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Abstract
We prove that infinitely many irreducible components of the moduli space of polarized
Enriques surfaces are unirational (resp. uniruled), characterizing them in terms of decompo-
sitions of the polarization as an effective sum of isotropic classes. In particular, this applies
to components of arbitrarily large genus g and φ-invariant of the polarization.

1 Introduction

Let E denote the smooth 10-dimensional moduli space parametrizing smooth Enriques sur-
faces overC. A polarized (resp. numerically polarized) Enriques surface is a pair made of an
Enriques surface together with an ample linear (resp. numerical) equivalence class on it. For
integers g > 1 and φ > 0, let Eg,φ (resp., ̂Eg,φ) denote the moduli space of polarized (resp.
numerically polarized) Enriques surfaces (S, H) (resp. (S, [H ])) such that H2 = 2g−2 and
φ(H) = φ, where

φ(H) := min
{

E · H | E2 = 0, E > 0
}

. (1)
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Thus g is the arithmetic genus of all curves in the linear system |H |. There is an étale double
cover ρ : Eg,φ → ̂Eg,φ mapping the two pairs (S, H) and (S, H + KS) to (S, [H ]). We refer
to §2 for more details.

The space E is irreducible and rational, as has been shown byKondō [13], and the forgetful
maps Eg,φ → E are étale. Nevertheless the spaces Eg,φ and ̂Eg,φ are in general reducible, and
it is an open problem to determine their Kodaira dimensions (cf. [8]).

It is known that E3,2 is irreducible and rational (cf. [3]), that E4,2 is irreducible and rational
(this is the classical case of Enriques sextics, cf. [8, §3]) and that E6,3 is irreducible and
unirational (cf. [16]), and it has been conjectured that themoduli spaces of polarized Enriques
surfaces are all unirational (or at least, of negative Kodaira dimension), see [8, §4]. This was
disproved by Gritsenko and Hulek in the recent paper [9], where the existence of infinitely
many irreducible components of general type of the moduli space of numerically polarized
Enriques surfaces is established. On the other hand, they show that all components of ̂Eg,φ
have negative Kodaira dimension for g ≤ 17.

In the present paper we improve these results. Our interest lies in the moduli spaces of
polarized Enriques surfaces Eg,φ : We give a description of their irreducible components in
terms of decompositions of the polarization as an effective sum of isotropic classes and prove
their unirationality (resp. uniruledness) in infinitely many cases (for arbitrarily large g and
φ).

To explain our results, we introduce some notions. Any effective line bundle H with
H2 ≥ 0 on an Enriques surface may be written as (cf. Corollary 4.6 below)

H ≡ a1E1 + · · · + anEn (2)

(where ’≡’ denotes numerical equivalence), such that all Ei are effective, non–zero, isotropic
(i.e., E2

i = 0) and primitive (i.e., indivisible in Num(S)), all ai are positive integers, n ≤ 10
and

⎧

⎪

⎨

⎪

⎩

either n �= 9, Ei · E j = 1for all i �= j,

or n �= 10, E1 · E2 = 2 and Ei · E j = 1 for all other indices i �= j,

or E1 · E2 = E1 · E3 = 2 and Ei · E j = 1 for all other indices i �= j,

(3)

up to reordering indices. We call this a simple isotropic decomposition, cf. Definition 4.1.
An expression H ∼ a1E1 + · · · + anEn + εKS (where ’∼’ denotes linear equivalence) with
ε ∈ {0, 1} satisfying the same conditions is also called a simple isotropic decomposition.

We say that two polarized (respectively, numerically polarized) Enriques surfaces
(S, H) and (S′, H ′) in Eg,φ (resp., (S, [H ]) and (S, [H ′]) in ̂Eg,φ) admit the same simple
decomposition type (cf. Definition 4.13) if one has simple isotropic decompositions

H ∼ a1E1 + · · · + an En + εKS and H ′ ∼ a1E
′
1 + · · · + an E

′
n + εKS′ , with ε ∈ {0, 1}

(resp. H ≡ a1E1 + · · · + an En and H ′ ≡ a1E
′
1 + · · · + an E

′
n) (4)

such that Ei · E j = E ′
i · E ′

j for all i �= j . We call n the length of the decomposition (type).
If, possibly after reordering indices, there exists r ≤ n such that a1 = · · · = ar and

Ei · E j = 1 for all 1 ≤ i ≤ r and 1 ≤ j ≤ n, i �= j , then we say that (S, H) and (S′, H ′)
admit the same simple r-symmetric decomposition type.

We note that in (4) the case ε = 1 is only needed when all ai ’s are even, otherwise one
may substitute any Ei having odd coefficient with Ei +KS . Also note that a given line bundle
may admit decompositions of different types, cf. Remark 4.14, but nevertheless the property
of admitting the same decomposition type is an equivalence relation on Eg,φ (and ̂Eg,φ), cf.
Proposition 4.15.
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The main result of this paper is the identification of many unirational (resp. uniruled)
irreducible components of Eg,φ . These are components of Eg,φ parametrizing precisely those
pairs (S, H) with H admitting the same simple decomposition type.

Theorem 1.1 The locus of pairs (S, H) ∈ Eg,φ admitting the same simple decomposition
type of length n ≤ 4 is an irreducible, unirational component of Eg,φ .

The locus of pairs (S, H) ∈ Eg,φ admitting the same simple decomposition type of length
5 is an irreducible component of Eg,φ , which is unirational if all Ei · E j = 1 for all i �= j ,
and uniruled otherwise.

Theorem 1.2 The locus of pairs (S, H) ∈ Eg,φ admitting the same simple 7-symmetric
(respectively, 6-symmetric) decomposition type is an irreducible, unirational (resp., uniruled)
component of Eg,φ .

We stress that there are line bundles satisfying the assumptions of these statements with
arbitrarily large g and φ. Moreover, there are decomposition types of all possible lengths
1 ≤ n ≤ 10 to which these results apply. For small values of g or φ they actually provide all
irreducible components of Eg,φ , as stated in the following corollaries:

Corollary 1.3 When φ ≤ 4 the different irreducible components of Eg,φ are precisely the loci
parametrizing pairs (S, H) admitting the same simple decomposition type and they are all
unirational.

Corollary 1.4 When g ≤ 20 the different irreducible components of Eg,φ are precisely the
loci parametrizing pairs (S, H) admitting the same simple decomposition type. Moreover,
they are all unirational, except possibly E16,5 and E17,5, which are in any event irreducible
and uniruled.

As a further example, our results can also be used to describe the irreducible components
of Eg,φ for the highest values of φ with respect to g, cf. Corollary 5.8.

We note that the proofs of our results do not rely on the construction of ̂Eg,φ in [9].
By the above results the (equivalence class of) simple decomposition type seems to be

the correct invariant to distinguish all the irreducible components of the moduli space of
polarized Enriques surfaces. This is indeed true for numerical polarizations: we prove in
Proposition 4.16 that the various irreducible components of ̂Eg,φ are precisely the loci of
pairs admitting the same simple decomposition type. We do not know if the same holds for
linear polarizations in full generality, cf. Question 4.17.1

As another applicationwe answer [9,Question 4.2] about the irreducibility of the preimage
by ρ : Eg,φ → ̂Eg,φ of a component of ̂Eg,φ under the assumptions of Theorems 1.1 and 1.2:

Corollary 1.5 Let C ⊂ Eg,φ be an irreducible component parametrizing classes admitting
the same simple decomposition type of length ≤ 5 or being 6-symmetric. Then ρ−1(ρ(C)) is
reducible if and only if C parametrizes pairs (S, H) such that H is 2-divisible in Num(S).

Note that a class is 2-divisible in Num(S) if and only if all coefficients in any simple
isotropic decomposition are even, cf. Lemma 4.8.

It is an interesting question whether this last corollary holds in general, that is, without
any assumption on the decomposition types,2.

1 This question has subsequently been answered positively in [10, Thm. 1.1].
2 This has subsequently been proved in [10, Thm. 4.2] i.e., Corollary 1.5 is valid in full generality, without
any assumptions on the decomposition types. The proof of [10, Thm. 4.2] is different from our proof of
Corollary 1.5, but still relies on our results on simple isotropic decompositions in §4.
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An interesting feature of our approach via simple isotropic decompositions is that it enables
one to write down efficiently the complete list of all possible decompositions within a given
numerical range. (Note that the datumof such a decomposition prescribes of course the genus,
but also the φ-invariant, cf. Remark 4.12). As an illustration of our methods we catalogue
all the irreducible components of all the moduli spaces ̂Eg,φ with g ≤ 30 in an appendix;
for almost all of them we are able to determine the number of corresponding irreducible
components of Eg,φ , as well as unirationality or uniruledness. We do not make use of this list
in the present paper, but this information is needed in our paper [4] on moduli of curves on
Enriques surfaces. Moreover, the approach to moduli spaces of polarized Enriques surfaces
via simple isotropic decompositions also plays a central role in our subsequent work [5] on
Severi varieties on Enriques surfaces.

Our proofs of Theorems 1.1 and 1.2 are based on the fact that a general Enriques surface
has a model in P3 as an Enriques sextic, i.e., a sextic surface singular along the six edges of
a tetrahedron; such a model corresponds to the datum of an isotropic sequence (E1, E2, E3)

with Ei · E j = 1 for i �= j , the Ei ’s corresponding to three edges of some face of the
tetrahedron. The idea is then to exhibit various irreducible and rational (resp. uniruled)
families F of elliptic curves in P

3 with prescribed intersection numbers with the edges of
some fixed tetrahedron, such that a general Enriques sextic singular along this particular
tetrahedron contains a member of F . One thus gets incidence varieties that are irreducible
and rational (resp. uniruled) and dominate the corresponding components of themoduli space
of polarized Enriques surfaces. This whole construction, which is very geometric in nature,
is done in §5, where the proofs of our theorems and corollaries stated in this introduction
are given; in particular, Theorems 1.1 and 1.2 are consequences of Propositions 5.5 and 5.6.
Before this, in §4, we prove the existence of simple isotropic decompositions together with
related technical results needed in §5.

2 Background results onmoduli spaces

Let E , Eg,φ and ̂Eg,φ be as in the introduction. The moduli space E is an open subset of a
10-dimensional orthogonal modular variety, cf. [2, VIII §19-21]. The moduli spaces Eg,φ of
polarized Enriques surfaces exist as quasi-projective varieties by [15, Thm. 1.13].

We have the forgetful map

Eg,φ −→ E, (5)

whose differential at a point (S, H) is the linear map

H1(S, EH ) −→ H1(S, TS) (6)

coming from the Atiyah extension of H

0 −→ OS −→ EH −→ TS −→ 0,

by [14, Prop. 3.3.12]. Since h1(OS) = h2(OS) = 0, the map (6) is an isomorphism, hence
Eg,φ is smooth and the map (5) is an étale cover.

The moduli spaces ̂Eg,φ exist by [9]. More precisely, fixing an orbit h of the action of the
orthogonal group in theEnriques latticeU⊕E8(−1), in [9] the authors construct (irreducible)
moduli spacesMa

En,h parametrizing isomorphism classes of numerically polarized Enriques
surfaces (S, [H ]) with [H ] in the orbit h ⊂ U ⊕ E8(−1) � Num(S) (see [2, Lemma
VIII.15.1]). The spaces Ma

En,h are open subsets of suitable orthogonal modular varieties.
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Then our space ̂Eg,φ is the union of allMa
En,h where h varies over all orbits with h2 = 2g−2

and φ(h) = φ, cf. (1). It follows by [9, Prop. 4.1] that there is an étale double cover ρ :
Eg,φ → ̂Eg,φ mapping (S, H) and (S, H + KS) to (S, [H ]).

3 Background results on line bundles on Enriques surfaces

Any irreducible curve C on an Enriques surface S satisfies C2 ≥ −2, with equality if and
only ifC is smooth and rational. An Enriques surface containing such a curve is called nodal,
otherwise it is called unnodal. On an unnodal Enriques surface, all divisors are nef and all
divisors with positive self-intersection are ample. It is well-known that the general Enriques
surface is unnodal, cf. references in [6, p. 577].

Recall that a divisor E is said to be isotropic if E2 = 0 and E �≡ 0. By Riemann-Roch,
either E or −E is effective. It is said to be primitive if it is non-divisible in Num(S). On an
unnodal surface, any effective primitive isotropic divisor E is represented by an irreducible
curve of arithmetic genus one.

Let H be an effective line bundle with H2 > 0 and φ(H) as in (1). One has

φ(H)2 ≤ H2, (7)

by [7, Cor. 2.7.1], and there are no cases satisfying φ(H)2 < H2 < φ(H)2 + φ(H) − 2 by
[12, Prop. 1.4]. Moreover [12, Prop. 1.4] also classifies the borderline cases as follows:

Proposition 3.1 Let H be an effective line bundle on an Enriques surface satisfying φ(H)2 ≤
H2 ≤ φ(H)2 +φ(H)−2. Then one of the following occurs, where E1, E2, F are primitive,
effective isotropic divisors satisfying E1 · E2 = 1 and E1 · F = E2 · F = 2:

(i) H2 = φ(H)2, in which case H ≡ φ(H)
2 (E1 + F),

(ii) H2 = φ(H)2 + φ(H) − 2, in which case,

• H ∼ φ(H)−1
2 (E1 + F) + E2 if φ(H) is odd, and

• H ∼ φ(H)−2
2 E1 + φ(H)

2 F + E2, or H ≡ 2(E1 + E2 + F) (and φ(H) = 6), if φ(H)

is even.

We recall the following from [7, p. 122]:

Definition 3.2 An isotropic r -sequence on an Enriques surface S is a sequence of isotropic
effective divisors {E1, . . . , Er } such that Ei · E j = 1 for i �= j .

It is well-known that any Enriques surface contains such sequences for every r ≤ 10 and
that there are no such sequences with r > 10 (cf. [7, p. 175]); moreover, by [7, Cor. 2.5.6],
we have

Proposition 3.3 Any isotropic r-sequence with r �= 9 can be extended to a 10-sequence.

We will also make use of the following result:

Lemma 3.4 (a) Let {E1, . . . , E10} be an isotropic 10-sequence. Then there exists a divisor
D on S such that D2 = 10, φ(D) = 3 and 3D ∼ E1 + · · · + E10. Furthermore, for any
i �= j , we have

D ∼ Ei + E j + Ei, j , with E2
i, j = 0 and Ei, j > 0. (8)

Hence, in particular, Ei · Ei, j = E j · Ei, j = 2, and
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Ei, j ∼ 1

3
(E1 + · · · + E10) − Ei − E j , (9)

Ek · Ei, j = 1 for k �= i, j, and Ei, j · Ek,l =
{

1, if {i, j} ∩ {k, l} �= ∅,

2, if {i, j} ∩ {k, l} = ∅.

(b) Any divisor D on S such that D2 = 10 and φ(D) = 3 satisfies 3D ∼ E1 + · · ·+ E10,
for an isotropic 10-sequence {E1, . . . , E10} consisting precisely of all isotropic divisors
computing φ(D) up to numerical equivalence. Moreover, if F is a divisor satisfying F2 = 0
and F · D = 4, then F ≡ Ei, j for some i �= j , where Ei, j is defined by (9).

Proof (a) The existence of D is [6, Lemma 1.6.2(i)] or [7, Cor. 2.5.5]. Its properties are
easily checked and Ei, j := D − Ei − E j , cf. also [6, Lemma 1.6.2(ii)].

(b) The first statement follows from [7, Cor. 2.5.5] and its proof. For the last one, note that
F · Ei > 0 for i = 1, . . . , 10 by [11, Lemma 2.1], whence, after permuting indices if
necessary, one gets F ·(E1+E2) = 4 and F ·Ei = 1 for i = 3, . . . , 10. Then F ·E1,2 = 0
and E3 · F = E3 · E1,2 = 1, so that F ≡ E1,2 by [11, Lemma 2.1] again. ��

4 Simple, isotropic decompositions

One of the aims of this section is to prove the existence of simple isotropic decompositions
stated in the introduction (see Corollary 4.6) and prove that the isotropic divisors occurring
in such decompositions can always be extended to an isotropic 10-sequence plus one of the
divisors Ei, j occurring in Lemma 3.4 (see Corollary 4.7). The latter will be needed in the
proof of our main results, see the comment right after Proposition 5.6. We will also deduce
several results on simple isotropic decompositions, like for instance the fact that 2-divisibility
can be read off any isotropic decomposition (see Lemma 4.8) and the fact that the property
of admitting the same decomposition type as defined in the introduction is an equivalence
relation on Eg,φ and ̂Eg,φ (see Proposition 4.15).

We start by recalling the following from the introduction:

Definition 4.1 Let H be an effective line bundle H with H2 ≥ 0 on an Enriques surface S.

• An expression H ≡ a1E1+· · ·+anEn , where all ai are positive integers, n ≤ 10 and all
Ei are primitive, effective, isotropic divisors is called a simple isotropic decomposition
if (3) is satisfied, up to reordering indices.

• An expression H ∼ a1E1 + · · · + anEn + εKS , with ε ∈ {0, 1}, satisfying the same
conditions will also be called a simple isotropic decomposition.

• The number n is the length of the decomposition.
• The decomposition is r-symmetric if, possibly after reordering indices, there exists r ≤ n

such that a1 = · · · = ar and Ei · E j = 1 for all 1 ≤ i ≤ r and 1 ≤ j ≤ n, i �= j
(equivalently, there is a set of r isotropic divisors occurring in the decomposition with
the same coefficient and each having intersection 1 with the remaining isotropic divisors
in the decomposition).

Example 4.2 Consider, in the notation of Lemma 3.4, the simple isotropic decomposition
H ≡ E1,2 + E1 + 2E2 + E3 + E4. This is 2–symmetric but not 3-symmetric. Indeed, the
set {E3, E4} has the property that each member occurs in the decomposition with coefficient
1 and intersects the remaining isotropic divisors in the decomposition in one point. There is
no larger such set, since E1 · E1,2 = 2 and E2 occurs with coefficient 2.

We recall [12, Lemma 2.12]:
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Lemma 4.3 Any effective line bundle H with H2 ≥ 0 on an Enriques surface can be written
as H ≡ a1E1 + · · · + anEn, where all ai are positive integers, 1 ≤ n ≤ 10, and all Ei are
primitive, effective, isotropic divisors satisfying one of the following three conditions:

(i) Ei · E j = 1 for all i �= j ,
(ii) E1 · E2 = 2 and Ei · E j = 1 for all other indices i �= j , or
(iii) E1 · E2 = E1 · E3 = 2 and Ei · E j = 1 for all other indices i �= j .

This lemma guarantees the existence of an effective decomposition satisfying almost all
the conditions of a simple isotropic decomposition; indeed, what is missing, cf. (3), is the
additional requirement that n �= 9 in case (i) and that n �= 10 in case (ii).

Definition 4.4 A set {E1, . . . , En} of primitive isotropic divisors on an Enriques surface is
called a simple isotropic set if it satisfies one of the conditions (i)-(iii) in Lemma 4.3, possibly
after permuting indices.

It is called a maximal simple isotropic set if it is of the form {E1, . . . , E10, Ei, j }, where
{E1, . . . , E10} is an isotropic 10-sequence and Ei, j is defined up to numerical equivalence
as in (9) for some i �= j .

Note that since any simple isotropic set of n elements contains members of an isotropic
(n − 1)–sequence, any simple isotropic set contains at most 11 elements (cf. [7, p. 179]).
If it contains 11 elements, then they necessarily satisfy (iii) in Lemma 4.3, possibly after
permuting indices. It will follow from Proposition 4.5 right below (cf. the footnote) that
simple isotropic sets of 11 elements are precisely the maximal simple isotropic sets.

Also note that by [6, Rem. p. 584] any maximal simple isotropic set generates Num(S).
The following is a key result, which generalizes Proposition 3.3.

Proposition 4.5 Any simple isotropic set J can be extended to a maximal simple isotropic
set.3 Furthermore, if J = {F1, . . . , Fn} with n ≤ 9, F1 · F2 = 2 and Fi · Fj = 1 for
{i, j} �= {1, 2}, then J can be extended to maximal simple isotropic sets such that either of
F1 or F2 equals Ei, j .

We postpone the proof until the very end of the section to discuss some consequences.
The first one yields the existence of simple, isotropic decompositions:

Corollary 4.6 Any effective line bundle H with H2 ≥ 0 on an Enriques surface has a simple
isotropic decomposition.

Proof By Lemma 4.3, we are done unless possibly if we end up in case (i) with n = 9 or in
case (ii) with n = 10. We treat these two cases separately and prove that in both cases we
will find a different isotropic decomposition of H satisfying condition (iii) of Lemma 4.3,
thus being a simple isotropic decomposition as desired.

Assume first that H ≡ a1E1 + · · · + a9E9 with all Ei · E j = 1 for i �= j . Recalling
Proposition 3.3, we divide the treatment into the two cases:

(a) {E1, . . . , E9} can be extended to an isotropic 10-sequence {E1, . . . , E10};
(b) {E1, . . . , E9} cannot be extended to an isotropic 10-sequence {E1, . . . , E10}.

3 This includes the case of simple isotropic sets of 11 elements, which means that such are automatically
maximal.
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In case (a), there is byLemma3.4(a) a primitive effective isotropic E9,10 such that 3E9,10+
2E9 + 2E10 ≡ E1 + · · · + E8. Let m := min1≤i≤8{ai }. Then

H ≡ 3mE9,10 + (2m + a9)E9 + 2mE10 + (a1 − m)E1 + · · · + (a8 − m)E8,

where all ai − m ≥ 0 for 1 ≤ i ≤ 8, at least one being zero. Thus, the latter decomposition
satisfies condition (iii) of Lemma 4.3.

In case (b), then, by Proposition 4.5, the set {E1, . . . , E9} can be extended to a maxi-
mal simple isotropic set {E1, . . . , E9, E10, E11}. This set contains an isotropic 10-sequence
by definition, which cannot contain {E1, . . . , E9} by assumption. Possibly after reorder-
ing indices, we may thus assume that {E2, . . . , E9, E10, E11} is an isotropic 10-sequence,
E1 · E10 = E1 · E11 = 2 and E1 ≡ 1

3 (E2 + · · · + E11) − E10 − E11, equivalently
3E1 + 2E10 + 2E11 ≡ E2 + · · · + E9. Let m := min2≤i≤9{ai }. Then

H ≡ (a1 + 3m)E1 + 2mE10 + 2mE11 + (a2 − m)E2 + · · · + (a9 − m)E9,

where all ai − m ≥ 0 for 2 ≤ i ≤ 9, at least one being zero. Thus, the latter decomposition
satisfies condition (iii) of Lemma 4.3.

Assume next that H ≡ a1E1 + · · · + a10E10 with E1 · E2 = 2 and Ei · E j = 1 for all
other indices i �= j . By Proposition 4.5, the set {E1, . . . , E10} can be extended to a maximal
simple isotropic set {E1, . . . , E10, E11}. Possibly after interchanging E1 and E2, we may
assume that E1 · E11 = 2, Ei · E11 = 1 for i ≥ 2 and E1 ≡ 1

3 (E2 + · · · + E11) − E2 − E11,
equivalently 3E1 + 2E2 + 2E11 ≡ E3 + · · · + E10. Let m := min3≤i≤10{ai }. Then

H ≡ (a1 + 3m)E1 + (a2 + 2m)E2 + 2mE11 + (a3 − m)E3 + · · · + (a10 − m)E10,

where all ai − m ≥ 0 for i ≥ 3, at least one being zero. Thus, the latter decomposition
satisfies condition (iii) of Lemma 4.3. ��

The next result yields a “canonical” way of writing any simple isotropic decomposition
in Pic(S), which will be central in our proofs.

Corollary 4.7 Let H be any effective divisor on an Enriques surface such that H2 > 0. Then
there is an isotropic 10-sequence {E1, . . . , E10} (depending on H) such that

H ∼ a0E1,2 + a1E1 + · · · + a10E10 + εKS, (10)

where E1,2 ∼ 1
3 (E1 + · · · + E10) − E1 − E2 (cf. (9)) and a0, a1, . . . , a10 are nonnegative

integers with
{

either a0 = 0 and #{i | i ∈ {1, . . . , 10}, ai > 0} �= 9,

or a10 = 0,
(11)

and

ε =
{

0, if some ai is odd

0 or 1, if all ai are even.
(12)

In particular, (10) is a simple isotropic decomposition.
More precisely, given any simple isotropic decomposition H ≡ b1F1 + · · · + bnFn, we

may find an expression (10) such that each Fi occurs in it (up to numerical equivalence) with
coefficient bi (and the remaining coefficients in (10) are zero). Moreover, if Fi · Fj = 2 for
only one pair of indices i, j , then we may find isotropic 10-sequences satisfying either of the
conditions Fi ≡ E1,2 and Fj ≡ E1,2.
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Proof Let H ≡ b1F1 + · · · + bnFn be a simple isotropic decomposition, n ≤ 10. By
Proposition 4.5 there is a maximal simple isotropic set {E1, . . . , E10, E1,2} containing the
set {F1, . . . , Fn}. Moreover, if Fi · Fj = 2 for only one pair of indices i, j , then n ≤ 9 by
definition of a simple isotropic decomposition, so that we can make sure, still by Proposition
4.5, that either of Fi or Fj equals E1,2. Thus,wemaywrite H ≡ a0E1,2+a1E1+· · ·+a10E10,
where each Fi occurs (up to numerical equivalence) with coefficient bi , the other coefficients
are zero and where E1,2 ≡ 1

3 (E1 + · · · + E10)− E1 − E2. This gives an expression of H as
in (10) with ε ∈ {0, 1}. Note that ai = 0 for at least one i . We may furthermore by symmetry
assume that

a1 ≥ a2 and a3 ≥ · · · ≥ a10.

We claim that either a0 = 0 or a10 = 0. Indeed, if a0 > 0 and a10 > 0, then we must
have a2 = 0. If a1 = 0, then the length of the decomposition is 9 and this contradicts the
first line in (3). If a1 > 0, then the length of the decomposition is 10 and this contradicts the
second line in (3). This proves our claim. Moreover, if a0 = 0, the first line in (3) implies
that #{i | i ∈ {1, . . . , 10}, ai > 0} �= 9. Thus, (11) is satisfied.

If not all ai are even, we can, possibly after replacing one Ei having odd coefficient
ai by Ei + KS , assume ε = 0. We can thus make sure that (12) is satisfied. If E1,2 ∼
1
3 (E1 + · · · + E10) − E1 − E2, we are done. If not, we have 3E1,2 + 2E1 + 2E2 ∼ E3 +
· · ·+ E10 + KS . If a0 = 0 (respectively, a10 = 0), we may replace E1,2 by E1,2 + KS (resp.,
E10 by E10+KS) without altering (10), and obtain the desired relation 3E1,2+2E1+2E2 ∼
E3 + · · · + E10, that is, E1,2 ∼ 1

3 (E1 + · · · + E10) − E1 − E2.
One readily checks that (10) under condition (11) is a simple isotropic decomposition. ��

The condition in (12) concerning the parity of the coefficients ai is related to divisibility
properties of H , by the following:

Lemma 4.8 A line bundle H on an Enriques surface S is numerically 2-divisible (that is,
its class in Num(S) is 2-divisible) if and only if all coefficients in any simple isotropic
decomposition of H inNum(S) are even. Furthermore, in this case, (S, H) and (S, H +KS)

belong to different irreducible components of themoduli space of polarizedEnriques surfaces.

Proof The if part of the first assertion is clear. To prove the converse, assume that H is
numerically 2-divisible and let

H ≡ a0E1,2 + a1E1 + a2E2 + a3E3 + · · · + a10E10,

be a simple isotropic decomposition in the form of Corollary 4.7 (modulo numerical equiva-
lence); in particular, all ai ≥ 0 and a0 = 0 or a10 = 0.We consider these two cases separately
and let Ei, j be defined as in (8).

Assume a0 = 0. Since (Ei, j − Ei ) · H = 2ai + a j , for i �= j , and H is numerically
2-divisible, we must have all a j even, as desired.

Assume a10 = 0. For i = 1, 2 we have (Ei,10 − E10) · H = ai , hence a1 and a2 are
even. For i ≥ 3 we have (Ei − E10) · H = −ai , hence also ai for i ≥ 3 is even. Moreover
E3 · H = a0 + a1 + a2 + a4 + · · · + a9, and since a1, . . . , a9 are all even, also a0 is even.

To prove the last assertion, assume, to get a contradiction, that (S, H) and (S, H + KS)

belong to the same irreducible component of themoduli space of polarized Enriques surfaces.
Then H and H + KS are either both 2-divisible in Pic(S) or not. However, we know that in
the present case only one of them is 2-divisible, a contradiction. ��
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Notation 4.9 When writing a simple isotropic decomposition (2) verifying (3) (up to per-
mutation of indices), we will usually adopt the convention that Ei , E j , Ei, j are primitive
isotropic satisfying Ei · E j = 1 for i �= j , Ei, j · Ei = Ei, j · E j = 2 and Ei, j · Ek = 1 for
k �= i, j . This notation has already been used in Lemma 3.4 and Example 4.2. (By Corollary
4.7, there is no ambiguity in this notation.)

Remark 4.10 The requirement that a simple isotropic decomposition satisfies n �= 9 in case
(i) and n �= 10 in case (ii) of Lemma 4.3, which is equivalent to condition (11), is crucial
in the last proof. Indeed, take H ≡ a0E1,2 + a1E1 + a3E3 + · · · + a10E10, where a1 is an
even nonnegative integer, and a0, a3, . . . , a10 are odd positive integers. If a1 = 0, then this
decomposition is as in case (i) of Lemma 4.3 with n = 9, and if a1 > 0, then it is as in
case (ii) with n = 10. Hence, this is not a simple isotropic decoposition according to our
definition. On the other hand H is numerically 2-divisible. Indeed, the claim is equivalent to
B := E1,2 + E3 + · · · + E10 being numerically 2-divisible. As

B ≡ 3(E1,2 + E1 + E2) + (E1 + E2 + E3 + · · · + E10) − 2E1,2 − 4E1 − 4E2

≡ 2(E1 + · · · + E10) − 2E1,2 − 4E1 − 4E2,

using Lemma 3.4(a), the claim follows.
Note that by Lemma 4.8 we have that (S, H) and (S, H + KS) belong to different

irreducible components of the moduli space of polarized Enriques surfaces.

Remark 4.11 By Lemma 4.8 we get that (12) is equivalent to

ε =
{

0, if H + KS is not2 − divisible in Pic(S),

1, ifH + KS is2 − divisible in Pic(S).
(13)

This means that the ’ε’ in expression (12) only depends on H and not on the simple isotropic
decomposition.

Remark 4.12 Writing a simple isotropic decomposition of H as in (10) has the advantage that

φ(H) is calculated by one among E1,2, E1, . . . , E10. More precisely, setting a := ∑10
i=0 ai ,

one has

φ(H) = a − max{a1 − a0, a2 − a0, a3, . . . , a10, a0 − a1 − a2}. (14)

Indeed, for any nontrivial isotropic effective E �≡ E1,2, E1, . . . , E10, the divisor E intersects
E1,2, E1, . . . , E10 positively by [11, Lemma 2.1], hence E ·H ≥ a ≥ a−ai = Ei ·H , for any
i ≥ 3. Then (14) follows since Ei ·H = a+a0−ai for i = 1, 2 and E1,2 ·H = a+a1+a2−a0.
By symmetry, arguing as in the proof of Corollary 4.7, one can furthermore make sure that

a1 > 0, a1 ≥ a2, a3 ≥ · · · ≥ a10 and either a0 > 0 or a2 ≥ a3, (15)

in which case

φ(H) = min{E1 · H , E3 · H , E1,2 · H} = a − max{a1 − a0, a3, a0 − a1 − a2}. (16)

We next recall the following from the introduction:

Definition 4.13 Two polarized (respectively, numerically polarized) Enriques surfaces
(S, H) and (S′, H ′) in Eg,φ (resp., (S, [H ]) and (S, [H ′]) in ̂Eg,φ) admit the same simple
decomposition type if there are simple isotropic decompositions

H ∼ a1E1 + · · · + an En + εKS and H ′ ∼ a1E
′
1 + · · · + an E

′
n + εKS′ , with ε ∈ {0, 1}
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(resp. H ≡ a1E1 + · · · + an En and H ′ ≡ a1E
′
1 + · · · + an E

′
n)

such that Ei · E j = E ′
i · E ′

j for all i �= j .

Remark 4.14 A decomposition type is not necessarily unique within the same linear or
numerical equivalence class, even imposing the conditions (15) on the coefficients. More-
over, also properties such as the length or being r -symmetric may vary with the different
ways of writing the decompositions. Consider for instance the decomposition type H ≡
2E1 + E2 + E3 + E4 + E5 + E6 + E1,7 (with g = 30 and φ(H) = 7), written in the
form of Corollary 4.7, that is, {E1, . . . , E6} may be extended to an isotropic 10-sequence
{E1, . . . , E10} so that E1,7 is defined as in (8). This has length 7 and is 5-symmetric, but not
6-symmetric. It therefore does not satisfy the conditions of Theorems 1.1 and 1.2. Let also
E7,8 be as defined by (8). It follows that E1 + E1,7 ∼ E8 + E7,8. Thus, we may also write
H ≡ E1 + E2 + E3 + E4 + E5 + E6 + E8 + E7,8, which has length 8 and is 6-symmetric.
This decomposition satisfies the conditions of Theorem 1.2.

Proposition 4.15 The property of admitting the same simple decomposition type defines
equivalence relations on Eg,φ and ̂Eg,φ , respectively.

Proof The property is clearly reflexive and symmetric, so we have left to prove transitivity.
Assume therefore that (S, H) and (S′, H ′) admit the same simple decomposition type and
(S′, H ′) and (S′′, H ′′) admit the same simple decomposition type. We will prove that so do
(S, H) and (S′′, H ′′). The same proof will work for numerical polarizations.

By assumption, using the notation of Corollary 4.7, we have

H ∼ a0E1,2 + a1E1 + · · · + a10E10 + εKS, (17)

H ′ ∼ a0E
′
1,2 + a1E

′
1 + · · · + a10E

′
10 + εKS′ , (18)

H ′ ∼ b0F
′
1,2 + b1F

′
1 + · · · + b10F

′
10 + ε′KS′ , (19)

H ′′ ∼ b0F
′′
1,2 + b1F

′′
1 + · · · + b10F

′′
10 + ε′KS′′ . (20)

Here all ai and bi are nonnegative integers, {E1, . . . , E10}, {E ′
1, . . . , E

′
10}, {F ′

1, . . . , F
′
10}

and {F ′′
1 , . . . , F ′′

10} are isotropic 10-sequences, E1,2 ∼ 1
3 (E1 + · · · + E10) − E1 − E2, and

similarly for E ′
1,2, F

′
1,2 and F ′′

1,2. Moreover, by Remark 4.11 and (18)-(19) we see that ε = ε′;
more precisely, combining with (17) and (20) we have

ε = ε′ =
{

0, if H + KS, H ′ + KS′ , H ′′ + KS′′are not2 − divisible in the Picard group,

1, if H + KS, H ′ + KS′ , H ′′ + KS′′are 2 − divisible in the Picard group.
(21)

Now denote by ’[ ]’ the numerical equivalence classes of all divisors above. Choose

isomorphismsψ : Num(S)
�→ U⊕E8(−1) andϕ : Num(S′) �→ U⊕E8(−1) (cf. [2, Lemma

VIII.15.1]). The orthogonal group on U ⊕ E8(−1) acts transitively on the set of isotropic
10-sequences by [7, Lemma 2.5.2], whence we may find an element σ of this group such
that σϕ([E ′

i ]) = ψ([Ei ]) for 1 ≤ i ≤ 10. As [E1,2] = 1
3 ([E1] + · · · + [E10]) − [E1] − [E2]

and [E ′
1,2] = 1

3 ([E ′
1] + · · · + [E ′

10]) − [E ′
1] − [E ′

2], we also have σϕ([E ′
1,2]) = ψ([E1,2]).

It follows from (17)-(18) that ψ−1σϕ([H ′]) = [H ]. By (19) we also have

ψ−1σϕ([H ′]) = b0ψ
−1σϕ([F ′

1,2]) + b1ψ
−1σϕ([F ′

1]) + · · · + b10ψ
−1σϕ([F ′

10]).
Setting [E ′′

1,2] := ψ−1σϕ([F ′
1,2]) and [E ′′

i ] := ψ−1σϕ([F ′
i ]), we thus have

[H ] = b0[E ′′
1,2] + b1[E ′′

1 ] + · · · + b10[E ′′
10], (22)
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where [E ′′
1,2] = 1

3

([E ′′
1 ] + · · · + [E ′′

10]
)−[E ′′

1 ]− [E ′′
2 ] and {[E ′′

1 ], . . . , [E ′′
10]} is an isotropic

10-sequence inNum(S).We have [E ′′
1,2]·[H ] = 2b1+2b2+b3+· · ·+b10 = [F ′

1,2]·[H ′] > 0
(as F ′

1,2 is effective) and likewise [E ′′
i ] · [H ] > 0 for 1 ≤ i ≤ 10. Hence, by Riemann-

Roch and Serre duality, [E ′′
1,2] and [E ′′

i ], 1 ≤ i ≤ 10, can be represented by effective
classes in Pic(S). It follows that (22) is a simple isotropic decomposition in Num(S). By
Corollary 4.7 and Remark 4.11 we may find representatives E ′′

1,2 and E ′′
i , respectively, so

that E ′′
1,2 ∼ 1

3 (E
′′
1 + · · · + E ′′

10) − E ′′
1 − E ′′

2 , and

H ∼ b0E
′′
1,2 + b1E

′′
1 + · · · + b10E

′′
10 + εKS .

Thus, comparing with (20), recalling (21), we see that (S, H) and (S′′, H ′′) admit the same
simple decomposition type. ��
Proposition 4.16 Two numerically polarized Enriques surfaces (S, [H ]) and (S′, [H ′]) lie
in the same irreducible component of ̂Eg,φ if and only if they admit the same simple
decomposition type.

Proof Since Num(S) � U ⊕ E8(−1) is constant among all S ∈ E , the only if part is
immediate.

Conversely, it is proved in [9] that the irreducible components of ̂Eg,φ correspond precisely
to the different orbits of the action of the orthogonal group onU ⊕ E8(−1). Since this group
acts transitively on the set of isotropic 10-sequences by [7, Lemma 2.5.2], and E1,2 ≡
1
3 (E1 + · · · + E10) − E1 − E2, we see that any two numerical polarizations admitting the
same simple decomposition type lie in the same irreducible component of ̂Eg,φ , as claimed. ��
Question 4.17 4 Does Proposition 4.16 also hold for polarized Enriques surfaces? In other
words, is it true that (S, H) and (S, H ′) lie in the same irreducible component of Eg,φ if and
only if H and H ′ admit the same simple decomposition type? (The “only if” part follows
as in the first lines of the proof of 4.16, as Pic(S) � U ⊕ E8(−1) ⊕ Z/2Z is also constant
among all S ∈ E .)

Theorems 1.1 and 1.2 give a positive answer in the case of simple decomposition types
that are of length ≤ 5 or 6–symmetric.

The following lemma classifies all possible equivalence classes of simple decomposition
types with φ ≤ 5. Note that all decomposition types do exist on any Enriques surface, by
Lemma 3.4(a) and the existence of isotropic 10-sequences.

Lemma 4.18 Assume H is an effective line bundle on an Enriques surface S such that H2 =
2(g − 1) > 0. If 1 ≤ φ(H) ≤ 5, the line bundle H has one and only one of the following
simple isotropic decompositions:

(i) If φ(H) = 1, then H ∼ (g − 1)E1 + E2.
(ii) If φ(H) = 2, then

• H ∼ g−2
2 E1 + E2 + E3 if g is even,

• H ∼ g−1
2 E1 + E1,2 or H ≡ g−1

2 E1 + 2E2 (with g ≥ 5), if g is odd.

(iii) If φ(H) = 3, then

• H ∼ g−3
3 E1 + E2 + E1,2 or H ∼ g−3

3 E1 + 2E2 + E3 (with g ≥ 9) if g ≡ 0 mod 3,

• H ∼ g−4
3 E1 + E2 + E3 + E4 or H ∼ g−1

3 E1 + 3E2 (with g ≥ 10) if g ≡ 1 mod 3,

4 This question has subsequently been answered positively in [10, Thm. 1.1].
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• H ∼ g−2
3 E1 + E2 + E1,3 if g ≡ 2 mod 3.

(iv) If φ(H) = 4, then

• H ∼ g − 4

4
E1 + 3E2 + E3, g ≥ 16, or

H ∼ g − 4

4
E1 + E2 + E3 + E1,4, g ≥ 12,

i f g ≡ 0 mod 4,

• H ≡ g − 1

4
E1 + 4E2, g ≥ 17, or

H ≡ g − 1

4
E1 + 2E1,2, g ≥ 9, or

H ≡ g − 5

4
E1 + 2E2 + 2E3, g ≥ 13, or

H ∼ g − 5

4
E1 + 2E2 + E1,2, g ≥ 13,

if g ≡ 1 mod 4,

• H ∼ g − 6

4
E1 + 2E2 + E3 + E4, g ≥ 14, or

H ∼ g − 2

4
E1,2 + E1 + E2, g ≥ 10,

if g ≡ 2 mod 4,

• H ∼ g − 3

4
E1 + 2E2 + E1,3, g ≥ 15or

H ∼ g − 7

4
E1 + E2 + E3 + E4 + E5, g ≥ 11,

if g ≡ 3 mod 4.

(v) If φ(H) = 5, then

• H ∼ g − 5

5
E1 + E2 + 2E1,2, g ≥ 15, or

H ∼ g − 10

5
E1 + 2E2 + E3 + E4 + E5, g ≥ 20, or

H ∼ g − 5

5
E1 + 4E2 + E3, g ≥ 25

if g ≡ 0 mod 5,

• H ∼ g − 11

5
E1 + E2 + E3 + E4 + E5 + E6, g ≥ 16, or

H ∼ g − 6

5
E1 + 2E2 + E3 + E1,4, g ≥ 21, or
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H ∼ g − 1

5
E1 + 5E2, g ≥ 26

if g ≡ 1 mod 5,

• H ∼ g − 7

5
E1 + E2 + E3 + E4 + E1,5, g ≥ 17, or

H ∼ g − 7

5
E1 + 3E2 + E1,2, g ≥ 22, or

H ∼ g − 7

5
E1 + 3E2 + 2E3, g ≥ 22

if g ≡ 2 mod 5,

• H ∼ g − 3

5
E1 + 2E1,3 + E2, g ≥ 18, or

H ∼ g − 8

5
E1 + 2E2 + E3 + E1,2, g ≥ 18, or

H ∼ g − 8

5
E1 + 3E2 + E3 + E4, g ≥ 23

if g ≡ 3 mod 5,

• H ∼ g − 9

5
E1 + 2E2 + 2E3 + E4, g ≥ 19, or

H ∼ g − 4

5
E1,2 + E1 + E2 + E3, g ≥ 19, or

H ∼ g − 4

5
E1 + 3E2 + E1,3, g ≥ 24

if g ≡ 4 mod 5,

Proof The proof is tedious but straightforward and similar to [12, pf. of Prop. 1.4 in §2.2],
and we therefore will leave most of it to the reader. The idea is to pick an effective, isotropic
E such that E · H = φ(H), find a suitable integer k so that φ(H − kE) < φ(H) (in which
case we use the classification for lower φ), or so that φ(H − kE) = φ(H) and H − kE is
as in Proposition 3.1(i) or (ii). As a sample, we show how this works in the case φ(H) = 5
and g ≡ 3 mod 5.

We pick an effective, isotropic E such that E · H = φ(H) = 5 and set k := g−13
5 . Then

(H − kE)2 = 24, so that φ(H − kE) ≤ 4 by (7).

Assume φ(H − kE) = 4 and note that E · (H − kE) = E · H = 5. By the classification
in the case φ = 4, we have the three possibilities, where we use Notation 4.9:

(a) H − kE ∼ 3F1 + 2F1,2,
(b) H − kE ≡ 2(F1 + F2 + F3),
(c) H − kE ∼ 2F1 + 2F2 + F1,2.

Case (b) is impossible, as 5 = E · (H − kE).
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In case (a) we have F1 · (H − kE) = 4 and F1,2 · H = 6, hence E �≡ F1, F1,2. Thus,
E · F1 = E · F1,2 = 1. Let F := F1 + F1,2 − E . Then F2 = 0, E · F = 2 and F1 · F = 1,
so that F is effective, non–zero and we have

H ∼ kE + 3F1 + 2F1,2 ∼ (k + 2)E + F1 + 2F .

UsingNotation 4.9,we set E1 := E , E2 := F1 and E1,3 := F and, recalling that k+2 = g−3
5 ,

we obtain the desired form

H ∼ g − 3

5
E1 + E2 + 2E1,3. (23)

As 5 = φ(H) ≤ E2 · H = g−3
5 + 2, we have g ≥ 18.

In case (c) we have F1 · (H − kE) = F2 · (H − kE) = 4 and F1,2 · (H − kE) = 8, hence
E �≡ F1, F2, F1,2. Thus, E · F1 = E · F2 = E · F1,2 = 1. Let F := F2 + F1,2 − E . Then
F2 = 0, E · F = F1 · F = 2 and F2 · F = 1 and we have

H ∼ kE + 2F1 + 2F2 + F1,2 ∼ (k + 1)E + 2F1 + F2 + F .

Using Notation 4.9, we set E1 := E , E2 := F1, E3 := F2 and E1,2 := F and, recalling that
k + 1 = g−8

5 , we obtain the desired form

H ∼ g − 8

5
E1 + 2E2 + E3 + E1,2. (24)

As 5 = φ(H) ≤ E2 · H = g−8
5 + 3, we have g ≥ 18.

We claim that H cannot simultaneously have a simple isotropic decomposition as in (23)
and (24). Indeed, there are two (respectively, three) isotropic, effective classes F ∈ Num(S)

such that F · H = g+7
5 in case (24) if g > 18 (resp., g = 18), namely F ≡ E2, E3 (resp.,

F ≡ E1, E2, E3), whereas there is only one (resp., two) such classes in case (23), namely
F ≡ E2 (resp., F ≡ E1, E2), as E1,3 · H = 2 g−1

5 >
g+7
5 and F · H ≥ g−3

5 + 1+ 2 = g+12
5

for F �≡ E1, E2, E1,3 by [11, Lemma 2.1].

Assume φ(H − kE) = 3. By the classification in the case φ = 3, we have the two
possibilities:

(d) H − kE ∼ 3F1 + F2 + F3 + F4,
(e) H − kE ∼ 4F1 + 3F2.

In case (d) we have F1 · (H − kE) = 3, hence E �≡ F1. Thus, we must have E · F1 = 1
and, possily after rearranging indices, E · F2 = E · F3 = 1 and E ≡ F4. Thus, using again
Notation 4.9, we set E1 := E , E2 := F1, E3 := F2 and E4 := F3 and, recalling that
k + 1 = g−8

5 , we obtain the desired form

H ∼ g − 8

5
E1 + 3E2 + E3 + E4, (25)

possibly after substituting E4 with E4 + KS . Since 5 = φ(H) ≤ E2 · H = g−8
5 + 2, we

obtain g ≥ 23.
Because of the different values of φ(H−kE), it is again not possible that H can be written

both as in (25) and as in (23) or (24).
In case (e) we have F1 · (H − kE) = 3 and F2 · (H − kE) = 4, whence E �≡ F1, F2. It

follows that E · F1 > 0 and E · F2 > 0, so that 5 = E · (H − kE) ≥ 7, a contradiction.

Assume φ(H − kE) = 2. By the classification in the case φ = 2, we have the two
possibilities:
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(f) H − kE ∼ 6F1 + F1,2,
(g) H − kE ≡ 6F1 + 2F2.

In both cases, since F1 · (H − kE) = 2, we have E �≡ F1, whence the contradiction
5 = E · (H − kE) ≥ 6E · F1 ≥ 6.

Assume finally φ(H − kE) = 1. By the classification in the case φ = 1, we have
H − kE ∼ 12F1 + F2. As F1 · (H − kE) = 1, we have E �≡ F1, whence the contradiction
5 = E · (H − kE) ≥ 12E · F1 ≥ 12. ��
Remark 4.19 We will later use the observation immediately deduced from parts (i)-(ii) of
Lemma 4.18 that for φ(H) ≤ 2 there are at most three distinct numerical, effective, isotropic
classes E such that E · H ≤ 2.

We will now prove Proposition 4.5. First we need three auxiliary results.

Lemma 4.20 Let {E1, . . . , Er } be an isotropic r-sequencewith 2 ≤ r ≤ 9, and F an isotropic
divisor such that F · E1 = F · E2 = 2 and F · Ei = 1 for all i ∈ {3, . . . , r}. Then
there is an isotropic 10-sequence {E1, . . . , Er , Er+1, . . . , E10} such that F · Ei = 1 for all
i ∈ {r + 1, . . . , 10}.
Proof The divisor D := E1 + E2 + F satisfies D2 = 10 and φ(D) = 3 = Ei · D for all
i ∈ {1, . . . , r}. Thus, 3D ∼ E1 + · · · + E10 for an isotropic 10-sequence {E1, . . . , E10} by
Lemma 3.4(b). Since F · D = 4, we have F �≡ Ei for any i , hence F · Ei > 0 for all i by
[11, Lemma 2.1]. As 12 = 3F · D = F · (3D) = 4 + F · (E3 + · · · + E10), we must have
F · Ei = 1 for all i . ��
Lemma 4.21 Let {E1, . . . , E8, F} be an isotropic 9-sequence. Then, for any extensison of
{E1, . . . , E8} to an isotropic 10-sequence {E1, . . . , E10}, we have either
(i) F ≡ Ei , for i = 9 or 10, or
(ii) F · E9 = F · E10 = 2.

Proof If F · Ei = 0 for i = 9 or 10, then F ≡ Ei by [11, Lemma 2.1] and we are done.
Otherwise, as E1 + · · · + E10 is 3-divisible by Lemma 3.4, we must have

F · (E9 + E10) ≡ 1 mod 3 and F · Ei > 0 for i = 9, 10.

We are therefore done if we show that

F · Ei ≤ 2, for i ∈ {9, 10}. (26)

To prove this, assume by contradiction that n := F · E9 ≥ 3, say. Set k = � n−1
2 � ≥ 1 and

B := F + E9 − kE1. Then B2 ∈ {2, 4} and Ei · B = 2 − k ≤ 1 for all i ∈ {2, . . . , 8},
contradicting Remark 4.19. This proves (26), whence the lemma. ��
Lemma 4.22 Let F1 and F2 be isotropic divisors such that F1 · F2 = 2 and {E1, . . . , Er }
be an isotropic r-sequence, with 0 ≤ r ≤ 8, such that Fi · E j = 1 for all i ∈ {1, 2},
j ∈ {1, . . . , r}.

Then, for k = 1 or 2, there is an isotropic 10-sequence {Fk, E1, . . . , Er , Er+1, . . . , E9}
such that, for j �= k, Fj · Ei = 1 for i ∈ {r + 1, . . . , 8} and Fj · E9 = 2.

Proof Assume first that r ≤ 7. By Proposition 3.3, the set A of A ∈ Pic(S) such that

A2 = 0, A · F1 = A · E1 = · · · = A · Er = 1, A �≡ E1 + E2 + E3 − F2 if r = 3,
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is nonempty. Pick A ∈ A such that A · F2 is minimal.
Claim. A · F2 ≤ 2.

Assume, to get a contradiction, that n := A · F2 ≥ 3. Let k = � n−1
3 � and set B :=

A + F2 − kF1. Then 2 ≤ B2 ≤ 6 and B has a simple isotropic decomposition containing
at least two summands. None of these may be F2, since B − F2 = A − kF1 has negative
square, unless k = 0, in which case B = F2 + A is not a simple isotropic decomposition.

Since F2 · B = n − 2k, the intersection of F2 with each of the summands in the simple
isotropic decomposition of B is smaller than n. Since F1 · B = 3, there is at least one of
these summands, say E ′, such that F1 · E ′ = 1. If r = 0, since F2 · E ′ < n, the curve E ′
contradicts the minimality of A and finishes the proof in this case.

If r > 0, then, as Ei · B = 2 − k for any i ∈ {1, . . . , r}, we must have k ≤ 1.
Case k = 0. Then n = 3, B ∼ A + F2, B2 = 6 and φ(B) = Ei · B = 2. Thus, by
Lemma 4.18(ii), B can be written as a sum of three isotropic divisors, containing all Ei for
i ∈ {1, . . . , r}. This implies r ≤ 3. Since Fi · B = 3, for i = 1, 2, each summand has
intersection one with Fi , for i = 1, 2. This implies r = 3. Indeed, if r < 3, then at least one
of the summands of B, say E ′, is different from the Ei s, and has E ′ · Ei = 1 for i = 1, . . . , r .
Hence E ′ ∈ A and E ′ · F2 = 1, contradicting the minimality of A. Since r = 3, we have
B ≡ E1 + E2 + E3. But then A ≡ E1 + E2 + E3 − F2, thus A /∈ A, a contradiction.
Case k = 1. One has B ∼ A + F2 − F1 and φ(B) = E1 · B = 1. Moreover B2 = 2n − 6,
hence (n, B2) ∈ {(4, 2), (5, 4), (6, 6)}.
Subcase (n, B2) = (4, 2). As Ei · B = 1, for i ∈ {2, . . . , r}, by Lemma 4.18(i) we have
r ≤ 2 and, if r = 2, we have B ≡ E1 + E2. But 3 = F1 · B = F1 · (E1 + E2) = 2, a
contradiction. Hence we have r = 1 and B ∼ E1 + E ′

2 with E ′
2
2 = 0 and E1 · E ′

2 = 1.
We have F1 · B = 3, and since F1 · E1 = 1, we have F1 · E ′

2 = 2. Since F2 · B =
2 and F2 · E1 = 1, we have F2 · E ′

2 = 1. Set G := F1 + F2 + E ′
2. Then G2 = 10,

F1 · G = 4 and φ(G) = E1 · G = E ′
2 · G = F2 · G = 3. By Lemma 3.4(b), we have

3G ∼ E1+ E ′
2 + F2 + F ′

1+· · ·+ F ′
7 for an isotropic 10-sequence {E1, E ′

2, F2, F
′
1, . . . , F

′
7}.

As F1 · (3G) = 12, and F1 · (E1 + E ′
2 + F2) = 5, it follows that F1 · (F ′

1 + · · · + F ′
7) = 7,

whence F1 · F ′
i = 1 for all i ∈ {1, . . . , 7}. Since F2 · F ′

i = 1 for all i ∈ {1, . . . , 7}, we find a
contradiction to the minimality of A.
Subcase (n, B2) = (5, 4). As Ei · B = 1, for i ∈ {2, . . . , r}, by Lemma 4.18(i) we have
r = 1 and B ∼ 2E1 + E ′

2 with E ′
2
2 = 0 and E1 · E ′

2 = 1. As F1 · B = F2 · B = 3, it follows
that F1 · E ′

2 = F2 · E ′
2 = 1, contradicting the minimality of A.

Subcase (n, B2) = (6, 6). As E1 · B = 1 and F1 · B = 3, we must have B ≡ 3E1 + F1. But
then we get the contradiction

4 = F2 · (A + F2 − F1) = F2 · B = 3E1 · F2 + F1 · F2 = 5.

Therefore, we have proved the claim that A · F2 ≤ 2.
Assume now that A ·F2 = 2. By Lemma 4.20, the isotropic sequence {F1, A, E1, . . . , Er }

can be extended to an isotropic 10-sequence such that F2 · F1 = F2 · A = 2 and F2 has
intersection one with the remaining divisors in the sequence. Hence, we are done.

Assume next that A · F2 = 1. We then repeat the process starting with the isotropic
(r + 1)-sequence {E1, . . . , Er , Er+1 := A}, unless r + 1 = 8. We thus reduce to proving
the lemma when r = 8.

For the rest of the proof we therefore let r = 8. Then we can by Proposition 3.3 extend
{E1, . . . , E8} to an isotropic 10-sequence {E1, . . . , E10}. We claim that

there is an i ∈ {1, 2} and aj ∈ {9, 10} such that Fi ≡ E j . (27)
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Indeed, if not, by Lemma 4.21 we must have all Fi · E j = 2 for i ∈ {1, 2}, j ∈ {9, 10}. Set
B := F1 + F2 + E9 + E10 − 2E1. Then B2 = 6 and E j · B = 2 for all j ∈ {2, . . . , 8},
which is impossible by Remark 4.19. This proves (27).

By (27) we have, say, F1 ≡ E10. Then E9 �≡ F2, so F2 · E9 = 2 by Lemma 4.21. Hence,
{F1, E1, . . . , E8, E9} is the desired isotropic 10-sequence. ��
Proof of Proposition 4.5. We first prove the first statement. Consider the simple isotropic set
{E1, . . . , Er } satisfying (3). If Ei · E j = 1 for all i �= j , and if r �= 9, we apply Proposition
3.3. If instead r = 9, we apply Lemmas 4.21 and 3.4(b). If E1 · E2 = 2 and otherwise
Ei · E j = 1 for i �= j , we apply Lemmas 4.22 and 3.4(b). Finally, if E1 · E2 = E1 · E3 = 2
and otherwise Ei · E j = 1 for i �= j , we apply Lemmas 4.20 and 3.4(b).

To prove the last statement, assume J satisfies the conditions therein, and that we have
extended it to the maximal simple isotropic set J ′ = {E1,2, E1, . . . , E10}. We must have,
possibly after reordering, J = {E1,2, E1, E3, . . . , En}, for n ≤ 9. Then J can also be
extended to J ′′ = {E1,2, E1, E3, . . . , E9, E1,10, E2,10}, which satisfies the condition that
the only mutual intersections different from 1 are E1 · E1,2 = E1 · E1,10 = 2. ��

5 Irreducibility, unirationality and uniruledness of moduli spaces

To prove our results, we extend a construction from [16]. First we recall some basic facts
about classical Enriques sextic surfaces in P3 (see [7]).

Fix homogeneous coordinates (x0 : x1 : x2 : x3) on P
3 and let

T = Z(x0x1x2x3)

be the coordinate tetrahedron. We label by �1, �2, �3, �
′
1, �

′
2, �

′
3 the edges of T , in such a way

that �1, �2, �3 are coplanar, and �′
i is skew to �i for all i = 1, 2, 3.

Consider the linear system S of surfaces of degree 6 that are singular along the edges of
T . They are called Enriques sextic surfaces and have equations of the form

c3(x0x1x2)
2 + c2(x0x1x3)

2 + c1(x0x2x3)
2 + c0(x1x2x3)

2 + Q(x0, ..., x3) · x0x1x2x3 = 0,

(28)

where Q(x0, ..., x3) = ∑

i≤ j qi j xi x j and c0, . . . , c3, qi j are constants. This shows that

dim(S) = 13 and we may identify S with the P13 with homogeneous coordinates

q = (c0 : c1 : c2 : c3 : q00 : q01 : q02 : q03 : q11 : q12 : q13 : q22 : q23 : q33).
If 	 ∈ S is a general surface, its normalization ϕ : S → 	 is an Enriques surface and

H = ϕ∗(O	(1)) is an ample divisor class with H2 = 6 and φ(H) = 2. More precisely,
H ∼ E1 + E2 + E3, with the usual Notation 4.9, and the edges �i and �′

i of T are the images
by ϕ of the curves Ei and E ′

i ∼ Ei + KS , with i = 1, 2, 3. (Recall that for a primitive,
isotropic E , the complete linear system |E + KS | has a unique element.)

We thus have a natural rational map

p : S ��� E4,2,

assigning to a general surface 	 ∈ S the pair (S, H), where ϕ : S → 	 is the normalization
and H = ϕ∗(O	(1)). Composing with the forgetful map E4,2 → E , we have a rational map
S ��� E , which is dominant. Indeed, given a general, whence unnodal, Enriques surface
S, we can find a 3-isotropic sequence {E1, E2, E3}. If we set H = E1 + E2 + E3, then
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(S, H) ∈ E4,2 and the linear system |H | determines a morphism ϕH : S → P
3, cf., e.g.,

[7, Thm. 4.6.3 and 4.7.2], and, up to a change of coordinates, 	 = ϕH (S) is an Enriques
sextic surface. Accordingly, the map p is dominant. If (S, H) is a point of E4,2, the fibre
p−1(S, H) consists of the orbit of 	 = ϕH (S) via the 3–dimensional group of projective
transformations fixing T .

Denote by v the vertex of T not contained in the face spanned by �1, �2, �3. We define
Fi , i = 0, 1, 2, to be the family of irreducible cubic (resp., quartic, quintic) curves F ⊂ P

3

of arithmetic genus 1 such that v /∈ F and F meets

• all edges of T exactly once, if i = 0;
• the edges �1 and �′

1 of T exactly twice, and the remaining edges exactly once, if i = 1;
• the edges �3 and �′

3 of T exactly once, and the remaining edges exactly twice, if i = 2.

Note that if S is an Enriques surface that is the normalization of a sextic	 ∈ S containing
an elliptic curve F as above, then {E1, E2, E3, F} is a simple isotropic set on S, where we
still denote by F the strict transform of F ⊂ 	 in S. In particular, since such simple isotropic
sets exist with F irreducible on an unnodal Enriques surface, the families Fi are non–empty.

Lemma 5.1 (a) The familyF2 is irreducible, 10-dimensional and rational, and each F ∈ F2

is contained in a 3-dimensional linear system of Enriques sextics.
(b) The family F1 is irreducible, 8-dimensional and rational, and each F ∈ F1 is contained

in a 5-dimensional linear system of Enriques sextics.
(c) The family F0 is irreducible, 6-dimensional and rational, and each F ∈ F0 is contained

in a 7-dimensional linear system of Enriques sextics.

Proof We first prove (b) (resp. (c)). Let F ∈ F1 (resp. F ∈ F0). The linear system S cuts out
on F a linear system of divisors with base locus (containing) T ∩ F and a moving part g of
degree (at most) 8 (resp., 6). Note that S contains the 9–dimensional linear system formed
by surfaces of the form T + Q, where Q is a general quadric in P3: looking at equation (28),
these are the surfaces obtained by setting ci = 0, for i = 1, . . . , 4. Since quadrics cut out on
F a complete linear system, we see that g is complete, of dimension 7 (resp. 5). This proves
that the linear system of Enriques sextics containing F has dimension 5 (resp., 7).

We now prove the rest of (b). Given F ∈ F1, the intersection of F with the edges of T
is a subscheme Z of length 8 of the union of these edges off the vertices of T . Let Z be the
Hilbert scheme of such subschemes. We have a restriction morphism γ : F1 → Z.
Claim The morphism γ is injective and dominant.

Indeed, let F be in F1 and let Z = γ (F). To prove the injectivity, it suffices to prove that
the linear system of quadrics passing through Z has dimension 1. Suppose this is false. Then
there would be a netQ of quadrics through these 8 points. Fix the attention on a face � of T
containing four of these points (on three edges). Then the quadrics inQ containing two fixed
general points of � contain �, because there is no conic containing the four points of Z on
� and two general points of �. Consequently, the remaining four of the eight points should
be coplanar, a contradiction, proving the injectivity. The dominance is then clear because,
consequently, the quadrics containing a general Z in Z form a pencil whose base locus is in
F1.

Since Z is birational to Sym2(�1)×Sym2(�′
1)× �2 × �′

2 × �3 × �′
3 � P

8, the claim yields
that F1 is irreducible, rational of dimension 8. This proves (b).

We next prove the rest of (c). If F ∈ F0, then F spans a plane �F ⊂ P
3, which intersects

the set of edges of T in six distinct points. These six points are the vertices of the quadrilateral
cut out on �F by the faces of T . Hence the cubic F is smooth at these points, otherwise
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it would contain one of the sides of the above quadrilateral. Now we claim that the set of
plane cubics through these six points is a linear system of dimension 3. Indeed, otherwise,
the cubics in this linear system, of dimension r ≥ 4, would cut out on F , off the six points,
a gr−1

3 with r − 1 ≥ 3, which is impossible, since F has arithmetic genus 1. Thus, F0 is a
P
3-bundle over an open subset of |OP3(1)| � P

3, and is therefore irreducible, rational and
6-dimensional. This proves (c).

As for item (a), the fact that F2 is irreducible, 10-dimensional and rational is proved in
[16, Prop. 1.1 and §2]. The rest of the assertion is proved exactly in the same way we did it
for cases (b) and (c) above. ��

We next define F00 to be the family of ordered pairs (F, F ′) of irreducible cubic curves
F, F ′ ⊂ P

3 of arithmetic genus 1 such that F, F ′ ∈ F0 and F and F ′ intersect exactly in
one point not on T , with distinct tangent lines.

Note that if S is an Enriques surface that is the normalization of a sextic	 ∈ S containing
a pair (F, F ′) of elliptic curves as above, then {E1, E2, E3, F, F ′} is a simple isotropic set
on S, where we still denote by F and F ′ the respective strict transforms of F and F ′ in S. As
above, since such isotropic sets of irreducible curves exist on an unnodal Enriques surface,
we have that F00 is non–empty.

Lemma 5.2 The family F00 is irreducible, 11-dimensional and rational and each pair
(F, F ′) ∈ F00 is contained in a 2-dimensional linear system of Enriques sextics.

Proof The family F00 can be constructed in the following way: fix a pair of general planes
� and �′ in P

3 intersecting along a line �, and fix a point p ∈ �. Consider in both � and
�′ the family of cubic curves passing through p and the six intersection points of � and �′,
respectively, with the edges of T ; each of these is a two-dimensional linear system. Varying
�, �′ and p and taking the two families of cubic curves, we obtain all elements of F00. This
description shows the rationality and the dimension.

Now fix (F, F ′) ∈ F00 and let SF+F ′ be the linear system of Enriques sextics containing
F∪F ′. First we prove that dim(SF+F ′) ≥ 2. Indeed, the linear systemSF of Enriques sextics
containing F is 7-dimensional by Lemma 5.1(c). It cuts on F ′ a linear system of divisors
with base locus (containing) T ∩ F and p = F ∩ F ′ and a moving part of degree (at most)
5, hence of dimension at most 4. Therefore, containing F ′ imposes at most 5 conditions on
SF .

Next we prove that dim(SF+F ′) ≤ 2, whichwill finish our proof. Consider the pair F ⊂ �

and F ′ ⊂ �′ in F00, with the planes they span. Set � = � ∩ �′ and F ∩ � = {a, b, p} and
F ′ ∩ � = {a′, b′, p}. Let 	 ∈ SF+F ′ be general. Then � intersects 	 in six points, among
these are {a, b, a′, b′, p}; call p′ the sixth point. The surface 	 intersects � (resp., �′) in
a cubic G off F (resp., G ′ off F ′), passing through a′, b′ and p′ (resp., a, b and p′), in
addition to the six intersection points of � (resp., �′) with the edges of T . Then G (resp.
G ′) is uniquely determined by the condition of passing through the six points � (resp. �′)
of intersection of � (resp. �′) with the edges of T and through a′, b′, p′ (resp., a, b, p′).
Let us prove this for G (the proof for G ′ is identical). Suppose there is a pencil of cubics
containing � and a′, b′, p′. Since a′, b′, p′ lie on �, there is a cubic in the pencil containing
�. The remaining conic component of this cubic should pass through �, and this is clearly
impossibile. Consequently, as 	 varies in SF+F ′ , the intersection 	 ∩ (� ∪ �′) may at
most vary with the point p′ ∈ �. Thus the restriction S�∪�′ of SF+F ′ to � ∪ �′ is at most
one-dimensional. Consider the restriction map SF+F ′ ��� S�∪�′ , which is linear, rational
and surjective by assumption. Its indeterminacy locus is the unique surface T ∪�∪�′. Since
dim(S�∪�′) ≤ 1, we deduce that dim(SF+F ′) ≤ 2, as desired. ��
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We next define F0i , for i = 1, 2, to be the family of ordered pairs of irreducible curves
(F, F ′) in P3 of arithmetic genus 1 such that F ∈ F0, F ′ ∈ F1 and F and F ′ intersect exactly
in i points not on T , with distinct tangent lines.

Note that, as before, if S is an Enriques surface that is the normalization of a sextic 	 ∈ S
containing a pair (F, F ′) of elliptic curves as above, then {E1, E2, E3, F, F ′} is a simple
isotropic set on S, where we still denote by F and F ′ the respective strict transforms of F and
F ′ in S. Since such isotropic sets of irreducible curves exist on an unnodal Enriques surface,
we have that each F0i is non–empty.

Lemma 5.3 The family F0i is irreducible, uniruled and (14 − i)-dimensional and each pair
(F, F ′) ∈ F0i is contained in a linear system SF+F ′ of Enriques sextics of dimension at
least i − 1. If (F, F ′) ∈ F0i is contained in an Enriques sextic 	 whose normalization S is
an Enriques surface, then SF+F ′ has dimension exactly i − 1, unless F + F ′ is contained in
only nodal Enriques sextics (that is, Enriques sextics whose normalizations are nodal).

Proof We have a natural dominant map q : F0i → F1 × (P3)∨ sending the pair (F, F ′) to
F ′ ∈ F1 and the plane �F spanned by F in (P3)∨.

For i = 1, the fiber of q over (F ′,�) consists of the union of four 2-dimensional linear
systems of cubics in � through the six intersection points of � with the edges of T and
one of the four intersection points of � with F ′. This proves the irreduciblity because the
monodromy action of the four intersection points is the symmetric group (see [1, Lemma on
p. 111]), and shows also the uniruledness. The dimension also follows easily.

For i = 2, the fiber of q over (F ′,�) consists of the union of six 1-dimensional linear
systems of cubics in � through the six intersection points of � with the edges of T and two
of the four intersection points of � with F ′. As above, this proves irreduciblity, uniruledness
and the dimension.

The dimension of the linear system of Enriques sextics SF ′ containing a fixed F ′ ∈ F1

is 5 by Lemma 5.1(b). Containing an additional cubic F ∈ F0 intersecting F ′ in i points,
imposes at most 6− i conditions, arguing as in the proof of Lemma 5.2. Therefore, the linear
system of Enriques sextics SF+F ′ containing a pair (F, F ′) ∈ F0i has dimension at least
5 − (6 − i) = i − 1.

Let 	 be an Enriques sextic containing F + F ′ such that its normalization ϕ : S → 	 is
an unnodal Enriques surface. The linear system S cuts on	 a linear system whose pull–back
on S via ϕ is the sublinear system of |6(E1 + E2 + E3)| with base locus twice the sum of
the pullback of the edges of the tetrahedron, which is

2
(

E1 + E2 + E3 + (E1 + KS) + (E2 + KS) + (E3 + KS)
)

∼ 4(E1 + E2 + E3).

Hence, the free part is |2(E1 + E2 + E3)|. So we have a linear, rational restriction map

SF+F ′ ��� |B|, with B := 2(E1 + E2 + E3) − (F + F ′)

whose indeterminacy locus is just the surface 	.
We have B2 = 2(i − 2). If i = 1 and S is unnodal, then |B| = ∅, which shows that

SF+F ′ = {	} has dimension 0, as wanted. If i = 2, then B2 = 0 and E1 · B = 1, hence
h0(B) = 1 by Riemann–Roch. This yields dim(SF+F ′) ≤ 1, proving the assertion. ��

Consider now the incidence varieties

Gi := {(F, 	) ∈ Fi × S | F ⊂ 	},
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for i = 0, 1, 2, and

G00 := {(F, F ′, 	) ∈ F00 × S | F + F ′ ⊂ 	},
which are irreducible, rational and 13-dimensional, by Lemmas 5.1 and 5.2. Similarly, for
i = 1, 2, let

G0i := {(F, F ′, 	) ∈ F0i × S | 	 is unnodal, F + F ′ ⊂ 	},
which are irreducible, uniruled and 13-dimensional, by Lemma 5.3.

Proposition 5.4 If G is any of the incidence varieties Gi , for i = 0, 1, 2, G00, G0i , for i = 1, 2,
the obvious projectionπ : G → S is dominant, hence generically finite. Accordingly, if ξ ∈ G
is a general point, then 	 = π(ξ) is a general element of S and its normalization S is a
general Enriques surface.

Proof We prove the assertion for G = G00, the proof in the other cases being similar.
Let S be a general Enriques surface. There is an isotropic 5–sequence {E1, . . . , E5} on S.

Set H = E1 + E2 + E3. Then ϕH : S → 	 ⊂ P
3 maps S, up to a projective transformation,

to a general surface in S. Moreover E4, E5 are mapped to two elliptic cubic curves F, F ′
meeting at a point. This proves the assertion. ��

Wenowdefine variousmaps from these incidence varieties to some Eg,φs, for various g and
φ, which we eventually prove to be dominant, establishing irreducibility and unirationality
or uniruledness.

Consider a general element (F, 	) of Gi , for i = 0, 1, 2. Then the normalization S of	 is
an Enriques surface and on S we have the three curves E1, E2, E3, plus the strict transform
of F which, by abuse of notation, we still denote by F . Similar convention we introduce for
G0i , for i = 0, 1, 2.

Fix four nonnegative integers α1, α2, α3, α4, at least two nonzero. Then, for each i =
0, 1, 2, and ε = 0, 1, we have a rational map

f iα1,α2,α3,α4;ε : Gi ��� Eg,φ

sending the general point (F, 	) ∈ Gi to (S,OS(α1E1 + α2E2 + α3E3 + α4F + εKS)),
where g = pa(α1E1 + α2E2 + α3E3 + α4F) and φ = φ(α1E1 + α2E2 + α3E3 + α4F).

Next, fix five positive integers α1, . . . , α5, at least two nonzero. For each i = 0, 1, 2, and
ε = 0, 1, we have a rational map

f 0iα1,α2,α3,α4,α5;ε : G0i ��� Eg,φ

sending ageneral (F, F ′, 	) ∈ G0i to
(

S,OS(α1E1 + α2E2 + α3E3 + α4F + α5F ′ + εKS)
)

,
where g = pa(α1E1 + α2E2 + α3E3 + α4F + α5F ′) and φ := φ(α1E1 + α2E2 + α3E3 +
α4F + α5F ′).

Let now (F, 	) ∈ G2 be general and consider the curves E1, E2, E3, F on S. Then
E1 + E2 + F satisfies the conditions of Lemma 3.4(b). Since Ei · (E1 + E2 + F) = 3, for
i = 1, 2, 3, we obtain an isotropic 10-sequence {E1, E2, E3, E4, . . . , E10} such that

3(E1 + E2 + F) ∼ E1 + · · · + E10.

In particular, F = E1,2. Note that each Ei for i ≥ 4 is uniquely determined up to numerical
equivalence class and permutation of indices; in particular, E4 + · · · + E10 ∼ 2E1 + 2E2 +
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3F − E3 is a well-defined element of Pic(S). For any five nonnegative integers α0, . . . , α4

such that at least one among α0, . . . , α3 is zero, we can consider the rational map

hα0,α1,α2,α3,α4;ε : G2 ��� Eg,φ

sending (F, 	) ∈ G2 to (S,OS(α0F +α1E1 +α2E2 +α3E3 +α4(E4 +· · ·+ E10)+εKS)),
where g := pa(α0F + α1E1 + α2E2 + α3E3 + α4(E4 + · · · + E10)) and φ := φ(α0F +
α1E1 + α2E2 + α3E3 + α4(E4 + · · · + E10)).

Finally, let (F, F ′, 	) ∈ G02 be a general point and consider E1, E2, E3, F, F ′ curves
in S. Then F + F ′ + E1 satisfies the conditions of Lemma 3.4(b). Since F · (E1 + F +
F ′) = Ei · (E1 + F + F ′) = 3, for i = 1, 2, 3, we obtain an isotropic 10-sequence
{E1, E2, E3, E4 := F, E5, . . . , E10} such that

3(E1 + F + F ′) ∼ E1 + · · · + E10.

In particular, F ′ = E1,4. Note that each Ei for i ≥ 5 is uniquely determined up to numerical
equivalence class and permutation of indices; in particular, E5 + · · · + E10 ∼ 2E1 + 2F +
3F ′−E2−E3 is awell-defined element of Pic(S). For any six nonnegative integersα0, . . . , α5
such that at least one among α0, . . . , α4 is zero, we have a map

h0α0,α1,α2,α3,α4,α5;ε : G02 ��� Eg,φ

sending (F, F ′, 	) to (S,OS(α0F
′ + α1E1 + α2E2 + α3E3 + α4F + α5(E5 + · · · + E10) + εKS)),

where g := pa(α0F ′ + α1E1 + α2E2 + α3E3 + α4E4 + α5(E5 + · · · + E10)) and φ :=
φ(α0F ′ + α1E1 + α2E2 + α3E3 + α4E4 + α5(E5 + · · · + E10)).

Our main results, Theorem 1.1 and Theorem 1.2, are, respectively, immediate conse-
quences of the following two propositions and the fact that the varieties Gi and G0,i are
irreducible and unirational or uniruled, as mentioned above. Let as usual ε ∈ {0, 1}.

Proposition 5.5 Let i ∈ {0, 1, 2} and α1, . . . , α4 ∈ N, at least two nonzero. The map
f i
α1,α2,α3,α4;ε is dominant onto the locus of pairs (S, H) ∈ Eg,φ admitting the same simple

decomposition type as α1E1 + α2E2 + α3E3 + α4F + εKS.
Let i ∈ {0, 1, 2} and α1, . . . , α5 ∈ N, at least two nonzero. The map f 0i

α1,α2,α3,α4,α5;ε is
dominant onto the locus of pairs (S, H) ∈ Eg,φ admitting the same simple decomposition
type as α1E1 + α2E2 + α3E3 + α4F + α5F ′ + εKS.

Proposition 5.6 Let α0, . . . , α4 ∈ N, with at least one among α0, . . . , α3 being nonzero. The
map hα0,α1,α2,α3,α4;ε is dominant onto the locus of pairs (S, H) ∈ Eg,φ admitting the same
simple decomposition type as α0F + α1E1 + α2E2 + α3E3 + α4(E4 + · · · + E10) + εKS.

Let α0, . . . , α5 ∈ N, with at least one among α0, . . . , α4 being nonzero. The map
h0

α0,α1,α2,α3,α4,α5;ε is dominant onto the locus of pairs (S, H) ∈ Eg,φ admitting the same
simple decomposition type asα0F ′+α1E1+α2E2+α3E3+α4F+α5(E5+· · ·+E10)+εKS.

The proofs of Propositions 5.5 and 5.6 require the results of Sect. 4 (more precisely,
Corollary 4.7) to make sure we have enough isotropic divisors in the decompositions of H
to map S to an Enriques sextic in the appropriate way. For instance, if H ∼ α1E1 + α2E1,2,
one writes H ∼ α1E1 + α2E1,2 + 0E2 + 0E3 so that E1 + E2 + E3 defines a mapping of S
to an Enriques sextic (following Notation 4.9 everywhere).

We use the following definition in the proofs of Propositions 5.5 and 5.6.
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Definition 5.7 For an isotropic 3-sequence I = {E1, E2, E3} on the Enriques surface S, we
let ˜Fi (I), i = 0, 1, 2, be the set of all primitive, isotropic divisors F on S satisfying

(F · E1, F · E2, F · E3) =

⎧

⎪

⎨

⎪

⎩

(1, 1, 1) if F ∈ ˜F0(I),

(2, 1, 1) if F ∈ ˜F1(I),

(2, 2, 1) if F ∈ ˜F2(I)

and ˜F0i (I), i = 0, 1, 2, the set of all pairs (F, F ′) of primitive, isotropic divisors F, F ′ on
S such that F ∈ ˜F0(I) and

• F ′ ∈ ˜F0(I) and F · F ′ = 1, if i = 0,
• F ′ ∈ ˜F1(I) and F · F ′ = 1, if i = 1,
• F ′ ∈ ˜F1(I) and F · F ′ = 2, if i = 2.

Proof of Proposition 5.5 Let (S, H) be as in either of the statements of the proposition. In
particular, H admits a simple decomposition type of length n, with 2 ≤ n ≤ 5. By Corollary
4.7, if n ≤ 4, we may write H ∼ α1E1 +α2E2 +α3E3 +α4F +εKS with I = {E1, E2, E3}
an isotropic 3-sequence and F ∈ ˜Fi (I), possibly allowing some of the αi s to be 0. If n = 5,
we may write H ∼ α1E1 + α2E2 + α3E3 + α4F + α5F ′ + εKS with (F, F ′) ∈ ˜F0i (I).
We may assume (S, H) to be general, in particular, S is unnodal. Then by [7, Thm. 4.6.3
and 4.7.2] the complete linear system |E1 + E2 + E3| maps S birationally onto an Enriques
sextic in P

3, with double lines along the edges of the tetrahedron T defined by the images
of all Ei and E ′

i := Ei + KS . Under this map, F (respectively, (F, F ′)) is mapped to an
element of Fi (resp., F0i ), finishing the proof. ��
Proof of Proposition 5.6 To prove the surjectivity of hα0,...,α4;ε, assume (S, H) admits the
given simple decomposition type as in the statement. We may assume that α4 > 0, otherwise
the result follows fromProposition 5.5. ByCorollary 4.7,wemay alwayswrite H ∼ α0E1,2+
α1E1 +α2E2 +α3E3 +α4(E4 +· · ·+ E10)+ εKS , possibly allowing more than one among
α0, α1, α2, α3 to be zero. Since E1,2 ∈ ˜F2(E1, E2, E3), the result follows as in the proof of
Proposition 5.5.

To prove the surjectivity of h0
α0,...,α5;ε , assume (S, H) admits the given simple decompo-

sition type as in the statement. We may again assume that α5 > 0. By Corollary 4.7, we may
alwayswrite H ∼ α0E1,4+α1E1+α2E2+α3E3+α4E4+α5(E5+· · ·+E10), possibly allow-
ing more than one among α0, α1, α2, α3, α4 to be zero. Then (E4, E1,4) ∈ ˜F02(E1, E2, E3)

and the result follows as in the proof of Proposition 5.5. ��
We now give the proofs of the three corollaries in the introduction.

Proof of Corollary 1.3 By Lemma 4.18, all cases with φ ≤ 4 admit simple decomposition
types of length n ≤ 4, except for the decomposition type g−7

4 E1 + E2 + E3 + E4 + E5. The
result thus follows from Theorem 1.1. ��
Proof of Corollary 1.4 Since g ≤ 20, we have H2 ≤ 38, whence φ ≤ 6 by (7), with equality
φ = 6 possible only for H2 = 36 by Proposition 3.1, in which case the simple decomposition
type has length 2. Thus the result follows from Theorem 1.1 in this case.

We have left to treat the cases where φ ≤ 5. By Lemma 4.18, all cases with φ ≤ 5 and g ≤
20 have decomposition types of length n ≤ 5, except for the type E1+E2+E3+E4+E5+E6

for (g, φ) = (16, 5), which is the only type occurring for these values of g and φ. Hence E16,5
is irreducible and uniruled by Theorem 1.2. Again by Lemma 4.18, all remaining cases with
φ ≤ 5 and g ≤ 20 admit simple decomposition types of length n ≤ 4 or of length 5 with all
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nonzero intersections occurring equal to one, except for the type 2E1 + E2 + E3 + E4 + E1,5
for (g, φ) = (17, 5), which is the only type occurring for these values of g and φ. Hence
E17,5 is irreducible and uniruled and all irreducible components of the remaining Eg,φ are
unirational by Theorem 1.1. ��
Proof of Corollary 1.5 If [H ] ∈ Num(S) is not 2-divisible, then by Lemma 4.8 some simple
decomposition types of H and H +KS have not all even coefficients in front of the isotropic,
primitive summands. Hence, by substituting one Ei with odd coefficient with Ei + KS , we
see that H and H + KS admit the same simple decomposition type, and thus belong to
the same irreducible component of Eg,φ , by Theorems 1.1 or 1.2 and the assumption on the
decomposition types. Hence ρ−1(ρ(C)) is irreducible.

Conversely, assume [H ] ∈ Num(S) is 2-divisible. Then H and H + KS do not lie in the
same irreducible component of Eg,φ by the last assertion in Lemma 4.8, whence ρ−1(ρ(C))

consists of two disjoint components. ��
Finally, we note that our results can also be used to describe the irreducible components

of Eg,φ for the highest values of φ with respect to g. Indeed, one has φ2 ≤ 2(g − 1) (cf. [7,
Cor. 2.7.1]) and there are no cases with φ2 < 2(g − 1) < φ2 + φ − 2 (cf. [12, Prop. 1.4]).
In the bordeline cases, we obtain:

Corollary 5.8 For each even φ, the space E φ2
2 +1,φ

is irreducible and unirational if φ ≡
2 mod 4 and has two irreducible components, both unirational, if φ ≡ 0 mod 4.

For each φ ≥ 1, the space E φ(φ+1)
2 ,φ

is irreducible and unirational when φ �= 6, and

consists of three irreducible unirational components when φ = 6.

Proof When g = φ2

2 + 1, equivalently H2 = φ2, then Proposition 3.1, Theorem 1.1 and

Lemma 4.8 yield that, when φ
2 is even, i.e., φ ≡ 0 mod 4 (respectively, when φ

2 is odd,
i.e., φ ≡ 2 mod 4) then E φ2

2 +1,φ
has two irreducible, unirational components (resp. only

one irreducible, unirational component), corresponding to the simple decomposition types
φ
2

(

E1 + E1,2
)

and φ
2

(

E1 + E1,2
) + KS (resp.

φ
2

(

E1 + E1,2
)

).

When g = φ(φ+1)
2 , Proposition 3.1 yields that there is a unique simple decomposition

type, of length 3, for each φ, except for φ = 6, where there are three possible types

2E1 + 3E1,2 + E2, 2(E1 + E2 + E1,2), 2(E1 + E2 + E1,2) + KS,

The result follows from Theorem 1.1. ��
The cases of the latter corollary are of particular interest from a Brill-Noether theoretical

point of view, since they are precisely the cases where the gonality of a general curve in the
complete linear system |H | is less than both 2φ and � g+3

2 �, the first being the lowest degree
of the restriction of an elliptic pencil on the surface, the latter being the gonality of a general
curve of genus g, cf. [12, Cor.1.5].
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Appendix: Irreducible components of ̂Eg,� and Eg,� for g ≤ 30

Using Proposition 4.16 (and Notation 4.9) we list all irreducible components of the moduli
spaces ̂Eg,φ for g ≤ 30, and describe the properties of ρ−1 of these components obtained by
Theorems 1.1 and 1.2 and Corollary 1.5. We thus obtain information about all irreducible
components of the moduli spaces Eg,φ , with few exceptions.5 The various decomposition
types can be obtained from Lemma 4.18 and Proposition 3.1, and an ad hoc treatment as in
the proof of Lemma 4.18 for the cases φ = 6 and 7. The fact that all decomposition types
below are in different equivalence classes can be checked by computing suitable intersections
as in the proof of Lemma 4.18, and the fact that they all do exist on any Enriques surface
follows from Lemma 3.4(a).

g φ comp. dec. type ρ−1

2 1 ̂E2,1 E1 + E2 Irred. unirat.

3 1 ̂E3,1 2E1 + E2 Irred. unirat.

3 2 ̂E3,2 E1 + E1,2 Irred. rational [3]

4 1 ̂E4,1 3E1 + E2 Irred. unirat.

4 2 ̂E4,2 E1 + E2 + E3 Irred. rational,[8, §4]

5 1 ̂E5,1 4E1 + E2 Irred. unirat.

5 2 ̂E(I )
5,2 2E1 + E1,2 Irred. unirat.

5 2 ̂E(I I )
5,2 2(E1 + E2) Twounirat. components

6 1 ̂E6,1 5E1 + E2 Irred. unirat.

6 2 ̂E6,2 2E1 + E2 + E3 Irred. unirat.

6 3 ̂E6,3 E1 + E2 + E1,2 Irred. unirat. [16]

7 1 ̂E7,1 6E1 + E2 Irred. unirat.

7 2 ̂E(I )
7,2 3E1 + E1,2 Irred. unirat.

7 2 ̂E(I I )
7,2 3E1 + 2E2 Irred. unirat.

7 3 ̂E7,3 E1 + E2 + E3 + E4 Irred. unirat.

8 1 ̂E8,1 7E1 + E2 Irred. unirat.

8 2 ̂E8,2 3E1 + E2 + E3 Irred. unirat.

8 3 ̂E8,3 2E1 + E2 + E1,3 Irred. unirat.

9 1 ̂E9,1 8E1 + E2 Irred. unirat.

9 2 ̂E(I )
9,2 4E1 + E1,2 Irred. unirat.

9 2 ̂E(I I )
9,2 2(2E1 + E2) Two unirat. components

9 3 ̂E(I )
9,3 2E1 + E2 + E1,2 Irred. unirat.

9 3 ̂E(I I )
9,3 2E1 + 2E2 + E3 Irred. unirat.

9 4 ̂E9,4 2(E1 + E1,2) Two unirat. components

5 The few cases marked with “??” in the tables are now known to be irreducible as a consequence of [10,
Thm.1.1] Their unirationality/uniruledness, or even Kodaira dimension, is however still open.
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g φ comp. dec. type ρ−1

10 1 ̂E10,1 9E1 + E2 Irred. unirat.

10 2 ̂E10,2 4E1 + E2 + E3 Irred. unirat.

10 3 ̂E(I )
10,3 2E1 + E2 + E3 + E4 Irred. unirat.

10 3 ̂E(I I )
10,3 3(E1 + E2) Irred. unirat.

10 4 ̂E10,4 2E1,2 + E1 + E2 Irred. unirat.

11 1 ̂E11,1 10E1 + E2 Irred. unirat.

11 2 ̂E(I )
11,2 5E1 + E1,2 Irred. unirat.

11 2 ̂E(I I )
11,2 5E1 + 2E2 Irred. unirat.

11 3 ̂E11,3 3E1 + E2 + E1,3 Irred. unirat.

11 4 ̂E11,4 E1 + E2 + E3 + E4 + E5 iIrred. unirat.

12 1 ̂E12,1 11E1 + E2 Irred. unirat.

12 2 ̂E12,2 5E1 + E2 + E3 Irred. unirat.

12 3 ̂E(I )
12,3 3E1 + 2E2 + E3 Irred. unirat.

12 3 ̂E(I I )
12,3 3E1 + E2 + E1,2 Irred. unirat.

12 4 ̂E12,4 2E1 + E2 + E3 + E1,4 Irred. unirat.

13 1 ̂E13,1 12E1 + E2 Irred. unirat.

13 2 ̂E(I )
13,2 6E1 + E1,2 Irred. unirat.

13 2 ̂E(I I )
13,2 2(3E1 + E2) Two unirat. components

13 3 ̂E(I )
13,3 3E1 + E2 + E3 + E4 Irred. unirat.

13 3 ̂E(I I )
13,3 4E1 + 3E2 Irred. unirat.

13 4 ̂E(I )
13,4 2E1 + 2E2 + E1,2 Irred. unirat.

13 4 ̂E(I I )
13,4 2(E1 + E2 + E3) Two unirat. components

13 4 ̂E(I I I )
13,4 3E1 + 2E1,2 Irred. unirat.

14 1 ̂E14,1 13E1 + E2 Irred. unirat.

14 2 ̂E14,2 6E1 + E2 + E3 Irred. unirat.

14 3 ̂E14,3 4E1 + E2 + E1,3 Irred. unirat.

14 4 ̂E(I )
14,4 2E1 + 2E2 + E3 + E4 Irred. unirat.

14 4 ̂E(I I )
14,4 3E1,2 + E1 + E2 Irred. unirat.

15 1 ̂E15,1 14E1 + E2 Irred. unirat.

15 2 ̂E(I )
15,2 7E1 + E1,2 Irred. unirat.

15 2 ̂E(I I )
15,2 7E1 + 2E2 Irred. unirat.

15 3 ̂E(I )
15,3 4E1 + 2E2 + E3 Irred. unirat.

15 3 ̂E(I I )
15,3 4E1 + E2 + E1,2 Irred. unirat.
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g φ comp. dec. type ρ−1

15 4 ̂E(I )
15,4 2E1 + E2 + E3 + E4 + E5 Irred. unirat.

15 4 ̂E(I I )
15,4 3E1 + 2E2 + E1,3 Irred. unirat.

15 5 ̂E15,5 2E1 + E2 + 2E1,2 Irred. unirat.

16 1 ̂E16,1 15E1 + E2 Irred. unirat.

16 2 ̂E16,2 7E1 + E2 + E3 Irred. unirat.

16 3 ̂E(I )
16,3 4E1 + E2 + E3 + E4 Irred. unirat.

16 3 ̂E(I I )
16,3 5E1 + 3E2 Irred. unirat.

16 4 ̂E(I )
16,4 3E1 + 3E2 + E3 Irred. unirat.

16 4 ̂E(I I )
16,4 3E1 + E2 + E3 + E1,4 Irred. unirat.

16 5 ̂E16,5 E1 + E2 + E3 + E4 + E5 + E6 Irred. uniruled
17 1 ̂E17,1 16E1 + E2 Irred. unirat.

17 2 ̂E(I )
17,2 8E1 + E1,2 Irred. unirat.

17 2 ̂E(I I )
17,2 2(4E1 + E2) Two unirat. components

17 3 ̂E17,3 5E1 + E2 + E1,3 Irred. unirat.

17 4 ̂E(I )
17,4 3E1 + 2E2 + 2E3 Irred. unirat.

17 4 ̂E(I I )
17,4 3E1 + 2E2 + E1,2 Irred. unirat.

17 4 ̂E(I I I )
17,4 2(2E1 + E1,2) Two unirat. components

17 4 ̂E(I V )
17,4 4(E1 + E2) Two unirat. components

17 5 ̂E17,5 2E1 + E2 + E3 + E4 + E1,5 Irred. uniruled

18 1 ̂E18,1 17E1 + E2 Irred. unirat.

18 2 ̂E18,2 8E1 + E2 + E3 Irred. unirat.

18 3 ̂E(I )
18,3 5E1 + 2E2 + E3 Irred. unirat.

18 3 ̂E(I I )
18,3 5E1 + E2 + E1,2 Irred. unirat.

18 4 ̂E(I )
18,4 3E1 + 2E2 + E3 + E4 Irred. unirat.

18 4 ̂E(I I )
18,4 4E1,2 + E1 + E2 Irred. unirat.

18 5 ̂E(I )
18,5 3E1 + E2 + 2E1,3 Irred. unirat.

18 5 ̂E(I I )
18,5 2E1 + 2E2 + E3 + E1,2 Irred. unirat.

19 1 ̂E19,1 18E1 + E2 Irred. unirat.

19 2 ̂E(I )
19,2 9E1 + E1,2 Irred. unirat.

19 2 ̂E(I I )
19,2 9E1 + 2E2 Irred. unirat.

19 3 ̂E(I )
19,3 5E1 + E2 + E3 + E4 Irred. unirat.

19 3 ̂E(I I )
19,3 3(2E1 + E2) Irred. unirat.

19 4 ̂E(I )
19,4 3E1 + E2 + E3 + E4 + E5 Irred. unirat.
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g φ comp. dec. type ρ−1

19 4 ̂E(I I )
19,4 4E1 + 2E2 + E1,3 Irred. unirat.

19 5 ̂E(I )
19,5 2E1 + 2E2 + 2E3 + E4 Irred. unirat.

19 5 ̂E(I I )
19,5 3E1,2 + E1 + E2 + E3 Irred. unirat.

19 6 ̂E19,6 3(E1 + E1,2) Irred. unirat.

20 1 ̂E20,1 19E1 + E2 Irred. unirat.

20 2 ̂E20,2 9E1 + E2 + E3 Irred. unirat.

20 3 ̂E20,3 6E1 + E2 + E1,3 Irred. unirat.

20 4 ̂E(I )
20,4 4E1 + 3E2 + E3 Irred. unirat.

20 4 ̂E(I I )
20,4 4E1 + E2 + E3 + E1,4 Irred. unirat.

20 5 ̂E(I )
20,5 2E1 + 2E2 + E3 + E4 + E5 Irred. unirat.

20 5 ̂E(I I )
20,5 3E1 + E2 + 2E1,2 Irred. unirat.

21 1 ̂E21,1 20E1 + E2 Irred. unirat.

21 2 ̂E(I )
21,2 10E1 + E1,2 Irred. unirat.

21 2 ̂E(I I )
21,2 10E1 + 2E2 Two unirat. components

21 3 ̂E(I )
21,3 6E1 + E2 + E1,2 Irred. unirat.

21 3 ̂E(I I )
21,3 6E1 + 2E2 + E3 Irred. unirat.

21 4 ̂E(I )
21,4 5E1 + 4E2 Irred. unirat.

21 4 ̂E(I I )
21,4 5E1 + 2E1,2 Irred. unirat.

21 4 ̂E(I I I )
21,4 4E1 + 2E2 + 2E3 Two unirat. components

21 4 ̂E(I V )
21,4 4E1 + 2E2 + E1,2 Irred. unirat.

21 5 ̂E(I )
21,5 2E1 + E2 + E3 + E4 + E5 + E6 ??

21 5 ̂E(I I )
21,5 3E1 + 2E2 + E3 + E1,4 Irred. unirat.

21 6 ̂E21,6 2(E1 + E2 + E1,2) Two unirat. components

22 1 ̂E22,1 21E1 + E2 Irred. unirat.

22 2 ̂E22,2 10E1 + E2 + E3 Irred. unirat.

22 3 ̂E(I )
22,3 6E1 + E2 + E3 + E4 Irred. unirat.

22 3 ̂E(I I )
22,3 7E1 + 3E2 Irred. unirat.

22 4 ̂E(I )
22,4 4E1 + 2E2 + E3 + E4 Irred. unirat.

22 4 ̂E(I I )
22,4 5E1,2 + E1 + E2 Irred. unirat.

22 5 ̂E(I )
22,5 3E1 + E2 + E3 + E4 + E1,5 Irred. uniruled

22 5 ̂E(I I )
22,5 3E1 + 3E2 + E1,2 Irred. unirat.

22 5 ̂E(I I I )
22,5 3E1 + 3E2 + 2E3 Irred. unirat.

22 6 ̂E22,6 E1 + E2 + E3 + E4 + E5 + E6 + E7 Irred. unirat.
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23 1 ̂E23,1 22E1 + E2 Irred. unirat.

23 2 ̂E(I )
23,2 11E1 + E1,2 Irred. unirat.

23 2 ̂E(I I )
23,2 11E1 + 2E2 Irred. unirat.

23 3 ̂E23,3 7E1 + E2 + E1,3 Irred. unirat.

23 4 ̂E(I )
23,4 5E1 + 2E2 + E1,3 Irred. unirat.

23 4 ̂E(I I )
23,4 4E1 + E2 + E3 + E4 + E5 Irred. unirat.

23 5 ̂E(I )
23,5 4E1 + E2 + 2E1,3 Irred. unirat.

23 5 ̂E(I I )
23,5 3E1 + 2E2 + E3 + E1,2 Irred. unirat.

23 5 ̂E(I I I )
23,5 3E1 + 3E2 + E3 + E4 Irred. unirat.

23 6 ̂E23,6 2E1 + E2 + E3 + E4 + E5 + E1,6 ??

24 1 ̂E24,1 23E1 + E2 Irred. unirat.

24 2 ̂E24,2 11E1 + E2 + E3 Irred. unirat.

24 3 ̂E(I )
24,3 7E1 + E2 + E1,2 Irred. unirat.

24 3 ̂E(I I )
24,3 7E1 + 2E2 + E3 Irred. unirat.

24 4 ̂E(I )
24,4 5E1 + 3E2 + E3 Irred. unirat.

24 4 ̂E(I I )
24,4 5E1 + E2 + E3 + E1,4 Irred. unirat.

24 5 ̂E(I )
24,5 3E1 + 2E2 + 2E3 + E4 Irred. uniruled

24 5 ̂E(I I )
24,5 4E1,2 + E1 + E2 + E3 Irred. unirat.

24 5 ̂E(I I I )
24,5 4E1 + 3E2 + E1,3 Irred. unirat.

24 6 ̂E(I )
24,6 3E1 + E2 + E3 + 2E1,4 Irred. unirat.

24 6 ̂E(I I )
24,6 2E1 + 2E2 + E3 + E4 + E1,2 Irred. uniruled

25 1 ̂E25,1 24E1 + E2 irred. unirat.

25 2 ̂E(I )
25,2 12E1 + E1,2 Irred. unirat.

25 2 ̂E(I I )
25,2 2(6E1 + E2) Two unirat. components

25 3 ̂E(I )
25,3 7E1 + E2 + E3 + E4 Irred. unirat.

25 3 ̂E(I I )
25,3 8E1 + 3E2 Irred. unirat.

25 4 ̂E(I )
25,4 2(3E1 + 2E2) Two unirat. components

25 4 ̂E(I I )
25,4 2(3E1 + E1,2) Two unirat. components

25 4 ̂E(I I I )
25,4 5E1 + 2E2 + 2E3 Irred. unirat.

25 4 ̂E(I V )
25,4 5E1 + 2E2 + E1,2 Irred. unirat.

25 5 ̂E(I )
25,5 4E1 + E2 + 2E1,2 Irred. unirat.

25 5 ̂E(I I )
25,5 3E1 + 2E2 + E3 + E4 + E5 Irred. unirat.
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25 5 ̂E(I I I )
25,5 4E1 + 4E2 + E3 Irred. unirat.

25 6 ̂E(I )
25,6 4E1 + 3E1,2 Irred. unirat.

25 6 ̂E(I I )
25,6 2(E1 + E2 + E3 + E4) Two unirat. components

25 6 ̂E(I I I )
25,6 3E1,2 + E1 + E2 + E3 + E4 Irred. uniruled

26 1 ̂E26,1 25E1 + E2 Irred. unirat.

26 2 ̂E26,2 12E1 + E2 + E3 Irred. unirat.

26 3 ̂E26,3 8E1 + E2 + E1,3 Irred. unirat.

26 4 ̂E(I )
26,4 5E1 + 2E2 + E3 + E4 Irred. unirat.

26 4 ̂E(I I )
26,4 6E1,2 + E1 + E2 Irred. unirat.

26 5 ̂E(I )
26,5 3E1 + E2 + E3 + E4 + E5 + E6 ??

26 5 ̂E(I I )
26,5 4E1 + 2E2 + E3 + E1,4 Irred. unirat.

26 5 ̂E(I I I )
26,5 5(E1 + E2) Irred. unirat.

26 6 ̂E(I )
26,6 3E1 + E2 + E3 + 2E1,2 Irred. unirat.

26 6 ̂E(I I )
26,6 2E1 + 2E2 + 2E3 + E4 + E5 Irred. unirat.

27 1 ̂E27,1 26E1 + E2 Irred. unirat.

27 2 ̂E(I )
27,2 13E1 + E1,2 Irred. unirat.

27 2 ̂E(I I )
27,2 13E1 + 2E2 Irred. unirat.

27 3 ̂E(I )
27,3 8E1 + E2 + E1,2 Irred. unirat.

27 3 ̂E(I I )
27,3 8E1 + 2E2 + E3 Irred. unirat.

27 4 ̂E(I )
27,4 6E1 + 2E2 + E1,3 Irred. unirat.

27 4 ̂E(I I )
27,4 5E1 + E2 + E3 + E4 + E5 Irred. unirat.

27 5 ̂E(I )
27,5 4E1 + E2 + E3 + E4 + E1,5 Irred. uniruled

27 5 ̂E(I I )
27,5 4E1 + 3E2 + E1,2 Irred. unirat.

27 5 ̂E(I I I )
27,5 4E1 + 3E2 + 2E3 Irred. unirat.

27 6 ̂E(I )
27,6 3E1 + 2E2 + 2E1,2 Irred. unirat.

27 6 ̂E(I I )
27,6 3E1 + 2E2 + 2E3 + E1,4 Irred. unirat.

27 6 ̂E(I I I )
27,6 2E1 + 2E2 + E3 + E4 + E5 + E6 ??

28 1 ̂E28,1 27E1 + E2 Irred. unirat.

28 2 ̂E28,2 13E1 + E2 + E3 Irred. unirat.

28 3 ̂E(I )
28,3 8E1 + E2 + E3 + E4 Irred. unirat.

28 3 ̂E(I I )
28,3 3(3E1 + E2) Irred. unirat.

28 4 ̂E(I )
28,4 6E1 + 3E2 + E3 Irred. unirat.
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28 4 ̂E(I I )
28,4 6E1 + E2 + E3 + E1,4 Irred. unirat.

28 5 ̂E(I )
28,5 5E1 + E2 + 2E1,3 Irred. unirat.

28 5 ̂E(I I )
28,5 4E1 + 2E2 + E3 + E1,2 Irred. unirat.

28 5 ̂E(I I I )
28,5 4E1 + 3E2 + E3 + E4 Irred. unirat.

28 6 ̂E(I )
28,6 2E1 + E2 + E3 + E4 + E5 + E6 + E7 Irred. uniruled

28 6 ̂E(I I )
28,6 3(E1 + E2 + E3) Irred. unirat.

28 6 ̂E(I I I )
28,6 3E1 + 2E2 + E3 + E4 + E1,5 Irred. uniruled

28 7 ̂E28,7 3E1 + E2 + 3E1,2 Irred. unirat.

29 1 ̂E29,1 28E1 + E2 Irred. unirat.

29 2 ̂E(I )
29,2 14E1 + E1,2 Irred. unirat.

29 2 ̂E(I I )
29,2 2(7E1 + E2) Two unirat. components

29 3 ̂E29,3 9E1 + E2 + E1,3 Irred. unirat.

29 4 ̂E(I )
29,4 7E1 + 4E2 Irred. unirat.

29 4 ̂E(I I )
29,4 7E1 + 2E1,2 Irred. unirat.

29 4 ̂E(I I I )
29,4 2(3E1 + E2 + E3) Two unirat. components

29 4 ̂E(I V )
29,4 6E1 + 2E2 + E1,2 Irred. unirat.

29 5 ̂E(I )
29,5 4E1 + 2E2 + 2E3 + E4 Irred. unirat.

29 5 ̂E(I I )
29,5 5E1,2 + E1 + E2 + E3 Irred. unirat.

29 5 ̂E(I I I )
29,5 5E1 + 3E2 + E1,3 Irred. unirat.

29 6 ̂E(I )
29,6 3E1 + E2 + E3 + E4 + E5 + E1,6 ??

29 6 ̂E(I I )
29,6 2(2E1 + E2 + E1,3) Two unirat. components

29 6 ̂E(I I I )
29,6 3E1 + 3E2 + E3 + E1,2 Irred. unirat.

30 1 ̂E30,1 29E1 + E2 Irred. unirat.

30 2 ̂E30,2 14E1 + E2 + E3 Irred. unirat.

30 3 ̂E(I )
30,3 9E1 + 2E2 + E3 Irred. unirat.

30 3 ̂E(I I )
30,3 9E1 + E2 + E1,2 Irred. unirat.

30 4 ̂E(I )
30,4 6E1 + 2E2 + E3 + E4 Irred. unirat.

30 4 ̂E(I I )
30,4 7E1,2 + E1 + E2 Irred. unirat.

30 5 ̂E(I )
30,5 5E1 + E2 + 2E1,2 Irred. unirat.

30 5 ̂E(I I )
30,5 4E1 + 2E2 + E3 + E4 + E5 Irred. unirat.

30 5 ̂E(I I I )
30,5 5E1 + 4E2 + E3 irred. unirat.

123



73 Page 34 of 34 C. Ciliberto et al.

g φ comp. dec. type ρ−1

30 6 ̂E(I )
30,6 4E1 + E2 + E3 + 2E1,4 Irred. unirat.

30 6 ̂E(I I )
30,6 3E1 + 2E2 + E3 + E4 + E1,2 Irred. unirat.

30 6 ̂E(I I I )
30,6 3E1 + 3E2 + 2E3 + E4 Irred. unirat.

30 6 ̂E(I V )
30,6 4E1,2 + E1 + E2 + 2E3 Irred. unirat.

30 7 ̂E(I )
30,7 2E1 + E2 + E3 + E4 + E5 + E6 + E1,7 Irred. unirat. (cf. Rem. 4.14)

30 7 ̂E(I I )
30,7 2E1 + 4E2 + E3 + E4 + E5 irred. unirat.
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