising the SBP-properties and subsequently v∗=0yield

d

dt‖ρ̂‖2H=v∗ρ̂2
0−2c∗

√γρ̂
T
Qv′=−2c∗

√γρ̂
T
Qv′.(20)

Next, Equation (17)results in

d

dt‖v′‖2H=−2c∗
√γv′TQ̃ρ̂−2√γ−1

γc∗v′TQ̃T̂−v∗v′T(Q̃+Q̃
T
)v′+2

2μ+λ
ρ∗v′TQ̃Dv′

︸︷︷︸ A1

.
(21)

Using (15), we obtain

A1=−v∗v′TB̃v′+2
2μ+λ
ρ∗v′T(B̃−Q̃

T
)Dv′,=v∗v′0v′1+

2μ+λ
ρ∗(−v′1(Dv′)0−v′0(Dv′)1−2(D̃v′)THDv′),

and, using v′0=0,

A1=
2μ+λ
ρ∗(−v′1v′1−v′0

h−2(D̃v′)THDv′)≤−
2μ+λ
ρ∗(2(D̃v′)THDv′).

The estimate (21)therefore reduces to

d

dt‖v′‖2H≤−2c∗
√γv′TQ̃ρ̂−2√γ−1

γc∗v′TQ̃T̂−2
2μ+λ
ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives

d

dt‖T̂‖2H=−2√γ−1
γc∗T̂Qv′−v∗T̂T

(Q+Q
T
)T̂+2

γμ
Prρ∗T̂

T
QDT̂−2

γμ
Prρ∗T̂

T
BDT̂

︸︷︷︸ A2

.
(23)

Using Q+QT=Band v∗=0, yield

A2=v∗T̂2
0+2

γμ
Prρ∗(T̂T

(B−Q
T
)DT̂−T̂

T
BDT̂)=v∗T̂2

0−2
γμ
Prρ∗T̂

T
Q

T
DT̂=−2

γμ
Prρ∗(DT̂)

T
H(DT̂).

Hence, (23)results in

d

dt‖T̂‖2H=−2√γ−1
γc∗T̂T

Qv′−2
γμ
Prρ∗(DT̂)

T
H(DT̂).(24)
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•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′0, v′Nremains 
zero for all t≥0.

•Note that in (16)and (18), ρ̂0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′x=0.
•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt‖ρ̂‖2H=−v∗ρ̂T
(Q+Q

T
)ρ̂−2c∗

√γρ̂
T
Qv′.

Utilising the SBP-properties and subsequently v∗=0yield

d

dt‖ρ̂‖2H=v∗ρ̂2
0−2c∗

√γρ̂
T
Qv′=−2c∗

√γρ̂
T
Qv′.(20)

Next, Equation (17)results in

d

dt‖v′‖2H=−2c∗
√γv′TQ̃ρ̂−2√γ−1

γc∗v′TQ̃T̂−v∗v′T(Q̃+Q̃
T
)v′+2

2μ+λ
ρ∗v′TQ̃Dv′

︸︷︷︸ A1

.
(21)

Using (15), we obtain

A1=−v∗v′TB̃v′+2
2μ+λ
ρ∗v′T(B̃−Q̃

T
)Dv′,=v∗v′0v′1+

2μ+λ
ρ∗(−v′1(Dv′)0−v′0(Dv′)1−2(D̃v′)THDv′),

and, using v′0=0,

A1=
2μ+λ
ρ∗(−v′1v′1−v′0

h−2(D̃v′)THDv′)≤−
2μ+λ
ρ∗(2(D̃v′)THDv′).

The estimate (21)therefore reduces to

d

dt‖v′‖2H≤−2c∗
√γv′TQ̃ρ̂−2√γ−1

γc∗v′TQ̃T̂−2
2μ+λ
ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives

d

dt‖T̂‖2H=−2√γ−1
γc∗T̂Qv′−v∗T̂T

(Q+Q
T
)T̂+2

γμ
Prρ∗T̂

T
QDT̂−2

γμ
Prρ∗T̂

T
BDT̂

︸︷︷︸ A2

.
(23)

Using Q+QT=Band v∗=0, yield

A2=v∗T̂2
0+2

γμ
Prρ∗(T̂T

(B−Q
T
)DT̂−T̂

T
BDT̂)=v∗T̂2

0−2
γμ
Prρ∗T̂

T
Q

T
DT̂=−2

γμ
Prρ∗(DT̂)

T
H(DT̂).

Hence, (23)results in

d

dt‖T̂‖2H=−2√γ−1
γc∗T̂T

Qv′−2
γμ
Prρ∗(DT̂)

T
H(DT̂).(24)
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•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′0, v′Nremains 
zero for all t≥0.

•Note that in (16)and (18), ρ̂0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′x=0.
•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt‖ρ̂‖2H=−v∗ρ̂T
(Q+Q

T
)ρ̂−2c∗

√γρ̂
T
Qv′.

Utilising the SBP-properties and subsequently v∗=0yield

d
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0−2c∗
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T
Qv′=−2c∗
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Qv′.(20)
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T
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(21)
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d

dt‖v′‖2H≤−2c∗
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ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives
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•Since v′≡0at the boundaries initially, the use of the Dirichlet-SBP operator, D̃, in (17)ensures that v′0, v′Nremains 
zero for all t≥0.

•Note that in (16)and (18), ρ̂0,Nand T̂0,Nare unknowns that are updated in time.
•Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v′x=0.
•When implementing the scheme, the D̃is not necessary. One can equivalently compute all derivatives using Dand 

reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16)-(18)is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13)was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof.We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt‖ρ̂‖2H=−v∗ρ̂T
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T
)ρ̂−2c∗
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T
Qv′.
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T
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T
Qv′.(20)
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T
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2μ+λ
ρ∗v′TQ̃Dv′

︸︷︷︸ A1

.
(21)

Using (15), we obtain
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2μ+λ
ρ∗v′T(B̃−Q̃

T
)Dv′,=v∗v′0v′1+

2μ+λ
ρ∗(−v′1(Dv′)0−v′0(Dv′)1−2(D̃v′)THDv′),

and, using v′0=0,

A1=
2μ+λ
ρ∗(−v′1v′1−v′0

h−2(D̃v′)THDv′)≤−
2μ+λ
ρ∗(2(D̃v′)THDv′).

The estimate (21)therefore reduces to

d

dt‖v′‖2H≤−2c∗
√γv′TQ̃ρ̂−2√γ−1

γc∗v′TQ̃T̂−2
2μ+λ
ρ∗(D̃v′)THDv′.(22)

The energy method for (18)with (19)gives

d

dt‖T̂‖2H=−2√γ−1
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(Q+Q
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Prρ∗T̂

T
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T
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.
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Using Q+QT=Band v∗=0, yield
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γμ
Prρ∗(T̂T

(B−Q
T
)DT̂−T̂

T
BDT̂)=v∗T̂2

0−2
γμ
Prρ∗T̂

T
Q

T
DT̂=−2

γμ
Prρ∗(DT̂)

T
H(DT̂).

Hence, (23)results in
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dt‖T̂‖2H=−2√γ−1
γc∗T̂T
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Prρ∗(DT̂)

T
H(DT̂).(24)
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We add all the preliminary estimates (20), (22) and (24) to obtain

d

dt

(
‖ρ̂‖2H + ‖v ′‖2H + ‖T̂‖2H

)
≤ −2 c∗

γ

(
ρ̂T Q v ′ + v ′ T Q̃ ρ̂

)
− 2

√
γ −1
γ c∗ (v ′ T Q̃ T̂+ T̂T Q v ′)

−22μ+λ
ρ (D̃v ′)T H D̃v ′ − 2 γμ

Prρ (DT̂)T HDT̂.

(25)

Consider the term v ′ T Q̃ ρ̂ . As in Example 3.1, it follows from v ′
0 = v ′

N ≡ 0 that v ′ T Q̃ ρ̂ ≡ v ′ T Q ρ̂ = v ′ T Bρ̂ − v ′ T Q T ρ̂ =
−(ρ̂T Q v ′)T . Since −(ρ̂T Q v ′)T is a scalar we obtain v ′ T Q̃ ρ̂ = −ρ̂T Q v ′ . The same argument holds for the term v ′ T Q̃ T̂, 
and the two first terms in (25) therefore vanish. Lastly, since (D̃v ′)0 = 0, we have (D̃v ′)T HDv ′ = (D̃v ′)T H D̃v ′ , and we 
obtain

d

dt

(
‖ρ̂‖2H + ‖v ′‖2H + ‖T̂‖2H

)
+ 22μ+λ

ρ∗ ‖D̃v‖2H + 2 γμ
Prρ∗ ‖DT̂‖2H ≤ 0. (26)

Hence, the scheme is stable in the sense of Definition 2.2. �

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10) is given by

ut +DIfI = DVfV + SAT, (27)

where u = (ρ, v, E)T is the numerical solution vector. The convective term of (10) is, once again ignoring the right boundary, 
approximated by

(DIfI)i =
⎧⎨
⎩

fI1/2−fI0
h/2 , i = 0,

fIi+1/2−fIi−1/2
h , i = 1, . . . ,N − 1,

(28)

where

fI
i+1/2 = fIi+1 + fIi

2
− δi+1/2 (ui+1 − ui)

2
(29)

is the approximation of the inviscid flux and fI
i = fI(ui). The second term is artificial diffusion and for δ sufficiently large, 

the approximation is entropy stable in the sense of (52) below (see also [32]). Furthermore, the components of fI
0 are

fI,ρ0 = (ρ.v)0, (30)

fI,m0 = fI,m1/2, (31)

fI,E0 = (v.(E + p))0, (32)

where the superscripts ρ, m, E denote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31) implies that the flux difference (28) is identically equal to zero at grid point x0 for the momentum 
equation.

Next, the diffusive term of (10) is conveniently approximated on matrix form by

DVfV =
(
0, D̃((2μ + λ)Dv), D((2μ + λ)

b,x
v .Dv + κDT)

)T

, (33)

(the definition of 
b,x
v .Dv is given in (36)-(37)) and the SAT is given by

SAT = (
0,0,−κH−1B(DT− 0)

)T
. (34)

Remark. The scheme for the momentum equation is mt = 0 on the boundary, i.e., m0(t) ≡ 0 such that v0 ≡ 0 for all t ≥ 0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11) is 
replaced with κ Tx

T = g . The corresponding SAT would then take the form SAT = H−1(κBDT − T g), which would yield an 
entropy stable scheme for appropriately chosen g .
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(
‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H

)
≤−2c∗

γ

(
ρ̂TQv′+v′TQ̃ρ̂

)
−2

√
γ−1

γc∗(v′TQ̃T̂+T̂TQv′)
−22μ+λ

ρ(D̃v′)THD̃v′−2γμ
Prρ(DT̂)THDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′
0=v′

N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
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obtain

d

dt

(
‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H

)
+22μ+λ

ρ∗‖D̃v‖2H+2γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+DIfI=DVfV+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(DIfI)i=
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⎩

fI1/2−fI0
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h,i=1,...,N−1,
(28)

where

fI
i+1/2=fIi+1+fIi

2
−δi+1/2(ui+1−ui)

2
(29)

is the approximation of the inviscid flux and fI
i=fI(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of fI
0are

fI,ρ0=(ρ.v)0,(30)

fI,m0=fI,m1/2,(31)

fI,E0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

DVfV=
(

0,D̃((2μ+λ)Dv),D((2μ+λ)
b,x
v.Dv+κDT)

)T

,(33)

(the definition of 
b,x
v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(
0,0,−κH−1B(DT−0)

)T
.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κTx

T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(
‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H

)
≤−2c∗

γ

(
ρ̂TQv′+v′TQ̃ρ̂

)
−2

√
γ−1

γc∗(v′TQ̃T̂+T̂TQv′)
−22μ+λ

ρ(D̃v′)THD̃v′−2γμ
Prρ(DT̂)THDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′
0=v′

N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
−(ρ̂TQv′)T. Since −(ρ̂TQv′)Tis a scalar we obtain v′TQ̃ρ̂=−ρ̂TQv′. The same argument holds for the term v′TQ̃T̂, 
and the two first terms in (25)therefore vanish. Lastly, since (D̃v′)0=0, we have (D̃v′)THDv′=(D̃v′)THD̃v′, and we 
obtain

d

dt

(
‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H

)
+22μ+λ

ρ∗‖D̃v‖2H+2γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+DIfI=DVfV+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(DIfI)i=
⎧⎨
⎩

fI1/2−fI0
h/2,i=0,
fIi+1/2−fIi−1/2

h,i=1,...,N−1,
(28)

where
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2
(29)

is the approximation of the inviscid flux and fI
i=fI(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of fI
0are

fI,ρ0=(ρ.v)0,(30)

fI,m0=fI,m1/2,(31)

fI,E0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

DVfV=
(

0,D̃((2μ+λ)Dv),D((2μ+λ)
b,x
v.Dv+κDT)

)T

,(33)

(the definition of 
b,x
v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(
0,0,−κH−1B(DT−0)

)T
.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κTx

T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 
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We add all the preliminary estimates (20), (22) and (24) to obtain

d

dt

(‖ρ̂‖2H + ‖v ′‖2H + ‖T̂‖2H)≤ −2 c∗
γ (ρ̂T

Q v ′ + v ′ T Q̃ ρ̂)− 2√ γ −1
γ c∗ (v ′ T Q̃ T̂+ T̂

T
Q v ′)

−2
2μ+λ

ρ (D̃v ′)T H D̃v ′ − 2
γμ
Prρ (DT̂)

T
HDT̂.

(25)

Consider the term v ′ T Q̃ ρ̂ . As in Example 3.1, it follows from v ′0 = v ′N ≡ 0 that v ′ T Q̃ ρ̂ ≡ v ′ T Q ρ̂ = v ′ T Bρ̂ − v ′ T Q T ρ̂ =
−(ρ̂

T
Q v ′)T . Since −(ρ̂

T
Q v ′)T is a scalar we obtain v ′ T Q̃ ρ̂ = −ρ̂

T
Q v ′ . The same argument holds for the term v ′ T Q̃ T̂, 

and the two first terms in (25) therefore vanish. Lastly, since (D̃v ′)0 = 0, we have (D̃v ′)T HDv ′ = (D̃v ′)T H D̃v ′ , and we 
obtain

d

dt

(‖ρ̂‖2H + ‖v ′‖2H + ‖T̂‖2H)+ 2
2μ+λ
ρ∗ ‖D̃v‖2H + 2

γμ
Prρ∗ ‖DT̂‖2H ≤ 0. (26)

Hence, the scheme is stable in the sense of Definition 2.2. �

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10) is given by

ut +D
I
f
I
= D

V
f

V
+ SAT, (27)

where u = (ρ, v, E)T is the numerical solution vector. The convective term of (10) is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i =

⎧⎨
⎩

fI
1/2−fI

0
h/2 , i = 0,

fI
i+1/2−fI

i−1/2
h , i = 1, . . . ,N − 1,

(28)

where

f
I
i+1/2 =

f
I
i+1 + f

I
i

2 −
δi+1/2 (ui+1 − ui)

2
(29)

is the approximation of the inviscid flux and f
I
i = f

I
(ui). The second term is artificial diffusion and for δ sufficiently large, 

the approximation is entropy stable in the sense of (52) below (see also [32]). Furthermore, the components of f
I
0 are

f
I,ρ

0 = (ρ.v)0, (30)

f
I,m
0 = f

I,m
1/2, (31)

f
I,E
0 = (v.(E + p))0, (32)

where the superscripts ρ, m, E denote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31) implies that the flux difference (28) is identically equal to zero at grid point x0 for the momentum 
equation.

Next, the diffusive term of (10) is conveniently approximated on matrix form by

D
V
f

V
= (0, D̃((2μ + λ)Dv), D((2μ + λ)

b,x
v .Dv + κDT))T

, (33)

(the definition of 
b,x
v .Dv is given in (36)-(37)) and the SAT is given by

SAT = (0,0,−κH−1B(DT− 0))T . (34)

Remark. The scheme for the momentum equation is mt = 0 on the boundary, i.e., m0(t) ≡ 0 such that v0 ≡ 0 for all t ≥ 0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11) is 
replaced with κ

Tx
T = g . The corresponding SAT would then take the form SAT = H−1(κBDT − T g), which would yield an 

entropy stable scheme for appropriately chosen g .
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We add all the preliminary estimates (20), (22) and (24) to obtain

d
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γ (ρ̂T

Q v ′ + v ′ T Q̃ ρ̂)− 2√ γ −1
γ c∗ (v ′ T Q̃ T̂+ T̂

T
Q v ′)

−2
2μ+λ

ρ (D̃v ′)T H D̃v ′ − 2
γμ
Prρ (DT̂)

T
HDT̂.

(25)

Consider the term v ′ T Q̃ ρ̂ . As in Example 3.1, it follows from v ′0 = v ′N ≡ 0 that v ′ T Q̃ ρ̂ ≡ v ′ T Q ρ̂ = v ′ T Bρ̂ − v ′ T Q T ρ̂ =
−(ρ̂

T
Q v ′)T . Since −(ρ̂

T
Q v ′)T is a scalar we obtain v ′ T Q̃ ρ̂ = −ρ̂

T
Q v ′ . The same argument holds for the term v ′ T Q̃ T̂, 

and the two first terms in (25) therefore vanish. Lastly, since (D̃v ′)0 = 0, we have (D̃v ′)T HDv ′ = (D̃v ′)T H D̃v ′ , and we 
obtain

d

dt

(‖ρ̂‖2H + ‖v ′‖2H + ‖T̂‖2H)+ 2
2μ+λ
ρ∗ ‖D̃v‖2H + 2

γμ
Prρ∗ ‖DT̂‖2H ≤ 0. (26)

Hence, the scheme is stable in the sense of Definition 2.2. �

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10) is given by

ut +D
I
f
I
= D

V
f

V
+ SAT, (27)

where u = (ρ, v, E)T is the numerical solution vector. The convective term of (10) is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i =

⎧⎨
⎩

fI
1/2−fI

0
h/2 , i = 0,

fI
i+1/2−fI

i−1/2
h , i = 1, . . . ,N − 1,

(28)

where

f
I
i+1/2 =

f
I
i+1 + f

I
i

2 −
δi+1/2 (ui+1 − ui)

2
(29)

is the approximation of the inviscid flux and f
I
i = f

I
(ui). The second term is artificial diffusion and for δ sufficiently large, 

the approximation is entropy stable in the sense of (52) below (see also [32]). Furthermore, the components of f
I
0 are

f
I,ρ

0 = (ρ.v)0, (30)

f
I,m
0 = f

I,m
1/2, (31)

f
I,E
0 = (v.(E + p))0, (32)

where the superscripts ρ, m, E denote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31) implies that the flux difference (28) is identically equal to zero at grid point x0 for the momentum 
equation.

Next, the diffusive term of (10) is conveniently approximated on matrix form by

D
V
f

V
= (0, D̃((2μ + λ)Dv), D((2μ + λ)

b,x
v .Dv + κDT))T

, (33)

(the definition of 
b,x
v .Dv is given in (36)-(37)) and the SAT is given by

SAT = (0,0,−κH−1B(DT− 0))T . (34)

Remark. The scheme for the momentum equation is mt = 0 on the boundary, i.e., m0(t) ≡ 0 such that v0 ≡ 0 for all t ≥ 0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11) is 
replaced with κ

Tx
T = g . The corresponding SAT would then take the form SAT = H−1(κBDT − T g), which would yield an 

entropy stable scheme for appropriately chosen g .
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)≤−2c∗
γ(ρ̂T

Qv′+v′TQ̃ρ̂)−2√γ−1
γc∗(v′TQ̃T̂+T̂

T
Qv′)

−2
2μ+λ

ρ(D̃v′)THD̃v′−2
γμ
Prρ(DT̂)

T
HDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′0=v′N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
−(ρ̂

T
Qv′)T. Since −(ρ̂

T
Qv′)Tis a scalar we obtain v′TQ̃ρ̂=−ρ̂

T
Qv′. The same argument holds for the term v′TQ̃T̂, 

and the two first terms in (25)therefore vanish. Lastly, since (D̃v′)0=0, we have (D̃v′)THDv′=(D̃v′)THD̃v′, and we 
obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)+2
2μ+λ
ρ∗‖D̃v‖2H+2

γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i=

⎧⎨
⎩

fI
1/2−fI

0
h/2,i=0,

fI
i+1/2−fI

i−1/2
h,i=1,...,N−1,

(28)

where

f
I
i+1/2=

f
I
i+1+f

I
i

2−
δi+1/2(ui+1−ui)

2
(29)

is the approximation of the inviscid flux and f
I
i=f

I
(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of f
I
0are

f
I,ρ

0=(ρ.v)0,(30)

f
I,m
0=f

I,m
1/2,(31)

f
I,E
0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

D
V
f

V
=(0,D̃((2μ+λ)Dv),D((2μ+λ)

b,x
v.Dv+κDT))T

,(33)

(the definition of 
b,x
v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(0,0,−κH−1B(DT−0))T.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κ

Tx
T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 

entropy stable scheme for appropriately chosen g.
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)≤−2c∗
γ(ρ̂T

Qv′+v′TQ̃ρ̂)−2√γ−1
γc∗(v′TQ̃T̂+T̂

T
Qv′)

−2
2μ+λ

ρ(D̃v′)THD̃v′−2
γμ
Prρ(DT̂)

T
HDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′0=v′N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
−(ρ̂

T
Qv′)T. Since −(ρ̂

T
Qv′)Tis a scalar we obtain v′TQ̃ρ̂=−ρ̂

T
Qv′. The same argument holds for the term v′TQ̃T̂, 

and the two first terms in (25)therefore vanish. Lastly, since (D̃v′)0=0, we have (D̃v′)THDv′=(D̃v′)THD̃v′, and we 
obtain

d
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2μ+λ
ρ∗‖D̃v‖2H+2

γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i=

⎧⎨
⎩

fI
1/2−fI

0
h/2,i=0,

fI
i+1/2−fI

i−1/2
h,i=1,...,N−1,

(28)

where

f
I
i+1/2=

f
I
i+1+f

I
i

2−
δi+1/2(ui+1−ui)

2
(29)

is the approximation of the inviscid flux and f
I
i=f

I
(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of f
I
0are

f
I,ρ

0=(ρ.v)0,(30)

f
I,m
0=f

I,m
1/2,(31)

f
I,E
0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

D
V
f

V
=(0,D̃((2μ+λ)Dv),D((2μ+λ)

b,x
v.Dv+κDT))T

,(33)

(the definition of 
b,x
v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(0,0,−κH−1B(DT−0))T.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κ

Tx
T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 

entropy stable scheme for appropriately chosen g.
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)≤−2c∗
γ(ρ̂T

Qv′+v′TQ̃ρ̂)−2√γ−1
γc∗(v′TQ̃T̂+T̂

T
Qv′)

−2
2μ+λ

ρ(D̃v′)THD̃v′−2
γμ
Prρ(DT̂)

T
HDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′0=v′N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
−(ρ̂

T
Qv′)T. Since −(ρ̂

T
Qv′)Tis a scalar we obtain v′TQ̃ρ̂=−ρ̂

T
Qv′. The same argument holds for the term v′TQ̃T̂, 

and the two first terms in (25)therefore vanish. Lastly, since (D̃v′)0=0, we have (D̃v′)THDv′=(D̃v′)THD̃v′, and we 
obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)+2
2μ+λ
ρ∗‖D̃v‖2H+2

γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i=

⎧⎨
⎩

fI
1/2−fI

0
h/2,i=0,

fI
i+1/2−fI

i−1/2
h,i=1,...,N−1,

(28)

where

f
I
i+1/2=

f
I
i+1+f

I
i

2−
δi+1/2(ui+1−ui)

2
(29)

is the approximation of the inviscid flux and f
I
i=f

I
(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of f
I
0are

f
I,ρ

0=(ρ.v)0,(30)

f
I,m
0=f

I,m
1/2,(31)

f
I,E
0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

D
V
f

V
=(0,D̃((2μ+λ)Dv),D((2μ+λ)

b,x
v.Dv+κDT))T

,(33)

(the definition of 
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v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(0,0,−κH−1B(DT−0))T.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κ

Tx
T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 

entropy stable scheme for appropriately chosen g.
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We add all the preliminary estimates (20), (22)and (24)to obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)≤−2c∗
γ(ρ̂T

Qv′+v′TQ̃ρ̂)−2√γ−1
γc∗(v′TQ̃T̂+T̂

T
Qv′)

−2
2μ+λ

ρ(D̃v′)THD̃v′−2
γμ
Prρ(DT̂)

T
HDT̂.

(25)

Consider the term v′TQ̃ρ̂. As in Example3.1, it follows from v′0=v′N≡0that v′TQ̃ρ̂≡v′TQρ̂=v′TBρ̂−v′TQTρ̂=
−(ρ̂

T
Qv′)T. Since −(ρ̂

T
Qv′)Tis a scalar we obtain v′TQ̃ρ̂=−ρ̂

T
Qv′. The same argument holds for the term v′TQ̃T̂, 

and the two first terms in (25)therefore vanish. Lastly, since (D̃v′)0=0, we have (D̃v′)THDv′=(D̃v′)THD̃v′, and we 
obtain

d

dt

(‖ρ̂‖2H+‖v′‖2H+‖T̂‖2H)+2
2μ+λ
ρ∗‖D̃v‖2H+2

γμ
Prρ∗‖DT̂‖2H≤0.(26)

Hence, the scheme is stable in the sense of Definition2.2.�

5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10)is given by

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

where u=(ρ, v, E)Tis the numerical solution vector. The convective term of (10)is, once again ignoring the right boundary, 
approximated by

(D
I
f
I
)i=
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⎩

fI
1/2−fI

0
h/2,i=0,
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i+1/2−fI
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h,i=1,...,N−1,

(28)

where
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i+1/2=

f
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i+1+f

I
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2−
δi+1/2(ui+1−ui)

2
(29)

is the approximation of the inviscid flux and f
I
i=f

I
(ui). The second term is artificial diffusion and for δsufficiently large, 

the approximation is entropy stable in the sense of (52)below (see also [32]). Furthermore, the components of f
I
0are

f
I,ρ

0=(ρ.v)0,(30)

f
I,m
0=f

I,m
1/2,(31)

f
I,E
0=(v.(E+p))0,(32)

where the superscripts ρ, m, Edenote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31)implies that the flux difference (28)is identically equal to zero at grid point x0for the momentum 
equation.

Next, the diffusive term of (10)is conveniently approximated on matrix form by

D
V
f

V
=(0,D̃((2μ+λ)Dv),D((2μ+λ)

b,x
v.Dv+κDT))T

,(33)

(the definition of 
b,x
v.Dvis given in (36)-(37)) and the SAT is given by

SAT=(0,0,−κH−1B(DT−0))T.(34)

Remark. The scheme for the momentum equation is mt=0on the boundary, i.e., m0(t) ≡0such that v0≡0for all t≥0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11)is 
replaced with κ

Tx
T=g. The corresponding SAT would then take the form SAT=H−1(κBDT−Tg), which would yield an 

entropy stable scheme for appropriately chosen g.
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In (33) we use

(D(a.b))i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1b1−a0b0
h = a1(Db)0 + b0(Da)0 = b1(Da)0 + a0(Db)0 i = 0,

ai+1bi+1−ai−1bi−1
2h = ai+1+ai−1

2 (Db)i + bi+1+bi−1
2 (Da)i i = 1, . . . ,N − 1,

aNbN−aN−1bN−1
h = aN(Db)N + bN−1(Da)N = bN(Da)N + aN(Db)N i = N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a = (

a0,
a2+a0

2 , . . . ,
aN+aN−2

2 , aN
)
,

i,x
a = (

a1,
a2+a0

2 , . . . ,
aN+aN−2

2 , aN−1
)
,

(36)

and

(
b,x
a .(Db)

)
i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN(Db)N , i = N,

(37)

(
i,x
a.(Db)

)
i
=

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN−1(Db)N , i = N.

(38)

Here, superscript b signifies that a is taken at the boundary node and superscript i signifies that a is taken at the first 
neighbouring interior node. A similar relation holds for the averages taken in the y-direction. Using (37) and (38), we can 
rewrite (35) as

Dx(a.b) = b,x
a .(Dxb) + i,x

b.(Dxa) = b,x

b .(Dxa) + i,x
a.(Dxb),

Dy(a.b) = b,y
a .(Dyb) +

i,y

b .(Dya) =
b,y

b .(Dya) + i,y
a .(Dyb),

(39)

where Dx and Dy approximate the x- and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(
D
(a
b

))
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
b1

− a0
b0

h = b0(Da)0−a0(Db)0
b0b1

= b1(Da)0−a1(Db)0
b0b1

i = 0,
ai+1
bi+1

− ai−1
bi−1

2h = 1
bi+1bi−1

(
bi+1+bi−1

2 (Da)i − ai+1+ai−1
2 (Db)i

)
, i = 1, . . . ,N − 1

aN
bN

− aN−1
bN−1
h = bN (Da)N−aN (Db)N

bNbN−1
= bN−1(Da)N−aN−1(Db)N

bnbN−1
, i = N.

(40)

The inviscid term in (27) can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18] and [19]). Define D(δ)

2 = H−1(−DT
(δ)
̃D(δ) + 
̄S), 

where D(δ)
2 , D(δ) , 
̃ = h

2 diag(δ1/2, δ3/2, . . . , δN−1/2) and 
̄ = diag(−δ0, 0, . . . , 0, δN ) correspond to the matrices D2, D , B̃
and B , respectively, given in [18]. Then the artificial diffusion (AD) terms in (29) can be recast as

ADρ = −hH−1DT
(δ)
̃D(δ)ρ,

ADm = −hH−1 D̃T
(δ)
̃D(δ)(ρ.v),

ADE = −hH−1DT
(δ)
̃D(δ)E,

(41)

where D̃T
(δ) is the Dirichlet-SBP operator corresponding to DT

(δ) , i.e., it is D
T
(δ) with the elements of first and last row set to 

zero. Then, using the SBP operators (3) and (15), (28) can be restated as,

DIfI =
⎛
⎝ DfI,ρ − ADρ

D̃fI,m − ADm

DfI,E − ADE

⎞
⎠ , (42)

where fI,ρ = ρ.v , fI,m = ρ.v.2 + p, and fI,E = v.(E + p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=ai+1+ai−1

2(Db)i+bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(

a0,
a2+a0

2,...,
aN+aN−2

2,aN
)

,

i,x
a=(

a1,
a2+a0

2,...,
aN+aN−2

2,aN−1
)

,

(36)

and

(
b,x
a.(Db)

)
i

=

⎧⎪⎪⎨
⎪⎪⎩

a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(
i,x
a.(Db)

)
i

=

⎧⎪⎪⎨
⎪⎪⎩

a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=b,x
a.(Dxb)+i,x

b.(Dxa)=b,x

b.(Dxa)+i,x
a.(Dxb),

Dy(a.b)=b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(
D

(a
b

))
i=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
b1

−a0
b0
h=b0(Da)0−a0(Db)0

b0b1
=b1(Da)0−a1(Db)0

b0b1
i=0,

ai+1
bi+1

−ai−1
bi−1

2h=1
bi+1bi−1

(
bi+1+bi−1

2(Da)i−ai+1+ai−1
2(Db)i

)
,i=1,...,N−1

aN
bN

−aN−1
bN−1
h=bN(Da)N−aN(Db)N

bNbN−1
=bN−1(Da)N−aN−1(Db)N

bnbN−1
,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D(δ)

2=H−1(−DT
(δ)

˜
D(δ)+¯
S), 
where D(δ)

2, D(δ), ˜
=h
2diag(δ1/2, δ3/2, ..., δN−1/2)and ¯
=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃

and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

ADρ=−hH−1DT
(δ)

˜
D(δ)ρ,

ADm=−hH−1D̃T
(δ)

˜
D(δ)(ρ.v),

ADE=−hH−1DT
(δ)

˜
D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is D
T
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

DIfI=
⎛
⎝DfI,ρ−ADρ

D̃fI,m−ADm

DfI,E−ADE

⎞
⎠,(42)

where fI,ρ=ρ.v, fI,m=ρ.v.2+p, and fI,E=v.(E+p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=ai+1+ai−1

2(Db)i+bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(

a0,
a2+a0

2,...,
aN+aN−2

2,aN
)

,

i,x
a=(

a1,
a2+a0

2,...,
aN+aN−2

2,aN−1
)

,

(36)

and

(
b,x
a.(Db)

)
i

=

⎧⎪⎪⎨
⎪⎪⎩

a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(
i,x
a.(Db)

)
i

=

⎧⎪⎪⎨
⎪⎪⎩

a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=b,x
a.(Dxb)+i,x

b.(Dxa)=b,x

b.(Dxa)+i,x
a.(Dxb),

Dy(a.b)=b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(
D

(a
b

))
i=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
b1

−a0
b0
h=b0(Da)0−a0(Db)0

b0b1
=b1(Da)0−a1(Db)0

b0b1
i=0,

ai+1
bi+1

−ai−1
bi−1

2h=1
bi+1bi−1

(
bi+1+bi−1

2(Da)i−ai+1+ai−1
2(Db)i

)
,i=1,...,N−1

aN
bN

−aN−1
bN−1
h=bN(Da)N−aN(Db)N

bNbN−1
=bN−1(Da)N−aN−1(Db)N

bnbN−1
,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D(δ)

2=H−1(−DT
(δ)

˜
D(δ)+¯
S), 
where D(δ)

2, D(δ), ˜
=h
2diag(δ1/2, δ3/2, ..., δN−1/2)and ¯
=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃

and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

ADρ=−hH−1DT
(δ)

˜
D(δ)ρ,

ADm=−hH−1D̃T
(δ)

˜
D(δ)(ρ.v),

ADE=−hH−1DT
(δ)

˜
D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is D
T
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

DIfI=
⎛
⎝DfI,ρ−ADρ

D̃fI,m−ADm

DfI,E−ADE

⎞
⎠,(42)

where fI,ρ=ρ.v, fI,m=ρ.v.2+p, and fI,E=v.(E+p).
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In (33) we use

(D(a.b))i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h = a1(Db)0 + b0(Da)0 = b1(Da)0 + a0(Db)0 i = 0,

ai+1bi+1−ai−1bi−1
2h =

ai+1+ai−1
2 (Db)i +

bi+1+bi−1
2 (Da)i i = 1, . . . ,N − 1,

aNbN−aN−1bN−1
h = aN(Db)N + bN−1(Da)N = bN(Da)N + aN(Db)N i = N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a = (a0, a2+a0

2 , . . . ,
aN+aN−2

2 , aN ) ,
i,x
a = (a1, a2+a0

2 , . . . ,
aN+aN−2

2 , aN−1 ) , (36)

and

(b,x
a .(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN(Db)N , i = N,

(37)

(i,x
a.(Db))

i =

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN−1(Db)N , i = N.

(38)

Here, superscript b signifies that a is taken at the boundary node and superscript i signifies that a is taken at the first 
neighbouring interior node. A similar relation holds for the averages taken in the y-direction. Using (37) and (38), we can 
rewrite (35) as

Dx(a.b) =
b,x
a .(Dxb) +

i,x

b.(Dxa) =
b,x

b .(Dxa) +
i,x
a.(Dxb),

Dy(a.b) =
b,y
a .(Dyb) +

i,y

b .(Dya) =
b,y

b .(Dya) +
i,y
a .(Dyb),

(39)

where Dx and Dy approximate the x- and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D (ab ))i =
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1 −

a0
b0

h =
b0(Da)0−a0(Db)0

b0b1 =
b1(Da)0−a1(Db)0

b0b1 i = 0,
ai+1
bi+1 −

ai−1
bi−1

2h = 1
bi+1bi−1 ( bi+1+bi−1

2 (Da)i −
ai+1+ai−1

2 (Db)i) , i = 1, . . . ,N − 1
aN
bN −

aN−1
bN−1
h =

bN (Da)N−aN (Db)N
bNbN−1 =

bN−1(Da)N−aN−1(Db)N
bnbN−1

, i = N.

(40)

The inviscid term in (27) can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18] and [19]). Define D

(δ)
2 = H−1(−DT

(δ)
̃D(δ) + 
̄S), 
where D

(δ)
2 , D(δ) , 
̃ = h

2 diag(δ1/2, δ3/2, . . . , δN−1/2) and 
̄ = diag(−δ0, 0, . . . , 0, δN ) correspond to the matrices D2, D , B̃
and B , respectively, given in [18]. Then the artificial diffusion (AD) terms in (29) can be recast as

AD
ρ
= −hH−1DT

(δ)
̃D(δ)ρ,

AD
m

= −hH−1 D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
= −hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ) is the Dirichlet-SBP operator corresponding to DT

(δ) , i.e., it is DT
(δ) with the elements of first and last row set to 

zero. Then, using the SBP operators (3) and (15), (28) can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

− AD
ρ

D̃f
I,m

− AD
m

Df
I,E

− AD
E

⎞
⎠ , (42)

where f
I,ρ

= ρ.v , f
I,m

= ρ.v.2 + p, and f
I,E

= v.(E + p).
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In (33) we use

(D(a.b))i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h = a1(Db)0 + b0(Da)0 = b1(Da)0 + a0(Db)0 i = 0,

ai+1bi+1−ai−1bi−1
2h =

ai+1+ai−1
2 (Db)i +

bi+1+bi−1
2 (Da)i i = 1, . . . ,N − 1,

aNbN−aN−1bN−1
h = aN(Db)N + bN−1(Da)N = bN(Da)N + aN(Db)N i = N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a = (a0, a2+a0

2 , . . . ,
aN+aN−2

2 , aN ) ,
i,x
a = (a1, a2+a0

2 , . . . ,
aN+aN−2

2 , aN−1 ) , (36)

and

(b,x
a .(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN(Db)N , i = N,

(37)

(i,x
a.(Db))

i =

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . .N − 1,

aN−1(Db)N , i = N.

(38)

Here, superscript b signifies that a is taken at the boundary node and superscript i signifies that a is taken at the first 
neighbouring interior node. A similar relation holds for the averages taken in the y-direction. Using (37) and (38), we can 
rewrite (35) as

Dx(a.b) =
b,x
a .(Dxb) +

i,x

b.(Dxa) =
b,x

b .(Dxa) +
i,x
a.(Dxb),

Dy(a.b) =
b,y
a .(Dyb) +

i,y

b .(Dya) =
b,y

b .(Dya) +
i,y
a .(Dyb),

(39)

where Dx and Dy approximate the x- and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D (ab ))i =
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1 −

a0
b0

h =
b0(Da)0−a0(Db)0

b0b1 =
b1(Da)0−a1(Db)0

b0b1 i = 0,
ai+1
bi+1 −

ai−1
bi−1

2h = 1
bi+1bi−1 ( bi+1+bi−1

2 (Da)i −
ai+1+ai−1

2 (Db)i) , i = 1, . . . ,N − 1
aN
bN −

aN−1
bN−1
h =

bN (Da)N−aN (Db)N
bNbN−1 =

bN−1(Da)N−aN−1(Db)N
bnbN−1

, i = N.

(40)

The inviscid term in (27) can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18] and [19]). Define D

(δ)
2 = H−1(−DT

(δ)
̃D(δ) + 
̄S), 
where D

(δ)
2 , D(δ) , 
̃ = h

2 diag(δ1/2, δ3/2, . . . , δN−1/2) and 
̄ = diag(−δ0, 0, . . . , 0, δN ) correspond to the matrices D2, D , B̃
and B , respectively, given in [18]. Then the artificial diffusion (AD) terms in (29) can be recast as

AD
ρ
= −hH−1DT

(δ)
̃D(δ)ρ,

AD
m

= −hH−1 D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
= −hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ) is the Dirichlet-SBP operator corresponding to DT

(δ) , i.e., it is DT
(δ) with the elements of first and last row set to 

zero. Then, using the SBP operators (3) and (15), (28) can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

− AD
ρ

D̃f
I,m

− AD
m

Df
I,E

− AD
E

⎞
⎠ , (42)

where f
I,ρ

= ρ.v , f
I,m

= ρ.v.2 + p, and f
I,E

= v.(E + p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=

ai+1+ai−1
2(Db)i+

bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(a0,a2+a0

2,...,
aN+aN−2

2,aN),
i,x
a=(a1,a2+a0

2,...,
aN+aN−2

2,aN−1),(36)

and

(b,x
a.(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(i,x
a.(Db))

i=

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=
b,x
a.(Dxb)+

i,x

b.(Dxa)=
b,x

b.(Dxa)+
i,x
a.(Dxb),

Dy(a.b)=
b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+
i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D(ab))i=
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1−

a0
b0

h=
b0(Da)0−a0(Db)0

b0b1=
b1(Da)0−a1(Db)0

b0b1i=0,
ai+1
bi+1−

ai−1
bi−1

2h=1
bi+1bi−1(bi+1+bi−1

2(Da)i−
ai+1+ai−1

2(Db)i),i=1,...,N−1
aN
bN−

aN−1
bN−1
h=

bN(Da)N−aN(Db)N
bNbN−1=

bN−1(Da)N−aN−1(Db)N
bnbN−1

,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D

(δ)
2=H−1(−DT

(δ)
̃D(δ)+
̄S), 
where D

(δ)
2, D(δ), 
̃=h

2diag(δ1/2, δ3/2, ..., δN−1/2)and 
̄=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃
and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

AD
ρ
=−hH−1DT

(δ)
̃D(δ)ρ,

AD
m

=−hH−1D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
=−hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is DT
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

−AD
ρ

D̃f
I,m

−AD
m

Df
I,E

−AD
E

⎞
⎠,(42)

where f
I,ρ

=ρ.v, f
I,m

=ρ.v.2+p, and f
I,E

=v.(E+p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=

ai+1+ai−1
2(Db)i+

bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(a0,a2+a0

2,...,
aN+aN−2

2,aN),
i,x
a=(a1,a2+a0

2,...,
aN+aN−2

2,aN−1),(36)

and

(b,x
a.(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(i,x
a.(Db))

i=

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=
b,x
a.(Dxb)+

i,x

b.(Dxa)=
b,x

b.(Dxa)+
i,x
a.(Dxb),

Dy(a.b)=
b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+
i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D(ab))i=
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1−

a0
b0

h=
b0(Da)0−a0(Db)0

b0b1=
b1(Da)0−a1(Db)0

b0b1i=0,
ai+1
bi+1−

ai−1
bi−1

2h=1
bi+1bi−1(bi+1+bi−1

2(Da)i−
ai+1+ai−1

2(Db)i),i=1,...,N−1
aN
bN−

aN−1
bN−1
h=

bN(Da)N−aN(Db)N
bNbN−1=

bN−1(Da)N−aN−1(Db)N
bnbN−1

,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D

(δ)
2=H−1(−DT

(δ)
̃D(δ)+
̄S), 
where D

(δ)
2, D(δ), 
̃=h

2diag(δ1/2, δ3/2, ..., δN−1/2)and 
̄=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃
and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

AD
ρ
=−hH−1DT

(δ)
̃D(δ)ρ,

AD
m

=−hH−1D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
=−hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is DT
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

−AD
ρ

D̃f
I,m

−AD
m

Df
I,E

−AD
E

⎞
⎠,(42)

where f
I,ρ

=ρ.v, f
I,m

=ρ.v.2+p, and f
I,E

=v.(E+p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=

ai+1+ai−1
2(Db)i+

bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(a0,a2+a0

2,...,
aN+aN−2

2,aN),
i,x
a=(a1,a2+a0

2,...,
aN+aN−2

2,aN−1),(36)

and

(b,x
a.(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(i,x
a.(Db))

i=

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=
b,x
a.(Dxb)+

i,x

b.(Dxa)=
b,x

b.(Dxa)+
i,x
a.(Dxb),

Dy(a.b)=
b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+
i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D(ab))i=
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1−

a0
b0

h=
b0(Da)0−a0(Db)0

b0b1=
b1(Da)0−a1(Db)0

b0b1i=0,
ai+1
bi+1−

ai−1
bi−1

2h=1
bi+1bi−1(bi+1+bi−1

2(Da)i−
ai+1+ai−1

2(Db)i),i=1,...,N−1
aN
bN−

aN−1
bN−1
h=

bN(Da)N−aN(Db)N
bNbN−1=

bN−1(Da)N−aN−1(Db)N
bnbN−1

,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D

(δ)
2=H−1(−DT

(δ)
̃D(δ)+
̄S), 
where D

(δ)
2, D(δ), 
̃=h

2diag(δ1/2, δ3/2, ..., δN−1/2)and 
̄=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃
and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

AD
ρ
=−hH−1DT

(δ)
̃D(δ)ρ,

AD
m

=−hH−1D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
=−hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is DT
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

−AD
ρ

D̃f
I,m

−AD
m

Df
I,E

−AD
E

⎞
⎠,(42)

where f
I,ρ

=ρ.v, f
I,m

=ρ.v.2+p, and f
I,E

=v.(E+p).
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In (33)we use

(D(a.b))i=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a1b1−a0b0
h=a1(Db)0+b0(Da)0=b1(Da)0+a0(Db)0i=0,

ai+1bi+1−ai−1bi−1
2h=

ai+1+ai−1
2(Db)i+

bi+1+bi−1
2(Da)ii=1,...,N−1,

aNbN−aN−1bN−1
h=aN(Db)N+bN−1(Da)N=bN(Da)N+aN(Db)Ni=N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a=(a0,a2+a0

2,...,
aN+aN−2

2,aN),
i,x
a=(a1,a2+a0

2,...,
aN+aN−2

2,aN−1),(36)

and

(b,x
a.(Db))

i
=

⎧⎪⎪⎨
⎪⎪⎩
a0(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN(Db)N,i=N,

(37)

(i,x
a.(Db))

i=

⎧⎪⎪⎨
⎪⎪⎩
a1(Db)0,i=0,

ai+1+ai−1
2(Db)i,i=1,...N−1,

aN−1(Db)N,i=N.

(38)

Here, superscript bsignifies that ais taken at the boundarynode and superscript isignifies that ais taken at the first 
neighbouring interiornode. A similar relation holds for the averages taken in the y-direction. Using (37)and (38), we can 
rewrite (35)as

Dx(a.b)=
b,x
a.(Dxb)+

i,x

b.(Dxa)=
b,x

b.(Dxa)+
i,x
a.(Dxb),

Dy(a.b)=
b,y
a.(Dyb)+

i,y

b.(Dya)=
b,y

b.(Dya)+
i,y
a.(Dyb),

(39)

where Dxand Dyapproximate the x-and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(D(ab))i=
⎧⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

a1
b1−

a0
b0

h=
b0(Da)0−a0(Db)0

b0b1=
b1(Da)0−a1(Db)0

b0b1i=0,
ai+1
bi+1−

ai−1
bi−1

2h=1
bi+1bi−1(bi+1+bi−1

2(Da)i−
ai+1+ai−1

2(Db)i),i=1,...,N−1
aN
bN−

aN−1
bN−1
h=

bN(Da)N−aN(Db)N
bNbN−1=

bN−1(Da)N−aN−1(Db)N
bnbN−1

,i=N.

(40)

The inviscid term in (27)can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18]and [19]). Define D

(δ)
2=H−1(−DT

(δ)
̃D(δ)+
̄S), 
where D

(δ)
2, D(δ), 
̃=h

2diag(δ1/2, δ3/2, ..., δN−1/2)and 
̄=diag(−δ0, 0, ..., 0, δN)correspond to the matrices D2, D, B̃
and B, respectively, given in [18]. Then the artificial diffusion (AD) terms in (29)can be recast as

AD
ρ
=−hH−1DT

(δ)
̃D(δ)ρ,

AD
m

=−hH−1D̃T
(δ)
̃D(δ)(ρ.v),

AD
E
=−hH−1DT

(δ)
̃D(δ)E,

(41)

where D̃T
(δ)is the Dirichlet-SBP operator corresponding to DT

(δ), i.e., it is DT
(δ)with the elements of first and last row set to 

zero. Then, using the SBP operators (3)and (15), (28)can be restated as,

D
I
f
I
=
⎛
⎝

Df
I,ρ

−AD
ρ

D̃f
I,m

−AD
m

Df
I,E

−AD
E

⎞
⎠,(42)

where f
I,ρ

=ρ.v, f
I,m

=ρ.v.2+p, and f
I,E

=v.(E+p).
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41) and (42), the scheme (27) is recast as

ρt + D(ρ.v) + hH−1DT
(δ)
̃D(δ)ρ = 0,

(ρ.v)t + D̃(ρ.v.2 + p) + hH−1 D̃T
(δ)
̃D(δ)(ρ.v) = (2μ + λ)D̃Dv,

Et + D(v.(E + p)) + hH−1DT
(δ)
̃D(δ)E = (2μ + λ)D(

b,x
v .Dv) + κ(DDT− H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT = (ρ, v, p) = (ρex, vex, pex) +
(ρ ′, v ′, p′). (Smooth exact solution and a perturbation. Cf. Appendix A.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃
′D(δ)βex (where βex is any of the independent variables). Due to the form of 
̃ ∼ v + T, these terms are bounded by 

the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v) in the derivations below.) The 
linearised equation scheme (43) becomes:

ρ ′
t + D(ρex.v

′ + ρ ′.vex) + hH−1DT
(δ)
̃D(δ)ρ

′ = O(1,v),

v ′
t + 1

ρex
.D̃(2ρex.vex.v

′ + ρ ′.vex.
2 + p′) − vex.

ρex
.D(ρex.v

′ + ρ ′.vex)

− vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ

′ + 1
ρex

.hH−1 D̃T
(δ)
̃D(δ)(ρex.v

′ + ρ ′.vex) = 2μ+λ
ρex

.D̃Dv ′ +O(1,v),

p′
t

γ − 1
+ 1

2 vex.
2D(ρex.v

′ + ρ ′.vex) − vex.D̃(2ρex.vex.v
′ + ρ ′vex.

2 + p′)

+D
(

γ
γ −1 (v ′pex + vexp

′) + 3
2ρex.vex.v

′ + 1
2ρ

′vex.
3
)

+ 1
2 vex.

2hH−1DT
(δ)
̃D(δ)ρ

′ − vex.hH
−1 D̃T

(δ)
̃D(δ)(ρex.v
′ + ρ ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ −1 + ρex.vex.v

′ + 1
2ρ

′.vex.
2) = (2μ + λ)

(
D(

b,x
v ex.Dv ′) − vex.D̃Dv ′

)

+ κ
R

(
DD

(
p′.
ρex

− pex.ρ
′.

ρex.
2

)
− H−1BD

(
p′.
ρex

− pex.ρ
′.

ρex.
2

))
+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b
′) = aex.Db′ + zeroth-order terms of b′.

The zeroth-order terms can then be included in the O(1, v) terms. Furthermore, we obtain first-derivative approximations 
of v ′, p′ and ρ ′ in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see Appendix A.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ ′
t + ρex.Dv ′ + vex.Dρ ′ + hH−1DT

(δ)
̃D(δ)ρ
′ = O(1,v),

v ′
t + vex.D̃v ′ + 1

ρex
.D̃p′ + hH−1 D̃T

(δ)
̃D(δ)v
′ = 2μ+λ

ρex
.D̃Dv ′ +O(1,v),

p′
t + vex.Dp′ + γ pex.Dv ′ + hH−1DT

(δ)
̃D(δ)p
′ = (2μ + λ)(γ − 1)(

b,x
v ex − vex).D̃Dv ′

+ κ(γ −1)
R

(
1

ρex
.DDp − pex.

ρex.
2 .DDρ ′ − 1

ρex
.H−1BDp′

+ pex.

ρex.
2 .H−1BDρ ′

)
+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex = constant , the difference (

b,x
v ex − vex) = 0, since 

b,x
v ex is an arithmetic mean of vex. This 

would immediately take us to (16)-(18) (plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)

˜
D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)

˜
D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)

˜
D(δ)E=(2μ+λ)D(
b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
˜
′D(δ)βex(where βexis any of the independent variables). Due to the form of ˜
∼v+T, these terms are bounded by 

the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′
t+D(ρex.v

′+ρ′.vex)+hH−1DT
(δ)

˜
D(δ)ρ
′=O(1,v),

v′
t+1

ρex
.D̃(2ρex.vex.v

′+ρ′.vex.
2+p′)−vex.

ρex
.D(ρex.v

′+ρ′.vex)

−vex.
ρex

.hH−1DT
(δ)

˜
D(δ)ρ
′+1

ρex
.hH−1D̃T

(δ)
˜
D(δ)(ρex.v

′+ρ′.vex)=2μ+λ
ρex

.D̃Dv′+O(1,v),

p′
t

γ−1
+1

2vex.
2D(ρex.v

′+ρ′.vex)−vex.D̃(2ρex.vex.v
′+ρ′vex.

2+p′)

+D
(

γ
γ−1(v′pex+vexp

′)+3
2ρex.vex.v

′+1
2ρ

′vex.
3
)

+1
2vex.

2hH−1DT
(δ)

˜
D(δ)ρ
′−vex.hH

−1D̃T
(δ)

˜
D(δ)(ρex.v
′+ρ′.vex)

+hH−1DT
(δ)

˜
D(δ)(
p′
γ−1+ρex.vex.v

′+1
2ρ

′.vex.
2)=(2μ+λ)

(
D(

b,x
vex.Dv′)−vex.D̃Dv′

)

+κ
R

(
DD

(
p′.
ρex

−pex.ρ
′.

ρex.
2

)
−H−1BD

(
p′.
ρex

−pex.ρ
′.

ρex.
2

))
+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b
′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′
t+ρex.Dv′+vex.Dρ′+hH−1DT

(δ)
˜
D(δ)ρ

′=O(1,v),

v′
t+vex.D̃v′+1

ρex
.D̃p′+hH−1D̃T

(δ)
˜
D(δ)v

′=2μ+λ
ρex

.D̃Dv′+O(1,v),

p′
t+vex.Dp′+γpex.Dv′+hH−1DT

(δ)
˜
D(δ)p

′=(2μ+λ)(γ−1)(
b,x
vex−vex).D̃Dv′

+κ(γ−1)
R

(
1
ρex

.DDp−pex.

ρex.
2.DDρ′−1

ρex
.H−1BDp′

+pex.

ρex.
2.H−1BDρ′

)
+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)

˜
D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)

˜
D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)

˜
D(δ)E=(2μ+λ)D(
b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
˜
′D(δ)βex(where βexis any of the independent variables). Due to the form of ˜
∼v+T, these terms are bounded by 

the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′
t+D(ρex.v

′+ρ′.vex)+hH−1DT
(δ)

˜
D(δ)ρ
′=O(1,v),

v′
t+1

ρex
.D̃(2ρex.vex.v

′+ρ′.vex.
2+p′)−vex.

ρex
.D(ρex.v

′+ρ′.vex)

−vex.
ρex

.hH−1DT
(δ)

˜
D(δ)ρ
′+1

ρex
.hH−1D̃T

(δ)
˜
D(δ)(ρex.v

′+ρ′.vex)=2μ+λ
ρex

.D̃Dv′+O(1,v),

p′
t

γ−1
+1

2vex.
2D(ρex.v

′+ρ′.vex)−vex.D̃(2ρex.vex.v
′+ρ′vex.

2+p′)

+D
(

γ
γ−1(v′pex+vexp

′)+3
2ρex.vex.v

′+1
2ρ

′vex.
3
)

+1
2vex.

2hH−1DT
(δ)

˜
D(δ)ρ
′−vex.hH

−1D̃T
(δ)

˜
D(δ)(ρex.v
′+ρ′.vex)

+hH−1DT
(δ)

˜
D(δ)(
p′
γ−1+ρex.vex.v

′+1
2ρ

′.vex.
2)=(2μ+λ)

(
D(

b,x
vex.Dv′)−vex.D̃Dv′

)

+κ
R

(
DD

(
p′.
ρex

−pex.ρ
′.

ρex.
2

)
−H−1BD

(
p′.
ρex

−pex.ρ
′.

ρex.
2

))
+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b
′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′
t+ρex.Dv′+vex.Dρ′+hH−1DT

(δ)
˜
D(δ)ρ

′=O(1,v),

v′
t+vex.D̃v′+1

ρex
.D̃p′+hH−1D̃T

(δ)
˜
D(δ)v

′=2μ+λ
ρex

.D̃Dv′+O(1,v),

p′
t+vex.Dp′+γpex.Dv′+hH−1DT

(δ)
˜
D(δ)p

′=(2μ+λ)(γ−1)(
b,x
vex−vex).D̃Dv′

+κ(γ−1)
R

(
1
ρex

.DDp−pex.

ρex.
2.DDρ′−1

ρex
.H−1BDp′

+pex.

ρex.
2.H−1BDρ′

)
+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41) and (42), the scheme (27) is recast as

ρt + D(ρ.v) + hH−1DT
(δ)
̃D(δ)ρ = 0,

(ρ.v)t + D̃(ρ.v.2 + p) + hH−1 D̃T
(δ)
̃D(δ)(ρ.v) = (2μ + λ)D̃Dv,

Et + D(v.(E + p)) + hH−1DT
(δ)
̃D(δ)E = (2μ + λ)D(

b,x
v .Dv) + κ(DDT− H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT = (ρ, v, p) = (ρex, vex, pex) +
(ρ ′, v ′, p′). (Smooth exact solution and a perturbation. Cf. Appendix A.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex (where βex is any of the independent variables). Due to the form of 
̃ ∼ v + T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v) in the derivations below.) The 
linearised equation scheme (43) becomes:

ρ ′t + D(ρex.v ′ + ρ ′.vex) + hH−1DT
(δ)
̃D(δ)ρ ′ = O(1,v),

v ′t + 1
ρex

.D̃(2ρex.vex.v ′ + ρ ′.vex.2 + p′) −
vex.
ρex

.D(ρex.v ′ + ρ ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ ′ + 1

ρex
.hH−1 D̃T

(δ)
̃D(δ)(ρex.v ′ + ρ ′.vex) =
2μ+λ
ρex

.D̃Dv ′ +O(1,v),

p′t
γ − 1 + 1

2 vex.2D(ρex.v ′ + ρ ′.vex) − vex.D̃(2ρex.vex.v ′ + ρ ′vex.2 + p′)

+D ( γ
γ −1 (v ′pex + vexp′) + 3

2ρex.vex.v ′ + 1
2ρ ′vex.3)

+ 1
2 vex.2hH−1DT

(δ)
̃D(δ)ρ ′ − vex.hH−1 D̃T
(δ)
̃D(δ)(ρex.v ′ + ρ ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ −1 + ρex.vex.v ′ + 1

2ρ ′.vex.2) = (2μ + λ)(D(
b,x
v ex.Dv ′) − vex.D̃Dv ′)

+
κ
R

(DD ( p′.
ρex −

pex.ρ ′.
ρex.2 )

− H−1BD( p′.
ρex −

pex.ρ ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′) = aex.Db′ + zeroth-order terms of b′.

The zeroth-order terms can then be included in the O(1, v) terms. Furthermore, we obtain first-derivative approximations 
of v ′, p′ and ρ ′ in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see Appendix A.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ ′t + ρex.Dv ′ + vex.Dρ ′ + hH−1DT
(δ)
̃D(δ)ρ ′ = O(1,v),

v ′t + vex.D̃v ′ + 1
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(δ)
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.D̃Dv ′ +O(1,v),

p′t + vex.Dp′ + γ pex.Dv ′ + hH−1DT
(δ)
̃D(δ)p′ = (2μ + λ)(γ − 1)(

b,x
v ex − vex).D̃Dv ′

+
κ(γ −1)

R

( 1
ρex

.DDp −
pex.

ρex.2 .DDρ ′ − 1
ρex

.H−1BDp′

+
pex.

ρex.2 .H−1BDρ ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex = constant , the difference (

b,x
v ex − vex) = 0, since 

b,x
v ex is an arithmetic mean of vex. This 

would immediately take us to (16)-(18) (plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41) and (42), the scheme (27) is recast as

ρt + D(ρ.v) + hH−1DT
(δ)
̃D(δ)ρ = 0,

(ρ.v)t + D̃(ρ.v.2 + p) + hH−1 D̃T
(δ)
̃D(δ)(ρ.v) = (2μ + λ)D̃Dv,

Et + D(v.(E + p)) + hH−1DT
(δ)
̃D(δ)E = (2μ + λ)D(

b,x
v .Dv) + κ(DDT− H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT = (ρ, v, p) = (ρex, vex, pex) +
(ρ ′, v ′, p′). (Smooth exact solution and a perturbation. Cf. Appendix A.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex (where βex is any of the independent variables). Due to the form of 
̃ ∼ v + T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v) in the derivations below.) The 
linearised equation scheme (43) becomes:

ρ ′t + D(ρex.v ′ + ρ ′.vex) + hH−1DT
(δ)
̃D(δ)ρ ′ = O(1,v),

v ′t + 1
ρex

.D̃(2ρex.vex.v ′ + ρ ′.vex.2 + p′) −
vex.
ρex

.D(ρex.v ′ + ρ ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ ′ + 1

ρex
.hH−1 D̃T

(δ)
̃D(δ)(ρex.v ′ + ρ ′.vex) =
2μ+λ
ρex

.D̃Dv ′ +O(1,v),

p′t
γ − 1 + 1

2 vex.2D(ρex.v ′ + ρ ′.vex) − vex.D̃(2ρex.vex.v ′ + ρ ′vex.2 + p′)

+D ( γ
γ −1 (v ′pex + vexp′) + 3

2ρex.vex.v ′ + 1
2ρ ′vex.3)

+ 1
2 vex.2hH−1DT

(δ)
̃D(δ)ρ ′ − vex.hH−1 D̃T
(δ)
̃D(δ)(ρex.v ′ + ρ ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ −1 + ρex.vex.v ′ + 1

2ρ ′.vex.2) = (2μ + λ)(D(
b,x
v ex.Dv ′) − vex.D̃Dv ′)

+
κ
R

(DD ( p′.
ρex −

pex.ρ ′.
ρex.2 )

− H−1BD( p′.
ρex −

pex.ρ ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′) = aex.Db′ + zeroth-order terms of b′.

The zeroth-order terms can then be included in the O(1, v) terms. Furthermore, we obtain first-derivative approximations 
of v ′, p′ and ρ ′ in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see Appendix A.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ ′t + ρex.Dv ′ + vex.Dρ ′ + hH−1DT
(δ)
̃D(δ)ρ ′ = O(1,v),

v ′t + vex.D̃v ′ + 1
ρex

.D̃p′ + hH−1 D̃T
(δ)
̃D(δ)v ′ = 2μ+λ

ρex
.D̃Dv ′ +O(1,v),

p′t + vex.Dp′ + γ pex.Dv ′ + hH−1DT
(δ)
̃D(δ)p′ = (2μ + λ)(γ − 1)(

b,x
v ex − vex).D̃Dv ′

+
κ(γ −1)

R

( 1
ρex

.DDp −
pex.

ρex.2 .DDρ ′ − 1
ρex

.H−1BDp′

+
pex.

ρex.2 .H−1BDρ ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex = constant , the difference (

b,x
v ex − vex) = 0, since 

b,x
v ex is an arithmetic mean of vex. This 

would immediately take us to (16)-(18) (plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)
̃D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)
̃D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)
̃D(δ)E=(2μ+λ)D(

b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex(where βexis any of the independent variables). Due to the form of 
̃∼v+T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′t+D(ρex.v′+ρ′.vex)+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+1
ρex

.D̃(2ρex.vex.v′+ρ′.vex.2+p′)−
vex.
ρex

.D(ρex.v′+ρ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ′+1

ρex
.hH−1D̃T

(δ)
̃D(δ)(ρex.v′+ρ′.vex)=
2μ+λ
ρex

.D̃Dv′+O(1,v),

p′t
γ−1+1

2vex.2D(ρex.v′+ρ′.vex)−vex.D̃(2ρex.vex.v′+ρ′vex.2+p′)

+D(γ
γ−1(v′pex+vexp′)+3

2ρex.vex.v′+1
2ρ′vex.3)

+1
2vex.2hH−1DT

(δ)
̃D(δ)ρ′−vex.hH−1D̃T
(δ)
̃D(δ)(ρex.v′+ρ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ−1+ρex.vex.v′+1

2ρ′.vex.2)=(2μ+λ)(D(
b,x
vex.Dv′)−vex.D̃Dv′)

+
κ
R

(DD(p′.
ρex−

pex.ρ′.
ρex.2)

−H−1BD(p′.
ρex−

pex.ρ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′t+ρex.Dv′+vex.Dρ′+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+vex.D̃v′+1
ρex

.D̃p′+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρex
.D̃Dv′+O(1,v),

p′t+vex.Dp′+γpex.Dv′+hH−1DT
(δ)
̃D(δ)p′=(2μ+λ)(γ−1)(

b,x
vex−vex).D̃Dv′

+
κ(γ−1)

R

(1
ρex

.DDp−
pex.

ρex.2.DDρ′−1
ρex

.H−1BDp′

+
pex.

ρex.2.H−1BDρ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)
̃D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)
̃D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)
̃D(δ)E=(2μ+λ)D(

b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex(where βexis any of the independent variables). Due to the form of 
̃∼v+T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′t+D(ρex.v′+ρ′.vex)+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+1
ρex

.D̃(2ρex.vex.v′+ρ′.vex.2+p′)−
vex.
ρex

.D(ρex.v′+ρ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ′+1

ρex
.hH−1D̃T

(δ)
̃D(δ)(ρex.v′+ρ′.vex)=
2μ+λ
ρex

.D̃Dv′+O(1,v),

p′t
γ−1+1

2vex.2D(ρex.v′+ρ′.vex)−vex.D̃(2ρex.vex.v′+ρ′vex.2+p′)

+D(γ
γ−1(v′pex+vexp′)+3

2ρex.vex.v′+1
2ρ′vex.3)

+1
2vex.2hH−1DT

(δ)
̃D(δ)ρ′−vex.hH−1D̃T
(δ)
̃D(δ)(ρex.v′+ρ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ−1+ρex.vex.v′+1

2ρ′.vex.2)=(2μ+λ)(D(
b,x
vex.Dv′)−vex.D̃Dv′)

+
κ
R

(DD(p′.
ρex−

pex.ρ′.
ρex.2)

−H−1BD(p′.
ρex−

pex.ρ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′t+ρex.Dv′+vex.Dρ′+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+vex.D̃v′+1
ρex

.D̃p′+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρex
.D̃Dv′+O(1,v),

p′t+vex.Dp′+γpex.Dv′+hH−1DT
(δ)
̃D(δ)p′=(2μ+λ)(γ−1)(

b,x
vex−vex).D̃Dv′

+
κ(γ−1)

R

(1
ρex

.DDp−
pex.

ρex.2.DDρ′−1
ρex

.H−1BDp′

+
pex.

ρex.2.H−1BDρ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)
̃D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)
̃D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)
̃D(δ)E=(2μ+λ)D(

b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex(where βexis any of the independent variables). Due to the form of 
̃∼v+T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′t+D(ρex.v′+ρ′.vex)+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+1
ρex

.D̃(2ρex.vex.v′+ρ′.vex.2+p′)−
vex.
ρex

.D(ρex.v′+ρ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ′+1

ρex
.hH−1D̃T

(δ)
̃D(δ)(ρex.v′+ρ′.vex)=
2μ+λ
ρex

.D̃Dv′+O(1,v),

p′t
γ−1+1

2vex.2D(ρex.v′+ρ′.vex)−vex.D̃(2ρex.vex.v′+ρ′vex.2+p′)

+D(γ
γ−1(v′pex+vexp′)+3

2ρex.vex.v′+1
2ρ′vex.3)

+1
2vex.2hH−1DT

(δ)
̃D(δ)ρ′−vex.hH−1D̃T
(δ)
̃D(δ)(ρex.v′+ρ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ−1+ρex.vex.v′+1

2ρ′.vex.2)=(2μ+λ)(D(
b,x
vex.Dv′)−vex.D̃Dv′)

+
κ
R

(DD(p′.
ρex−

pex.ρ′.
ρex.2)

−H−1BD(p′.
ρex−

pex.ρ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′t+ρex.Dv′+vex.Dρ′+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+vex.D̃v′+1
ρex

.D̃p′+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρex
.D̃Dv′+O(1,v),

p′t+vex.Dp′+γpex.Dv′+hH−1DT
(δ)
̃D(δ)p′=(2μ+λ)(γ−1)(

b,x
vex−vex).D̃Dv′

+
κ(γ−1)

R

(1
ρex

.DDp−
pex.

ρex.2.DDρ′−1
ρex

.H−1BDp′

+
pex.

ρex.2.H−1BDρ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41)and (42), the scheme (27)is recast as

ρt+D(ρ.v)+hH−1DT
(δ)
̃D(δ)ρ=0,

(ρ.v)t+D̃(ρ.v.2+p)+hH−1D̃T
(δ)
̃D(δ)(ρ.v)=(2μ+λ)D̃Dv,

Et+D(v.(E+p))+hH−1DT
(δ)
̃D(δ)E=(2μ+λ)D(

b,x
v.Dv)+κ(DDT−H−1BDT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT=(ρ, v, p) =(ρex, vex, pex) +
(ρ′, v′, p′). (Smooth exact solution and a perturbation. Cf.AppendixA.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃′D(δ)βex(where βexis any of the independent variables). Due to the form of 
̃∼v+T, these terms are bounded by 
the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v)in the derivations below.) The 
linearised equation scheme (43)becomes:

ρ′t+D(ρex.v′+ρ′.vex)+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+1
ρex

.D̃(2ρex.vex.v′+ρ′.vex.2+p′)−
vex.
ρex

.D(ρex.v′+ρ′.vex)

−
vex.
ρex

.hH−1DT
(δ)
̃D(δ)ρ′+1

ρex
.hH−1D̃T

(δ)
̃D(δ)(ρex.v′+ρ′.vex)=
2μ+λ
ρex

.D̃Dv′+O(1,v),

p′t
γ−1+1

2vex.2D(ρex.v′+ρ′.vex)−vex.D̃(2ρex.vex.v′+ρ′vex.2+p′)

+D(γ
γ−1(v′pex+vexp′)+3

2ρex.vex.v′+1
2ρ′vex.3)

+1
2vex.2hH−1DT

(δ)
̃D(δ)ρ′−vex.hH−1D̃T
(δ)
̃D(δ)(ρex.v′+ρ′.vex)

+hH−1DT
(δ)
̃D(δ)(

p′
γ−1+ρex.vex.v′+1

2ρ′.vex.2)=(2μ+λ)(D(
b,x
vex.Dv′)−vex.D̃Dv′)

+
κ
R

(DD(p′.
ρex−

pex.ρ′.
ρex.2)

−H−1BD(p′.
ρex−

pex.ρ′.
ρex.2

))+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b′)=aex.Db′+zeroth-ordertermsofb′.

The zeroth-order terms can then be included in the O(1, v)terms. Furthermore, we obtain first-derivative approximations 
of v′, p′and ρ′in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see AppendixA.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ′t+ρex.Dv′+vex.Dρ′+hH−1DT
(δ)
̃D(δ)ρ′=O(1,v),

v′t+vex.D̃v′+1
ρex

.D̃p′+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρex
.D̃Dv′+O(1,v),

p′t+vex.Dp′+γpex.Dv′+hH−1DT
(δ)
̃D(δ)p′=(2μ+λ)(γ−1)(

b,x
vex−vex).D̃Dv′

+
κ(γ−1)

R

(1
ρex

.DDp−
pex.

ρex.2.DDρ′−1
ρex

.H−1BDp′

+
pex.

ρex.2.H−1BDρ′)+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex=constant, the difference (

b,x
vex−vex) =0, since 

b,x
vexis an arithmetic mean of vex. This 

would immediately take us to (16)-(18)(plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
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Remark. Consider the advection equation, ut + a(x, t)ux = 0 whose estimate is ∂t‖u‖2 + au2|10 + ∫ 1
0 axu2 dx = 0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant a within the range of a, and |ax| is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
v ex − vex) in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1] and introducing ρ̂ = c∗√

γ ρ∗ ρ ′ and T̂ = − c∗
ρ∗√γ

√
γ −1

ρ ′ +
√

γ
γ −1

1
ρ∗c∗ p′ =

γR
c∗√

γ
√

γ −1
T′ to reduce notation, we arrive at

ρ̂t + v∗Dρ̂ + c∗√
γ Dv ′ + hH−1DT

(δ)
̃D(δ)ρ̂ = O(1,v), (44)

v ′
t + c∗√

γ D̃ρ̂ + v∗ D̃v ′ +
√

γ −1
γ c∗ D̃T̂+ hH−1 D̃T

(δ)
̃D(δ)v
′ = 2μ+λ

ρ∗ D̃Dv ′ +O(1,v), (45)

T̂t +
√

γ −1
γ c∗Dv ′ + v∗DT̂+ hH−1DT

(δ)
̃D(δ)T̂=
√

γ
√

γ −1
ρ∗c∗ (2μ + λ)(

b,x
v ex − vex).D̃Dv ′

+ γμ
Prρ∗

(
DDT̂− H−1BDT̂

)+O(1,v). (46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43) is linearly stable.

Proof. Linearising and symmetrising the non-linear scheme (43) leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition 4.1 are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44) - (45)).

In the energy analysis for equation (46) we multiply by T̂T H and add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂T HH−1DT
(δ)
̃D(δ)T̂− 2

√
γ

√
γ −1

ρ∗c∗ (2μ + λ)T̂T H

(
(
b,x
v ex − vex).DDv ′

)
+ 2T̂T HO(1,v)

= 2h(D(δ)T̂)T 
̃D(δ)T̂+ 2
√

γ
√

γ −1
ρ∗c∗ (2μ + λ)(D(

b,x
v ex − vex).T̂)T H

(
Dv ′)+ 2T̂T HO(1,v). (47)

The first term is quadratic with positive sign since 
̃ is diagonal and 
̃ii = δi+1/2 ≥ 0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
v ex − vex).T̂)T H(Dv ′). 

Since 
b,x
v ex is an average of the smooth function vex, (

b,x
v ex − vex) ∼ O(h). Hence, (D(

b,x
v ex − vex).T̂)T H(Dv ′) ≤ C‖DT̂‖‖L(v ′)‖

where L(v ′) represents a vector whose entries are linear combinations of the elements of v ′ . Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26) as 
‖DT̂‖2 and ‖v ′‖2 terms.) �

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43) indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43) is obtained as follows: Replace the difference operators D , with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃ with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8] for information on the (4,2)-operator and [17] for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18) (now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut + f (u)x = 0, x ∈R. (48)
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Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗ √

γρ∗ρ′and T̂=−c∗
ρ∗√γ

√
γ−1

ρ′+
√

γ
γ−1

1
ρ∗c∗p′=

γR
c∗√

γ
√

γ−1
T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗ √
γDv′+hH−1DT

(δ)
˜
D(δ)ρ̂=O(1,v),(44)

v′
t+c∗ √

γD̃ρ̂+v∗D̃v′+
√

γ−1
γc∗D̃T̂+hH−1D̃T

(δ)
˜
D(δ)v

′=2μ+λ
ρ∗D̃Dv′+O(1,v),(45)

T̂t+
√

γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
˜
D(δ)T̂=

√
γ

√
γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+γμ
Prρ∗

(
DDT̂−H−1BDT̂

)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).

In the energy analysis for equation (46)we multiply by T̂THand add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂THH−1DT
(δ)

˜
D(δ)T̂−2
√

γ
√

γ−1
ρ∗c∗(2μ+λ)T̂TH

(
(

b,x
vex−vex).DDv′

)
+2T̂THO(1,v)

=2h(D(δ)T̂)T˜
D(δ)T̂+2
√

γ
√

γ−1
ρ∗c∗(2μ+λ)(D(

b,x
vex−vex).T̂)TH

(
Dv′)+2T̂THO(1,v).(47)

The first term is quadratic with positive sign since ˜
is diagonal and ˜
ii=δi+1/2≥0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
vex−vex).T̂)TH(Dv′). 

Since 
b,x
vexis an average of the smooth function vex, (

b,x
vex−vex) ∼O(h). Hence, (D(

b,x
vex−vex).T̂)TH(Dv′) ≤C‖DT̂‖‖L(v′)‖

where L(v′)represents a vector whose entries are linear combinations of the elements of v′. Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26)as 
‖DT̂‖2and ‖v′‖2terms.)�

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43)indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43)is obtained as follows: Replace the difference operators D, with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8]for information on the (4,2)-operator and [17]for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18)(now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut+f(u)x=0,x∈R.(48)
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Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗ √

γρ∗ρ′and T̂=−c∗
ρ∗√γ

√
γ−1

ρ′+
√

γ
γ−1

1
ρ∗c∗p′=

γR
c∗√

γ
√

γ−1
T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗ √
γDv′+hH−1DT

(δ)
˜
D(δ)ρ̂=O(1,v),(44)

v′
t+c∗ √

γD̃ρ̂+v∗D̃v′+
√

γ−1
γc∗D̃T̂+hH−1D̃T

(δ)
˜
D(δ)v

′=2μ+λ
ρ∗D̃Dv′+O(1,v),(45)

T̂t+
√

γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
˜
D(δ)T̂=

√
γ

√
γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+γμ
Prρ∗

(
DDT̂−H−1BDT̂

)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).

In the energy analysis for equation (46)we multiply by T̂THand add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂THH−1DT
(δ)

˜
D(δ)T̂−2
√

γ
√

γ−1
ρ∗c∗(2μ+λ)T̂TH

(
(

b,x
vex−vex).DDv′

)
+2T̂THO(1,v)

=2h(D(δ)T̂)T˜
D(δ)T̂+2
√

γ
√

γ−1
ρ∗c∗(2μ+λ)(D(

b,x
vex−vex).T̂)TH

(
Dv′)+2T̂THO(1,v).(47)

The first term is quadratic with positive sign since ˜
is diagonal and ˜
ii=δi+1/2≥0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
vex−vex).T̂)TH(Dv′). 

Since 
b,x
vexis an average of the smooth function vex, (

b,x
vex−vex) ∼O(h). Hence, (D(

b,x
vex−vex).T̂)TH(Dv′) ≤C‖DT̂‖‖L(v′)‖

where L(v′)represents a vector whose entries are linear combinations of the elements of v′. Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26)as 
‖DT̂‖2and ‖v′‖2terms.)�

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43)indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43)is obtained as follows: Replace the difference operators D, with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8]for information on the (4,2)-operator and [17]for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18)(now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut+f(u)x=0,x∈R.(48)
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Remark. Consider the advection equation, ut + a(x, t)ux = 0 whose estimate is ∂t‖u‖2 + au2|10 + ∫ 1
0 axu2 dx = 0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant a within the range of a, and |ax| is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
v ex − vex) in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1] and introducing ρ̂ = c∗

√γ ρ∗ ρ ′ and T̂ = − c∗
ρ∗√γ √γ −1ρ ′ +√ γ

γ −1
1

ρ∗c∗ p′ =
γR

c∗√γ √γ −1T′ to reduce notation, we arrive at

ρ̂t + v∗Dρ̂ + c∗
√γ Dv ′ + hH−1DT

(δ)
̃D(δ)ρ̂ = O(1,v), (44)

v ′t + c∗
√γ D̃ρ̂ + v∗ D̃v ′ +√ γ −1

γ c∗ D̃T̂+ hH−1 D̃T
(δ)
̃D(δ)v ′ = 2μ+λ

ρ∗ D̃Dv ′ +O(1,v), (45)

T̂t +√ γ −1
γ c∗Dv ′ + v∗DT̂+ hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ −1

ρ∗c∗ (2μ + λ)(
b,x
v ex − vex).D̃Dv ′

+
γμ
Prρ∗ (DDT̂− H−1BDT̂)+O(1,v). (46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43) is linearly stable.

Proof. Linearising and symmetrising the non-linear scheme (43) leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition 4.1 are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44) - (45)).

In the energy analysis for equation (46) we multiply by T̂T H and add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂
T
HH−1DT

(δ)
̃D(δ)T̂− 2
√γ √γ −1

ρ∗c∗ (2μ + λ)T̂
T
H ((

b,x
v ex − vex).DDv ′)+ 2T̂

T
HO(1,v)

= 2h(D(δ)T̂)
T

̃D(δ)T̂+ 2

√γ√γ −1
ρ∗c∗ (2μ + λ)(D(

b,x
v ex − vex).T̂)

T
H (Dv ′)+ 2T̂

T
HO(1,v). (47)

The first term is quadratic with positive sign since 
̃ is diagonal and 
̃ii = δi+1/2 ≥ 0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
v ex − vex).T̂)T H(Dv ′). 

Since 
b,x
v ex is an average of the smooth function vex, (

b,x
v ex − vex) ∼ O(h). Hence, (D(

b,x
v ex − vex).T̂)T H(Dv ′) ≤ C‖DT̂‖‖L(v ′)‖

where L(v ′) represents a vector whose entries are linear combinations of the elements of v ′ . Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26) as 
‖DT̂‖2 and ‖v ′‖2 terms.) �

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43) indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43) is obtained as follows: Replace the difference operators D , with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃ with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8] for information on the (4,2)-operator and [17] for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18) (now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut + f (u)x = 0, x ∈R. (48)
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Remark. Consider the advection equation, ut + a(x, t)ux = 0 whose estimate is ∂t‖u‖2 + au2|10 + ∫ 1
0 axu2 dx = 0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant a within the range of a, and |ax| is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
v ex − vex) in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1] and introducing ρ̂ = c∗

√γ ρ∗ ρ ′ and T̂ = − c∗
ρ∗√γ √γ −1ρ ′ +√ γ

γ −1
1

ρ∗c∗ p′ =
γR

c∗√γ √γ −1T′ to reduce notation, we arrive at

ρ̂t + v∗Dρ̂ + c∗
√γ Dv ′ + hH−1DT

(δ)
̃D(δ)ρ̂ = O(1,v), (44)

v ′t + c∗
√γ D̃ρ̂ + v∗ D̃v ′ +√ γ −1

γ c∗ D̃T̂+ hH−1 D̃T
(δ)
̃D(δ)v ′ = 2μ+λ

ρ∗ D̃Dv ′ +O(1,v), (45)

T̂t +√ γ −1
γ c∗Dv ′ + v∗DT̂+ hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ −1

ρ∗c∗ (2μ + λ)(
b,x
v ex − vex).D̃Dv ′

+
γμ
Prρ∗ (DDT̂− H−1BDT̂)+O(1,v). (46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43) is linearly stable.

Proof. Linearising and symmetrising the non-linear scheme (43) leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition 4.1 are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44) - (45)).

In the energy analysis for equation (46) we multiply by T̂T H and add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂
T
HH−1DT

(δ)
̃D(δ)T̂− 2
√γ √γ −1

ρ∗c∗ (2μ + λ)T̂
T
H ((

b,x
v ex − vex).DDv ′)+ 2T̂

T
HO(1,v)

= 2h(D(δ)T̂)
T

̃D(δ)T̂+ 2

√γ√γ −1
ρ∗c∗ (2μ + λ)(D(

b,x
v ex − vex).T̂)

T
H (Dv ′)+ 2T̂

T
HO(1,v). (47)

The first term is quadratic with positive sign since 
̃ is diagonal and 
̃ii = δi+1/2 ≥ 0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
v ex − vex).T̂)T H(Dv ′). 

Since 
b,x
v ex is an average of the smooth function vex, (

b,x
v ex − vex) ∼ O(h). Hence, (D(

b,x
v ex − vex).T̂)T H(Dv ′) ≤ C‖DT̂‖‖L(v ′)‖

where L(v ′) represents a vector whose entries are linear combinations of the elements of v ′ . Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26) as 
‖DT̂‖2 and ‖v ′‖2 terms.) �

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43) indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43) is obtained as follows: Replace the difference operators D , with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃ with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8] for information on the (4,2)-operator and [17] for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18) (now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut + f (u)x = 0, x ∈R. (48)
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Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗

√γρ∗ρ′and T̂=−c∗
ρ∗√γ√γ−1ρ′+√γ

γ−1
1

ρ∗c∗p′=
γR

c∗√γ√γ−1T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗
√γDv′+hH−1DT

(δ)
̃D(δ)ρ̂=O(1,v),(44)

v′t+c∗
√γD̃ρ̂+v∗D̃v′+√γ−1

γc∗D̃T̂+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρ∗D̃Dv′+O(1,v),(45)

T̂t+√γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+
γμ
Prρ∗(DDT̂−H−1BDT̂)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).

In the energy analysis for equation (46)we multiply by T̂THand add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂
T
HH−1DT

(δ)
̃D(δ)T̂−2
√γ√γ−1

ρ∗c∗(2μ+λ)T̂
T
H((

b,x
vex−vex).DDv′)+2T̂

T
HO(1,v)

=2h(D(δ)T̂)
T

̃D(δ)T̂+2

√γ√γ−1
ρ∗c∗(2μ+λ)(D(

b,x
vex−vex).T̂)

T
H(Dv′)+2T̂

T
HO(1,v).(47)

The first term is quadratic with positive sign since 
̃is diagonal and 
̃ii=δi+1/2≥0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
vex−vex).T̂)TH(Dv′). 

Since 
b,x
vexis an average of the smooth function vex, (

b,x
vex−vex) ∼O(h). Hence, (D(

b,x
vex−vex).T̂)TH(Dv′) ≤C‖DT̂‖‖L(v′)‖

where L(v′)represents a vector whose entries are linear combinations of the elements of v′. Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26)as 
‖DT̂‖2and ‖v′‖2terms.)�

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43)indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43)is obtained as follows: Replace the difference operators D, with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8]for information on the (4,2)-operator and [17]for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18)(now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut+f(u)x=0,x∈R.(48)
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Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗

√γρ∗ρ′and T̂=−c∗
ρ∗√γ√γ−1ρ′+√γ

γ−1
1

ρ∗c∗p′=
γR

c∗√γ√γ−1T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗
√γDv′+hH−1DT

(δ)
̃D(δ)ρ̂=O(1,v),(44)

v′t+c∗
√γD̃ρ̂+v∗D̃v′+√γ−1

γc∗D̃T̂+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρ∗D̃Dv′+O(1,v),(45)

T̂t+√γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+
γμ
Prρ∗(DDT̂−H−1BDT̂)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).

In the energy analysis for equation (46)we multiply by T̂THand add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂
T
HH−1DT

(δ)
̃D(δ)T̂−2
√γ√γ−1

ρ∗c∗(2μ+λ)T̂
T
H((

b,x
vex−vex).DDv′)+2T̂

T
HO(1,v)

=2h(D(δ)T̂)
T

̃D(δ)T̂+2

√γ√γ−1
ρ∗c∗(2μ+λ)(D(

b,x
vex−vex).T̂)

T
H(Dv′)+2T̂

T
HO(1,v).(47)

The first term is quadratic with positive sign since 
̃is diagonal and 
̃ii=δi+1/2≥0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
vex−vex).T̂)TH(Dv′). 

Since 
b,x
vexis an average of the smooth function vex, (

b,x
vex−vex) ∼O(h). Hence, (D(

b,x
vex−vex).T̂)TH(Dv′) ≤C‖DT̂‖‖L(v′)‖

where L(v′)represents a vector whose entries are linear combinations of the elements of v′. Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26)as 
‖DT̂‖2and ‖v′‖2terms.)�

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43)indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43)is obtained as follows: Replace the difference operators D, with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8]for information on the (4,2)-operator and [17]for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18)(now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut+f(u)x=0,x∈R.(48)

10

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗

√γρ∗ρ′and T̂=−c∗
ρ∗√γ√γ−1ρ′+√γ

γ−1
1

ρ∗c∗p′=
γR

c∗√γ√γ−1T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗
√γDv′+hH−1DT

(δ)
̃D(δ)ρ̂=O(1,v),(44)

v′t+c∗
√γD̃ρ̂+v∗D̃v′+√γ−1

γc∗D̃T̂+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρ∗D̃Dv′+O(1,v),(45)

T̂t+√γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+
γμ
Prρ∗(DDT̂−H−1BDT̂)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).

In the energy analysis for equation (46)we multiply by T̂THand add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂
T
HH−1DT

(δ)
̃D(δ)T̂−2
√γ√γ−1

ρ∗c∗(2μ+λ)T̂
T
H((

b,x
vex−vex).DDv′)+2T̂

T
HO(1,v)

=2h(D(δ)T̂)
T

̃D(δ)T̂+2

√γ√γ−1
ρ∗c∗(2μ+λ)(D(

b,x
vex−vex).T̂)

T
H(Dv′)+2T̂

T
HO(1,v).(47)

The first term is quadratic with positive sign since 
̃is diagonal and 
̃ii=δi+1/2≥0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
vex−vex).T̂)TH(Dv′). 

Since 
b,x
vexis an average of the smooth function vex, (

b,x
vex−vex) ∼O(h). Hence, (D(

b,x
vex−vex).T̂)TH(Dv′) ≤C‖DT̂‖‖L(v′)‖

where L(v′)represents a vector whose entries are linear combinations of the elements of v′. Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26)as 
‖DT̂‖2and ‖v′‖2terms.)�

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43)indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43)is obtained as follows: Replace the difference operators D, with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8]for information on the (4,2)-operator and [17]for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18)(now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut+f(u)x=0,x∈R.(48)
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Remark. Consider the advection equation, ut+a(x, t)ux=0whose estimate is ∂t‖u‖2+au2|10+∫1
0axu2dx =0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant awithin the range of a, and |ax|is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
vex−vex)in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1]and introducing ρ̂=c∗

√γρ∗ρ′and T̂=−c∗
ρ∗√γ√γ−1ρ′+√γ

γ−1
1

ρ∗c∗p′=
γR

c∗√γ√γ−1T′to reduce notation, we arrive at

ρ̂t+v∗Dρ̂+c∗
√γDv′+hH−1DT

(δ)
̃D(δ)ρ̂=O(1,v),(44)

v′t+c∗
√γD̃ρ̂+v∗D̃v′+√γ−1

γc∗D̃T̂+hH−1D̃T
(δ)
̃D(δ)v′=2μ+λ

ρ∗D̃Dv′+O(1,v),(45)

T̂t+√γ−1
γc∗Dv′+v∗DT̂+hH−1DT

(δ)
̃D(δ)T̂=
√γ√γ−1

ρ∗c∗(2μ+λ)(
b,x
vex−vex).D̃Dv′

+
γμ
Prρ∗(DDT̂−H−1BDT̂)+O(1,v).(46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43)is linearly stable.

Proof.Linearising and symmetrising the non-linear scheme (43)leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition4.1are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44)-(45)).
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ut+f(u)x=0,x∈R.(48)
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A strictly convex scalar function, U (u), is said to be an entropy function of the problem (48), if it satisfies the relation 
U T

u fu = Fu , where F is the entropy flux function. Uu = w are the entropy variables, which symmetrises the problem (48)
(see e.g. [12]). Furthermore, the scalar function ψ = wT f − F is called the entropy potential. By multiplying by the entropy 
variables, the equation (48) can be recast as

U (u)t + F (u)x = 0,

which is satisfied for smooth solutions of the problem (48). However, it is well-known that solutions of (48) can develop 
shocks (even from continuous data), and we therefore have to consider weak solutions that satisfy∫

R

φut dx−
∫
R

φx f (u) dx = 0,

for any φ ∈ C∞ with compact support. Weak solutions are generally not unique, however, the physically relevant solution 
satisfies the Second Law of Thermodynamics, which states that the entropy within a closed system cannot decrease. In 
mathematical terms, this can be stated as the entropy inequality

U (u)t + F (u)x ≤ 0. (49)

Solutions that satisfy the entropy inequality (49) are called entropy solutions (see e.g. [32]).

5.3. Entropy stability

In order to carry the concept of entropy over to the semi-discrete setting, we consider a scheme of the form

(ui)t + gi+1/2 − gi−1/2

hi
= 0, (50)

where hi is the distance between grid node i + 1 and i. Furthermore, gi+1/2 = f i+1+ f i−δi+1/2(ui+1−ui)

2 is the approximation of 
the flux f (u), where δi+1/2(ui+1 − ui), with δi+1/2 ≥ 0, is an artificial dissipation term. Schemes such as (50) are termed 
entropy stable, if they satisfy the discrete entropy inequality

(Ui)t + Fi+1/2 − Fi−1/2

hi
≤ 0, for all i, (51)

where Fi+1/2 = 1
2

(
(wT

i+1 + wT
i )g i+1/2

)− 1
2 (ψi+1 + ψi), and ψi = ψ(ui). This holds true for schemes where δ is chosen such 

that the flux approximation satisfies Tadmor’s shuffle condition,

〈
wi+1/2, gi+1/2〉 ≤ 
ψi+1/2 = ψi+1 − ψi, (52)

where 
wi+1/2 = wi+1 − wi . See [32] for more details.

5.4. Entropy analysis for the 1-D Navier-Stokes equations

Consider the continuous problem (10) augmented with the no-slip wall boundary condition v(0, t) = 0, and a Neumann 
condition on the temperature; Tx(0, t) = 0 (neglecting the right boundary), and L2-bounded initial data. (The entropy esti-
mate for this problem is derived in e.g. [23] and also [31], but we repeat it here for completeness.)

For the compressible Navier-Stokes equations, there is only one entropy function ([11]); U (u) = −ρS with F (u) = −mS
and ψ = (γ − 1)m, where S = ln

(
p

ργ

)
, and S is the specific entropy. For this entropy function, the entropy variables are 

given by

wT = − 1

cvT

(
v2

2
+ cvT(S − γ ),−v,1

)
.

To obtain an entropy estimate, multiply Equation (10) by the entropy variables, wT , and integrate over the spatial domain 
� = (0, 1),∫

�

U (u)t dx+
∫
�

F (u)x dx =
∫
�

wT fV(u,ux)x dx,

which leads to∫
�

U (u)t dx− F (u)|0 = −wT fV(u,ux)|0 −
∫
�

wT
x fV(u,ux) dx.
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and ψ = (γ − 1)m, where S = ln( p
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condition on the temperature; Tx(0, t) =0(neglecting the right boundary), and L2-bounded initial data. (The entropy esti-
mate for this problem is derived in e.g. [23]and also [31], but we repeat it here for completeness.)

For the compressible Navier-Stokes equations, there is only one entropy function ([11]); U(u) =−ρSwith F(u) =−mS
and ψ=(γ−1)m, where S=ln(p

ργ), and Sis the specific entropy. For this entropy function, the entropy variables are 
given by

w
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=−
1

cvT

(v2

2+cvT(S−γ),−v,1).

To obtain an entropy estimate, multiply Equation (10)by the entropy variables, wT, and integrate over the spatial domain 
� =(0, 1),

∫
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U(u)tdx+∫
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V
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A strictly convex scalar function, U(u), is said to be an entropy functionof the problem (48), if it satisfies the relation 
UT

ufu=Fu, where Fis the entropy flux function. Uu=ware the entropy variables, which symmetrises the problem (48)
(see e.g. [12]). Furthermore, the scalar function ψ=wTf−Fis called the entropy potential. By multiplyingby the entropy 
variables, the equation (48)can be recast as

U(u)t+F(u)x=0,

which is satisfied for smooth solutions of the problem (48). However, it is well-known that solutions of (48)can develop 
shocks (even from continuous data), and we therefore have to consider weak solutions that satisfy

∫
R

φutdx−∫
R

φxf(u)dx=0,

for any φ∈C∞with compact support. Weak solutions are generally not unique, however, the physically relevant solution 
satisfies the Second Law of Thermodynamics, which states that the entropy within a closed system cannot decrease. In 
mathematical terms, this can be stated as the entropy inequality

U(u)t+F(u)x≤0.(49)

Solutions that satisfy the entropy inequality(49)are called entropy solutions(see e.g. [32]).

5.3. Entropy stability

In order to carry the concept of entropy over to the semi-discrete setting, we consider a scheme of the form
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gi+1/2−gi−1/2

hi=0,(50)

where hiis the distance between grid node i +1and i. Furthermore, gi+1/2=
fi+1+fi−δi+1/2(ui+1−ui)

2is the approximation of 
the flux f(u), where δi+1/2(ui+1−ui), with δi+1/2≥0, is an artificial dissipation term. Schemes such as (50)are termed 
entropy stable, if they satisfy the discrete entropy inequality
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Since F = −mS , we have that F (u)|0 = 0, due to the no-slip boundary condition. Furthermore, the term wT fV(u, ux)|0
reduces to

wT fV(u,ux)
∣∣
0 = − (γ − 1)κ

R
Tx

T

∣∣∣∣
0
= 0,

(see e.g. [23]). The last equality is due to the Neumann condition at x = 0. Hence, the estimate reads∫
�

U (u)t dx = −
∫
�

1

cvT2

(
(2μ + λ)v2xT+ κT2

x

)
dx. (53)

Since admissible solutions satisfy T > 0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If fI satisfies (52) for i = 1, . . . , N − 1, then the semi-discrete scheme (27)

ut +DIfI = DVfV + SAT, (27)

with (28)-(34), approximating system (10) is entropy-stable in the sense of (51).

Remark. The scheme (27) is inspired by the one proposed in [31] and [25].

Remark. Possible entropy stable choices of fI are for instance the local- and global Lax-Friedrichs schemes and entropy-fixed 
Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2 ≥ 0 for all i, (cf. (47)) which is not necessarily true for entropy conservative fluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof. For each grid point, multiply the scheme (27) by the corresponding entropy variable wT
i = − 1

cvTi

(
v2i
2 + cvTi(Si −γ ),

−vi, 1
)
and the norm element Hii (the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 

for brevity)

N−1∑
i=0

wT
i Hii(ui)t +

N−1∑
i=0

wT
i Hii(DIfI)i =

N−1∑
i=0

wT
i Hii(DVfV)i +

N−1∑
i=0

wT
i HiiSATi . (54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54) is recast as

N−1∑
i=0

wT
i Hii(ui)t +

N−1∑
i=0

wT
i Hii(DIfI)i =

N−1∑
i=0

Hii(Ui)t + wT
0 H00(DIfI)0 +

N−1∑
i=1

wT
i Hii

(
DIfI

)
i︸ ︷︷ ︸

A

.
(55)

Utilising (28) and the theory of [32], we manipulate A as

A = wT
0 H00(DIfI)0 −

N−1∑
i=1

Fi−1/2 +
N−1∑
i=1

Fi+1/2

−
N−1∑
i=1

(
1

2
(w i − w i−1)

T fIi−1/2 − 1

2
(ψi − ψi−1)

)
−

N−1∑
i=1

(
1

2
(w i+1 − w i)

T fIi+1/2 − 1

2
(ψi+1 − ψi)

)
,

where Fi+1/2 = wT
i+1+wT

i
2 fIi+1/2 − ψi+1+ψi

2 . All F ’s except F1/2 cancel due to the series’ telescoping nature. Assuming that 
Tadmor’s shuffle condition (52) is fulfilled, A reduces to

A ≥ wT
0 H00(DIfI)0 − F1/2 = wT

0 H00
fI
1/2 − fI0
h/2

− F1/2 = wT
0 (fI

1/2 − fI
0) − F1/2 ≥ −wT

0 f
I
0 + ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0 = 0, the entropy variable 
corresponding to the momentum equation is wm

0 = v0
cvT0

= 0, ψ = (γ − 1)(ρ.v)0 = 0 and by (30) and (32), fI,ρ0 = (ρ.v)0 = 0

and fI,E
0 = (v.(E + p))0 = 0 respectively, such that we obtain A ≥ 0. Equation (54) therefore reduces to
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Since F=−mS, we have that F(u)|0=0, due to the no-slip boundary condition. Furthermore, the term wTfV(u, ux)|0
reduces to

wTfV(u,ux)
∣∣
0=−(γ−1)κ

R
Tx

T

∣∣∣∣
0

=0,

(see e.g. [23]). The last equality is due to the Neumann condition at x =0. Hence, the estimate reads ∫
�

U(u)tdx=−
∫
�

1

cvT2

(
(2μ+λ)v2xT+κT2

x

)
dx.(53)

Since admissible solutions satisfy T >0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If fIsatisfies (52)for i =1, ..., N−1, then the semi-discrete scheme (27)

ut+DIfI=DVfV+SAT,(27)

with (28)-(34), approximating system (10)is entropy-stable in the sense of (51).

Remark. The scheme (27)is inspired by the one proposed in [31]and [25].

Remark. Possible entropy stable choices of fIare for instance the local-and global Lax-Friedrichs schemes and entropy-fixed 
Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2≥0for all i, (cf.(47)) which is not necessarily true for entropy conservativefluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof.For each grid point, multiply the scheme (27)by the corresponding entropy variable wT
i=−1

cvTi

(
v2i
2+cvTi(Si−γ),

−vi, 1
)

and the norm element Hii(the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1 ∑
i=0

wT
iHii(ui)t+

N−1 ∑
i=0

wT
iHii(DIfI)i=

N−1 ∑
i=0

wT
iHii(DVfV)i+

N−1 ∑
i=0

wT
iHiiSATi.(54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54)is recast as

N−1 ∑
i=0

wT
iHii(ui)t+

N−1 ∑
i=0

wT
iHii(DIfI)i=

N−1 ∑
i=0

Hii(Ui)t+wT
0H00(DIfI)0+

N−1 ∑
i=1

wT
iHii

(
DIfI

)
i ︸︷︷︸

A

.
(55)

Utilising (28)and the theory of [32], we manipulate Aas

A=wT
0H00(DIfI)0−

N−1 ∑
i=1

Fi−1/2+
N−1 ∑
i=1

Fi+1/2

−
N−1 ∑
i=1

(
1

2
(wi−wi−1)

TfIi−1/2−1

2
(ψi−ψi−1)

)
−

N−1 ∑
i=1

(
1

2
(wi+1−wi)

TfIi+1/2−1

2
(ψi+1−ψi)

)
,

where Fi+1/2=wT
i+1+wT

i
2fIi+1/2−ψi+1+ψi

2. All F’s except F1/2cancel due to the series’ telescoping nature. Assuming that 
Tadmor’s shuffle condition (52)is fulfilled, Areduces to

A≥wT
0H00(DIfI)0−F1/2=wT

0H00
fI
1/2−fI0

h/2
−F1/2=wT

0(fI
1/2−fI

0)−F1/2≥−wT
0f

I
0+ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is wm

0=v0
cvT0

=0, ψ=(γ−1)(ρ.v)0=0and by (30)and (32), fI,ρ0=(ρ.v)0=0

and fI,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to
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where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is wm
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and fI,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to
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Since F = −mS , we have that F (u)|0 = 0, due to the no-slip boundary condition. Furthermore, the term wT f
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0 = −

(γ − 1)κ

R
Tx

T

∣∣∣
∣0 = 0,

(see e.g. [23]). The last equality is due to the Neumann condition at x = 0. Hence, the estimate reads
∫
�

U (u)t dx = −∫
�

1

cvT2 ((2μ + λ)v2
xT+ κT2

x) dx. (53)

Since admissible solutions satisfy T > 0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52) for i = 1, . . . , N − 1, then the semi-discrete scheme (27)

ut +D
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with (28)-(34), approximating system (10) is entropy-stable in the sense of (51).

Remark. The scheme (27) is inspired by the one proposed in [31] and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local- and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2 ≥ 0 for all i, (cf. (47)) which is not necessarily true for entropy conservative fluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof. For each grid point, multiply the scheme (27) by the corresponding entropy variable wT
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where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0 = 0, the entropy variable 
corresponding to the momentum equation is w

m
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cvT0 = 0, ψ = (γ − 1)(ρ.v)0 = 0 and by (30) and (32), f
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0 = (ρ.v)0 = 0

and f
I,E
0 = (v.(E + p))0 = 0 respectively, such that we obtain A ≥ 0. Equation (54) therefore reduces to
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Since F = −mS , we have that F (u)|0 = 0, due to the no-slip boundary condition. Furthermore, the term wT f
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0 = −

(γ − 1)κ

R
Tx

T

∣∣∣
∣0 = 0,

(see e.g. [23]). The last equality is due to the Neumann condition at x = 0. Hence, the estimate reads
∫
�

U (u)t dx = −∫
�

1

cvT2 ((2μ + λ)v2
xT+ κT2

x) dx. (53)

Since admissible solutions satisfy T > 0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52) for i = 1, . . . , N − 1, then the semi-discrete scheme (27)

ut +D
I
f
I
= D

V
f

V
+ SAT, (27)

with (28)-(34), approximating system (10) is entropy-stable in the sense of (51).

Remark. The scheme (27) is inspired by the one proposed in [31] and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local- and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2 ≥ 0 for all i, (cf. (47)) which is not necessarily true for entropy conservative fluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof. For each grid point, multiply the scheme (27) by the corresponding entropy variable wT
i = − 1

cvTi ( v2
i
2 + cvTi(Si −γ ),

−vi, 1) and the norm element Hii (the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1∑
i=0

w
T
i Hii(ui)t +

N−1∑
i=0

w
T
i Hii(D

I
f
I
)i =

N−1∑
i=0

w
T
i Hii(D

V
f
V
)i +

N−1∑
i=0

w
T
i HiiSATi . (54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54) is recast as

N−1∑
i=0

w
T
i Hii(ui)t +

N−1∑
i=0

w
T
i Hii(D

I
f
I
)i =

N−1∑
i=0

Hii(Ui)t + w
T
0 H00(D

I
f
I
)0 +

N−1∑
i=1

w
T
i Hii (DI

f
I)i

︸ ︷︷ ︸A

.
(55)

Utilising (28) and the theory of [32], we manipulate A as

A = w
T
0 H00(D

I
f
I
)0 −

N−1∑
i=1

Fi−1/2 +
N−1∑
i=1

Fi+1/2

−
N−1∑
i=1

(1

2
(w i − w i−1)

T
f
I
i−1/2 −

1

2
(ψi − ψi−1))−

N−1∑
i=1

(1

2
(w i+1 − w i)

T
f
I
i+1/2 −

1

2
(ψi+1 − ψi)) ,

where Fi+1/2 =
wT

i+1+wT
i

2 f
I
i+1/2 −

ψi+1+ψi
2 . All F ’s except F1/2 cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52) is fulfilled, A reduces to

A ≥ w
T
0 H00(D

I
f
I
)0 − F1/2 = w

T
0 H00

f
I
1/2 − f

I
0

h/2 − F1/2 = w
T
0 (f

I
1/2 − f

I
0) − F1/2 ≥ −w

T
0 f

I
0 + ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0 = 0, the entropy variable 
corresponding to the momentum equation is w

m
0 =

v0
cvT0 = 0, ψ = (γ − 1)(ρ.v)0 = 0 and by (30) and (32), f

I,ρ

0 = (ρ.v)0 = 0

and f
I,E
0 = (v.(E + p))0 = 0 respectively, such that we obtain A ≥ 0. Equation (54) therefore reduces to
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Since F=−mS, we have that F(u)|0=0, due to the no-slip boundary condition. Furthermore, the term wTf
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0=−

(γ−1)κ

R
Tx

T

∣∣∣
∣0=0,

(see e.g. [23]). The last equality is due to the Neumann condition at x =0. Hence, the estimate reads
∫
�

U(u)tdx=−∫
�

1

cvT2((2μ+λ)v2
xT+κT2

x)dx.(53)

Since admissible solutions satisfy T >0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52)for i =1, ..., N−1, then the semi-discrete scheme (27)

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

with (28)-(34), approximating system (10)is entropy-stable in the sense of (51).

Remark. The scheme (27)is inspired by the one proposed in [31]and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local-and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2≥0for all i, (cf.(47)) which is not necessarily true for entropy conservativefluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof.For each grid point, multiply the scheme (27)by the corresponding entropy variable wT
i=−1

cvTi(v2
i
2+cvTi(Si−γ),

−vi, 1)and the norm element Hii(the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

w
T
iHii(D

V
f
V
)i+

N−1 ∑
i=0

w
T
iHiiSATi.(54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54)is recast as

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

Hii(Ui)t+w
T
0H00(D

I
f
I
)0+

N−1 ∑
i=1

w
T
iHii(DI

f
I)i

︸︷︷︸ A

.
(55)

Utilising (28)and the theory of [32], we manipulate Aas

A=w
T
0H00(D

I
f
I
)0−

N−1 ∑
i=1

Fi−1/2+
N−1 ∑
i=1

Fi+1/2

−
N−1 ∑
i=1

(1

2
(wi−wi−1)

T
f
I
i−1/2−

1

2
(ψi−ψi−1))−

N−1 ∑
i=1

(1

2
(wi+1−wi)

T
f
I
i+1/2−

1

2
(ψi+1−ψi)),

where Fi+1/2=
wT

i+1+wT
i

2f
I
i+1/2−

ψi+1+ψi
2. All F’s except F1/2cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52)is fulfilled, Areduces to

A≥w
T
0H00(D

I
f
I
)0−F1/2=w

T
0H00

f
I
1/2−f

I
0

h/2−F1/2=w
T
0(f

I
1/2−f

I
0)−F1/2≥−w

T
0f

I
0+ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is w

m
0=

v0
cvT0=0, ψ=(γ−1)(ρ.v)0=0and by (30)and (32), f

I,ρ

0=(ρ.v)0=0

and f
I,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to
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Since F=−mS, we have that F(u)|0=0, due to the no-slip boundary condition. Furthermore, the term wTf
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0=−

(γ−1)κ

R
Tx

T

∣∣∣
∣0=0,

(see e.g. [23]). The last equality is due to the Neumann condition at x =0. Hence, the estimate reads
∫
�

U(u)tdx=−∫
�

1

cvT2((2μ+λ)v2
xT+κT2

x)dx.(53)

Since admissible solutions satisfy T >0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52)for i =1, ..., N−1, then the semi-discrete scheme (27)

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

with (28)-(34), approximating system (10)is entropy-stable in the sense of (51).

Remark. The scheme (27)is inspired by the one proposed in [31]and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local-and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2≥0for all i, (cf.(47)) which is not necessarily true for entropy conservativefluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof.For each grid point, multiply the scheme (27)by the corresponding entropy variable wT
i=−1

cvTi(v2
i
2+cvTi(Si−γ),

−vi, 1)and the norm element Hii(the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

w
T
iHii(D

V
f
V
)i+

N−1 ∑
i=0

w
T
iHiiSATi.(54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54)is recast as

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

Hii(Ui)t+w
T
0H00(D

I
f
I
)0+

N−1 ∑
i=1

w
T
iHii(DI

f
I)i

︸︷︷︸ A

.
(55)

Utilising (28)and the theory of [32], we manipulate Aas

A=w
T
0H00(D

I
f
I
)0−

N−1 ∑
i=1

Fi−1/2+
N−1 ∑
i=1

Fi+1/2

−
N−1 ∑
i=1

(1

2
(wi−wi−1)

T
f
I
i−1/2−

1

2
(ψi−ψi−1))−

N−1 ∑
i=1

(1

2
(wi+1−wi)

T
f
I
i+1/2−

1

2
(ψi+1−ψi)),

where Fi+1/2=
wT

i+1+wT
i

2f
I
i+1/2−

ψi+1+ψi
2. All F’s except F1/2cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52)is fulfilled, Areduces to

A≥w
T
0H00(D

I
f
I
)0−F1/2=w

T
0H00

f
I
1/2−f

I
0

h/2−F1/2=w
T
0(f

I
1/2−f

I
0)−F1/2≥−w

T
0f

I
0+ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is w

m
0=

v0
cvT0=0, ψ=(γ−1)(ρ.v)0=0and by (30)and (32), f

I,ρ

0=(ρ.v)0=0

and f
I,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to
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Since F=−mS, we have that F(u)|0=0, due to the no-slip boundary condition. Furthermore, the term wTf
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0=−

(γ−1)κ

R
Tx

T

∣∣∣
∣0=0,

(see e.g. [23]). The last equality is due to the Neumann condition at x =0. Hence, the estimate reads
∫
�

U(u)tdx=−∫
�

1

cvT2((2μ+λ)v2
xT+κT2

x)dx.(53)

Since admissible solutions satisfy T >0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52)for i =1, ..., N−1, then the semi-discrete scheme (27)

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

with (28)-(34), approximating system (10)is entropy-stable in the sense of (51).

Remark. The scheme (27)is inspired by the one proposed in [31]and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local-and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2≥0for all i, (cf.(47)) which is not necessarily true for entropy conservativefluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof.For each grid point, multiply the scheme (27)by the corresponding entropy variable wT
i=−1

cvTi(v2
i
2+cvTi(Si−γ),

−vi, 1)and the norm element Hii(the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

w
T
iHii(D

V
f
V
)i+

N−1 ∑
i=0

w
T
iHiiSATi.(54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54)is recast as

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

Hii(Ui)t+w
T
0H00(D

I
f
I
)0+

N−1 ∑
i=1

w
T
iHii(DI

f
I)i

︸︷︷︸ A

.
(55)

Utilising (28)and the theory of [32], we manipulate Aas

A=w
T
0H00(D

I
f
I
)0−

N−1 ∑
i=1

Fi−1/2+
N−1 ∑
i=1

Fi+1/2

−
N−1 ∑
i=1

(1

2
(wi−wi−1)

T
f
I
i−1/2−

1

2
(ψi−ψi−1))−

N−1 ∑
i=1

(1

2
(wi+1−wi)

T
f
I
i+1/2−

1

2
(ψi+1−ψi)),

where Fi+1/2=
wT

i+1+wT
i

2f
I
i+1/2−

ψi+1+ψi
2. All F’s except F1/2cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52)is fulfilled, Areduces to

A≥w
T
0H00(D

I
f
I
)0−F1/2=w

T
0H00

f
I
1/2−f

I
0

h/2−F1/2=w
T
0(f

I
1/2−f

I
0)−F1/2≥−w

T
0f

I
0+ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is w

m
0=

v0
cvT0=0, ψ=(γ−1)(ρ.v)0=0and by (30)and (32), f

I,ρ

0=(ρ.v)0=0

and f
I,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to
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Since F=−mS, we have that F(u)|0=0, due to the no-slip boundary condition. Furthermore, the term wTf
V
(u, ux)|0

reduces to

w
T

f
V
(u,ux)∣∣0=−

(γ−1)κ

R
Tx

T

∣∣∣
∣0=0,

(see e.g. [23]). The last equality is due to the Neumann condition at x =0. Hence, the estimate reads
∫
�

U(u)tdx=−∫
�

1

cvT2((2μ+λ)v2
xT+κT2

x)dx.(53)

Since admissible solutions satisfy T >0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If f
I
satisfies (52)for i =1, ..., N−1, then the semi-discrete scheme (27)

ut+D
I
f
I
=D

V
f

V
+SAT,(27)

with (28)-(34), approximating system (10)is entropy-stable in the sense of (51).

Remark. The scheme (27)is inspired by the one proposed in [31]and [25].

Remark. Possible entropy stable choices of f
I
are for instance the local-and global Lax-Friedrichs schemes and entropy-fixed 

Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2≥0for all i, (cf.(47)) which is not necessarily true for entropy conservativefluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof.For each grid point, multiply the scheme (27)by the corresponding entropy variable wT
i=−1

cvTi(v2
i
2+cvTi(Si−γ),

−vi, 1)and the norm element Hii(the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

w
T
iHii(D

V
f
V
)i+

N−1 ∑
i=0

w
T
iHiiSATi.(54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54)is recast as

N−1 ∑
i=0

w
T
iHii(ui)t+

N−1 ∑
i=0

w
T
iHii(D

I
f
I
)i=

N−1 ∑
i=0

Hii(Ui)t+w
T
0H00(D

I
f
I
)0+

N−1 ∑
i=1

w
T
iHii(DI

f
I)i

︸︷︷︸ A

.
(55)

Utilising (28)and the theory of [32], we manipulate Aas

A=w
T
0H00(D

I
f
I
)0−

N−1 ∑
i=1

Fi−1/2+
N−1 ∑
i=1

Fi+1/2

−
N−1 ∑
i=1

(1

2
(wi−wi−1)

T
f
I
i−1/2−

1

2
(ψi−ψi−1))−

N−1 ∑
i=1

(1

2
(wi+1−wi)

T
f
I
i+1/2−

1

2
(ψi+1−ψi)),

where Fi+1/2=
wT

i+1+wT
i

2f
I
i+1/2−

ψi+1+ψi
2. All F’s except F1/2cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52)is fulfilled, Areduces to

A≥w
T
0H00(D

I
f
I
)0−F1/2=w

T
0H00

f
I
1/2−f

I
0

h/2−F1/2=w
T
0(f

I
1/2−f

I
0)−F1/2≥−w

T
0f

I
0+ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0=0, the entropy variable 
corresponding to the momentum equation is w

m
0=

v0
cvT0=0, ψ=(γ−1)(ρ.v)0=0and by (30)and (32), f

I,ρ

0=(ρ.v)0=0

and f
I,E
0=(v.(E+p))0=0respectively, such that we obtain A ≥0. Equation (54)therefore reduces to

12
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N∑
i=0

Hii(Ui)t ≤
N∑

i=0

wT
i Hii(DVfV)i +

N∑
i=0

wT
i HiiSATi . (56)

For the analysis of the diffusive term, we introduce the following vectors

wm = (
wm

0 , wm
1 , wm

2 , . . . , wm
N

)T = ( v0
cvT0

, v1
cvT1

, v2
cvT2

, . . . , vN
cvTN

)T
,

w E = (
wE

0, wE
1, wE

2, . . . , wE
N

)T =
(
− 1

cvT0
, − 1

cvT1
, − 1

cvT2
, . . . , − 1

cvTN

)T
,

(57)

where the superscript denotes which equation the vector acts on. Using (33) and (34) the right-hand side of (56) can be 
restated using matrix notation as

N−1∑
i=0

(
wT

i Hii(DVfV)i + wT
i HiiSAT

)
= (wm)T H D̃ ((2μ + λ)Dv)︸ ︷︷ ︸

A1

+ (w E)T H

(
D

(
(2μ + λ)

b,x
v .Dv + κDT

)
− κH−1BDT

)
︸ ︷︷ ︸

A2

. (58)

Utilising that H D̃ = Q̃ = B̃ − Q̃ T = B̃ − (H D̃)T and (15) we obtain

A1 = (2μ + λ)(wm)T B̃Dv − (2μ + λ)(D̃wm)T HDv

= − (2μ + λ)

2

(
wm

1 (Dv)0 + wm
0 (Dv)1

)− (2μ + λ)(D̃wm)T HDv.

Insert wm
1 = v1

cvT1
and v0 = 0 to obtain

A1 = − (2μ + λ)

2h

1

cvT1
v1(v1 − v0) − (2μ + λ)(D̃wm)T HDv,

= − (2μ + λ)

2h

1

cvT1
v21 − (2μ + λ)(D̃wm)T HDv ≤ −(2μ + λ)(D̃wm)T HDv. (59)

Next, we turn to A2 on the right-hand side of equation (58). Utilising the SBP properties, HD = Q and Q = B − Q T

yields

A2 = (w E)T B

(
(2μ + λ)

b,x
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)
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, (60)

where we used 
b,x
v 0 = v0 = 0 in the last step.

Combining the preliminary results (56), (59) and (60) leads to

N∑
i=0
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(
(D̃wm)T HDv + (Dw E)T H(

b,x
v .Dv)

)
︸ ︷︷ ︸
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−κ(Dw E)T HDT︸ ︷︷ ︸
A4

.

Using (57) and the discrete product rule (39) result in
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HDv − 1

cv

(
DT−1)T H(
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⎛
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)T

HDv +
(

b,x
v .D̃T−1

)T

HDv − (
DT−1)T H(

b,x
v .Dv)

⎞
⎠ .

The first term in the last row is a discrete equivalent of the L2-norm, 

(
i,x

T−1.D̃v

)T

HDv = ∑N
i=0(

i,x

T−1)i(D̃v)i Hii(Dv)i =

‖
√

i,x

T−1.D̃v‖2H ≥ 0, (T > 0). (Note that (D̃v)0(Dv)0 = (D̃v)20 = 0.) Furthermore, it is easily verified that the two last terms 
cancel.
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N∑
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wT
iHii(DVfV)i+
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wT
iHiiSATi.(56)

For the analysis of the diffusive term, we introduce the following vectors
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cvT2
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wE
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1,wE
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N
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(
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cvT0

,−1
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,−1
cvT2
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cvTN

)T
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(57)

where the superscript denotes which equation the vector acts on. Using (33)and (34)the right-hand side of (56)can be 
restated using matrix notation as
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b,x
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)
︸︷︷︸
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.(58)
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⎛
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)
,(60)

where we used 
b,x
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Combining the preliminary results (56), (59)and (60)leads to
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(
(D̃wm)THDv+(DwE)TH(
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)
︸︷︷︸
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A4

.

Using (57)and the discrete product rule (39)result in
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HDv−1
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DT−1)TH(
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)T

HDv+
(
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v.D̃T−1

)T

HDv−(
DT−1)TH(

b,x
v.Dv)

⎞
⎠.

The first term in the last row is a discrete equivalent of the L2-norm, 

(
i,x

T−1.D̃v

)T

HDv=∑N
i=0(

i,x

T−1)i(D̃v)iHii(Dv)i=

‖
√

i,x

T−1.D̃v‖2H≥0, (T >0). (Note that (D̃v)0(Dv)0=(D̃v)20=0.)Furthermore, it is easily verified that the two last terms 
cancel.
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N∑
i=0

Hii(Ui)t ≤
N∑

i=0

w
T
i Hii(D

V
f
V
)i +

N∑
i=0

w
T
i HiiSATi . (56)

For the analysis of the diffusive term, we introduce the following vectors

w
m

= (wm
0 , w

m
1 , w

m
2 , . . . , w

m
N )T = ( v0

cvT0
,

v1
cvT1

,
v2

cvT2
, . . . ,

vN
cvTN )T ,

w
E
= (wE

0, w
E
1, w

E
2, . . . , w

E
N )T = (− 1

cvT0
, − 1

cvT1
, − 1

cvT2
, . . . , − 1

cvTN )T ,
(57)

where the superscript denotes which equation the vector acts on. Using (33) and (34) the right-hand side of (56) can be 
restated using matrix notation as

N−1∑
i=0

(wT
i Hii(D

V
f
V
)i + w

T
i HiiSAT)= (w

m
)
T
H D̃ ((2μ + λ)Dv)

︸ ︷︷ ︸A1

+ (w
E
)
T
H (D ((2μ + λ)

b,x
v .Dv + κDT)− κH−1BDT)

︸ ︷︷ ︸A2

. (58)

Utilising that H D̃ = Q̃ = B̃ − Q̃ T = B̃ − (H D̃)T and (15) we obtain

A1 = (2μ + λ)(w
m
)
T
B̃Dv − (2μ + λ)(D̃w

m
)
T
HDv

= −
(2μ + λ)

2 (wm
1 (Dv)0 + w

m
0 (Dv)1)− (2μ + λ)(D̃w

m
)
T
HDv.

Insert w
m
1 =

v1
cvT1 and v0 = 0 to obtain

A1 = −
(2μ + λ)

2h

1

cvT1
v1(v1 − v0) − (2μ + λ)(D̃w

m
)
T
HDv,

= −
(2μ + λ)

2h

1

cvT1
v2
1 − (2μ + λ)(D̃w

m
)
T
HDv ≤ −(2μ + λ)(D̃w

m
)
T
HDv. (59)

Next, we turn to A2 on the right-hand side of equation (58). Utilising the SBP properties, HD = Q and Q = B − Q T

yields

A2 = (w
E
)
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B ((2μ + λ)

b,x
v .Dv + κDT)− κ(w

E
)
T
BDT− (w

E
)
T
Q

T ((2μ + λ)
b,x
v .Dv + κDT) ,

= −(Dw
E
)
T
H ((2μ + λ)

b,x
v .Dv + κDT) , (60)

where we used 
b,x
v 0 = v0 = 0 in the last step.

Combining the preliminary results (56), (59) and (60) leads to

N∑
i=0

Hii(Ui)t ≤ −(2μ + λ)((D̃w
m
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HDv + (Dw

E
)
T
H(

b,x
v .Dv))

︸ ︷︷ ︸A3

−κ(Dw
E
)
T
HDT

︸ ︷︷ ︸A4

.

Using (57) and the discrete product rule (39) result in

A3 =
1

cv

(D̃(v.T−1))T HDv −
1

cv (DT−1)T H(
b,x
v .Dv),

=
1

cv

⎛
⎝( i,x

T−1.D̃v

)T

HDv +(b,x
v .D̃T−1)T

HDv − (DT−1)T H(
b,x
v .Dv)

⎞
⎠ .

The first term in the last row is a discrete equivalent of the L2-norm, 

( i,x

T−1.D̃v
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HDv = ∑N
i=0(

i,x

T−1)
i(D̃v)i Hii(Dv)i =

‖
√ i,x

T−1.D̃v‖2H ≥ 0, (T > 0). (Note that (D̃v)0(Dv)0 = (D̃v)2
0 = 0.) Furthermore, it is easily verified that the two last terms 

cancel.
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where the superscript denotes which equation the vector acts on. Using (33) and (34) the right-hand side of (56) can be 
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Next, we turn to A2 on the right-hand side of equation (58). Utilising the SBP properties, HD = Q and Q = B − Q T

yields

A2 = (w
E
)
T
B ((2μ + λ)
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T
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where we used 
b,x
v 0 = v0 = 0 in the last step.

Combining the preliminary results (56), (59) and (60) leads to
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where the superscript denotes which equation the vector acts on. Using (33)and (34)the right-hand side of (56)can be 
restated using matrix notation as
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.(58)

Utilising that HD̃=Q̃=B̃−Q̃T=B̃−(HD̃)Tand (15)we obtain
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cancel.

13

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

N∑
i=0

Hii(Ui)t≤
N∑

i=0

w
T
iHii(D

V
f
V
)i+

N∑
i=0

w
T
iHiiSATi.(56)

For the analysis of the diffusive term, we introduce the following vectors

w
m

=(wm
0,w

m
1,w

m
2,...,w

m
N)T=(v0

cvT0
,

v1
cvT1

,
v2

cvT2
,...,

vN
cvTN)T,

w
E
=(wE

0,w
E
1,w

E
2,...,w

E
N)T=(−1

cvT0
,−1

cvT1
,−1

cvT2
,...,−1

cvTN)T,
(57)

where the superscript denotes which equation the vector acts on. Using (33)and (34)the right-hand side of (56)can be 
restated using matrix notation as

N−1 ∑
i=0

(wT
iHii(D

V
f
V
)i+w

T
iHiiSAT)=(w

m
)
T
HD̃((2μ+λ)Dv)

︸︷︷︸ A1

+(w
E
)
T
H(D((2μ+λ)

b,x
v.Dv+κDT)−κH−1BDT)

︸︷︷︸ A2

.(58)

Utilising that HD̃=Q̃=B̃−Q̃T=B̃−(HD̃)Tand (15)we obtain

A1=(2μ+λ)(w
m
)
T
B̃Dv−(2μ+λ)(D̃w

m
)
T
HDv

=−
(2μ+λ)

2(wm
1(Dv)0+w

m
0(Dv)1)−(2μ+λ)(D̃w

m
)
T
HDv.

Insert w
m
1=

v1
cvT1and v0=0to obtain
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where we used 
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Combining the preliminary results (56), (59)and (60)leads to

N∑
i=0

Hii(Ui)t≤−(2μ+λ)((D̃w
m
)
T
HDv+(Dw

E
)
T
H(

b,x
v.Dv))

︸︷︷︸ A3
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The first term in the last row is a discrete equivalent of the L2-norm, 
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0=0.)Furthermore, it is easily verified that the two last terms 
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0,w
E
1,w

E
2,...,w

E
N)T=(−1

cvT0
,−1

cvT1
,−1

cvT2
,...,−1

cvTN)T,
(57)

where the superscript denotes which equation the vector acts on. Using (33)and (34)the right-hand side of (56)can be 
restated using matrix notation as

N−1 ∑
i=0

(wT
iHii(D

V
f
V
)i+w

T
iHiiSAT)=(w

m
)
T
HD̃((2μ+λ)Dv)

︸︷︷︸ A1

+(w
E
)
T
H(D((2μ+λ)

b,x
v.Dv+κDT)−κH−1BDT)

︸︷︷︸ A2

.(58)

Utilising that HD̃=Q̃=B̃−Q̃T=B̃−(HD̃)Tand (15)we obtain

A1=(2μ+λ)(w
m
)
T
B̃Dv−(2μ+λ)(D̃w

m
)
T
HDv

=−
(2μ+λ)

2(wm
1(Dv)0+w

m
0(Dv)1)−(2μ+λ)(D̃w

m
)
T
HDv.

Insert w
m
1=

v1
cvT1and v0=0to obtain

A1=−
(2μ+λ)

2h

1

cvT1
v1(v1−v0)−(2μ+λ)(D̃w

m
)
T
HDv,

=−
(2μ+λ)

2h

1

cvT1
v2
1−(2μ+λ)(D̃w

m
)
T
HDv≤−(2μ+λ)(D̃w

m
)
T
HDv.(59)

Next, we turn to A2on the right-hand side of equation (58). Utilising the SBP properties, HD =Qand Q=B −QT

yields

A2=(w
E
)
T
B((2μ+λ)

b,x
v.Dv+κDT)−κ(w

E
)
T
BDT−(w

E
)
T
Q

T((2μ+λ)
b,x
v.Dv+κDT),

=−(Dw
E
)
T
H((2μ+λ)

b,x
v.Dv+κDT),(60)

where we used 
b,x
v0=v0=0in the last step.

Combining the preliminary results (56), (59)and (60)leads to

N∑
i=0

Hii(Ui)t≤−(2μ+λ)((D̃w
m
)
T
HDv+(Dw

E
)
T
H(

b,x
v.Dv))

︸︷︷︸ A3

−κ(Dw
E
)
T
HDT

︸︷︷︸ A4

.

Using (57)and the discrete product rule (39)result in

A3=
1

cv

(D̃(v.T−1))THDv−
1

cv(DT−1)TH(
b,x
v.Dv),

=
1

cv

⎛
⎝(i,x

T−1.D̃v

)T

HDv+(b,x
v.D̃T−1)T

HDv−(DT−1)TH(
b,x
v.Dv)

⎞
⎠.

The first term in the last row is a discrete equivalent of the L2-norm, 

(i,x

T−1.D̃v

)T

HDv=∑N
i=0(

i,x

T−1)
i(D̃v)iHii(Dv)i=

‖
√i,x

T−1.D̃v‖2H≥0, (T >0). (Note that (D̃v)0(Dv)0=(D̃v)2
0=0.)Furthermore, it is easily verified that the two last terms 

cancel.

13

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

N∑
i=0

Hii(Ui)t≤
N∑

i=0

w
T
iHii(D

V
f
V
)i+

N∑
i=0

w
T
iHiiSATi.(56)

For the analysis of the diffusive term, we introduce the following vectors

w
m

=(wm
0,w

m
1,w

m
2,...,w

m
N)T=(v0

cvT0
,

v1
cvT1

,
v2

cvT2
,...,

vN
cvTN)T,

w
E
=(wE

0,w
E
1,w

E
2,...,w

E
N)T=(−1

cvT0
,−1

cvT1
,−1

cvT2
,...,−1

cvTN)T,
(57)

where the superscript denotes which equation the vector acts on. Using (33)and (34)the right-hand side of (56)can be 
restated using matrix notation as

N−1 ∑
i=0

(wT
iHii(D

V
f
V
)i+w

T
iHiiSAT)=(w

m
)
T
HD̃((2μ+λ)Dv)

︸︷︷︸ A1

+(w
E
)
T
H(D((2μ+λ)

b,x
v.Dv+κDT)−κH−1BDT)

︸︷︷︸ A2

.(58)

Utilising that HD̃=Q̃=B̃−Q̃T=B̃−(HD̃)Tand (15)we obtain

A1=(2μ+λ)(w
m
)
T
B̃Dv−(2μ+λ)(D̃w

m
)
T
HDv

=−
(2μ+λ)

2(wm
1(Dv)0+w

m
0(Dv)1)−(2μ+λ)(D̃w

m
)
T
HDv.

Insert w
m
1=

v1
cvT1and v0=0to obtain

A1=−
(2μ+λ)

2h

1

cvT1
v1(v1−v0)−(2μ+λ)(D̃w

m
)
T
HDv,

=−
(2μ+λ)

2h

1

cvT1
v2
1−(2μ+λ)(D̃w

m
)
T
HDv≤−(2μ+λ)(D̃w

m
)
T
HDv.(59)

Next, we turn to A2on the right-hand side of equation (58). Utilising the SBP properties, HD =Qand Q=B −QT

yields

A2=(w
E
)
T
B((2μ+λ)

b,x
v.Dv+κDT)−κ(w

E
)
T
BDT−(w

E
)
T
Q

T((2μ+λ)
b,x
v.Dv+κDT),

=−(Dw
E
)
T
H((2μ+λ)

b,x
v.Dv+κDT),(60)

where we used 
b,x
v0=v0=0in the last step.

Combining the preliminary results (56), (59)and (60)leads to

N∑
i=0

Hii(Ui)t≤−(2μ+λ)((D̃w
m
)
T
HDv+(Dw

E
)
T
H(

b,x
v.Dv))

︸︷︷︸ A3

−κ(Dw
E
)
T
HDT

︸︷︷︸ A4

.

Using (57)and the discrete product rule (39)result in

A3=
1

cv

(D̃(v.T−1))THDv−
1

cv(DT−1)TH(
b,x
v.Dv),

=
1

cv

⎛
⎝(i,x

T−1.D̃v

)T

HDv+(b,x
v.D̃T−1)T

HDv−(DT−1)TH(
b,x
v.Dv)

⎞
⎠.

The first term in the last row is a discrete equivalent of the L2-norm, 

(i,x

T−1.D̃v

)T

HDv=∑N
i=0(

i,x

T−1)
i(D̃v)iHii(Dv)i=

‖
√i,x

T−1.D̃v‖2H≥0, (T >0). (Note that (D̃v)0(Dv)0=(D̃v)2
0=0.)Furthermore, it is easily verified that the two last terms 

cancel.

13



A. Gjesteland and M. Svärd Journal of Computational Physics 470 (2022) 111572

Lastly, by the discrete quotient rule (40), we have

A4 = κ(Dw E)T HDT= − 1

cv
κ
(
DT−1)T HDT= κ(

x

T2)−1

cv
. (DT)T HDT= κ

cv
‖
√

(
x

T2)−1.DT‖2H ,

where (
x
T)20 = T0T1 and (

x
T)2i = Ti−1Ti+1, i = 1, . . . , N − 1. This term is non-negative as long as all Ti ’s > 0.

Finally, our entropy estimate (54) reads

N∑
i=0

Hii(Ui)t ≤ −(2μ + λ)‖
√

i,x

T−1.D̃v‖2H − κ

cv
‖
√

(
x

T2)−1.DT‖2H ≤ 0.

Hence, we conclude that our scheme is entropy stable. �

5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let � = (0, 1) × (0, 1) be the spatial domain with boundary ∂�. The compressible Navier-Stokes equations in two space 
dimensions are stated as

ut + fIx + gI
y = fV(u,ux,uy)x + gV(u,ux,uy)y, (x, y) ∈ � = (0,1)2, 0 < t < T , (61)

where u = (ρ, m, n, E)T are the conserved variables and

fI =
(
m,ρv21 + p,ρv1v2, v1(E + p)

)T
,

gI =
(
n,ρv1v2,ρv22 + p, v2(E + p)

)T
,

fV = (
0,2μv1x + λ

(
v1x + v2y

)
,μ
(
v1y + v2x

)
, v1

(
2μv1x + λ

(
v1x + v2y

))+ μv
(
v1y + v2x

)+ κTx
)T

,

gV = (
0,μ

(
v1y + v2x

)
,2μv2y + λ

(
v1x + v2y

)
, v2

(
2μv2y + λ

(
v1x + v2y

))+ μv1

(
v1y + v2x

)+ κTy
)T

,

are the inviscid and viscous fluxes; n = ρv2 is the momentum in the y-direction and v1, v2 denote the velocity components 
in the x- and y-directions, respectively. Equation (61) is augmented with no-slip boundary conditions and homogeneous 
Neumann conditions for the temperature, i.e.

v1|∂� = 0, v2|∂� = 0,
∂T

∂n
|∂� = 0, (62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fx = wT fI
x and Gy = wT gI

y , where F = −mS and G = −nS . 
Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy 
inequality (49) (see again [23] or [31] for the derivation in 3-D). That is, multiply equation (61) by the entropy variables 

wT = − 1
cvT

(
v21+v22

2 + cvT(S − γ ),−v1,−v2,1

)
and integrate over the spatial domain. Apply integration-by-parts to the 

entropy flux function and the viscous flux. Ignoring the boundaries at x = 1 and y = 1, this results in∫
�

Ut d� −
∫

∂�,x=0

F dy −
∫

∂�,y=0

G dx = −
∫

∂�,x=0

wT fV dy −
∫

∂�,y=0

wT gV dx−
∫
�

wT
x fV + wT

ygV d�.

In view of (62), F = G = 0 at the boundaries. Using the temperature condition in (62), the boundary integrals take the form∫
∂�,x=0

wT fV dy = − κ

cv

∫
∂�,x=0

Tx

T
dy = 0,

∫
∂�,y=0

wT gV dx = − κ

cv

∫
∂�,y=0

Ty

T
dx = 0.

Furthermore, by contracting the derivatives of the entropy variables with fV and gV , and using λ = − 2
3μ we obtain

wT
x fV + wT

ygV = 1

cvT

(
2
3μ

(
v1x − v2y

)2 + 2
3μv21x + 2

3μv22y + μ
(
v1y + v2x

)2)+ κ

cv

T2
x + T2

y

T2
≥ 0,

as long as T > 0. Hence, we have proved that 
∫
�
Ut d� ≤ 0.
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(
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Lastly, by the discrete quotient rule (40), we have

A4 = κ(Dw
E
)
T
HDT= −

1

cv
κ (DT−1)T HDT=
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x

T2)−1

cv
. (DT)

T
HDT=

κ

cv ‖
√

(
x

T2)−1.DT‖2H ,

where (
x
T)2

0 = T0T1 and (
x
T)2

i = Ti−1Ti+1, i = 1, . . . , N − 1. This term is non-negative as long as all Ti ’s > 0.
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In view of (62), F=G =0at the boundaries. Using the temperature condition in (62), the boundary integrals take the form
∫

∂�,x=0

w
T

f
V
dy=−

κ

cv

∫
∂�,x=0

Tx

T
dy=0,∫

∂�,y=0

w
T

g
V
dx=−

κ

cv

∫
∂�,y=0

Ty

T
dx=0.

Furthermore, by contracting the derivatives of the entropy variables with f
V
and g

V
, and using λ =−2

3μwe obtain

w
T
xf

V
+w

T
yg

V
=

1

cvT

(2
3μ(v1x−v2y)2+2

3μv2
1x+2

3μv2
2y+μ(v1y+v2x)2)+

κ

cv

T2
x+T2

y

T2≥0,

as long as T >0. Hence, we have proved that ∫�Utd� ≤0.

14

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

Lastly, by the discrete quotient rule (40), we have

A4=κ(Dw
E
)
T
HDT=−

1

cv
κ(DT−1)THDT=

κ(
x

T2)−1

cv
.(DT)

T
HDT=

κ

cv‖
√

(
x

T2)−1.DT‖2H,

where (
x
T)2

0=T0T1and (
x
T)2

i=Ti−1Ti+1, i =1, ..., N−1. This term is non-negative as long as all Ti’s>0.
Finally, our entropy estimate (54)reads

N∑
i=0

Hii(Ui)t≤−(2μ+λ)‖
√i,x

T−1.D̃v‖2H−
κ

cv‖
√

(
x

T2)−1.DT‖2H≤0.

Hence, we conclude that our scheme is entropy stable.�

5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let � =(0, 1) ×(0, 1)be the spatial domain with boundary ∂�. The compressible Navier-Stokes equations in two space 
dimensions are stated as

ut+f
I
x+g

I
y=f

V
(u,ux,uy)x+g

V
(u,ux,uy)y,(x,y)∈�=(0,1)2,0<t<T,(61)

where u =(ρ, m, n, E)Tare the conserved variables and

f
I
=(m,ρv2

1+p,ρv1v2,v1(E+p))T,

g
I
=(n,ρv1v2,ρv2

2+p,v2(E+p))T,

f
V
=(0,2μv1x+λ(v1x+v2y),μ(v1y+v2x),v1(2μv1x+λ(v1x+v2y))+μv(v1y+v2x)+κTx)T,

g
V
=(0,μ(v1y+v2x),2μv2y+λ(v1x+v2y),v2(2μv2y+λ(v1x+v2y))+μv1(v1y+v2x)+κTy)T,

are the inviscid and viscous fluxes; n =ρv2is the momentum in the y-direction and v1, v2denote the velocity components 
in the x-and y-directions, respectively. Equation (61)is augmented with no-slip boundary conditions and homogeneous 
Neumann conditions for the temperature, i.e.

v1|∂�=0,v2|∂�=0,
∂T

∂n|∂�=0,(62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fx=wTf
I
xand Gy=wTg

I
y, where F=−mSand G =−nS. 

Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy 
inequality (49)(see again [23]or [31]for the derivation in 3-D). That is, multiply equation (61)by the entropy variables 

wT=−1
cvT

(v2
1+v2

2
2+cvT(S−γ),−v1,−v2,1)and integrate over the spatial domain. Apply integration-by-parts to the 

entropy flux function and the viscous flux. Ignoring the boundaries at x =1and y =1, this results in
∫
�

Utd�−∫
∂�,x=0

Fdy−∫
∂�,y=0

Gdx=−∫
∂�,x=0

w
T

f
V
dy−∫

∂�,y=0

w
T

g
V
dx−∫

�

w
T
xf

V
+w

T
yg

V
d�.

In view of (62), F=G =0at the boundaries. Using the temperature condition in (62), the boundary integrals take the form
∫

∂�,x=0

w
T

f
V
dy=−

κ

cv

∫
∂�,x=0

Tx

T
dy=0,∫

∂�,y=0

w
T

g
V
dx=−

κ

cv

∫
∂�,y=0

Ty

T
dx=0.

Furthermore, by contracting the derivatives of the entropy variables with f
V
and g

V
, and using λ =−2

3μwe obtain

w
T
xf

V
+w

T
yg

V
=

1

cvT

(2
3μ(v1x−v2y)2+2

3μv2
1x+2

3μv2
2y+μ(v1y+v2x)2)+

κ

cv

T2
x+T2

y

T2≥0,

as long as T >0. Hence, we have proved that ∫�Utd� ≤0.

14

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

Lastly, by the discrete quotient rule (40), we have

A4=κ(Dw
E
)
T
HDT=−

1

cv
κ(DT−1)THDT=

κ(
x

T2)−1

cv
.(DT)

T
HDT=

κ

cv‖
√

(
x

T2)−1.DT‖2H,

where (
x
T)2

0=T0T1and (
x
T)2

i=Ti−1Ti+1, i =1, ..., N−1. This term is non-negative as long as all Ti’s>0.
Finally, our entropy estimate (54)reads

N∑
i=0

Hii(Ui)t≤−(2μ+λ)‖
√i,x

T−1.D̃v‖2H−
κ

cv‖
√

(
x

T2)−1.DT‖2H≤0.

Hence, we conclude that our scheme is entropy stable.�

5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let � =(0, 1) ×(0, 1)be the spatial domain with boundary ∂�. The compressible Navier-Stokes equations in two space 
dimensions are stated as

ut+f
I
x+g

I
y=f

V
(u,ux,uy)x+g

V
(u,ux,uy)y,(x,y)∈�=(0,1)2,0<t<T,(61)

where u =(ρ, m, n, E)Tare the conserved variables and

f
I
=(m,ρv2

1+p,ρv1v2,v1(E+p))T,

g
I
=(n,ρv1v2,ρv2

2+p,v2(E+p))T,

f
V
=(0,2μv1x+λ(v1x+v2y),μ(v1y+v2x),v1(2μv1x+λ(v1x+v2y))+μv(v1y+v2x)+κTx)T,

g
V
=(0,μ(v1y+v2x),2μv2y+λ(v1x+v2y),v2(2μv2y+λ(v1x+v2y))+μv1(v1y+v2x)+κTy)T,

are the inviscid and viscous fluxes; n =ρv2is the momentum in the y-direction and v1, v2denote the velocity components 
in the x-and y-directions, respectively. Equation (61)is augmented with no-slip boundary conditions and homogeneous 
Neumann conditions for the temperature, i.e.

v1|∂�=0,v2|∂�=0,
∂T

∂n|∂�=0,(62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fx=wTf
I
xand Gy=wTg

I
y, where F=−mSand G =−nS. 

Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy 
inequality (49)(see again [23]or [31]for the derivation in 3-D). That is, multiply equation (61)by the entropy variables 

wT=−1
cvT

(v2
1+v2

2
2+cvT(S−γ),−v1,−v2,1)and integrate over the spatial domain. Apply integration-by-parts to the 

entropy flux function and the viscous flux. Ignoring the boundaries at x =1and y =1, this results in
∫
�

Utd�−∫
∂�,x=0

Fdy−∫
∂�,y=0

Gdx=−∫
∂�,x=0

w
T

f
V
dy−∫

∂�,y=0

w
T

g
V
dx−∫

�

w
T
xf

V
+w

T
yg

V
d�.

In view of (62), F=G =0at the boundaries. Using the temperature condition in (62), the boundary integrals take the form
∫

∂�,x=0

w
T

f
V
dy=−

κ

cv

∫
∂�,x=0

Tx

T
dy=0,∫

∂�,y=0

w
T

g
V
dx=−

κ

cv

∫
∂�,y=0

Ty

T
dx=0.

Furthermore, by contracting the derivatives of the entropy variables with f
V
and g

V
, and using λ =−2

3μwe obtain

w
T
xf

V
+w

T
yg

V
=

1

cvT

(2
3μ(v1x−v2y)2+2

3μv2
1x+2

3μv2
2y+μ(v1y+v2x)2)+

κ

cv

T2
x+T2

y

T2≥0,

as long as T >0. Hence, we have proved that ∫�Utd� ≤0.

14

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

Lastly, by the discrete quotient rule (40), we have

A4=κ(Dw
E
)
T
HDT=−

1

cv
κ(DT−1)THDT=

κ(
x

T2)−1

cv
.(DT)

T
HDT=

κ

cv‖
√

(
x

T2)−1.DT‖2H,

where (
x
T)2

0=T0T1and (
x
T)2

i=Ti−1Ti+1, i =1, ..., N−1. This term is non-negative as long as all Ti’s>0.
Finally, our entropy estimate (54)reads

N∑
i=0

Hii(Ui)t≤−(2μ+λ)‖
√i,x

T−1.D̃v‖2H−
κ

cv‖
√

(
x

T2)−1.DT‖2H≤0.

Hence, we conclude that our scheme is entropy stable.�

5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let � =(0, 1) ×(0, 1)be the spatial domain with boundary ∂�. The compressible Navier-Stokes equations in two space 
dimensions are stated as

ut+f
I
x+g

I
y=f

V
(u,ux,uy)x+g

V
(u,ux,uy)y,(x,y)∈�=(0,1)2,0<t<T,(61)

where u =(ρ, m, n, E)Tare the conserved variables and

f
I
=(m,ρv2

1+p,ρv1v2,v1(E+p))T,

g
I
=(n,ρv1v2,ρv2

2+p,v2(E+p))T,

f
V
=(0,2μv1x+λ(v1x+v2y),μ(v1y+v2x),v1(2μv1x+λ(v1x+v2y))+μv(v1y+v2x)+κTx)T,

g
V
=(0,μ(v1y+v2x),2μv2y+λ(v1x+v2y),v2(2μv2y+λ(v1x+v2y))+μv1(v1y+v2x)+κTy)T,

are the inviscid and viscous fluxes; n =ρv2is the momentum in the y-direction and v1, v2denote the velocity components 
in the x-and y-directions, respectively. Equation (61)is augmented with no-slip boundary conditions and homogeneous 
Neumann conditions for the temperature, i.e.

v1|∂�=0,v2|∂�=0,
∂T

∂n|∂�=0,(62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fx=wTf
I
xand Gy=wTg

I
y, where F=−mSand G =−nS. 

Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy 
inequality (49)(see again [23]or [31]for the derivation in 3-D). That is, multiply equation (61)by the entropy variables 

wT=−1
cvT

(v2
1+v2

2
2+cvT(S−γ),−v1,−v2,1)and integrate over the spatial domain. Apply integration-by-parts to the 

entropy flux function and the viscous flux. Ignoring the boundaries at x =1and y =1, this results in
∫
�

Utd�−∫
∂�,x=0

Fdy−∫
∂�,y=0

Gdx=−∫
∂�,x=0

w
T

f
V
dy−∫

∂�,y=0

w
T

g
V
dx−∫

�

w
T
xf

V
+w

T
yg

V
d�.

In view of (62), F=G =0at the boundaries. Using the temperature condition in (62), the boundary integrals take the form
∫

∂�,x=0

w
T

f
V
dy=−

κ

cv

∫
∂�,x=0

Tx

T
dy=0,∫

∂�,y=0

w
T

g
V
dx=−

κ

cv

∫
∂�,y=0

Ty

T
dx=0.

Furthermore, by contracting the derivatives of the entropy variables with f
V
and g

V
, and using λ =−2

3μwe obtain

w
T
xf

V
+w

T
yg

V
=

1

cvT

(2
3μ(v1x−v2y)2+2

3μv2
1x+2

3μv2
2y+μ(v1y+v2x)2)+

κ

cv

T2
x+T2

y

T2≥0,

as long as T >0. Hence, we have proved that ∫�Utd� ≤0.

14



A. Gjesteland and M. Svärd Journal of Computational Physics 470 (2022) 111572

5.6. Entropy stability for the semi-discrete scheme

For the discretisation in two spatial dimensions, we use the formalism found in e.g. [29]. We divide the spatial domain 
into (N + 1)(M + 1) grid points, such that xi = ihx , i = 0, 1, . . .N , where hx = 1/N and yi = ihy , i = 0, 1, . . . , M where 
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identity matrix, and DN is the (N + 1) × (N + 1) (2,1)-SBP operator. Similarly, we have Dy = DM ⊗ IN .
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i.e., v1 and v2 have all elements along x = 0, x = 1, y = 0 and y = 1 set to zero. In addition, we define the SBP-operators 
for the momentum equations so that they do not act on the boundary nodes.

D̃x = ( ĨM ⊗ D̃N), D̃ y = (D̃M ⊗ Ĩ N),

where D̃N and D̃M are Dirichlet-SBP operators corresponding to DN and DM , respectively. Moreover, Ĩ N and ĨM are almost the 
identity matrices, but with the upper left and lower right elements set to zero. The norm matrix for the two-dimensional 
grid is given by H = Hy ⊗ Hx , where Hy and Hx are equal to the 1-D norms defined in Section 3, with elements of size hy

and hx and matrix sizes (M + 1) × (M + 1) and (N + 1) × (N + 1), respectively.
Similarly as for the one-dimensional case, the SBP operators satisfy a discrete product - (39) and quotient (40) rule.
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for the momentum equations so that they do not act on the boundary nodes.
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for the momentum equations so that they do not act on the boundary nodes.

D̃x=(ĨM⊗D̃N),D̃y=(D̃M⊗ĨN),
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For the discretisation in two spatial dimensions, we use the formalism found in e.g. [29]. We divide the spatial domain 
into (N + 1)(M + 1) grid points, such that xi = ihx , i = 0, 1, . . .N , where hx = 1/N and yi = ihy , i = 0, 1, . . . , M where 
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have all elements along x = 0, x = 1, y = 0 and y = 1 set to zero. In addition, we define the SBP-operators 

for the momentum equations so that they do not act on the boundary nodes.

D̃x = ( ĨM ⊗ D̃N), D̃ y = (D̃M ⊗ Ĩ N),

where D̃N and D̃M are Dirichlet-SBP operators corresponding to DN and DM , respectively. Moreover, Ĩ N and ĨM are almost the 
identity matrices, but with the upper left and lower right elements set to zero. The norm matrix for the two-dimensional 
grid is given by H = Hy ⊗ Hx , where Hy and Hx are equal to the 1-D norms defined in Section 3, with elements of size hy

and hx and matrix sizes (M + 1) × (M + 1) and (N + 1) × (N + 1), respectively.
Similarly as for the one-dimensional case, the SBP operators satisfy a discrete product - (39) and quotient (40) rule.
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For the discretisation in two spatial dimensions, we use the formalism found in e.g. [29]. We divide the spatial domain 
into (N+1)(M+1)grid points, such that xi=ihx, i =0, 1, ...N, where hx=1/Nand yi=ihy, i =0, 1, ..., Mwhere 
hy=1/M. We denote ui,j(t)as the approximation of u(xi, yj, t), and the solution vectors are ordered in the following way

u
T

=(u0,0,u1,0,...,uN,0,u0,1,u1,1,...,uN,1,...,u0,M,u1,M,...,uN,M).

The 2-D differential operators are defined by Kronecker products as Dx=IM⊗DN, where IMis the (M+1) ×(M+1)
identity matrix, and DNis the (N+1) ×(N+1)(2,1)-SBP operator. Similarly, we have Dy=DM⊗IN.

To impose the no-slip boundary conditions by injection, we introduce the initial velocity solution vectors as
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have all elements along x =0, x =1, y =0and y =1set to zero. In addition, we define the SBP-operators 

for the momentum equations so that they do not act on the boundary nodes.

D̃x=(ĨM⊗D̃N),D̃y=(D̃M⊗ĨN),

where D̃Nand D̃Mare Dirichlet-SBP operators corresponding to DNand DM, respectively. Moreover, ĨNand ĨMare almost the 
identity matrices, but with the upper left and lower right elements set to zero. The norm matrix for the two-dimensional 
grid is given by H=Hy⊗Hx, where Hyand Hxare equal to the 1-D norms defined in Section3, with elements of size hy

and hxand matrix sizes (M+1) ×(M+1)and (N+1) ×(N+1), respectively.
Similarly as for the one-dimensional case, the SBP operators satisfy a discrete product -(39)and quotient (40)rule.
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at the boundaries x =0, y =0(once again, we neglect the right and upper boundaries to reduce notation). As in the 1-D 
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where D̃Nand D̃Mare Dirichlet-SBP operators corresponding to DNand DM, respectively. Moreover, ĨNand ĨMare almost the 
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where we have used the approximation of 1 from [31]:

[1x]i, j =
T−1
i, j

i,x

T−1
i, j

, [1y]i, j =
T−1
i, j

i,y

T−1
i, j

. (67)

Note that the operator Dx,y uses D̃x,y for the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,y for the continuity equation and the equation for total energy.

Lastly, the approximations of the heat diffusive fluxes are given by

DV
x f

κ = (
0,0,0, κDxDxT

)T
, DV

yg
κ = (

0,0,0, κDyD yT
)T

. (68)

Then, a semi-discretisation of (61) is given by

ut +DI
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I = DV
x f

μ +DV
x f

κ +DV
yg

μ +DV
yg

κ + SAT, (69)

with SAT = (
0,0,0,−κ

(
(IM ⊗ H−1

x B)(DxT− 0) + (H−1
y B ⊗ IN)(DyT− 0)

))T
.

Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].

Proposition 5.3. The 2D semi-discrete scheme (69) approximating the problem (61) is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-
sition (5.2), we perform the calculations for the convective terms using index notation. To this end, we define wT

i, j =
1

cvTi, j

(
(v1i, j)

2+(v2i, j)
2
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.

Lemma 5.4. The convective flux approximations (63) and (64) satisfy
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(where k = ( j(N + 1) + i) and Hk denotes the diagonal elements of H).

Proof. (70) follows by applying the same technique as for A in (55) to all j’s in the x-direction for fI and to all i’s in the 
y-direction for gI . �

For the diffusive terms, we define H = diag(H, H, H, H)T and w T = (
(wρ)T , (wm)T , (wn)T , (w E)T

)T
where
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(71)

and [T−1]i, j = 1
Ti, j

. (Recall that the dot product is the component wise vector multiplication.)

Lemma 5.5. Contracting the entropy variables with the viscous fluxes, we obtain

wTH(DV
x f
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μ) ≤ 0. (72)
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Note that the operator Dx,yuses D̃x,yfor the momentum equations where the no-slip condition is imposed by injection, 
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Note that the operator Dx,y uses D̃x,y for the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,y for the continuity equation and the equation for total energy.

Lastly, the approximations of the heat diffusive fluxes are given by
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Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].
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Note that the operator Dx,y uses D̃x,y for the momentum equations where the no-slip condition is imposed by injection, 
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Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].

Proposition 5.3. The 2D semi-discrete scheme (69) approximating the problem (61) is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-
sition (5.2), we perform the calculations for the convective terms using index notation. To this end, we define wT
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and [T−1]i, j = 1
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Note that the operator Dx,yuses D̃x,yfor the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,yfor the continuity equation and the equation for total energy.

Lastly, the approximations of the heat diffusive fluxes are given by
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Proposition 5.3. The 2D semi-discrete scheme (69)approximating the problem (61)is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-
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Note that the operator Dx,yuses D̃x,yfor the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,yfor the continuity equation and the equation for total energy.
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D
V
xf

κ
=(0,0,0,κDxDxT)T,D

V
yg

κ
=(0,0,0,κDyDyT)T.(68)

Then, a semi-discretisation of (61)is given by

ut+D
I
xf

I
+D

I
yg

I
=D

V
xf

μ
+D

V
xf

κ
+D

V
yg

μ
+D

V
yg

κ
+SAT,(69)

with SAT=(0,0,0,−κ((IM⊗H−1
xB)(DxT−0)+(H−1

yB⊗IN)(DyT−0)))T.
Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].
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Note that the operator Dx,yuses D̃x,yfor the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,yfor the continuity equation and the equation for total energy.
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Note that the operator Dx,yuses D̃x,yfor the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,yfor the continuity equation and the equation for total energy.

Lastly, the approximations of the heat diffusive fluxes are given by

D
V
xf

κ
=(0,0,0,κDxDxT)T,D

V
yg

κ
=(0,0,0,κDyDyT)T.(68)

Then, a semi-discretisation of (61)is given by

ut+D
I
xf

I
+D

I
yg

I
=D

V
xf

μ
+D

V
xf

κ
+D

V
yg

μ
+D

V
yg

κ
+SAT,(69)

with SAT=(0,0,0,−κ((IM⊗H−1
xB)(DxT−0)+(H−1

yB⊗IN)(DyT−0)))T.
Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].

Proposition 5.3. The 2D semi-discrete scheme (69)approximating the problem (61)is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-
sition (5.2), we perform the calculations for the convective terms using index notation. To this end, we define wT

i,j=
1

cvTi,j

((v1
i,j)2+(v2

i,j)2

2+cvTi,j(Si,j−γ),−v
1
i,j,−v

2
i,j,1).

Lemma 5.4. The convective flux approximations (63)and (64)satisfy

N,M∑
i,j=0

w
T
i,jHk(D

I
xf

I
)i,j+

N,M∑
i,j=0

w
T
i,jHk(D

I
yg

I
)i,j≥0,(70)

(where k =(j(N+1) +i)and Hkdenotes the diagonal elements of H).

Proof.(70)follows by applying the same technique as for Ain (55)to all j’s in the x-direction for f
I
and to all i’s in the 

y-direction for g
I
.�

For the diffusive terms, we define H =diag(H, H, H, H)Tand wT=((wρ
)T,(w

m
)T,(w

n
)T,(w

E
)T)Twhere

w
ρ
=1

cvT−1.(v
1
.v

1
+v

2
.v

2

2+cvT−1.(S−γ)),

w
m

=−1
cvT−1.v1

,

w
n
=−1

cvT−1.v2
,

w
E
=1

cvT−1,

(71)

and [T−1]i,j=1
Ti,j. (Recall that the dot product is the component wise vector multiplication.)

Lemma 5.5. Contracting the entropy variables with the viscous fluxes, we obtain

w
T
H(D

V
xf

μ
+D

V
yg

μ
)≤0.(72)
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Proof. Consider the viscous flux in the x-direction given by (65). Contracting the vector (65) by the entropy variables in 
(71) and H, we obtain

A1 = wTHDV
x f

μ,

= (wm)T H D̃x
(
1x.
(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
) )+ (wn)T H D̃x

(
1x.
(
μ(Dy v

1 + Dxv
2)
) )

+ (w E)T HDx
(
1x.
( b,x
v1.
(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
)+ μ

b,x

v2.(Dy v
1 + Dxv

2)
))

.

Utilise that H D̃x = H̃ y ⊗ B̃N − H̃ y ⊗ (HxD̃N)
T = H̃ y ⊗ B̃N − D̃T

x H , and the analogous properties of Dx , to obtain

A1 = (wm)T (H̃ y ⊗ B̃N)
(
1x.
(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
) )+ (wn)T (H̃ y ⊗ B̃N)

(
1x.
(
μ(Dy v

1 + Dxv
2)
) )︸ ︷︷ ︸

B1

−(D̃xw
m)T H1x.

(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
)− (D̃xw

n)T H
(
μ(Dy v

1 + Dxv
2)
)

+(w E)T (Hy ⊗ BN)
(
1x.
( b,x
v1.
(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
)+ μ

b,x

v2.(Dy v
1 + Dxv

2)
))

−(Dxw
E)T H1x.

( b,x
v1.
(
2μDxv

1 + λ(Dxv
1 + Dy v

2)
)+ μ

b,x

v2.(Dy v
1 + Dxv

2)
)
.

Consider the boundary terms, B1. Using the result (B.1) obtained in Appendix B, we find that

B1 = (2μ + λ)hy(w
m)T

(
0, B̃N(1x.Dxv1)i,1, B̃N(1x.Dxv1)i,2, . . . B̃N(1x.Dxv1)i,M−1, 0

)T︸ ︷︷ ︸
B1,1

+λhy(w
m)T

(
0, B̃N(1x.Dy v2)i,1, B̃N(1x.Dy v2)i,2, . . . B̃N(1x.Dy v2)i,M−1, 0

)T︸ ︷︷ ︸
B1,2

+μhy(w
n)T

(
0, B̃N(1x.Dy v1)i,1, B̃N(1x.Dy v1)i,2, . . . B̃N(1x.Dy v1)i,M−1, 0

)T︸ ︷︷ ︸
B1,3

+μhy(w
n)T

(
0, B̃N(1x.Dxv2)i,1, B̃N(1x.Dxv2)i,2, . . . B̃N(1x.Dxv2)i,M−1, 0

)T︸ ︷︷ ︸
B1,4

.

Consider B1,1 +B1,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

B1,1 + B1,2 = (2μ + λ)hy

M−1∑
j=1

(wm)Ti, j(B̃N(1x.Dxv
1)i, j) + λhy

M−1∑
j=1

(wm)Ti, j(B̃N(1x.Dy v
2)i, j).

Consider an arbitrary node j �= {0, M}, and neglect the parameters. Then we have

B1,1 + B1,2 =

⎛
⎜⎜⎜⎜⎝

wm
0, j

wm
1, j

...
wm

N−1, j

wm
N, j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0 − 1

2 0 0 0 ... 0

− 1
2 0 0 0 0 ... 0

...
. . .

...
0 ... 0 0 0 0 1

2

0 ... 0 0 0 1
2 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dxv1)0, j

(1x.Dxv1)1, j

...
(1x.Dxv1)N−1, j

(1x.Dxv1)N, j

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

wm
0, j

wm
1, j

...
wm

N−1, j

wm
N, j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0 − 1

2 0 0 0 ... 0

− 1
2 0 0 0 0 ... 0

...
. . .

...
0 ... 0 0 0 0 1

2

0 ... 0 0 0 1
2 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dy v2)0, j

(1x.Dy v2)1, j

...
(1x.Dy v2)N−1, j

(1x.Dy v2)N, j

⎞
⎟⎟⎟⎟⎠,

= 1
2

(
−wm

1, j(1x.Dxv
1)0, j − wm

0, j(1x.Dxv
1)1, j + wm

N, j(1x.Dxv
1)N−1, j + wm

N−1, j(1x.Dxv
1)N, j

)
+ 1

2

(
−wm

1, j(1x.Dy v
2)0, j − wm

0, j(1x.Dy v
2)1, j + wm

N, j(1x.Dy v
2)N−1, j + wm

N−1, j(1x.Dy v
2)N, j

)
.

Since wm
0, j = v1

0, j = 0 and wm
N, j = v1

N, j = 0, due to the no-slip condition, this reduces to

B1,1 + B1,2 = 1
2

(
−wm

1, j(1x.Dxv
1)0, j + wm

N−1, j(1x.Dxv
1)N, j − wm

1, j(1x.Dy v
2)0, j + wm

N−1, j(1x.Dy v
2)N, j

)
.
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Proof.Consider the viscous flux in the x-direction given by (65). Contracting the vector (65)by the entropy variables in 
(71)and H, we obtain

A1=wTHDV
xf

μ,

=(wm)THD̃x
(
1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
))+(wn)THD̃x

(
1x.

(
μ(Dyv

1+Dxv
2)

))
+(wE)THDx

(
1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

.

Utilise that HD̃x=H̃y⊗B̃N−H̃y⊗(HxD̃N)
T=H̃y⊗B̃N−D̃T

xH, and the analogous properties of Dx, to obtain

A1=(wm)T(H̃y⊗B̃N)
(
1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
))+(wn)T(H̃y⊗B̃N)

(
1x.

(
μ(Dyv

1+Dxv
2)

)) ︸︷︷︸
B1

−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH
(

μ(Dyv
1+Dxv

2)
)

+(wE)T(Hy⊗BN)
(
1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

−(Dxw
E)TH1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)

.

Consider the boundary terms, B1. Using the result (B.1)obtained in AppendixB, we find that

B1=(2μ+λ)hy(w
m)T

(
0,B̃N(1x.Dxv1)i,1,B̃N(1x.Dxv1)i,2,...B̃N(1x.Dxv1)i,M−1,0

)T ︸︷︷︸
B1,1

+λhy(w
m)T

(
0,B̃N(1x.Dyv2)i,1,B̃N(1x.Dyv2)i,2,...B̃N(1x.Dyv2)i,M−1,0

)T ︸︷︷︸
B1,2

+μhy(w
n)T

(
0,B̃N(1x.Dyv1)i,1,B̃N(1x.Dyv1)i,2,...B̃N(1x.Dyv1)i,M−1,0

)T ︸︷︷︸
B1,3

+μhy(w
n)T

(
0,B̃N(1x.Dxv2)i,1,B̃N(1x.Dxv2)i,2,...B̃N(1x.Dxv2)i,M−1,0

)T ︸︷︷︸
B1,4

.

Consider B1,1+B1,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

B1,1+B1,2=(2μ+λ)hy

M−1 ∑
j=1

(wm)Ti,j(B̃N(1x.Dxv
1)i,j)+λhy

M−1 ∑
j=1

(wm)Ti,j(B̃N(1x.Dyv
2)i,j).

Consider an arbitrary node j �={0, M}, and neglect the parameters. Then we have

B1,1+B1,2=

⎛
⎜⎜⎜⎜⎝

wm
0,j

wm
1,j

...
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0−1

2000...0

−1
20000...0

...
...

...
0...00001

2

0...0001
20

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dxv1)0,j

(1x.Dxv1)1,j

...
(1x.Dxv1)N−1,j

(1x.Dxv1)N,j

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

wm
0,j

wm
1,j

...
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0−1

2000...0

−1
20000...0

...
...

...
0...00001

2

0...0001
20

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dyv2)0,j

(1x.Dyv2)1,j

...
(1x.Dyv2)N−1,j

(1x.Dyv2)N,j

⎞
⎟⎟⎟⎟⎠,

=1
2

(
−wm

1,j(1x.Dxv
1)0,j−wm

0,j(1x.Dxv
1)1,j+wm

N,j(1x.Dxv
1)N−1,j+wm

N−1,j(1x.Dxv
1)N,j

)
+1

2

(
−wm

1,j(1x.Dyv
2)0,j−wm

0,j(1x.Dyv
2)1,j+wm

N,j(1x.Dyv
2)N−1,j+wm

N−1,j(1x.Dyv
2)N,j

)
.

Since wm
0,j=v1

0,j=0and wm
N,j=v1

N,j=0, due to the no-slip condition, this reduces to

B1,1+B1,2=1
2

(
−wm

1,j(1x.Dxv
1)0,j+wm

N−1,j(1x.Dxv
1)N,j−wm

1,j(1x.Dyv
2)0,j+wm

N−1,j(1x.Dyv
2)N,j

)
.
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Proof.Consider the viscous flux in the x-direction given by (65). Contracting the vector (65)by the entropy variables in 
(71)and H, we obtain

A1=wTHDV
xf

μ,

=(wm)THD̃x
(
1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
))+(wn)THD̃x

(
1x.

(
μ(Dyv

1+Dxv
2)

))
+(wE)THDx

(
1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

.

Utilise that HD̃x=H̃y⊗B̃N−H̃y⊗(HxD̃N)
T=H̃y⊗B̃N−D̃T

xH, and the analogous properties of Dx, to obtain

A1=(wm)T(H̃y⊗B̃N)
(
1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
))+(wn)T(H̃y⊗B̃N)

(
1x.

(
μ(Dyv

1+Dxv
2)

)) ︸︷︷︸
B1

−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH
(

μ(Dyv
1+Dxv

2)
)

+(wE)T(Hy⊗BN)
(
1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

−(Dxw
E)TH1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)

.

Consider the boundary terms, B1. Using the result (B.1)obtained in AppendixB, we find that

B1=(2μ+λ)hy(w
m)T

(
0,B̃N(1x.Dxv1)i,1,B̃N(1x.Dxv1)i,2,...B̃N(1x.Dxv1)i,M−1,0

)T ︸︷︷︸
B1,1

+λhy(w
m)T

(
0,B̃N(1x.Dyv2)i,1,B̃N(1x.Dyv2)i,2,...B̃N(1x.Dyv2)i,M−1,0

)T ︸︷︷︸
B1,2

+μhy(w
n)T

(
0,B̃N(1x.Dyv1)i,1,B̃N(1x.Dyv1)i,2,...B̃N(1x.Dyv1)i,M−1,0

)T ︸︷︷︸
B1,3

+μhy(w
n)T

(
0,B̃N(1x.Dxv2)i,1,B̃N(1x.Dxv2)i,2,...B̃N(1x.Dxv2)i,M−1,0

)T ︸︷︷︸
B1,4

.

Consider B1,1+B1,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

B1,1+B1,2=(2μ+λ)hy

M−1 ∑
j=1

(wm)Ti,j(B̃N(1x.Dxv
1)i,j)+λhy

M−1 ∑
j=1

(wm)Ti,j(B̃N(1x.Dyv
2)i,j).

Consider an arbitrary node j �={0, M}, and neglect the parameters. Then we have

B1,1+B1,2=

⎛
⎜⎜⎜⎜⎝

wm
0,j

wm
1,j

...
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0−1

2000...0

−1
20000...0

...
...

...
0...00001

2

0...0001
20

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dxv1)0,j

(1x.Dxv1)1,j

...
(1x.Dxv1)N−1,j

(1x.Dxv1)N,j

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

wm
0,j

wm
1,j

...
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0−1

2000...0

−1
20000...0

...
...

...
0...00001

2

0...0001
20

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dyv2)0,j

(1x.Dyv2)1,j

...
(1x.Dyv2)N−1,j

(1x.Dyv2)N,j

⎞
⎟⎟⎟⎟⎠,

=1
2

(
−wm

1,j(1x.Dxv
1)0,j−wm

0,j(1x.Dxv
1)1,j+wm

N,j(1x.Dxv
1)N−1,j+wm

N−1,j(1x.Dxv
1)N,j

)
+1

2

(
−wm

1,j(1x.Dyv
2)0,j−wm

0,j(1x.Dyv
2)1,j+wm

N,j(1x.Dyv
2)N−1,j+wm

N−1,j(1x.Dyv
2)N,j

)
.

Since wm
0,j=v1

0,j=0and wm
N,j=v1

N,j=0, due to the no-slip condition, this reduces to

B1,1+B1,2=1
2

(
−wm

1,j(1x.Dxv
1)0,j+wm

N−1,j(1x.Dxv
1)N,j−wm

1,j(1x.Dyv
2)0,j+wm

N−1,j(1x.Dyv
2)N,j

)
.
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Proof. Consider the viscous flux in the x-direction given by (65). Contracting the vector (65) by the entropy variables in 
(71) and H, we obtain

A1 = w
T
HD

V
x f

μ
,

= (w
m
)
T
H D̃x(1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
)) )+ (w

n
)
T
H D̃x (1x.(μ(Dy v

1
+ Dxv

2
)) )

+ (w
E
)
T
HDx(1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
))).

Utilise that H D̃x = H̃ y ⊗ B̃N − H̃ y ⊗ (HxD̃N)T = H̃ y ⊗ B̃N − D̃T
x H , and the analogous properties of Dx , to obtain

A1 = (w
m
)
T
(H̃ y ⊗ B̃N)(1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
)) )+ (w

n
)
T
(H̃ y ⊗ B̃N)(1x. (μ(Dy v

1
+ Dxv

2
)) )︸ ︷︷ ︸B1

−(D̃xw
m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H (μ(Dy v

1
+ Dxv

2
))

+(w
E
)
T
(Hy ⊗ BN)(1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)))

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
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Utilise that HD̃x=H̃y⊗B̃N−H̃y⊗(HxD̃N)T=H̃y⊗B̃N−D̃T
xH, and the analogous properties of Dx, to obtain

A1=(w
m
)
T
(H̃y⊗B̃N)(1x.(2μDxv

1
+λ(Dxv

1
+Dyv

2
)))+(w

n
)
T
(H̃y⊗B̃N)(1x.(μ(Dyv

1
+Dxv

2
))) ︸︷︷︸ B1

−(D̃xw
m
)
T
H1x.(2μDxv

1
+λ(Dxv

1
+Dyv

2
))−(D̃xw

n
)
T
H(μ(Dyv

1
+Dxv

2
))

+(w
E
)
T
(Hy⊗BN)(1x.(b,x v1

.(2μDxv
1
+λ(Dxv

1
+Dyv

2
))+μ

b,x

v
2
.(Dyv

1
+Dxv

2
)))

−(Dxw
E
)
T
H1x.(b,x v1

.(2μDxv
1
+λ(Dxv

1
+Dyv

2
))+μ

b,x

v
2
.(Dyv

1
+Dxv

2
)).

Consider the boundary terms, B1. Using the result (B.1)obtained in AppendixB, we find that
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Consider the boundary terms, B1. Using the result (B.1)obtained in AppendixB, we find that
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Proof.Consider the viscous flux in the x-direction given by (65). Contracting the vector (65)by the entropy variables in 
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xH, and the analogous properties of Dx, to obtain
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Consider the boundary terms, B1. Using the result (B.1)obtained in AppendixB, we find that
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Consider B1,1+B1,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

B1,1+B1,2=(2μ+λ)hy

M−1 ∑
j=1

(w
m
)
T
i,j(B̃N(1x.Dxv

1
)i,j)+λhy

M−1 ∑
j=1

(w
m
)
T
i,j(B̃N(1x.Dyv

2
)i,j).

Consider an arbitrary node j �={0, M}, and neglect the parameters. Then we have

B1,1+B1,2=

⎛
⎜⎜⎜
⎜⎝

wm
0,j

wm
1,j

..

.
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟
⎟⎠

T⎛
⎜⎜⎜
⎜⎝

0−1
2000...0

−1
20000...0

..

.
..

.
..
.

0...00001
2

0...0001
20

⎞
⎟⎟⎟
⎟⎠

⎛
⎜⎜⎜
⎜⎝

(1x.Dxv1)
0,j

(1x.Dxv1)
1,j

..

.
(1x.Dxv1)

N−1,j

(1x.Dxv1)
N,j

⎞
⎟⎟⎟
⎟⎠

+

⎛
⎜⎜⎜
⎜⎝

wm
0,j

wm
1,j

..

.
wm

N−1,j

wm
N,j

⎞
⎟⎟⎟
⎟⎠

T⎛
⎜⎜⎜
⎜⎝

0−1
2000...0

−1
20000...0

..

.
..

.
..
.

0...00001
2

0...0001
20

⎞
⎟⎟⎟
⎟⎠

⎛
⎜⎜⎜
⎜⎝

(1x.Dyv2)
0,j

(1x.Dyv2)
1,j

..

.
(1x.Dyv2)

N−1,j

(1x.Dyv2)
N,j

⎞
⎟⎟⎟
⎟⎠,

=1
2(−w

m
1,j(1x.Dxv

1
)0,j−w

m
0,j(1x.Dxv

1
)1,j+w

m
N,j(1x.Dxv

1
)N−1,j+w

m
N−1,j(1x.Dxv

1
)N,j)

+1
2(−w

m
1,j(1x.Dyv

2
)0,j−w

m
0,j(1x.Dyv

2
)1,j+w

m
N,j(1x.Dyv

2
)N−1,j+w

m
N−1,j(1x.Dyv

2
)N,j).

Since w
m
0,j=v

1
0,j=0and w

m
N,j=v

1
N,j=0, due to the no-slip condition, this reduces to

B1,1+B1,2=1
2(−w

m
1,j(1x.Dxv

1
)0,j+w

m
N−1,j(1x.Dxv

1
)N,j−w

m
1,j(1x.Dyv

2
)0,j+w

m
N−1,j(1x.Dyv

2
)N,j).

17

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572
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Next, we insert the specific form of the derivatives, which gives us
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.

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
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The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section 3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries and the neighbouring nodes). Since 
b,x

v1 =
b,x

v2 = 0 at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore
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(73)

Similarly for the viscous flux in the y-direction, we multiply (66) by the entropy variables and the norm matrix, H , to 
end up with
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Combining (73) and (74), we obtain
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(75)

To recast (75) as a quadratic form, we use the entropy variables (71) and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,
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Next, we insert the specific form of the derivatives, which gives us
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Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
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The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
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Combining (73)and (74), we obtain

wTHDV
xf

μ+wTHDV
yg

μ≤−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH1x.
(

μ(Dyv
1+Dxv

2)
)

−(Dxw
E)TH1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)

−(D̃yw
m)TH1y.(μ(Dyv

1+Dxv
2))−(D̃yw

n)TH1y.(2μDyv
2)+λ(Dxv

1+Dyv
2)

−(Dyw
E)TH1y.

(b,y
v2.(2μDyv

2+λ(Dxv
1+Dyv

2))+μ
b,y

v1.(Dyv
1+Dxv

2)
)

.

(75)

To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,

wTH(DV
xf

μ+DV
yg

μ)≤−1

cv

((b,x
v1.D̃xT

−1+
i,x

T−1.D̃xv
1
)T

H1x.
(
2μDxv

1+λ(Dxv
1+Dyv

2)
))

−1

cv

((b,x
v2.D̃xT

−1+
i,x

T−1.D̃xv
2
)T

H1x.
(

μ(Dyv
1+Dxv

2)
))

+1

cv

(
(DxT

−1)TH1x.
(b,x

v1.
(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

−1

cv

((b,y
v1.D̃yT

−1+
i,y

T−1.D̃yv
1
)T

H1y.
(

μ(Dyv
1+Dxv

2)
))
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Next, we insert the specific form of the derivatives, which gives us

B1,1+B1,2=1
2

(
−wm

1,j1x0,j
v1

1,j−v1
0,j

hx
+wm

N−1,j1xN,j

v1
N,j−v1

N−1,j

hx

−wm
1,j1x0,j

v1
0,j+1−v2

0,j−1

2hy
+wm

N−1,j1xN,j

v2
N,j+1−v2

N,j−1

2hy

)
.

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have

B1,1+B1,2=−1

2hx

(
1x0,j

(v1
1,j)

2

T1,j
+1xN,j

(v1
N−1,j)

2

TN−1,j

)
≤0,(Ti,j>0).

By analogous manipulations to B1,3+B1,4, A1reduces to

A1≤−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH1x.
(

μ(Dyv
1+Dxv

2)
)

+(wE)T(Hy⊗BN)
(
1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)) ︸︷︷︸

B2

−(Dxw
E)TH1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)

.

The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries andthe neighbouring nodes). Since 
b,x

v1=
b,x

v2=0at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore

A1≤−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH1x.
(

μ(Dyv
1+Dxv

2)
)

−(Dxw
E)TH1x.

(b,x
v1.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
)

.

(73)

Similarly for the viscous flux in the y-direction, we multiply (66)by the entropy variables and the norm matrix, H, to 
end up with

A2≤−(D̃yw
m)TH1y.(μ(Dyv

1+Dxv
2))−(D̃yw

n)TH1y.(2μDyv
2)+λ(Dxv

1+Dyv
2)

−(Dyw
E)TH1y.

(b,y
v2.(2μDyv

2+λ(Dxv
1+Dyv

2))+μ
b,y

v1.(Dyv
1+Dxv

2)
)(74)

Combining (73)and (74), we obtain

wTHDV
xf

μ+wTHDV
yg

μ≤−(D̃xw
m)TH1x.

(
2μDxv

1+λ(Dxv
1+Dyv

2)
)−(D̃xw

n)TH1x.
(

μ(Dyv
1+Dxv

2)
)

−(Dxw
E)TH1x.

(b,x
v1.

(
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2)
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b,x

v2.(Dyv
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2)
)

−(D̃yw
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1+Dxv
2))−(D̃yw

n)TH1y.(2μDyv
2)+λ(Dxv

1+Dyv
2)

−(Dyw
E)TH1y.

(b,y
v2.(2μDyv

2+λ(Dxv
1+Dyv

2))+μ
b,y

v1.(Dyv
1+Dxv

2)
)

.

(75)

To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,

wTH(DV
xf

μ+DV
yg

μ)≤−1

cv

((b,x
v1.D̃xT

−1+
i,x

T−1.D̃xv
1
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(
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(
(DxT
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(
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2)
)+μ

b,x

v2.(Dyv
1+Dxv

2)
))

−1

cv

((b,y
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−1+
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1
)T
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(

μ(Dyv
1+Dxv
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Next, we insert the specific form of the derivatives, which gives us

B1,1 + B1,2 = 1
2

(−w
m
1, j1x0, j

v
1
1, j − v

1
0, j

hx + w
m
N−1, j1xN, j

v
1
N, j − v

1
N−1, j

hx

− w
m
1, j1x0, j

v
1
0, j+1 − v

2
0, j−1

2hy + w
m
N−1, j1xN, j

v
2
N, j+1 − v

2
N, j−1

2hy

).

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have

B1,1 + B1,2 = −
1

2hx

(
1x0, j

(v
1
1, j)2

T1, j + 1xN, j

(v
1
N−1, j)2

TN−1, j

)
≤ 0, (Ti, j > 0).

By analogous manipulations to B1,3 +B1,4, A1 reduces to

A1 ≤ −(D̃xw
m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H1x. (μ(Dy v

1
+ Dxv

2
))

+ (w
E
)
T
(Hy ⊗ BN)(1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)))︸ ︷︷ ︸B2

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)).

The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section 3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries and the neighbouring nodes). Since 
b,x

v
1
=

b,x

v
2
= 0 at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore

A1 ≤ −(D̃xw
m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H1x. (μ(Dy v

1
+ Dxv

2
))

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)). (73)

Similarly for the viscous flux in the y-direction, we multiply (66) by the entropy variables and the norm matrix, H , to 
end up with

A2 ≤ −(D̃ yw
m
)
T
H1y .(μ(Dy v

1
+ Dxv

2
)) − (D̃ yw

n
)
T
H1y .(2μDy v

2
) + λ(Dxv

1
+ Dy v

2
)

−(Dyw
E
)
T
H1y .(b,yv2

.(2μDy v
2
+ λ(Dxv

1
+ Dy v

2
)) + μ

b,y

v
1
.(Dy v

1
+ Dxv

2
)) (74)

Combining (73) and (74), we obtain

w
T
HD

V
x f

μ
+ w

T
HD

V
yg

μ
≤ −(D̃xw

m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H1x. (μ(Dy v

1
+ Dxv

2
))

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
))

−(D̃ yw
m
)
T
H1y .(μ(Dy v

1
+ Dxv

2
)) − (D̃ yw

n
)
T
H1y .(2μDy v

2
) + λ(Dxv

1
+ Dy v

2
)

−(Dyw
E
)
T
H1y .(b,yv2

.(2μDy v
2
+ λ(Dxv

1
+ Dy v

2
)) + μ

b,y

v
1
.(Dy v

1
+ Dxv

2
)).

(75)

To recast (75) as a quadratic form, we use the entropy variables (71) and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,

w
T
H(D

V
x f

μ
+D

V
yg

μ
) ≤ −

1

cv

(( b,x
v

1
.D̃xT−1 +

i,x

T−1.D̃
xv

1)T H1x.(2μDxv
1
+ λ(Dxv

1
+ Dy v

2
)))

−
1
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(( b,x
v

2
.D̃xT−1 +

i,x

T−1.D̃
xv

2)T H1x.(μ(Dy v
1
+ Dxv

2
)))

+
1

cv

((DxT−1)T H1x.( b,xv1
.(2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)))

−
1

cv

((b,y
v

1
.D̃ yT−1 +

i,y

T−1.D̃
y v

1)T H1y .(μ(Dy v
1
+ Dxv

2
)))
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Next, we insert the specific form of the derivatives, which gives us

B1,1 + B1,2 = 1
2

(−w
m
1, j1x0, j

v
1
1, j − v

1
0, j

hx + w
m
N−1, j1xN, j

v
1
N, j − v

1
N−1, j

hx

− w
m
1, j1x0, j

v
1
0, j+1 − v

2
0, j−1

2hy + w
m
N−1, j1xN, j

v
2
N, j+1 − v

2
N, j−1

2hy

).

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have

B1,1 + B1,2 = −
1

2hx

(
1x0, j

(v
1
1, j)2

T1, j + 1xN, j

(v
1
N−1, j)2

TN−1, j

)
≤ 0, (Ti, j > 0).

By analogous manipulations to B1,3 +B1,4, A1 reduces to

A1 ≤ −(D̃xw
m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H1x. (μ(Dy v

1
+ Dxv

2
))

+ (w
E
)
T
(Hy ⊗ BN)(1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)))︸ ︷︷ ︸B2

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)).

The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section 3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries and the neighbouring nodes). Since 
b,x

v
1
=

b,x

v
2
= 0 at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore

A1 ≤ −(D̃xw
m
)
T
H1x. (2μDxv

1
+ λ(Dxv

1
+ Dy v

2
))− (D̃xw

n
)
T
H1x. (μ(Dy v

1
+ Dxv

2
))

−(Dxw
E
)
T
H1x.( b,xv1

. (2μDxv
1
+ λ(Dxv

1
+ Dy v

2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
)). (73)

Similarly for the viscous flux in the y-direction, we multiply (66) by the entropy variables and the norm matrix, H , to 
end up with

A2 ≤ −(D̃ yw
m
)
T
H1y .(μ(Dy v

1
+ Dxv

2
)) − (D̃ yw

n
)
T
H1y .(2μDy v

2
) + λ(Dxv

1
+ Dy v

2
)

−(Dyw
E
)
T
H1y .(b,yv2

.(2μDy v
2
+ λ(Dxv

1
+ Dy v

2
)) + μ

b,y

v
1
.(Dy v

1
+ Dxv

2
)) (74)

Combining (73) and (74), we obtain

w
T
HD

V
x f

μ
+ w
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V
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μ
≤ −(D̃xw

m
)
T
H1x. (2μDxv

1
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1
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2
))− (D̃xw

n
)
T
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1
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2
))
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E
)
T
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. (2μDxv
1
+ λ(Dxv

1
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2
))+ μ

b,x

v
2
.(Dy v

1
+ Dxv

2
))
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m
)
T
H1y .(μ(Dy v

1
+ Dxv

2
)) − (D̃ yw

n
)
T
H1y .(2μDy v

2
) + λ(Dxv

1
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2
)
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E
)
T
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.(2μDy v
2
+ λ(Dxv

1
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2
)) + μ

b,y

v
1
.(Dy v

1
+ Dxv

2
)).

(75)

To recast (75) as a quadratic form, we use the entropy variables (71) and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,

w
T
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V
x f

μ
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V
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μ
) ≤ −

1
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1
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2
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−
1
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1
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18

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

Next, we insert the specific form of the derivatives, which gives us

B1,1+B1,2=1
2

(−w
m
1,j1x0,j

v
1
1,j−v

1
0,j

hx+w
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2
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2
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).

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have

B1,1+B1,2=−
1

2hx

(
1x0,j

(v
1
1,j)2

T1,j+1xN,j

(v
1
N−1,j)2

TN−1,j

)
≤0,(Ti,j>0).

By analogous manipulations to B1,3+B1,4, A1reduces to

A1≤−(D̃xw
m
)
T
H1x.(2μDxv

1
+λ(Dxv

1
+Dyv

2
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n
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1
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2
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)
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1
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1
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2
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v
2
.(Dyv

1
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2
)).

The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries andthe neighbouring nodes). Since 
b,x

v
1
=

b,x

v
2
=0at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore

A1≤−(D̃xw
m
)
T
H1x.(2μDxv

1
+λ(Dxv

1
+Dyv

2
))−(D̃xw

n
)
T
H1x.(μ(Dyv

1
+Dxv

2
))

−(Dxw
E
)
T
H1x.(b,x v1

.(2μDxv
1
+λ(Dxv

1
+Dyv

2
))+μ

b,x

v
2
.(Dyv

1
+Dxv

2
)).(73)

Similarly for the viscous flux in the y-direction, we multiply (66)by the entropy variables and the norm matrix, H, to 
end up with
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Combining (73)and (74), we obtain
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(75)

To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,
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Next, we insert the specific form of the derivatives, which gives us
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Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
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The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries andthe neighbouring nodes). Since 
b,x

v
1
=
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v
2
=0at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore
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Similarly for the viscous flux in the y-direction, we multiply (66)by the entropy variables and the norm matrix, H, to 
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To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,
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Next, we insert the specific form of the derivatives, which gives us
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Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
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The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries andthe neighbouring nodes). Since 
b,x

v
1
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b,x

v
2
=0at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore
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Similarly for the viscous flux in the y-direction, we multiply (66)by the entropy variables and the norm matrix, H, to 
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Combining (73)and (74), we obtain
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(75)

To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,
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Next, we insert the specific form of the derivatives, which gives us
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Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have
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The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries andthe neighbouring nodes). Since 
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v
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=0at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore
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Similarly for the viscous flux in the y-direction, we multiply (66)by the entropy variables and the norm matrix, H, to 
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(75)

To recast (75)as a quadratic form, we use the entropy variables (71)and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,
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i.e., (72) holds true. �

Lemma 5.6. The diffusive heat fluxes (68) satisfy
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Proof. Denote the left-hand side of (76) by A, then
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Manipulations of A1 give us
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Proposition 5.7. The semi-discrete scheme (69) is entropy stable in the sense of (52).
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6. Numerical simulations

To demonstrate the properties of the schemes with special emphasis on the no-slip condition, we consider both a sub-
sonic and a supersonic case.
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such that we can utilise the results of Lemma5.5and 5.6, and obtain
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6. Numerical simulations

To demonstrate the properties of the schemes with special emphasis on the no-slip condition, we consider both a sub-
sonic and a supersonic case.
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Fig. 1. (a) v1 at t = 0.01 obtained with 2572 grid points and α = 1. (b) v2 at t = 0.01 obtained with 2572 grid points and α = 1.

Fig. 2. (a) v1 at t = 0.01 obtained with 2572 grid points and α = 0.4. (b) v2 at t = 0.01 obtained with 2572 grid points and α = 0.4.

6.1. Blast wave

Let � = [0, 1] × [0, 1], with homogeneous no-slip condition at all walls. We use a similar setup as in [26] with the 
following initial conditions

ρ = 1, v1 = 0, v2 = 0, p =
{
0.01, if (x, y) ∈ � \ B ((0.5,0.5),0.35) ,

1000, if (x, y) ∈ B ((0.5,0.5),0.35) ,

where B ((0.5,0.5),0.35) denotes a disk centred at (x, y) = (0.5, 0.5) with radius r = 0.35. Furthermore, we use the follow-
ing parameters

γ = 1.4, R = 286.84, μ = 0.1, Pr = 0.72, cp = 1005, κ = μcp
Pr

.

We use (69) with, δi+1/2, j = αmax
(∣∣∣v1

i, j

∣∣∣+ ci, j,
∣∣∣v1

i+1, j

∣∣∣+ ci+1, j

)
. For α = 1, this is the entropy stable local Lax-

Friedrichs scheme, but to stress test the scheme we also run the non-provably entropy stable choice α = 0.4. For time 
discretisation, we apply the third-order strong stability preserving Runge-Kutta method (see [7]).

The entropy-stable numerical results computed with 2572 grid points and α = 1 are displayed in Fig. 1a and 1b at time 
t = 0.01. Fig. 2a and 2b display the numerical results obtained for the same problem, but with reduced artificial diffusion, 
α = 0.4.

Lastly, we have run a simulation on a coarse mesh (332 grid points) as a further demonstration of the robustness of the 
boundary treatment. The results for the velocity components are displayed in Fig. 3a and 3b.

We have furthermore compared the entropy decay for the cases α = 1 and α = 0.4 (for the coarse mesh to highlight the 
differences). The plot of the total entropy, i.e.,

∫
�
U (u) d� is depicted in Fig. 4. We have normalised the entropy at every 

time step by subtracting the initial entropy, 
∫
�
U (u) d�

∣∣
t=0. As we see from the plot, the entropy is decaying for both values 

of α, but the decay is faster for larger diffusion, which is as expected.
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Fig. 3. (a) v1 at t = 0.01 obtained with 332 grid points and α = 1. (b) v2 at t = 0.01 obtained with 332 grid points and α = 0.4.

Fig. 4. Plot of the (normalised) total entropy
∫
�
U (u) d�

∣∣
t=t − ∫

�
U (u) d�

∣∣
t=0 for the coarse grid with α = 1 and α = 0.4.

6.2. Lid-driven cavity flow

We have run a similar problem as in [3] on the spatial domain � = [0, 1] ×[0, 1]. The upper wall of the cavity is moving 
at a constant speed to the right, such that the boundary conditions for the velocity components become{

v1 = 1, v2 = 0, ∂� ∩ {y = 1},
v1,2 = 0, ∂� \ {y = 1}. (77)

The boundary condition for the temperature is given by (62). Furthermore, the problem parameters are given by Re = 100, 
Ma = 0.1, Pr = 0.72, γ = 1.4, and it is initialised by the conditions

ρ = 1, v1, v2 = 0, p = 1

Ma2γ
.

Note that at one wall, the lid-driven cavity problem has a non-homogeneous no-slip condition for one of the velocity 
components. Still, an entropy bound for the continuum solution is obtained as only the normal components of the velocities 
enter the estimate. (We have not been able to prove entropy stability for the discrete scheme with the boundary conditions 
(77).)

Fig. 5a shows the solution at t = 2 when using the scheme (69). We have also run the same problem using a 3rd-order 
scheme. (See remark at the end of Section 5.1.) We have verified linear stability in one spatial dimension, and the extension 
to two dimensions is straightforward. The 3rd-order numerical solution is shown in Fig. 5b.

Fig. 6a shows the solution at t = 2 for the lid-driven cavity flow with the heat-entropy flow boundary condition κ
T

∂T
∂n =

g = 2. The solution is qualitatively similar to the adiabatic case where ∂T
∂n = 0. Fig. 6b depicts the total entropy 

∫
�
U (u) d�, 
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Fig. 5. (a) The velocity field displayed at t = 2 using 2572 grid points and α = 0.15. (Second-order scheme.) (b) The velocity field displayed at t = 2 using 
1292 grid points. (3rd-order SBP scheme.)

Fig. 6. (a) The velocity field displayed at t = 2 using 1292 grid points. (Second-order scheme using the heat entropy flow boundary condition.) (b) The 
velocity field displayed at t = 2 using 1292 grid points. (Second-order scheme using the heat entropy flow boundary condition.)

6.2.1. Comments for the implementation
Since one of the velocity components is non-zero at the boundary y = 1 for the lid-driven cavity, we must manually 

update this boundary after each Runge-Kutta stage even when using the proposed scheme with the Dirichlet-SBP operator. 
This is to take into account the contribution from the continuity equation into the momentum equation at the boundary. The 
momentum equation is updated as m|∂�,{y=1} = ρ|∂�,{y=1}v1|∂�,{y=1} , where ρ|∂�,{y=1} is given by the continuity equation 
and v1|∂�,{y=1} = 1.

7. Conclusions

In this article, we have investigated the injection method for strongly imposing the no-slip condition for finite-difference 
approximations of the compressible Navier-Stokes equations in 1-D and 2-D. Based on standard SBP operators, spatial oper-
ators (which we have termed Dirichlet-SBP operators) facilitating the injection procedure were introduced. The temperature 
condition, on the other hand, was enforced by a SAT. Thus, density, pressure and temperature are updated on the bound-
ary while the momentum is no longer a variable in the boundary points. In particular, we have considered the stability 
properties of the proposed schemes taking the mixed boundary treatment into account.

When proving linear stability of non-linear problems, it is common to immediately associate the scheme with a lin-
ear symmetric constant-coefficient version. Herein, we have rigorously performed all linearisation steps for two different 
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schemes; one with second-order interior accuracy and one with fourth-order. We prove that the procedure is valid for the 
proposed 1-D scheme, including the strong-weak imposition of the wall boundary conditions. The linearisation of the 2-D 
scheme requires considerable more work, but we do not see any additional difficulties beyond more involved algebra and 
it should also reduce to the same form as the 1-D scheme. Moreover, under the assumption that the interior scheme is 
entropy stable (52), we have proven that both the proposed 1-D and 2-D 2nd-order schemes, with the mixed boundary 
treatment, are non-linearly (entropy) stable. The non-linear stability proofs are straightforwardly extendable to 3-D.

Although our proofs rely on the introduction of the Dirichlet-SBP operator, we stress that this operator is not necessary in 
practice, and has only been introduced for purpose of the proofs. In implementations one can simply overwrite the velocity 
at the boundary nodes after each Runge-Kutta stage. (This makes the code significantly simpler than with SATs enforcing 
no-slip.)

Two numerical test cases have been considered; a blast wave and a lid-driven cavity flow. For the blast wave, two types 
of local Lax-Friedrichs type diffusions were considered: an entropy stable diffusion (α = 1) and a non-provably entropy 
stable diffusion (α = 0.4). In both cases, the total entropy was decaying, although a faster decay was observed for the more 
diffusive scheme (which is as expected). For the lid-driven cavity flow, a reduced local Lax-Friedrichs diffusion (α = 0.15) 
was considered for the 2nd-order scheme. Thereafter, the 3rd-order, linearly stable (but not provably non-linearly stable), 
scheme was run. The solutions were similar to those obtained in [3]. All test cases demonstrated that the combination of 
strongly and weakly imposed boundary conditions is robust, and corroborate the claim that the 2-D scheme is stable.
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Appendix A. Linearisation procedure

A.1. Linearisation of the compressible Navier-Stokes equations in 1D

We present the derivation of the linearised and symmetrised Navier-Stokes equations (13), since the details are not 
presented in [1].

We write the Navier-Stokes equations (10) in primitive variables v = (ρ, v, p)T :

ρt + (ρv)x = 0, (A.1)

vt + vvx + 1
ρ px = 2μ+λ

ρ vxx, (A.2)

pt + γ pvx + vpx = (γ − 1)(2μ + λ)v2x + κ(γ − 1)Txx. (A.3)

We decompose each variable into its exact (known smooth and bounded) solution and a small smooth perturbation: 
ρ = ρex + ρ ′ , etc.

(ρex + ρ ′)t + (
(ρex + ρ ′)(vex + v ′)x

)= 0,

(ρex)t + ρ ′
t + (

ρexvex + ρexv
′ + ρ ′vex + ρ ′v ′)

x = 0,

(ρex)t + ρ ′
t + (ρexvex)x + (ρex)xv

′ + ρexv
′
x + ρ ′

xvex + ρ ′(vex)x + ρ ′
xv

′ + ρ ′v ′
x = 0.

By definition (ρex)t + (ρexvex)x = 0, and hence

ρ ′
t + (ρex)xv

′ + ρexv
′
x + ρ ′

xvex + ρ ′(vex)x + ρ ′
xv

′ + ρ ′v ′
x = 0.

The underlined terms are zeroth-order derivatives of ρ ′ and v ′ , and hence do not affect the well-posedness of the problem 
(see [9]), hence they are omitted. The linearisation is done by neglecting non-linear terms, i.e. ρ ′

xv
′ + ρ ′v ′

x . The final result 
is

ρ ′
t + ρexv

′
x + vexρ

′
x = 0.
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schemes; one with second-order interior accuracy and one with fourth-order. We prove that the procedure is valid for the 
proposed 1-D scheme, including the strong-weak imposition of the wall boundary conditions. The linearisation of the 2-D 
scheme requires considerable more work, but we do not see any additional difficulties beyond more involved algebra and 
it should also reduce to the same form as the 1-D scheme. Moreover, under the assumption that the interior scheme is 
entropy stable (52), we have proven that both the proposed 1-D and 2-D 2nd-order schemes, with the mixed boundary 
treatment, are non-linearly (entropy) stable. The non-linear stability proofs are straightforwardly extendable to 3-D.

Although our proofs rely on the introduction of the Dirichlet-SBP operator, we stress that this operator is not necessary in 
practice, and has only been introduced for purpose of the proofs. In implementations one can simply overwrite the velocity 
at the boundary nodes after each Runge-Kutta stage. (This makes the code significantly simpler than with SATs enforcing 
no-slip.)

Two numerical test cases have been considered; a blast wave and a lid-driven cavity flow. For the blast wave, two types 
of local Lax-Friedrichs type diffusions were considered: an entropy stable diffusion (α = 1) and a non-provably entropy 
stable diffusion (α = 0.4). In both cases, the total entropy was decaying, although a faster decay was observed for the more 
diffusive scheme (which is as expected). For the lid-driven cavity flow, a reduced local Lax-Friedrichs diffusion (α = 0.15) 
was considered for the 2nd-order scheme. Thereafter, the 3rd-order, linearly stable (but not provably non-linearly stable), 
scheme was run. The solutions were similar to those obtained in [3]. All test cases demonstrated that the combination of 
strongly and weakly imposed boundary conditions is robust, and corroborate the claim that the 2-D scheme is stable.
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it should also reduce to the same form as the 1-D scheme. Moreover, under the assumption that the interior scheme is 
entropy stable (52), we have proven that both the proposed 1-D and 2-D 2nd-order schemes, with the mixed boundary 
treatment, are non-linearly (entropy) stable. The non-linear stability proofs are straightforwardly extendable to 3-D.

Although our proofs rely on the introduction of the Dirichlet-SBP operator, we stress that this operator is not necessary in 
practice, and has only been introduced for purpose of the proofs. In implementations one can simply overwrite the velocity 
at the boundary nodes after each Runge-Kutta stage. (This makes the code significantly simpler than with SATs enforcing 
no-slip.)

Two numerical test cases have been considered; a blast wave and a lid-driven cavity flow. For the blast wave, two types 
of local Lax-Friedrichs type diffusions were considered: an entropy stable diffusion (α=1) and a non-provably entropy 
stable diffusion (α=0.4). In both cases, the total entropy was decaying, although a faster decay was observed for the more 
diffusive scheme (which is as expected). For the lid-driven cavity flow, a reduced local Lax-Friedrichs diffusion (α=0.15) 
was considered for the 2nd-order scheme. Thereafter, the 3rd-order, linearly stable (but not provably non-linearly stable), 
scheme was run. The solutions were similar to those obtained in [3]. All test cases demonstrated that the combination of 
strongly and weakly imposed boundary conditions is robust, and corroborate the claim that the 2-D scheme is stable.
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A.1. Linearisation of the compressible Navier-Stokes equations in 1D

We present the derivation of the linearised and symmetrised Navier-Stokes equations (13), since the details are not 
presented in [1].
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(see [9]), hence they are omitted. The linearisation is done by neglecting non-linear terms, i.e. ρ′xv′+ρ′v′x. The final result 
is
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For the velocity equation, we have
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We neglect the non-linear terms and omit zeroth-order terms. This yields
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In the same way, the equation (A.3) becomes
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For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+1

ρex+ρ′(pex+p′)x=2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′
t+vex(vex)x+vexv

′
x+v′(vex)x+v′v′

x+(pex)x

ρex+ρ′+p′
x

ρex+ρ′=(2μ+λ)

(
(vex)xx
ρex+ρ′+v′

xx

ρex+ρ′

)
.

Factorise 1
ρex+ρ′=1

ρex

1

1+ρ′
ρex

, and Taylor expand the second factor; 1

1+ρ′
ρex

=1 −ρ′
ρex

+O((ρ′/ρex)
2). Using that the exact 

solution satisfies Equation (A.2), we have

v′
t+vexv

′
x+v′(vex)x+v′v′

x+(pex)x

(
−ρ′

ρ2
ex

+O(ρ′/ρ2
ex)

)
+p′

x

(
1

ρex
−ρ′

ρ2
ex

+O(ρ′/ρ2
ex)

)
,

=(2μ+λ)

(
(vex)xx

(
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

)
+v′

xx

(
1

ρex
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

))
.

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′
t+vexv

′
x+p′

x

ρex
=2μ+λ

ρex
v′

xx.

In the same way, the equation (A.3)becomes

(pex+p′)t+γ(pex+p′)(v+v′)x+(vex+v′)(pex+p′)x
=(γ−1)(2μ+λ)(vex+v′)2x+κ(γ−1)(Tex+T′)xx,

that after expansion becomes,

(pex)t+p′
t+γ(pex)(vex)x+γ(pex)v

′
x+γp′(vex)x+γp′v′

x+vex(pex)x+vexp
′
x+v′(pex)x+v′p′

x,

=(γ−1)(2μ+λ)
(

(vex)
2
x+2(vex)xv

′
x+v′2

x

)
+κ(γ−1)(Tex+T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx+T′
xx)=(pex)xx+p′

xx

ρex+ρ′−2
((pex)x+p′

x)((ρex)x+ρ′
x)

(ρex+ρ′)2

+2
(pex+p′)((ρex)x+ρ′

x)
2

(ρex+ρ′)3
−(pex+p′)((ρex)xx+ρ′

xx)

(ρex+ρ′)2
,

=(pex)xx+p′
xx

ρex+ρ′−2
(pex)x(ρex)x+(pex)xρ

′
x+p′

x(ρex)x+p′
xρ

′
x

(ρex+ρ′)2

+2
pex(ρex)

2
x+2pex(ρex)xρ

′
x+pexρ

′2
x+p′(ρex)

2
x+2p′(ρex)xρ

′
x+p′ρ′2

x

(ρex+ρ′)3

−pex(ρex)xx+pexρ
′
xx+p′(ρex)xx+p′ρ′

xx

(ρex+ρ′)2
.

Taylor expanding yields

R((Tex)xx+T′
xx)

=((pex)xx+p′
xx)

(
1

ρex
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

)

−2
(

(pex)x(ρex)x+(pex)xρ
′
x+p′

x(ρex)x+p′
xρ

′
x

)(1

ρ2
ex

−ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)

)

+2
(

pex(ρex)
2
x+2pex(ρex)xρ

′
x+pexρ

′2
x+p′(ρex)

2
x+2p′(ρex)xρ

′
x+p′ρ′2

x

)(1

ρ3
ex

−ρ′

ρ4
ex

+O((ρ′)2/ρ5
ex)

)

−(pex(ρex)xx+pexρ
′
xx+p′(ρex)xx+p′ρ′

xx

)(1

ρ2
ex

−ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)

)
.

25

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+1

ρex+ρ′(pex+p′)x=2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′
t+vex(vex)x+vexv

′
x+v′(vex)x+v′v′

x+(pex)x

ρex+ρ′+p′
x

ρex+ρ′=(2μ+λ)

(
(vex)xx
ρex+ρ′+v′

xx

ρex+ρ′

)
.

Factorise 1
ρex+ρ′=1

ρex

1

1+ρ′
ρex

, and Taylor expand the second factor; 1

1+ρ′
ρex

=1 −ρ′
ρex

+O((ρ′/ρex)
2). Using that the exact 

solution satisfies Equation (A.2), we have

v′
t+vexv

′
x+v′(vex)x+v′v′

x+(pex)x

(
−ρ′

ρ2
ex

+O(ρ′/ρ2
ex)

)
+p′

x

(
1

ρex
−ρ′

ρ2
ex

+O(ρ′/ρ2
ex)

)
,

=(2μ+λ)

(
(vex)xx

(
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

)
+v′

xx

(
1

ρex
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

))
.

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′
t+vexv

′
x+p′

x

ρex
=2μ+λ

ρex
v′

xx.

In the same way, the equation (A.3)becomes

(pex+p′)t+γ(pex+p′)(v+v′)x+(vex+v′)(pex+p′)x
=(γ−1)(2μ+λ)(vex+v′)2x+κ(γ−1)(Tex+T′)xx,

that after expansion becomes,

(pex)t+p′
t+γ(pex)(vex)x+γ(pex)v

′
x+γp′(vex)x+γp′v′

x+vex(pex)x+vexp
′
x+v′(pex)x+v′p′

x,

=(γ−1)(2μ+λ)
(

(vex)
2
x+2(vex)xv

′
x+v′2

x

)
+κ(γ−1)(Tex+T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx+T′
xx)=(pex)xx+p′

xx

ρex+ρ′−2
((pex)x+p′

x)((ρex)x+ρ′
x)

(ρex+ρ′)2

+2
(pex+p′)((ρex)x+ρ′

x)
2

(ρex+ρ′)3
−(pex+p′)((ρex)xx+ρ′

xx)

(ρex+ρ′)2
,

=(pex)xx+p′
xx

ρex+ρ′−2
(pex)x(ρex)x+(pex)xρ

′
x+p′

x(ρex)x+p′
xρ

′
x

(ρex+ρ′)2

+2
pex(ρex)

2
x+2pex(ρex)xρ

′
x+pexρ

′2
x+p′(ρex)

2
x+2p′(ρex)xρ

′
x+p′ρ′2

x

(ρex+ρ′)3

−pex(ρex)xx+pexρ
′
xx+p′(ρex)xx+p′ρ′

xx

(ρex+ρ′)2
.

Taylor expanding yields

R((Tex)xx+T′
xx)

=((pex)xx+p′
xx)

(
1

ρex
−ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex)

)

−2
(

(pex)x(ρex)x+(pex)xρ
′
x+p′

x(ρex)x+p′
xρ

′
x

)(1

ρ2
ex

−ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)

)

+2
(

pex(ρex)
2
x+2pex(ρex)xρ

′
x+pexρ

′2
x+p′(ρex)

2
x+2p′(ρex)xρ

′
x+p′ρ′2

x

)(1

ρ3
ex

−ρ′

ρ4
ex

+O((ρ′)2/ρ5
ex)

)

−(pex(ρex)xx+pexρ
′
xx+p′(ρex)xx+p′ρ′

xx

)(1

ρ2
ex

−ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)

)
.
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For the velocity equation, we have

(vex + v ′)t + (vex + v ′)(vex + v ′)x +
1

ρex + ρ ′ (pex + p′)x =
2μ + λ

ρex + ρ ′ (vex + v ′)xx,

(vex)t + v ′t + vex(vex)x + vexv ′x + v ′(vex)x + v ′v ′x +
(pex)x

ρex + ρ ′ +
p′x

ρex + ρ ′ = (2μ + λ)( (vex)xx
ρex + ρ ′ +

v ′xx
ρex + ρ ′

) .

Factorise 1
ρex+ρ ′ = 1

ρex

1

1+
ρ ′
ρex

, and Taylor expand the second factor; 1

1+
ρ ′
ρex

= 1 −
ρ ′
ρex + O((ρ ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v ′t + vexv ′x + v ′(vex)x + v ′v ′x + (pex)x(−
ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex))+ p′x( 1

ρex −
ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex)) ,

= (2μ + λ)((vex)xx(−
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))+ v ′xx( 1

ρex −
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))) .

We neglect the non-linear terms and omit zeroth-order terms. This yields

v ′t + vexv ′x +
p′x
ρex =

2μ + λ

ρex
v ′xx.

In the same way, the equation (A.3) becomes

(pex + p′)t + γ (pex + p′)(v + v ′)x + (vex + v ′)(pex + p′)x
=(γ − 1)(2μ + λ)(vex + v ′)2x + κ(γ − 1)(Tex + T′)xx,

that after expansion becomes,

(pex)t + p′t + γ (pex)(vex)x + γ (pex)v ′x + γ p′(vex)x + γ p′v ′x + vex(pex)x + vexp′x + v ′(pex)x + v ′p′x,

= (γ − 1)(2μ + λ)((vex)2x + 2(vex)xv ′x + v ′2x )+ κ(γ − 1)(Tex + T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx + T′xx) =
(pex)xx + p′xx

ρex + ρ ′ − 2
((pex)x + p′x)((ρex)x + ρ ′x)

(ρex + ρ ′)2

+ 2
(pex + p′)((ρex)x + ρ ′x)2

(ρex + ρ ′)3 −
(pex + p′)((ρex)xx + ρ ′xx)

(ρex + ρ ′)2 ,

=
(pex)xx + p′xx

ρex + ρ ′ − 2
(pex)x(ρex)x + (pex)xρ ′x + p′x(ρex)x + p′xρ ′x

(ρex + ρ ′)2

+2
pex(ρex)2

x + 2pex(ρex)xρ ′x + pexρ ′2x + p′(ρex)2
x + 2p′(ρex)xρ ′x + p′ρ ′2x

(ρex + ρ ′)3

−
pex(ρex)xx + pexρ ′xx + p′(ρex)xx + p′ρ ′xx

(ρex + ρ ′)2 .

Taylor expanding yields

R((Tex)xx + T′xx)

= ((pex)xx + p′xx)( 1

ρex −
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))

−2 ((pex)x(ρex)x + (pex)xρ ′x + p′x(ρex)x + p′xρ ′x)( 1

ρ2
ex

−
ρ ′

ρ3
ex

+O((ρ ′)2/ρ4
ex))

+2(pex(ρex)2
x + 2pex(ρex)xρ ′x + pexρ ′2x + p′(ρex)2

x + 2p′(ρex)xρ ′x + p′ρ ′2x )( 1

ρ3
ex

−
ρ ′

ρ4
ex

+O((ρ ′)2/ρ5
ex))

− (pex(ρex)xx + pexρ ′xx + p′(ρex)xx + p′ρ ′xx)( 1

ρ2
ex

−
ρ ′

ρ3
ex

+O((ρ ′)2/ρ4
ex)) .
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For the velocity equation, we have

(vex + v ′)t + (vex + v ′)(vex + v ′)x +
1

ρex + ρ ′ (pex + p′)x =
2μ + λ

ρex + ρ ′ (vex + v ′)xx,

(vex)t + v ′t + vex(vex)x + vexv ′x + v ′(vex)x + v ′v ′x +
(pex)x

ρex + ρ ′ +
p′x

ρex + ρ ′ = (2μ + λ)( (vex)xx
ρex + ρ ′ +

v ′xx
ρex + ρ ′

) .

Factorise 1
ρex+ρ ′ = 1

ρex

1

1+
ρ ′
ρex

, and Taylor expand the second factor; 1

1+
ρ ′
ρex

= 1 −
ρ ′
ρex + O((ρ ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v ′t + vexv ′x + v ′(vex)x + v ′v ′x + (pex)x(−
ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex))+ p′x( 1

ρex −
ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex)) ,

= (2μ + λ)((vex)xx(−
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))+ v ′xx( 1

ρex −
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))) .

We neglect the non-linear terms and omit zeroth-order terms. This yields

v ′t + vexv ′x +
p′x
ρex =

2μ + λ

ρex
v ′xx.

In the same way, the equation (A.3) becomes

(pex + p′)t + γ (pex + p′)(v + v ′)x + (vex + v ′)(pex + p′)x
=(γ − 1)(2μ + λ)(vex + v ′)2x + κ(γ − 1)(Tex + T′)xx,

that after expansion becomes,

(pex)t + p′t + γ (pex)(vex)x + γ (pex)v ′x + γ p′(vex)x + γ p′v ′x + vex(pex)x + vexp′x + v ′(pex)x + v ′p′x,

= (γ − 1)(2μ + λ)((vex)2x + 2(vex)xv ′x + v ′2x )+ κ(γ − 1)(Tex + T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx + T′xx) =
(pex)xx + p′xx

ρex + ρ ′ − 2
((pex)x + p′x)((ρex)x + ρ ′x)

(ρex + ρ ′)2

+ 2
(pex + p′)((ρex)x + ρ ′x)2

(ρex + ρ ′)3 −
(pex + p′)((ρex)xx + ρ ′xx)

(ρex + ρ ′)2 ,

=
(pex)xx + p′xx

ρex + ρ ′ − 2
(pex)x(ρex)x + (pex)xρ ′x + p′x(ρex)x + p′xρ ′x

(ρex + ρ ′)2

+2
pex(ρex)2

x + 2pex(ρex)xρ ′x + pexρ ′2x + p′(ρex)2
x + 2p′(ρex)xρ ′x + p′ρ ′2x

(ρex + ρ ′)3

−
pex(ρex)xx + pexρ ′xx + p′(ρex)xx + p′ρ ′xx

(ρex + ρ ′)2 .

Taylor expanding yields

R((Tex)xx + T′xx)

= ((pex)xx + p′xx)( 1

ρex −
ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex))

−2 ((pex)x(ρex)x + (pex)xρ ′x + p′x(ρex)x + p′xρ ′x)( 1

ρ2
ex

−
ρ ′

ρ3
ex

+O((ρ ′)2/ρ4
ex))

+2(pex(ρex)2
x + 2pex(ρex)xρ ′x + pexρ ′2x + p′(ρex)2

x + 2p′(ρex)xρ ′x + p′ρ ′2x )( 1

ρ3
ex

−
ρ ′

ρ4
ex

+O((ρ ′)2/ρ5
ex))

− (pex(ρex)xx + pexρ ′xx + p′(ρex)xx + p′ρ ′xx)( 1

ρ2
ex

−
ρ ′

ρ3
ex

+O((ρ ′)2/ρ4
ex)) .
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For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+
1

ρex+ρ′(pex+p′)x=
2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′t+vex(vex)x+vexv′x+v′(vex)x+v′v′x+
(pex)x

ρex+ρ′+
p′x

ρex+ρ′=(2μ+λ)((vex)xx
ρex+ρ′+

v′xx
ρex+ρ′

).

Factorise 1
ρex+ρ′=1

ρex

1

1+
ρ′
ρex

, and Taylor expand the second factor; 1

1+
ρ′
ρex

=1 −
ρ′
ρex+O((ρ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v′t+vexv′x+v′(vex)x+v′v′x+(pex)x(−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex))+p′x(1

ρex−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex)),

=(2μ+λ)((vex)xx(−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))+v′xx(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))).

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′t+vexv′x+
p′x
ρex=

2μ+λ

ρex
v′xx.

In the same way, the equation (A.3)becomes

(pex+p′)t+γ(pex+p′)(v+v′)x+(vex+v′)(pex+p′)x
=(γ−1)(2μ+λ)(vex+v′)2x+κ(γ−1)(Tex+T′)xx,

that after expansion becomes,

(pex)t+p′t+γ(pex)(vex)x+γ(pex)v′x+γp′(vex)x+γp′v′x+vex(pex)x+vexp′x+v′(pex)x+v′p′x,

=(γ−1)(2μ+λ)((vex)2x+2(vex)xv′x+v′2x)+κ(γ−1)(Tex+T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx+T′xx)=
(pex)xx+p′xx

ρex+ρ′−2
((pex)x+p′x)((ρex)x+ρ′x)

(ρex+ρ′)2

+2
(pex+p′)((ρex)x+ρ′x)2

(ρex+ρ′)3−
(pex+p′)((ρex)xx+ρ′xx)

(ρex+ρ′)2,

=
(pex)xx+p′xx

ρex+ρ′−2
(pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x

(ρex+ρ′)2

+2
pex(ρex)2

x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2
x+2p′(ρex)xρ′x+p′ρ′2x

(ρex+ρ′)3

−
pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx

(ρex+ρ′)2.

Taylor expanding yields

R((Tex)xx+T′xx)

=((pex)xx+p′xx)(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))

−2((pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex))

+2(pex(ρex)2
x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2

x+2p′(ρex)xρ′x+p′ρ′2x)(1

ρ3
ex

−
ρ′

ρ4
ex

+O((ρ′)2/ρ5
ex))

−(pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)).
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For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+
1

ρex+ρ′(pex+p′)x=
2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′t+vex(vex)x+vexv′x+v′(vex)x+v′v′x+
(pex)x

ρex+ρ′+
p′x

ρex+ρ′=(2μ+λ)((vex)xx
ρex+ρ′+

v′xx
ρex+ρ′

).

Factorise 1
ρex+ρ′=1

ρex

1

1+
ρ′
ρex

, and Taylor expand the second factor; 1

1+
ρ′
ρex

=1 −
ρ′
ρex+O((ρ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v′t+vexv′x+v′(vex)x+v′v′x+(pex)x(−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex))+p′x(1

ρex−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex)),

=(2μ+λ)((vex)xx(−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))+v′xx(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))).

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′t+vexv′x+
p′x
ρex=

2μ+λ

ρex
v′xx.

In the same way, the equation (A.3)becomes

(pex+p′)t+γ(pex+p′)(v+v′)x+(vex+v′)(pex+p′)x
=(γ−1)(2μ+λ)(vex+v′)2x+κ(γ−1)(Tex+T′)xx,

that after expansion becomes,

(pex)t+p′t+γ(pex)(vex)x+γ(pex)v′x+γp′(vex)x+γp′v′x+vex(pex)x+vexp′x+v′(pex)x+v′p′x,

=(γ−1)(2μ+λ)((vex)2x+2(vex)xv′x+v′2x)+κ(γ−1)(Tex+T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx+T′xx)=
(pex)xx+p′xx

ρex+ρ′−2
((pex)x+p′x)((ρex)x+ρ′x)

(ρex+ρ′)2

+2
(pex+p′)((ρex)x+ρ′x)2

(ρex+ρ′)3−
(pex+p′)((ρex)xx+ρ′xx)

(ρex+ρ′)2,

=
(pex)xx+p′xx

ρex+ρ′−2
(pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x

(ρex+ρ′)2

+2
pex(ρex)2

x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2
x+2p′(ρex)xρ′x+p′ρ′2x

(ρex+ρ′)3

−
pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx

(ρex+ρ′)2.

Taylor expanding yields

R((Tex)xx+T′xx)

=((pex)xx+p′xx)(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))

−2((pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex))

+2(pex(ρex)2
x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2

x+2p′(ρex)xρ′x+p′ρ′2x)(1

ρ3
ex

−
ρ′

ρ4
ex

+O((ρ′)2/ρ5
ex))

−(pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)).
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For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+
1

ρex+ρ′(pex+p′)x=
2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′t+vex(vex)x+vexv′x+v′(vex)x+v′v′x+
(pex)x

ρex+ρ′+
p′x

ρex+ρ′=(2μ+λ)((vex)xx
ρex+ρ′+

v′xx
ρex+ρ′

).

Factorise 1
ρex+ρ′=1

ρex

1

1+
ρ′
ρex

, and Taylor expand the second factor; 1

1+
ρ′
ρex

=1 −
ρ′
ρex+O((ρ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v′t+vexv′x+v′(vex)x+v′v′x+(pex)x(−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex))+p′x(1

ρex−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex)),

=(2μ+λ)((vex)xx(−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))+v′xx(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))).

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′t+vexv′x+
p′x
ρex=

2μ+λ

ρex
v′xx.

In the same way, the equation (A.3)becomes

(pex+p′)t+γ(pex+p′)(v+v′)x+(vex+v′)(pex+p′)x
=(γ−1)(2μ+λ)(vex+v′)2x+κ(γ−1)(Tex+T′)xx,

that after expansion becomes,

(pex)t+p′t+γ(pex)(vex)x+γ(pex)v′x+γp′(vex)x+γp′v′x+vex(pex)x+vexp′x+v′(pex)x+v′p′x,

=(γ−1)(2μ+λ)((vex)2x+2(vex)xv′x+v′2x)+κ(γ−1)(Tex+T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx+T′xx)=
(pex)xx+p′xx

ρex+ρ′−2
((pex)x+p′x)((ρex)x+ρ′x)

(ρex+ρ′)2

+2
(pex+p′)((ρex)x+ρ′x)2

(ρex+ρ′)3−
(pex+p′)((ρex)xx+ρ′xx)

(ρex+ρ′)2,

=
(pex)xx+p′xx

ρex+ρ′−2
(pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x

(ρex+ρ′)2

+2
pex(ρex)2

x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2
x+2p′(ρex)xρ′x+p′ρ′2x

(ρex+ρ′)3

−
pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx

(ρex+ρ′)2.

Taylor expanding yields

R((Tex)xx+T′xx)

=((pex)xx+p′xx)(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))

−2((pex)x(ρex)x+(pex)xρ′x+p′x(ρex)x+p′xρ′x)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex))

+2(pex(ρex)2
x+2pex(ρex)xρ′x+pexρ′2x+p′(ρex)2

x+2p′(ρex)xρ′x+p′ρ′2x)(1

ρ3
ex

−
ρ′

ρ4
ex

+O((ρ′)2/ρ5
ex))

−(pex(ρex)xx+pexρ′xx+p′(ρex)xx+p′ρ′xx)(1

ρ2
ex

−
ρ′

ρ3
ex

+O((ρ′)2/ρ4
ex)).

25

A.GjestelandandM.SvärdJournalofComputationalPhysics470(2022)111572

For the velocity equation, we have

(vex+v′)t+(vex+v′)(vex+v′)x+
1

ρex+ρ′(pex+p′)x=
2μ+λ

ρex+ρ′(vex+v′)xx,

(vex)t+v′t+vex(vex)x+vexv′x+v′(vex)x+v′v′x+
(pex)x

ρex+ρ′+
p′x

ρex+ρ′=(2μ+λ)((vex)xx
ρex+ρ′+

v′xx
ρex+ρ′

).

Factorise 1
ρex+ρ′=1

ρex

1

1+
ρ′
ρex

, and Taylor expand the second factor; 1

1+
ρ′
ρex

=1 −
ρ′
ρex+O((ρ′/ρex)2). Using that the exact 

solution satisfies Equation (A.2), we have

v′t+vexv′x+v′(vex)x+v′v′x+(pex)x(−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex))+p′x(1

ρex−
ρ′

ρ2
ex

+O(ρ′/ρ2
ex)),

=(2μ+λ)((vex)xx(−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))+v′xx(1

ρex−
ρ′

ρ2
ex

+O((ρ′)2/ρ3
ex))).

We neglect the non-linear terms and omit zeroth-order terms. This yields

v′t+vexv′x+
p′x
ρex=

2μ+λ
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain
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+ 4pex(ρex)xρ
′
x

ρ3
ex

− pexρ
′
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.

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with
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x
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Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
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p′
t + γ pexv

′
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′
x = κ

R (γ − 1)

(
p′
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− p

ρ2
ex

ρ ′
xx

)
.

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system
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x + ρ∗v ′
x = 0,
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t + v∗v ′

x + 1
ρ∗ p′
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ρ∗ v ′
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p′
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x = − γμp∗

Prρ∗2 ρ ′
xx + γμ

Prρ p′
xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p = ρRT. By the same procedure as above, we linearise this gas law as follows
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(
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Since pex =RρexTex, by neglecting the non-linear term Rρ ′T′ , this reduces to
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.

Solving for T′ and freezing the coefficients yields
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p′
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.

Appendix B. Kronecker products

Let B̃N be the (N + 1) × (N + 1) matrix given by
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...
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⎞
⎟⎟⎟⎟⎟⎟⎠,

and B̃M the (M + 1) × (M + 1) matrix with the same form as B̃N . Furthermore, let H̃x = Hx ĨN , where Hx = hx ·
diag(1/2, 1, . . . , 1, 1/2) and Ĩ N is the (N + 1) × (N + 1) identity matrix, with the upper left and lower right element set 
to zero. H̃ y is defined similarly (see Section 5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as

uT = (
uT
i,1 uT

i,1 uT
i,2 . . . uT

i,M

)
,

where uT
i, j =

(
u0, j u1, j u2, j . . . uN, j

)
. This more compact form of writing the vectors will be convenient below.
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain
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(This is the starting point in [1].)
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Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with
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Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain
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xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p =ρRT. By the same procedure as above, we linearise this gas law as follows
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(

ρex+ρ′)(Tex+T′)=R
(
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Since pex=RρexTex, by neglecting the non-linear term Rρ′T′, this reduces to
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(
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and B̃Mthe (M+1) ×(M+1)matrix with the same form as B̃N. Furthermore, let H̃x=HxĨN, where Hx=hx·
diag(1/2, 1, ..., 1, 1/2)and ĨNis the (N+1) ×(N+1)identity matrix, with the upper left and lower right element set 
to zero. H̃yis defined similarly (see Section5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as

uT=(
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i,1uT
i,1uT
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)
,

where uT
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain

RT′xx =
p′xx
ρex − 2

(pex)xρ ′x + p′x(ρex)x

ρ2
ex

+
4pex(ρex)xρ ′x

ρ3
ex

−
pexρ ′xx
ρ2
ex

.

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with

p′t + γ (pex)v ′x + γ p′(vex)x + γ p′v ′x + vexp′x + v ′(pex)x + v ′p′x,

= (γ − 1)(2μ + λ)(2(vex)xv ′x + v ′2x )+ κ(γ − 1)T′xx.

Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain

p′t + γ pexv ′x + vexp′x =
κ

R
(γ − 1)( p′xx

ρex −
p

ρ2
ex

ρ ′xx) .

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system

ρ ′t + v∗ρ ′x + ρ∗v ′x = 0,

v ′t + v∗v ′x + 1
ρ∗ p′x =

2μ+λ
ρ∗ v ′xx,

p′t + γ p∗v ′x + v∗p′x = −
γμp∗
Prρ∗2 ρ ′xx +

γμ
Prρ p′xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p = ρRT. By the same procedure as above, we linearise this gas law as follows

pex + p′ = R (ρex + ρ ′) (Tex + T′)= R (ρexTex + ρexT′ + ρ ′Tex + ρ ′T′) .
Since pex =RρexTex, by neglecting the non-linear term Rρ ′T′ , this reduces to

p′ = R (ρexT′ + ρ ′Tex) .
Solving for T′ and freezing the coefficients yields

T′ = 1

R

( p′

ρ∗ −
p∗ρ ′

ρ∗2
) .
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. .
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..
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⎠

,

and B̃M the (M + 1) × (M + 1) matrix with the same form as B̃N . Furthermore, let H̃x = Hx ĨN , where Hx = hx ·
diag(1/2, 1, . . . , 1, 1/2) and Ĩ N is the (N + 1) × (N + 1) identity matrix, with the upper left and lower right element set 
to zero. H̃ y is defined similarly (see Section 5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as

u
T

= (uT
i,1 uT

i,1 uT
i,2 . . . uT

i,M ) ,
where uT

i, j = (u0, j u1, j u2, j . . . uN, j ). This more compact form of writing the vectors will be convenient below.
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain
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+
4pex(ρex)xρ ′x
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−
pexρ ′xx
ρ2
ex

.

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with

p′t + γ (pex)v ′x + γ p′(vex)x + γ p′v ′x + vexp′x + v ′(pex)x + v ′p′x,

= (γ − 1)(2μ + λ)(2(vex)xv ′x + v ′2x )+ κ(γ − 1)T′xx.

Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain

p′t + γ pexv ′x + vexp′x =
κ

R
(γ − 1)( p′xx

ρex −
p

ρ2
ex

ρ ′xx) .

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system

ρ ′t + v∗ρ ′x + ρ∗v ′x = 0,

v ′t + v∗v ′x + 1
ρ∗ p′x =

2μ+λ
ρ∗ v ′xx,

p′t + γ p∗v ′x + v∗p′x = −
γμp∗
Prρ∗2 ρ ′xx +

γμ
Prρ p′xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p = ρRT. By the same procedure as above, we linearise this gas law as follows

pex + p′ = R (ρex + ρ ′) (Tex + T′)= R (ρexTex + ρexT′ + ρ ′Tex + ρ ′T′) .
Since pex =RρexTex, by neglecting the non-linear term Rρ ′T′ , this reduces to

p′ = R (ρexT′ + ρ ′Tex) .
Solving for T′ and freezing the coefficients yields

T′ = 1
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( p′

ρ∗ −
p∗ρ ′

ρ∗2
) .
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and B̃M the (M + 1) × (M + 1) matrix with the same form as B̃N . Furthermore, let H̃x = Hx ĨN , where Hx = hx ·
diag(1/2, 1, . . . , 1, 1/2) and Ĩ N is the (N + 1) × (N + 1) identity matrix, with the upper left and lower right element set 
to zero. H̃ y is defined similarly (see Section 5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain

RT′xx=
p′xx
ρex−2

(pex)xρ′x+p′x(ρex)x

ρ2
ex

+
4pex(ρex)xρ′x

ρ3
ex

−
pexρ′xx
ρ2
ex

.

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with

p′t+γ(pex)v′x+γp′(vex)x+γp′v′x+vexp′x+v′(pex)x+v′p′x,

=(γ−1)(2μ+λ)(2(vex)xv′x+v′2x)+κ(γ−1)T′xx.

Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain

p′t+γpexv′x+vexp′x=
κ

R
(γ−1)(p′xx

ρex−
p

ρ2
ex

ρ′xx).

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system

ρ′t+v∗ρ′x+ρ∗v′x=0,

v′t+v∗v′x+1
ρ∗p′x=

2μ+λ
ρ∗v′xx,

p′t+γp∗v′x+v∗p′x=−
γμp∗
Prρ∗2ρ′xx+

γμ
Prρp′xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p =ρRT. By the same procedure as above, we linearise this gas law as follows

pex+p′=R(ρex+ρ′)(Tex+T′)=R(ρexTex+ρexT′+ρ′Tex+ρ′T′).
Since pex=RρexTex, by neglecting the non-linear term Rρ′T′, this reduces to

p′=R(ρexT′+ρ′Tex).
Solving for T′and freezing the coefficients yields

T′=1

R

(p′

ρ∗−
p∗ρ′

ρ∗2
).
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and B̃Mthe (M+1) ×(M+1)matrix with the same form as B̃N. Furthermore, let H̃x=HxĨN, where Hx=hx·
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain
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Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with
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number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain
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Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system
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Recall that p =ρRT. By the same procedure as above, we linearise this gas law as follows
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The Kronecker products, H̃ y ⊗ B̃N and B̃M ⊗ H̃x written as matrices can be stated more compactly in the following way

H̃ y ⊗ B̃N = hy

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0

0

⎛
⎜⎝

0 − 1
2 ... 0

− 1
2 0 ... 0

0 ... 0 1
2

0 ... 1
2 0

⎞
⎟⎠ 0 0 . . . 0

0 0

⎛
⎜⎝

0 − 1
2 ... 0

− 1
2 0 ... 0

0 ... 0 1
2

0 ... 1
2 0

⎞
⎟⎠ 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B̃M ⊗ H̃x = hx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0 0 0 . . . 0

− 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0
...

. . .
...

0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 0 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠

0 . . . 0 0 0 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the bold-face zero denotes a matrix of size (N + 1) × (N + 1) with all elements being zero.
Applying these products to a vector, u, yields

(H̃ y ⊗ B̃N)u = hy
(
0 B̃Nui,1 B̃Nui,2 . . . B̃Nui,M−1 0

)T
, (B.1)

(B̃M ⊗ H̃x)u = (− 1
2 H̃xui,1 − 1

2 H̃xui,0 0 . . . 0 1
2 H̃xui,M

1
2 H̃xui,M−1

)T
. (B.2)

Note that in the above expressions, the underlined bold-face zeros denotes vectors of length N + 1 with all elements being 
zero.
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2...0

−1
20...0
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0...1
20

⎞
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00

⎛
⎜⎝

0−1
2...0

−1
20...0

0...01
2

0...1
20

⎞
⎟⎠0...0

...
...

...
...

...
...

0...0000
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⎠
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,

where the bold-face zero denotes a matrix of size (N+1) ×(N+1)with all elements being zero.
Applying these products to a vector, u, yields
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1
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.(B.2)
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⎟⎟⎟
⎟⎟⎟
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⎟⎟⎟
⎟⎟⎟
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where the bold-face zero denotes a matrix of size (N + 1) × (N + 1) with all elements being zero.
Applying these products to a vector, u, yields

(H̃ y ⊗ B̃N)u = hy (0 B̃Nui,1 B̃Nui,2 . . . B̃Nui,M−1 0)T , (B.1)

(B̃M ⊗ H̃x)u = (− 1
2 H̃xui,1 − 1

2 H̃xui,0 0 . . . 0 1
2 H̃xui,M

1
2 H̃xui,M−1 )T . (B.2)
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where the bold-face zero denotes a matrix of size (N+1) ×(N+1)with all elements being zero.
Applying these products to a vector, u, yields
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Note that in the above expressions, the underlined bold-face zeros denotes vectors of length N+1with all elements being 
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The Kronecker products, H̃y⊗B̃Nand B̃M⊗H̃xwritten as matrices can be stated more compactly in the following way

H̃y⊗B̃N=hy
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,

B̃M⊗H̃x=hx
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,

where the bold-face zero denotes a matrix of size (N+1) ×(N+1)with all elements being zero.
Applying these products to a vector, u, yields

(H̃y⊗B̃N)u=hy(0B̃Nui,1B̃Nui,2...B̃Nui,M−10)T,(B.1)

(B̃M⊗H̃x)u=(−1
2H̃xui,1−1

2H̃xui,00...01
2H̃xui,M

1
2H̃xui,M−1)T.(B.2)

Note that in the above expressions, the underlined bold-face zeros denotes vectors of length N+1with all elements being 
zero.
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Abstract
We consider a slightly modified local finite-volume approximation of the Laplacian operator
originally proposed by Chandrashekar (Int J Adv Eng Sci Appl Math 8(3):174–193, 2016,
https://doi.org/10.1007/s12572-015-0160-z). The goal is to prove consistency and conver-
gence of the approximation on unstructured grids. Consequently, we propose a semi-discrete
scheme for the heat equation augmented with Dirichlet, Neumann and Robin boundary con-
ditions. By deriving a priori estimates for the numerical solution, we prove that it converges
weakly, and subsequently strongly, to a weak solution of the original problem. A numerical
simulation demonstrates that the scheme converges with a second-order rate.

Keywords Finite volume · Second derivative · Convergence

1 Introduction

The compressible Navier–Stokes equations are the foundation of computational fluid dynam-
ics (CFD) for modelling the flow of viscous compressible fluids. Consequently, numerical
methods for approximating their solutions are vastly studied. For a numerical scheme to
yield a convergent sequence of approximate solutions, it must be a stable discretisation
of the well-posed continuous problem. For linear partial differential equations (PDEs), the
energy method, which depends heavily on integration by parts (IBP), is often used to prove
well-posedness. In the (semi-)discrete setting, analogous stability proofs can be obtained
by using the discrete energy method, where IBP is mimicked using summation-by-parts
(SBP). Numerical methods formulated to satisfy the SBP property are thus frequently used
for various PDEs, including CFD problems (see e.g. [6, 9, 24, 31, 32]).

Different numerical methods can be formulated in the SBP framework. These include
the finite-difference methods (see e.g. [20, 21, 28]), the finite-volume methods (see e.g. [7,
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23, 29]) and the discontinuous Galerkin spectral element methods (see e.g. [12]). The latter
two may be formulated on unstructured grids, that are sometimes preferred for domains with
complex geometries.

Herein, we focus the attention on local finite-volume methods that only use nearest neigh-
bours to approximate the derivatives. These are still the workhorse methods in production
CFD, due to their simplicity and robustness, and since the local structure allows for easier
parallelisation.Awell-knowndrawback is however the difficulty of finding consistent second-
derivative approximations, which hampers their usability for the compressible Navier–Stokes
equations. It was, for example, shown in [29] that a commonly used edge-based approxi-
mation is inconsistent on general unstructured grids. Although proofs of convergence exist
for finite-volume methods, they often rely on admissible meshes (in the sense of Def. 3.1 in
[11], see e.g. [3, 13]), that require normal derivative approximations at volume faces to be
orthogonal to the face. This severely constrains mesh generation. Hence, it is desirable to
design a local finite-volume scheme that runs on standard unstructured grids such asDelaunay
triangulations.

In the interest of accurately discretising the viscous terms of the compressible Navier–
Stokes equations on such grids, we study the Laplacian approximation proposed by
Chandrashekar in [7]. His approximation incorporated the Dirichlet boundary conditions
weakly, and the resulting operator was shown to satisfy the SBP property. The approxima-
tion was then used to discretise the heat equation, and numerical experiments showed that
the scheme converged with second-order rate on triangulated grids.

In this work, we slightly modify the Laplacian operator from [7], by not including any
boundary conditions directly in the operator. We mimic the proof of Chandrashekar, and
demonstrate that the modified operator maintain the SBP property proved in [7]. To study
the consistency and convergence of the Laplacian approximation, we use the heat equation
as a model equation. We propose a numerical scheme for this equation where the Dirichlet
boundary conditions are imposed strongly by injection (see e.g. [16] for more information
about this technique), and the Neumann and Robin boundary coditions are imposed weakly
similar to [7]. This approach is analogous to the one used in [15] to prove both linear and
non-linear stability for the compressible Navier–Stokes equations augmentedwith the no-slip
adiabatic wall boundary conditions on structured grids.

The main goal herein is to mathematically prove the convergence of the proposed scheme
for the heat equation, thus also proving the consistency, in a weak sense, of the second-
derivative approximation. By utilising the SBP properties of the Laplacian operator, we find
a priori H1 estimates for the numerical solution. These estimates guarantee that the numerical
solution converges weakly (up to a subsequence) to a weak solution of the heat equation.
Furthermore, we show that the numerical solution converges strongly by employing Aubin–
Lions’ lemma, and subsequently show that the weak solution is unique. The present proof is
valid for general triangular grids with Lipschitz boundaries, and does not require admissible
meshes. By using themethod ofmanufactured solutions, we verify by a numerical experiment
that the scheme is convergent.

Remark 1.1 To the best of our knowledge, this is the first convergence proof for a local finite-
volume method for the second-derivative that does not require admissible meshes. We note
that some multi-point flux approximations (MPFA) finite-volume methods have been proven
convergent by identifying them as mixed finite-element approximations (see e.g. [2, 18]).

The proof presented herein is also easily adapted to weakly imposed boundary conditions.
Stability for such a scheme for the heat equation was established in [7], and herein we
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23,29])andthediscontinuousGalerkinspectralelementmethods(seee.g.[12]).Thelatter
twomaybeformulatedonunstructuredgrids,thataresometimespreferredfordomainswith
complexgeometries.

Herein,wefocustheattentiononlocalfinite-volumemethodsthatonlyusenearestneigh-
bourstoapproximatethederivatives.Thesearestilltheworkhorsemethodsinproduction
CFD,duetotheirsimplicityandrobustness,andsincethelocalstructureallowsforeasier
parallelisation.Awell-knowndrawbackishoweverthedifficultyoffindingconsistentsecond-
derivativeapproximations,whichhamperstheirusabilityforthecompressibleNavier–Stokes
equations.Itwas,forexample,shownin[29]thatacommonlyusededge-basedapproxi-
mationisinconsistentongeneralunstructuredgrids.Althoughproofsofconvergenceexist
forfinite-volumemethods,theyoftenrelyonadmissiblemeshes(inthesenseofDef.3.1in
[11],seee.g.[3,13]),thatrequirenormalderivativeapproximationsatvolumefacestobe
orthogonaltotheface.Thisseverelyconstrainsmeshgeneration.Hence,itisdesirableto
designalocalfinite-volumeschemethatrunsonstandardunstructuredgridssuchasDelaunay
triangulations.

IntheinterestofaccuratelydiscretisingtheviscoustermsofthecompressibleNavier–
Stokesequationsonsuchgrids,westudytheLaplacianapproximationproposedby
Chandrashekarin[7].HisapproximationincorporatedtheDirichletboundaryconditions
weakly,andtheresultingoperatorwasshowntosatisfytheSBPproperty.Theapproxima-
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theschemeconvergedwithsecond-orderrateontriangulatedgrids.

Inthiswork,weslightlymodifytheLaplacianoperatorfrom[7],bynotincludingany
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thattheschemeisconvergent.
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forfinite-volumemethods,theyoftenrelyonadmissiblemeshes(inthesenseofDef.3.1in
[11],seee.g.[3,13]),thatrequirenormalderivativeapproximationsatvolumefacestobe
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Stokesequationsonsuchgrids,westudytheLaplacianapproximationproposedby
Chandrashekarin[7].HisapproximationincorporatedtheDirichletboundaryconditions
weakly,andtheresultingoperatorwasshowntosatisfytheSBPproperty.Theapproxima-
tionwasthenusedtodiscretisetheheatequation,andnumericalexperimentsshowedthat
theschemeconvergedwithsecond-orderrateontriangulatedgrids.

Inthiswork,weslightlymodifytheLaplacianoperatorfrom[7],bynotincludingany
boundaryconditionsdirectlyintheoperator.WemimictheproofofChandrashekar,and
demonstratethatthemodifiedoperatormaintaintheSBPpropertyprovedin[7].Tostudy
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asamodelequation.WeproposeanumericalschemeforthisequationwheretheDirichlet
boundaryconditionsareimposedstronglybyinjection(seee.g.[16]formoreinformation
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Themaingoalhereinistomathematicallyprovetheconvergenceoftheproposedscheme
fortheheatequation,thusalsoprovingtheconsistency,inaweaksense,ofthesecond-
derivativeapproximation.ByutilisingtheSBPpropertiesoftheLaplacianoperator,wefind
aprioriH1estimatesforthenumericalsolution.Theseestimatesguaranteethatthenumerical
solutionconvergesweakly(uptoasubsequence)toaweaksolutionoftheheatequation.
Furthermore,weshowthatthenumericalsolutionconvergesstronglybyemployingAubin–
Lions’lemma,andsubsequentlyshowthattheweaksolutionisunique.Thepresentproofis
validforgeneraltriangulargridswithLipschitzboundaries,anddoesnotrequireadmissible
meshes.Byusingthemethodofmanufacturedsolutions,weverifybyanumericalexperiment
thattheschemeisconvergent.

Remark1.1Tothebestofourknowledge,thisisthefirstconvergenceproofforalocalfinite-
volumemethodforthesecond-derivativethatdoesnotrequireadmissiblemeshes.Wenote
thatsomemulti-pointfluxapproximations(MPFA)finite-volumemethodshavebeenproven
convergentbyidentifyingthemasmixedfinite-elementapproximations(seee.g.[2,18]).

Theproofpresentedhereinisalsoeasilyadaptedtoweaklyimposedboundaryconditions.
Stabilityforsuchaschemefortheheatequationwasestablishedin[7],andhereinwe
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23, 29]) and the discontinuous Galerkin spectral element methods (see e.g. [12]). The latter
two may be formulated on unstructured grids, that are sometimes preferred for domains with
complex geometries.

Herein, we focus the attention on local finite-volume methods that only use nearest neigh-
bours to approximate the derivatives. These are still the workhorse methods in production
CFD, due to their simplicity and robustness, and since the local structure allows for easier
parallelisation.Awell-knowndrawback is however the difficulty of finding consistent second-
derivative approximations, which hampers their usability for the compressible Navier–Stokes
equations. It was, for example, shown in [29] that a commonly used edge-based approxi-
mation is inconsistent on general unstructured grids. Although proofs of convergence exist
for finite-volume methods, they often rely on admissible meshes (in the sense of Def. 3.1 in
[11], see e.g. [3, 13]), that require normal derivative approximations at volume faces to be
orthogonal to the face. This severely constrains mesh generation. Hence, it is desirable to
design a local finite-volume scheme that runs on standard unstructured grids such asDelaunay
triangulations.

In the interest of accurately discretising the viscous terms of the compressible Navier–
Stokes equations on such grids, we study the Laplacian approximation proposed by
Chandrashekar in [7]. His approximation incorporated the Dirichlet boundary conditions
weakly, and the resulting operator was shown to satisfy the SBP property. The approxima-
tion was then used to discretise the heat equation, and numerical experiments showed that
the scheme converged with second-order rate on triangulated grids.

In this work, we slightly modify the Laplacian operator from [7], by not including any
boundary conditions directly in the operator. We mimic the proof of Chandrashekar, and
demonstrate that the modified operator maintain the SBP property proved in [7]. To study
the consistency and convergence of the Laplacian approximation, we use the heat equation
as a model equation. We propose a numerical scheme for this equation where the Dirichlet
boundary conditions are imposed strongly by injection (see e.g. [16] for more information
about this technique), and the Neumann and Robin boundary coditions are imposed weakly
similar to [7]. This approach is analogous to the one used in [15] to prove both linear and
non-linear stability for the compressible Navier–Stokes equations augmentedwith the no-slip
adiabatic wall boundary conditions on structured grids.

The main goal herein is to mathematically prove the convergence of the proposed scheme
for the heat equation, thus also proving the consistency, in a weak sense, of the second-
derivative approximation. By utilising the SBP properties of the Laplacian operator, we find
a priori H1 estimates for the numerical solution. These estimates guarantee that the numerical
solution converges weakly (up to a subsequence) to a weak solution of the heat equation.
Furthermore, we show that the numerical solution converges strongly by employing Aubin–
Lions’ lemma, and subsequently show that the weak solution is unique. The present proof is
valid for general triangular grids with Lipschitz boundaries, and does not require admissible
meshes. By using themethod ofmanufactured solutions, we verify by a numerical experiment
that the scheme is convergent.

Remark 1.1 To the best of our knowledge, this is the first convergence proof for a local finite-
volume method for the second-derivative that does not require admissible meshes. We note
that some multi-point flux approximations (MPFA) finite-volume methods have been proven
convergent by identifying them as mixed finite-element approximations (see e.g. [2, 18]).

The proof presented herein is also easily adapted to weakly imposed boundary conditions.
Stability for such a scheme for the heat equation was established in [7], and herein we
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solution converges weakly (up to a subsequence) to a weak solution of the heat equation.
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meshes. By using themethod ofmanufactured solutions, we verify by a numerical experiment
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Remark 1.1 To the best of our knowledge, this is the first convergence proof for a local finite-
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that some multi-point flux approximations (MPFA) finite-volume methods have been proven
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23,29])andthediscontinuousGalerkinspectralelementmethods(seee.g.[12]).Thelatter
twomaybeformulatedonunstructuredgrids,thataresometimespreferredfordomainswith
complexgeometries.

Herein,wefocustheattentiononlocalfinite-volumemethodsthatonlyusenearestneigh-
bourstoapproximatethederivatives.Thesearestilltheworkhorsemethodsinproduction
CFD,duetotheirsimplicityandrobustness,andsincethelocalstructureallowsforeasier
parallelisation.Awell-knowndrawbackishoweverthedifficultyoffindingconsistentsecond-
derivativeapproximations,whichhamperstheirusabilityforthecompressibleNavier–Stokes
equations.Itwas,forexample,shownin[29]thatacommonlyusededge-basedapproxi-
mationisinconsistentongeneralunstructuredgrids.Althoughproofsofconvergenceexist
forfinite-volumemethods,theyoftenrelyonadmissiblemeshes(inthesenseofDef.3.1in
[11],seee.g.[3,13]),thatrequirenormalderivativeapproximationsatvolumefacestobe
orthogonaltotheface.Thisseverelyconstrainsmeshgeneration.Hence,itisdesirableto
designalocalfinite-volumeschemethatrunsonstandardunstructuredgridssuchasDelaunay
triangulations.

IntheinterestofaccuratelydiscretisingtheviscoustermsofthecompressibleNavier–
Stokesequationsonsuchgrids,westudytheLaplacianapproximationproposedby
Chandrashekarin[7].HisapproximationincorporatedtheDirichletboundaryconditions
weakly,andtheresultingoperatorwasshowntosatisfytheSBPproperty.Theapproxima-
tionwasthenusedtodiscretisetheheatequation,andnumericalexperimentsshowedthat
theschemeconvergedwithsecond-orderrateontriangulatedgrids.

Inthiswork,weslightlymodifytheLaplacianoperatorfrom[7],bynotincludingany
boundaryconditionsdirectlyintheoperator.WemimictheproofofChandrashekar,and
demonstratethatthemodifiedoperatormaintaintheSBPpropertyprovedin[7].Tostudy
theconsistencyandconvergenceoftheLaplacianapproximation,weusetheheatequation
asamodelequation.WeproposeanumericalschemeforthisequationwheretheDirichlet
boundaryconditionsareimposedstronglybyinjection(seee.g.[16]formoreinformation
aboutthistechnique),andtheNeumannandRobinboundarycoditionsareimposedweakly
similarto[7].Thisapproachisanalogoustotheoneusedin[15]toprovebothlinearand
non-linearstabilityforthecompressibleNavier–Stokesequationsaugmentedwiththeno-slip
adiabaticwallboundaryconditionsonstructuredgrids.

Themaingoalhereinistomathematicallyprovetheconvergenceoftheproposedscheme
fortheheatequation,thusalsoprovingtheconsistency,inaweaksense,ofthesecond-
derivativeapproximation.ByutilisingtheSBPpropertiesoftheLaplacianoperator,wefind
aprioriH1estimatesforthenumericalsolution.Theseestimatesguaranteethatthenumerical
solutionconvergesweakly(uptoasubsequence)toaweaksolutionoftheheatequation.
Furthermore,weshowthatthenumericalsolutionconvergesstronglybyemployingAubin–
Lions’lemma,andsubsequentlyshowthattheweaksolutionisunique.Thepresentproofis
validforgeneraltriangulargridswithLipschitzboundaries,anddoesnotrequireadmissible
meshes.Byusingthemethodofmanufacturedsolutions,weverifybyanumericalexperiment
thattheschemeisconvergent.

Remark1.1Tothebestofourknowledge,thisisthefirstconvergenceproofforalocalfinite-
volumemethodforthesecond-derivativethatdoesnotrequireadmissiblemeshes.Wenote
thatsomemulti-pointfluxapproximations(MPFA)finite-volumemethodshavebeenproven
convergentbyidentifyingthemasmixedfinite-elementapproximations(seee.g.[2,18]).

Theproofpresentedhereinisalsoeasilyadaptedtoweaklyimposedboundaryconditions.
Stabilityforsuchaschemefortheheatequationwasestablishedin[7],andhereinwe
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show that injected Dirichlet boundary conditions also yield a stable scheme. That is, both
approaches are applicable, andwe have chosen the strong imposition to provide an alternative.

The paper is further organised as follows. Section2 defines the problem, whereas a priori
estimates for the continuous solution are found in Sect. 3. In Sect. 4 we state the weak for-
mulation of the problem. Section5 concerns the spatial discretisation and provides the proof
of the slightly altered Laplacian operator being SBP. In Sect. 6, the numerical scheme that
approximates our problem is stated. Furthermore, the SBP properties of the Laplacian oper-
ator are utilised to obtain discrete a priori estimates similar to those found for the continuous
solution. Using these estimates, we show in Sect. 7 that the approximate solution obtained
by the proposed numerical scheme converges weakly to a weak solution of the original prob-
lem. Furthermore, we show in Sect. 8 that the solution indeed converges strongly by using
Aubin–Lions’ lemma. The solution is subsequently shown to be unique in Sect. 9. Finally,
Sect. 10 provides a numerical example that demonstrates the convergence of the scheme.

2 Problem Statement

Consider the heat equation on a two-dimensional open polygonal Lipschitz domain, �, with
boundary ∂�:

vt = ∇ · (μ∇v), on � × (0, T ],
v = gD, on ∂�D × [0, T ],

μ∇v · n = gN , on ∂�N × [0, T ],
μ∇v · n + αv = gR, on ∂�R × [0, T ],

v|t=0 = f , on �.

(1)

The superscripts D, N , R indicate the Dirichlet, Neumann and Robin parts of the boundary
with corresponding boundary data. We assume ∂�D ∪ ∂�N ∪ ∂�R = ∂�, and ∂�D ∩
∂�N = ∂�D ∩ ∂�R = ∂�N ∩ ∂�R = ∅. Furthermore, n denotes the outward unit normal
vector, f ∈ L2(�) is the initial data, and μ > 0, α ≥ 0 are constants. We take gD ∈
H1(0, T ; H1/2(∂�D)) and gN ,R ∈ L2(0, T ; L2(∂�N ,R)).

To simplify the forthcoming analysis, we define a function, w, such that w ∈
L2(0, T ; H1(�)) and wt ∈ L2(0, T ; H1(�)), and w|∂�D = gD (in the sense of traces).
By the trace theorem, we know there exists such a w ∈ H1(�) (see [1]). Lastly, we choose
w to satisfy w|t=0 = f , and

μ∇w · n = 0 on ∂�N ,

μ∇w · n + αw = 0 on ∂�R .
(2)

Then, by introducing u = v − w (see e.g. [1, 17]), (1) can be recast to

ut = ∇ · (μ∇u) + F, on � × (0, T ], (3a)

u = 0, on ∂�D × [0, T ], (3b)

μ∇u · n = gN , on ∂�N × [0, T ], (3c)

μ∇u · n + αu = gR, on ∂�R × [0, T ], (3d)

u|t=0 = 0, on �. (3e)
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showthatinjectedDirichletboundaryconditionsalsoyieldastablescheme.Thatis,both
approachesareapplicable,andwehavechosenthestrongimpositiontoprovideanalternative.

Thepaperisfurtherorganisedasfollows.Section2definestheproblem,whereasapriori
estimatesforthecontinuoussolutionarefoundinSect.3.InSect.4westatetheweakfor-
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show that injected Dirichlet boundary conditions also yield a stable scheme. That is, both
approaches are applicable, andwe have chosen the strong imposition to provide an alternative.

The paper is further organised as follows. Section2 defines the problem, whereas a priori
estimates for the continuous solution are found in Sect. 3. In Sect. 4 we state the weak for-
mulation of the problem. Section5 concerns the spatial discretisation and provides the proof
of the slightly altered Laplacian operator being SBP. In Sect. 6, the numerical scheme that
approximates our problem is stated. Furthermore, the SBP properties of the Laplacian oper-
ator are utilised to obtain discrete a priori estimates similar to those found for the continuous
solution. Using these estimates, we show in Sect. 7 that the approximate solution obtained
by the proposed numerical scheme converges weakly to a weak solution of the original prob-
lem. Furthermore, we show in Sect. 8 that the solution indeed converges strongly by using
Aubin–Lions’ lemma. The solution is subsequently shown to be unique in Sect. 9. Finally,
Sect. 10 provides a numerical example that demonstrates the convergence of the scheme.

2 Problem Statement

Consider the heat equation on a two-dimensional open polygonal Lipschitz domain, �, with
boundary ∂�:

vt = ∇ · (μ∇v), on � × (0, T ],
v = g

D
, on ∂�D × [0, T ],

μ∇v · n = g
N
, on ∂�N × [0, T ],

μ∇v · n + αv = g
R
, on ∂�R × [0, T ],

v|t=0 = f , on �.

(1)

The superscripts D, N , R indicate the Dirichlet, Neumann and Robin parts of the boundary
with corresponding boundary data. We assume ∂�D ∪ ∂�N ∪ ∂�R = ∂�, and ∂�D ∩
∂�N = ∂�D ∩ ∂�R = ∂�N ∩ ∂�R = ∅. Furthermore, n denotes the outward unit normal
vector, f ∈ L2(�) is the initial data, and μ > 0, α ≥ 0 are constants. We take g

D
∈

H1(0, T ; H1/2(∂�D)) and g
N ,R

∈ L2(0, T ; L2(∂�N ,R)).
To simplify the forthcoming analysis, we define a function, w, such that w ∈

L2(0, T ; H1(�)) and wt ∈ L2(0, T ; H1(�)), and w|∂�D = g
D
(in the sense of traces).

By the trace theorem, we know there exists such a w ∈ H1(�) (see [1]). Lastly, we choose
w to satisfy w|t=0 = f , and

μ∇w · n = 0 on ∂�N ,

μ∇w · n + αw = 0 on ∂�R .
(2)

Then, by introducing u = v − w (see e.g. [1, 17]), (1) can be recast to

ut = ∇ · (μ∇u) + F, on � × (0, T ], (3a)

u = 0, on ∂�D × [0, T ], (3b)

μ∇u · n = g
N
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μ∇u · n + αu = g
R
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u|t=0 = 0, on �. (3e)
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Here,

F = ∇ · (μ∇w) − wt , (4)

is a forcing function.

Remark 2.1 We could have made all boundary conditions homogeneous by defining w dif-
ferently. However, we choose non-zero Neumann and Robin data to keep the regularity
assumptions on the boundary data to a minimum.

3 A Priori Estimates for the Continuous Problem

To obtain a priori estimates on u, we use the energy method (see e.g. [17]). By inserting F
given in (4) into (3a) and integrating by parts, we obtain∫

�

uut dx =
∫

�

u (∇ · (μ∇u) + ∇ · (μ∇w) − wt ) dx,

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

= −
∫

�

(μ∇u · (∇u + ∇w) + uwt ) dx

+
∫

∂�

u(μ∇u · n + μ∇w · n) ds,

= −μ‖∇u‖2L2(�)
−

∫
�

(μ∇u · ∇w + uwt ) dx

+
∫

∂�

u(μ∇u · n + μ∇w · n) ds.

Using Cauchy–Schwarz’s and Young’s inequality on the first integral on the right-hand side,
we obtain

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

≤ −μ‖∇u‖2L2(�)
+ ε

2μ‖∇u‖2L2(�)
+ 1

2ε μ‖∇w‖2L2(�)
+ δ

2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+
∫

∂�

u (μ∇u · n + μ∇w · n) ds.

(5)
By choosing ε = 1, the term −μ‖∇u‖2

L2(�)
+ ε

2μ‖∇u‖2
L2(�)

= −μ
2 ‖∇u‖2

L2(�)
. Since ε is

now determined, 1
2ε μ‖∇w‖2

L2(�)
= μ

2 ‖∇w‖2
L2(�)

, which is bounded by definition. Hence,
(5) reads

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

≤ −μ
2 ‖∇u‖2L2(�)

+ μ
2 ‖∇w‖2L2(�)

+ δ
2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+
∫

∂�

u (μ∇u · n + μ∇w · n) ds.

Inserting the boundary conditions for w and u given in (2) and (3b)–(3d), respectively, we
obtain

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

≤ −μ
2 ‖∇u‖2L2(�)

+ μ
2 ‖∇w‖2L2(�)

+ δ
2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+
∫

∂�N
ugN ds +

∫
∂�R

(
u

(
gR − αu

)
−αuw

)
ds.

(6)

123

46Page 4 of 24JournalofScientificComputing(2023)96 :46

Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem
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Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem

Toobtainaprioriestimatesonu,weusetheenergymethod(seee.g.[17]).ByinsertingF
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.Sinceεis
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Here,

F = ∇ · (μ∇w) − wt , (4)

is a forcing function.

Remark 2.1 We could have made all boundary conditions homogeneous by defining w dif-
ferently. However, we choose non-zero Neumann and Robin data to keep the regularity
assumptions on the boundary data to a minimum.

3 A Priori Estimates for the Continuous Problem

To obtain a priori estimates on u, we use the energy method (see e.g. [17]). By inserting F
given in (4) into (3a) and integrating by parts, we obtain

∫
�

uut dx =
∫

�

u (∇ · (μ∇u) + ∇ · (μ∇w) − wt ) dx,

1

2

d

dt ‖u(·, ·, t)‖2L2(�) = −
∫

�

(μ∇u · (∇u + ∇w) + uwt ) dx

+
∫

∂�

u(μ∇u · n + μ∇w · n) ds,

= −μ‖∇u‖2L2(�) −
∫

�

(μ∇u · ∇w + uwt ) dx

+
∫

∂�

u(μ∇u · n + μ∇w · n) ds.

Using Cauchy–Schwarz’s and Young’s inequality on the first integral on the right-hand side,
we obtain
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δ
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+ 1
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(5)
By choosing ε = 1, the term −μ‖∇u‖2L2(�) +

ε
2μ‖∇u‖2L2(�) = −

μ
2 ‖∇u‖2L2(�). Since ε is

now determined, 1
2ε μ‖∇w‖2L2(�) =

μ
2 ‖∇w‖2L2(�), which is bounded by definition. Hence,

(5) reads
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d
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δ
2‖u‖2L2(�) + 1
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+
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u (μ∇u · n + μ∇w · n) ds.

Inserting the boundary conditions for w and u given in (2) and (3b)–(3d), respectively, we
obtain
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δ
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+
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ug

N
ds +

∫
∂�R

(u (gR
− αu)−αuw) ds.
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Here,

F = ∇ · (μ∇w) − wt , (4)

is a forcing function.

Remark 2.1 We could have made all boundary conditions homogeneous by defining w dif-
ferently. However, we choose non-zero Neumann and Robin data to keep the regularity
assumptions on the boundary data to a minimum.

3 A Priori Estimates for the Continuous Problem

To obtain a priori estimates on u, we use the energy method (see e.g. [17]). By inserting F
given in (4) into (3a) and integrating by parts, we obtain

∫
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uut dx =
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+
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u(μ∇u · n + μ∇w · n) ds.

Using Cauchy–Schwarz’s and Young’s inequality on the first integral on the right-hand side,
we obtain
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ε
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δ
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+ 1
2δ ‖wt‖2L2(�)

+
∫

∂�

u (μ∇u · n + μ∇w · n) ds.

(5)
By choosing ε = 1, the term −μ‖∇u‖2L2(�) +

ε
2μ‖∇u‖2L2(�) = −

μ
2 ‖∇u‖2L2(�). Since ε is

now determined, 1
2ε μ‖∇w‖2L2(�) =

μ
2 ‖∇w‖2L2(�), which is bounded by definition. Hence,

(5) reads
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δ
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+
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∂�

u (μ∇u · n + μ∇w · n) ds.

Inserting the boundary conditions for w and u given in (2) and (3b)–(3d), respectively, we
obtain
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dt ‖u(·, ·, t)‖2L2(�) ≤ −
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Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem

Toobtainaprioriestimatesonu,weusetheenergymethod(seee.g.[17]).ByinsertingF
givenin(4)into(3a)andintegratingbyparts,weobtain

∫
�

uutdx=
∫

�

u(∇·(μ∇u)+∇·(μ∇w)−wt)dx,

1

2

d

dt‖u(·,·,t)‖2L2(�)=−
∫

�

(μ∇u·(∇u+∇w)+uwt)dx

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds,

=−μ‖∇u‖2L2(�)−
∫

�

(μ∇u·∇w+uwt)dx

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds.

UsingCauchy–Schwarz’sandYoung’sinequalityonthefirstintegralontheright-handside,
weobtain

1

2

d

dt‖u(·,·,t)‖2L2(�)≤−μ‖∇u‖2L2(�)+
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2εμ‖∇w‖2L2(�)+
δ
2‖u‖2L2(�)
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+
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(5)
Bychoosingε=1,theterm−μ‖∇u‖2L2(�)+

ε
2μ‖∇u‖2L2(�)=−

μ
2‖∇u‖2L2(�).Sinceεis

nowdetermined,1
2εμ‖∇w‖2L2(�)=

μ
2‖∇w‖2L2(�),whichisboundedbydefinition.Hence,

(5)reads
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+
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u(μ∇u·n+μ∇w·n)ds.

Insertingtheboundaryconditionsforwandugivenin(2)and(3b)–(3d),respectively,we
obtain
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Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem

Toobtainaprioriestimatesonu,weusetheenergymethod(seee.g.[17]).ByinsertingF
givenin(4)into(3a)andintegratingbyparts,weobtain

∫
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uutdx=
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+
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+
∫
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UsingCauchy–Schwarz’sandYoung’sinequalityonthefirstintegralontheright-handside,
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nowdetermined,1
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+
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Insertingtheboundaryconditionsforwandugivenin(2)and(3b)–(3d),respectively,we
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Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem

Toobtainaprioriestimatesonu,weusetheenergymethod(seee.g.[17]).ByinsertingF
givenin(4)into(3a)andintegratingbyparts,weobtain
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+
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+
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Here,

F=∇·(μ∇w)−wt,(4)

isaforcingfunction.

Remark2.1Wecouldhavemadeallboundaryconditionshomogeneousbydefiningwdif-
ferently.However,wechoosenon-zeroNeumannandRobindatatokeeptheregularity
assumptionsontheboundarydatatoaminimum.

3APrioriEstimatesfortheContinuousProblem

Toobtainaprioriestimatesonu,weusetheenergymethod(seee.g.[17]).ByinsertingF
givenin(4)into(3a)andintegratingbyparts,weobtain
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u(∇·(μ∇u)+∇·(μ∇w)−wt)dx,

1

2

d

dt‖u(·,·,t)‖2L2(�)=−
∫

�

(μ∇u·(∇u+∇w)+uwt)dx

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds,

=−μ‖∇u‖2L2(�)−
∫

�

(μ∇u·∇w+uwt)dx

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds.

UsingCauchy–Schwarz’sandYoung’sinequalityonthefirstintegralontheright-handside,
weobtain

1

2

d

dt‖u(·,·,t)‖2L2(�)≤−μ‖∇u‖2L2(�)+
ε
2μ‖∇u‖2L2(�)+1

2εμ‖∇w‖2L2(�)+
δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds.

(5)
Bychoosingε=1,theterm−μ‖∇u‖2L2(�)+

ε
2μ‖∇u‖2L2(�)=−

μ
2‖∇u‖2L2(�).Sinceεis

nowdetermined,1
2εμ‖∇w‖2L2(�)=

μ
2‖∇w‖2L2(�),whichisboundedbydefinition.Hence,

(5)reads

1

2

d

dt‖u(·,·,t)‖2L2(�)≤−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)+1

2δ‖wt‖2L2(�)

+
∫

∂�

u(μ∇u·n+μ∇w·n)ds.

Insertingtheboundaryconditionsforwandugivenin(2)and(3b)–(3d),respectively,we
obtain

1

2

d

dt‖u(·,·,t)‖2L2(�)≤−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)+1

2δ‖wt‖2L2(�)

+
∫

∂�N
ug

N
ds+

∫
∂�R

(u(gR
−αu)−αuw)ds.

(6)
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Consider the underlined boundary terms above. We follow [19], and bound these terms by
first using the Cauchy–Schwarz inequality:

∫
∂�N
ugN ds +

∫
∂�R
ugR − αuw ds ≤ ‖u‖L2(∂�N )‖gN‖L2(∂�N ) + ‖u‖L2(∂�R)‖gR‖L2(∂�R)

+ α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
and then by using the trace theorem, which states that ‖u‖L2(∂�) ≤ C‖u‖H1(�), C > 0 (see
e.g. [1]):

‖u‖L2(∂�N )‖gN‖L2(∂�N ) + ‖u‖L2(∂�R)

(‖gR‖L2(∂�R) + α‖w‖L2(∂�R)

)
� ‖u‖H1(�)

(‖gN‖L2(∂�N ) + ‖gR‖L2(∂�R) + α‖w‖H1(�)

)
.

Here, we have introduced the notation a � b for a ≤ Cb, where C > 0 is a constant.
By employing Young’s inequality, the boundary terms (7) finally read

∫
∂�N
ugN ds +

∫
∂�R
ugR − αuw ds � β

2 ‖u‖2H1(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

)
.

The preliminary estimate (6), can then be stated as

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

� −μ
2 ‖∇u‖2L2(�)

+ μ
2 ‖∇w‖2L2(�)

+ δ
2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+ β
2 ‖u‖2H1(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

)
−

∫
∂�R

αu2 ds.

The last term on the right-hand side is negative semi-definite, since α ≥ 0. We neglect it in
the remaining analysis. Hence we have

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

+ μ
2 ‖∇u‖2L2(�)

− δ
2‖u‖2L2(�)

− β
2 ‖u‖2H1(�)

� μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

)
.

(8)
Consider the three last terms on the left-hand side of the above inequality. By adding and
subtracting μ

2 ‖u‖2
L2(�)

, they can be rewritten as

μ
2 ‖∇u‖2L2(�)

− δ
2‖u‖2L2(�)

− β
2 ‖u‖2H1(�)

+ μ
2 ‖u‖2L2(�)

− μ
2 ‖u‖2L2(�)

= μ−β
2 ‖∇u‖2H1(�)

− μ+δ
2 ‖u‖2L2(�)

. (9)

By choosing β sufficiently small μ−β
2 ‖u‖2

H1(�)
≥ μ−β

2 ‖u‖2
L2(�)

≥ 0. From (8) we then have

1

2

d

dt
‖u(·, ·, t)‖2L2(�)

� β+δ
2 ‖u‖2L2(�)

+ μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

)
.
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N

ugNds+
∫

∂�R
ugR−αuwds≤‖u‖L2(∂�N)‖gN‖L2(∂�N)+‖u‖L2(∂�R)‖gR‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖gN‖L2(∂�N)+‖u‖L2(∂�R)

(‖gR‖L2(∂�R)+α‖w‖L2(∂�R)

)
�‖u‖H1(�)

(‖gN‖L2(∂�N)+‖gR‖L2(∂�R)+α‖w‖H1(�)

)
.

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N

ugNds+
∫

∂�R
ugR−αuwds�β

2‖u‖2H1(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt
‖u(·,·,t)‖2L2(�)

�−μ
2‖∇u‖2L2(�)

+μ
2‖∇w‖2L2(�)

+δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)

+β
2‖u‖2H1(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
−

∫
∂�R

αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt
‖u(·,·,t)‖2L2(�)

+μ
2‖∇u‖2L2(�)

−δ
2‖u‖2L2(�)

−β
2‖u‖2H1(�)

�μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtractingμ

2‖u‖2
L2(�)

,theycanberewrittenas

μ
2‖∇u‖2L2(�)

−δ
2‖u‖2L2(�)

−β
2‖u‖2H1(�)

+μ
2‖u‖2L2(�)

−μ
2‖u‖2L2(�)

=μ−β
2‖∇u‖2H1(�)

−μ+δ
2‖u‖2L2(�)

.(9)

Bychoosingβsufficientlysmallμ−β
2‖u‖2

H1(�)
≥μ−β

2‖u‖2
L2(�)

≥0.From(8)wethenhave

1

2

d

dt
‖u(·,·,t)‖2L2(�)

�β+δ
2‖u‖2L2(�)

+μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N

ugNds+
∫

∂�R
ugR−αuwds≤‖u‖L2(∂�N)‖gN‖L2(∂�N)+‖u‖L2(∂�R)‖gR‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖gN‖L2(∂�N)+‖u‖L2(∂�R)

(‖gR‖L2(∂�R)+α‖w‖L2(∂�R)

)
�‖u‖H1(�)

(‖gN‖L2(∂�N)+‖gR‖L2(∂�R)+α‖w‖H1(�)

)
.

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N

ugNds+
∫

∂�R
ugR−αuwds�β

2‖u‖2H1(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt
‖u(·,·,t)‖2L2(�)

�−μ
2‖∇u‖2L2(�)

+μ
2‖∇w‖2L2(�)

+δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)

+β
2‖u‖2H1(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
−

∫
∂�R

αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt
‖u(·,·,t)‖2L2(�)

+μ
2‖∇u‖2L2(�)

−δ
2‖u‖2L2(�)

−β
2‖u‖2H1(�)

�μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtractingμ

2‖u‖2
L2(�)

,theycanberewrittenas

μ
2‖∇u‖2L2(�)

−δ
2‖u‖2L2(�)

−β
2‖u‖2H1(�)

+μ
2‖u‖2L2(�)

−μ
2‖u‖2L2(�)

=μ−β
2‖∇u‖2H1(�)

−μ+δ
2‖u‖2L2(�)

.(9)

Bychoosingβsufficientlysmallμ−β
2‖u‖2

H1(�)
≥μ−β

2‖u‖2
L2(�)

≥0.From(8)wethenhave

1

2

d

dt
‖u(·,·,t)‖2L2(�)

�β+δ
2‖u‖2L2(�)

+μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
.
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Consider the underlined boundary terms above. We follow [19], and bound these terms by
first using the Cauchy–Schwarz inequality:

∫
∂�N
ug

N
ds +

∫
∂�R
ug

R
− αuw ds ≤ ‖u‖L2(∂�N )‖g

N
‖L2(∂�N ) + ‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+ α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
and then by using the trace theorem, which states that ‖u‖L2(∂�) ≤ C‖u‖H1(�), C > 0 (see
e.g. [1]):

‖u‖L2(∂�N )‖g
N
‖L2(∂�N ) + ‖u‖L2(∂�R) (‖gR

‖L2(∂�R) + α‖w‖L2(∂�R))
� ‖u‖H1(�) (‖gN

‖L2(∂�N ) + ‖g
R
‖L2(∂�R) + α‖w‖H1(�)) .

Here, we have introduced the notation a � b for a ≤ Cb, where C > 0 is a constant.
By employing Young’s inequality, the boundary terms (7) finally read

∫
∂�N
ug

N
ds +

∫
∂�R
ug

R
− αuw ds �

β
2 ‖u‖2H1(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .

The preliminary estimate (6), can then be stated as

1

2

d

dt ‖u(·, ·, t)‖2L2(�) � −
μ
2 ‖∇u‖2L2(�) +

μ
2 ‖∇w‖2L2(�) +

δ
2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�) +

β
2 ‖u‖2H1(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) −
∫

∂�R
αu2 ds.

The last term on the right-hand side is negative semi-definite, since α ≥ 0. We neglect it in
the remaining analysis. Hence we have

1

2

d

dt ‖u(·, ·, t)‖2L2(�) +
μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�)

�
μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�) + 1

2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .

(8)
Consider the three last terms on the left-hand side of the above inequality. By adding and
subtracting

μ
2 ‖u‖2L2(�), they can be rewritten as

μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�) +

μ
2 ‖u‖2L2(�) −

μ
2 ‖u‖2L2(�) =

μ−β
2 ‖∇u‖2H1(�)

−
μ+δ
2 ‖u‖2L2(�). (9)

By choosing β sufficiently small
μ−β
2 ‖u‖2H1(�) ≥

μ−β
2 ‖u‖2L2(�) ≥ 0. From (8) we then have

1

2

d

dt ‖u(·, ·, t)‖2L2(�) �
β+δ
2 ‖u‖2L2(�) +

μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .
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Consider the underlined boundary terms above. We follow [19], and bound these terms by
first using the Cauchy–Schwarz inequality:

∫
∂�N
ug

N
ds +

∫
∂�R
ug

R
− αuw ds ≤ ‖u‖L2(∂�N )‖g

N
‖L2(∂�N ) + ‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+ α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
and then by using the trace theorem, which states that ‖u‖L2(∂�) ≤ C‖u‖H1(�), C > 0 (see
e.g. [1]):

‖u‖L2(∂�N )‖g
N
‖L2(∂�N ) + ‖u‖L2(∂�R) (‖gR

‖L2(∂�R) + α‖w‖L2(∂�R))
� ‖u‖H1(�) (‖gN

‖L2(∂�N ) + ‖g
R
‖L2(∂�R) + α‖w‖H1(�)) .

Here, we have introduced the notation a � b for a ≤ Cb, where C > 0 is a constant.
By employing Young’s inequality, the boundary terms (7) finally read

∫
∂�N
ug

N
ds +

∫
∂�R
ug

R
− αuw ds �

β
2 ‖u‖2H1(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .

The preliminary estimate (6), can then be stated as

1

2

d

dt ‖u(·, ·, t)‖2L2(�) � −
μ
2 ‖∇u‖2L2(�) +

μ
2 ‖∇w‖2L2(�) +

δ
2‖u‖2L2(�)

+ 1
2δ ‖wt‖2L2(�) +

β
2 ‖u‖2H1(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) −
∫

∂�R
αu2 ds.

The last term on the right-hand side is negative semi-definite, since α ≥ 0. We neglect it in
the remaining analysis. Hence we have

1

2

d

dt ‖u(·, ·, t)‖2L2(�) +
μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�)

�
μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�) + 1

2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .

(8)
Consider the three last terms on the left-hand side of the above inequality. By adding and
subtracting

μ
2 ‖u‖2L2(�), they can be rewritten as

μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�) +

μ
2 ‖u‖2L2(�) −

μ
2 ‖u‖2L2(�) =

μ−β
2 ‖∇u‖2H1(�)

−
μ+δ
2 ‖u‖2L2(�). (9)

By choosing β sufficiently small
μ−β
2 ‖u‖2H1(�) ≥

μ−β
2 ‖u‖2L2(�) ≥ 0. From (8) we then have

1

2

d

dt ‖u(·, ·, t)‖2L2(�) �
β+δ
2 ‖u‖2L2(�) +

μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) .
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds≤‖u‖L2(∂�N)‖g

N
‖L2(∂�N)+‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖g
N
‖L2(∂�N)+‖u‖L2(∂�R)(‖gR

‖L2(∂�R)+α‖w‖L2(∂�R))
�‖u‖H1(�)(‖gN

‖L2(∂�N)+‖g
R
‖L2(∂�R)+α‖w‖H1(�)).

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds�

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt‖u(·,·,t)‖2L2(�)�−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)+

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)−
∫

∂�R
αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt‖u(·,·,t)‖2L2(�)+
μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

�
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)+1

2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtracting

μ
2‖u‖2L2(�),theycanberewrittenas

μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)+

μ
2‖u‖2L2(�)−

μ
2‖u‖2L2(�)=

μ−β
2‖∇u‖2H1(�)

−
μ+δ
2‖u‖2L2(�).(9)

Bychoosingβsufficientlysmall
μ−β
2‖u‖2H1(�)≥

μ−β
2‖u‖2L2(�)≥0.From(8)wethenhave

1

2

d

dt‖u(·,·,t)‖2L2(�)�
β+δ
2‖u‖2L2(�)+

μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds≤‖u‖L2(∂�N)‖g

N
‖L2(∂�N)+‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖g
N
‖L2(∂�N)+‖u‖L2(∂�R)(‖gR

‖L2(∂�R)+α‖w‖L2(∂�R))
�‖u‖H1(�)(‖gN

‖L2(∂�N)+‖g
R
‖L2(∂�R)+α‖w‖H1(�)).

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds�

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt‖u(·,·,t)‖2L2(�)�−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)+

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)−
∫

∂�R
αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt‖u(·,·,t)‖2L2(�)+
μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

�
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)+1

2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtracting

μ
2‖u‖2L2(�),theycanberewrittenas

μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)+

μ
2‖u‖2L2(�)−

μ
2‖u‖2L2(�)=

μ−β
2‖∇u‖2H1(�)

−
μ+δ
2‖u‖2L2(�).(9)

Bychoosingβsufficientlysmall
μ−β
2‖u‖2H1(�)≥

μ−β
2‖u‖2L2(�)≥0.From(8)wethenhave

1

2

d

dt‖u(·,·,t)‖2L2(�)�
β+δ
2‖u‖2L2(�)+

μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds≤‖u‖L2(∂�N)‖g

N
‖L2(∂�N)+‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖g
N
‖L2(∂�N)+‖u‖L2(∂�R)(‖gR

‖L2(∂�R)+α‖w‖L2(∂�R))
�‖u‖H1(�)(‖gN

‖L2(∂�N)+‖g
R
‖L2(∂�R)+α‖w‖H1(�)).

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds�

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt‖u(·,·,t)‖2L2(�)�−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)+

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)−
∫

∂�R
αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt‖u(·,·,t)‖2L2(�)+
μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

�
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)+1

2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtracting

μ
2‖u‖2L2(�),theycanberewrittenas

μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)+

μ
2‖u‖2L2(�)−

μ
2‖u‖2L2(�)=

μ−β
2‖∇u‖2H1(�)

−
μ+δ
2‖u‖2L2(�).(9)

Bychoosingβsufficientlysmall
μ−β
2‖u‖2H1(�)≥

μ−β
2‖u‖2L2(�)≥0.From(8)wethenhave

1

2

d

dt‖u(·,·,t)‖2L2(�)�
β+δ
2‖u‖2L2(�)+

μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).
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Considertheunderlinedboundarytermsabove.Wefollow[19],andboundthesetermsby
firstusingtheCauchy–Schwarzinequality:

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds≤‖u‖L2(∂�N)‖g

N
‖L2(∂�N)+‖u‖L2(∂�R)‖g

R
‖L2(∂�R)

+α‖u‖L2(∂�R)‖w‖L2(∂�R),

(7)
andthenbyusingthetracetheorem,whichstatesthat‖u‖L2(∂�)≤C‖u‖H1(�),C>0(see
e.g.[1]):

‖u‖L2(∂�N)‖g
N
‖L2(∂�N)+‖u‖L2(∂�R)(‖gR

‖L2(∂�R)+α‖w‖L2(∂�R))
�‖u‖H1(�)(‖gN

‖L2(∂�N)+‖g
R
‖L2(∂�R)+α‖w‖H1(�)).

Here,wehaveintroducedthenotationa�bfora≤Cb,whereC>0isaconstant.
ByemployingYoung’sinequality,theboundaryterms(7)finallyread

∫
∂�N
ug

N
ds+

∫
∂�R
ug

R
−αuwds�

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

Thepreliminaryestimate(6),canthenbestatedas

1

2

d

dt‖u(·,·,t)‖2L2(�)�−
μ
2‖∇u‖2L2(�)+

μ
2‖∇w‖2L2(�)+

δ
2‖u‖2L2(�)

+1
2δ‖wt‖2L2(�)+

β
2‖u‖2H1(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)−
∫

∂�R
αu2ds.

Thelasttermontheright-handsideisnegativesemi-definite,sinceα≥0.Weneglectitin
theremaininganalysis.Hencewehave

1

2

d

dt‖u(·,·,t)‖2L2(�)+
μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

�
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)+1

2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).

(8)
Considerthethreelasttermsontheleft-handsideoftheaboveinequality.Byaddingand
subtracting

μ
2‖u‖2L2(�),theycanberewrittenas

μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)+

μ
2‖u‖2L2(�)−

μ
2‖u‖2L2(�)=

μ−β
2‖∇u‖2H1(�)

−
μ+δ
2‖u‖2L2(�).(9)

Bychoosingβsufficientlysmall
μ−β
2‖u‖2H1(�)≥

μ−β
2‖u‖2L2(�)≥0.From(8)wethenhave

1

2

d

dt‖u(·,·,t)‖2L2(�)�
β+δ
2‖u‖2L2(�)+

μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

).
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Employing Grönwall’s inequality (see e.g. [10]), we obtain

‖u(·, ·, t)‖2L2(�)
� e(β+δ)t

(
‖u(·, ·, 0)‖2L2(�)

+
∫ T

0

(
‖∇w‖2L2(�)

+ 1
δ
‖wt‖2L2(�)

)
dt

+
∫ T

0

1
β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

)
dt

)
.

The inequality holds for all 0 ≤ t ≤ T . In Sect. 2 we defined w ∈ L2(0, T ; H1(�)),
wt ∈ L2(0, T ; H1(�)) and gN ,R ∈ L2(0, T ; L2(∂�N ,R)). Using this, we find that the
right-hand side of the above inequality is bounded. Thus, u ∈ L∞(0, T ; L2(�)). Lastly, we
integrate (8) in time to obtain

1

2
‖u(·, ·, T )‖2L2(�)

+
∫ T

0

(
μ
2 ‖∇u‖2L2(�)

− δ
2‖u‖2L2(�)

− β
2 ‖u‖2H1(�)

)
dt

� 1

2
‖u(·, ·, 0)‖2L2(�)

+
∫ T

0

(
μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

))
dt

=
∫ T

0

(
μ
2 ‖∇w‖2L2(�)

+ 1
2δ ‖wt‖2L2(�)

+ 1
2β

(
‖gN‖2L2(∂�N )

+ ‖gR‖2L2(∂�R)
+ α2‖w‖2H1(�)

))
dt,

where we have used u|t=0 ≡ 0 in the last step. Since
∫ T
0 ‖u(·, ·, t)‖2 dt ≤ constant ,

we observe from this inequality that ∇u ∈ L2(0, T ; L2(�)), and thus we have u ∈
L2(0, T ; H1(�)).

4 Weak Formulation of the Heat Equation

Next, we derive the weak formulation of (3). Let H1
∂�D

0
(�) denote the space of H1 functions

vanishing at the Dirichlet boundary. Furthermore, let φ ∈ H1(0, T ; H1
∂�D

0
(�)) be a test

function that satisfies φ(x, T ) = 0, x ∈ �. Multiply (3a) by φ and integrate over �.

∫
�

φut dx =
∫

�

φ∇ · (μ∇u) dx +
∫

�

φF dx. (10)

Integrating by parts and inserting the boundary conditions given in (3b)–(3d), give

∫
�

φut dx = −
∫

�

∇φ · μ∇u dx +
∫

∂�D
φ(μ∇u · n) ds +

∫
∂�N

φgN ds

+
∫

∂�R
φ(gR − αu) ds +

∫
�

φF dx,

= −
∫

�

∇φ · μ∇u dx +
∫

∂�N
φgN ds +

∫
∂�R

φ(gR − αu) ds +
∫

�

φF dx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)
�e(β+δ)t

(
‖u(·,·,0)‖2L2(�)

+
∫T

0

(
‖∇w‖2L2(�)

+1
δ

‖wt‖2L2(�)

)
dt

+
∫T
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1
β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andgN,R∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe
right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain

1

2
‖u(·,·,T)‖2L2(�)

+
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(
μ
2‖∇u‖2L2(�)

−δ
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)
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�1

2
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+
∫T
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(
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

))
dt
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∫T

0

(
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)
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2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

))
dt,

wherewehaveusedu|t=0≡0inthelaststep.Since
∫T

0‖u(·,·,t)‖2dt≤constant,
weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�

∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φgNds

+
∫

∂�R
φ(gR−αu)ds+

∫
�

φFdx,

=−
∫

�

∇φ·μ∇udx+
∫

∂�N
φgNds+

∫
∂�R

φ(gR−αu)ds+
∫

�

φFdx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)
�e(β+δ)t

(
‖u(·,·,0)‖2L2(�)

+
∫T

0

(
‖∇w‖2L2(�)

+1
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‖wt‖2L2(�)

)
dt

+
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(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

)
dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andgN,R∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe
right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain
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‖u(·,·,T)‖2L2(�)

+
∫T

0
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)
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+
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2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

))
dt

=
∫T

0

(
μ
2‖∇w‖2L2(�)

+1
2δ‖wt‖2L2(�)

+1
2β

(
‖gN‖2L2(∂�N)

+‖gR‖2L2(∂�R)
+α2‖w‖2H1(�)

))
dt,

wherewehaveusedu|t=0≡0inthelaststep.Since
∫T

0‖u(·,·,t)‖2dt≤constant,
weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�

∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φgNds

+
∫

∂�R
φ(gR−αu)ds+

∫
�

φFdx,

=−
∫

�

∇φ·μ∇udx+
∫

∂�N
φgNds+

∫
∂�R

φ(gR−αu)ds+
∫

�

φFdx,
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Employing Grönwall’s inequality (see e.g. [10]), we obtain

‖u(·, ·, t)‖2L2(�) � e
(β+δ)t (

‖u(·, ·, 0)‖2L2(�) +
∫ T

0

(‖∇w‖2L2(�) + 1
δ ‖wt‖2L2(�)

) dt

+
∫ T

0

1
β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) dt

)
.

The inequality holds for all 0 ≤ t ≤ T . In Sect. 2 we defined w ∈ L2(0, T ; H1(�)),
wt ∈ L2(0, T ; H1(�)) and g

N ,R
∈ L2(0, T ; L2(∂�N ,R)). Using this, we find that the

right-hand side of the above inequality is bounded. Thus, u ∈ L∞(0, T ; L2(�)). Lastly, we
integrate (8) in time to obtain

1

2‖u(·, ·, T )‖2L2(�) +
∫ T

0

(μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�)

) dt

�
1

2‖u(·, ·, 0)‖2L2(�)

+
∫ T

0

(μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

)) dt

=
∫ T

0

(μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

)) dt,

where we have used u|t=0 ≡ 0 in the last step. Since ∫ T
0 ‖u(·, ·, t)‖2 dt ≤ constant ,

we observe from this inequality that ∇u ∈ L2(0, T ; L2(�)), and thus we have u ∈
L2(0, T ; H1(�)).

4 Weak Formulation of the Heat Equation

Next, we derive the weak formulation of (3). Let H1
∂�D

0
(�) denote the space of H1 functions

vanishing at the Dirichlet boundary. Furthermore, let φ ∈ H1(0, T ; H1
∂�D

0
(�)) be a test

function that satisfies φ(x, T ) = 0, x ∈ �. Multiply (3a) by φ and integrate over �.

∫
�

φut dx =
∫

�

φ∇ · (μ∇u) dx +
∫

�

φF dx. (10)

Integrating by parts and inserting the boundary conditions given in (3b)–(3d), give

∫
�

φut dx = −
∫

� ∇φ · μ∇u dx +
∫

∂�D
φ(μ∇u · n) ds +

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
− αu) ds +

∫
�

φF dx,

= −
∫

� ∇φ · μ∇u dx +
∫

∂�N
φg

N
ds +

∫
∂�R

φ(g
R

− αu) ds +
∫

�

φF dx,
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Employing Grönwall’s inequality (see e.g. [10]), we obtain

‖u(·, ·, t)‖2L2(�) � e
(β+δ)t (

‖u(·, ·, 0)‖2L2(�) +
∫ T

0

(‖∇w‖2L2(�) + 1
δ ‖wt‖2L2(�)

) dt

+
∫ T

0

1
β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

) dt

)
.

The inequality holds for all 0 ≤ t ≤ T . In Sect. 2 we defined w ∈ L2(0, T ; H1(�)),
wt ∈ L2(0, T ; H1(�)) and g

N ,R
∈ L2(0, T ; L2(∂�N ,R)). Using this, we find that the

right-hand side of the above inequality is bounded. Thus, u ∈ L∞(0, T ; L2(�)). Lastly, we
integrate (8) in time to obtain

1

2‖u(·, ·, T )‖2L2(�) +
∫ T

0

(μ
2 ‖∇u‖2L2(�) −

δ
2‖u‖2L2(�) −

β
2 ‖u‖2H1(�)

) dt

�
1

2‖u(·, ·, 0)‖2L2(�)

+
∫ T

0

(μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

)) dt

=
∫ T

0

(μ
2 ‖∇w‖2L2(�) + 1

2δ ‖wt‖2L2(�)

+ 1
2β

(‖g
N
‖2L2(∂�N ) + ‖g

R
‖2L2(∂�R) + α2‖w‖2H1(�)

)) dt,

where we have used u|t=0 ≡ 0 in the last step. Since ∫ T
0 ‖u(·, ·, t)‖2 dt ≤ constant ,

we observe from this inequality that ∇u ∈ L2(0, T ; L2(�)), and thus we have u ∈
L2(0, T ; H1(�)).

4 Weak Formulation of the Heat Equation

Next, we derive the weak formulation of (3). Let H1
∂�D

0
(�) denote the space of H1 functions

vanishing at the Dirichlet boundary. Furthermore, let φ ∈ H1(0, T ; H1
∂�D

0
(�)) be a test

function that satisfies φ(x, T ) = 0, x ∈ �. Multiply (3a) by φ and integrate over �.

∫
�

φut dx =
∫

�

φ∇ · (μ∇u) dx +
∫

�

φF dx. (10)

Integrating by parts and inserting the boundary conditions given in (3b)–(3d), give

∫
�

φut dx = −
∫

� ∇φ · μ∇u dx +
∫

∂�D
φ(μ∇u · n) ds +

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
− αu) ds +

∫
�

φF dx,

= −
∫

� ∇φ · μ∇u dx +
∫

∂�N
φg

N
ds +

∫
∂�R

φ(g
R

− αu) ds +
∫

�

φF dx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)�e
(β+δ)t(

‖u(·,·,0)‖2L2(�)+
∫T

0

(‖∇w‖2L2(�)+1
δ‖wt‖2L2(�)

)dt

+
∫T

0

1
β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andg

N,R
∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe

right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain

1

2‖u(·,·,T)‖2L2(�)+
∫T

0

(μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

)dt

�
1

2‖u(·,·,0)‖2L2(�)

+
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt

=
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt,

wherewehaveusedu|t=0≡0inthelaststep.Since∫T
0‖u(·,·,t)‖2dt≤constant,

weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
−αu)ds+

∫
�

φFdx,

=−
∫

�∇φ·μ∇udx+
∫

∂�N
φg

N
ds+

∫
∂�R

φ(g
R

−αu)ds+
∫

�

φFdx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)�e
(β+δ)t(

‖u(·,·,0)‖2L2(�)+
∫T

0

(‖∇w‖2L2(�)+1
δ‖wt‖2L2(�)

)dt

+
∫T

0

1
β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andg

N,R
∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe

right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain

1

2‖u(·,·,T)‖2L2(�)+
∫T

0

(μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

)dt

�
1

2‖u(·,·,0)‖2L2(�)

+
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt

=
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt,

wherewehaveusedu|t=0≡0inthelaststep.Since∫T
0‖u(·,·,t)‖2dt≤constant,

weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
−αu)ds+

∫
�

φFdx,

=−
∫

�∇φ·μ∇udx+
∫

∂�N
φg

N
ds+

∫
∂�R

φ(g
R

−αu)ds+
∫

�

φFdx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)�e
(β+δ)t(

‖u(·,·,0)‖2L2(�)+
∫T

0

(‖∇w‖2L2(�)+1
δ‖wt‖2L2(�)

)dt

+
∫T

0

1
β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andg

N,R
∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe

right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain

1

2‖u(·,·,T)‖2L2(�)+
∫T

0

(μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

)dt

�
1

2‖u(·,·,0)‖2L2(�)

+
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt

=
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt,

wherewehaveusedu|t=0≡0inthelaststep.Since∫T
0‖u(·,·,t)‖2dt≤constant,

weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
−αu)ds+

∫
�

φFdx,

=−
∫

�∇φ·μ∇udx+
∫

∂�N
φg

N
ds+

∫
∂�R

φ(g
R

−αu)ds+
∫

�

φFdx,
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EmployingGrönwall’sinequality(seee.g.[10]),weobtain

‖u(·,·,t)‖2L2(�)�e
(β+δ)t(

‖u(·,·,0)‖2L2(�)+
∫T

0

(‖∇w‖2L2(�)+1
δ‖wt‖2L2(�)

)dt

+
∫T

0

1
β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

)dt

)
.

Theinequalityholdsforall0≤t≤T.InSect.2wedefinedw∈L2(0,T;H1(�)),
wt∈L2(0,T;H1(�))andg

N,R
∈L2(0,T;L2(∂�N,R)).Usingthis,wefindthatthe

right-handsideoftheaboveinequalityisbounded.Thus,u∈L∞(0,T;L2(�)).Lastly,we
integrate(8)intimetoobtain

1

2‖u(·,·,T)‖2L2(�)+
∫T

0

(μ
2‖∇u‖2L2(�)−

δ
2‖u‖2L2(�)−

β
2‖u‖2H1(�)

)dt

�
1

2‖u(·,·,0)‖2L2(�)

+
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt

=
∫T

0

(μ
2‖∇w‖2L2(�)+1

2δ‖wt‖2L2(�)

+1
2β

(‖g
N
‖2L2(∂�N)+‖g

R
‖2L2(∂�R)+α2‖w‖2H1(�)

))dt,

wherewehaveusedu|t=0≡0inthelaststep.Since∫T
0‖u(·,·,t)‖2dt≤constant,

weobservefromthisinequalitythat∇u∈L2(0,T;L2(�)),andthuswehaveu∈
L2(0,T;H1(�)).

4WeakFormulationoftheHeatEquation

Next,wederivetheweakformulationof(3).LetH1
∂�D

0
(�)denotethespaceofH1functions

vanishingattheDirichletboundary.Furthermore,letφ∈H1(0,T;H1
∂�D

0
(�))beatest

functionthatsatisfiesφ(x,T)=0,x∈�.Multiply(3a)byφandintegrateover�.

∫
�

φutdx=
∫

�

φ∇·(μ∇u)dx+
∫

�

φFdx.(10)

Integratingbypartsandinsertingtheboundaryconditionsgivenin(3b)–(3d),give

∫
�

φutdx=−
∫

�∇φ·μ∇udx+
∫

∂�D
φ(μ∇u·n)ds+

∫
∂�N

φg
N
ds

+
∫

∂�R
φ(g

R
−αu)ds+

∫
�

φFdx,

=−
∫

�∇φ·μ∇udx+
∫

∂�N
φg

N
ds+

∫
∂�R

φ(g
R

−αu)ds+
∫

�

φFdx,
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where we have used φ|∂�D = 0. Using φ|t=T = 0, u|t=0 = 0 and partially integrating the
left-hand side in time further yields the weak form of (3):

∫ T

0

∫
�

φt u dxdt =
∫ T

0

∫
�

∇φ · μ∇u dxdt −
∫ T

0

∫
∂�N

φgN dsdt

−
∫ T

0

∫
∂�R

φ(gR − αu) dsdt −
∫ T

0

∫
�

φF dxdt, (11)

where F given by (4) satisfies∫
�

φF dx = −
∫

�

∇φ · μ∇w dx −
∫

∂�R
αφw ds −

∫
�

φwt dx. (12)

Remark 4.1 Since the forcing function is not the main focus of this work, we use
∫
�

φF dx
as short-hand notation for (12) and make comments about it where necessary.

Remark 4.2 From (12), we see that w ∈ H1(�) is sufficient to bound the two first integrals
on the right-hand side. Furthermore, the regularity of wt is determined by the regularity
of the boundary data (see e.g. [17]). Thus, for γ (wt ) = gD

t to be satisfied (where γ is
the trace function), we must have wt ∈ H1(�), and that is why we assumed that gD ∈
H1(0, T ; H1/2(∂�D)) in Sect. 2.

Definition 4.3 A function u satisfying (11) is called a weak solution of the problem (3).

5 Spatial Discretisation

Let �̄h be a discretisation of �̄ = � ∪ ∂� into non-overlapping triangles Kn , n = 1, . . . , N
such that �̄h = ∪N

n=1Kn , and such that there are no hanging nodes in �̄h . The grid functions
are defined on the vertices of the triangles. Furthermore, subdivide �̄h into a dual grid
consisting of dual cells, Vi , i = 1, . . . , I , such that �̄h = ∪I

i=1Vi . The dual cells are
polygons surrounding a vertex, i . A dual-volume boundary consists of straight lines drawn
from the mid-point of an edge adjacent to grid point i to the centroid of the triangles adjacent
to the grid point (see Fig. 1). (These are the dual volumes of the standard node-centred
finite-volume method, see e.g. [22]). We introduce the notation

�̄V
h : the set of indices for interior and boundary nodes,

�̄K
h : the set of triangles in�̄h,

�V
h : the set of indices for interior nodes,

∂�V
h : the set of indices for boundary nodes,

∂�N
h : the set of indices for boundary nodes on ∂�N ,

∂�R
h : the set of indices for boundary nodes on ∂�R .

The discretisation of the problem (3) utilises the approximation of the Laplacian and
gradient operator proposed in [7] for the interior scheme. For triangles having at least one
edge along the Dirichlet boundary, the Dirichlet condition was incorporated weakly in the
gradient operator in [7]. Here, we use the approximation for interior triangles for every
triangle in the grid. The approximation is given by
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wherewehaveusedφ|∂�D=0.Usingφ|t=T=0,u|t=0=0andpartiallyintegratingthe
left-handsideintimefurtheryieldstheweakformof(3):
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∫
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φtudxdt=
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∫
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∇φ·μ∇udxdt−
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∫
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φgNdsdt

−
∫T

0

∫
∂�R

φ(gR−αu)dsdt−
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0

∫
�

φFdxdt,(11)

whereFgivenby(4)satisfies ∫
�

φFdx=−
∫

�

∇φ·μ∇wdx−
∫

∂�R
αφwds−

∫
�

φwtdx.(12)

Remark4.1Sincetheforcingfunctionisnotthemainfocusofthiswork,weuse
∫

�
φFdx

asshort-handnotationfor(12)andmakecommentsaboutitwherenecessary.

Remark4.2From(12),weseethatw∈H1(�)issufficienttoboundthetwofirstintegrals
ontheright-handside.Furthermore,theregularityofwtisdeterminedbytheregularity
oftheboundarydata(seee.g.[17]).Thus,forγ(wt)=gD

ttobesatisfied(whereγis
thetracefunction),wemusthavewt∈H1(�),andthatiswhyweassumedthatgD∈
H1(0,T;H1/2(∂�D))inSect.2.

Definition4.3Afunctionusatisfying(11)iscalledaweaksolutionoftheproblem(3).

5SpatialDiscretisation

Let¯�hbeadiscretisationof¯�=�∪∂�intonon-overlappingtrianglesKn,n=1,...,N
suchthat¯�h=∪N

n=1Kn,andsuchthattherearenohangingnodesin¯�h.Thegridfunctions
aredefinedontheverticesofthetriangles.Furthermore,subdivide¯�hintoadualgrid
consistingofdualcells,Vi,i=1,...,I,suchthat¯�h=∪I

i=1Vi.Thedualcellsare
polygonssurroundingavertex,i.Adual-volumeboundaryconsistsofstraightlinesdrawn
fromthemid-pointofanedgeadjacenttogridpointitothecentroidofthetrianglesadjacent
tothegridpoint(seeFig.1).(Thesearethedualvolumesofthestandardnode-centred
finite-volumemethod,seee.g.[22]).Weintroducethenotation

¯�V
h:thesetofindicesforinteriorandboundarynodes,

¯�K
h:thesetoftrianglesin¯�h,

�V
h:thesetofindicesforinteriornodes,

∂�V
h:thesetofindicesforboundarynodes,

∂�N
h:thesetofindicesforboundarynodeson∂�N,

∂�R
h:thesetofindicesforboundarynodeson∂�R.

Thediscretisationoftheproblem(3)utilisestheapproximationoftheLaplacianand
gradientoperatorproposedin[7]fortheinteriorscheme.Fortriangleshavingatleastone
edgealongtheDirichletboundary,theDirichletconditionwasincorporatedweaklyinthe
gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
triangleinthegrid.Theapproximationisgivenby
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asshort-handnotationfor(12)andmakecommentsaboutitwherenecessary.
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ontheright-handside.Furthermore,theregularityofwtisdeterminedbytheregularity
oftheboundarydata(seee.g.[17]).Thus,forγ(wt)=gD

ttobesatisfied(whereγis
thetracefunction),wemusthavewt∈H1(�),andthatiswhyweassumedthatgD∈
H1(0,T;H1/2(∂�D))inSect.2.
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Let¯�hbeadiscretisationof¯�=�∪∂�intonon-overlappingtrianglesKn,n=1,...,N
suchthat¯�h=∪N

n=1Kn,andsuchthattherearenohangingnodesin¯�h.Thegridfunctions
aredefinedontheverticesofthetriangles.Furthermore,subdivide¯�hintoadualgrid
consistingofdualcells,Vi,i=1,...,I,suchthat¯�h=∪I

i=1Vi.Thedualcellsare
polygonssurroundingavertex,i.Adual-volumeboundaryconsistsofstraightlinesdrawn
fromthemid-pointofanedgeadjacenttogridpointitothecentroidofthetrianglesadjacent
tothegridpoint(seeFig.1).(Thesearethedualvolumesofthestandardnode-centred
finite-volumemethod,seee.g.[22]).Weintroducethenotation

¯�V
h:thesetofindicesforinteriorandboundarynodes,

¯�K
h:thesetoftrianglesin¯�h,
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h:thesetofindicesforinteriornodes,

∂�V
h:thesetofindicesforboundarynodes,

∂�N
h:thesetofindicesforboundarynodeson∂�N,

∂�R
h:thesetofindicesforboundarynodeson∂�R.

Thediscretisationoftheproblem(3)utilisestheapproximationoftheLaplacianand
gradientoperatorproposedin[7]fortheinteriorscheme.Fortriangleshavingatleastone
edgealongtheDirichletboundary,theDirichletconditionwasincorporatedweaklyinthe
gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
triangleinthegrid.Theapproximationisgivenby
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where we have used φ|∂�D = 0. Using φ|t=T = 0, u|t=0 = 0 and partially integrating the
left-hand side in time further yields the weak form of (3):

∫ T
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∫
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φt u dxdt =
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∫
� ∇φ · μ∇u dxdt −
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∫
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φF dxdt, (11)

where F given by (4) satisfies
∫

�

φF dx = −
∫

� ∇φ · μ∇w dx −
∫

∂�R
αφw ds −

∫
�

φwt dx. (12)

Remark 4.1 Since the forcing function is not the main focus of this work, we use ∫
� φF dx

as short-hand notation for (12) and make comments about it where necessary.

Remark 4.2 From (12), we see that w ∈ H1(�) is sufficient to bound the two first integrals
on the right-hand side. Furthermore, the regularity of wt is determined by the regularity
of the boundary data (see e.g. [17]). Thus, for γ (wt ) = g

D
t to be satisfied (where γ is

the trace function), we must have wt ∈ H1(�), and that is why we assumed that g
D

∈
H1(0, T ; H1/2(∂�D)) in Sect. 2.

Definition 4.3 A function u satisfying (11) is called a weak solution of the problem (3).

5 Spatial Discretisation

Let �̄h be a discretisation of �̄ = � ∪ ∂� into non-overlapping triangles Kn , n = 1, . . . , N
such that �̄h = ∪N

n=1Kn , and such that there are no hanging nodes in �̄h . The grid functions
are defined on the vertices of the triangles. Furthermore, subdivide �̄h into a dual grid
consisting of dual cells, Vi , i = 1, . . . , I , such that �̄h = ∪I

i=1Vi . The dual cells are
polygons surrounding a vertex, i . A dual-volume boundary consists of straight lines drawn
from the mid-point of an edge adjacent to grid point i to the centroid of the triangles adjacent
to the grid point (see Fig. 1). (These are the dual volumes of the standard node-centred
finite-volume method, see e.g. [22]). We introduce the notation

�̄V
h : the set of indices for interior and boundary nodes,

�̄K
h : the set of triangles in�̄h,

�V
h : the set of indices for interior nodes,

∂�V
h : the set of indices for boundary nodes,

∂�N
h : the set of indices for boundary nodes on ∂�N ,

∂�R
h : the set of indices for boundary nodes on ∂�R .

The discretisation of the problem (3) utilises the approximation of the Laplacian and
gradient operator proposed in [7] for the interior scheme. For triangles having at least one
edge along the Dirichlet boundary, the Dirichlet condition was incorporated weakly in the
gradient operator in [7]. Here, we use the approximation for interior triangles for every
triangle in the grid. The approximation is given by
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where we have used φ|∂�D = 0. Using φ|t=T = 0, u|t=0 = 0 and partially integrating the
left-hand side in time further yields the weak form of (3):
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t to be satisfied (where γ is

the trace function), we must have wt ∈ H1(�), and that is why we assumed that g
D

∈
H1(0, T ; H1/2(∂�D)) in Sect. 2.

Definition 4.3 A function u satisfying (11) is called a weak solution of the problem (3).

5 Spatial Discretisation

Let �̄h be a discretisation of �̄ = � ∪ ∂� into non-overlapping triangles Kn , n = 1, . . . , N
such that �̄h = ∪N

n=1Kn , and such that there are no hanging nodes in �̄h . The grid functions
are defined on the vertices of the triangles. Furthermore, subdivide �̄h into a dual grid
consisting of dual cells, Vi , i = 1, . . . , I , such that �̄h = ∪I

i=1Vi . The dual cells are
polygons surrounding a vertex, i . A dual-volume boundary consists of straight lines drawn
from the mid-point of an edge adjacent to grid point i to the centroid of the triangles adjacent
to the grid point (see Fig. 1). (These are the dual volumes of the standard node-centred
finite-volume method, see e.g. [22]). We introduce the notation

�̄V
h : the set of indices for interior and boundary nodes,

�̄K
h : the set of triangles in�̄h,

�V
h : the set of indices for interior nodes,

∂�V
h : the set of indices for boundary nodes,

∂�N
h : the set of indices for boundary nodes on ∂�N ,

∂�R
h : the set of indices for boundary nodes on ∂�R .

The discretisation of the problem (3) utilises the approximation of the Laplacian and
gradient operator proposed in [7] for the interior scheme. For triangles having at least one
edge along the Dirichlet boundary, the Dirichlet condition was incorporated weakly in the
gradient operator in [7]. Here, we use the approximation for interior triangles for every
triangle in the grid. The approximation is given by
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wherewehaveusedφ|∂�D=0.Usingφ|t=T=0,u|t=0=0andpartiallyintegratingthe
left-handsideintimefurtheryieldstheweakformof(3):
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whereFgivenby(4)satisfies
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φFdx=−
∫

�∇φ·μ∇wdx−
∫

∂�R
αφwds−

∫
�

φwtdx.(12)

Remark4.1Sincetheforcingfunctionisnotthemainfocusofthiswork,weuse∫
�φFdx

asshort-handnotationfor(12)andmakecommentsaboutitwherenecessary.

Remark4.2From(12),weseethatw∈H1(�)issufficienttoboundthetwofirstintegrals
ontheright-handside.Furthermore,theregularityofwtisdeterminedbytheregularity
oftheboundarydata(seee.g.[17]).Thus,forγ(wt)=g

D
ttobesatisfied(whereγis

thetracefunction),wemusthavewt∈H1(�),andthatiswhyweassumedthatg
D

∈
H1(0,T;H1/2(∂�D))inSect.2.

Definition4.3Afunctionusatisfying(11)iscalledaweaksolutionoftheproblem(3).

5SpatialDiscretisation

Let�̄hbeadiscretisationof�̄=�∪∂�intonon-overlappingtrianglesKn,n=1,...,N
suchthat�̄h=∪N

n=1Kn,andsuchthattherearenohangingnodesin�̄h.Thegridfunctions
aredefinedontheverticesofthetriangles.Furthermore,subdivide�̄hintoadualgrid
consistingofdualcells,Vi,i=1,...,I,suchthat�̄h=∪I

i=1Vi.Thedualcellsare
polygonssurroundingavertex,i.Adual-volumeboundaryconsistsofstraightlinesdrawn
fromthemid-pointofanedgeadjacenttogridpointitothecentroidofthetrianglesadjacent
tothegridpoint(seeFig.1).(Thesearethedualvolumesofthestandardnode-centred
finite-volumemethod,seee.g.[22]).Weintroducethenotation

�̄V
h:thesetofindicesforinteriorandboundarynodes,

�̄K
h:thesetoftrianglesin�̄h,

�V
h:thesetofindicesforinteriornodes,

∂�V
h:thesetofindicesforboundarynodes,

∂�N
h:thesetofindicesforboundarynodeson∂�N,

∂�R
h:thesetofindicesforboundarynodeson∂�R.

Thediscretisationoftheproblem(3)utilisestheapproximationoftheLaplacianand
gradientoperatorproposedin[7]fortheinteriorscheme.Fortriangleshavingatleastone
edgealongtheDirichletboundary,theDirichletconditionwasincorporatedweaklyinthe
gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
triangleinthegrid.Theapproximationisgivenby
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wherewehaveusedφ|∂�D=0.Usingφ|t=T=0,u|t=0=0andpartiallyintegratingthe
left-handsideintimefurtheryieldstheweakformof(3):
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Remark4.1Sincetheforcingfunctionisnotthemainfocusofthiswork,weuse∫
�φFdx

asshort-handnotationfor(12)andmakecommentsaboutitwherenecessary.

Remark4.2From(12),weseethatw∈H1(�)issufficienttoboundthetwofirstintegrals
ontheright-handside.Furthermore,theregularityofwtisdeterminedbytheregularity
oftheboundarydata(seee.g.[17]).Thus,forγ(wt)=g
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ttobesatisfied(whereγis
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D

∈
H1(0,T;H1/2(∂�D))inSect.2.

Definition4.3Afunctionusatisfying(11)iscalledaweaksolutionoftheproblem(3).

5SpatialDiscretisation

Let�̄hbeadiscretisationof�̄=�∪∂�intonon-overlappingtrianglesKn,n=1,...,N
suchthat�̄h=∪N

n=1Kn,andsuchthattherearenohangingnodesin�̄h.Thegridfunctions
aredefinedontheverticesofthetriangles.Furthermore,subdivide�̄hintoadualgrid
consistingofdualcells,Vi,i=1,...,I,suchthat�̄h=∪I

i=1Vi.Thedualcellsare
polygonssurroundingavertex,i.Adual-volumeboundaryconsistsofstraightlinesdrawn
fromthemid-pointofanedgeadjacenttogridpointitothecentroidofthetrianglesadjacent
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h:thesetofindicesforboundarynodes,

∂�N
h:thesetofindicesforboundarynodeson∂�N,
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Thediscretisationoftheproblem(3)utilisestheapproximationoftheLaplacianand
gradientoperatorproposedin[7]fortheinteriorscheme.Fortriangleshavingatleastone
edgealongtheDirichletboundary,theDirichletconditionwasincorporatedweaklyinthe
gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
triangleinthegrid.Theapproximationisgivenby
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gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
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Definition4.3Afunctionusatisfying(11)iscalledaweaksolutionoftheproblem(3).
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Let�̄hbeadiscretisationof�̄=�∪∂�intonon-overlappingtrianglesKn,n=1,...,N
suchthat�̄h=∪N

n=1Kn,andsuchthattherearenohangingnodesin�̄h.Thegridfunctions
aredefinedontheverticesofthetriangles.Furthermore,subdivide�̄hintoadualgrid
consistingofdualcells,Vi,i=1,...,I,suchthat�̄h=∪I

i=1Vi.Thedualcellsare
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finite-volumemethod,seee.g.[22]).Weintroducethenotation

�̄V
h:thesetofindicesforinteriorandboundarynodes,

�̄K
h:thesetoftrianglesin�̄h,

�V
h:thesetofindicesforinteriornodes,

∂�V
h:thesetofindicesforboundarynodes,

∂�N
h:thesetofindicesforboundarynodeson∂�N,

∂�R
h:thesetofindicesforboundarynodeson∂�R.

Thediscretisationoftheproblem(3)utilisestheapproximationoftheLaplacianand
gradientoperatorproposedin[7]fortheinteriorscheme.Fortriangleshavingatleastone
edgealongtheDirichletboundary,theDirichletconditionwasincorporatedweaklyinthe
gradientoperatorin[7].Here,weusetheapproximationforinteriortrianglesforevery
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∇hun=−
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2|Kn|
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in̂
n
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n
k

],(13)
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Fig. 1 Example of a triangulation
and the corresponding dual cells

Fig. 2 Triangle depicting the
components of the gradient
approximation (13)
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where |Kn | is the area of triangle Kn ; i, j, k are the vertices of the triangle, and n̂
n
i, j,k are the

outward pointing normal vectors of the triangle, opposite of the particular node (see Fig. 2).
The length of the normal vectors, n̂ni, j,k , is equal to the length of the adjacent edge.

Next, we introduce the following notation.

In = {all vertices of trianglen},
Ni = {all triangles with vertexi},
Ei = {all boundary edges having vertexias an endpoint},

Then the approximation of the Laplacian on a dual volume is found by approximating (see
[7])

∫
Vi


u dx =
∫

∂Vi \∂�

∇u · n ds +
∫

∂Vi∩∂�

∇u · n ds, (14)

by

(
hu)i = 1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hu
n · n̂ni + 1

2

∑
e∈Ei

∇hu
n(e) · b̂(e)

⎤
⎦ . (15)

Here, b̂(e) denotes the outward pointing normal vector at boundary edge e (see Fig. 3a).
The superscript n(e) signifies the triangle that has the boundary edge e. The components of
the approximation (15) is depicted in Fig. 3b.
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where|Kn|istheareaoftriangleKn;i,j,karetheverticesofthetriangle,andn̂
n
i,j,karethe

outwardpointingnormalvectorsofthetriangle,oppositeoftheparticularnode(seeFig.2).
Thelengthofthenormalvectors,n̂ni,j,k,isequaltothelengthoftheadjacentedge.

Next,weintroducethefollowingnotation.

In={allverticesoftrianglen},
Ni={alltriangleswithvertexi},
Ei={allboundaryedgeshavingvertexiasanendpoint},

ThentheapproximationoftheLaplacianonadualvolumeisfoundbyapproximating(see
[7])
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Here,b̂(e)denotestheoutwardpointingnormalvectoratboundaryedgee(seeFig.3a).
Thesuperscriptn(e)signifiesthetrianglethathastheboundaryedgee.Thecomponentsof
theapproximation(15)isdepictedinFig.3b.
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where |Kn | is the area of triangle Kn ; i, j, k are the vertices of the triangle, and n̂
n
i, j,k are the

outward pointing normal vectors of the triangle, opposite of the particular node (see Fig. 2).
The length of the normal vectors, n̂
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i, j,k , is equal to the length of the adjacent edge.

Next, we introduce the following notation.

In = {all vertices of trianglen},
Ni = {all triangles with vertexi},
Ei = {all boundary edges having vertexias an endpoint},

Then the approximation of the Laplacian on a dual volume is found by approximating (see
[7])
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Here, b̂(e) denotes the outward pointing normal vector at boundary edge e (see Fig. 3a).
The superscript n(e) signifies the triangle that has the boundary edge e. The components of
the approximation (15) is depicted in Fig. 3b.

123

46 Page 8 of 24 Journal of Scientific Computing (2023) 96 :46

Fig. 1 Example of a triangulation
and the corresponding dual cells

Fig. 2 Triangle depicting the
components of the gradient
approximation (13)

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

where |Kn | is the area of triangle Kn ; i, j, k are the vertices of the triangle, and n̂
n
i, j,k are the

outward pointing normal vectors of the triangle, opposite of the particular node (see Fig. 2).
The length of the normal vectors, n̂

n
i, j,k , is equal to the length of the adjacent edge.

Next, we introduce the following notation.

In = {all vertices of trianglen},
Ni = {all triangles with vertexi},
Ei = {all boundary edges having vertexias an endpoint},

Then the approximation of the Laplacian on a dual volume is found by approximating (see
[7])

∫
Vi


u dx =
∫

∂Vi \∂�∇u · n ds +
∫

∂Vi∩∂�∇u · n ds, (14)

by

(
hu)i =
1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hun · n̂
n
i +

1

2

∑
e∈Ei

∇hun(e) · b̂(e)
⎤
⎦ . (15)

Here, b̂(e) denotes the outward pointing normal vector at boundary edge e (see Fig. 3a).
The superscript n(e) signifies the triangle that has the boundary edge e. The components of
the approximation (15) is depicted in Fig. 3b.

123

46Page 8 of 24JournalofScientificComputing(2023)96 :46

Fig.1Exampleofatriangulation
andthecorrespondingdualcells

Fig.2Triangledepictingthe
componentsofthegradient
approximation(13)

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

where|Kn|istheareaoftriangleKn;i,j,karetheverticesofthetriangle,andn̂
n
i,j,karethe

outwardpointingnormalvectorsofthetriangle,oppositeoftheparticularnode(seeFig.2).
Thelengthofthenormalvectors,n̂

n
i,j,k,isequaltothelengthoftheadjacentedge.

Next,weintroducethefollowingnotation.

In={allverticesoftrianglen},
Ni={alltriangleswithvertexi},
Ei={allboundaryedgeshavingvertexiasanendpoint},

ThentheapproximationoftheLaplacianonadualvolumeisfoundbyapproximating(see
[7])

∫
Vi


udx=
∫

∂Vi\∂�∇u·nds+
∫

∂Vi∩∂�∇u·nds,(14)

by

(
hu)i=
1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hun·n̂
n
i+

1

2

∑
e∈Ei

∇hun(e)·b̂(e)
⎤
⎦.(15)

Here,b̂(e)denotestheoutwardpointingnormalvectoratboundaryedgee(seeFig.3a).
Thesuperscriptn(e)signifiesthetrianglethathastheboundaryedgee.Thecomponentsof
theapproximation(15)isdepictedinFig.3b.

123

46Page 8 of 24JournalofScientificComputing(2023)96 :46

Fig.1Exampleofatriangulation
andthecorrespondingdualcells

Fig.2Triangledepictingthe
componentsofthegradient
approximation(13)

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

where|Kn|istheareaoftriangleKn;i,j,karetheverticesofthetriangle,andn̂
n
i,j,karethe

outwardpointingnormalvectorsofthetriangle,oppositeoftheparticularnode(seeFig.2).
Thelengthofthenormalvectors,n̂

n
i,j,k,isequaltothelengthoftheadjacentedge.

Next,weintroducethefollowingnotation.

In={allverticesoftrianglen},
Ni={alltriangleswithvertexi},
Ei={allboundaryedgeshavingvertexiasanendpoint},

ThentheapproximationoftheLaplacianonadualvolumeisfoundbyapproximating(see
[7])

∫
Vi


udx=
∫

∂Vi\∂�∇u·nds+
∫

∂Vi∩∂�∇u·nds,(14)

by

(
hu)i=
1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hun·n̂
n
i+

1

2

∑
e∈Ei

∇hun(e)·b̂(e)
⎤
⎦.(15)

Here,b̂(e)denotestheoutwardpointingnormalvectoratboundaryedgee(seeFig.3a).
Thesuperscriptn(e)signifiesthetrianglethathastheboundaryedgee.Thecomponentsof
theapproximation(15)isdepictedinFig.3b.

123

46Page 8 of 24JournalofScientificComputing(2023)96 :46

Fig.1Exampleofatriangulation
andthecorrespondingdualcells

Fig.2Triangledepictingthe
componentsofthegradient
approximation(13)

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

where|Kn|istheareaoftriangleKn;i,j,karetheverticesofthetriangle,andn̂
n
i,j,karethe

outwardpointingnormalvectorsofthetriangle,oppositeoftheparticularnode(seeFig.2).
Thelengthofthenormalvectors,n̂

n
i,j,k,isequaltothelengthoftheadjacentedge.

Next,weintroducethefollowingnotation.

In={allverticesoftrianglen},
Ni={alltriangleswithvertexi},
Ei={allboundaryedgeshavingvertexiasanendpoint},

ThentheapproximationoftheLaplacianonadualvolumeisfoundbyapproximating(see
[7])

∫
Vi


udx=
∫

∂Vi\∂�∇u·nds+
∫

∂Vi∩∂�∇u·nds,(14)

by

(
hu)i=
1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hun·n̂
n
i+

1

2

∑
e∈Ei

∇hun(e)·b̂(e)
⎤
⎦.(15)

Here,b̂(e)denotestheoutwardpointingnormalvectoratboundaryedgee(seeFig.3a).
Thesuperscriptn(e)signifiesthetrianglethathastheboundaryedgee.Thecomponentsof
theapproximation(15)isdepictedinFig.3b.

123

46Page 8 of 24JournalofScientificComputing(2023)96 :46

Fig.1Exampleofatriangulation
andthecorrespondingdualcells

Fig.2Triangledepictingthe
componentsofthegradient
approximation(13)

i

j

k

Kn

n̂
n
i

n̂
n
k

n̂
n
j

where|Kn|istheareaoftriangleKn;i,j,karetheverticesofthetriangle,andn̂
n
i,j,karethe

outwardpointingnormalvectorsofthetriangle,oppositeoftheparticularnode(seeFig.2).
Thelengthofthenormalvectors,n̂

n
i,j,k,isequaltothelengthoftheadjacentedge.

Next,weintroducethefollowingnotation.

In={allverticesoftrianglen},
Ni={alltriangleswithvertexi},
Ei={allboundaryedgeshavingvertexiasanendpoint},

ThentheapproximationoftheLaplacianonadualvolumeisfoundbyapproximating(see
[7])

∫
Vi


udx=
∫

∂Vi\∂�∇u·nds+
∫

∂Vi∩∂�∇u·nds,(14)

by

(
hu)i=
1

Vi

⎡
⎣1

2

∑
n∈Ni

∇hun·n̂
n
i+

1

2

∑
e∈Ei

∇hun(e)·b̂(e)
⎤
⎦.(15)

Here,b̂(e)denotestheoutwardpointingnormalvectoratboundaryedgee(seeFig.3a).
Thesuperscriptn(e)signifiesthetrianglethathastheboundaryedgee.Thecomponentsof
theapproximation(15)isdepictedinFig.3b.

123



Journal of Scientific Computing (2023) 96 :46 Page 9 of 24 46

a b

Fig. 3 a Example of a vertex i belonging to three triangles (K1, K4, K7) where two of them (K1, K7) have
an edge along the boundary, depicted with the corresponding boundary normals b̂(e). b Example of a dual
cell, Vi , and the components of the Laplace approximation (15)

The approximation of the Laplacian (15) with Dirichlet boundary conditions taken into
account, was demonstrated to satisfy the Summation-by-Parts (SBP) property in Theorem 1
in [7]. Here, we state the analogous result without any boundary conditions.

Theorem 5.1 Let uh and vh be two grid functions defined on �̄h such that uh =
(u1, u2, . . . , uI ), and correspondingly for vh. Then the discrete approximation of the Lapla-
cian operator (15) satisfies the SBP property

∑
i∈�̄V

h

vi Vi (
hu
h)i = −

∑
n∈�̄K

h

∇hu
n · ∇hv

n |Kn | + 1

2

∑
i∈∂�V

h

vi (∇hu
ni,1(e) · b̂i,1(e)

+ ∇hu
ni,2(e) · b̂i,2(e)),

where the subscripts {i, 1} and {i, 2} indicate the two edges adjacent to the boundary node
i .

Proof Multiply Eq. (15) by vi Vi and sum over all vertices in the grid.

∑
i∈�̄V

h

vi Vi (
hu
h)i = 1

2

∑
i∈�̄V

h

vi
∑
n∈Ni

∇hu
n · n̂ni + 1

2

∑
i∈�̄V

h

vi
∑
e∈Ei

∇hu
n(e) · b̂(e),

= 1

2

∑
i∈�̄V

h

∑
n∈Ni

vi∇hu
n · n̂ni + 1

2

∑
i∈∂�V

h

∑
e∈Ei

vi∇hu
n(e) · b̂(e). (16)

In the second equality, we have used that the set Ei is empty for interior nodes.
For the first term in the above equation, we change the order of summation and move

∇hun outside the summation over the vertices of a triangle Kn in (16), to obtain

1

2

∑
i∈�̄V

h

∑
n∈Ki

vi∇hu
n · n̂ni = 1

2

∑
n∈�̄K

h

∑
i∈In

vi∇hu
n · n̂ni = 1

2

∑
n∈�̄K

h

∇hu
n ·

∑
i∈In

vi n̂
n
i . (17)

For the boundary nodes, we have

1

2

∑
i∈∂�V

h

∑
e∈Ei

vi∇hu
n(e) · b̂(e) =

∑
i∈∂�V

h

vi (∇hu
ni,1(e) · b̂i,1(e) + ∇hu

ni,2(e) · b̂i,2(e)) (18)

With (17) and (18), (16) can be written as
∑
i∈�̄V

h

vi Vi (
hu
h)i = 1

2

∑
n∈�̄K

h

∇hu
n ·

∑
i∈In

vi n̂
n
i + 1

2

∑
i∈∂�V

h

vi (∇hu
ni,1(e) · b̂i,1(e)
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Fig.3aExampleofavertexibelongingtothreetriangles(K1,K4,K7)wheretwoofthem(K1,K7)have
anedgealongtheboundary,depictedwiththecorrespondingboundarynormalsb̂(e).bExampleofadual
cell,Vi,andthecomponentsoftheLaplaceapproximation(15)

TheapproximationoftheLaplacian(15)withDirichletboundaryconditionstakeninto
account,wasdemonstratedtosatisfytheSummation-by-Parts(SBP)propertyinTheorem1
in[7].Here,westatetheanalogousresultwithoutanyboundaryconditions.

Theorem5.1Letuhandvhbetwogridfunctionsdefinedon¯�hsuchthatuh=
(u1,u2,...,uI),andcorrespondinglyforvh.ThenthediscreteapproximationoftheLapla-
cianoperator(15)satisfiestheSBPproperty
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vi(∇hu
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+∇hu
ni,2(e)·b̂i,2(e)),

wherethesubscripts{i,1}and{i,2}indicatethetwoedgesadjacenttotheboundarynode
i.

ProofMultiplyEq.(15)byviViandsumoverallverticesinthegrid.

∑
i∈¯�V

h

viVi(
hu
h)i=1

2

∑
i∈¯�V

h

vi
∑
n∈Ni

∇hu
n·n̂ni+1

2

∑
i∈¯�V

h

vi
∑
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∇hu
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2

∑
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h

∑
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vi∇hu
n·n̂ni+1

2

∑
i∈∂�V

h

∑
e∈Ei

vi∇hu
n(e)·b̂(e).(16)

Inthesecondequality,wehaveusedthatthesetEiisemptyforinteriornodes.
Forthefirsttermintheaboveequation,wechangetheorderofsummationandmove

∇hunoutsidethesummationovertheverticesofatriangleKnin(16),toobtain

1

2

∑
i∈¯�V

h

∑
n∈Ki

vi∇hu
n·n̂ni=1

2

∑
n∈¯�K

h

∑
i∈In

vi∇hu
n·n̂ni=1

2

∑
n∈¯�K

h

∇hu
n·

∑
i∈In

vin̂
n
i.(17)

Fortheboundarynodes,wehave

1

2

∑
i∈∂�V

h

∑
e∈Ei

vi∇hu
n(e)·b̂(e)=

∑
i∈∂�V

h

vi(∇hu
ni,1(e)·b̂i,1(e)+∇hu

ni,2(e)·b̂i,2(e))(18)

With(17)and(18),(16)canbewrittenas
∑
i∈¯�V

h

viVi(
hu
h)i=1

2

∑
n∈¯�K

h

∇hu
n·

∑
i∈In

vin̂
n
i+1

2

∑
i∈∂�V

h

vi(∇hu
ni,1(e)·b̂i,1(e)
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Fig. 3 a Example of a vertex i belonging to three triangles (K1, K4, K7) where two of them (K1, K7) have
an edge along the boundary, depicted with the corresponding boundary normals b̂(e). b Example of a dual
cell, Vi , and the components of the Laplace approximation (15)

The approximation of the Laplacian (15) with Dirichlet boundary conditions taken into
account, was demonstrated to satisfy the Summation-by-Parts (SBP) property in Theorem 1
in [7]. Here, we state the analogous result without any boundary conditions.

Theorem 5.1 Let uh and vh be two grid functions defined on �̄h such that uh =
(u1, u2, . . . , uI ), and correspondingly for vh. Then the discrete approximation of the Lapla-
cian operator (15) satisfies the SBP property
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where the subscripts {i, 1} and {i, 2} indicate the two edges adjacent to the boundary node
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Fig.3aExampleofavertexibelongingtothreetriangles(K1,K4,K7)wheretwoofthem(K1,K7)have
anedgealongtheboundary,depictedwiththecorrespondingboundarynormalsb̂(e).bExampleofadual
cell,Vi,andthecomponentsoftheLaplaceapproximation(15)

TheapproximationoftheLaplacian(15)withDirichletboundaryconditionstakeninto
account,wasdemonstratedtosatisfytheSummation-by-Parts(SBP)propertyinTheorem1
in[7].Here,westatetheanalogousresultwithoutanyboundaryconditions.

Theorem5.1Letuhandvhbetwogridfunctionsdefinedon�̄hsuchthatuh=
(u1,u2,...,uI),andcorrespondinglyforvh.ThenthediscreteapproximationoftheLapla-
cianoperator(15)satisfiestheSBPproperty
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Inthesecondequality,wehaveusedthatthesetEiisemptyforinteriornodes.
Forthefirsttermintheaboveequation,wechangetheorderofsummationandmove
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account,wasdemonstratedtosatisfytheSummation-by-Parts(SBP)propertyinTheorem1
in[7].Here,westatetheanalogousresultwithoutanyboundaryconditions.
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+ ∇hu
ni,2(e) · b̂i,2(e)),

= −
∑
n∈�̄K

h

∇hu
n · ∇hv

n |Kn | + 1

2

∑
i∈∂�V

h

vi (∇hu
ni,1(e) · b̂i,1(e)

+ ∇hu
ni,2(e) · b̂i,2(e)).

In the last equality we have used the approximation of the gradient (13). �


6 The Numerical Scheme and Discrete A Priori Estimates

To approximate the problem (1) we use (15) for the Laplacian approximation at the interior
nodes. The Dirichlet condition is imposed strongly by injection (see e.g. [15, 16]). The
Neumann and Robin conditions are imposed weakly in the same way as in [7]. That is, by
replacing the last term of (14) with the boundary data, we approximate the Neumann and
Robin boundaries by:

∫
∂Vi∩∂�

∇u · n ds ≈
{

1
2

∑
e∈Ei

gN
i |b̂(e)| if i is a Neumann boundary node,

1
2

∑
e∈Ei

(gR
i − αui )|b̂(e)| if i is a Robin boundary node.

Remark 6.1 Imposing the Dirichlet condition by injectionmeans in practice that the Dirichlet
nodes are overwritten by the exact boundary data after each time step. (Equivalently, no
equation is solved at these nodes, since u is equal to the boundary data.)

Remark 6.2 A boundary node is either of Dirichlet, Neumann or Robin type. The entire
dual-cell boundary coinciding with the physical boundary is subsequently approximated as
the same type as the boundary node, see Fig. 4. This means that in the junction between
two boundary types, part of the computational boundary may be approximated as something
different than the actual physical boundary. However, this is an O(h) error of the boundary
integral which tends to zero with decreasing mesh sizes. Note that this is only necessary for
the Dirichlet nodes where the boundary conditions are injected. For Neumann and Robin
nodes, we could split the outer dual-cell boundary into a Neumann and a Robin part since
these boundary conditions are set weakly. However, in the scheme (19) below, we use the
first approach to reduce notation.

The above choices lead to the following discrete approximation scheme of (1)

dvi

dt
= (

gD
i

)
t , i ∈ ∂�D

h ,

dvi

dt
= 1

2Vi

∑
n∈Ni

μ∇hv
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2Vi
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i |b̂(e)|, i ∈ ∂�N

h ,

dvi

dt
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2Vi

∑
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μ∇hv
n · n̂ni + 1

2Vi

∑
e∈Ei

(gR
i − αui )|b̂(e)|, i ∈ ∂�R

h ,

dvi

dt
= 1

2Vi

∑
n∈Ni

μ∇hv
n · n̂ni , i ∈ �h,

vi |t=0 = fi , i ∈ �h .

(19)
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6 The Numerical Scheme and Discrete A Priori Estimates

To approximate the problem (1) we use (15) for the Laplacian approximation at the interior
nodes. The Dirichlet condition is imposed strongly by injection (see e.g. [15, 16]). The
Neumann and Robin conditions are imposed weakly in the same way as in [7]. That is, by
replacing the last term of (14) with the boundary data, we approximate the Neumann and
Robin boundaries by:
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Remark 6.1 Imposing the Dirichlet condition by injectionmeans in practice that the Dirichlet
nodes are overwritten by the exact boundary data after each time step. (Equivalently, no
equation is solved at these nodes, since u is equal to the boundary data.)

Remark 6.2 A boundary node is either of Dirichlet, Neumann or Robin type. The entire
dual-cell boundary coinciding with the physical boundary is subsequently approximated as
the same type as the boundary node, see Fig. 4. This means that in the junction between
two boundary types, part of the computational boundary may be approximated as something
different than the actual physical boundary. However, this is an O(h) error of the boundary
integral which tends to zero with decreasing mesh sizes. Note that this is only necessary for
the Dirichlet nodes where the boundary conditions are injected. For Neumann and Robin
nodes, we could split the outer dual-cell boundary into a Neumann and a Robin part since
these boundary conditions are set weakly. However, in the scheme (19) below, we use the
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Fig. 4 Example of a grid with corresponding dual cells with an intersection of a Neumann andRobin boundary.
For boundary nodes, the whole dual cell boundary is approximated as the type of the boundary node

Remark 6.3 For readers familiar with the simultaneous approximation term (SAT) (see e.g.
the review papers [8, 30]) we remark that the schemes for the Neumann and Robin nodes are
equivalent to
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Remark 6.4 To simplify following energy analysis, we have defined the Dirichlet nodes in
(19) as (vi )t = (gD

i )t .We emphasise that when implementing the scheme, the Dirichlet nodes
should take the form vi = gD

i in order to avoid discretisation errors from the time-stepping
algorithm.

As for the continuous problem, we transform the scheme (19) into one that imposes homoge-
neous Dirichlet boundary conditions. That is, we construct a function w as defined in Sect. 2
and introduce u = v − w (see again [1, 17]). Inserting v = u + w into the scheme (19), we
obtain

dui
dt

= 0, i ∈ ∂�D
h (21a)

dui
dt

= 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

gN
i |b̂(e)| + Fi , i ∈ ∂�N

h (21b)

dui
dt

= 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

(gR
i − αui )|b̂(e)| + Fi , i ∈ ∂�R

h (21c)

123

JournalofScientificComputing(2023)96 :46Page 11 of 2446
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Fig. 4 Example of a grid with corresponding dual cells with an intersection of a Neumann andRobin boundary.
For boundary nodes, the whole dual cell boundary is approximated as the type of the boundary node

Remark 6.3 For readers familiar with the simultaneous approximation term (SAT) (see e.g.
the review papers [8, 30]) we remark that the schemes for the Neumann and Robin nodes are
equivalent to
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(μ∇hun(e) · b̂(e) − (g
R
i − αui )|b̂(e)|) .

(20)

Remark 6.4 To simplify following energy analysis, we have defined the Dirichlet nodes in
(19) as (vi )t = (g

D
i )t .We emphasise that when implementing the scheme, the Dirichlet nodes

should take the form vi = g
D
i in order to avoid discretisation errors from the time-stepping

algorithm.

As for the continuous problem, we transform the scheme (19) into one that imposes homoge-
neous Dirichlet boundary conditions. That is, we construct a function w as defined in Sect. 2
and introduce u = v − w (see again [1, 17]). Inserting v = u + w into the scheme (19), we
obtain

dui
dt = 0, i ∈ ∂�D
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dui
dt

= 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + Fi i ∈ �h, (21d)

ui |t=0 = 0, i ∈ �h, (21e)

where

Fi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2Vi

∑
n∈Ni

μ∇hw
n · n̂ni − dwi

dt , i ∈ ∂�N
h ,

1
2Vi

∑
n∈Ni

μ∇hw
n · n̂ni − 1

2Vi

∑
e∈Ei

αwi |b̂(e)| − dwi
dt , i ∈ ∂�R

h ,

1
2Vi

∑
n∈Ni

μ∇hw
n · n̂ni − dwi

dt , i ∈ �h .

(22)

Remark 6.5 By the Picard–Lindelöf theorem (see e.g. [25]), the ordinary differential equation
(21) has a solution if the scheme is stable.

To obtain a priori estimates for the approximate solution uh = (u1, u2, . . . , uI ), we use
the discrete energy method (see e.g. [17] for more details on the energy method). That is, we
multiply the scheme (21) in each node, i , by ui Vi and sum over all grid points.

∑
i∈�̄V

h

ui Vi
dui
dt

=
∑
i∈�V

h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni

⎤
⎦

+
∑

i∈∂�N
h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

gN
i |b̂(e)|

⎤
⎦

+
∑

i∈∂�R
h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

(gR
i − αui )|b̂(e)|

⎤
⎦

+
∑
i∈�̄V

h

ui Vi Fi .

Since �̄h = �V
h ∪ ∂�D

h ∪ ∂�N
h ∪ ∂�R

h , and all the sets are disjoint, and since the scheme for
the Dirichlet nodes is zero, the underlined terms amount to summing over all nodes in the
grid. That is, the above is equivalent to

1

2

d

dt

∑
i∈�̄V

h

Vi u
2
i = 1

2

∑
i∈�̄V

h

ui
∑
n∈Ni

μ∇hu
n · n̂ni + 1

2

∑
i∈∂�N

h

ui
∑
e∈Ei

gN
i |b̂(e)|

+ 1

2

∑
i∈∂�R

h

ui
∑
e∈Ei

(gR
i − αui )|b̂(e)| +

∑
i∈�̄V

h

ui Vi Fi .

Using Theorem 5.1, we obtain

1

2

d

dt

∑
i∈�̄h

Vi u
2
i = −

∑
n∈�̄K

h

∇hu
n · μ∇hu

n |Kn | +
∑

i∈∂�N
h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+
∑

i∈∂�R
h

1
2

(
ui g

R
i − αu2i

)
(|b̂i,1(e)| + |b̂i,2(e)|) +

∑
i∈�̄V

h

ui Vi Fi ,
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multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.
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h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

(gR
i−αui)|b̂(e)|

⎤
⎦

+
∑
i∈¯�V

h

uiViFi.

Since¯�h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈¯�V

h

Viu
2
i=1

2

∑
i∈¯�V

h

ui
∑
n∈Ni

μ∇hu
n·n̂ni+1

2

∑
i∈∂�N

h

ui
∑
e∈Ei

gN
i|b̂(e)|

+1

2

∑
i∈∂�R

h

ui
∑
e∈Ei

(gR
i−αui)|b̂(e)|+

∑
i∈¯�V

h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈¯�h

Viu
2
i=−

∑
n∈¯�K

h

∇hu
n·μ∇hu

n|Kn|+
∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈∂�R

h

1
2

(
uig

R
i−αu2i

)
(|b̂i,1(e)|+|b̂i,2(e)|)+

∑
i∈¯�V

h

uiViFi,
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dui
dt

=1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+Fii∈�h,(21d)

ui|t=0=0,i∈�h,(21e)

where

Fi=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2Vi

∑
n∈Ni

μ∇hw
n·n̂ni−dwi

dt,i∈∂�N
h,

1
2Vi

∑
n∈Ni

μ∇hw
n·n̂ni−1

2Vi

∑
e∈Ei

αwi|b̂(e)|−dwi
dt,i∈∂�R

h,

1
2Vi

∑
n∈Ni

μ∇hw
n·n̂ni−dwi

dt,i∈�h.

(22)

Remark6.5BythePicard–Lindelöftheorem(seee.g.[25]),theordinarydifferentialequation
(21)hasasolutioniftheschemeisstable.

Toobtainaprioriestimatesfortheapproximatesolutionuh=(u1,u2,...,uI),weuse
thediscreteenergymethod(seee.g.[17]formoredetailsontheenergymethod).Thatis,we
multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.

∑
i∈¯�V

h

uiVi
dui
dt

=
∑
i∈�V

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni

⎤
⎦

+
∑
i∈∂�N

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

gN
i|b̂(e)|

⎤
⎦

+
∑
i∈∂�R

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

(gR
i−αui)|b̂(e)|

⎤
⎦

+
∑
i∈¯�V

h

uiViFi.

Since¯�h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈¯�V

h

Viu
2
i=1

2

∑
i∈¯�V

h

ui
∑
n∈Ni

μ∇hu
n·n̂ni+1

2

∑
i∈∂�N

h

ui
∑
e∈Ei

gN
i|b̂(e)|

+1

2

∑
i∈∂�R

h

ui
∑
e∈Ei

(gR
i−αui)|b̂(e)|+

∑
i∈¯�V

h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈¯�h

Viu
2
i=−

∑
n∈¯�K

h

∇hu
n·μ∇hu

n|Kn|+
∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈∂�R

h

1
2

(
uig

R
i−αu2i

)
(|b̂i,1(e)|+|b̂i,2(e)|)+

∑
i∈¯�V

h

uiViFi,
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dui
dt =

1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i + Fi i ∈ �h, (21d)

ui |t=0 = 0, i ∈ �h, (21e)

where

Fi =

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i −

dwi
dt , i ∈ ∂�N

h ,

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i − 1

2Vi ∑e∈Ei αwi |b̂(e)| −
dwi
dt , i ∈ ∂�R

h ,

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i −

dwi
dt , i ∈ �h .

(22)

Remark 6.5 By the Picard–Lindelöf theorem (see e.g. [25]), the ordinary differential equation
(21) has a solution if the scheme is stable.

To obtain a priori estimates for the approximate solution uh = (u1, u2, . . . , uI ), we use
the discrete energy method (see e.g. [17] for more details on the energy method). That is, we
multiply the scheme (21) in each node, i , by ui Vi and sum over all grid points.

∑
i∈�̄V

h

ui Vi
dui
dt = ∑

i∈�V
h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i

⎤
⎦

+ ∑
i∈∂�N

h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

g
N
i |b̂(e)|

⎤
⎦

+ ∑
i∈∂�R

h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

(g
R
i − αui )|b̂(e)|

⎤
⎦

+ ∑
i∈�̄V

h

ui Vi Fi .

Since �̄h = �V
h ∪ ∂�D

h ∪ ∂�N
h ∪ ∂�R

h , and all the sets are disjoint, and since the scheme for
the Dirichlet nodes is zero, the underlined terms amount to summing over all nodes in the
grid. That is, the above is equivalent to

1

2

d

dt

∑
i∈�̄V

h

Vi u2
i =

1

2

∑
i∈�̄V

h

ui ∑
n∈Ni

μ∇hun · n̂
n
i +

1

2

∑
i∈∂�N

h

ui ∑
e∈Ei

g
N
i |b̂(e)|

+
1

2

∑
i∈∂�R

h

ui ∑
e∈Ei

(g
R
i − αui )|b̂(e)| + ∑

i∈�̄V
h

ui Vi Fi .

Using Theorem 5.1, we obtain

1

2

d

dt

∑
i∈�̄h

Vi u2
i = − ∑

n∈�̄K
h

∇hun · μ∇hun |Kn | + ∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
i∈∂�R

h

1
2

(ui gR
i − αu2

i ) (|b̂i,1(e)| + |b̂i,2(e)|) + ∑
i∈�̄V

h

ui Vi Fi ,
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dui
dt =

1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i + Fi i ∈ �h, (21d)

ui |t=0 = 0, i ∈ �h, (21e)

where

Fi =

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i −

dwi
dt , i ∈ ∂�N

h ,

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i − 1

2Vi ∑e∈Ei αwi |b̂(e)| −
dwi
dt , i ∈ ∂�R

h ,

1
2Vi ∑n∈Ni μ∇hwn · n̂

n
i −

dwi
dt , i ∈ �h .

(22)

Remark 6.5 By the Picard–Lindelöf theorem (see e.g. [25]), the ordinary differential equation
(21) has a solution if the scheme is stable.

To obtain a priori estimates for the approximate solution uh = (u1, u2, . . . , uI ), we use
the discrete energy method (see e.g. [17] for more details on the energy method). That is, we
multiply the scheme (21) in each node, i , by ui Vi and sum over all grid points.

∑
i∈�̄V

h

ui Vi
dui
dt = ∑

i∈�V
h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i

⎤
⎦

+ ∑
i∈∂�N

h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

g
N
i |b̂(e)|

⎤
⎦

+ ∑
i∈∂�R

h

ui Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

(g
R
i − αui )|b̂(e)|

⎤
⎦

+ ∑
i∈�̄V

h

ui Vi Fi .

Since �̄h = �V
h ∪ ∂�D

h ∪ ∂�N
h ∪ ∂�R

h , and all the sets are disjoint, and since the scheme for
the Dirichlet nodes is zero, the underlined terms amount to summing over all nodes in the
grid. That is, the above is equivalent to

1

2

d

dt

∑
i∈�̄V

h

Vi u2
i =

1

2

∑
i∈�̄V

h

ui ∑
n∈Ni

μ∇hun · n̂
n
i +

1

2

∑
i∈∂�N

h

ui ∑
e∈Ei

g
N
i |b̂(e)|

+
1

2

∑
i∈∂�R

h

ui ∑
e∈Ei

(g
R
i − αui )|b̂(e)| + ∑

i∈�̄V
h

ui Vi Fi .

Using Theorem 5.1, we obtain

1

2

d

dt

∑
i∈�̄h

Vi u2
i = − ∑

n∈�̄K
h

∇hun · μ∇hun |Kn | + ∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
i∈∂�R

h

1
2

(ui gR
i − αu2

i ) (|b̂i,1(e)| + |b̂i,2(e)|) + ∑
i∈�̄V

h

ui Vi Fi ,
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dui
dt=

1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+Fii∈�h,(21d)

ui|t=0=0,i∈�h,(21e)

where

Fi=

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈∂�N

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−1

2Vi∑e∈Eiαwi|b̂(e)|−
dwi
dt,i∈∂�R

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈�h.

(22)

Remark6.5BythePicard–Lindelöftheorem(seee.g.[25]),theordinarydifferentialequation
(21)hasasolutioniftheschemeisstable.

Toobtainaprioriestimatesfortheapproximatesolutionuh=(u1,u2,...,uI),weuse
thediscreteenergymethod(seee.g.[17]formoredetailsontheenergymethod).Thatis,we
multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.

∑
i∈�̄V

h

uiVi
dui
dt=∑

i∈�V
h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
R
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

uiViFi.

Since�̄h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈�̄V

h

Viu2
i=

1

2

∑
i∈�̄V

h

ui∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

ui∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

ui∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈�̄h

Viu2
i=−∑

n∈�̄K
h

∇hun·μ∇hun|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2

(uigR
i−αu2

i)(|b̂i,1(e)|+|b̂i,2(e)|)+∑
i∈�̄V

h

uiViFi,
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dui
dt=

1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+Fii∈�h,(21d)

ui|t=0=0,i∈�h,(21e)

where

Fi=

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈∂�N

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−1

2Vi∑e∈Eiαwi|b̂(e)|−
dwi
dt,i∈∂�R

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈�h.

(22)

Remark6.5BythePicard–Lindelöftheorem(seee.g.[25]),theordinarydifferentialequation
(21)hasasolutioniftheschemeisstable.

Toobtainaprioriestimatesfortheapproximatesolutionuh=(u1,u2,...,uI),weuse
thediscreteenergymethod(seee.g.[17]formoredetailsontheenergymethod).Thatis,we
multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.

∑
i∈�̄V

h

uiVi
dui
dt=∑

i∈�V
h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
R
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

uiViFi.

Since�̄h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈�̄V

h

Viu2
i=

1

2

∑
i∈�̄V

h

ui∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

ui∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

ui∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈�̄h

Viu2
i=−∑

n∈�̄K
h

∇hun·μ∇hun|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2

(uigR
i−αu2

i)(|b̂i,1(e)|+|b̂i,2(e)|)+∑
i∈�̄V

h

uiViFi,
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dui
dt=

1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+Fii∈�h,(21d)

ui|t=0=0,i∈�h,(21e)

where

Fi=

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈∂�N

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−1

2Vi∑e∈Eiαwi|b̂(e)|−
dwi
dt,i∈∂�R

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈�h.

(22)

Remark6.5BythePicard–Lindelöftheorem(seee.g.[25]),theordinarydifferentialequation
(21)hasasolutioniftheschemeisstable.

Toobtainaprioriestimatesfortheapproximatesolutionuh=(u1,u2,...,uI),weuse
thediscreteenergymethod(seee.g.[17]formoredetailsontheenergymethod).Thatis,we
multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.

∑
i∈�̄V

h

uiVi
dui
dt=∑

i∈�V
h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
R
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

uiViFi.

Since�̄h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈�̄V

h

Viu2
i=

1

2

∑
i∈�̄V

h

ui∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

ui∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

ui∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈�̄h

Viu2
i=−∑

n∈�̄K
h

∇hun·μ∇hun|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2

(uigR
i−αu2

i)(|b̂i,1(e)|+|b̂i,2(e)|)+∑
i∈�̄V

h

uiViFi,
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dui
dt=

1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+Fii∈�h,(21d)

ui|t=0=0,i∈�h,(21e)

where

Fi=

⎧⎪
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎪⎩

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈∂�N

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−1

2Vi∑e∈Eiαwi|b̂(e)|−
dwi
dt,i∈∂�R

h,

1
2Vi∑n∈Niμ∇hwn·n̂

n
i−

dwi
dt,i∈�h.

(22)

Remark6.5BythePicard–Lindelöftheorem(seee.g.[25]),theordinarydifferentialequation
(21)hasasolutioniftheschemeisstable.

Toobtainaprioriestimatesfortheapproximatesolutionuh=(u1,u2,...,uI),weuse
thediscreteenergymethod(seee.g.[17]formoredetailsontheenergymethod).Thatis,we
multiplythescheme(21)ineachnode,i,byuiViandsumoverallgridpoints.

∑
i∈�̄V

h

uiVi
dui
dt=∑

i∈�V
h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

uiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
R
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

uiViFi.

Since�̄h=�V
h∪∂�D

h∪∂�N
h∪∂�R

h,andallthesetsaredisjoint,andsincetheschemefor
theDirichletnodesiszero,theunderlinedtermsamounttosummingoverallnodesinthe
grid.Thatis,theaboveisequivalentto

1

2

d

dt

∑
i∈�̄V

h

Viu2
i=

1

2

∑
i∈�̄V

h

ui∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

ui∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

ui∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

uiViFi.

UsingTheorem5.1,weobtain

1

2

d

dt

∑
i∈�̄h

Viu2
i=−∑

n∈�̄K
h

∇hun·μ∇hun|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2

(uigR
i−αu2

i)(|b̂i,1(e)|+|b̂i,2(e)|)+∑
i∈�̄V

h

uiViFi,
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≤ −μ
∑
n∈�̄K

h

|∇hu
n |2|Kn | +

∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+
∑

i∈∂�R
h

1
2ui (g

R
i (|b̂i,1(e)| + |b̂i,2(e)|)

+
∑
i∈�̄V

h

ui Vi Fi , (23)

where we in the last inequality have used that
∑

i∈∂�R
h

− 1
2αu

2
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ 0

since α ≥ 0. We can further manipulate the Neumann boundary terms as follows∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤

∑
i∈∂�N

h

|ui gN
i |(|b̂i,1(e)| + |b̂i,2(e)|).

Using Young’s inequality, we obtain∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ β

2

∑
i∈∂�N

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�N

h

1
2 |gN

i |2(|b̂i,1(e)| + |b̂i,2(e)|).

The Robin boundary terms can be manipulated the same way. Thus, (23) reads

1

2

d

dt

∑
i∈�̄V

h

Vi u
2
i ≤ −μ

∑
n∈�̄K

h

|∇hu
n |2|Kn | + β

2

∑
i∈∂�N

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�N

h

1
2 |gN

i |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ β
2

∑
i∈∂�R

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�R

h

1
2 |gR

i |2(|b̂i,1(e)| + |b̂i,2(e)|) +
∑
i∈�̄V

h

ui Vi Fi .

(24)

We introduce the following notation for the discrete equivalents of the L2-norms:

‖uh‖2
L2
V (�)

=
∑
i∈�̄V

h

|ui |2Vi , (25)

‖∇hu
h‖2

L2
K (�)

=
∑
n∈�̄K

h

|∇hu
n |2|Kn |, (26)

‖uh‖2
L2
B (∂�h)

=
∑

i∈∂�B
h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|). (27)

Using the definitions (25)–(27), we can recast (24) as

d

dt
‖uh‖2

L2
V (�)

≤ −μ‖∇hu
h‖2

L2
K (�)

+ β
2 ‖uh‖2

L2
B (∂�N

h )
+ 1

2β ‖gN,h‖2
L2
B (∂�N

h )

+ β
2 ‖uh‖2

L2
B (∂�R

h )
+ 1

2β ‖gR,h‖2
L2
B (∂�R

h )
+

∑
i∈�̄V

h

ui Vi Fi .
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≤−μ
∑
n∈¯�K

h

|∇hu
n|2|Kn|+

∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈∂�R

h

1
2ui(g

R
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈¯�V

h

uiViFi,(23)

whereweinthelastinequalityhaveusedthat
∑

i∈∂�R
h

−1
2αu

2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows ∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤

∑
i∈∂�N

h

|uigN
i|(|b̂i,1(e)|+|b̂i,2(e)|).

UsingYoung’sinequality,weobtain ∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤β

2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|gN

i|2(|b̂i,1(e)|+|b̂i,2(e)|).

TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads

1

2

d

dt

∑
i∈¯�V

h

Viu
2
i≤−μ

∑
n∈¯�K

h

|∇hu
n|2|Kn|+β

2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
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i|2(|b̂i,1(e)|+|b̂i,2(e)|)

+β
2

∑
i∈∂�R

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�R

h

1
2|gR

i|2(|b̂i,1(e)|+|b̂i,2(e)|)+
∑
i∈¯�V

h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:

‖uh‖2
L2

V(�)
=

∑
i∈¯�V

h

|ui|2Vi,(25)

‖∇hu
h‖2

L2
K(�)

=
∑
n∈¯�K

h

|∇hu
n|2|Kn|,(26)

‖uh‖2
L2

B(∂�h)
=

∑
i∈∂�B

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|).(27)

Usingthedefinitions(25)–(27),wecanrecast(24)as

d

dt
‖uh‖2

L2
V(�)

≤−μ‖∇hu
h‖2

L2
K(�)

+β
2‖uh‖2

L2
B(∂�N

h)
+1

2β‖gN,h‖2
L2

B(∂�N
h)

+β
2‖uh‖2

L2
B(∂�R

h)
+1

2β‖gR,h‖2
L2

B(∂�R
h)

+
∑
i∈¯�V

h

uiViFi.

123

JournalofScientificComputing(2023)96 :46Page 13 of 2446

≤−μ
∑
n∈¯�K

h

|∇hu
n|2|Kn|+

∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈∂�R

h

1
2ui(g

R
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈¯�V

h

uiViFi,(23)

whereweinthelastinequalityhaveusedthat
∑

i∈∂�R
h

−1
2αu

2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows ∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤

∑
i∈∂�N

h

|uigN
i|(|b̂i,1(e)|+|b̂i,2(e)|).

UsingYoung’sinequality,weobtain ∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤β

2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|gN

i|2(|b̂i,1(e)|+|b̂i,2(e)|).

TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads

1

2

d

dt

∑
i∈¯�V

h

Viu
2
i≤−μ

∑
n∈¯�K

h

|∇hu
n|2|Kn|+β

2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|gN

i|2(|b̂i,1(e)|+|b̂i,2(e)|)

+β
2

∑
i∈∂�R

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�R

h

1
2|gR

i|2(|b̂i,1(e)|+|b̂i,2(e)|)+
∑
i∈¯�V

h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:

‖uh‖2
L2

V(�)
=

∑
i∈¯�V

h

|ui|2Vi,(25)

‖∇hu
h‖2

L2
K(�)

=
∑
n∈¯�K

h

|∇hu
n|2|Kn|,(26)

‖uh‖2
L2

B(∂�h)
=

∑
i∈∂�B

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|).(27)

Usingthedefinitions(25)–(27),wecanrecast(24)as

d

dt
‖uh‖2

L2
V(�)

≤−μ‖∇hu
h‖2

L2
K(�)

+β
2‖uh‖2

L2
B(∂�N

h)
+1

2β‖gN,h‖2
L2

B(∂�N
h)

+β
2‖uh‖2

L2
B(∂�R

h)
+1

2β‖gR,h‖2
L2

B(∂�R
h)

+
∑
i∈¯�V

h

uiViFi.

123

Journal of Scientific Computing (2023) 96 :46 Page 13 of 24 46

≤ −μ ∑
n∈�̄K

h

|∇hun |2|Kn | + ∑
i∈∂�N

h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
i∈∂�R

h

1
2ui (g

R
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
i∈�̄V

h

ui Vi Fi , (23)

where we in the last inequality have used that ∑i∈∂�R
h − 1

2αu2
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ 0

since α ≥ 0. We can further manipulate the Neumann boundary terms as follows
∑

i∈∂�N
h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ ∑

i∈∂�N
h

|ui g
N
i |(|b̂i,1(e)| + |b̂i,2(e)|).

Using Young’s inequality, we obtain
∑

i∈∂�N
h

1
2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤

β
2

∑
i∈∂�N

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�N

h

1
2 |g

N
i |2(|b̂i,1(e)| + |b̂i,2(e)|).

The Robin boundary terms can be manipulated the same way. Thus, (23) reads

1

2

d

dt

∑
i∈�̄V

h

Vi u2
i ≤ −μ ∑

n∈�̄K
h

|∇hun |2|Kn | +
β
2

∑
i∈∂�N

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�N

h

1
2 |g

N
i |2(|b̂i,1(e)| + |b̂i,2(e)|)

+
β
2

∑
i∈∂�R

h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
2β

∑
i∈∂�R

h

1
2 |g

R
i |2(|b̂i,1(e)| + |b̂i,2(e)|) + ∑

i∈�̄V
h

ui Vi Fi .

(24)

We introduce the following notation for the discrete equivalents of the L2-norms:

‖uh‖2L2
V (�) = ∑

i∈�̄V
h

|ui |2Vi , (25)

‖∇huh‖2L2
K (�) = ∑

n∈�̄K
h

|∇hun |2|Kn |, (26)

‖uh‖2L2
B (∂�h) = ∑

i∈∂�B
h

1
2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|). (27)

Using the definitions (25)–(27), we can recast (24) as

d

dt ‖uh‖2L2
V (�) ≤ −μ‖∇huh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�N
h ) + 1

2β ‖g
N,h‖2L2

B (∂�N
h )

+
β
2 ‖uh‖2L2

B (∂�R
h ) + 1

2β ‖g
R,h‖2L2

B (∂�R
h ) + ∑

i∈�̄V
h

ui Vi Fi .
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≤ −μ ∑
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i∈∂�N
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+ ∑
i∈∂�R

h

1
2ui (g

R
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
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ui Vi Fi , (23)

where we in the last inequality have used that ∑i∈∂�R
h − 1

2αu2
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ 0

since α ≥ 0. We can further manipulate the Neumann boundary terms as follows
∑

i∈∂�N
h
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2ui g

N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤ ∑

i∈∂�N
h
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N
i |(|b̂i,1(e)| + |b̂i,2(e)|).

Using Young’s inequality, we obtain
∑

i∈∂�N
h
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N
i (|b̂i,1(e)| + |b̂i,2(e)|) ≤
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2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)

+ 1
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i |2(|b̂i,1(e)| + |b̂i,2(e)|).

The Robin boundary terms can be manipulated the same way. Thus, (23) reads

1

2

d

dt

∑
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h

Vi u2
i ≤ −μ ∑

n∈�̄K
h

|∇hun |2|Kn | +
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+
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2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|)
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h

1
2 |g

R
i |2(|b̂i,1(e)| + |b̂i,2(e)|) + ∑

i∈�̄V
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ui Vi Fi .

(24)

We introduce the following notation for the discrete equivalents of the L2-norms:

‖uh‖2L2
V (�) = ∑

i∈�̄V
h

|ui |2Vi , (25)

‖∇huh‖2L2
K (�) = ∑

n∈�̄K
h

|∇hun |2|Kn |, (26)

‖uh‖2L2
B (∂�h) = ∑

i∈∂�B
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2 |ui |2(|b̂i,1(e)| + |b̂i,2(e)|). (27)

Using the definitions (25)–(27), we can recast (24) as

d

dt ‖uh‖2L2
V (�) ≤ −μ‖∇huh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�N
h ) + 1

2β ‖g
N,h‖2L2

B (∂�N
h )

+
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B (∂�R
h ) + 1
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ui Vi Fi .

123

JournalofScientificComputing(2023)96 :46Page 13 of 2446

≤−μ∑
n∈�̄K

h

|∇hun|2|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
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R
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i∈�̄V

h

uiViFi,(23)

whereweinthelastinequalityhaveusedthat∑i∈∂�R
h−1

2αu2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows
∑

i∈∂�N
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1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤∑
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TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads
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i∈�̄V
h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:
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h

|ui|2Vi,(25)
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h−1

2αu2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤∑

i∈∂�N
h

|uig
N
i|(|b̂i,1(e)|+|b̂i,2(e)|).

UsingYoung’sinequality,weobtain
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤

β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|).

TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads

1

2

d

dt

∑
i∈�̄V

h

Viu2
i≤−μ∑

n∈�̄K
h

|∇hun|2|Kn|+
β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|)

+
β
2

∑
i∈∂�R

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�R

h

1
2|g

R
i|2(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:

‖uh‖2L2
V(�)=∑

i∈�̄V
h

|ui|2Vi,(25)

‖∇huh‖2L2
K(�)=∑

n∈�̄K
h

|∇hun|2|Kn|,(26)

‖uh‖2L2
B(∂�h)=∑

i∈∂�B
h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|).(27)

Usingthedefinitions(25)–(27),wecanrecast(24)as

d

dt‖uh‖2L2
V(�)≤−μ‖∇huh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�N
h)+1

2β‖g
N,h‖2L2

B(∂�N
h)

+
β
2‖uh‖2L2

B(∂�R
h)+1

2β‖g
R,h‖2L2

B(∂�R
h)+∑

i∈�̄V
h

uiViFi.

123

JournalofScientificComputing(2023)96 :46Page 13 of 2446

≤−μ∑
n∈�̄K

h

|∇hun|2|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2ui(g

R
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈�̄V

h

uiViFi,(23)

whereweinthelastinequalityhaveusedthat∑i∈∂�R
h−1

2αu2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤∑

i∈∂�N
h

|uig
N
i|(|b̂i,1(e)|+|b̂i,2(e)|).

UsingYoung’sinequality,weobtain
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤

β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|).

TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads

1

2

d

dt

∑
i∈�̄V

h

Viu2
i≤−μ∑

n∈�̄K
h

|∇hun|2|Kn|+
β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|)

+
β
2

∑
i∈∂�R

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�R

h

1
2|g

R
i|2(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:

‖uh‖2L2
V(�)=∑

i∈�̄V
h

|ui|2Vi,(25)

‖∇huh‖2L2
K(�)=∑

n∈�̄K
h

|∇hun|2|Kn|,(26)

‖uh‖2L2
B(∂�h)=∑

i∈∂�B
h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|).(27)

Usingthedefinitions(25)–(27),wecanrecast(24)as

d

dt‖uh‖2L2
V(�)≤−μ‖∇huh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�N
h)+1

2β‖g
N,h‖2L2

B(∂�N
h)

+
β
2‖uh‖2L2

B(∂�R
h)+1

2β‖g
R,h‖2L2

B(∂�R
h)+∑

i∈�̄V
h

uiViFi.

123

JournalofScientificComputing(2023)96 :46Page 13 of 2446

≤−μ∑
n∈�̄K

h

|∇hun|2|Kn|+∑
i∈∂�N

h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2ui(g

R
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈�̄V

h

uiViFi,(23)

whereweinthelastinequalityhaveusedthat∑i∈∂�R
h−1

2αu2
i(|b̂i,1(e)|+|b̂i,2(e)|)≤0

sinceα≥0.WecanfurthermanipulatetheNeumannboundarytermsasfollows
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤∑

i∈∂�N
h

|uig
N
i|(|b̂i,1(e)|+|b̂i,2(e)|).

UsingYoung’sinequality,weobtain
∑

i∈∂�N
h

1
2uig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)≤

β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|).

TheRobinboundarytermscanbemanipulatedthesameway.Thus,(23)reads

1

2

d

dt

∑
i∈�̄V

h

Viu2
i≤−μ∑

n∈�̄K
h

|∇hun|2|Kn|+
β
2

∑
i∈∂�N

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�N

h

1
2|g

N
i|2(|b̂i,1(e)|+|b̂i,2(e)|)

+
β
2

∑
i∈∂�R

h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|)

+1
2β

∑
i∈∂�R

h

1
2|g

R
i|2(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

uiViFi.

(24)

WeintroducethefollowingnotationforthediscreteequivalentsoftheL2-norms:

‖uh‖2L2
V(�)=∑

i∈�̄V
h

|ui|2Vi,(25)

‖∇huh‖2L2
K(�)=∑

n∈�̄K
h

|∇hun|2|Kn|,(26)

‖uh‖2L2
B(∂�h)=∑

i∈∂�B
h

1
2|ui|2(|b̂i,1(e)|+|b̂i,2(e)|).(27)

Usingthedefinitions(25)–(27),wecanrecast(24)as

d

dt‖uh‖2L2
V(�)≤−μ‖∇huh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�N
h)+1

2β‖g
N,h‖2L2

B(∂�N
h)

+
β
2‖uh‖2L2

B(∂�R
h)+1

2β‖g
R,h‖2L2

B(∂�R
h)+∑

i∈�̄V
h

uiViFi.

123



46 Page 14 of 24 Journal of Scientific Computing (2023) 96 :46

To obtain an estimate analogous to (8), we must consider the forcing term
∑

i∈�̄V
h
ui Vi Fi .

Except for the time-derivative term in (22), Fi takes the same form as the right-hand side of
the scheme (21). By using the SBP property from Theorem 5.1 and Young’s inequality, we
obtain

∑
i∈�̄V

h

ui Vi Fi ≤ ε
2μ‖∇hu

h‖2
L2
K (�)

+ μ
2ε ‖∇hw

h‖2
L2
K (�)

+ β
2 ‖uh‖2

L2
B (∂�R

h )

+ α2

2β ‖wh‖2
L2
B (∂�R

h )
+ δ

2‖uh‖2L2
V (�h)

+ 1
2δ ‖wh

t ‖2L2
V (�)

.

Thus, we have

d

dt
‖uh‖2

L2
V (�)

≤ −μ‖∇hu
h‖2

L2
K (�)

+ β
2 ‖uh‖2

L2
B (∂�N

h )
+ 1

2β ‖gN,h‖2
L2
B (∂�N

h )
+ β

2 ‖uh‖2
L2
B (∂�R

h )

+ 1
2β ‖gR,h‖2

L2
B (∂�R

h )

+ ε
2μ‖∇hu

h‖2
L2
K (�)

+ μ
2ε ‖∇hw

h‖2
L2
K (�)

+ β
2 ‖uh‖2

L2
B (∂�R

h )

+ α2

2β ‖wh‖2
L2
B (∂�R

h )
+ δ

2‖uh‖2L2
V (�)

+ 1
2δ ‖wh

t ‖2L2
V (�)

.

(28)
Similarly as for the continuous problem, if we choose ε = 1, we obtain −μ‖∇huh‖2L2

K (�)
+

ε
2μ‖∇huh‖2L2

K (�)
= −μ

2 ‖∇huh‖2L2
K (�)

in (28). Furthermore, β‖uh‖2
L2
B (∂�N

h )
+ β

2 ‖uh‖2
L2
B (∂�R

h )

� β‖uh‖2
L2
B (∂�)

. Hence, we have

d

dt
‖uh‖2

L2
V (�)

� −μ
2 ‖∇hu

h‖2
L2
K (�)

+ μ
2 ‖∇hw

h‖2
L2
K (�)

+ δ
2‖uh‖2L2

V (�)
+ 1

2δ ‖wh
t ‖2L2

V (�)
+ β‖uh‖2

L2
B (∂�)

1
2β

(
‖gN,h‖2

L2
B (∂�N

h )
+ ‖gR,h‖2

L2
B (∂�R

h )
+ ‖wh‖2

L2
B (∂�R

h )

)
.

Finally using the trace theorem, we arrive at a similar estimate as in (8):

d

dt
‖uh‖2

L2
V (�)

+ μ
2 ‖∇hu

h‖2
L2
K (�)

− δ
2‖uh‖2L2

V (�)
− β‖uh‖2

H1
K (�)

� μ
2 ‖∇hw

h‖2
L2
K (�)

+ 1
2δ ‖wh

t ‖2L2
V (�)

+ 1
2β

(
‖gN,h‖2

L2
B (∂�N

h )
+ ‖gR,h‖2

L2
B (∂�R

h )
+ ‖wh‖2

H1
K (�)

)
.

Note that we have arrived at a semi-discrete equivalent of (8). Thus, by using Grön-
nwall’s inequality followed by integration in time, as done in Sect. 3, we obtain uh ∈
L∞(0, T ; L2

V (�)) and ∇huh ∈ L2(0, T ; L2
K (�)). We may extend the numerical solu-

tion, uh , to the entire domain by a linear interpolation on the triangles. Let uhc denote
this continuous piecewise linear function. We have that ∇huhc = ∇uhc = ∇huh . Hence
∇uhc ∈ L2(0, T ; L2

K (�)) (and also, ∇uhc ∈ L2(0, T ; L2(�)) since ∇uhc is piecewise con-
stant). Furthermore, the norm ‖uhc‖2L2(�)

can be bounded by ‖uh‖2
L2
V (�)

. Thus, we have

uhc ∈ L2(0, T ; H1(�)).
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Toobtainanestimateanalogousto(8),wemustconsidertheforcingterm
∑

i∈¯�V
h

uiViFi.
Exceptforthetime-derivativetermin(22),Fitakesthesameformastheright-handsideof
thescheme(21).ByusingtheSBPpropertyfromTheorem5.1andYoung’sinequality,we
obtain
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.
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(28)
Similarlyasforthecontinuousproblem,ifwechooseε=1,weobtain−μ‖∇huh‖2L2
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+

ε
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d
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V(�)

�−μ
2‖∇hu
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.

Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):
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.

Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuhcdenote
thiscontinuouspiecewiselinearfunction.Wehavethat∇huhc=∇uhc=∇huh.Hence
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K(�))(andalso,∇uhc∈L2(0,T;L2(�))since∇uhcispiecewisecon-
stant).Furthermore,thenorm‖uhc‖2L2(�)
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uhc∈L2(0,T;H1(�)).

123

46Page 14 of 24JournalofScientificComputing(2023)96 :46
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.Hence,wehave

d

dt
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2‖uh‖2L2
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L2
B(∂�R

h)

)
.

Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):

d

dt
‖uh‖2
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2‖∇hu
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h)
+‖gR,h‖2

L2
B(∂�R
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H1
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)
.

Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuhcdenote
thiscontinuouspiecewiselinearfunction.Wehavethat∇huhc=∇uhc=∇huh.Hence
∇uhc∈L2(0,T;L2

K(�))(andalso,∇uhc∈L2(0,T;L2(�))since∇uhcispiecewisecon-
stant).Furthermore,thenorm‖uhc‖2L2(�)

canbeboundedby‖uh‖2
L2

V(�)
.Thus,wehave

uhc∈L2(0,T;H1(�)).

123

46 Page 14 of 24 Journal of Scientific Computing (2023) 96 :46

To obtain an estimate analogous to (8), we must consider the forcing term ∑i∈�̄V
h
ui Vi Fi .

Except for the time-derivative term in (22), Fi takes the same form as the right-hand side of
the scheme (21). By using the SBP property from Theorem 5.1 and Young’s inequality, we
obtain

∑
i∈�̄V

h

ui Vi Fi ≤
ε
2μ‖∇huh‖2L2

K (�) +
μ
2ε ‖∇hwh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�R
h )

+
α2

2β ‖wh‖2L2
B (∂�R

h ) +
δ
2‖uh‖2L2

V (�h) + 1
2δ ‖wh

t ‖2L2
V (�)

.

Thus, we have

d

dt ‖uh‖2L2
V (�) ≤ −μ‖∇huh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�N
h ) + 1

2β ‖g
N,h‖2L2

B (∂�N
h ) +

β
2 ‖uh‖2L2

B (∂�R
h )

+ 1
2β ‖g

R,h‖2L2
B (∂�R

h )

+
ε
2μ‖∇huh‖2L2

K (�) +
μ
2ε ‖∇hwh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�R
h )

+
α2

2β ‖wh‖2L2
B (∂�R

h ) +
δ
2‖uh‖2L2

V (�) + 1
2δ ‖wh

t ‖2L2
V (�)

.

(28)
Similarly as for the continuous problem, if we choose ε = 1, we obtain −μ‖∇huh‖2L2

K (�) +
ε
2μ‖∇huh‖2L2

K (�) = −
μ
2 ‖∇huh‖2L2

K (�) in (28). Furthermore, β‖uh‖2L2
B (∂�N

h )+
β
2 ‖uh‖2L2

B (∂�R
h )

� β‖uh‖2L2
B (∂�). Hence, we have

d

dt ‖uh‖2L2
V (�) � −

μ
2 ‖∇huh‖2L2

K (�) +
μ
2 ‖∇hwh‖2L2

K (�)

+
δ
2‖uh‖2L2

V (�) + 1
2δ ‖wh

t ‖2L2
V (�) + β‖uh‖2L2

B (∂�)

1
2β
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B (∂�N
h ) + ‖g

R,h‖2L2
B (∂�R

h ) + ‖wh‖2L2
B (∂�R

h )

) .

Finally using the trace theorem, we arrive at a similar estimate as in (8):

d

dt ‖uh‖2L2
V (�) +

μ
2 ‖∇huh‖2L2

K (�) −
δ
2‖uh‖2L2

V (�) − β‖uh‖2H1
K (�)

�
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2δ ‖wh
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V (�)

+ 1
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B (∂�N
h ) + ‖g

R,h‖2L2
B (∂�R

h ) + ‖wh‖2H1
K (�)

) .

Note that we have arrived at a semi-discrete equivalent of (8). Thus, by using Grön-
nwall’s inequality followed by integration in time, as done in Sect. 3, we obtain uh ∈
L∞(0, T ; L2

V (�)) and ∇huh ∈ L2(0, T ; L2
K (�)). We may extend the numerical solu-

tion, uh , to the entire domain by a linear interpolation on the triangles. Let uh
c denote

this continuous piecewise linear function. We have that ∇huh
c = ∇uh

c = ∇huh . Hence
∇uh

c ∈ L2(0, T ; L2
K (�)) (and also, ∇uh

c ∈ L2(0, T ; L2(�)) since ∇uh
c is piecewise con-

stant). Furthermore, the norm ‖uhc‖2L2(�) can be bounded by ‖uh‖2L2
V (�). Thus, we have

uh
c ∈ L2(0, T ; H1(�)).

123

46 Page 14 of 24 Journal of Scientific Computing (2023) 96 :46

To obtain an estimate analogous to (8), we must consider the forcing term ∑i∈�̄V
h
ui Vi Fi .

Except for the time-derivative term in (22), Fi takes the same form as the right-hand side of
the scheme (21). By using the SBP property from Theorem 5.1 and Young’s inequality, we
obtain
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.

Thus, we have
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B (∂�R
h )

+ 1
2β ‖g

R,h‖2L2
B (∂�R

h )

+
ε
2μ‖∇huh‖2L2

K (�) +
μ
2ε ‖∇hwh‖2L2

K (�) +
β
2 ‖uh‖2L2

B (∂�R
h )

+
α2

2β ‖wh‖2L2
B (∂�R
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t ‖2L2
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.

(28)
Similarly as for the continuous problem, if we choose ε = 1, we obtain −μ‖∇huh‖2L2

K (�) +
ε
2μ‖∇huh‖2L2

K (�) = −
μ
2 ‖∇huh‖2L2

K (�) in (28). Furthermore, β‖uh‖2L2
B (∂�N

h )+
β
2 ‖uh‖2L2

B (∂�R
h )

� β‖uh‖2L2
B (∂�). Hence, we have

d

dt ‖uh‖2L2
V (�) � −

μ
2 ‖∇huh‖2L2

K (�) +
μ
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B (∂�N
h ) + ‖g

R,h‖2L2
B (∂�R

h ) + ‖wh‖2L2
B (∂�R

h )

) .

Finally using the trace theorem, we arrive at a similar estimate as in (8):

d

dt ‖uh‖2L2
V (�) +

μ
2 ‖∇huh‖2L2

K (�) −
δ
2‖uh‖2L2

V (�) − β‖uh‖2H1
K (�)
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2 ‖∇hwh‖2L2

K (�) + 1
2δ ‖wh
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V (�)

+ 1
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(‖g
N,h‖2L2

B (∂�N
h ) + ‖g

R,h‖2L2
B (∂�R

h ) + ‖wh‖2H1
K (�)

) .

Note that we have arrived at a semi-discrete equivalent of (8). Thus, by using Grön-
nwall’s inequality followed by integration in time, as done in Sect. 3, we obtain uh ∈
L∞(0, T ; L2

V (�)) and ∇huh ∈ L2(0, T ; L2
K (�)). We may extend the numerical solu-

tion, uh , to the entire domain by a linear interpolation on the triangles. Let uh
c denote

this continuous piecewise linear function. We have that ∇huh
c = ∇uh

c = ∇huh . Hence
∇uh

c ∈ L2(0, T ; L2
K (�)) (and also, ∇uh

c ∈ L2(0, T ; L2(�)) since ∇uh
c is piecewise con-

stant). Furthermore, the norm ‖uhc‖2L2(�) can be bounded by ‖uh‖2L2
V (�). Thus, we have

uh
c ∈ L2(0, T ; H1(�)).
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Toobtainanestimateanalogousto(8),wemustconsidertheforcingterm∑i∈�̄V
h
uiViFi.

Exceptforthetime-derivativetermin(22),Fitakesthesameformastheright-handsideof
thescheme(21).ByusingtheSBPpropertyfromTheorem5.1andYoung’sinequality,we
obtain

∑
i∈�̄V

h

uiViFi≤
ε
2μ‖∇huh‖2L2

K(�)+
μ
2ε‖∇hwh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�R
h)

+
α2

2β‖wh‖2L2
B(∂�R

h)+
δ
2‖uh‖2L2

V(�h)+1
2δ‖wh

t‖2L2
V(�)

.

Thus,wehave

d

dt‖uh‖2L2
V(�)≤−μ‖∇huh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�N
h)+1

2β‖g
N,h‖2L2

B(∂�N
h)+

β
2‖uh‖2L2

B(∂�R
h)

+1
2β‖g

R,h‖2L2
B(∂�R

h)

+
ε
2μ‖∇huh‖2L2

K(�)+
μ
2ε‖∇hwh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�R
h)

+
α2

2β‖wh‖2L2
B(∂�R

h)+
δ
2‖uh‖2L2

V(�)+1
2δ‖wh

t‖2L2
V(�)

.

(28)
Similarlyasforthecontinuousproblem,ifwechooseε=1,weobtain−μ‖∇huh‖2L2

K(�)+
ε
2μ‖∇huh‖2L2

K(�)=−
μ
2‖∇huh‖2L2

K(�)in(28).Furthermore,β‖uh‖2L2
B(∂�N

h)+
β
2‖uh‖2L2

B(∂�R
h)

�β‖uh‖2L2
B(∂�).Hence,wehave

d

dt‖uh‖2L2
V(�)�−

μ
2‖∇huh‖2L2

K(�)+
μ
2‖∇hwh‖2L2

K(�)

+
δ
2‖uh‖2L2

V(�)+1
2δ‖wh

t‖2L2
V(�)+β‖uh‖2L2

B(∂�)

1
2β

(‖g
N,h‖2L2

B(∂�N
h)+‖g

R,h‖2L2
B(∂�R

h)+‖wh‖2L2
B(∂�R

h)

).

Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):

d

dt‖uh‖2L2
V(�)+

μ
2‖∇huh‖2L2

K(�)−
δ
2‖uh‖2L2

V(�)−β‖uh‖2H1
K(�)

�
μ
2‖∇hwh‖2L2

K(�)+1
2δ‖wh

t‖2L2
V(�)

+1
2β

(‖g
N,h‖2L2

B(∂�N
h)+‖g

R,h‖2L2
B(∂�R

h)+‖wh‖2H1
K(�)

).

Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuh
cdenote

thiscontinuouspiecewiselinearfunction.Wehavethat∇huh
c=∇uh

c=∇huh.Hence
∇uh

c∈L2(0,T;L2
K(�))(andalso,∇uh

c∈L2(0,T;L2(�))since∇uh
cispiecewisecon-

stant).Furthermore,thenorm‖uhc‖2L2(�)canbeboundedby‖uh‖2L2
V(�).Thus,wehave

uh
c∈L2(0,T;H1(�)).
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Toobtainanestimateanalogousto(8),wemustconsidertheforcingterm∑i∈�̄V
h
uiViFi.

Exceptforthetime-derivativetermin(22),Fitakesthesameformastheright-handsideof
thescheme(21).ByusingtheSBPpropertyfromTheorem5.1andYoung’sinequality,we
obtain

∑
i∈�̄V

h

uiViFi≤
ε
2μ‖∇huh‖2L2

K(�)+
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2ε‖∇hwh‖2L2

K(�)+
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+
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h)+
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.

Thus,wehave

d
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+
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2δ‖wh

t‖2L2
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.

(28)
Similarlyasforthecontinuousproblem,ifwechooseε=1,weobtain−μ‖∇huh‖2L2

K(�)+
ε
2μ‖∇huh‖2L2

K(�)=−
μ
2‖∇huh‖2L2

K(�)in(28).Furthermore,β‖uh‖2L2
B(∂�N

h)+
β
2‖uh‖2L2

B(∂�R
h)

�β‖uh‖2L2
B(∂�).Hence,wehave
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).

Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):

d

dt‖uh‖2L2
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K(�)

).

Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuh
cdenote

thiscontinuouspiecewiselinearfunction.Wehavethat∇huh
c=∇uh

c=∇huh.Hence
∇uh

c∈L2(0,T;L2
K(�))(andalso,∇uh

c∈L2(0,T;L2(�))since∇uh
cispiecewisecon-

stant).Furthermore,thenorm‖uhc‖2L2(�)canbeboundedby‖uh‖2L2
V(�).Thus,wehave

uh
c∈L2(0,T;H1(�)).
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Toobtainanestimateanalogousto(8),wemustconsidertheforcingterm∑i∈�̄V
h
uiViFi.

Exceptforthetime-derivativetermin(22),Fitakesthesameformastheright-handsideof
thescheme(21).ByusingtheSBPpropertyfromTheorem5.1andYoung’sinequality,we
obtain
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(28)
Similarlyasforthecontinuousproblem,ifwechooseε=1,weobtain−μ‖∇huh‖2L2
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K(�)in(28).Furthermore,β‖uh‖2L2
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Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):
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Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuh
cdenote

thiscontinuouspiecewiselinearfunction.Wehavethat∇huh
c=∇uh

c=∇huh.Hence
∇uh

c∈L2(0,T;L2
K(�))(andalso,∇uh

c∈L2(0,T;L2(�))since∇uh
cispiecewisecon-

stant).Furthermore,thenorm‖uhc‖2L2(�)canbeboundedby‖uh‖2L2
V(�).Thus,wehave

uh
c∈L2(0,T;H1(�)).
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Toobtainanestimateanalogousto(8),wemustconsidertheforcingterm∑i∈�̄V
h
uiViFi.

Exceptforthetime-derivativetermin(22),Fitakesthesameformastheright-handsideof
thescheme(21).ByusingtheSBPpropertyfromTheorem5.1andYoung’sinequality,we
obtain

∑
i∈�̄V

h

uiViFi≤
ε
2μ‖∇huh‖2L2

K(�)+
μ
2ε‖∇hwh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�R
h)

+
α2

2β‖wh‖2L2
B(∂�R

h)+
δ
2‖uh‖2L2

V(�h)+1
2δ‖wh

t‖2L2
V(�)

.

Thus,wehave

d

dt‖uh‖2L2
V(�)≤−μ‖∇huh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�N
h)+1

2β‖g
N,h‖2L2

B(∂�N
h)+

β
2‖uh‖2L2

B(∂�R
h)

+1
2β‖g

R,h‖2L2
B(∂�R

h)

+
ε
2μ‖∇huh‖2L2

K(�)+
μ
2ε‖∇hwh‖2L2

K(�)+
β
2‖uh‖2L2

B(∂�R
h)

+
α2

2β‖wh‖2L2
B(∂�R

h)+
δ
2‖uh‖2L2

V(�)+1
2δ‖wh

t‖2L2
V(�)

.

(28)
Similarlyasforthecontinuousproblem,ifwechooseε=1,weobtain−μ‖∇huh‖2L2

K(�)+
ε
2μ‖∇huh‖2L2

K(�)=−
μ
2‖∇huh‖2L2

K(�)in(28).Furthermore,β‖uh‖2L2
B(∂�N

h)+
β
2‖uh‖2L2

B(∂�R
h)

�β‖uh‖2L2
B(∂�).Hence,wehave

d

dt‖uh‖2L2
V(�)�−

μ
2‖∇huh‖2L2

K(�)+
μ
2‖∇hwh‖2L2

K(�)

+
δ
2‖uh‖2L2

V(�)+1
2δ‖wh

t‖2L2
V(�)+β‖uh‖2L2

B(∂�)

1
2β

(‖g
N,h‖2L2

B(∂�N
h)+‖g

R,h‖2L2
B(∂�R

h)+‖wh‖2L2
B(∂�R

h)

).

Finallyusingthetracetheorem,wearriveatasimilarestimateasin(8):

d

dt‖uh‖2L2
V(�)+

μ
2‖∇huh‖2L2

K(�)−
δ
2‖uh‖2L2

V(�)−β‖uh‖2H1
K(�)

�
μ
2‖∇hwh‖2L2

K(�)+1
2δ‖wh

t‖2L2
V(�)

+1
2β

(‖g
N,h‖2L2

B(∂�N
h)+‖g

R,h‖2L2
B(∂�R

h)+‖wh‖2H1
K(�)

).

Notethatwehavearrivedatasemi-discreteequivalentof(8).Thus,byusingGrön-
nwall’sinequalityfollowedbyintegrationintime,asdoneinSect.3,weobtainuh∈
L∞(0,T;L2

V(�))and∇huh∈L2(0,T;L2
K(�)).Wemayextendthenumericalsolu-

tion,uh,totheentiredomainbyalinearinterpolationonthetriangles.Letuh
cdenote

thiscontinuouspiecewiselinearfunction.Wehavethat∇huh
c=∇uh

c=∇huh.Hence
∇uh

c∈L2(0,T;L2
K(�))(andalso,∇uh

c∈L2(0,T;L2(�))since∇uh
cispiecewisecon-

stant).Furthermore,thenorm‖uhc‖2L2(�)canbeboundedby‖uh‖2L2
V(�).Thus,wehave

uh
c∈L2(0,T;H1(�)).

123



Journal of Scientific Computing (2023) 96 :46 Page 15 of 24 46

7 Weak Convergence to aWeak Solution

Let φ ∈ H1(0, T ;C∞
∂�D

0
(�̄)). Since φ is smooth (in space), φ|Vi , which is the restriction of φ

to a dual cell, can bewritten asφ|Vi = φ(xi , yi , t)+hpi = φi+hpi , where h is a characteristic
mesh size and pi (xi , yi , t) is a function of size O(1). The gradient approximation (13) is
∇hφ|Kn = ∇φ|Kn + O(h). This can easily be checked for equilateral triangles. Thereafter,
one can prove the relation for a general triangle by transforming it to an equilateral one using
a linear transformation.

We denote the right-hand side of the scheme (21) by Lhuh . To prove convergence to a
weak solution, we test the numerical scheme (21) against φ. That is, we calculate

∫
�

φuht dx =
∫

�

φ(Lhu
h) dx,

=
∑
i∈�̄V

h

∫
Vi

φ|Vi (Lhu
h)|Vi dx.

(29)

We now use that φ|Vi = φi + hpi to obtain
∫

�

φuht dx =
∑
i∈�̄V

h

∫
Vi

(φi + hpi )(Lhu
h)i dx (30)

=
∑
i∈�̄V

h

∫
Vi

φi (Lhu
h)i dx +

∑
i∈�̄V

h

∫
Vi
hpi (Lhu

h)i dx

=
∑
i∈�̄V

h

∫
Vi

φi (Lhu
h)i dx +

∑
i∈�̄V

h

∫
Vi
hpi (ui )t dx, (31)

where we have used uht = Lhuh in the last step. Thus
∫

�

(φ − hp)uht dx =
∑
i∈�̄V

h

∫
Vi

φi (Lhu
h)i dx. (32)

Inserting the specific form of Lhuh (that is, the right-hand side of the scheme (21)) yields

∫
�

(φ − hp)uht dx =
∑
i∈�V

h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni

⎤
⎦ dx

+
∑

i∈∂�N
h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

gN
i |b̂(e)|

⎤
⎦ dx

+
∑

i∈∂�R
h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

(gN
i − αui )|b̂(e)|

⎤
⎦ dx

+
∑
i∈�̄V

h

∫
Vi

φi Fi dx.

(33)
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7WeakConvergencetoaWeakSolution

Letφ∈H1(0,T;C∞
∂�D

0
(¯�)).Sinceφissmooth(inspace),φ|Vi,whichistherestrictionofφ

toadualcell,canbewrittenasφ|Vi=φ(xi,yi,t)+hpi=φi+hpi,wherehisacharacteristic
meshsizeandpi(xi,yi,t)isafunctionofsizeO(1).Thegradientapproximation(13)is
∇hφ|Kn=∇φ|Kn+O(h).Thiscaneasilybecheckedforequilateraltriangles.Thereafter,
onecanprovetherelationforageneraltrianglebytransformingittoanequilateraloneusing
alineartransformation.

Wedenotetheright-handsideofthescheme(21)byLhuh.Toproveconvergencetoa
weaksolution,wetestthenumericalscheme(21)againstφ.Thatis,wecalculate

∫
�

φuhtdx=
∫

�

φ(Lhu
h)dx,

=
∑
i∈¯�V

h

∫
Vi

φ|Vi(Lhu
h)|Vidx.

(29)

Wenowusethatφ|Vi=φi+hpitoobtain
∫

�

φuhtdx=
∑
i∈¯�V

h

∫
Vi

(φi+hpi)(Lhu
h)idx(30)

=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx+

∑
i∈¯�V

h

∫
Vi

hpi(Lhu
h)idx

=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx+

∑
i∈¯�V

h

∫
Vi

hpi(ui)tdx,(31)

wherewehaveuseduht=Lhuhinthelaststep.Thus
∫

�

(φ−hp)uhtdx=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx.(32)

InsertingthespecificformofLhuh(thatis,theright-handsideofthescheme(21))yields

∫
�

(φ−hp)uhtdx=
∑
i∈�V

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni

⎤
⎦dx

+
∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

gN
i|b̂(e)|

⎤
⎦dx

+
∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

(gN
i−αui)|b̂(e)|

⎤
⎦dx

+
∑
i∈¯�V

h

∫
Vi

φiFidx.

(33)
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7WeakConvergencetoaWeakSolution

Letφ∈H1(0,T;C∞
∂�D

0
(¯�)).Sinceφissmooth(inspace),φ|Vi,whichistherestrictionofφ

toadualcell,canbewrittenasφ|Vi=φ(xi,yi,t)+hpi=φi+hpi,wherehisacharacteristic
meshsizeandpi(xi,yi,t)isafunctionofsizeO(1).Thegradientapproximation(13)is
∇hφ|Kn=∇φ|Kn+O(h).Thiscaneasilybecheckedforequilateraltriangles.Thereafter,
onecanprovetherelationforageneraltrianglebytransformingittoanequilateraloneusing
alineartransformation.

Wedenotetheright-handsideofthescheme(21)byLhuh.Toproveconvergencetoa
weaksolution,wetestthenumericalscheme(21)againstφ.Thatis,wecalculate

∫
�

φuhtdx=
∫

�

φ(Lhu
h)dx,

=
∑
i∈¯�V

h

∫
Vi

φ|Vi(Lhu
h)|Vidx.

(29)

Wenowusethatφ|Vi=φi+hpitoobtain
∫

�

φuhtdx=
∑
i∈¯�V

h

∫
Vi

(φi+hpi)(Lhu
h)idx(30)

=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx+

∑
i∈¯�V

h

∫
Vi

hpi(Lhu
h)idx

=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx+

∑
i∈¯�V

h

∫
Vi

hpi(ui)tdx,(31)

wherewehaveuseduht=Lhuhinthelaststep.Thus
∫

�

(φ−hp)uhtdx=
∑
i∈¯�V

h

∫
Vi

φi(Lhu
h)idx.(32)

InsertingthespecificformofLhuh(thatis,theright-handsideofthescheme(21))yields

∫
�

(φ−hp)uhtdx=
∑
i∈�V

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni

⎤
⎦dx

+
∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

gN
i|b̂(e)|

⎤
⎦dx

+
∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

(gN
i−αui)|b̂(e)|

⎤
⎦dx

+
∑
i∈¯�V

h

∫
Vi

φiFidx.

(33)

123

Journal of Scientific Computing (2023) 96 :46 Page 15 of 24 46

7 Weak Convergence to aWeak Solution

Let φ ∈ H1(0, T ;C∞
∂�D

0
(�̄)). Since φ is smooth (in space), φ|Vi , which is the restriction of φ

to a dual cell, can bewritten asφ|Vi = φ(xi , yi , t)+hpi = φi+hpi , where h is a characteristic
mesh size and pi (xi , yi , t) is a function of size O(1). The gradient approximation (13) is
∇hφ|Kn = ∇φ|Kn + O(h). This can easily be checked for equilateral triangles. Thereafter,
one can prove the relation for a general triangle by transforming it to an equilateral one using
a linear transformation.

We denote the right-hand side of the scheme (21) by Lhuh . To prove convergence to a
weak solution, we test the numerical scheme (21) against φ. That is, we calculate

∫
�

φuh
t dx =

∫
�

φ(Lhuh) dx,

= ∑
i∈�̄V

h

∫
Vi

φ|Vi (Lhuh)|Vi dx. (29)

We now use that φ|Vi = φi + hpi to obtain
∫

�

φuh
t dx = ∑

i∈�̄V
h

∫
Vi

(φi + hpi )(Lhuh)
i dx (30)

= ∑
i∈�̄V

h

∫
Vi

φi (Lhuh)
i dx + ∑

i∈�̄V
h

∫
Vi
hpi (Lhuh)

i dx

= ∑
i∈�̄V

h

∫
Vi

φi (Lhuh)
i dx + ∑

i∈�̄V
h

∫
Vi
hpi (ui )t dx, (31)

where we have used uh
t = Lhuh in the last step. Thus
∫

�

(φ − hp)uh
t dx = ∑

i∈�̄V
h

∫
Vi

φi (Lhuh)
i dx. (32)

Inserting the specific form of Lhuh (that is, the right-hand side of the scheme (21)) yields

∫
�

(φ − hp)uh
t dx = ∑

i∈�V
h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i

⎤
⎦ dx

+ ∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

g
N
i |b̂(e)|

⎤
⎦ dx

+ ∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

(g
N
i − αui )|b̂(e)|

⎤
⎦ dx

+ ∑
i∈�̄V

h

∫
Vi

φi Fi dx.

(33)
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7 Weak Convergence to aWeak Solution

Let φ ∈ H1(0, T ;C∞
∂�D

0
(�̄)). Since φ is smooth (in space), φ|Vi , which is the restriction of φ

to a dual cell, can bewritten asφ|Vi = φ(xi , yi , t)+hpi = φi+hpi , where h is a characteristic
mesh size and pi (xi , yi , t) is a function of size O(1). The gradient approximation (13) is
∇hφ|Kn = ∇φ|Kn + O(h). This can easily be checked for equilateral triangles. Thereafter,
one can prove the relation for a general triangle by transforming it to an equilateral one using
a linear transformation.

We denote the right-hand side of the scheme (21) by Lhuh . To prove convergence to a
weak solution, we test the numerical scheme (21) against φ. That is, we calculate

∫
�

φuh
t dx =

∫
�

φ(Lhuh) dx,

= ∑
i∈�̄V

h

∫
Vi

φ|Vi (Lhuh)|Vi dx. (29)

We now use that φ|Vi = φi + hpi to obtain
∫

�

φuh
t dx = ∑

i∈�̄V
h

∫
Vi

(φi + hpi )(Lhuh)
i dx (30)

= ∑
i∈�̄V

h

∫
Vi

φi (Lhuh)
i dx + ∑

i∈�̄V
h

∫
Vi
hpi (Lhuh)

i dx

= ∑
i∈�̄V

h

∫
Vi

φi (Lhuh)
i dx + ∑

i∈�̄V
h

∫
Vi
hpi (ui )t dx, (31)

where we have used uh
t = Lhuh in the last step. Thus
∫

�

(φ − hp)uh
t dx = ∑

i∈�̄V
h

∫
Vi

φi (Lhuh)
i dx. (32)

Inserting the specific form of Lhuh (that is, the right-hand side of the scheme (21)) yields

∫
�

(φ − hp)uh
t dx = ∑

i∈�V
h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i

⎤
⎦ dx

+ ∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

g
N
i |b̂(e)|

⎤
⎦ dx

+ ∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

(g
N
i − αui )|b̂(e)|

⎤
⎦ dx

+ ∑
i∈�̄V

h

∫
Vi

φi Fi dx.

(33)
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7WeakConvergencetoaWeakSolution

Letφ∈H1(0,T;C∞
∂�D

0
(�̄)).Sinceφissmooth(inspace),φ|Vi,whichistherestrictionofφ

toadualcell,canbewrittenasφ|Vi=φ(xi,yi,t)+hpi=φi+hpi,wherehisacharacteristic
meshsizeandpi(xi,yi,t)isafunctionofsizeO(1).Thegradientapproximation(13)is
∇hφ|Kn=∇φ|Kn+O(h).Thiscaneasilybecheckedforequilateraltriangles.Thereafter,
onecanprovetherelationforageneraltrianglebytransformingittoanequilateraloneusing
alineartransformation.

Wedenotetheright-handsideofthescheme(21)byLhuh.Toproveconvergencetoa
weaksolution,wetestthenumericalscheme(21)againstφ.Thatis,wecalculate

∫
�

φuh
tdx=

∫
�

φ(Lhuh)dx,

=∑
i∈�̄V

h

∫
Vi

φ|Vi(Lhuh)|Vidx.(29)

Wenowusethatφ|Vi=φi+hpitoobtain
∫

�

φuh
tdx=∑

i∈�̄V
h

∫
Vi

(φi+hpi)(Lhuh)
idx(30)

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(Lhuh)

idx

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(ui)tdx,(31)

wherewehaveuseduh
t=Lhuhinthelaststep.Thus
∫

�

(φ−hp)uh
tdx=∑

i∈�̄V
h

∫
Vi

φi(Lhuh)
idx.(32)

InsertingthespecificformofLhuh(thatis,theright-handsideofthescheme(21))yields

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦dx

+∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦dx

+∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦dx

+∑
i∈�̄V

h

∫
Vi

φiFidx.

(33)
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7WeakConvergencetoaWeakSolution

Letφ∈H1(0,T;C∞
∂�D

0
(�̄)).Sinceφissmooth(inspace),φ|Vi,whichistherestrictionofφ

toadualcell,canbewrittenasφ|Vi=φ(xi,yi,t)+hpi=φi+hpi,wherehisacharacteristic
meshsizeandpi(xi,yi,t)isafunctionofsizeO(1).Thegradientapproximation(13)is
∇hφ|Kn=∇φ|Kn+O(h).Thiscaneasilybecheckedforequilateraltriangles.Thereafter,
onecanprovetherelationforageneraltrianglebytransformingittoanequilateraloneusing
alineartransformation.

Wedenotetheright-handsideofthescheme(21)byLhuh.Toproveconvergencetoa
weaksolution,wetestthenumericalscheme(21)againstφ.Thatis,wecalculate

∫
�

φuh
tdx=

∫
�

φ(Lhuh)dx,

=∑
i∈�̄V

h

∫
Vi

φ|Vi(Lhuh)|Vidx.(29)

Wenowusethatφ|Vi=φi+hpitoobtain
∫

�

φuh
tdx=∑

i∈�̄V
h

∫
Vi

(φi+hpi)(Lhuh)
idx(30)

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(Lhuh)

idx

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(ui)tdx,(31)

wherewehaveuseduh
t=Lhuhinthelaststep.Thus
∫

�

(φ−hp)uh
tdx=∑

i∈�̄V
h

∫
Vi

φi(Lhuh)
idx.(32)

InsertingthespecificformofLhuh(thatis,theright-handsideofthescheme(21))yields

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦dx

+∑
i∈∂�N

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦dx

+∑
i∈∂�R

h

∫
Vi

φi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦dx

+∑
i∈�̄V

h

∫
Vi

φiFidx.

(33)
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7WeakConvergencetoaWeakSolution

Letφ∈H1(0,T;C∞
∂�D

0
(�̄)).Sinceφissmooth(inspace),φ|Vi,whichistherestrictionofφ

toadualcell,canbewrittenasφ|Vi=φ(xi,yi,t)+hpi=φi+hpi,wherehisacharacteristic
meshsizeandpi(xi,yi,t)isafunctionofsizeO(1).Thegradientapproximation(13)is
∇hφ|Kn=∇φ|Kn+O(h).Thiscaneasilybecheckedforequilateraltriangles.Thereafter,
onecanprovetherelationforageneraltrianglebytransformingittoanequilateraloneusing
alineartransformation.

Wedenotetheright-handsideofthescheme(21)byLhuh.Toproveconvergencetoa
weaksolution,wetestthenumericalscheme(21)againstφ.Thatis,wecalculate

∫
�

φuh
tdx=

∫
�

φ(Lhuh)dx,

=∑
i∈�̄V

h

∫
Vi

φ|Vi(Lhuh)|Vidx.(29)

Wenowusethatφ|Vi=φi+hpitoobtain
∫

�

φuh
tdx=∑

i∈�̄V
h

∫
Vi

(φi+hpi)(Lhuh)
idx(30)

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(Lhuh)

idx

=∑
i∈�̄V

h

∫
Vi

φi(Lhuh)
idx+∑

i∈�̄V
h

∫
Vi
hpi(ui)tdx,(31)

wherewehaveuseduh
t=Lhuhinthelaststep.Thus
∫

�

(φ−hp)uh
tdx=∑

i∈�̄V
h

∫
Vi

φi(Lhuh)
idx.(32)

InsertingthespecificformofLhuh(thatis,theright-handsideofthescheme(21))yields

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

∫
Vi

φi

⎡
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2Vi
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i
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2Vi
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e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦dx

+∑
i∈�̄V

h

∫
Vi

φiFidx.

(33)
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∫
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Sinceφi is constant on each dual cell, Vi and the Laplacian approximation is a scalar constant,
the right-hand side above can be integrated exactly, leading to

∫
�

(φ − hp)uht dx =
∑
i∈�V

h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni

⎤
⎦

+
∑

i∈∂�N
h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

gN
i |b̂(e)|

⎤
⎦

+
∑

i∈∂�R
h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2Vi

∑
e∈Ei

(gN
i − αui )|b̂(e)|

⎤
⎦

+
∑
i∈�̄V

h

φi Vi Fi .

(34)
As in the discrete analysis in Sect. 6, the underlined terms can be written as the sum over all
grid points in �̄h as follows∫

�

(φ − hp)uht dx = 1

2

∑
i∈�̄V

h

φi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2

∑
i∈∂�N

h

φi

∑
e∈Ei

gN
i |b̂(e)|

+ 1

2

∑
i∈∂�R

h

φi

∑
e∈Ei

(gR
i − αui )|b̂(e)| +

∑
i∈�̄V

h

φi Vi Fi .
(35)

Using the SBP properties from Theorem 5.1 yields∫
�

(φ − hp)uht dx = −
∑
n∈�̄K

h

∇hφ
n · μ∇hu

n |Kn | +
∑

i∈∂�N
h

1
2φi g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+
∑

i∈∂�R
h

1
2φi (g

R
i − αui )(|b̂i,1(e)| + |b̂i,2(e)|) +

∑
i∈�̄V

h

φi Vi Fi .

(36)
Since ∇hφ

n and ∇hun are constant on each triangle K , we have that −∑
n∈�̄K

h
∇hφ

n ·
μ∇hun |Kn | = −∑

n∈�̄K
h

∫
Kn

∇hφ
h · μ∇huh dx. Thus, (36) can be written as

∫
�

(φ − hp)uht dx = −
∑
n∈�̄K

h

∫
Kn

∇hφ
n · μ∇hu

n dx

+
∑

i∈∂�N
h

1
2φi g

N
i (|b̂i,1(e)| + |b̂i,1(e)|)

+
∑

i∈∂�R
h

1
2φi (g

R
i − αui )(|b̂i,1(e)| + |b̂i,1(e)|)

+
∑
i∈�̄V

h

∫
Vi

φi Fi dx,

= −
∫

�

∇hφ
h · μ∇hu

h dx
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto

∫
�

(φ−hp)uhtdx=
∑
i∈�V

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni

⎤
⎦

+
∑
i∈∂�N

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

gN
i|b̂(e)|

⎤
⎦

+
∑
i∈∂�R

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2Vi

∑
e∈Ei

(gN
i−αui)|b̂(e)|

⎤
⎦

+
∑
i∈¯�V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin¯�hasfollows ∫

�

(φ−hp)uhtdx=1

2

∑
i∈¯�V

h

φi

∑
n∈Ni

μ∇hu
n·n̂ni+1

2

∑
i∈∂�N

h

φi

∑
e∈Ei

gN
i|b̂(e)|

+1

2

∑
i∈∂�R

h

φi

∑
e∈Ei

(gR
i−αui)|b̂(e)|+

∑
i∈¯�V

h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields ∫
�

(φ−hp)uhtdx=−
∑
n∈¯�K

h

∇hφ
n·μ∇hu

n|Kn|+
∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+

∑
i∈¯�V

h

φiViFi.

(36)
Since∇hφ

nand∇hunareconstantoneachtriangleK,wehavethat−∑
n∈¯�K

h
∇hφ

n·
μ∇hun|Kn|=−∑

n∈¯�K
h

∫
Kn

∇hφ
h·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uhtdx=−
∑
n∈¯�K

h

∫
Kn

∇hφ
n·μ∇hu

ndx

+
∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+
∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+
∑
i∈¯�V

h

∫
Vi

φiFidx,

=−
∫

�

∇hφ
h·μ∇hu

hdx
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto
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2Vi

∑
e∈Ei

(gN
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⎤
⎦

+
∑
i∈¯�V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin¯�hasfollows ∫

�

(φ−hp)uhtdx=1
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∑
i∈¯�V

h

φi
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2

∑
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h

φi

∑
e∈Ei
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i|b̂(e)|

+1

2

∑
i∈∂�R

h

φi

∑
e∈Ei

(gR
i−αui)|b̂(e)|+

∑
i∈¯�V

h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields ∫
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(φ−hp)uhtdx=−
∑
n∈¯�K

h

∇hφ
n·μ∇hu

n|Kn|+
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i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+
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i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+

∑
i∈¯�V

h

φiViFi.

(36)
Since∇hφ

nand∇hunareconstantoneachtriangleK,wehavethat−∑
n∈¯�K

h
∇hφ

n·
μ∇hun|Kn|=−∑

n∈¯�K
h

∫
Kn

∇hφ
h·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uhtdx=−
∑
n∈¯�K

h

∫
Kn

∇hφ
n·μ∇hu

ndx

+
∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+
∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+
∑
i∈¯�V

h

∫
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φiFidx,

=−
∫

�

∇hφ
h·μ∇hu
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Sinceφi is constant on each dual cell, Vi and the Laplacian approximation is a scalar constant,
the right-hand side above can be integrated exactly, leading to

∫
�

(φ − hp)uh
t dx = ∑

i∈�V
h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i

⎤
⎦

+ ∑
i∈∂�N

h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

g
N
i |b̂(e)|

⎤
⎦

+ ∑
i∈∂�R

h

φi Vi

⎡
⎣ 1

2Vi

∑
n∈Ni

μ∇hun · n̂
n
i +

1

2Vi

∑
e∈Ei

(g
N
i − αui )|b̂(e)|

⎤
⎦

+ ∑
i∈�̄V

h

φi Vi Fi .

(34)
As in the discrete analysis in Sect. 6, the underlined terms can be written as the sum over all
grid points in �̄h as follows

∫
�

(φ − hp)uh
t dx =

1

2

∑
i∈�̄V

h

φi ∑
n∈Ni

μ∇hun · n̂
n
i +

1

2

∑
i∈∂�N

h

φi ∑
e∈Ei

g
N
i |b̂(e)|

+
1

2

∑
i∈∂�R

h

φi ∑
e∈Ei

(g
R
i − αui )|b̂(e)| + ∑

i∈�̄V
h

φi Vi Fi .
(35)

Using the SBP properties from Theorem 5.1 yields
∫

�

(φ − hp)uh
t dx = − ∑

n∈�̄K
h

∇hφn · μ∇hun |Kn | + ∑
i∈∂�N

h

1
2φi g

N
i (|b̂i,1(e)| + |b̂i,2(e)|)

+ ∑
i∈∂�R

h

1
2φi (g

R
i − αui )(|b̂i,1(e)| + |b̂i,2(e)|) + ∑

i∈�̄V
h

φi Vi Fi .

(36)
Since ∇hφn and ∇hun are constant on each triangle K , we have that −∑n∈�̄K

h ∇hφn ·
μ∇hun |Kn | = −∑n∈�̄K

h

∫
Kn ∇hφh · μ∇huh dx. Thus, (36) can be written as

∫
�

(φ − hp)uh
t dx = − ∑

n∈�̄K
h

∫
Kn

∇hφn · μ∇hun dx

+ ∑
i∈∂�N

h

1
2φi g

N
i (|b̂i,1(e)| + |b̂i,1(e)|)

+ ∑
i∈∂�R

h

1
2φi (g

R
i − αui )(|b̂i,1(e)| + |b̂i,1(e)|)

+ ∑
i∈�̄V

h

∫
Vi

φi Fi dx,

= −
∫

� ∇hφh · μ∇huh dx
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Sinceφi is constant on each dual cell, Vi and the Laplacian approximation is a scalar constant,
the right-hand side above can be integrated exactly, leading to
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φi Vi Fi .

(34)
As in the discrete analysis in Sect. 6, the underlined terms can be written as the sum over all
grid points in �̄h as follows
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Using the SBP properties from Theorem 5.1 yields
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(36)
Since ∇hφn and ∇hun are constant on each triangle K , we have that −∑n∈�̄K

h ∇hφn ·
μ∇hun |Kn | = −∑n∈�̄K

h

∫
Kn ∇hφh · μ∇huh dx. Thus, (36) can be written as
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto

∫
�

(φ−hp)uh
tdx=∑
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h

φiVi
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2Vi
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n
i
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2Vi
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2Vi
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e∈Ei

g
N
i|b̂(e)|

⎤
⎦
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i∈∂�R
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φiVi
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2Vi
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n∈Ni
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2Vi
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e∈Ei
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N
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin�̄hasfollows

∫
�

(φ−hp)uh
tdx=

1

2

∑
i∈�̄V

h

φi∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

φi∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

φi∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields
∫

�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∇hφn·μ∇hun|Kn|+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

φiViFi.

(36)
Since∇hφnand∇hunareconstantoneachtriangleK,wehavethat−∑n∈�̄K

h∇hφn·
μ∇hun|Kn|=−∑n∈�̄K

h

∫
Kn∇hφh·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∫
Kn

∇hφn·μ∇hundx

+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈�̄V

h

∫
Vi

φiFidx,

=−
∫

�∇hφh·μ∇huhdx
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin�̄hasfollows

∫
�

(φ−hp)uh
tdx=

1

2

∑
i∈�̄V

h

φi∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

φi∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

φi∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields
∫

�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∇hφn·μ∇hun|Kn|+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

φiViFi.

(36)
Since∇hφnand∇hunareconstantoneachtriangleK,wehavethat−∑n∈�̄K

h∇hφn·
μ∇hun|Kn|=−∑n∈�̄K

h

∫
Kn∇hφh·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∫
Kn

∇hφn·μ∇hundx

+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈�̄V

h

∫
Vi

φiFidx,

=−
∫

�∇hφh·μ∇huhdx
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin�̄hasfollows

∫
�

(φ−hp)uh
tdx=

1

2

∑
i∈�̄V

h

φi∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

φi∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

φi∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields
∫

�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∇hφn·μ∇hun|Kn|+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

φiViFi.

(36)
Since∇hφnand∇hunareconstantoneachtriangleK,wehavethat−∑n∈�̄K

h∇hφn·
μ∇hun|Kn|=−∑n∈�̄K

h

∫
Kn∇hφh·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∫
Kn

∇hφn·μ∇hundx

+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈�̄V

h

∫
Vi

φiFidx,

=−
∫

�∇hφh·μ∇huhdx
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Sinceφiisconstantoneachdualcell,ViandtheLaplacianapproximationisascalarconstant,
theright-handsideabovecanbeintegratedexactly,leadingto

∫
�

(φ−hp)uh
tdx=∑

i∈�V
h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i

⎤
⎦

+∑
i∈∂�N

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

g
N
i|b̂(e)|

⎤
⎦

+∑
i∈∂�R

h

φiVi

⎡
⎣1

2Vi

∑
n∈Ni

μ∇hun·n̂
n
i+

1

2Vi

∑
e∈Ei

(g
N
i−αui)|b̂(e)|

⎤
⎦

+∑
i∈�̄V

h

φiViFi.

(34)
AsinthediscreteanalysisinSect.6,theunderlinedtermscanbewrittenasthesumoverall
gridpointsin�̄hasfollows

∫
�

(φ−hp)uh
tdx=

1

2

∑
i∈�̄V

h

φi∑
n∈Ni

μ∇hun·n̂
n
i+

1

2

∑
i∈∂�N

h

φi∑
e∈Ei

g
N
i|b̂(e)|

+
1

2

∑
i∈∂�R

h

φi∑
e∈Ei

(g
R
i−αui)|b̂(e)|+∑

i∈�̄V
h

φiViFi.
(35)

UsingtheSBPpropertiesfromTheorem5.1yields
∫

�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∇hφn·μ∇hun|Kn|+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,2(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,2(e)|)+∑

i∈�̄V
h

φiViFi.

(36)
Since∇hφnand∇hunareconstantoneachtriangleK,wehavethat−∑n∈�̄K

h∇hφn·
μ∇hun|Kn|=−∑n∈�̄K

h

∫
Kn∇hφh·μ∇huhdx.Thus,(36)canbewrittenas

∫
�

(φ−hp)uh
tdx=−∑

n∈�̄K
h

∫
Kn

∇hφn·μ∇hundx

+∑
i∈∂�N

h

1
2φig

N
i(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈∂�R

h

1
2φi(g

R
i−αui)(|b̂i,1(e)|+|b̂i,1(e)|)

+∑
i∈�̄V

h

∫
Vi

φiFidx,

=−
∫

�∇hφh·μ∇huhdx
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+
∫

�

φh Fh dx +
∫

∂�N
h

φhgN,h ds +
∫

∂�R
h

φh(gR,h − αuh) ds.

Partial integration in time yields
∫ T

0

∫
�

(φ − hp)t u
h dxdt =

∫ T

0

∫
�

∇hφ
h · μ∇hu

h dxdt −
∫ T

0

∫
∂�N

h

φhgN,h dsdt

−
∫ T

0

∫
∂�R

h

φh(gR,h − αuh) dsdt −
∫ T

0

∫
�

φh Fh dxdt

−
∫

�

hpuh(T ) dx,

(37)
where we have used uh |t=0 = 0 and φh |t=T = 0.

Remark 7.1 Here,
∫
�

φh Fh dx is the short-hand for the semi-discrete form of (12). By using
the SBP property from Theorem 5.1, it can be written as∫

�

φh Fh dx =
∑
i∈�̄V

h

φi Vi Fi ,

= −
∑
n∈�̄K

h

∇hφ
n · μ∇hw

n |Kn | −
∑

i∈∂�R
h

αφiwi (|b̂i,1(e)| + |b̂i,2(e)|)

−
∑
i∈�̄V

h

φi Vi
dwi

dt
,

= −
∫

�

∇hφ
h · μ∇hw

h dx −
∫

∂�R
h

αφhwh ds −
∫

�

φhwh
t ds.

(38)

We keep the symbolic expression to reduce notation.

Since φ|Vi = φh |Vi + hpi and ∇hφ|Kn = ∇φ + O(h), the weak formulation (37) becomes
∫ T

0

∫
�

(φt − hpt )u
h dxdt =

∫ T

0

∫
�

(∇φ + O(h)) · μ∇hu
h dxdt

−
∫ T

0

∫
∂�N

h

(φ − hp)gN,h dsdt

−
∫ T

0

∫
∂�R

h

(φ − hp)(gR,h − αuh) dsdt

−
∫ T

0

∫
�

(φ − hp)Fh dxdt

−
∫

�

hpuh(T ) dx.

(39)

We utilise the following functional analysis theorem (see e.g. [10], and [5] for a proof).

Theorem 7.2 Let �T ⊂ Rn be an open domain and let {un} ∈ L2(�T ) be a bounded
sequence. Then there exists a subsequence, {uni } ∈ L2(�T ) that converges weakly to ū ∈
L2(�T ). That is,∫

�T

φuni dx →
∫

�T

φū dx asni → ∞, for allφ ∈ L2(�T ).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tu
hdxdt=

∫T

0

∫
�

∇hφ
h·μ∇hu

hdxdt−
∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,
∫

�
φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas ∫
�

φhFhdx=
∑
i∈¯�V

h

φiViFi,

=−
∑
n∈¯�K

h

∇hφ
n·μ∇hw

n|Kn|−
∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−
∑
i∈¯�V

h

φiVi
dwi

dt
,

=−
∫

�

∇hφ
h·μ∇hw

hdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)u
hdxdt=

∫T

0

∫
�

(∇φ+O(h))·μ∇hu
hdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)gN,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(gR,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�T)beabounded
sequence.Thenthereexistsasubsequence,{uni}∈L2(�T)thatconvergesweaklytoū∈
L2(�T).Thatis, ∫

�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�T).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tu
hdxdt=

∫T

0

∫
�

∇hφ
h·μ∇hu

hdxdt−
∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,
∫

�
φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas ∫
�

φhFhdx=
∑
i∈¯�V

h

φiViFi,

=−
∑
n∈¯�K

h

∇hφ
n·μ∇hw

n|Kn|−
∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−
∑
i∈¯�V

h

φiVi
dwi

dt
,

=−
∫

�

∇hφ
h·μ∇hw

hdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)u
hdxdt=

∫T

0

∫
�

(∇φ+O(h))·μ∇hu
hdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)gN,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(gR,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�T)beabounded
sequence.Thenthereexistsasubsequence,{uni}∈L2(�T)thatconvergesweaklytoū∈
L2(�T).Thatis, ∫

�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�T).
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+
∫

�

φh Fh dx +
∫

∂�N
h

φhgN,h ds +
∫

∂�R
h

φh(gR,h − αuh) ds.

Partial integration in time yields
∫ T

0

∫
�

(φ − hp)t uh dxdt =
∫ T

0

∫
� ∇hφh · μ∇huh dxdt −

∫ T

0

∫
∂�N

h

φhgN,h dsdt

−
∫ T

0

∫
∂�R

h

φh(gR,h − αuh) dsdt −
∫ T

0

∫
�

φh Fh dxdt

−
∫

�

hpuh(T ) dx,

(37)
where we have used uh |t=0 = 0 and φh |t=T = 0.

Remark 7.1 Here, ∫
� φh Fh dx is the short-hand for the semi-discrete form of (12). By using

the SBP property from Theorem 5.1, it can be written as
∫

�

φh Fh dx = ∑
i∈�̄V

h

φi Vi Fi ,

= − ∑
n∈�̄K

h

∇hφn · μ∇hwn |Kn | − ∑
i∈∂�R

h

αφiwi (|b̂i,1(e)| + |b̂i,2(e)|)

− ∑
i∈�̄V

h

φi Vi
dwi

dt
,

= −
∫

� ∇hφh · μ∇hwh dx −
∫

∂�R
h

αφhwh ds −
∫

�

φhwh
t ds.

(38)

We keep the symbolic expression to reduce notation.

Since φ|Vi = φh |Vi + hpi and ∇hφ|Kn = ∇φ + O(h), the weak formulation (37) becomes
∫ T

0

∫
�

(φt − hpt )uh dxdt =
∫ T

0

∫
�

(∇φ + O(h)) · μ∇huh dxdt

−
∫ T

0

∫
∂�N

h

(φ − hp)g
N,h dsdt

−
∫ T

0

∫
∂�R

h

(φ − hp)(g
R,h − αuh) dsdt

−
∫ T

0

∫
�

(φ − hp)Fh dxdt

−
∫

�

hpuh(T ) dx.

(39)

We utilise the following functional analysis theorem (see e.g. [10], and [5] for a proof).

Theorem 7.2 Let �T ⊂ Rn be an open domain and let {un} ∈ L2(�
T ) be a bounded

sequence. Then there exists a subsequence, {uni } ∈ L2(�
T ) that converges weakly to ū ∈

L2(�
T ). That is,

∫
�T

φuni dx →
∫

�T

φū dx asni → ∞, for allφ ∈ L2(�
T ).
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+
∫

�

φh Fh dx +
∫

∂�N
h

φhgN,h ds +
∫

∂�R
h

φh(gR,h − αuh) ds.

Partial integration in time yields
∫ T

0

∫
�

(φ − hp)t uh dxdt =
∫ T

0

∫
� ∇hφh · μ∇huh dxdt −

∫ T

0

∫
∂�N

h

φhgN,h dsdt

−
∫ T

0

∫
∂�R

h

φh(gR,h − αuh) dsdt −
∫ T

0

∫
�

φh Fh dxdt

−
∫

�

hpuh(T ) dx,

(37)
where we have used uh |t=0 = 0 and φh |t=T = 0.

Remark 7.1 Here, ∫
� φh Fh dx is the short-hand for the semi-discrete form of (12). By using

the SBP property from Theorem 5.1, it can be written as
∫

�

φh Fh dx = ∑
i∈�̄V

h

φi Vi Fi ,

= − ∑
n∈�̄K

h

∇hφn · μ∇hwn |Kn | − ∑
i∈∂�R

h

αφiwi (|b̂i,1(e)| + |b̂i,2(e)|)

− ∑
i∈�̄V

h

φi Vi
dwi

dt
,

= −
∫

� ∇hφh · μ∇hwh dx −
∫

∂�R
h

αφhwh ds −
∫

�

φhwh
t ds.

(38)

We keep the symbolic expression to reduce notation.

Since φ|Vi = φh |Vi + hpi and ∇hφ|Kn = ∇φ + O(h), the weak formulation (37) becomes
∫ T

0

∫
�

(φt − hpt )uh dxdt =
∫ T

0

∫
�

(∇φ + O(h)) · μ∇huh dxdt

−
∫ T

0

∫
∂�N

h

(φ − hp)g
N,h dsdt

−
∫ T

0

∫
∂�R

h

(φ − hp)(g
R,h − αuh) dsdt

−
∫ T

0

∫
�

(φ − hp)Fh dxdt

−
∫

�

hpuh(T ) dx.

(39)

We utilise the following functional analysis theorem (see e.g. [10], and [5] for a proof).

Theorem 7.2 Let �T ⊂ Rn be an open domain and let {un} ∈ L2(�
T ) be a bounded

sequence. Then there exists a subsequence, {uni } ∈ L2(�
T ) that converges weakly to ū ∈

L2(�
T ). That is,

∫
�T

φuni dx →
∫

�T

φū dx asni → ∞, for allφ ∈ L2(�
T ).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tuhdxdt=
∫T

0

∫
�∇hφh·μ∇huhdxdt−

∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,∫
�φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas
∫

�

φhFhdx=∑
i∈�̄V

h

φiViFi,

=−∑
n∈�̄K

h

∇hφn·μ∇hwn|Kn|−∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−∑
i∈�̄V

h

φiVi
dwi

dt
,

=−
∫

�∇hφh·μ∇hwhdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)uhdxdt=
∫T

0

∫
�

(∇φ+O(h))·μ∇huhdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)g
N,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(g
R,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�
T)beabounded

sequence.Thenthereexistsasubsequence,{uni}∈L2(�
T)thatconvergesweaklytoū∈

L2(�
T).Thatis,

∫
�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�
T).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tuhdxdt=
∫T

0

∫
�∇hφh·μ∇huhdxdt−

∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,∫
�φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas
∫

�

φhFhdx=∑
i∈�̄V

h

φiViFi,

=−∑
n∈�̄K

h

∇hφn·μ∇hwn|Kn|−∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−∑
i∈�̄V

h

φiVi
dwi

dt
,

=−
∫

�∇hφh·μ∇hwhdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)uhdxdt=
∫T

0

∫
�

(∇φ+O(h))·μ∇huhdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)g
N,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(g
R,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�
T)beabounded

sequence.Thenthereexistsasubsequence,{uni}∈L2(�
T)thatconvergesweaklytoū∈

L2(�
T).Thatis,

∫
�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�
T).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tuhdxdt=
∫T

0

∫
�∇hφh·μ∇huhdxdt−

∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,∫
�φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas
∫

�

φhFhdx=∑
i∈�̄V

h

φiViFi,

=−∑
n∈�̄K

h

∇hφn·μ∇hwn|Kn|−∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−∑
i∈�̄V

h

φiVi
dwi

dt
,

=−
∫

�∇hφh·μ∇hwhdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)uhdxdt=
∫T

0

∫
�

(∇φ+O(h))·μ∇huhdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)g
N,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(g
R,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�
T)beabounded

sequence.Thenthereexistsasubsequence,{uni}∈L2(�
T)thatconvergesweaklytoū∈

L2(�
T).Thatis,

∫
�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�
T).
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+
∫

�

φhFhdx+
∫

∂�N
h

φhgN,hds+
∫

∂�R
h

φh(gR,h−αuh)ds.

Partialintegrationintimeyields
∫T

0

∫
�

(φ−hp)tuhdxdt=
∫T

0

∫
�∇hφh·μ∇huhdxdt−

∫T

0

∫
∂�N

h

φhgN,hdsdt

−
∫T

0

∫
∂�R

h

φh(gR,h−αuh)dsdt−
∫T

0

∫
�

φhFhdxdt

−
∫

�

hpuh(T)dx,

(37)
wherewehaveuseduh|t=0=0andφh|t=T=0.

Remark7.1Here,∫
�φhFhdxistheshort-handforthesemi-discreteformof(12).Byusing

theSBPpropertyfromTheorem5.1,itcanbewrittenas
∫

�

φhFhdx=∑
i∈�̄V

h

φiViFi,

=−∑
n∈�̄K

h

∇hφn·μ∇hwn|Kn|−∑
i∈∂�R

h

αφiwi(|b̂i,1(e)|+|b̂i,2(e)|)

−∑
i∈�̄V

h

φiVi
dwi

dt
,

=−
∫

�∇hφh·μ∇hwhdx−
∫

∂�R
h

αφhwhds−
∫

�

φhwh
tds.

(38)

Wekeepthesymbolicexpressiontoreducenotation.

Sinceφ|Vi=φh|Vi+hpiand∇hφ|Kn=∇φ+O(h),theweakformulation(37)becomes
∫T

0

∫
�

(φt−hpt)uhdxdt=
∫T

0

∫
�

(∇φ+O(h))·μ∇huhdxdt

−
∫T

0

∫
∂�N

h

(φ−hp)g
N,hdsdt

−
∫T

0

∫
∂�R

h

(φ−hp)(g
R,h−αuh)dsdt

−
∫T

0

∫
�

(φ−hp)Fhdxdt

−
∫

�

hpuh(T)dx.

(39)

Weutilisethefollowingfunctionalanalysistheorem(seee.g.[10],and[5]foraproof).

Theorem7.2Let�T⊂Rnbeanopendomainandlet{un}∈L2(�
T)beabounded

sequence.Thenthereexistsasubsequence,{uni}∈L2(�
T)thatconvergesweaklytoū∈

L2(�
T).Thatis,

∫
�T

φunidx→
∫

�T

φūdxasni→∞,forallφ∈L2(�
T).
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Here, we take �T = �×[0, T ]. Consider theO(1) term on the left-hand side of (39). Using
Theorem 7.2, we have that

∫ T

0

∫
�

φt u
h dxdt →

∫ T

0

∫
�

φt ū dxdt .

The otherO(1) terms can be treated in a similar way. Turning to the second term in (39), we
have ∫ T

0

∫
�

hptu
h dxdt → 0,

as h → 0, since uh ∈ L∞(0, T ; L2(�)). Using the available bounds, similar arguments
imply that O(h)μ∇huh , hpgN,h , hpgR,h , hpuh and hpFh vanish.

Remark 7.3 Since all terms in F (see (38)) are known and bounded in L2(�T ) (see the
assumptions in Sect. 2), the weak convergence of the symbolic expression (38) follows
trivially.

In summary, letting h → 0, (39) becomes
∫ T

0

∫
�

φt ū dxdt =
∫ T

0

∫
�

∇φ · μ∇u dxdt

−
∫ T

0

∫
∂�N

φḡN dsdt −
∫ T

0

∫
∂�

φ(ḡR − αū) dsdt

−
∫ T

0

∫
�

φ F̄ dxdt, (40)

which is satisfied for all φ ∈ H1(0, T ;C∞
∂�D

0
(�̄)).

Remark 7.4 Note that the boundary integrals over the computational boundaries converge to
the integrals over the physical boundaries as h → 0. That is,∫

∂�N
h

φhgN,h ds →
∫

∂�N
φhgN,h ds and

∫
∂�R

h

φh(gR,h − αuh) ds →
∫

∂�R
φh(gR,h − αuh) ds,

as h → 0.

Remark 7.5 The term
∫
�

φt uh dx in (39) satisfies
∫

�

φt u
h dx =

∫
�

φt u
h
c dx + O(h),

(this can be verified by using the specific form of uhc on each triangle). Since uhc ∈ H1(�),
Theorem 7.2 gives ∫

�

φt u
h
c dx →

∫
�

φt ū
h
c dx,

in H1(�). Thus, ∇u = ∇ū in (40).

Theorem 7.6 Equation (40) holds for all φ ∈ H1(0, T ; H1
∂�D

0
(�)).
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Here,wetake�T=�×[0,T].ConsidertheO(1)termontheleft-handsideof(39).Using
Theorem7.2,wehavethat

∫T

0

∫
�

φtu
hdxdt→

∫T

0

∫
�

φtūdxdt.

TheotherO(1)termscanbetreatedinasimilarway.Turningtothesecondtermin(39),we
have∫T

0

∫
�

hptu
hdxdt→0,

ash→0,sinceuh∈L∞(0,T;L2(�)).Usingtheavailablebounds,similararguments
implythatO(h)μ∇huh,hpgN,h,hpgR,h,hpuhandhpFhvanish.

Remark7.3SincealltermsinF(see(38))areknownandboundedinL2(�T)(seethe
assumptionsinSect.2),theweakconvergenceofthesymbolicexpression(38)follows
trivially.

Insummary,lettingh→0,(39)becomes
∫T

0

∫
�

φtūdxdt=
∫T

0

∫
�

∇φ·μ∇udxdt

−
∫T

0

∫
∂�N

φḡNdsdt−
∫T

0

∫
∂�

φ(ḡR−αū)dsdt

−
∫T

0

∫
�

φF̄dxdt,(40)

whichissatisfiedforallφ∈H1(0,T;C∞
∂�D

0
(¯�)).

Remark7.4Notethattheboundaryintegralsoverthecomputationalboundariesconvergeto
theintegralsoverthephysicalboundariesash→0.Thatis, ∫

∂�N
h

φhgN,hds→
∫

∂�N
φhgN,hdsand

∫
∂�R

h

φh(gR,h−αuh)ds→
∫

∂�R
φh(gR,h−αuh)ds,

ash→0.

Remark7.5Theterm
∫

�
φtuhdxin(39)satisfies

∫
�

φtu
hdx=

∫
�

φtu
h
cdx+O(h),

(thiscanbeverifiedbyusingthespecificformofuhconeachtriangle).Sinceuhc∈H1(�),
Theorem7.2gives∫

�

φtu
h
cdx→

∫
�

φtū
h
cdx,

inH1(�).Thus,∇u=∇ūin(40).

Theorem7.6Equation(40)holdsforallφ∈H1(0,T;H1
∂�D

0
(�)).
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Here,wetake�T=�×[0,T].ConsidertheO(1)termontheleft-handsideof(39).Using
Theorem7.2,wehavethat

∫T

0

∫
�

φtu
hdxdt→

∫T

0

∫
�

φtūdxdt.

TheotherO(1)termscanbetreatedinasimilarway.Turningtothesecondtermin(39),we
have∫T

0

∫
�

hptu
hdxdt→0,

ash→0,sinceuh∈L∞(0,T;L2(�)).Usingtheavailablebounds,similararguments
implythatO(h)μ∇huh,hpgN,h,hpgR,h,hpuhandhpFhvanish.

Remark7.3SincealltermsinF(see(38))areknownandboundedinL2(�T)(seethe
assumptionsinSect.2),theweakconvergenceofthesymbolicexpression(38)follows
trivially.

Insummary,lettingh→0,(39)becomes
∫T

0

∫
�

φtūdxdt=
∫T

0

∫
�

∇φ·μ∇udxdt

−
∫T

0

∫
∂�N

φḡNdsdt−
∫T

0

∫
∂�

φ(ḡR−αū)dsdt

−
∫T

0

∫
�

φF̄dxdt,(40)

whichissatisfiedforallφ∈H1(0,T;C∞
∂�D

0
(¯�)).

Remark7.4Notethattheboundaryintegralsoverthecomputationalboundariesconvergeto
theintegralsoverthephysicalboundariesash→0.Thatis, ∫

∂�N
h

φhgN,hds→
∫

∂�N
φhgN,hdsand

∫
∂�R

h

φh(gR,h−αuh)ds→
∫

∂�R
φh(gR,h−αuh)ds,

ash→0.

Remark7.5Theterm
∫

�
φtuhdxin(39)satisfies

∫
�

φtu
hdx=

∫
�

φtu
h
cdx+O(h),

(thiscanbeverifiedbyusingthespecificformofuhconeachtriangle).Sinceuhc∈H1(�),
Theorem7.2gives∫

�

φtu
h
cdx→

∫
�

φtū
h
cdx,

inH1(�).Thus,∇u=∇ūin(40).

Theorem7.6Equation(40)holdsforallφ∈H1(0,T;H1
∂�D

0
(�)).
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Here, we take �T = �×[0, T ]. Consider theO(1) term on the left-hand side of (39). Using
Theorem 7.2, we have that

∫ T

0

∫
�

φt uh dxdt →
∫ T

0

∫
�

φt ū dxdt .

The otherO(1) terms can be treated in a similar way. Turning to the second term in (39), we
have

∫ T

0

∫
�

hptuh dxdt → 0,

as h → 0, since uh ∈ L∞(0, T ; L2(�)). Using the available bounds, similar arguments
imply that O(h)μ∇huh , hpgN,h , hpgR,h , hpuh and hpFh vanish.

Remark 7.3 Since all terms in F (see (38)) are known and bounded in L2(�
T ) (see the

assumptions in Sect. 2), the weak convergence of the symbolic expression (38) follows
trivially.

In summary, letting h → 0, (39) becomes
∫ T

0

∫
�

φt ū dxdt =
∫ T

0

∫
� ∇φ · μ∇u dxdt

−
∫ T

0

∫
∂�N

φḡ
N
dsdt −

∫ T

0

∫
∂�

φ(ḡ
R

− αū) dsdt

−
∫ T

0

∫
�

φ F̄ dxdt, (40)

which is satisfied for all φ ∈ H1(0, T ;C∞
∂�D

0
(�̄)).

Remark 7.4 Note that the boundary integrals over the computational boundaries converge to
the integrals over the physical boundaries as h → 0. That is,

∫
∂�N

h

φhgN,h ds →
∫

∂�N
φhgN,h ds and

∫
∂�R

h

φh(gR,h − αuh) ds →
∫

∂�R
φh(gR,h − αuh) ds,

as h → 0.

Remark 7.5 The term ∫
� φt uh dx in (39) satisfies

∫
�

φt uh dx =
∫

�

φt uh
c dx + O(h),

(this can be verified by using the specific form of uh
c on each triangle). Since uh

c ∈ H1(�),
Theorem 7.2 gives

∫
�

φt uh
c dx →

∫
�

φt ūh
c dx,

in H1(�). Thus, ∇u = ∇ū in (40).

Theorem 7.6 Equation (40) holds for all φ ∈ H1(0, T ; H1
∂�D

0
(�)).
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Here, we take �T = �×[0, T ]. Consider theO(1) term on the left-hand side of (39). Using
Theorem 7.2, we have that

∫ T

0

∫
�

φt uh dxdt →
∫ T

0

∫
�

φt ū dxdt .

The otherO(1) terms can be treated in a similar way. Turning to the second term in (39), we
have

∫ T

0

∫
�

hptuh dxdt → 0,

as h → 0, since uh ∈ L∞(0, T ; L2(�)). Using the available bounds, similar arguments
imply that O(h)μ∇huh , hpgN,h , hpgR,h , hpuh and hpFh vanish.

Remark 7.3 Since all terms in F (see (38)) are known and bounded in L2(�
T ) (see the

assumptions in Sect. 2), the weak convergence of the symbolic expression (38) follows
trivially.

In summary, letting h → 0, (39) becomes
∫ T

0

∫
�

φt ū dxdt =
∫ T

0

∫
� ∇φ · μ∇u dxdt

−
∫ T

0

∫
∂�N

φḡ
N
dsdt −

∫ T

0

∫
∂�

φ(ḡ
R
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c dx,

in H1(�). Thus, ∇u = ∇ū in (40).
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−αū)dsdt

−
∫T

0

∫
�

φF̄dxdt,(40)

whichissatisfiedforallφ∈H1(0,T;C∞
∂�D

0
(�̄)).

Remark7.4Notethattheboundaryintegralsoverthecomputationalboundariesconvergeto
theintegralsoverthephysicalboundariesash→0.Thatis,

∫
∂�N

h

φhgN,hds→
∫

∂�N
φhgN,hdsand

∫
∂�R

h

φh(gR,h−αuh)ds→
∫

∂�R
φh(gR,h−αuh)ds,

ash→0.

Remark7.5Theterm∫
�φtuhdxin(39)satisfies

∫
�

φtuhdx=
∫

�

φtuh
cdx+O(h),

(thiscanbeverifiedbyusingthespecificformofuh
coneachtriangle).Sinceuh

c∈H1(�),
Theorem7.2gives

∫
�

φtuh
cdx→

∫
�

φtūh
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Theorem7.6Equation(40)holdsforallφ∈H1(0,T;H1
∂�D

0
(�)).

123

46Page 18 of 24JournalofScientificComputing(2023)96 :46

Here,wetake�T=�×[0,T].ConsidertheO(1)termontheleft-handsideof(39).Using
Theorem7.2,wehavethat

∫T

0

∫
�

φtuhdxdt→
∫T

0

∫
�
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Proof Since the space H1(0, T ;C∞
∂�D

0
(�̄)) is dense in H1(0, T ; H1

∂�D
0
(�)) (see [1]), the

equality (40) holds for all φ ∈ H1(0, T ; H1
∂�D

0
(�)). �


Hence, ū is a weak solution of the problem (3).

8 Strong Convergence to aWeak Solution

Next, we prove strong convergence to the weak solution.

Definition 8.1 (Strong convergence, [10]) A sequence {un}∞n=1 ⊂ X is said to converge to
u ∈ X , i.e., un → u, if limn→∞‖un − u‖X = 0.

We also need the following definition.

Definition 8.2 [25, Definition 6.76] We say that a domain, � ⊂ Rd , has the k-extension
property if there exists a bounded linearmapping E : Hk(�) → Hk(Rd) such that Eu|� = u
for every u ∈ Hk(�).

As we have assumed the spatial domain to be Lipschitz, the following result applies.

Theorem 8.3 (see e.g. [1] or [27]) Any Lipschitz domain has the k-extension property.

For a bounded domain,�, with the k-extension property, we have that H1(�) is compactly
embedded in L2(�) (see e.g. [25]), which in turn is continuously embedded in H−1(�). To
prove strong convergence, we need the Aubin–Lions Lemma:

Lemma 8.4 (Aubin–Lions, see e.g. [26]) Let X , B and Y be Banach spaces such that X ⊂
B ⊂ Y , where the embedding, X ⊂ B is compact and B ⊂ Y is continuous. Let U =
{u ∈ L p(0, T ; X) | ut ∈ Lq(0, T ; Y )}, 1 ≤ p, q < ∞. Then U is compactly embedded in
L p(0, T ; B).

A Banach space X is compactly embedded in another Banach space Y , if the following
two conditions hold (see [10]):

(i) ‖u‖Y ≤ C‖u‖X , (u ∈ X), for some constant C.
(ii) each bounded sequence in X is precompact in Y , i.e., for a bounded sequence {un}∞n=1,

there exists a subsequence, {uni }∞ni=1 ⊆ {un}∞n=1 that converges to a ū in Y .

Herein, we use X = H1(�), B = L2(�) and Y = H−1(�) in Lemma 8.4. Thus, since we
have uhc ∈ L2(0, T , H1(�)), it suffices to show that (uhc )t ∈ L1(0, T ; H−1(�)) to establish
the strong convergence. That is, we need to show that the norm (see e.g. [25])

‖(uhc )t‖L1(0,T ;H−1(�)) =
∫ T

0
sup

φ∈H1
0 (�),

‖φ‖
H1
0 (�)

=1

∫
�

(uhc )tφ dxdt, (41)

is bounded. To this end, we test the scheme (21) with a function φ ∈ C∞
0 (�̄).∫

�

φuht dx =
∫

�

φ(Lhu
h) dx =

∑
i∈�̄h

∫
Vi

φ|Vi (Lhu
h)|Vi dx.
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ProofSincethespaceH1(0,T;C∞
∂�D

0
(¯�))isdenseinH1(0,T;H1

∂�D
0

(�))(see[1]),the

equality(40)holdsforallφ∈H1(0,T;H1
∂�D

0
(�)).�


Hence,ūisaweaksolutionoftheproblem(3).

8StrongConvergencetoaWeakSolution

Next,weprovestrongconvergencetotheweaksolution.

Definition8.1(Strongconvergence,[10])Asequence{un}∞n=1⊂Xissaidtoconvergeto
u∈X,i.e.,un→u,iflimn→∞‖un−u‖X=0.

Wealsoneedthefollowingdefinition.

Definition8.2[25,Definition6.76]Wesaythatadomain,�⊂Rd,hasthek-extension
propertyifthereexistsaboundedlinearmappingE:Hk(�)→Hk(Rd)suchthatEu|�=u
foreveryu∈Hk(�).

AswehaveassumedthespatialdomaintobeLipschitz,thefollowingresultapplies.

Theorem8.3(seee.g.[1]or[27])AnyLipschitzdomainhasthek-extensionproperty.

Foraboundeddomain,�,withthek-extensionproperty,wehavethatH1(�)iscompactly
embeddedinL2(�)(seee.g.[25]),whichinturniscontinuouslyembeddedinH−1(�).To
provestrongconvergence,weneedtheAubin–LionsLemma:

Lemma8.4(Aubin–Lions,seee.g.[26])LetX,BandYbeBanachspacessuchthatX⊂
B⊂Y,wheretheembedding,X⊂BiscompactandB⊂Yiscontinuous.LetU=
{u∈Lp(0,T;X)|ut∈Lq(0,T;Y)},1≤p,q<∞.ThenUiscompactlyembeddedin
Lp(0,T;B).

ABanachspaceXiscompactlyembeddedinanotherBanachspaceY,ifthefollowing
twoconditionshold(see[10]):

(i)‖u‖Y≤C‖u‖X,(u∈X),forsomeconstantC.
(ii)eachboundedsequenceinXisprecompactinY,i.e.,foraboundedsequence{un}∞n=1,

thereexistsasubsequence,{uni}∞ni=1⊆{un}∞n=1thatconvergestoaūinY.

Herein,weuseX=H1(�),B=L2(�)andY=H−1(�)inLemma8.4.Thus,sincewe
haveuhc∈L2(0,T,H1(�)),itsufficestoshowthat(uhc)t∈L1(0,T;H−1(�))toestablish
thestrongconvergence.Thatis,weneedtoshowthatthenorm(seee.g.[25])

‖(uhc)t‖L1(0,T;H−1(�))=
∫T

0
sup

φ∈H1
0(�),

‖φ‖
H1

0(�)
=1

∫
�

(uhc)tφdxdt,(41)

isbounded.Tothisend,wetestthescheme(21)withafunctionφ∈C∞
0(¯�). ∫

�

φuhtdx=
∫

�

φ(Lhu
h)dx=

∑
i∈¯�h

∫
Vi

φ|Vi(Lhu
h)|Vidx.
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Proof Since the space H1(0, T ;C∞
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0
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∂�D
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(�)) (see [1]), the

equality (40) holds for all φ ∈ H1(0, T ; H1
∂�D

0
(�)). �


Hence, ū is a weak solution of the problem (3).

8 Strong Convergence to aWeak Solution

Next, we prove strong convergence to the weak solution.

Definition 8.1 (Strong convergence, [10]) A sequence {un}∞n=1 ⊂ X is said to converge to
u ∈ X , i.e., un → u, if limn→∞‖un − u‖X = 0.

We also need the following definition.

Definition 8.2 [25, Definition 6.76] We say that a domain, � ⊂ Rd , has the k-extension
property if there exists a bounded linearmapping E : Hk(�) → Hk(Rd) such that Eu|� = u
for every u ∈ Hk(�).

As we have assumed the spatial domain to be Lipschitz, the following result applies.

Theorem 8.3 (see e.g. [1] or [27]) Any Lipschitz domain has the k-extension property.

For a bounded domain,�, with the k-extension property, we have that H1(�) is compactly
embedded in L2(�) (see e.g. [25]), which in turn is continuously embedded in H−1(�). To
prove strong convergence, we need the Aubin–Lions Lemma:

Lemma 8.4 (Aubin–Lions, see e.g. [26]) Let X , B and Y be Banach spaces such that X ⊂
B ⊂ Y , where the embedding, X ⊂ B is compact and B ⊂ Y is continuous. Let U =
{u ∈ L p(0, T ; X) | ut ∈ Lq(0, T ; Y )}, 1 ≤ p, q < ∞. Then U is compactly embedded in
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A Banach space X is compactly embedded in another Banach space Y , if the following
two conditions hold (see [10]):

(i) ‖u‖Y ≤ C‖u‖X , (u ∈ X), for some constant C.
(ii) each bounded sequence in X is precompact in Y , i.e., for a bounded sequence {un}∞n=1,

there exists a subsequence, {uni }∞ni=1 ⊆ {un}∞n=1 that converges to a ū in Y .
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Hence, ū is a weak solution of the problem (3).
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Definition 8.1 (Strong convergence, [10]) A sequence {un}∞n=1 ⊂ X is said to converge to
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property if there exists a bounded linearmapping E : Hk(�) → Hk(Rd) such that Eu|� = u
for every u ∈ Hk(�).

As we have assumed the spatial domain to be Lipschitz, the following result applies.

Theorem 8.3 (see e.g. [1] or [27]) Any Lipschitz domain has the k-extension property.

For a bounded domain,�, with the k-extension property, we have that H1(�) is compactly
embedded in L2(�) (see e.g. [25]), which in turn is continuously embedded in H−1(�). To
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Note the resemblance to (29) (the only difference being the function φ that is now vanishing
on the whole boundary ∂�). From derivations analogous to (30)–(35), we can recast the
above equation to∫

�

(φ − hp)uht dx = 1

2

∑
i∈�̄V

h

φi

∑
n∈Ni

μ∇hu
n · n̂ni + 1

2

∑
i∈∂�N

h

φi

∑
e∈Ei

gN
i |b̂(e)|

+
∑

i∈∂�R
h

φi

∑
e∈Ei

(gR
i − αui )|b̂(e)| +

∑
i∈�̄h

φi Vi Fi .

By using φ|∂� = 0 and the SBP property (see Theorem. 5.1) we have∫
�

(φ − hp)uht dx = −
∑
n∈�̄K

h

∫
Kn

∇hφ
n · μ∇hu

n dx +
∑
i∈�̄V

h

φi Vi Fi

= −
∫

�

∇hφ
h · ∇hu

h dx +
∫

�

φh Fh dx. (42)

Remark 8.5 Here,
∫
�

φh Fh dx takes the same form as in Remark 7.1, except for the boundary
term

∫
∂�R

h
αφhwh ds which is zero in (42) since φ is vanishing on the entire boundary ∂�

in this case.

Inserting φ = φh + hp and ∇hφ = ∇φ + O(h), we obtain∫
�

(φ − hp)uht dx = −
∫

�

(
∇φ · μ∇hu

h + O(h) · μ∇hu
h
)
dx +

∫
�

(
φFh − hpFh

)
dx.

Since∇huh ∈ L2(0, T ; L2
K (�̄h)) and all terms of Fh are properly bounded (see the assump-

tions in Sect. 2), letting h → 0 yields∫
�

φuht dx = −
∫

�

∇φ · μ∇u dx +
∫

�

φ F̄ dx,

as limh→0(φ − hp) = φ. By inserting the specific form of
∫
�

φ F̄ dx and using the Cauchy–
Schwarz inequality, we obtain∫

�

φuht dx ≤ 1

2

(
‖∇φ‖2L2(�)

+ μ‖∇u‖2L2(�)
+ ‖∇φ‖2L2(�)

+ ‖∇w‖2L2(�)

+‖φ‖2L2(�)
+ ‖w̄t‖2L2(�)

)
. (43)

This holds for all φ ∈ C∞
0 (�̄), and by density, it follows that the inequality holds for all

φ ∈ H1
0 (�). Integration in time finally yields

∫ T

0
sup

φ∈H1
0 (�),

‖φ‖
H1
0 (�)
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∫
�

φuht dxdt
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sup

φ∈H1
0 (�),
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H1
0 (�)
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)
dt .
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Notetheresemblanceto(29)(theonlydifferencebeingthefunctionφthatisnowvanishing
onthewholeboundary∂�).Fromderivationsanalogousto(30)–(35),wecanrecastthe
aboveequationto ∫
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φiViFi.
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Remark8.5Here,
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Thisholdsforallφ∈C∞
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Note the resemblance to (29) (the only difference being the function φ that is now vanishing
on the whole boundary ∂�). From derivations analogous to (30)–(35), we can recast the
above equation to
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By using φ|∂� = 0 and the SBP property (see Theorem. 5.1) we have
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Inserting φ = φh + hp and ∇hφ = ∇φ + O(h), we obtain
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Note the resemblance to (29) (the only difference being the function φ that is now vanishing
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as limh→0(φ − hp) = φ. By inserting the specific form of ∫
� φ F̄ dx and using the Cauchy–

Schwarz inequality, we obtain
∫

�

φuh
t dx ≤

1

2

(‖∇φ‖2L2(�) + μ‖∇u‖2L2(�) + ‖∇φ‖2L2(�) + ‖∇w‖2L2(�)

+‖φ‖2L2(�) + ‖w̄t‖2L2(�)

) . (43)
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Notetheresemblanceto(29)(theonlydifferencebeingthefunctionφthatisnowvanishing
onthewholeboundary∂�).Fromderivationsanalogousto(30)–(35),wecanrecastthe
aboveequationto
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Notetheresemblanceto(29)(theonlydifferencebeingthefunctionφthatisnowvanishing
onthewholeboundary∂�).Fromderivationsanalogousto(30)–(35),wecanrecastthe
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Byusingφ|∂�=0andtheSBPproperty(seeTheorem.5.1)wehave
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Notetheresemblanceto(29)(theonlydifferencebeingthefunctionφthatisnowvanishing
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Notetheresemblanceto(29)(theonlydifferencebeingthefunctionφthatisnowvanishing
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Byusingφ|∂�=0andtheSBPproperty(seeTheorem.5.1)wehave
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Hence uht ∈ L1(0, T ; H−1(�)), and since (uhc )t is u
h
t extended to the entire domain using

a linear interpolant on the triangles, we also have (uhc )t ∈ L1(0, T ; H−1(�)). Thus, by
Aubin–Lions’ lemma 8.4, the family of functions, U = {uhc ∈ L2(0, T ; H1(�)) | (uhc )t ∈
L1(0, T ; H−1(�))}, is compactly embedded in L2(0, T ; L2(�)), meaning that uhc converges
strongly to the weak solution.

9 Uniqueness of theWeak Solution

Assume that there are two weak solutions u, v to the problem (1) satisfying the boundary
and initial data. Then w = u − v is also a weak solution with homogenous data (F = gD =
gN = gR ≡ 0). Take φ = w in (10) to obtain

∫
�

wwt dx =
∫

�

w(∇ · μ∇w) dx.

Integrating the right-hand side by parts, and using the fact that the boundary data is zero, we
obtain

1

2

d

dt
‖w‖2L2(�)

= −μ‖∇w‖2L2(�)
− α‖w‖2L2(∂�R)

≤ 0,

‖w(·, ·, T )‖2L2(�)
≤ ‖w(·, ·, 0)‖2L2(�)

≡ 0.

Hence, ‖w‖L2(0,T ;L2(�)) = ‖u − v‖L2(0,T ;L2(�)) = 0 and thus the weak solution is unique
in L2(0, T ; L2(�)).

10 Numerical Simulations

We implement the scheme (1) and consider the manufactured solution used in [7]. That is,
the exact solution is given by

u(x, y, t) = e−8π2t sin(2πx) sin(2π y) + e−32π2t sin(4πx) sin(4π y), (44)

which yields a zero forcing function. Furthermore, we let μ = α = 1. We consider a square
domain � = [0, 1] × [0, 1] containing a hole. The hole is located at (x, y) = (0.5, 0.5),
and has radius r = 1

8 . We pose Dirichlet boundary conditions on the boundary of the hole,
Neumann boundary conditions on y = 0, y = 1 and Robin boundary conditions on x = 0,
x = 1. The boundary data is given by (44). t = 0.05 is used as the final time. The schemewas
run on grids containing 398, 1394, 5097, 19457 and 76166 nodes. A typical grid is depicted
in Fig. 5a. All grids were generated using Gmsh (see [14]). The scheme was implemented
using the Julia programming language (see [4]).

Figure 5b shows the convergence rate together with a reference line representing second-
order convergence. We conclude that the scheme converges at approximately a rate of two.

11 Conclusion

Herein, we have considered a slightly modified local finite-volume approximation of the
Laplacian operator proposed by Chandrashekar in [7] for discretising the heat equation in
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alinearinterpolantonthetriangles,wealsohave(uhc)t∈L1(0,T;H−1(�)).Thus,by
Aubin–Lions’lemma8.4,thefamilyoffunctions,U={uhc∈L2(0,T;H1(�))|(uhc)t∈
L1(0,T;H−1(�))},iscompactlyembeddedinL2(0,T;L2(�)),meaningthatuhcconverges
stronglytotheweaksolution.

9UniquenessoftheWeakSolution

Assumethattherearetwoweaksolutionsu,vtotheproblem(1)satisfyingtheboundary
andinitialdata.Thenw=u−visalsoaweaksolutionwithhomogenousdata(F=gD=
gN=gR≡0).Takeφ=win(10)toobtain

∫
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Hence,‖w‖L2(0,T;L2(�))=‖u−v‖L2(0,T;L2(�))=0andthustheweaksolutionisunique
inL2(0,T;L2(�)).

10NumericalSimulations

Weimplementthescheme(1)andconsiderthemanufacturedsolutionusedin[7].Thatis,
theexactsolutionisgivenby

u(x,y,t)=e−8π2tsin(2πx)sin(2πy)+e−32π2tsin(4πx)sin(4πy),(44)

whichyieldsazeroforcingfunction.Furthermore,weletμ=α=1.Weconsiderasquare
domain�=[0,1]×[0,1]containingahole.Theholeislocatedat(x,y)=(0.5,0.5),
andhasradiusr=1

8.WeposeDirichletboundaryconditionsontheboundaryofthehole,
Neumannboundaryconditionsony=0,y=1andRobinboundaryconditionsonx=0,
x=1.Theboundarydataisgivenby(44).t=0.05isusedasthefinaltime.Theschemewas
runongridscontaining398,1394,5097,19457and76166nodes.Atypicalgridisdepicted
inFig.5a.AllgridsweregeneratedusingGmsh(see[14]).Theschemewasimplemented
usingtheJuliaprogramminglanguage(see[4]).

Figure5bshowstheconvergenceratetogetherwithareferencelinerepresentingsecond-
orderconvergence.Weconcludethattheschemeconvergesatapproximatelyarateoftwo.

11Conclusion

Herein,wehaveconsideredaslightlymodifiedlocalfinite-volumeapproximationofthe
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10 Numerical Simulations

We implement the scheme (1) and consider the manufactured solution used in [7]. That is,
the exact solution is given by

u(x, y, t) = e−8π2t
sin(2πx) sin(2π y) + e−32π2t

sin(4πx) sin(4π y), (44)

which yields a zero forcing function. Furthermore, we let μ = α = 1. We consider a square
domain � = [0, 1] × [0, 1] containing a hole. The hole is located at (x, y) = (0.5, 0.5),
and has radius r = 1

8 . We pose Dirichlet boundary conditions on the boundary of the hole,
Neumann boundary conditions on y = 0, y = 1 and Robin boundary conditions on x = 0,
x = 1. The boundary data is given by (44). t = 0.05 is used as the final time. The schemewas
run on grids containing 398, 1394, 5097, 19457 and 76166 nodes. A typical grid is depicted
in Fig. 5a. All grids were generated using Gmsh (see [14]). The scheme was implemented
using the Julia programming language (see [4]).

Figure 5b shows the convergence rate together with a reference line representing second-
order convergence. We conclude that the scheme converges at approximately a rate of two.
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Fig. 5 a A typical mesh. b Convergence rate obtained for simulations using N = 398, 1394, 5097, 19457,
76166 grid points

two spatial dimensions on general triangular grids. The equation was augmented with Dirich-
let, Neumann andRobin boundary conditions. TheDirichlet boundary conditionwas imposed
strongly by injection, while the Neumann and Robin conditions were imposed weakly. We
demonstrated that this modification satisfies the SBP property proved in [7]. By using the
energy method, a priori estimates for the numerical solution were derived. From these esti-
mates, we were able to prove the weak convergence of the numerical solution to a weak
solution of the heat equation. Thus, consistency, in a weak sense, of the Laplacian opera-
tor was established. Subsequently, we demonstrated that the numerical solution converges
strongly to a weak solution by using Aubin–Lions’ lemma. Finally, the weak solution was
shown to be unique. To the best of our knowledge, this is the first proof of convergence
for a local finite-volume method for the Laplacian on general triangular grids. The theory
presented here is straightforwardly applicable to three spatial dimensions, provided that the
Laplacian approximation can be generalised to such domains.

Anumerical simulation,which includedDirichlet,Neumann andRobin conditionswas run
on an unstructured triangulated grid containing a hole. By using the method of manufactured
solutions, we demonstrated that the numerical solution converged with a second-order rate.
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foralocalfinite-volumemethodfortheLaplacianongeneraltriangulargrids.Thetheory
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two spatial dimensions on general triangular grids. The equation was augmented with Dirich-
let, Neumann andRobin boundary conditions. TheDirichlet boundary conditionwas imposed
strongly by injection, while the Neumann and Robin conditions were imposed weakly. We
demonstrated that this modification satisfies the SBP property proved in [7]. By using the
energy method, a priori estimates for the numerical solution were derived. From these esti-
mates, we were able to prove the weak convergence of the numerical solution to a weak
solution of the heat equation. Thus, consistency, in a weak sense, of the Laplacian opera-
tor was established. Subsequently, we demonstrated that the numerical solution converges
strongly to a weak solution by using Aubin–Lions’ lemma. Finally, the weak solution was
shown to be unique. To the best of our knowledge, this is the first proof of convergence
for a local finite-volume method for the Laplacian on general triangular grids. The theory
presented here is straightforwardly applicable to three spatial dimensions, provided that the
Laplacian approximation can be generalised to such domains.

Anumerical simulation,which includedDirichlet,Neumann andRobin conditionswas run
on an unstructured triangulated grid containing a hole. By using the method of manufactured
solutions, we demonstrated that the numerical solution converged with a second-order rate.
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