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Abstract

More specialized hardware is being created to improve the efficiency of demanding al-

gorithms. Graphcore introduced their Intelligence processors: a specialized true MIMD

architecture which specializes in machine learning problems. Earlier work has shown that

this architecture can also be used to solve breadth-first search competitively. We explore

the possibilities of this machine by implementing several graph algorithms on this ma-

chine. Specifically, we look at Sparse-matrix vector multiplication and its usage within an

algebraic approach to the breadth-first search algorithm, and show an algebraic solution

to Prim’s algorithm on the machine. Finally, we discuss the possibilities and problems of

the Graphcore IPU.
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Chapter 1

Introduction

In 1996 TomTom introduced their first route planning software for the masses: a simple

product in which the user could fill in a start location, destination and a few seconds

later a route with instructions would show one exactly where to go. Now, more than

25 years later, it is almost impossible to think of a world where just an analogue map

would be used. We have become accustomed to opening up our phones and following the

instructions given.

But how do our phones know where to take us? On analogue maps it can be a

daunting task planning even a small trip of just a few kilometers, let alone one which

would take us to the other side of the globe. Yet, our phone instantly give us a list of

highly detailed instructions.

Over the past decades researchers have been been inventing and improving algorithms

which calculate these routes. Together with the improvements made to general computers,

this has allowed us to perform calculations on even the most detailed and largest data

sets. For instance, the OpenStreetMap database which contains almost 10 billion different

nodes and connections visualizing the road network of the world [5].

Nevertheless, processing that many possibilities is still a demanding task, and while

our demands and usage of this technology keeps growing, we start to see limits in the

improvements of general use processors [13].

The clock rate of processors has not improved in the last two decades [12], and most

of the speed improvements have come through the use of smaller process dies allowing

more transistors on a chip [15]. Moore’s law, an observation by Intel co-founder Gordon
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Moore in 1965, predicted a doubling of the amount of transistors on a chip every two

years. This has mostly been the case over the past decades but is starting to be stopped

by constraints when working on an increasingly smaller scale. Recently, CEO of NVIDIA

has also pronounced Moore’s law to be “dead”.

Therefore, instead of relying on generalized hardware like the CPU and GPU, many

have now started to shift focus to more specialized hardware which can be optimized for

specific problems. This has especially been the case with the rise of machine learning.

In 2018 Graphcore presented their first-of-its-kind Intelligence Processing Unit

(IPU)[9], a processor optimized for machine learning tasks like training models and clas-

sifying input. However, the capabilities of the processor go beyond that, being a true

multiple instruction, multiple data architecture [8].

Or in layman’s terms: it allows us to run multiple different programs in parallel each

of which able to simultaneously access and write data.

The IPU achieves this by having local memory available to every single core on the

machine, thereby also minimizing memory lookup time which is often constrained on

traditional hardware.

With any piece of specialized and novel hardware we do see some drawbacks, like the

lack of in-use tooling and the strict memory limitations present in the IPU.

Earlier work has mainly been focused on the machine learning capabilities of the

IPU, but some work has been done for the implementation of classical algorithms. For

instance the breadth-first search algorithm which was first successfully implemented on

both a single- and multi-IPU system [4, 3] using a linear-algebra approach.

In this thesis we expand upon this work by exploring a more general approach by

implementing Sparse-matrix vector multiplication (SpMV) and adapting it to perform

Breadth-first search. SpMV is important building block upon which many other graph

algorithms can be built, giving us an insight into how well adapted the IPU is to those

kind of problems. Furthermore, we also take a look at an algebraic algorithm outside

of this technique: Prim’s algorithm which computes the minimum spanning tree of a

weighted undirected graph.

Our thesis is ordered as follows: first, we discuss the field of parallel programming and

the contemporary hardware used. We then introduce the Graphcore IPU, by explaining

its model, capabilities and shortcomings.
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We then introduce the three algorithms we implemented on the IPU one by one,

starting with Sparse matrix-vector multiplication. In that chapter we also give an intro-

duction to our setup. For each algorithm we discuss the algorithm, its translation to an

IPU runnable program, and finally we perform tests and compare those to other results.

Lastly, we discuss our results, and summarize our findings on how effective the IPU

is as a solution to graph algorithms.
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Chapter 2

Parallel computing

In chapter 1 we talked about working with large data sets. Depending on the type of

algorithm used this does not need to be a cause of concern: many algorithms scale linearly,

and while the compute time takes longer on larger inputs, these algorithms can still be

performed quickly on large amounts of data.

We can denote this scaling using Big O notation. Big O notation shows the time it

takes to run an algorithm based upon its input size, or the algorithmic complexity. The

exact definition is a bit more complex but has been left out for brevity.

A linear algorithm can be denoted in Big O notation by O(n) where n is the size of

the input. For example the length of an array.

However, not all algorithms scale linearly, and some will instead scale quadratically

or even exponentially. This can be denoted by for example O(n2). This means that

with each unit of extra data to compute, the rate of change of extra compute necessary

increases.

Such algorithms quickly become unmanageable if the input size is large enough. In-

stead we need to find other approaches to get our wanted result. For example by estima-

tion, or decreasing our input data. One possibility is to make parallelize the algorithm,

here we split the problem up so that we can work on multiple parts independently and

concurrently.

We can call the amount of independent jobs we can run independently of each other p.

If we have a quadratic algorithm which we can divide up into p different tasks we might

get a new algorithmic complexity of O(n2/p), however this depends upon the algorithm.

4



Parallel computing is thus the act of breaking down a compute problem and computing

results for the different parts simultaneously instead of linearly.

So then the question becomes: how do we divide our problem into multiple sub-

problems such that we can maximize our usage of a parallel system, and p tasks that can

run simultaneously?

In this chapter we discuss the basics of parallel computing, Flynn’s taxonomy classi-

fying different types of computer architectures for parallel computing and how these are

implemented in modern computing devices.

2.1 Designing parallel algorithms

Designing a parallel algorithm is about finding a way to efficiently split a problem up into

sub-problems which can be solved independently and be combined to give an answer on

the original problem.

Another problem to keep in mind when designing these algorithms is thread com-

munication. An efficient method needs to be found to assign tasks to different compute

instances, preferably maximizing usage of the compute unit.

There are some generalized techniques which are often used when designing these

kinds of algorithms.

2.1.1 Divide and Conquer

The Divide and Conquer technique describes the basic approach of looking for ways to

split up the input data of the algorithm. If that can be achieved than all split sections

can be computed in parallel. The difficulty lies in finding a suitable

A great example of a divide and conquer algorithm is Merge Sort. Merge sort sorts

a given input list by splitting the list in two and sorting those independently, and finally

merging the two resulting lists together. A synchronous implementation of this algorithm

has complexity O(n log n) while a parallel implementation can achieve a complexity of

O(n logn
p

).
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2.1.2 Task parallelism

In task parallelism we look at the different steps performed by an algorithm to try to find

steps which can be performed independently of each other.

An example could be finding the highest and lowest value in your input data. In that

case the two steps do not depend upon each other and can be performed in parallel.

Modern architectures as discussed in the CPU and GPU section below often implement

this as an optimization on low level tasks. A program can for instance continue running

while performing a slow memory lookup as long as that data is not yet needed.

2.1.3 Data parallelism

Data parallelism is another method which is often found as an optimization in modern

architectures. If the same calculation has to be performed on a range of data, this

calculation can be performed in parallel.

2.1.4 Parallel loops

The same idea holds for looping over data, as long as each iteration is not dependent upon

another iteration (or is predictably dependent), the loop can be performed in parallel.

2.2 Flynn’s taxonomy

In section 2.1 we discussed different approaches to parallelize an algorithm. Which ap-

proach should be used is highly dependent on the type of architecture is used as some

approaches might work better on certain architectures compared to others.

To generalize over these distinction we introduce Flynn’s taxonomy [1]. Flynn’s tax-

onomy tries to classify these different possible computer architectures in four basic cate-

gories:
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• Single instruction, single data (SISD): SISD is the most simple of architectures,

allowing only for a single data stream to be worked on sequentially. There is

absolutely no parallelism. Memory operations can only be performed on a single

element of memory and only one instruction can be executed at the same time.

• Single instruction, multiple data (SIMD): These architectures do not allow simul-

taneous execution of multiple instructions but can perform the same instruction

on a (limited) range of data. In cases where the same kind of operations needs

to be performed on a sufficiently large amount of data this can already result in

significant speedups.

• Multiple instructions, single data (MISD): MISD is a very uncommon architecture

where multiple instructions can be run simultaneously but only on a single unit of

data.

• Multiple instruction, multiple data (MIMD): MIMD allows for full parallelism,

where multiple instructions can be executed simultaneously all working with differ-

ent elements of data.

2.3 The CPU and the GPU

Two of the most used architectures are the Central Processing Unit (CPU) and the

Graphics Processing Unit (GPU). They can be found in almost any machine around the

globe, including the machine that this sentence is written on, and if not printed - the

machine that this sentence is read on right now.

2.3.1 Central processing unit (CPU)

The CPU is a core component of the computer and an example of a SISD architecture, but

more modern hardware can even be described as having a MIMD architecture. While the

CPU can run multiple different programs on its different cores, it is still severely limited

by the amount of cores and the shared memory buss. A CPU core has no local memory

instead sharing with the other cores, meaning that all cores can normally only perform

a single lookup at the same time. Typical CPUs contain a around 8 to 16 cores, while

more powerfull hardware exists this is currently limited up to around 128 cores per die

[2].
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In general, CPUs do not have onboard memory which means that memory lookup can

be quite slow. Instead, any information in memory first has to be loaded into a register

before an action can be performed. Loading from memory can sped up by the use of

multiple layers of caching. This requires that the program is optimized to make use of

this, for instance by lying related data together in memory. Most CPUs are also able to

use out-of-order execution to to continue running instructions while waiting on data from

memory.

More recently limits hit in the process of die-shrinking (the process to decrease the size

of transistors on a chip thereby decreasing power usage and allowing for speed improve-

ments) [14], have forced manufacturers to focus more on multi-core performance. This

was partially achieved by threading, allowing more instructions to be executed simulta-

neously. And by introducing instructions which perform actions on multiple values in

memory (SIMD). It achieves this by using larger registers which can hold multiple values

at once, and special operations which can perform operations on these multi-word regis-

ters. These are however only modest improvements since these wider registers typically

only allow up to four words of memory at a time.

2.3.2 Graphical Processing Unit (GPU)

The GPU was initially introduced to offload rendering tasks from the CPU. Nowadays,

the GPU is a highly parallel processor being able to perform calculations on large blocks

of memory simultaneously using its high thread-per-core count [11], and high core count.

Some machines can contains hundreds to thousands of cores. The architecture is an

example of SIMD. Memory is often located near the chip, and connected through a

performant memory buss allowing much quicker memory lookup times than is possible

without on-die memory like most CPUs.

This parallelizability does come at the drawback of a more limited instruction set,

and less precision. For instance 32-bits floating point operations instead of 64-bits which

can be achieve on a CPU.

The memory of a GPU is split up into three different kinds: global, shared, and

constant memory. Global memory is memory shared globally between all threads on the

GPU and behaves similarly compared to memory on a CPU. While shared memory is

shared between a thread block, threads which are executing together.

8



Groups of threads, commonly called Warps execute the same flow-behaviour together

to allow executing calculations on vasts amount of memory simultaneously.

The SIMD architecture makes the GPU applicable to problems which are easily par-

allelizable into many very-similar sub-problems.

2.3.3 Comparison

The CPU is a more versatile processing unit, but does have drawbacks when it comes

down to parallelizability. Due to the lack of cores and smaller and slower memory bus

it can be difficult to perform many calculations on memory. But, this does bring more

versatility, allowing many different programs to be performed simultaneously while a

GPU is constrained to performing a single operation per warp.

To overcome these shortcomings CPU’s make more use of caching, allowing memory

operations to perform more quickly.

Comparing the two architecture we see that both have their strengths for different

kind of problems: when a problem is harder to divide into similar blocks a CPU is often

preferred, while easily dividable problems are can benefit from the more parellelized GPU.
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Chapter 3

The Graphcore IPU

In this chapter we will introduce the Graphcore IPU and take a look at its features,

capabilities and shortcomings.

To overcome limitations introduced by generalized hardware one option is to create

specialized hardware for a problem. This allows the architecture to be designed around

the problem which would otherwise not have been possible.

One field using such specialized hardware is the filed of machine learning, in the

form of an AI accelerator. Training models takes a long time and much energy. It

is estimated that the training of large-language model GPT-3 took a total 1287 MWh

which is equivalent to the yearly energy usage of around 200 households1.

This created a market for hardware dedicated to machine learning, allowing these

extra constraints to save energy and time.

Graphcore in 2017 introduced their solution: the Graphcore IPU, a true MIMD ar-

chitecture. This IPU was replaced in 2020 by an improved version, allowing higher clock

speeds, more memory per tile and a higher tile count. Currently, Graphcore is working

on releasing their MK3 IPU which is expected to double the amount of compute power.

1Assuming an average daily usage of 17KWh per household
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3.1 Architecture

To date Graphcore has introduced multiple architectures based upon the same principles.

In this section we will be discussing the IPU-POD64 IPU machine [10] containing 64 of

their Mk2 GC200 IPUs, their latest generation of IPUs which came out in 2020. While

the general architecture is the same the technical specs like tile count, memory size and

band-with differs between generations.

3.2 The IPU

The Intelligence Processing Unit (IPU) is a uniquely highly-parallelizable MIMD chip,

allowing to simultaneously perform many different programs at once each with their own

local memory.

3.3 Hardware layout

The IPU consists of a central control unit and 1472 cores or tiles as they are called laid

out in a grid connected to a central buss for communication between the exchange mesh

and the other tiles. A drawing of this layout can be found in figure 3.1.

Each tile is a core capable of running six simultaneous threads running in a round-

robin fashion and contains its own local SRAM memory of 624kB. The central control

unit also has its own “Streaming Memory” of up-to 64GB which can be used to line-up

problems to be run on the tiles and for (cached) communication with the host machine.

The IPU uses its own limited instruction set. The construction set consists of instruc-

tions for reading and writing to memory, arithmetic operations including 32-bit and 16-bit

float operations, control flow operations and instructions to generate random numbers

including random floats [7].

A tile executes in fixed order and has no capability of out-of-order execution. However,

since each tile has its own local memory for which it only takes six clock cycles to read

and write to it has no use for it either since the data will generally be available when the

next instruction of a thread is executed.
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1 2 3

Figure 3.2: A schematic example of how different Tensors can be connected to different
tiles during a compute step. The small squares are values in a Tensor, which are assigned
to tiles indicated by the big squares.

3.4 Development overview

The IPU has it’s own local types and instruction set, independent of that of the host

computer.

For programming on the IPU the Poplar Software Development Kit (SDK)2 was in-

troduced. As a general overview: using this library, code for the IPU can be written using

a specialized instruction and type set. These components are called codelets and can

be compiled using the popc compiler which a program uses to build Vertices. Vertices

are connected to Tensors which contain data. Next, we need to define a compute graph.

This consists of coupling tensors to the different vertices and defining in which order they

should run.

An example of how tensors can be connected to tiles can be found in figure 3.2.

During runtime a Poplar program compiles codelets, and calculates a graph. This

generates the programs which can run on the IPU and the instructions necessary for

memory movements during global steps.

2An SDK is a collection of tools, libraries to facilitate the development process.
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3.5 Constraints, limitations and advantages of the

architecture

The IPU is one of the first machines to actually give us a true MIDI-architecture, which

allows us to perform many different calculations divided over its many tiles. This is also

possible on a CPU but very limited due to constraints like the amount of tiles available

(1472 for our specific instance) and the memory-bandwith which is shared between all

the tiles. The GPU-architecture does allow you to perform massive parallel calculations

but is constrained in the fact that there’s only a single program-flow limiting you in what

tasks you can perform simultaneously while also being limited by the memory-bandwidth.

This makes the IPU best focused on applications where a problem is highly-

parallelizable with large enough sub-problems or where it is necessary to perform many

different tasks to solve a problem. The fact that the IPU does not share control-flow

between its processors also makes it possible to divide up work better since tiles do not

need to wait upon other tiles’ work to be done within a control-flow block to be able to

continue with its own workflow.

However, this parallelizability does come at the cost of memory size. Each tile only

has less then a megabyte of memory available. While, the memory limit can be increased

by using multiple IPU’s simultaneously, this makes the memory exchange slower, being

only a maximum of 64 Gbps between IPUs and 1 Tbs internally. Thus, it is either

necessary for problems to be highly parallelizable - meaning that many parallel tasks can

be performed without much communication or very limited in memory size.

3.6 Usage statistics

The IPU is a relatively new device, having first been launched in 2017 and marketed

towards an audience of artificial intelligence and machine learning research. This makes

real-world usage outside of these domains - like we are doing - very limited. To assess

real-world usage we have turned to usage on GitHub. Using the search functionality on

the site one can find strings used in codebases over all the publicly available code on

GitHub. Using the search term “poplar/Engine.hpp”, and filtering out any code written

by Graphcore self gives us around 61 different projects 3. In comparison, the whole of

GitHub contains over 300 thousand files written for NVIDIA’s CUDA platform.

3The exact search on GitHub was done as follows: "poplar/Engine.hpp -owner:graphcore

-owner:graphcore-research NOT is:fork"
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3.7 Developing for the Graphcore IPU

Graphcore has chosen to introduce their own tooling for programming the IPU: the

Poplar SDK. Self described as the first toolchain for creating graph software. It contains

functionality for writing code which is directly run on the IPU, controlling the IPU

hardware, auxiliary helpers to make common steps easier, and bindings for many of the

popular Machine Learning and Artificial Intelligence libraries.

For the execution we can differentiate between 3 main ingredients of a Poplar program:

the compute tasks, tensors containing our data and the compute graph which connects

the execution steps and tensors together to create an executable program.

3.7.1 Tensors

A tensor is a (multi-)dimensional array which lives on one or multiple tiles of the IPU.

The tensor type is introduced to create an easy interface for dividing data between the

different vertices, and managing variables that live across compute sets.

3.7.2 Codelets

Codelets are the smallest building stones for programming on the IPU. They allow you

to write code which directly compiles to machine language on the IPU. Codelets can be

written using the Poplar SDK in C++ and compiled using the popc compiler. Alter-

natively they can also be directly written in assembly in cases of shortcomings of the

library or when extra speedup can be achieved. Six codelets can be assigned per tile

during execution, making use of the multithreading which is discussed below.

Codelets have associated variables which are stored in memory, these can be coupled

to tensors during execution.

An example codelet looks as follows:

1 class Example : public Vertex
2 {
3 public:
4 Input <Vector <float >> in;
5 Output <Vector <float >> out;
6
7 auto compute () -> bool
8 {
9 // perform calculation
10
11 return true;
12 }
13 };
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3.7.3 Poplibs library

The Poplibs library contains pre-made codelets and routines with the goal of making

common routines easier to implement. They are preferred over implementing a solution

yourself since the codelets are highly specialized and optimized for the task.

Some examples of the operations are:

• Reductions

• Simple expressions

• Sorting

3.7.4 Control flow

The SDK contains some functionality to apply control flow to the execution of our codelets

and other compute tasks.

In our work we mainly used the following:

• Sequence: A sequence combines a number of compute sets which will be executed

in a linear order.

• Copy: The Copy execution allows to copy between tensors or from/to the host

machine.

• Repeat: Will repeat its execution an indicated amount of time.

• RepeatWhileFalse

3.7.5 IPU model

For debugging a simulator is available called the IPU model. The model allows to run

your code in an IPU like environment on any computer. While this makes programming

for the IPU more portable this does not take away some of the other constraints as

discussed on the pitfalls section.

The IPU model also lacks some features like random number generation.
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3.7.6 Multithreading

In general each instruction on a tile takes six clock cycles to execute. Since no out-of-

order or speculative execution is possible Poplar opted to execute multiple programs at

once on a single tile in a round-robin fashion instead of wasting the remaining cycles.

From a developing perspective there are multiple ways of using this functionality all

with their own advantages and drawbacks:

• Allocating multiple independent vertices to a tile

• Using a MultiVertex

• Manually running threads using the SupervisorVertex

The simplest option for multithreading is to divide the workload up into more vertices.

Each tile can execute a total of six vertices at the same time. This does have some

drawbacks, mainly the cost of extra memory. Each vertex will take up their own place

on the tile, with their own sections for data. Next to that this might also make it more

difficult to collect our result which is often a single tile operation. It can also be difficult

to divide up the work efficiently over the six times as many spots which need to be filled

depending on the algorithm.

Instead we could use a MultiVertex to use up the full six threads on the tile. The

MultiVertex is similar to a Vertex with the difference that the compute function is called

once for each thread, with their thread id (unique number between 0 and 5 identifying

the thread on the tile). The data is shared between all of the threads.

The biggest downside to the MultiVertex is the lack of collection possibilities. For

instance its not possible to combine the results of the different threads into a single

result since there is no functionality to sync on a thread level and thus work completely

independently from each other. Next, there is no memory safety on a thread level: all

Vertex variables are shared between the threads without any locking functionality. This

means that a race conditions could occur when reading and writing to the same variable.

However, we can use the fact that the execution is predictable to our advantage to for

example pre-initialize certain variables by a single thread before any of the other threads

would have had a chance to use it. Another way to collect the results is by executing a

singe Vertex after the execution on the tile is done. An example of a MultiVertex can

be found in listing A.2.
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In cases where we need to collect the results of the different threads at the end of our

program a SupervisorVertex can be used. A SupervisorVertex is more powerful than

a common Vertex in that it has complete control over the Tile, but is severely limited

in its instruction set. For example lacking many common floating point operations.

This limitation means it is not possible to perform comparisons on floating point values,

something which is commonly done when collecting a set of floating point results. A

common technique for multi threading using a SupervisorVertex is for the vertex to

run threads using the runall assembly call. However, it is also possible to run different

threads individually. Afterwards, the result of the different threads can be combined. An

example of such a program can be found in listing A.9.

Overall this creates a good set of options for pulling the most out of a single tile.

However, the way multithreading is currently incorporated does bring some challenges to

the end user. For instance the SupervisorVertex option requires one to use assembly to

spawn the threads, and is not documented in any official documentation from Graphcore.

Next to that the SupervisorVertex is severely limited in functionality, which while

documented [7] is difficult to debug due to the lack of proper debugging capabilities on

hardware and in the IPU model.

3.7.7 Pitfalls

The IPU has some pitfalls and problems which one should be wary of during development.

This list is by no-way comprehensive but shows the problems we encountered working

with the Poplar library.

Debugging

The debugging options on the IPU are limited. There is no way to attach a debugger

to code running on the IPU or in the model, however there is an undocumented way of

printing to the standard output of the host machine even when running on the IPU:

1 #include "print.h"
2
3 printf("%d\n", data [1]);

Poplar will include the vertex id and thread id in the output.

The Poplar library also does some type checking to make sure that tensors and codelets

share the same types, and that connections to the host machine share the same type.

Poplar will also check for initialization of tensors and that they are fully connected to the

codelets.
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Out of bounds memory

The IPU and the model have only limited protection against reading and writing in

memory out of bounds of a tensor. Instead the data will instead be written or read from

initialized memory or might be writing to another tensor.

Memory access and multi-threading

There are no memory guarentees when operating in a MultiVertex context. Accessing

and writing to shared memory will not apply any locking, or other race condition checking.

Every memory operation is applied per word, which is a total of 32-bits on the GC200

IPU. This causes memory problems when writing and reading multiple variables in the

same word in different threads. Let us take a look at the following example:

1 class Example : public MultiVertex
2 {
3 public:
4 Output <Vector <bool >> data;
5
6 auto compute(unsigned threadId) -> bool
7 {
8 for (auto i = threadId; i < data.size(); i+=

↪→ MultiVertex :: numWorkers ()) // n. of threads
9 {
10 data[i] = true;
11 }
12
13 return true;
14 }
15 };

A boolean is represented as 8-bits in the architecture, thereby having 4 values aligned

on each word. This causes undefined behaviour since multiple threads will try to write

to the same memory address at the same time. A possible solution would be to divide

the work per word, thereby having only one thread operating on a single line of memory.

Usage of a SupervisorVertex

As mentioned in the previous section the SupervisorVertex is severely limited in in-

struction set, but also in stack size. This can create problems which are difficult to grasp.

Let us for instance take the following codeblock written inside of a SupervisorVertex:
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1 Vector <float > values; // Pre filled values
2
3 if (values [0] > values [1])
4 {
5 // Do something
6 }

As mentioned, a SupervisorVertex has no instructions for comparing floating point

variables in this context. We should therefore expect either a compiler exception or a

runtime error which would indicate that we are performing an illegal instruction. Instead

this code will result in a stack overflow on the hardware that we are using. This is due to

how the backend compiler handles such cases: it will instead try to replace the instruction

with an inbuilt function to compare float variables, however since the stack size is very

limited in the supervisor context this will result in a stackoverflow.

Loop optimizations

The architecture contains two instructions meant for reducing the amount of instructions

necessary for loops. The rpt and brnzdec instructions [7].

The rpt instruction tells the IPU the amount of blocks that need to be repeated and

how many times, thereby allowing repetition with the cost of only a single instruction

which is only executed once at the start of a loop.

The brnzdec instruction combines three operations:

1. Subtracting one from a register

2. Comparing the register to 0

3. Jumping back to the start of the loop in case of a 0

To make efficient programs it is important that these calls are used to save as many

cycles as possible. Especially on long loops every instruction call less saves good time

since each instruction is performed in constant time. However, these instructions are

hard to optimize for by the compiler due to a few constraints:

• A limit on the number of iterations defined by the size of the internal registers.

Especially for a rpt instruction where the internal counter is only 16-bits.
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• No internal calls to other functions may be made in the loop.

• The loop must be setup in a way such that the compiler can infer its count.

These constraints, while often met are not always entirely obvious the compiler to opti-

mize for. For instance for the use of the rpt instruction the compiler needs to infer the

maximum amount of iterations. One can circumvent this by using the internal rptsize t

size type, which hints the compiler.
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Chapter 4

Sparse-Matrix Vector multiplication

Graph algorithms and linear-algebra have always been tightly connected. A graph can be

represented by a matrix in the form of an adjacency matrix. Every row and column in the

matrix represent the in and outgoing edges for each vertex. An arbitrary value or 1 and

0 for unweighted graphs and the weight for weighted graphs. So, for a graph G = (V,E)

we can define a matrix A = R|V |∗|V | with aij = 1 ⇐⇒ (i, j) ∈ E or 0 otherwise.

This representation does bare some limitations. An adjacency graph can for example

not easily represent a multi-graph where vertices can be connected through more than

one edge. Solutions for this problem exist but will not be discussed here.

Representing a graph as a matrix gives us the ability to apply common matrix oper-

ations, which can in turn be useful again to calculate certain properties of graphs. For

example the breadth-first search algorithm can be solved using this approach as discussed

in the next chapter. One core operation necessary to perform many of these algorithms

is Matrix Vector multiplication, and since most graphs are not fully adjacent we can

generalize into Sparse Matrix Vector multiplication (SpMV).

4.1 Vector multiplication on an adjecency matrix

So what information can we calculate using Matrix Vector multiplication? Let us first

discuss an example. We start by defining a small unweighted example graph G as follows:
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1 2 3

Our graph has three vertices and three edges connecting all the vertices together.

This gives us the following adjacency matrix according to the above definition:

A =

0 1 0

1 0 0

0 1 0



Here each column represents all the outgoing edges of a single vertex, and each row

represents all incoming edges of a vertex. Let us apply a vector with a single non-zero

value over the transform of the matrix:

ATv =

0 1 0

1 0 0

0 1 0


T 10

0

 =

0 1 0

1 0 1

0 0 0


10
0

 =

01
0


Our multiplication has found which rows have non-zero values in our first column.

This column signifies all the outgoing edges of our first vertex, thus we have in actuality

found out all vertices connected to the first vertex. For a single vertex that is not an

impressive feat. However, we can apply this calculation on multiple columns at the same

time thereby giving us a list of all vertices adjacent to a sub graph. We use this building

stone for our breadth-first search implementation. The full algorithm and proof will be

discussed in the next chapter.

4.2 Data structures for a sparse-matrix

As shown we can apply a matrix vector multiplication over the adjacency matrix of a

graph to get information about the outgoing edges of the vertices we want to query.

However, using a matrix for this application does come at a cost: the memory usage.

A graph with m edges needs O(m) memory to store these edges when stored as an

adjacency list. However, when stored as an adjacency matrix we need O(m2) elements.

An adjacency matrix gives us the advantage that we can lookup any edge given the source

and sink of the edge, but does come at a significant higher memory usage.

23



Since the Graphcore IPU has a severely limited amount of memory, we cannot use

this approach. Instead we can use the sparsity of the matrix to our advantage. There are

several different data structures specifically meant for sparse matrices:

• Dictionary of keys (DOK): the row and column are used as keys in a dictionary.

This is an easy structure to use but more difficult to implement and has longer

querying times compared to direct array structures.

• Coordinate list: the matrix is stored as a list of row, column and value triples.

Potentially ordered in a specific way meant for processing. This makes it a compact

data structure, but does not have the capability to query specific row, column

locations without searching through the structure. This comes at a memory cost

of O(nz) (nz is the amount of non-zero values in our sparse-matrix).

• Compressed sparse row (CSR) or compressed sparse column (CSC): compresses the

matrix in three lists: a list of values, a list of columns (or rows) belonging to those

values and an indexing list pointing to the start and end of every row (or column)

in the two other lists. This makes it possible to find either all values in a row or

column depending on the type used. This comes at a memory cost of O(nz+n) or

O(nz +m).

For our uses it turned out that the CSR and CSC structures were a good trade-off

between memory usage and functionality.

4.3 Single-threaded sparse-matrix vector multiplica-

tion

Before we define a multi-threaded algorithm for SpMV we first want to find a single-

threaded solution. Every row is defined as the sum of each nz value multiplicated by the

input vector. A single threaded algorithm is thus achieved by iterating through each nz

value and keeping track of the sum for each row.

4.4 A parallel algorithm

When designing a parallel algorithms we need to find a method to best split up our

problem into multiple sub-problems. If we can divide our problem we have a possibility

for concurrent execution, giving us a speedup.
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One advantage of matrix vector multiplication is that we can easily split it up. One

method is to partition the matrix into multiple submatrices, one such method is using

2d-partitioning.

4.4.1 2d-partitioning

There are multiple ways to divide up our matrix into submatrices. To make our algorithm

as efficient as possible we need to find a division in which each problem is roughly of the

same size. In the case of a sparse matrix that size is decided by the amount of non-zero

values in our submatrix.

We have chosen to create an equal division of the matrix, where each submatrix

roughly contains the same amount of rows and columns. To ensure that we divide up the

work evenly we perform a (random) permutation on both the matrix and vector. Our

result is than permuted back to give us our final result.

Since we have 1472 tiles available we can fit exactly ⌊
√
1472⌋ = 38 blocks in a row or

column giving us a total of 38 ∗ 38 = 1444 blocks.

4.5 IPU Algorithm

The full code that is executed can be found in listing A.1. In general the main ingredient

is the following sequence:

1 Sequence{Repeat(amount_of_loops , Sequence{spmv , reduce })};

4.6 Analysis

4.6.1 Flamegraph

To gain an insight into how efficiently we are using the IPU a flamegraph can be used.

A flamegraph shows us how each single tile of the IPU is being used over time. We

differentiate over three different states: the tile is executing a program (indicated by the
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Figure 4.1: A flame graph of the SpMV algorithm while executing bfly.mtx (1-round).
Each line represents a single tile on the IPU

color red), the tile is awaiting a synchronization (indicated by the color yellow) or the

tile can be exchanging data with other tiles (indicated by the color blue).

An efficient algorithm uses as much of the compute time available to it, and minimizes

the exchange and synchronization time.

One caveat, a high execution rate means that the tiles are being used efficiently, it

does not indicate that the program that is executed on each tile is efficient.

Figure 4.1 shows the flame graph of a single round of our SpMV algorithm. A single

round consists of a single matrix vector multiplication. The steps shown can be summa-

rized as follows:

1. We exchange the previous round’s result to be used as a starting point for this

round

2. We perform the multiplicative step on each block

3. We reduce the results with addition for each row in each block

We can note that our our usage of the IPU is high, with only a small portion of time

used to synchronize the different tiles. We also note a yellow gap neer the bottom of the

flame graph. This is caused by the fact that we cannot assign a block to each tile of the

IPU, leaving a few tiles empty during the second step of our program.
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4.7 Benchmarking

Test instances

To be able to benchmark our algorithm we have chosen a set of matrices from [6]. Most of

these matrices have previously been used for [4] to provide us a basis for comparison. All

of our matrices are created from graph instances, this is not necessary for this experiment

but is for breadth-first search and Prim’s algorithm.

We use the following matrices. A complete overview and some properties of the

contained graph can be found in table ??.

• BFly: a butterfly graph

• kron g500-logn(n) are Kronecker graphs from the 10th DIMACS implementation

challenge.

• G43 is a sparse uniformly random matrix.

• coAuthorsDBLP and coPapersDBLP are networks of academic collaboration.

• Journals represents shared readership across different research journals .

• Delaunay (n) are planar graphs from the 10th DIMACS implementation challenge.

• loc-Gowalla friendship data from a social network based on location.

The test instances all fit in memory for the SpMV and BFS experiment. For Prim’s

algorithm not all graphs could be performed due to memory constraints.

4.7.1 Setup

Every test instance is performed ten times, the average result of those ten execution is

taken. If any outliers are present the experiment is performed again. An outlier is defined

as having a distance 1.5 ∗ IQR from either Q1 or Q3.

Our project is compiled with the Poplar SDK 3.0 and ran on a single GC2 IPU.

The amount of cycles taken to perform the compute set is recorded by the IPU and

converted to µs by using 1.35Ghz as the clock rate. We also record the graph compilation

time, and the memory copy time, these times are recorded on the host.
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Name Size (n) Non-zero values (2 ∗m) Min. degree Avg. degree

Bfly (12) 49k 197k 4 4
coAuthorsDBLP 300k 978k 1 6
CoPapersDBLB 540k 15m 1 56
delaunay n10 1k 3k 3 5
delaunay n11 2k 6k 3 5
delaunay n12 4k 12k 3 5
delaunay n13 8k 25k 3 5
delaunay n14 16k 49k 3 5
delaunay n15 33k 98k 3 5
delaunay n16 66k 197k 3 5
delaunay n17 131k 393k 3 5
delaunay n18 262k 786k 3 5
delaunay n19 524k 1.5m 3 5
delaunay n20 1048k 3m 3 5
G43 1k 10k 7 19
Journals 124 6k 18 96
kron g500-logn16 66k 2m 0 74
kron g500-logn17 118k 5m 0 78
kron g500-logn18 236k 11m 0 80
kron g500-logn19 432k 22m 0 83
loc-Gowalla 197k 950k 1 9
ship 003 122k 4m 17 65

Table 4.1: Overview of the used matrices during testing, and some of their properties.
All matrices are made from undirected graphs [6].
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Figure 4.2: Plot of execution duration vs the amount of vertices in the matrix (number
of rows) for the SpMV experiment.
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Matrix Graph compilation (s) Execution (µs) Memory copy (µs)

BFly 18.91 12 7949
coAuthorsDBLP 19.21 84 50532
coPapersDBLP 19.47 207 517169
delaunay n10 10.63 4 696
delaunay n11 16.32 2 958
delaunay n12 17.52 2 1261
delaunay n13 16.67 3 2074
delaunay n14 18.32 5 3323
delaunay n15 19.03 12 5882
delaunay n16 20.32 21 12162
delaunay n17 21.01 30 22551
delaunay n18 17.81 76 46255
delaunay n19 18.36 115 148069
delaunay n20 20.59 285 289355
G43 13.82 4 895
Journals 14.18 1 876
kron g500-logn16 19.38 41 37403
kron g500-logn17 20.96 67 78131
kron g500-logn18 18.11 148 298994
kron g500-logn19 20.98 253 659572
loc-Gowalla 19.15 63 37190
ship 003 20.81 74 64888

Table 4.2: Execution results of our matrices for the Spare-matrix vector multiplication
experiment.
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Figure 4.3: Plot of execution duration versus the amount of edges in the matrix for the
SpMV experiment.



4.7.2 Results

Our results can be found in table 4.2, figure 4.2 and figure 4.3.

4.8 Discussion

It is difficult to compare our results to any other meaning full data. Results for GPU

implementations are severely outdated.

Nevertheless we have shown that it is possible to implement SpMV on the IPU, and

we were able to perform calculations on matrices with up to 22 million non-zero values.

We have alsp shown that our implementation shows a linear curve meaning that we

have not introduced any extra complexity to the algorithm.

4.9 Possible improvements

We have shown that our approach gives correct results. And that due to the linear

nature of instruction time for the IPU, any speedup of the processors clock speed would

automatically result in an almost linear speedup of our algorithm.

However, there are definitely other possible improvements to be made to our imple-

mentation to achieve higher speeds with the current set-up.

One such improvement would be to optimize the compiled byte code by hand. Cur-

rently the IPU code is written in C++ and compiled using the popc compiler. Writing

the core of the algorithm in assembly instead could improve our results due to limitations

of the compiler. But this would come at the cost of readability, and requires intricate

knowledge of the IPU instruction set.
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Chapter 5

Breadth-first search

A standard problem within the space of graphs is that of pathfinding, often given as the

following problem: find the shortest path between two given vertices.

Many algorithms exist to solve this problem, such as Dijkstra and A*. For unweighted

graphs the Breadth-first search algorithms finds a solution. In Breadth-first search all

neighbours are slowly iterated through with the closest neighbours

5.1 Adapting our Sparse-Matrix Vector code

We have created two implementations The full code that is executed can be found in

listing A.4.

5.2 Benchmarking

We have followed the same steps as described in the SpMV chapter.

5.3 Flamegraph

A flamegraph of the full execution of the BFly matrix can be found in figure 5.1, and a

single iteration can be found in figure 5.2.

We notice that compared to our SpMV algorithm there is a single big difference in the

collection of results. This collection is mostly single threaded, and difficult to parallelize

since the extra costs of memory operations are too high.
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Figure 5.1: A flamegraph of the full execution of the BFly matrix.

Figure 5.2: A flamegraph of a single step of the execution of the BFly matrix.



Matrix Graph compilation (s) Execution (µs) Memory copy (µs)

bfly 12.63 358 8028
coAuthorsDBLP 8.65 1,664 41570
coPapersDBLP 9.78 3,753 307106
delaunay n10 11.16 160 2057
delaunay n11 11.32 154 3444
delaunay n12 11.47 224 2825
delaunay n13 11.33 377 4743
delaunay n14 11.94 623 4594
delaunay n15 11.97 1,510 12915
delaunay n16 13.37 3,118 10950
delaunay n17 11.85 6,349 21501
delaunay n18 10.06 18,236 34757
delaunay n19 9.06 43,639 191273
delaunay n20 11.47 140,669 249283
G43 10.57 45 2106
Journals 10.65 11 1980
kron g500-logn16 14.29 307 23037
kron g500-logn17 12.37 503 44923
kron g500-logn18 7.76 1,032 152977
kron g500-logn19 10.48 349 375009
loc-Gowalla 8.86 807 29970
ship 003 10.49 5,613 43986

Table 5.1: Execution results of our matrices for the Breadth-first-search.

5.4 Results

Results can be found in table 5.1 and figure 5.3.

5.5 Possible improvements

Our implementation of the breath-first search algorithm lacks many optimizations to

further increase the speed. These optimizations have partially not been made due to

constraints in the architecture which were difficult to overcome, for instance memory

problems in some cases where multiple workers on the same data were used.

Some possible improvements are:

33



0 0.2 0.4 0.6 0.8 1

·106

0

0.5

1

1.5
·105

Amount of vertices

D
u
ra
ti
on

(µ
s)

Figure 5.3: Plot of execution duration vs the amount of vertices in the matrix (number
of rows) for the BFS experiment.

• Usage of the inbuilt boolean data type. This would improve memory usage. Cur-

rently, every row in the matrix and thus vertex in our graph has a 32-bit float

allocated for keeping track of the existence in our current iteration, this could be

replaced with a boolean

• One could go even further and see if it is worth to implement own boolean semantics.

Currently the IPU will allocate a full byte for every boolean, this could be reduced

to a single bit.

• Improvements to the finish check step. Currently, this is a single threaded operation,

and while this step is not fully parallelizable, it is possible to subdivide further. The

biggest challenge there would be to weigh the overhead of a multi step process versus

the improved IPU usage. Another possibility is to perform some iterations without

this step since the benefit of skipping this step could be bigger than the lost time

due to unnecessary steps.

• Writing some of the steps in assembly. This could allow for greater optimizations

than the compiler currently optimizes for.
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Chapter 6

Prim’s algorithm

Our breath-first search algorithm was heavily based upon our earlier implementation of

SpMV. However, not all graph algorithms have a necessity for such operations. One such

example is Prim’s algorithm which we are discussing in this chapter. Prim’s algorithm

is an algorithm for finding the minimum spanning tree of a weighted undirected graph.

A minimum spanning tree is sub-graph of edges of our input graph which form a tree of

minimal weight such that all vertices of our graph are connected.

6.1 Classical Prim’s

6.2 Algebraic algorithm

An algabreic version of Prim’s algorithm can be found in algorithm 1.

6.3 Example

We now give a small example of how the algorithm functions. Let’s us take the following

graph as our input:
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Data: A: a graph in matrix notation
s = 0;
weight = 0;
s(1) = inf;
d = A(1, :);
while s ̸= inf do

u = argmin{s+ d};
s(u) = inf;
weight = weight+ d(u);
d = d.minA(u, :);

end
Algorithm 1: An algebraic version of Prim’s algorithm
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Figure 6.1: Example graph



Figure 6.2: A flame graph showing two cycles of the Prim’s algorithm while executing
bfly.mtx

This graph would be converted to our matrix notation as follows (zero values are not

shown):

A =


2 5 3 2

2 1

5 1

3 4

2 4


Each column and row of our matrix is associated with the outbound and inbound edges

of a single vertex in our input graph. We note that our matrix is mirrored along the

diagonal since our graph is undirected.

6.3.1 Implementation on the IPU

The full code that is executed can be found in listing A.7.

6.4 Results

6.4.1 Flamegraph

Our flamegraph can be found in figure 6.2. We notice that a large amount of time is

spend executing the collection of result. This is single threaded and due to hardware

limitation posed a constraint which could not be fixed.
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Matrix Graph compilation (s) Execution (µs) Memory copy (µs)

delaunay n10 11.22 9,229 6756
delaunay n11 6.43 18,458 25741
delaunay n12 7.6 36,918 22207
delaunay n13 7.45 73,880 37858
delaunay n14 8.65 148,151 211273
delaunay n15 10.92 297,946 315474
G43 11.57 9,011 13392
Journals 9.35 1,120 3978

Table 6.1: Execution results of our matrices for the Prims experiment.

0 1 2 3

·104

0

1

2

3

·105

Amount of vertices

D
u
ra
ti
on

(µ
s)

Figure 6.3: Plot of execution duration vs the amount of vertices in the matrix (number
of rows) for the prims experiment.



Results

Results can be found in the table 6.1 and figure 6.3.

6.4.2 Possible improvements

A lot more work is required to find an efficient Prims implementation on the IPU. Main

work should be focused on figuring out problems which are currently cause by the long

time it takes memory to move, and the single threaded-ness of the collection of the results.
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Chapter 7

Conclusion

In this thesis we have introduced, explained and used the Graphcore IPU, a first-of-its-

kind multiple instruction, multiple data architecture. We successfully implemented three

different linear-algebra based algorithms, and tested them.

One thing we noticed throughout the problems we have have mentioned is a severe

lack of necessity of one of the main features the Graphcore IPU provides: the ability to

run different programs on each tile of the IPU. While it is advantageous to not have to

stick to a specific control-flow mechanism compared to a Warp on a GPU, this does not

make a huge difference in computation time.

Compared to the GPU there is one other advantage to the architecture: the local

memory allows much faster lookup times which can be interesting for problems where

memory is accessed in an unpredictable pattern.

7.1 Working with the Graphcore IPU

The IPU and its libraries have many shortcomings which we discussed in section 3.7.7,

many of which were at one point encountered during the implementation phase of this

thesis. Besides these we often encountered bugs in the provided tooling, like a lack of

implementation of some listed features. These pitfalls can make programming for the

IPU cumbersome and difficult. Especially the lack of sufficient debugging tooling means

that rare bugs are not easily found and solved. During our implementation phase this
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lead to multiple times were the decision was take to scrap the current implementation in

favour of a simpler alternative.

For instance for our breath-first search implementation this lead to a less efficient

implementation which uses more memory per vertex and edge in the input matrix.

As mentioned there is a severe lack of real-world usage of the machine, this increases

the difficulty of developing for the IPU since there are very few clear examples. Much of

the functionality of The Poplar SDK and the associated libraries remains unused outside

of Graphcore’s own and other non-public projects.

Finally there also a lack of clear documentation. While functionality is documented,

there is currently no cohesive documentation on how different functions can be combined.

This has created some situations were the Poplar SDKs source code had to be used to

correctly use a feature. And while the source code of the Poplibs functionality of the

SDK is freely available, this is not the case of all outwardly facing functionality.

These facts combined make the learning curve for the hardware steep. Developing

for the machine efficiently and correctly outside of its main focus domains requires an

intricate knowledge about these and other constraints, especially of one does not have a

need of a MIMD architecture. Instead for those kind of problems it would be much easier

to develop programs for the GPU.
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Chapter 8

Future work

We’ve laid out a groundwork and library upon which other graph algorithms can be

implemented. Our work shows a clear foundation of how the Poplar SDK and Graphcore

IPU function and contains examples of a range of different techniques which can be used

to program on the IPU.

One area which is interesting for further exploration is that of dynamically sized

matrices. In our implementation the size of a matrix is fixed for correct linking of tiles

to tensors. Theoretically, a computation graph containing a dynamically sized matrix

can be used using the same groundwork, but the calculations and implementation for

this require more attention. This should not generate more work during runtime, but

requires more intricate memory management.

Next to linear algebra based algorithms other classes of algorithms can be explored.

One such class could be parallelized divide and conquer algorithms. These class of algo-

rithms are in theory highly parallelizable but can be difficult to implement due to thread

communication constraints. Furthermore, they require optimized checks to see when new

threads should be spawned.

Overall there are many different directions future work on the Graphcore IPU can be

taken.
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List of Acronyms and Abbreviations

CPU Central Processing Unit.

GPU Graphics Processing Unit.

IPU Intelligence Processing Unit.

MIMD Multiple instruction, multiple data.

MISD Multiple instruction, single data.

SIMD Single instruction, multiple data.

SISD Single instruction, single data.
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Appendix A

Code written for the Graphcore IPU

This section contains the unnabridged source code for the IPU and the host machine for

the different experiments. An archive of the full source code and instructions on how it

can be used can be found at https://github.com/yoeori/thesis.

Listing A.1: SpMV experiment host execution
1 #include <iostream >
2 #include <cstdlib >
3 #include <algorithm >
4 #include <cmath >
5 #include <chrono >
6
7 #include <poplar/Engine.hpp >
8 #include <poputil/TileMapping.hpp >
9 #include <poplar/DeviceManager.hpp >
10 #include <poplar/Program.hpp >
11 #include <poplar/CycleCount.hpp >
12 #include <popops/ElementWise.hpp >
13 #include <popops/codelets.hpp >
14 #include <popops/Reduce.hpp >
15
16 #include "../ matrix.hpp"
17 #include "../ config.cpp"
18 #include "../ipu.cpp"
19 #include "../ report.cpp"
20
21 using :: poplar :: Device;
22 using :: poplar :: Engine;
23 using :: poplar :: Graph;
24 using :: poplar :: Tensor;
25 using :: poplar :: OptionFlags;
26 using :: poplar :: SyncType;
27
28 using :: poplar :: FLOAT;
29 using :: poplar ::INT;
30
31 using :: poplar :: program ::Copy;
32 using :: poplar :: program :: Execute;
33 using :: poplar :: program :: Program;
34 using :: poplar :: program :: Repeat;
35 using :: poplar :: program :: Sequence;
36
37 using :: popops :: SingleReduceOp;
38 using :: popops :: reduceMany;
39
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40 namespace exp_spmv
41 {
42
43 // Helper functions for experiment
44 namespace
45 {
46 template <typename T, typename = typename

↪→ std::enable_if <std:: is_arithmetic <T>::value , T>::type >
47 struct IPUMatrix
48 {
49 public:
50 IPUMatrix(vector <int > offsets , vector <T> matrix ,

↪→ vector <int > idx , vector <int > row_idx , int blocks ,
↪→ int block_height , int m, int n) : offsets(offsets),
↪→ matrix(matrix), idx(idx), row_idx(row_idx),
↪→ blocks(blocks), block_height(block_height), m(m),
↪→ n(n) {}

51
52 vector <int > offsets;
53
54 // actuall data
55 vector <T> matrix;
56 vector <int > idx; // better indexing type? size_t?
57 vector <int > row_idx;
58
59 // matrix data
60 unsigned int blocks;
61 unsigned int block_height;
62 unsigned int m;
63 unsigned int n;
64 };
65
66 template <typename T, typename = typename

↪→ std::enable_if <std:: is_arithmetic <T>::value , T>::type >
67 auto prepare_data(matrix ::Matrix <T> matrix , const int

↪→ num_tiles)
68 {
69 // assumptions at this point in the code: matrix is

↪→ shuffled (values are normally divided)
70 // TODO: prepareData currently takes O(n*m), can be done

↪→ in O(nz) for SparseMatrix type
71
72 // First we calculate how many blocks we have available.

↪→ We need x tiles for summation and x^2 blocks for the
↪→ SpMV

73 // In general this _should_ make it possible to execute
↪→ SpMV on the same matrix twice with differents
↪→ vectors.

74 // const auto blocks = (int)std:: floor ((-1.0 + std::sqrt(1
↪→ + 4 * num_tiles)) / 2.0); // For a standard IPU 37*37

75 const auto blocks = (int) std::floor(std::sqrt(num_tiles));
76 const auto block_size_col = std::max(matrix.cols() /

↪→ blocks + (matrix.cols() % blocks != 0), 1);
77 const auto block_size_row = std::max(matrix.rows() /

↪→ blocks + (matrix.rows() % blocks != 0), 1);
78
79 vector <T> ipu_matrix(matrix.nonzeroes ());
80 vector <int > idx(matrix.nonzeroes ());
81
82 // Could be more compact (the last row might need less

↪→ space), but this complicates location calculations
↪→ _a lot_

83 vector <int > row_idx(blocks * blocks * (block_size_row +
↪→ 1));

84
85 // Next we perform summation over the matrix to find exact

↪→ length for each block
86 // TODO: we should/could log normality of sparse matrix
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87 // In general the row_idx length is the same for each
↪→ block , with the expection of the last row of blocks.
↪→ (being ceil(matrix.m / blocks))

88
89 // This will give the offsets for matrix and idx
90 vector <int > offsets(blocks * blocks + 1);
91 offsets [0] = 0;
92
93 for (auto y = 0; y < blocks; y++)
94 {
95 for (auto x = 0; x < blocks; x++)
96 {
97 offsets[y * blocks + x + 1] = offsets[y * blocks +

↪→ x];
98
99 // Search block for non -zero
100 for (auto mi = block_size_row * y; mi <

↪→ std::min(block_size_row * (y + 1),
↪→ matrix.rows()); mi++)

101 {
102 // Record row offsets
103 row_idx [(y * blocks + x) * (block_size_row +

↪→ 1) + mi - block_size_row * y] =
↪→ offsets[y * blocks + x + 1] - offsets[y
↪→ * blocks + x];

104
105 for (auto mj = block_size_col * x; mj <

↪→ std::min(block_size_col * (x + 1),
↪→ matrix.cols()); mj++)

106 {
107 if (matrix.get(mi , mj) != 0)
108 {
109 ipu_matrix[offsets[y * blocks + x +

↪→ 1]] = matrix.get(mj , mi);
110 idx[offsets[y * blocks + x + 1]] = mj

↪→ - block_size_col * x;
111
112 offsets[y * blocks + x + 1] += 1;
113 }
114 }
115 }
116
117 row_idx [(y * blocks + x) * (block_size_row + 1) +

↪→ std::min(block_size_row * (y + 1),
↪→ matrix.rows()) - block_size_row * y] =
↪→ offsets[y * blocks + x + 1] - offsets[y *
↪→ blocks + x];

118 }
119 }
120
121 // Final value should be nz (sum of every block)
122 assert(offsets[offsets.size() - 1] == matrix.nonzeroes ());
123
124 return IPUMatrix(offsets , ipu_matrix , idx , row_idx ,

↪→ blocks , block_size_row , matrix.rows(),
↪→ matrix.cols());

125 }
126
127 template <typename T, typename = typename

↪→ std::enable_if <std:: is_arithmetic <T>::value , T>::type >
128 auto prepare_data(matrix :: SparseMatrix <T> matrix , const int

↪→ num_tiles)
129 {
130 const auto blocks = (int) std::floor(std::sqrt(num_tiles));
131 const auto block_size_col = std::max(matrix.cols() /

↪→ blocks + (matrix.cols() % blocks != 0), 1);
132 const auto block_size_row = std::max(matrix.rows() /

↪→ blocks + (matrix.rows() % blocks != 0), 1);

48



133
134 // This will give the offsets for matrix and idx
135 vector <int > offsets(blocks * blocks + 1, 0);
136 vector <int > row_idx(blocks * blocks * (block_size_row +

↪→ 1), 0);
137
138 // We go through each value in the SpM and update offsets

↪→ and row_idx
139 for (auto o = 0; o < matrix.nonzeroes (); o++)
140 {
141 auto [i, j, v] = matrix.get(o);
142 (void)v;
143
144 auto x = j / block_size_col;
145 auto y = i / block_size_row;
146
147 offsets[y * blocks + x + 1]++;
148 row_idx [(y * blocks + x) * (block_size_row + 1) + (i -

↪→ (block_size_row * y)) + 1]++;
149 }
150
151 // Stride offsets and row_idx
152 for (size_t i = 2; i < offsets.size(); i++)
153 {
154 offsets[i] += offsets[i - 1];
155 }
156
157 for (auto block = 0; block < blocks * blocks; block ++)
158 {
159 for (auto i = 0; i < block_size_row; i++)
160 {
161 row_idx[block * (block_size_row + 1) + i + 1] +=

↪→ row_idx[block * (block_size_row + 1) + i];
162 }
163 }
164
165 assert(offsets[offsets.size() - 1] == matrix.nonzeroes ());
166
167 vector <int > cursor(row_idx); // Cursor inside a block

↪→ between rows
168
169 vector <T> ipu_matrix(matrix.nonzeroes ());
170 vector <int > idx(matrix.nonzeroes ());
171
172 for (auto o = 0; o < matrix.nonzeroes (); o++)
173 {
174 auto [i, j, v] = matrix.get(o);
175
176 auto x = j / block_size_col;
177 auto y = i / block_size_row;
178
179 size_t value_offset = offsets[y * blocks + x] +

↪→ cursor [(y * blocks + x) * (block_size_row + 1) +
↪→ (i - (block_size_row * y))];

180
181 ipu_matrix[value_offset] = v;
182 idx[value_offset] = j - (block_size_col * x);
183
184 // Update cursor
185 cursor [(y * blocks + x) * (block_size_row + 1) + (i -

↪→ (block_size_row * y))]++;
186 }
187
188 return IPUMatrix(offsets , ipu_matrix , idx , row_idx ,

↪→ blocks , block_size_row , matrix.rows(),
↪→ matrix.cols());

189 }
190
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191 void build_compute_graph(Graph &graph , map <string , Tensor >
↪→ &tensors , map <string , Program > &programs , const int
↪→ num_tiles , IPUMatrix <float > &ipu_matrix , const int loops)

192 {
193
194 // Static Matrix data
195 tensors["matrix"] = graph.addVariable(FLOAT ,

↪→ {ipu_matrix.matrix.size()}, "matrix");
196 tensors["idx"] = graph.addVariable(INT ,

↪→ {ipu_matrix.idx.size()}, "idx");
197 tensors["row_idx"] = graph.addVariable(INT ,

↪→ {ipu_matrix.blocks , ipu_matrix.blocks ,
↪→ ipu_matrix.block_height + 1}, "row_idx");

198
199 // Input/Output vector
200 tensors["vector"] = graph.addVariable(FLOAT , {( unsigned

↪→ int)ipu_matrix.n}, "vector");
201 tensors["res"] = graph.addVariable(FLOAT ,

↪→ {ipu_matrix.blocks , ipu_matrix.blocks ,
↪→ ipu_matrix.block_height}, "result");

202
203 // We build the compute set for the MatrixBlock codelet
204 auto spmv_cs = graph.addComputeSet("spmv");
205
206 for (unsigned int y = 0; y < ipu_matrix.blocks; y++)
207 {
208 for (unsigned int x = 0; x < ipu_matrix.blocks; x++)
209 {
210 auto block_id = y * ipu_matrix.blocks + x;
211 auto v = graph.addVertex(spmv_cs , "MatrixBlock", {
212 {"matrix", tensors["matrix"].slice(

↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1])},

213 {"idx", tensors["idx"].slice(
↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1])},

214 {"row_idx", tensors["row_idx"][y][x]},
215 {"vec", tensors["vector"].slice(

↪→ std::min(ipu_matrix.m, x *
↪→ ipu_matrix.block_height),
↪→ std::min(ipu_matrix.m, (x + 1) *
↪→ ipu_matrix.block_height))},

216 {"res", tensors["res"][y][x]}
217 });
218
219 // TODO need to be calculated;
220 graph.setPerfEstimate(v, 100);
221 graph.setTileMapping(v, block_id);
222
223 graph.setTileMapping(tensors["matrix"].slice(

↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1]), block_id);

224 graph.setTileMapping(tensors["idx"].slice(
↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1]), block_id);

225 graph.setTileMapping(tensors["row_idx"][y][x],
↪→ block_id);

226 graph.setTileMapping(tensors["vector"].slice(
↪→ std::min(ipu_matrix.m, x *
↪→ ipu_matrix.block_height),
↪→ std::min(ipu_matrix.m, (x + 1) *
↪→ ipu_matrix.block_height)), block_id);

227 graph.setTileMapping(tensors["res"][y][x],
↪→ block_id);

228 }
229 }
230
231 auto program_spmv = Execute(spmv_cs);
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232
233 // We build the compute set for addition
234 auto reducer_cs = graph.addComputeSet("reduce");
235 poplar :: program :: Program program_reduce;
236
237 if (! Config ::get().own_reducer) {
238
239 auto res_vector_shuffled =

↪→ tensors["res"]. dimShuffle ({0, 2, 1});
240
241 vector <SingleReduceOp > reductions;
242 reductions.reserve(ipu_matrix.m); // One reduction for

↪→ every row of our matrix
243
244 vector <Tensor > out;
245 out.reserve(ipu_matrix.m);
246
247 for (unsigned int block = 0; block <

↪→ ipu_matrix.blocks; block ++)
248 {
249 for (unsigned int y = 0; y <

↪→ ipu_matrix.block_height && block *
↪→ ipu_matrix.block_height + y < ipu_matrix.m;
↪→ y++)

250 {
251 reductions.push_back(SingleReduceOp {
252 res_vector_shuffled[block][y], {0},

↪→ {popops :: Operation ::ADD}
253 });
254
255 out.push_back(tensors["vector"][ block *

↪→ ipu_matrix.block_height + y]);
256 }
257 }
258
259 auto p = Sequence {};
260 popops :: reduceMany(graph , reductions , out , p);
261 program_reduce = p;
262
263 } else {
264 std::cerr << "Using own reducer , this will lead to a

↪→ slower execution." << std::endl;
265
266 for (unsigned int y = 0; y < ipu_matrix.blocks; y++)
267 {
268 auto v = graph.addVertex(reducer_cs ,

↪→ "ReducerToVector", {
269 {"res", tensors["res"][y]},
270 {"vector", tensors["vector"].slice(

↪→ std::min(ipu_matrix.m, y *
↪→ ipu_matrix.block_height), std::min(
↪→ ipu_matrix.m, (y + 1) *
↪→ ipu_matrix.block_height))}

271 });
272
273 graph.setInitialValue(v["block_length"],

↪→ std::min((int)ipu_matrix.block_height ,
↪→ std::max(0, (int)ipu_matrix.m -
↪→ (int)ipu_matrix.block_height * (int)y)));

274 graph.setInitialValue(v["blocks"],
↪→ ipu_matrix.blocks);

275
276 graph.setPerfEstimate(v, 100);
277 graph.setTileMapping(v, ipu_matrix.blocks * y);
278 }
279
280 program_reduce = Execute(reducer_cs);
281 }
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282
283 auto main_sequence = Sequence{Repeat(
284 loops ,
285 Sequence{program_spmv , program_reduce })};
286
287 if (! Config ::get().model)
288 {
289 auto timing = poplar :: cycleCount(graph , main_sequence ,

↪→ 0, SyncType ::INTERNAL , "timer");
290 graph.createHostRead("readTimer", timing , true);
291 }
292
293 programs["main"] = main_sequence;
294 }
295
296 auto build_data_streams(Graph &graph , map <string , Tensor >

↪→ &tensors , map <string , Program > &programs ,
↪→ IPUMatrix <float > &ipu_matrix)

297 {
298 auto toipu_matrix =

↪→ graph.addHostToDeviceFIFO("toipu_matrix", FLOAT ,
↪→ ipu_matrix.matrix.size());

299 auto toipu_idx = graph.addHostToDeviceFIFO("toipu_idx",
↪→ INT , ipu_matrix.idx.size());

300 auto toipu_row_idx =
↪→ graph.addHostToDeviceFIFO("toipu_row_idx", INT ,
↪→ ipu_matrix.row_idx.size());

301 auto toipu_vec = graph.addHostToDeviceFIFO("toipu_vec",
↪→ FLOAT , ipu_matrix.n);

302
303 auto fromipu_vec =

↪→ graph.addDeviceToHostFIFO("fromipu_vec", FLOAT ,
↪→ ipu_matrix.n);

304
305 auto copyto_matrix = Copy(toipu_matrix , tensors["matrix"]);
306 auto copyto_idx = Copy(toipu_idx , tensors["idx"]);
307 auto copyto_row_idx = Copy(toipu_row_idx ,

↪→ tensors["row_idx"]);
308 auto copyto_vec = Copy(toipu_vec , tensors["vector"]);
309
310 auto copyhost_vec = Copy(tensors["vector"], fromipu_vec);
311
312 programs["copy_to_ipu_matrix"] = Sequence{copyto_matrix ,

↪→ copyto_idx , copyto_row_idx };
313 programs["copy_to_ipu_vec"] = copyto_vec;
314
315 programs["copy_to_host"] = copyhost_vec;
316 }
317
318 auto create_graph_add_codelets(const Device &device) -> Graph
319 {
320 auto graph = poplar :: Graph(device.getTarget ());
321
322 // Add our own codelets
323 graph.addCodelets ({"codelets/spmv/MatrixBlock.cpp",

↪→ "codelets/spmv/ReducerToVector.cpp"}, "-O3 -I
↪→ codelets");

324 popops :: addCodelets(graph);
325
326 return graph;
327 }
328 }
329
330 optional <ExperimentReportIPU > execute(const Device &device ,

↪→ matrix :: SparseMatrix <float > &matrix , int rounds)
331 {
332 std::cerr << "Executing Sparse Matrix Vector multiplication

↪→ experiment .." << std::endl;
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333
334 if (rounds != 1 && matrix.rows() != matrix.cols())
335 {
336 std::cerr << "Multi -round was requested , but not supported

↪→ by matrix." << std::endl;
337 return std:: nullopt;
338 }
339
340 Graph graph = create_graph_add_codelets(device);
341
342 auto tensors = map <string , Tensor >{};
343 auto programs = map <string , Program >{};
344
345 auto ipu_matrix = prepare_data(matrix ,

↪→ device.getTarget ().getNumTiles ());
346
347 std::cerr << "Building programs .." << std::endl;
348
349 build_compute_graph(graph , tensors , programs ,

↪→ device.getTarget ().getNumTiles (), ipu_matrix , rounds);
350 build_data_streams(graph , tensors , programs , ipu_matrix);
351
352 auto ENGINE_OPTIONS = OptionFlags {};
353
354 if (Config ::get().debug)
355 {
356 ENGINE_OPTIONS = OptionFlags{
357 {"autoReport.all", "true"}};
358 }
359
360 auto programIds = map <string , int >();
361 auto programsList = vector <Program >( programs.size());
362 int index = 0;
363 for (auto &nameToProgram : programs)
364 {
365 programIds[nameToProgram.first] = index;
366 programsList[index] = nameToProgram.second;
367 index ++;
368 }
369
370 std::cerr << "Compiling graph.." << std::endl;
371
372 auto timing_graph_compilation_start =

↪→ std:: chrono :: high_resolution_clock ::now();
373 auto engine = Engine(graph , programsList , ENGINE_OPTIONS);
374 engine.load(device);
375 auto timing_graph_compilation_end =

↪→ std:: chrono :: high_resolution_clock ::now();
376 auto timing_graph_compilation =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ timing_graph_compilation_end -
↪→ timing_graph_compilation_start).count() / 1e3;

377
378 if (Config ::get().debug)
379 {
380 engine.enableExecutionProfiling ();
381 }
382
383 auto vec = vector <float >( ipu_matrix.n, 1.0);
384
385 // TODO: if we change the input vector we need to apply the

↪→ matrix mapping to it for a correct result.
386
387 engine.connectStream("toipu_matrix", ipu_matrix.matrix.data());
388 engine.connectStream("toipu_idx", ipu_matrix.idx.data());
389 engine.connectStream("toipu_row_idx",

↪→ ipu_matrix.row_idx.data());
390 engine.connectStream("toipu_vec", vec.data());
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391
392 auto result_vec = vector <float >( ipu_matrix.n);
393 engine.connectStream("fromipu_vec", result_vec.data());
394
395 // Run all programs in order
396 std::cerr << "Running programs .." << std::endl;
397 std::cerr << "Copy data to IPU\n";
398
399 auto copy_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
400 engine.run(programIds["copy_to_ipu_matrix"], "copy matrix");
401 engine.run(programIds["copy_to_ipu_vec"], "copy vector");
402 auto copy_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
403 auto copy_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ copy_timing_end - copy_timing_start).count () / 1e3;

404
405 std::cerr << "Run main program\n";
406
407 auto execution_start =

↪→ std:: chrono :: high_resolution_clock ::now();
408 engine.run(programIds["main"], "main loop");
409 auto execution_end = std:: chrono :: high_resolution_clock ::now();
410 auto execution_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ execution_end - execution_start).count () / 1e3;

411
412 vector <unsigned long > ipuTimer (1);
413 if (! Config ::get().model)
414 {
415 engine.readTensor("readTimer", ipuTimer.data(),

↪→ &* ipuTimer.end());
416 std::cerr << "Timing read: " << ipuTimer [0] << std::endl;
417 }
418
419 std::cerr << "Copying back result\n";
420
421 auto copyback_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
422 engine.run(programIds["copy_to_host"], "copy result");
423 auto copyback_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
424 auto copyback_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ copyback_timing_end - copyback_timing_start).count() /
↪→ 1e3;

425
426 // std::cout << "Resulting vector :\n";
427 long int res = 0;
428 for (auto v : result_vec)
429 {
430 // std::cout << v << ", ";
431 res += static_cast <long int >(v);
432 }
433 // std::cout << std::endl;
434
435
436
437 std::cerr << "Sum: " << res << std::endl;
438
439 // setup result report
440 auto report = ExperimentReportIPU(std::move(engine),

↪→ std::move(graph));
441 report.set_timing("copy", copy_timing);
442 report.set_timing("execution", execution_timing);
443 report.set_timing("copy_back", copyback_timing);
444 report.set_timing("graph_compilation",
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↪→ timing_graph_compilation);
445
446 if (! Config ::get().model)
447 {
448 report.set_timing("ipu_report", ipuTimer [0] /

↪→ device.getTarget ().getTileClockFrequency ());
449 }
450
451 return optional(std::move(report));
452 }
453 }

Listing A.2: SpMV MatrixBlock codelet
1 #include <poplar/Vertex.hpp >
2 #include <cstddef >
3 #include <cstdlib >
4 #include <math.h>
5 #include <stdint.h>
6 #include <assert.h>
7 #include <cmath >
8
9 using namespace poplar;
10
11 class MatrixBlock : public MultiVertex
12 {
13 public:
14 // Data structure:
15 // m[i] = M_(E_t where row_idx[t] >= i and row_idx[t + 1] < i ==>

↪→ t, idx[i])
16 Input <Vector <float >> matrix;
17 Input <Vector <int >> idx;
18 Input <Vector <int >> row_idx;
19
20 Input <Vector <float >> vec;
21 Output <Vector <float >> res;
22
23 auto compute(unsigned workerId) -> bool
24 {
25 // Performs basic matrix * vector mult for block
26 // Go by row
27 for (auto i = workerId; i < row_idx.size() - 1; i+=

↪→ MultiVertex :: numWorkers ())
28 {
29 float sum = 0.0;
30 for (auto j = row_idx[i]; j < row_idx[i + 1]; j++)
31 {
32 sum += vec[idx[j]] * matrix[j];
33 }
34 res[i] = sum;
35 }
36
37 return true;
38 }
39 };

Listing A.3: SpMV ReducerToVector codelet
1 #include <poplar/Vertex.hpp >
2 #include <poplar/Loops.hpp >
3 #include <cstddef >
4 #include <cstdlib >
5 #include <math.h>
6 #include <stdint.h>
7 #include <assert.h>
8 #include <cmath >
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9
10 using namespace poplar;
11
12 class ReducerToVector : public MultiVertex
13 {
14 public:
15 // We sum 0, n, n*2, n*3 ... to vector [0]
16 // 1, n+1, n*2 + 1 ... to vector [1] etc.
17
18 Vector <Input <Vector <float >>> res;
19 Output <Vector <float >> vector;
20
21 int block_length;
22 int blocks;
23
24 auto compute(unsigned workerId) -> bool
25 {
26 for (int i = workerId; i < block_length; i+=

↪→ MultiVertex :: numWorkers ())
27 {
28 auto sum = 0;
29 for (rptsize_t n = 0; n < blocks; n+=1)
30 {
31 sum += res[n][i];
32 }
33 vector[i] = sum;
34 }
35
36 return true;
37 }
38 };

Listing A.4: Breadth-first search experiment host execution
1 #include <iostream >
2 #include <cstdlib >
3 #include <algorithm >
4 #include <cmath >
5 #include <chrono >
6 #include <limits.h>
7
8 #include <poplar/Engine.hpp >
9 #include <poputil/TileMapping.hpp >
10 #include <poplar/DeviceManager.hpp >
11 #include <poplar/Program.hpp >
12 #include <poplar/CycleCount.hpp >
13 #include <popops/AllTrue.hpp >
14 #include <popops/ElementWise.hpp >
15 #include <popops/codelets.hpp >
16 #include <popops/Reduce.hpp >
17
18 #include "../ matrix.hpp"
19 #include "../ config.cpp"
20 #include "../ipu.cpp"
21 #include "../ report.cpp"
22
23 using :: poplar :: Device;
24 using :: poplar :: Engine;
25 using :: poplar :: Graph;
26 using :: poplar :: Tensor;
27 using :: poplar :: OptionFlags;
28 using :: poplar :: SyncType;
29
30 using :: poplar :: FLOAT;
31 using :: poplar ::INT;
32 using :: poplar :: UNSIGNED_INT;
33 using :: poplar ::BOOL;
34
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35 using :: poplar :: program ::Copy;
36 using :: poplar :: program :: RepeatWhileFalse;
37 using :: poplar :: program :: Execute;
38 using :: poplar :: program :: Program;
39 using :: poplar :: program :: Repeat;
40 using :: poplar :: program :: Sequence;
41
42 using :: popops :: SingleReduceOp;
43 using :: popops :: reduceMany;
44
45 namespace exp_bfs
46 {
47
48 // Helper functions for experiment
49 namespace
50 {
51 struct IPUMatrix
52 {
53 public:
54 IPUMatrix(vector <int > offsets , vector <int > idx ,

↪→ vector <int > row_idx , int blocks , int block_height ,
↪→ int m, int n, unsigned int frontier) :
↪→ offsets(offsets), idx(idx), row_idx(row_idx),
↪→ blocks(blocks), block_height(block_height), m(m),
↪→ n(n), frontier(frontier) {}

55
56 vector <int > offsets;
57
58 // actuall data
59 vector <int > idx; // better indexing type? size_t?
60 vector <int > row_idx;
61
62 // matrix data
63 unsigned int blocks;
64 unsigned int block_height;
65 unsigned int m;
66 unsigned int n;
67
68 unsigned int frontier;
69 };
70
71 auto prepare_data(matrix :: SparseMatrix <float > matrix , const

↪→ int num_tiles)
72 {
73 const auto blocks = (int) std::floor(std::sqrt(num_tiles));
74 const auto block_size_col = std::max(matrix.cols() /

↪→ blocks + (matrix.cols() % blocks != 0), 1);
75 const auto block_size_row = std::max(matrix.rows() /

↪→ blocks + (matrix.rows() % blocks != 0), 1);
76
77 // This will give the offsets for matrix and idx
78 vector <int > offsets(blocks * blocks + 1, 0);
79 vector <int > row_idx(blocks * blocks * (block_size_row +

↪→ 1), 0);
80
81 // We go through each value in the SpM and update offsets

↪→ and row_idx
82 for (auto o = 0; o < matrix.nonzeroes (); o++)
83 {
84 auto [i, j, v] = matrix.get(o);
85 (void)v;
86
87 auto x = j / block_size_col;
88 auto y = i / block_size_row;
89
90 offsets[y * blocks + x + 1]++;
91 row_idx [(y * blocks + x) * (block_size_row + 1) + (i -

↪→ (block_size_row * y)) + 1]++;
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92 }
93
94 // Stride offsets and row_idx
95 for (size_t i = 2; i < offsets.size(); i++)
96 {
97 offsets[i] += offsets[i - 1];
98 }
99
100 for (auto block = 0; block < blocks * blocks; block ++)
101 {
102 for (auto i = 0; i < block_size_row; i++)
103 {
104 row_idx[block * (block_size_row + 1) + i + 1] +=

↪→ row_idx[block * (block_size_row + 1) + i];
105 }
106 }
107
108 assert(offsets[offsets.size() - 1] == matrix.nonzeroes ());
109
110 vector <int > cursor(row_idx); // Cursor inside a block

↪→ between rows
111
112 vector <int > idx(matrix.nonzeroes ());
113
114 for (auto o = 0; o < matrix.nonzeroes (); o++)
115 {
116 auto [i, j, v] = matrix.get(o);
117 (void)v;
118
119 auto x = j / block_size_col;
120 auto y = i / block_size_row;
121
122 size_t value_offset = offsets[y * blocks + x] +

↪→ cursor [(y * blocks + x) * (block_size_row + 1) +
↪→ (i - (block_size_row * y))];

123
124 idx[value_offset] = j - (block_size_col * x);
125
126 // Update cursor
127 cursor [(y * blocks + x) * (block_size_row + 1) + (i -

↪→ (block_size_row * y))]++;
128 }
129
130 unsigned int frontier = 0;
131 if (matrix.applied_perm.has_value ()) {
132 frontier = matrix.applied_perm.value ().apply (0);
133 }
134
135 return IPUMatrix(offsets , idx , row_idx , blocks ,

↪→ block_size_row , matrix.rows(), matrix.cols(),
↪→ frontier);

136 }
137
138 void build_compute_graph(Graph &graph , map <string , Tensor >

↪→ &tensors , map <string , Program > &programs , const int
↪→ num_tiles , IPUMatrix &ipu_matrix)

139 {
140
141 // Static Matrix data
142 tensors["idx"] = graph.addVariable(INT ,

↪→ {ipu_matrix.idx.size()}, "idx");
143 tensors["row_idx"] = graph.addVariable(INT ,

↪→ {ipu_matrix.blocks , ipu_matrix.blocks ,
↪→ ipu_matrix.block_height + 1}, "row_idx");

144
145 // Input/Output vector
146 tensors["vector"] = graph.addVariable(FLOAT , {( unsigned

↪→ int)ipu_matrix.n}, "vector");
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147 graph.setInitialValue(tensors["vector"].slice(0,
↪→ ipu_matrix.n),
↪→ poplar :: ArrayRef(vector <float >( ipu_matrix.n, 0.0)));

148 graph.setInitialValue(
↪→ tensors["vector"][ ipu_matrix.frontier], 1.0); // our
↪→ first frontier value is always node 0 (col 0)

149
150 tensors["res"] = graph.addVariable(FLOAT ,

↪→ {ipu_matrix.blocks , ipu_matrix.blocks ,
↪→ ipu_matrix.block_height}, "result");

151
152 // We build the compute set for the MatrixBlock codelet
153 auto spmv_cs = graph.addComputeSet("spmv");
154
155 for (unsigned int y = 0; y < ipu_matrix.blocks; y++)
156 {
157 for (unsigned int x = 0; x < ipu_matrix.blocks; x++)
158 {
159 auto block_id = y * ipu_matrix.blocks + x;
160 auto v = graph.addVertex(spmv_cs , "MatrixBlock", {
161 {"idx", tensors["idx"].slice(

↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1])},

162 {"row_idx", tensors["row_idx"][y][x]},
163 {"vec", tensors["vector"].slice(

↪→ std::min(ipu_matrix.m, x *
↪→ ipu_matrix.block_height),
↪→ std::min(ipu_matrix.m, (x + 1) *
↪→ ipu_matrix.block_height))},

164 {"res", tensors["res"][y][x]}
165 });
166
167 graph.setPerfEstimate(v, 100);
168 graph.setTileMapping(v, block_id);
169
170 graph.setTileMapping(tensors["idx"].slice(

↪→ ipu_matrix.offsets[block_id],
↪→ ipu_matrix.offsets[block_id + 1]), block_id);

171 graph.setTileMapping(tensors["row_idx"][y][x],
↪→ block_id);

172 graph.setTileMapping(tensors["vector"].slice(
↪→ std::min(ipu_matrix.m, x *
↪→ ipu_matrix.block_height),
↪→ std::min(ipu_matrix.m, (x + 1) *
↪→ ipu_matrix.block_height)), block_id);

173 graph.setTileMapping(tensors["res"][y][x],
↪→ block_id);

174 }
175 }
176
177 auto program_spmv = Execute(spmv_cs);
178
179 // We build the compute set for addition
180 auto res_vector_shuffled = tensors["res"]. dimShuffle ({0,

↪→ 2, 1});
181
182 vector <SingleReduceOp > reductions;
183 reductions.reserve(ipu_matrix.m); // One reduction for

↪→ every row of our matrix
184
185 vector <Tensor > out;
186 out.reserve(ipu_matrix.m);
187
188 for (unsigned int block = 0; block < ipu_matrix.blocks;

↪→ block ++)
189 {
190 for (unsigned int y = 0; y < ipu_matrix.block_height

↪→ && block * ipu_matrix.block_height + y <
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↪→ ipu_matrix.m; y++)
191 {
192 reductions.push_back(SingleReduceOp {
193 res_vector_shuffled[block][y], {0},

↪→ {popops :: Operation ::ADD}
194 });
195
196 out.push_back(tensors["vector"][ block *

↪→ ipu_matrix.block_height + y]);
197 }
198 }
199
200 auto program_reduce = Sequence {};
201 popops :: reduceMany(graph , reductions , out , program_reduce);
202
203 // So far this is a basic copy of SpMV , now the magic:
204 // We need to:
205 // 1. Keep track of a dist , and iteration tensor
206 // 2. Copy over ‘vector ‘ (if v[i] > 1 ==> dist[i] =

↪→ min(dist[i], iteration)) to dist
207 // 3. Normalize vector again (ones)
208 // 4. Keep track if we should continue! (We perform some

↪→ sub -reductions to speed up this process)
209
210 tensors["dist"] = graph.addVariable(UNSIGNED_INT ,

↪→ {( unsigned int)ipu_matrix.n}, "dist");
211 graph.setInitialValue( tensors["dist"], poplar :: ArrayRef(

↪→ vector <unsigned int >( ipu_matrix.n, UINT_MAX)));
212 graph.setInitialValue(tensors["dist"]

↪→ [ipu_matrix.frontier], 0);
213
214 tensors["iteration"] = graph.addVariable(UNSIGNED_INT ,

↪→ {1}, "iteration");
215 graph.setTileMapping(tensors["iteration"], 0);
216 graph.setInitialValue(tensors["iteration"][0], 1);
217
218 tensors["stop"] = graph.addVariable(BOOL , {( unsigned

↪→ long)num_tiles}, "stop condition");
219 // graph.setInitialValue(tensors ["stop"],

↪→ poplar :: ArrayRef(vector <char >(num_tiles , false)));
↪→ // We use char here because a bool is a 1-bit value
↪→ in cpp

220
221 auto normalize_cs = graph.addComputeSet("normalize");
222
223 unsigned int rows_per_tile = std::max(ipu_matrix.m /

↪→ num_tiles + (ipu_matrix.m % num_tiles != 0),
↪→ (unsigned int) 1);

224 for (unsigned int i = 0; i < static_cast <unsigned
↪→ int >( num_tiles); i++) {

225 unsigned int row_start = std::min(i * rows_per_tile ,
↪→ ipu_matrix.m);

226 unsigned int row_end = std::min((i + 1) *
↪→ rows_per_tile , ipu_matrix.m);

227
228 auto v = graph.addVertex(normalize_cs , "Normalize", {
229 {"vec", tensors["vector"].slice(row_start ,

↪→ row_end)},
230 {"dist", tensors["dist"].slice(row_start ,

↪→ row_end)},
231 {"iteration", tensors["iteration"][0]} ,
232 {"stop", tensors["stop"][i]}
233 });
234
235 graph.setPerfEstimate(v, 100);
236 graph.setTileMapping(v, i);
237
238 graph.setTileMapping(tensors["stop"][i], i);
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239 graph.setTileMapping(tensors["dist"].slice(row_start ,
↪→ row_end), i);

240 }
241
242 auto program_normalize = Execute(normalize_cs);
243
244 auto program_sequence = Sequence{
245 program_spmv , program_reduce , program_normalize
246 };
247
248 tensors["should_stop"] = popops :: allTrue(graph ,

↪→ tensors["stop"], program_sequence , "check stop
↪→ condition");

249 popops :: mapInPlace(graph , popops ::expr::_1 +
↪→ popops ::expr::Const (1), {tensors["iteration"][0]},
↪→ program_sequence , "add 1 to iteration");

250
251 auto main_sequence = Sequence{RepeatWhileFalse(Sequence (),

↪→ tensors["should_stop"], program_sequence)};
252
253 if (! Config ::get().model)
254 {
255 auto timing = poplar :: cycleCount(graph , main_sequence ,

↪→ 0, SyncType ::INTERNAL , "timer");
256 graph.createHostRead("readTimer", timing , true);
257 }
258
259 programs["main"] = main_sequence;
260 }
261
262 auto build_data_streams(Graph &graph , map <string , Tensor >

↪→ &tensors , map <string , Program > &programs , IPUMatrix
↪→ &ipu_matrix)

263 {
264 auto toipu_idx = graph.addHostToDeviceFIFO("toipu_idx",

↪→ INT , ipu_matrix.idx.size());
265 auto toipu_row_idx =

↪→ graph.addHostToDeviceFIFO("toipu_row_idx", INT ,
↪→ ipu_matrix.row_idx.size());

266
267 auto fromipu_dist =

↪→ graph.addDeviceToHostFIFO("fromipu_dist",
↪→ UNSIGNED_INT , ipu_matrix.n);

268
269 auto copyto_idx = Copy(toipu_idx , tensors["idx"]);
270 auto copyto_row_idx = Copy(toipu_row_idx ,

↪→ tensors["row_idx"]);
271
272 auto copyhost_vec = Copy(tensors["dist"], fromipu_dist);
273
274 programs["copy_to_ipu_matrix"] = Sequence{copyto_idx ,

↪→ copyto_row_idx };
275 programs["copy_to_host"] = copyhost_vec;
276 }
277
278 auto create_graph_add_codelets(const Device &device) -> Graph
279 {
280 auto graph = poplar :: Graph(device.getTarget ());
281
282 // Add our own codelets
283 graph.addCodelets ({"codelets/bfs/MatrixBlock.cpp",

↪→ "codelets/bfs/Normalize.cpp"}, "-O3 -I codelets");
284 popops :: addCodelets(graph);
285
286 return graph;
287 }
288 }
289
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290 optional <ExperimentReportIPU > execute(const Device &device ,
↪→ matrix :: SparseMatrix <float > &matrix)

291 {
292 std::cerr << "Executing BFS experiment .." << std::endl;
293
294 Graph graph = create_graph_add_codelets(device);
295
296 auto tensors = map <string , Tensor >{};
297 auto programs = map <string , Program >{};
298
299 auto ipu_matrix = prepare_data(matrix ,

↪→ device.getTarget ().getNumTiles ());
300
301 std::cerr << "Building programs .." << std::endl;
302
303 build_compute_graph(graph , tensors , programs ,

↪→ device.getTarget ().getNumTiles (), ipu_matrix);
304 build_data_streams(graph , tensors , programs , ipu_matrix);
305
306 auto ENGINE_OPTIONS = OptionFlags {};
307
308 if (Config ::get().debug)
309 {
310 ENGINE_OPTIONS = OptionFlags{
311 {"autoReport.all", "true"}};
312 }
313
314 auto programIds = map <string , int >();
315 auto programsList = vector <Program >( programs.size());
316 int index = 0;
317 for (auto &nameToProgram : programs)
318 {
319 programIds[nameToProgram.first] = index;
320 programsList[index] = nameToProgram.second;
321 index ++;
322 }
323
324 std::cerr << "Compiling graph.." << std::endl;
325
326 auto timing_graph_compilation_start =

↪→ std:: chrono :: high_resolution_clock ::now();
327 auto engine = Engine(graph , programsList , ENGINE_OPTIONS);
328 engine.load(device);
329 auto timing_graph_compilation_end =

↪→ std:: chrono :: high_resolution_clock ::now();
330 auto timing_graph_compilation =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ timing_graph_compilation_end -
↪→ timing_graph_compilation_start).count() / 1e3;

331
332 if (Config ::get().debug)
333 {
334 engine.enableExecutionProfiling ();
335 }
336
337 auto vec = vector <float >( ipu_matrix.n, 1.0);
338
339 // TODO: if we change the input vector we need to apply the

↪→ matrix mapping to it for a correct result.
340
341 engine.connectStream("toipu_idx", ipu_matrix.idx.data());
342 engine.connectStream("toipu_row_idx",

↪→ ipu_matrix.row_idx.data());
343
344 auto result_dist = vector <unsigned int >( ipu_matrix.n);
345 engine.connectStream("fromipu_dist", result_dist.data());
346
347 // Run all programs in order
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348 std::cerr << "Running programs .." << std::endl;
349 std::cerr << "Copy data to IPU\n";
350
351 auto copy_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
352 engine.run(programIds["copy_to_ipu_matrix"], "copy matrix");
353 auto copy_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
354 auto copy_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ copy_timing_end - copy_timing_start).count () / 1e3;

355
356 std::cerr << "Run main program\n";
357
358 auto execution_start =

↪→ std:: chrono :: high_resolution_clock ::now();
359 engine.run(programIds["main"], "main loop");
360 auto execution_end = std:: chrono :: high_resolution_clock ::now();
361 auto execution_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ execution_end - execution_start).count () / 1e3;

362
363 vector <unsigned long > ipuTimer (1);
364 if (! Config ::get().model)
365 {
366 engine.readTensor("readTimer", ipuTimer.data(),

↪→ &* ipuTimer.end());
367 std::cerr << "Timing read: " << ipuTimer [0] << std::endl;
368 }
369
370 std::cerr << "Copying back result\n";
371
372 auto copyback_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
373 engine.run(programIds["copy_to_host"], "copy result");
374 auto copyback_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
375 auto copyback_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ copyback_timing_end - copyback_timing_start).count() /
↪→ 1e3;

376
377 std::cerr << "Resulting vector :\n";
378 long int res = 0;
379 for (auto v : result_dist)
380 {
381 std::cerr << v << ", ";
382 res += static_cast <long int >(v);
383 }
384 std::cerr << std::endl;
385 std::cerr << "Sum: " << res << std::endl;
386
387 // setup result report
388 auto report = ExperimentReportIPU(std::move(engine),

↪→ std::move(graph));
389 report.set_timing("copy", copy_timing);
390 report.set_timing("execution", execution_timing);
391 report.set_timing("copy_back", copyback_timing);
392 report.set_timing("graph_compilation",

↪→ timing_graph_compilation);
393
394 if (! Config ::get().model)
395 {
396 report.set_timing("ipu_report", ipuTimer [0] /

↪→ device.getTarget ().getTileClockFrequency ());
397 }
398
399 return optional(std::move(report));
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400 }
401 }

Listing A.5: BFS MatrixBlock codelet
1 #include <poplar/Vertex.hpp >
2 #include <cstddef >
3 #include <cstdlib >
4 #include <math.h>
5 #include <stdint.h>
6 #include <assert.h>
7 #include <cmath >
8
9 using namespace poplar;
10
11 class MatrixBlock : public MultiVertex
12 {
13 public:
14 // Data structure:
15 // m[i] = 1 <==> M_(E_t where row_idx[t] >= i and row_idx[t + 1] <

↪→ i ==> t, idx[i])
16 Input <Vector <int >> idx;
17 Input <Vector <int >> row_idx;
18
19 Input <Vector <float >> vec;
20 Output <Vector <float >> res;
21
22 auto compute(unsigned workerId) -> bool
23 {
24 // Performs basic matrix * vector mult for block
25 // Go by row
26 for (auto i = workerId; i < row_idx.size() - 1; i+=

↪→ MultiVertex :: numWorkers ())
27 {
28 res[i] = 0.0;
29
30 for (auto j = row_idx[i]; j < row_idx[i + 1]; j++)
31 {
32 if (vec[idx[j]] > 0) {
33 res[i] = 1.0;
34 goto cnt;
35 }
36 }
37
38 cnt:;
39 }
40
41 return true;
42 }
43 };

Listing A.6: BFS Normalize codelet
1 #include <poplar/Vertex.hpp >
2 #include <poplar/Loops.hpp >
3 #include <cstddef >
4 #include <cstdlib >
5 #include <math.h>
6 #include <stdint.h>
7 #include <assert.h>
8 #include <cmath >
9 #include <limits.h>
10
11 using namespace poplar;
12
13 class Normalize : public Vertex
14 {
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15 public:
16 InOut <Vector <unsigned int >> dist;
17 InOut <Vector <float >> vec;
18
19 Input <unsigned int > iteration;
20 Output <bool > stop;
21
22 auto compute () -> bool
23 {
24 *stop = true;
25 for (rptsize_t i = 0; i < vec.size(); i += 1)
26 {
27 if (vec[i] >= 1.0)
28 {
29 if (dist[i] == UINT_MAX)
30 {
31 dist[i] = *iteration;
32 vec[i] = 1.0;
33 *stop = false;
34 }
35 else
36 {
37 vec[i] = 0.0;
38 }
39 }
40 }
41
42 return true;
43 }
44 };

Listing A.7: Prim’s algorithm experiment host execution
1 #include <iostream >
2 #include <cstdlib >
3 #include <algorithm >
4 #include <cmath >
5 #include <chrono >
6 #include <float.h>
7 #include <limits.h>
8
9 #include <poplar/Engine.hpp >
10 #include <poplar/DeviceManager.hpp >
11 #include <poplar/Program.hpp >
12 #include <popops/codelets.hpp >
13 #include <poplar/CycleCount.hpp >
14 #include <poplar/PrintTensor.hpp >
15
16 #include "../ matrix.hpp"
17 #include "../ config.cpp"
18 #include "../ipu.cpp"
19 #include "../ report.cpp"
20
21 using :: poplar :: Device;
22 using :: poplar :: Engine;
23 using :: poplar :: Graph;
24 using :: poplar :: OptionFlags;
25 using :: poplar :: Tensor;
26 using :: poplar :: SyncType;
27
28 using :: poplar :: program :: Program;
29 using :: poplar :: program ::Copy;
30 using :: poplar :: program :: Sequence;
31 using :: poplar :: program :: Execute;
32 using :: poplar :: program :: RepeatWhileTrue;
33
34 using :: poplar :: FLOAT;
35 using :: poplar ::INT;
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36 using :: poplar :: UNSIGNED_INT;
37 using :: poplar ::BOOL;
38
39 namespace exp_prims
40 {
41 // Private namespace
42 namespace
43 {
44 struct PrimsIPU
45 {
46 PrimsIPU(vector <int > values , vector <unsigned int > idx_row ,

↪→ vector <unsigned int > idx_col , unsigned int n,
↪→ vector <size_t > block_indices , vector <size_t >
↪→ block_row_lt , unsigned int blocks) : values(values),
↪→ idx_row(idx_row), idx_col(idx_col), n(n),
↪→ block_indices(block_indices),
↪→ block_row_lt(block_row_lt), blocks(blocks){};

47
48 vector <int > values;
49 vector <unsigned int > idx_row;
50 vector <unsigned int > idx_col;
51 unsigned int n;
52
53 vector <size_t > block_indices;
54 vector <size_t > block_row_lt;
55 unsigned int blocks;
56 };
57
58 PrimsIPU prepare_data(matrix :: SparseMatrix <float > &matrix ,

↪→ const int num_tiles)
59 {
60 unsigned amount_of_blocks = (unsigned)num_tiles;
61
62 // We are building up a CSC data structure , divided over

↪→ num_tiles blocks vertically
63
64 // First we need to divide our matrix up over the blocks ,

↪→ so we need to go through all nz -values and make a
↪→ prefix

65 // lookup for the rows. Then we can divide evenly with
↪→ around matrix.nonzeroes () / num_tiles values per
↪→ block

66
67 vector <int > rows_size = vector(matrix.rows(), 0);
68 for (size_t o = 0; o < (unsigned)matrix.nonzeroes (); o++)
69 {
70 rows_size[get <0>( matrix.get(o))]++;
71 }
72
73 int values_per_block =

↪→ std::max(( unsigned)matrix.nonzeroes () /
↪→ amount_of_blocks + (matrix.nonzeroes () %
↪→ amount_of_blocks != 0), (unsigned)1);

74
75 // Our 3 main data structures
76 vector <int > ipu_values(matrix.nonzeroes (), 0.0);
77 vector <unsigned > ipu_row(matrix.nonzeroes (), 0.0);
78 vector <unsigned > ipu_column (( matrix.cols() + 1) *

↪→ amount_of_blocks , 0.0);
79
80 // pointer structure for where each block lies in values &

↪→ row
81 vector <size_t > blocks(amount_of_blocks + 1, 0);
82 vector <size_t > block_row_lt(amount_of_blocks + 1, 0);
83 vector <size_t > block_lt(matrix.rows(), 0);
84
85 // Now we divide up the rows
86 // Logic: we count non -zero values until it’s equal or
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↪→ above the tresshold (block_cursor * values_per_block)
87 unsigned int block_cursor = 0;
88 unsigned int total = 0;
89 for (size_t row = 0; row < (unsigned)matrix.rows(); row++)
90 {
91 total += rows_size[row];
92 block_lt[row] = block_cursor;
93
94 if (total >= (block_cursor + 1) * values_per_block)
95 {
96 blocks[block_cursor + 1] = total;
97 block_row_lt[block_cursor + 1] = row + 1;
98 block_cursor ++;
99 }
100 }
101
102 for (; block_cursor < (unsigned)blocks.size() - 1;

↪→ block_cursor ++)
103 {
104 blocks[block_cursor + 1] = total;
105 block_row_lt[block_cursor + 1] = matrix.rows();
106 }
107
108 // Now we can start calculating ipu_column
109 for (size_t o = 0; o < (unsigned)matrix.nonzeroes (); o++)
110 {
111 auto [i, j, v] = matrix.get(o);
112 (void)v;
113
114 auto block = block_lt[i];
115
116 ipu_column [(block * (matrix.cols() + 1)) + j + 1]++;
117 }
118
119 // stride ipu_col for each block
120 for (size_t block = 0; block < amount_of_blocks; block ++)
121 {
122 for (size_t idx = 2; idx < (unsigned)matrix.cols();

↪→ idx++)
123 {
124 ipu_column [(block * (matrix.cols() + 1)) + idx] +=

↪→ ipu_column [(block * (matrix.cols() + 1)) +
↪→ idx - 1];

125 }
126 }
127
128 // populate ipu_values / ipu_row
129 vector <unsigned > col_cursor(ipu_column);
130
131 for (size_t o = 0; o < (unsigned)matrix.nonzeroes (); o++)
132 {
133 auto [i, j, v] = matrix.get(o);
134 auto block = block_lt[i];
135
136 auto offset = blocks[block] + col_cursor [( block *

↪→ (matrix.cols() + 1)) + j];
137 ipu_values[offset] = (int)v;
138 ipu_row[offset] = i - block_row_lt[block];
139
140 col_cursor [(block * (matrix.cols() + 1)) + j]++;
141 }
142
143 return PrimsIPU(ipu_values , ipu_row , ipu_column ,

↪→ matrix.cols(), blocks , block_row_lt ,
↪→ amount_of_blocks);

144 }
145
146 auto create_graph_add_codelets(const Device &device) -> Graph
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147 {
148 auto graph = poplar :: Graph(device.getTarget ());
149
150 // Add our own codelets
151 graph.addCodelets ({"codelets/prims/PrimsBlock.cpp",

↪→ "codelets/prims/ReduceBlock.cpp",
↪→ "codelets/prims/GatherResult.cpp"}, "-I codelets
↪→ -O3");

152 popops :: addCodelets(graph);
153
154 return graph;
155 }
156
157 void build_compute_graph(Graph &graph , map <string , Tensor >

↪→ &tensors , map <string , Program > &programs , const int
↪→ num_tiles , PrimsIPU &ipu_matrix , const int loops)

158 {
159 // The algorithm step by step:
160 // 1. we select a vertex (initial 0, current is the

↪→ previously added vertex)
161 // 2. we update dist/dist_prev with that specific vertex

↪→ (computeset update_dist)
162 // 2.1 min of dist to that vertex and current dist
163 // 2.2 or remove of current vertex
164 // 3. we select the minimal dist (computeset reduce_dist +

↪→ single reduction over the result)
165 // 4. update connection for that vertex and repeat with

↪→ new vertex (computeset update)
166
167 // Static matrix data
168 tensors["weights"] = graph.addVariable(INT ,

↪→ {ipu_matrix.values.size()});
169 tensors["idx_row"] = graph.addVariable(UNSIGNED_INT ,

↪→ {ipu_matrix.idx_row.size()});
170 tensors["idx_col"] = graph.addVariable(UNSIGNED_INT ,

↪→ {ipu_matrix.blocks , ipu_matrix.n + 1});
171
172 // Result structs
173 tensors["connection"] = graph.addVariable(UNSIGNED_INT ,

↪→ {ipu_matrix.n});
174 graph.setInitialValue(tensors["connection"][0], 0);
175
176 tensors["dist"] = graph.addVariable(INT , {ipu_matrix.n});
177 graph.setInitialValue(tensors["dist"].slice(0,

↪→ ipu_matrix.n),
↪→ poplar :: ArrayRef(vector <int >( ipu_matrix.n,
↪→ INT_MAX)));

178 tensors["dist_prev"] = graph.addVariable(UNSIGNED_INT ,
↪→ {ipu_matrix.n});

179
180 // Sub -results
181 // We store results in dist then reduce for each block ,

↪→ finally find min in reduction (single -threaded)
182 tensors["block_dist"] = graph.addVariable(INT ,

↪→ {ipu_matrix.blocks });
183 tensors["block_dist_from"] =

↪→ graph.addVariable(UNSIGNED_INT , {ipu_matrix.blocks });
184 tensors["block_dist_to"] = graph.addVariable(UNSIGNED_INT ,

↪→ {ipu_matrix.blocks });
185
186 // Cursor(s)
187 tensors["current"] = graph.addVariable(UNSIGNED_INT , {1});
188 graph.setInitialValue(tensors["current"][0], 0);
189
190 // Loop variable
191 tensors["should_continue"] = graph.addVariable(BOOL , {1});
192 graph.setInitialValue(tensors["should_continue"][0], 1);
193
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194 auto update_d_cs = graph.addComputeSet("update_dist");
195
196 for (unsigned int block = 0; block < ipu_matrix.blocks;

↪→ block ++)
197 {
198 auto v = graph.addVertex(update_d_cs , "PrimsBlock", {
199 {"weights", tensors["weights"].slice(

↪→ ipu_matrix.block_indices[block],
↪→ ipu_matrix.block_indices[block + 1])},

200 {"rows", tensors["idx_row"].slice(
↪→ ipu_matrix.block_indices[block],
↪→ ipu_matrix.block_indices[block + 1])},

201 {"columns", tensors["idx_col"][block]},
202 {"dist", tensors["dist"].slice(

↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1])},

203 {"dist_prev", tensors["dist_prev"].slice(
↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1])},

204 {"current", tensors["current"][0]}
205 });
206
207 graph.setTileMapping(tensors["weights"].slice(

↪→ ipu_matrix.block_indices[block],
↪→ ipu_matrix.block_indices[block + 1]), block);

208 graph.setTileMapping(tensors["idx_row"].slice(
↪→ ipu_matrix.block_indices[block],
↪→ ipu_matrix.block_indices[block + 1]), block);

209 graph.setTileMapping(tensors["idx_col"][block], block);
210
211 graph.setTileMapping(tensors["dist"].slice(

↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1]), block);

212 graph.setTileMapping(tensors["dist_prev"].slice(
↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1]), block);

213
214 graph.setInitialValue(v["row_offset"],

↪→ ipu_matrix.block_row_lt[block ]);
215
216 graph.setPerfEstimate(v, 100); // Needed for simulator
217 graph.setTileMapping(v, block);
218 }
219
220 auto program_update_d = Execute(update_d_cs);
221
222 auto reduce_d_cs = graph.addComputeSet("reduce_dist");
223
224 for (unsigned int block = 0; block < ipu_matrix.blocks;

↪→ block ++)
225 {
226 auto v = graph.addVertex(reduce_d_cs ,

↪→ "ReduceBlockSupervisor", {
227 {"dist", tensors["dist"].slice(

↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1])},

228 {"dist_prev", tensors["dist_prev"].slice(
↪→ ipu_matrix.block_row_lt[block],
↪→ ipu_matrix.block_row_lt[block + 1])},

229 {"block_dist", tensors["block_dist"][block]},
230 {"block_dist_from",

↪→ tensors["block_dist_from"][ block]},
231 {"block_dist_to", tensors["block_dist_to"][block]},
232 });
233
234 graph.setFieldSize(v["tmp1"], 6);
235 graph.setFieldSize(v["tmp2"], 6);
236 graph.setFieldSize(v["tmp3"], 6);
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237
238 graph.setPerfEstimate(v, 100); // Needed for simulator
239 graph.setTileMapping(v, block);
240
241 graph.setTileMapping(tensors["block_dist"][block],

↪→ block);
242 graph.setTileMapping(

↪→ tensors["block_dist_from"][ block], block);
243 graph.setTileMapping( tensors["block_dist_to"][block],

↪→ block);
244
245 graph.setInitialValue(v["row_offset"],

↪→ ipu_matrix.block_row_lt[block ]);
246 }
247
248 auto program_reduce_d = Execute(reduce_d_cs);
249
250 auto gather_result_cs =

↪→ graph.addComputeSet("gather_results");
251 auto v = graph.addVertex(gather_result_cs ,

↪→ "GatherResultSupervisor", {
252 {"block_dist", tensors["block_dist"]},
253 {"block_dist_from", tensors["block_dist_from"]},
254 {"block_dist_to", tensors["block_dist_to"]},
255 {"current", tensors["current"][0]} ,
256 {"connection", tensors["connection"]},
257 {"should_continue", tensors["should_continue"][0]}
258 });
259
260 graph.setPerfEstimate(v, 100); // Needed for simulator
261 graph.setTileMapping(v, ipu_matrix.blocks >> 1);
262
263 graph.setTileMapping(tensors["should_continue"][0],

↪→ ipu_matrix.blocks >> 1);
264 graph.setTileMapping(tensors["current"][0],

↪→ ipu_matrix.blocks >> 1);
265 graph.setTileMapping(tensors["connection"],

↪→ ipu_matrix.blocks >> 1);
266
267 graph.setFieldSize(v["tmp1"], 6);
268 graph.setFieldSize(v["tmp2"], 6);
269 graph.setFieldSize(v["tmp3"], 6);
270
271 auto program_gather_result = Execute(gather_result_cs);
272
273 auto main_sequence = Sequence{RepeatWhileTrue(Sequence{},

↪→ tensors["should_continue"][0],
↪→ Sequence{program_update_d , program_reduce_d ,
↪→ program_gather_result })};

274
275 if (! Config ::get().model)
276 {
277 auto timing = poplar :: cycleCount(graph , main_sequence ,

↪→ 0, SyncType ::INTERNAL , "timer");
278 graph.createHostRead("readTimer", timing , true);
279 }
280
281 programs["main"] = main_sequence;
282 }
283
284 auto build_data_streams(Graph &graph , map <string , Tensor >

↪→ &tensors , map <string , Program > &programs , PrimsIPU
↪→ &ipu_matrix)

285 {
286 auto toipu_weights =

↪→ graph.addHostToDeviceFIFO("toipu_weights", INT ,
↪→ ipu_matrix.values.size());

287 auto toipu_idx_row =
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↪→ graph.addHostToDeviceFIFO("toipu_idx_row",
↪→ UNSIGNED_INT , ipu_matrix.idx_row.size());

288 auto toipu_idx_col =
↪→ graph.addHostToDeviceFIFO("toipu_idx_col",
↪→ UNSIGNED_INT , ipu_matrix.idx_col.size());

289
290 auto fromipu_connection =

↪→ graph.addDeviceToHostFIFO("fromipu_connection",
↪→ UNSIGNED_INT , ipu_matrix.n);

291
292 auto copyto_weights = Copy(toipu_weights ,

↪→ tensors["weights"]);
293 auto copyto_idx_row = Copy(toipu_idx_row ,

↪→ tensors["idx_row"]);
294 auto copyto_idx_col = Copy(toipu_idx_col ,

↪→ tensors["idx_col"]);
295
296 auto copyhost_connection = Copy(tensors["connection"],

↪→ fromipu_connection);
297
298 programs["copy_to_ipu_matrix"] = Sequence{copyto_weights ,

↪→ copyto_idx_row , copyto_idx_col };
299 programs["copy_to_host"] = copyhost_connection;
300 }
301
302 }
303
304 optional <ExperimentReportIPU > execute(const Device &device ,

↪→ matrix :: SparseMatrix <float > &matrix , int rounds)
305 {
306 std::cerr << "Executing Prims experiment .." << std::endl;
307
308 if (Config ::get().model)
309 {
310 std::cerr << "Using the simulator is not supported by this

↪→ experiment" << std::endl;
311 return std:: nullopt;
312 }
313
314 auto ipu_matrix = prepare_data(matrix ,

↪→ device.getTarget ().getNumTiles ());
315
316 auto graph = create_graph_add_codelets(device);
317 auto tensors = map <string , Tensor >{};
318 auto programs = map <string , Program >{};
319
320 build_compute_graph(graph , tensors , programs ,

↪→ device.getTarget ().getNumTiles (), ipu_matrix , rounds);
321 build_data_streams(graph , tensors , programs , ipu_matrix);
322
323 auto ENGINE_OPTIONS = OptionFlags {};
324
325 if (Config ::get().debug)
326 {
327 ENGINE_OPTIONS = OptionFlags{
328 {"autoReport.all", "true"}};
329 }
330
331 auto programIds = map <string , int >();
332 auto programsList = vector <Program >( programs.size());
333 int index = 0;
334 for (auto &nameToProgram : programs)
335 {
336 programIds[nameToProgram.first] = index;
337 programsList[index] = nameToProgram.second;
338 index ++;
339 }
340
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341 std::cerr << "Compiling graph.." << std::endl;
342
343 auto timing_graph_compilation_start =

↪→ std:: chrono :: high_resolution_clock ::now();
344 auto engine = Engine(graph , programsList , ENGINE_OPTIONS);
345 engine.load(device);
346 auto timing_graph_compilation_end =

↪→ std:: chrono :: high_resolution_clock ::now();
347 auto timing_graph_compilation =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ timing_graph_compilation_end -
↪→ timing_graph_compilation_start).count () / 1e3;

348
349 if (Config ::get().debug)
350 {
351 engine.enableExecutionProfiling ();
352 }
353
354 engine.connectStream("toipu_weights",

↪→ ipu_matrix.values.data());
355 engine.connectStream("toipu_idx_row",

↪→ ipu_matrix.idx_row.data());
356 engine.connectStream("toipu_idx_col",

↪→ ipu_matrix.idx_col.data());
357
358 auto result_connection_vec = vector <unsigned >( ipu_matrix.n);
359 engine.connectStream("fromipu_connection",

↪→ result_connection_vec.data());
360
361 // Run all programs in order
362 std::cerr << "Running programs .." << std::endl;
363 std::cerr << "Copy data to IPU\n";
364
365 auto copy_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
366 engine.run(programIds["copy_to_ipu_matrix"], "copy matrix");
367 auto copy_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
368 auto copy_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ copy_timing_end - copy_timing_start).count () / 1e3;

369
370 std::cerr << "Run main program\n";
371
372 auto execution_start =

↪→ std:: chrono :: high_resolution_clock ::now();
373 engine.run(programIds["main"], "main loop");
374 auto execution_end = std:: chrono :: high_resolution_clock ::now();
375 auto execution_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
↪→ execution_end - execution_start).count () / 1e3;

376
377 vector <unsigned long > ipuTimer (1);
378 if (! Config ::get().model)
379 {
380 engine.readTensor("readTimer", ipuTimer.data(),

↪→ &* ipuTimer.end());
381 }
382
383 std::cerr << "Copying back result\n";
384
385 auto copyback_timing_start =

↪→ std:: chrono :: high_resolution_clock ::now();
386 engine.run(programIds["copy_to_host"], "copy result");
387 auto copyback_timing_end =

↪→ std:: chrono :: high_resolution_clock ::now();
388 auto copyback_timing =

↪→ std:: chrono :: duration_cast <std:: chrono :: nanoseconds >(
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↪→ copyback_timing_end - copyback_timing_start).count() /
↪→ 1e3;

389
390 // Create report
391 auto report = ExperimentReportIPU(std::move(engine),

↪→ std::move(graph));
392 report.set_timing("copy", copy_timing);
393 report.set_timing("execution", execution_timing);
394 report.set_timing("copy_back", copyback_timing);
395 report.set_timing("graph_compilation",

↪→ timing_graph_compilation);
396
397 if (! Config ::get().model)
398 {
399 report.set_timing("ipu_report", ipuTimer [0] /

↪→ device.getTarget ().getTileClockFrequency ());
400 }
401
402 return optional(std::move(report));
403 }
404 }

Listing A.8: Prim’s PrimsBlock codelet
1 #include <poplar/Vertex.hpp >
2 #include <cstddef >
3 #include <cstdlib >
4 #include <math.h>
5 #include <stdint.h>
6 #include <assert.h>
7 #include <cmath >
8 #include <float.h>
9 #include <limits.h>
10 #include <print.h>
11
12 using namespace poplar;
13
14 class PrimsBlock : public MultiVertex
15 {
16 public:
17 // Our matrix in CSC form
18 Input <Vector <int >> weights;
19 Input <Vector <unsigned >> rows;
20 Input <Vector <unsigned >> columns;
21
22 // The current column over which we are updating dist
23 // TODO row offset , setting dist to infinity
24 Input <unsigned > current;
25 unsigned row_offset;
26
27 InOut <Vector <int >> dist;
28 InOut <Vector <unsigned >> dist_prev;
29
30 auto compute(unsigned workerId) -> bool
31 {
32 if (workerId == 0 && current >= row_offset && current -

↪→ row_offset < dist.size())
33 {
34 dist[current - row_offset] = INT_MAX;
35 dist_prev[current - row_offset] = UINT_MAX;
36 }
37
38 // MultiVertex safety: dist and dist_prev are aligned per row

↪→ (32-bit word), each column only contains a row once max.
39 for (size_t i = columns[current] + workerId; i <

↪→ columns[current + 1]; i+= MultiVertex :: numWorkers ()) {
40 unsigned row = rows[i];
41
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42 if (weights[i] < dist[row] && dist_prev[row] != UINT_MAX) {
43 // printf ("Found: %d at dist %d\n", row + row_offset ,

↪→ weights[i]);
44 dist[row] = weights[i];
45 dist_prev[row] = *current;
46 }
47 }
48
49 return true;
50 }
51 };

Listing A.9: Prim’s ReduceBlock codelet
1 #ifndef __IPU_ARCH_VERSION__
2 #define __IPU_ARCH_VERSION__ 2
3 #endif
4
5 #include <poplar/Vertex.hpp >
6 #include <arch/gc_tile_defines.h>
7
8 #include <cstddef >
9 #include <cstdlib >
10 #include <math.h>
11 #include <stdint.h>
12 #include <assert.h>
13 #include <cmath >
14 #include <limits.h>
15 #include "print.h"
16
17 using namespace poplar;
18
19 // This class uses as SupervisorVertex to control multiple vertices ,

↪→ instead of using MultiVertex
20 // MultiVertex does not have a way to collect results from different

↪→ threads
21 class ReduceBlock : public Vertex
22 {
23 public:
24 Input <Vector <int >> dist;
25 Input <Vector <unsigned >> dist_prev;
26
27 unsigned row_offset;
28
29 Output <int > block_dist;
30 Output <unsigned > block_dist_from;
31 Output <unsigned > block_dist_to;
32
33 Vector <int > tmp1; // block_dist result for each thread
34 Vector <unsigned > tmp2; // block_dist_from result for each thread
35 Vector <unsigned > tmp3; // block_dist_to result for each thread
36
37 bool compute ()
38 {
39 unsigned workerId = __builtin_ipu_get(CSR_W_WSR__INDEX) &

↪→ CSR_W_WSR__CTXTID_M1__MASK;
40 unsigned workers = CTXT_WORKERS;
41
42 int best_dist = INT_MAX;
43 unsigned from = 0;
44 unsigned to = 0;
45
46 for (size_t i = workerId; i < dist.size(); i += workers)
47 {
48 if (dist[i] < best_dist)
49 {
50 best_dist = dist[i];
51 from = dist_prev[i];
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52 to = i + row_offset;
53 }
54 }
55
56 tmp1[workerId] = best_dist;
57 tmp2[workerId] = from;
58 tmp3[workerId] = to;
59
60 return true;
61 }
62 };
63
64 class ReduceBlockSupervisor : public SupervisorVertex
65 {
66 public:
67 Input <Vector <int >> dist;
68 Input <Vector <unsigned >> dist_prev;
69
70 unsigned row_offset;
71
72 Output <int > block_dist;
73 Output <unsigned > block_dist_from;
74 Output <unsigned > block_dist_to;
75
76 Vector <int > tmp1; // block_dist result for each thread
77 Vector <unsigned > tmp2; // block_dist_from result for each thread
78 Vector <unsigned > tmp3; // block_dist_to result for each thread
79
80 __attribute__ (( target("supervisor"))) void collect ()
81 {
82 // use tmp to write back out value;
83 unsigned res1 = tmp1 [0] < tmp1 [1] ? 0 : 1;
84 unsigned res2 = tmp1 [2] < tmp1 [3] ? 2 : 3;
85 unsigned res3 = tmp1 [4] < tmp1 [5] ? 4 : 5;
86
87 res1 = tmp1[res1] < tmp1[res2] ? res1 : res2;
88 res1 = tmp1[res1] < tmp1[res3] ? res1 : res3;
89
90 *block_dist = tmp1[res1];
91 *block_dist_from = tmp2[res1];
92 *block_dist_to = tmp3[res1];
93 }
94
95 __attribute__ (( target("supervisor"))) bool compute ()
96 {
97 __asm__ volatile(
98 "setzi $m1 , __runCodelet_ReduceBlock\n"
99 "runall $m1 , $m0 , 0 \n"
100 "sync %[ sync_zone ]\n" ::[ sync_zone]

↪→ "i"(TEXCH_SYNCZONE_LOCAL));
101
102 collect ();
103 return true;
104 }
105 };

Listing A.10: Prim’s GatherResult codelet
1 #ifndef __IPU_ARCH_VERSION__
2 #define __IPU_ARCH_VERSION__ 2
3 #endif
4
5 #include <poplar/Vertex.hpp >
6 #include <arch/gc_tile_defines.h>
7
8 #include <cstddef >
9 #include <cstdlib >
10 #include <math.h>
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11 #include <stdint.h>
12 #include <assert.h>
13 #include <cmath >
14 #include <limits.h>
15 #include "print.h"
16
17 using namespace poplar;
18
19 // This class uses as SupervisorVertex to control multiple vertices ,

↪→ instead of using MultiVertex
20 // MultiVertex does not have a way to collect results from different

↪→ threads
21 class GatherResult : public Vertex
22 {
23 public:
24 Input <Vector <int >> block_dist;
25 Input <Vector <unsigned >> block_dist_from;
26 Input <Vector <unsigned >> block_dist_to;
27
28 Output <unsigned > current;
29 InOut <Vector <unsigned >> connection;
30
31 Output <bool > should_continue;
32
33 Vector <int > tmp1; // block_dist result for each thread
34 Vector <unsigned > tmp2; // block_dist_from result for each thread
35 Vector <unsigned > tmp3; // block_dist_to result for each thread
36
37 bool compute ()
38 {
39 unsigned workerId = __builtin_ipu_get(CSR_W_WSR__INDEX) &

↪→ CSR_W_WSR__CTXTID_M1__MASK;
40 unsigned workers = CTXT_WORKERS;
41
42 int best_dist = INT_MAX;
43 unsigned from = 0;
44 unsigned to = 0;
45
46 for (size_t i = workerId; i < block_dist.size(); i += workers)
47 {
48 if (block_dist[i] < best_dist)
49 {
50 best_dist = block_dist[i];
51 from = block_dist_from[i];
52 to = block_dist_to[i];
53 }
54 }
55
56 tmp1[workerId] = best_dist;
57 tmp2[workerId] = from;
58 tmp3[workerId] = to;
59
60 return true;
61 }
62 };
63
64 class GatherResultSupervisor : public SupervisorVertex
65 {
66 public:
67 Input <Vector <int >> block_dist;
68 Input <Vector <unsigned >> block_dist_from;
69 Input <Vector <unsigned >> block_dist_to;
70
71 Output <unsigned > current;
72 InOut <Vector <unsigned >> connection;
73
74 Output <bool > should_continue;
75
76 Vector <int > tmp1; // block_dist result for each thread
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77 Vector <unsigned > tmp2; // block_dist_from result for each thread
78 Vector <unsigned > tmp3; // block_dist_to result for each thread
79
80 __attribute__ (( target("supervisor"))) void collect ()
81 {
82 // use tmp to write back out value;
83 unsigned res1 = tmp1 [0] < tmp1 [1] ? 0 : 1;
84 unsigned res2 = tmp1 [2] < tmp1 [3] ? 2 : 3;
85 unsigned res3 = tmp1 [4] < tmp1 [5] ? 4 : 5;
86
87 res1 = tmp1[res1] < tmp1[res2] ? res1 : res2;
88 res1 = tmp1[res1] < tmp1[res3] ? res1 : res3;
89
90 if (tmp1[res1] == INT_MAX)
91 {
92 *should_continue = false;
93 }
94 else
95 {
96 *current = tmp3[res1];
97 connection[tmp3[res1]] = tmp2[res1];
98 *should_continue = true;
99 }
100 }
101
102 __attribute__ (( target("supervisor"))) bool compute ()
103 {
104 __asm__ volatile(
105 "setzi $m1 , __runCodelet_GatherResult\n"
106 "runall $m1 , $m0 , 0 \n"
107 "sync %[ sync_zone ]\n" ::[ sync_zone]

↪→ "i"(TEXCH_SYNCZONE_LOCAL));
108
109 collect ();
110 return true;
111 }
112 };
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