
Toker et al. Genome Medicine           (2023) 15:41  
https://doi.org/10.1186/s13073-023-01195-2

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine

Not every estimate counts – evaluation 
of cell composition estimation approaches 
in brain bulk tissue data
Lilah Toker1,2,3, Gonzalo S. Nido1,2,3 and Charalampos Tzoulis1,2,3*    

Abstract 

Background  Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly 
employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived 
directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain 
tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not 
been adequately assessed.

Methods  We assessed the correspondence between different estimation methods based on transcriptomic (RNA 
sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 
49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetyla-
tion chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzhei-
mer’s disease and controls.

Results  We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell 
composition. Comparison across different estimation methods indicates that while different estimation methods 
applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between esti-
mates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always suf-
ficiently account for confounding variation in cell composition.

Conclusions  Our work indicates that cell composition estimation or direct quantification in one tissue sample 
should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an 
individual—even if the samples are directly adjacent. The highly similar outcomes observed among vastly different 
estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless 
validated through complementary experiments, the interpretation of analyses outcomes based on data confounded 
by cell composition should be done with great caution, and ideally avoided all together.
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Background
Despite the rapid advance in single-cell technologies, 
bulk tissue samples remain the main source of data, espe-
cially in fields which require large numbers of samples, 
such as neurodevelopmental and neurodegenerative dis-
orders of complex aetiology. This is particularly true for 
omics research beyond transcriptomics such as DNA 
methylation, histone modifications, and proteomics, 
where single-cell approaches are still in their infancy or 
do not yet exist. Bulk tissue data comes, however, with a 
major caveat of heterogeneity in the cellular composition 
of the samples being analysed. Accounting for this het-
erogeneity is absolutely essential for analysis and inter-
pretation of bulk tissue data [1–6]. Indeed, over the last 
decade, multiple approaches have been developed to esti-
mate the prevalence of different cell types directly from 
transcriptomic [7–11], DNA-methylation [3, 12, 13], 
and chromatin immunoprecipitation sequencing (ChIP-
seq) [5] data. Cellularity estimates, which alone provide 
valuable information on the association between cellular 
composition and the condition of interest, can then be 
incorporated into statistical models used for data analysis 
[1, 4, 5, 14, 15] to adjust for the variation in cellular com-
position of the samples.

While including cell count estimates as covariates 
in statistical models is becoming increasingly com-
mon, it is not always known to which extent these esti-
mates recapitulate the actual cell composition of the 
samples, and whether this adjustment can sufficiently 
account for the across-sample variation in cell com-
position. Indeed, accurate assessment of the estima-
tion methods requires knowledge of the ground truth 
with regard to the cellular composition of the samples. 
This requirement can be met for tissues where individ-
ual cells exist in suspension, such as blood, and sam-
ples can be aliquoted into fractions with identical cell 
composition - one for direct enumeration and the other 
for estimation [7, 13, 15]. The same approach, how-
ever, cannot be applied to brain tissue where cells are 
strongly interconnected with each other, sometimes 
over extended distances. For this reason, dissociation 
of entire brain cells, neurons in particular, is not fea-
sible. Moreover, the specific conditions required for 
sample preparation for direct enumeration (e.g. immu-
nohistochemistry staining) and omics analyses (e.g. 
transcriptomics), imply that the same tissue sample 
cannot be subjected to both procedures. Due to these 
technical limitations, the performance of the existing 
estimation methods in brain tissue has either not been 
assessed at all or evaluated exclusively using “proof of 
concept” approaches. These include (1) assessment of 
real/pseudo cell mixtures which lack the complexity of 

brain tissue (e.g. axonal and synaptic fractions, Fig. 1a), 
thus producing over-optimistic results [3, 11, 16], (2) 
comparing regions/conditions with known differences 
in cell composition [1, 3, 9], or (3) comparing the esti-
mated abundances across cell types [10, 11, 15]. While 
these types of validation are acceptable during the ini-
tial steps of method development, they cannot reliably 
assess method performance in biological tissue sam-
ples, where the intra-individual differences are much 
more subtle and regulatory changes in individual mol-
ecules are likely to be involved (Fig. 1b).

The few attempts to directly compare brain tissue-
based estimates to experimental cell counts [1, 15] used 
data from different tissue samples of the same individu-
als derived from different hemispheres. In such experi-
mental design, however, the two tissue samples would 
necessarily exhibit very different tissue architectures, 
compromising the direct comparison. Furthermore, 
since in both studies the samples were obtained from 
two groups of individuals where cell composition is 
known to be associated with the disease, this approach 
for comparison is in fact very similar to the “proof of 
concept” validation (2). In other words, the very mod-
est correlations observed between the estimates and 
the experimental cell counts (0.3–0.5) can be explained 
by the large inter-group variation, rather than interindi-
vidual variation inside each group [15]. Thus, to which 
extent the existing methods for cell type estimation can 
recapitulate the true cellular composition in human 
brain tissue remains unknown. Moreover, whether cell 
enumeration in one brain tissue sample can be used as 
a proxy for cellular composition of neighbouring tissue 
sample was never assessed.

In the current work, we assessed the correspondence 
between different estimation methods based on tran-
scriptomics (RNA sequencing, RNA-seq), DNA meth-
ylation (whole genome bisulfite sequencing, WGBS), 
and H3K27 acetylation ChIP-seq (H3K27ac) data from 
prefrontal cortex (PFC) of 49 individuals. Cell compo-
sition was estimated for the five major brain cell types: 
neurons, astrocytes, microglia, oligodendrocytes and 
endothelial cells. The estimates were derived either from 
the same (RNA-seq and WGBS) or adjacent (RNA-
seq, WGBS, H3K27ac) tissue samples. To gain further 
insight, we evaluated the impact of different estimation 
approaches on the analysis outcome of H3K27ac data 
from the entorhinal cortex of individuals with Alzhei-
mer’s disease (AD) and controls, a brain area severely 
affected by neuronal loss already in the early stages of 
the disease. The outline of the work is shown in Fig. 1c, 
and the specific estimation approaches tested are 
described in Additional file 1: Table S1.
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Methods
For all omics modalities, the data was obtained from 
fresh-frozen prefrontal cortex (Brodmann area 9) samples 
of 49 individuals from two independent cohorts. The first 
cohort (Park West, PW), comprised individuals with idi-
opathic Parkinson’s disease (PD, n = 18) from a prospec-
tive population-based cohort which has been described 
in detail [17] and neurologically healthy controls (n = 11) 
from our brain bank for ageing and neurodegeneration. 
The second cohort comprised 21 individuals from the 
Netherlands Brain Bank (NBB) including idiopathic PD 
(n = 10) and demographically matched neurologically 
healthy controls (n = 11). The demographic information 
of the individuals, as well as RNA quality metrics and tis-
sue sample characteristics, are provided in Additional 
file 1: Table S2 and Fig. 1c. ChIP-seq and WGBS data were 
obtained from our previously published work [1, 18]. The 
code to generate all the analyses and figures presented 
in this work can be accessed through the github reposi-
tory: https://​github.​com/​ltoker/​Celle​phant [19]. All the 
information regarding the version of the software and the 

packages used for the analysis are provided in the Session-
Info.Rds file.

RNA‑seq data
RNA sequencing was performed as previously described 
[2]. For 42/49 subjects, two different tissue samples were 
sent for sequencing, while the same tissue extract was 
sequenced twice for seven of the individuals (Fig.  1c, 
Additional file 1: Table S2). Data preprocessing was per-
formed using the same pipeline as previously descibed 
[2], using the updated software and transcriptome ver-
sions. Specifically, transcript quantification was carried 
out using Salmon v1.3 [20] using the GENCODE refer-
ence annotation v35 [21].

Calculation of Marker Gene Profiles (MGP)
Calculations were performed as previously described [1, 
2]. For the purpose of this analysis, both cohorts were 
analysed together.

Fig. 1  Study workflow. a IHC section in PFC showing the complexity of the human brain. DAPI staining (blue) was used to identify cell nuclei. MAP2 
(green) is a neuronal marker expressed in neuronal bodies and processes. Neuronal processes present in the section may originate from the same 
cell as the nuclei, from nearby cells, or from projecting neurons whose bodies are located in an entirely different brain region. b The caveat of “proof 
of concept” validation for cell composition estimation methods. Simulated data, each point corresponds to one sample. The estimated counts 
(middle) show high performance based on “proof of concept” validation, recapitulating the group differences observed with experimental counts 
(left). However, direct comparison of the estimated and direct counts across samples (“Ground truth validation”) indicates poor correlation between 
the two, and failure of the estimates to correctly recapitulate the intra-group variability. c Study workflow. Performance of different estimation 
approaches was assessed through correlations among the estimates in same or nearby tissue samples from 49 individuals (left) and through 
re-analysis of H3K27ac ChIP-seq data with major differences in cell composition between the groups. Detailed description is provided under 
“Methods” section and Fig. 4a

https://github.com/ltoker/Cellephant
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Calculation of Bisque estimates
Bisque estimates were calculated using the “Reference-
BasedDecomposition” function from “BisqueRNA” R pack-
age (https://​github.​com/​cozyg​ene/​bisque) [10], according 
to the author’s manual. Reference single set data were 
obtained from Darmanis et al. [22]. The “markers” variable 
was defined as the union between two sets of human brain 
cell type-specific marker genes, defined in Kelley et  al. 
[23] and Velmeshev et  al. [24] studies. Setting the “mark-
ers” variable to “NULL,” produced highly similar correlates 
(r > 0.98).

Calculation of dtangle and CIBERSORT estimates
Estimates were obtained through https://​voine​agulab.​
shiny​apps.​io/​Brain​Decon​vShiny/, a Shinyapp developed 
by Sutton et al. [11]. As input, we used counts per million 
(CPM) matrices. Cell type marker signature was selected 
as “MB,” since this signature was reported by the authors 
to produce the best outcomes for both methods.

Calculation of Marker Site Profiles (MSP)
In order to identify brain cell type-specific H3K27ac 
regions, we first analysed H3K27ac ChIP-seq data from 
NeuN+ and NeuN− brain cells [25]. Cell type-based 
broadPeaks (CellType_peak-set), BAM files and metadata 
files were downloaded from https://​www.​synap​se.​org/#​
!Synap​se:​syn56​13802. Differential acetylated regions 
(DAR) between NeuN+ (neurons) and NeuN− (glia) cells 
were calculated using “DESeq2” R package [26], including 
chromatin amount, library batch, sex, hemisphere, age 
and pH as covariates in the model. Peaks were defined as 
cell type-specific differentially acetylated regions (DARs) 
if they met the following criteria: (1) |fold change|> 4 and 
2) mean count > 1000. Peaks were annotated to genes 
using the “build_annotations” function from “annotatr” 
R package based on UCSC hg19 genome assembly. Peaks 
were annotated to all genes for which they intersected 
a region between 5  kb upstream from their transcrip-
tion start site (TSS) to the end of their 5′UTR. In the 
next step, we intersected the genes with DARs between 
glia and neurons with expression-based cortical marker 
gene lists based on NeuroExpresso database [9]. The 
DARs were next reassigned to specific glial and neuronal 
cells if they were annotated to genes defined as cell type-
specific based on NeuroExpresso. For example, all DARs 
annotated to MBP, defined as an oligodendrocyte marker 
gene based on NeuroExpresso, were defined as oligo-
dendrocyte marker sites (MSS). In the next step, reads 
based on BAM files from bulk tissue data were quantified 
in regions defined by the CellType_peak-set. The cor-
responding reads in peaks (RiP) were then converted to 
CPM and transformed to log2(CPM + 1). Next, for each 

cell type-specific MSS, we performed principal compo-
nent analysis based on the relevant peaks using “prcomp” 
function from the “stats” R package using (scale = T), 
as described in [9]. Marker Site Profiles (MSP) were 
defined as the scores of the samples in the first principal 
component, transformed to [0,1] range for visualization 
purposes.

Calculation of CETS estimates
CETS estimates were calculated as described in [3] using 
an implementation in R provided by the authors. CETS 
marks (genomic sites exhibiting differential methylation 
between neurons and glial cells) were lifted over from 
hg19 to hg38 using the R package “liftOver”, v1.18.0 [27].

Calculation of WGBS_MSP
CETS marks [3] were assigned to specific cell types if 
they were located within regions annotated to expres-
sion-based cortical marker gene lists from NeuroEx-
presso database [9]. CETS marks mapped to multiple cell 
types or with coverage below 10 × in more than 20% of 
the samples were excluded. The final list of sites and their 
respective annotation to cell types is provided in Addi-
tional file  2. The methodology for calculating WGBS-
MSP was analogous to that described for MSP/MGP but 
using the methylation levels in the cell type-categorized 
CETS marks. Briefly, for each cell type, the relevant 
methylation levels of CETS marks in all subjects were 
subjected to principal component analysis (missing val-
ues were estimated using the across-sample median). The 
corresponding scores of the samples in the first principal 
component were rescaled to [0,1], and the WGBS_MSPs 
for the tested cell type were then defined as 1-rescaled 
value.

Correlation between estimation methods
Correlation values were obtained using Pearson’s corre-
lation between pairs of estimates across individuals. The 
seven individuals resequenced twice for the transcrip-
tomics analyses were excluded from the correlation anal-
ysis comparing all estimates together.

Re‑analysis of Marzi et al.
For the purpose of the re-analysis, we used the count 
matrix and BED files provided by the authors through 
GSE102538. We first reproduced the output of the anal-
ysis as described in the manuscript using the code pro-
vided by the authors and validated that the results are 
identical to those reported in the manuscript. For the 
purpose of the re-analysis using MSPs, the design formula 
of the original analysis ( ∼ agef + CETSif + condition ) 
was adjusted to either:

https://github.com/cozygene/bisque
https://voineagulab.shinyapps.io/BrainDeconvShiny/
https://voineagulab.shinyapps.io/BrainDeconvShiny/
https://www.synapse.org/#!Synapse:syn5613802
https://www.synapse.org/#!Synapse:syn5613802
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or

where NeuronMSPif is neuronal MSP converted to a five-
level ordered factor, to conform to the methodological 
approach in the original publication.

Assessment of the case–control analysis output 
to H3K27ac in neurons and glial cells
BAM files of H3K27ac ChIP-seq data from NeuN+ and 
NeuN− brain cells [25] and metadata files were downloaded 
from https://​www.​synap​se.​org/#​!Synap​se:​syn56​13802, and 
reads in peaks defined in BED files from Marzi et al. were 
quantified using “Rsubread” v2.0.2 R package [28]. In order 
to make the analysis more comparable with the case–con-
trol analysis from Marzi et al., differential H3K27ac analy-
sis was performed using “edgeR” v3.28.1 R package [29], 
adjusting for sex, hemisphere, age and pH.

Comparison of the case–control analysis output to brain 
cell type‑specific enhancer and promoter regions
Cell type-specific enhancer and promoter regions defined 
in Nott et al. [30] were obtained through “echolocatoR” R 
package [31] github repository. Overlapping regions were 
identified using “findOverlaps” function from “IRanges” 
v2.28.0 R package [32], using the default parameters 
(> = 1 overlapping position).

Results
Different transcriptomics‑based estimation methods 
produce highly correlated estimates of cellular 
composition
We first assessed the similarity between the outcomes 
of different transcriptomics-based estimation meth-
ods applied to brain bulk tissue data. For the purpose 
of this analysis, we leveraged two RNA-seq datasets 
from PFC tissue samples of 49 individuals, compris-
ing Parkinson’s disease patients and controls (Fig.  1c, 
Additional file1: Table  S2). We chose to focus on four 
estimation methods: Marker Gene Profiles (MGP) [9], 
CIBERSORT [7], dtangle [33], and Bisque [10]. These 
methods were selected because they have substantial 
differences in multiple parameters that can impact the 
performance of estimation approaches such as cell type 
markers, estimation algorithm and the type of out-
come (Additional file1: Table S1), as well as publication 
date (2015–2020) and general popularity. CIBERSORT 
and dtangle were chosen specifically since they 
were reported to outperform other transcriptomics 

(1)∼ agef + NeuronMSPif + condition

(2)∼ agef + NeuronMSP +MicrogliaMSP + OligoMSP + condition

estimation approached in bulk brain tissue data in the 
recent work by Sutton et al. [11].

Despite the major methodological differences between 
the estimation methods, they produced highly cor-
related outcomes (Pearson’s correlation, interquartile 
range (IQR) 0.67 − 0.91). However, upon closer exami-
nation, the correlation values varied between cell types 
(Additional file1: Fig. S1a). While the median correla-
tion between methods for neurons, astrocytes, and oli-
godendrocytes was ~ 0.9, substantially lower correlations 
were observed for microglia (r = 0.61) and endothelial 
cells (r = 0.57). The correlation with other methods was 
particularly low for CIBERSORT. To better understand 
the reason behind the low correlation, we compared the 
estimated proportion of each cell type to immunohisto-
chemistry (IHC)-based cellular proportions in the PFC, 
reported in Patrick et  al [15]. While these are not the 
same individuals and thus direct comparison between 
IHC and estimated cell type is not feasible, on average, 
the estimates are expected to reflect the IHC-based pro-
portion of each cell type. MGP-based estimates were 
excluded from this analysis since the method outputs the 
relative abundance of each cell type across the subjects, 
rather than across the cell types. The median estimated 
proportion of neurons, astrocytes, and oligodendrocytes 
produced by the three applicable methods was of similar 
magnitude and comparable to the proportions expected 
based on IHC data (Additional file  1: Fig. S1b). In con-
trast, the median estimated proportion of endothelial 
and microglia cells was vastly dissimilar between the 
three estimation methods and different from the propor-
tions expected based on IHC data. Most strikingly, the 
estimated proportion of both cell types based on CIB-
ERSORT was 0, despite the IHC proportions of 0.1–0.2. 
This discrepancy cannot be explained by the fact that dif-
ferent individuals were included in our study and Patrick 
et al [15], since similar discordance was observed by Pat-
rick et  al. using IHC and RNA-seq data from the same 
individuals [15]. These results indicate that despite its 
popularity (> 4500 citations) and superior performance 
based on simulated/pseudo bulk brain tissue data [11], 
CIBERSORT is inadequate for analysis of real brain tissue 
data. Since dtangle and Bisque generally produced highly 
concordant estimates, for the rest of the paper we chose 
to focus on Bisque and MGP methods as representatives 
of two alternative approaches for transcriptomics-based 
estimation of cellular composition.

Neighbouring brain tissue samples exhibit substantial 
interindividual variation in cell composition
We next sought to assess the interindividual variability 
in the estimated cell composition of neighbouring tissue 
samples from the same Brodmann area. For this purpose, 

https://www.synapse.org/#!Synapse:syn5613802
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we leveraged the data available from 42 individuals for 
which RNA-seq was carried out twice in two different 
(but neighbouring) tissue samples from the same Brod-
mann area, and seven individuals for which the same tis-
sue sample RNA extract was sequenced twice (Fig.  1c, 
Additional file  1: Table  S2). This setting allowed us to 
compare the transcriptomics-based estimates derived 
from the same or different tissue samples while account-
ing for the variation induced by technical factors arising 
during library preparation and sequencing. For reasons 
described above, cellular abundance was estimated using 
MGP and Bisque methods only.

Regardless of the estimation approach (MGP or 
Bisque), estimates derived from the same tissue sam-
ples were highly correlated between the two RNA-seq 
datasets for all cell types (Pearson’s correlation 0.94–99, 
Fig.  2a,b). In contrast, the correlations between esti-
mates derived from data of nearby tissue samples varied 
both between methods and cell types and were substan-
tially lower than the correlations observed for estimates 
derived from the same tissue sample (Fig.  2a,b). The 

lowest correlation was observed for oligodendrocytes 
(Pearson’s correlation, MGP: 0.56, Bisque: 0.30), reflect-
ing the expected variation in grey/white matter propor-
tion among samples.

Correlation is low between methods based on different 
omics modalities
We next assessed the correlation between estimates 
derived using different estimation methods and differ-
ent omics modalities. The correlations were assessed 
between estimates based on RNA-seq (MGP and Bisque) 
and WGBS (WGBS_MSP and CETS [3], online meth-
ods), since for these omics modalities we had access to 
data extracted from the same tissue sample (Fig.  1c., 
Methods).

We observed a high correlation between estimates 
based on the same omics data modality (MGP vs. 
Bisque-based estimates, IQR (r): 0.70–0.84, Fig.  2c; 
CETS vs. neuronal WGBS_MSP, r = 0.87). In con-
trast, when we compared transcriptomics-based 
and WGBS-based estimates derived from the same 

Fig. 2  Estimate correlation. a Correlation between RNAseq1 (TS1) and RNAseq2 (TS2)-based estimates, using MGP (top) or Bisque (bottom). Each 
point represents one individual. For 42 of the individuals, mRNA was extracted for different but nearby tissue samples (blue), while for seven of 
the individuals the RNA was extracted from the same tissue sample but sequenced twice as part of RNAseq1 and RNAseq2 datasets (yellow). 
Pearson’s correlation for each cell type is shown separately for estimates derived from the same and different tissue samples. b Summary table of 
the correlation values shown in a. c Correlation between the estimates derives using the two RNA-based estimation methods in RNAseq1 (TS1) and 
RNAsq2 (TS2) datasets. d Correlation between RNA-based (MGP or Bisque) and WGBS-based estimates derived from the same (RNAseq1, WGBS) or 
different tissue samples (RNAseq2, WGBS). RNAseq2 estimates derived from the seven resequenced samples were excluded from the analysis
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tissue extracts (Fig. 1c, Additional file 1: Table S2), we 
observed minimal to no correlation between the meth-
ods (IQR − 0.11–0.09), with the single exception of oli-
godendrocytes, for which moderate correlation was 
observed (rMGP = 0.69, rBisque = 0.67, Figs. 2d and 3).

Estimation methods cluster based on the tissue fraction 
they capture
As a final step, we looked at the correlations between all 
estimation methods. To this end, we excluded the seven 
samples which had been sequenced twice, since these 
would artificially increase the correlation between esti-
mates derived from datasets RNAseq1 and RNAseq2. 
Clustering of the estimates indicated that estimates 
derived from nuclear omics modalities (WGBS and 
H3K27ac) are more similar to each other than to tran-
scriptomics-based estimates derived from whole tissue 
omics data. This was true regardless of the method and 
of whether the estimates were derived from the same or 
different tissue sample (Fig. 3).

Impact of the choice of estimation method of differential 
analysis of cell composition confounded samples
To get an insight on the impact of the choice of estima-
tion approaches on data analysis, we utilized publicly 
available H3K27ac ChIP-seq data from entorhinal cor-
tex of healthy subjects and individuals with AD [14]. 
Since entorhinal cortex exhibits severe neuronal loss 
already at the early stages of the disease [34, 35], the 
authors adjusted their analysis for estimated neuron/
glia ratio of the samples using CETS, calculated based 
on methylation data from neighbouring tissue sample 
from the same individuals. In spite of this adjustment, 
the differentially acetylated regions clustered the sam-
ples according to their CETS estimates rather than the 
disease state [14], indicating that the statistical model 
did not sufficiently account for the neuronal loss in AD. 
Based on our findings of high interindividual variabil-
ity in cell composition of brain tissue samples (Fig. 2), 
we hypothesized that this may be at least partially 
caused by ChIP-seq and cell estimation analyses being 
carried out in different tissue homogenates (rather 

Fig. 3  Estimate correlation across all estimation methods and data types. Clustering of the cell type estimates based on Pearson’s correlation 
between different estimation methods, omics type and tissue collections. Estimates from the seven resequenced individuals were excluded from 
this analysis. Omics type - omics data from which the estimates were derived; Fraction - tissue fraction captured by the omics data; Tissue - tissue 
collection from which the data was derived
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than aliquots of the same tissue sample homogenate). 
We thus re-analysed the data adjusting for cell type 
estimates calculated directly from the ChIP-seq data 
using MSPs. In order to restrict the difference between 

the original work and the re-analysis to estimates only, 
we used the count matrix and the BED file provided 
by the authors (GSE102538). The workflow of the re-
analysis is illustrated in Fig. 4a.

Fig. 4  Experimental design of the re-analysis of Marzi et al. data. a Schematic representation of the two different ChIP-seq datasets (Marzi et al. 
and Girdhar et al.) used for the re-analysis and their respective peak sets (left), the original count matrices (middle) and the count matrices 
obtained by quantifying the reads from one data in the peak set from the other data (right). Data obtained from Marzi et al. are indicated in dark 
red. The different types of analyses and the different models used throughout the re-analysis are shown in the two frames. b Group differences 
in the neuronal estimates. The indicated p-values are based on the statistical models of differential cell type analyses described in a. c Estimated 
group effects (AD vs. control) and 95% confidence intervals of the indicated cell types. Shown are the estimates based on model adjusting for 
demographic covariates only (top), demographic covariates + neuronal MSP (middle) and demographic covariates + neuronal MSPs + microglia 
MSPs (bottom). Microglia_act: genes upregulated in activated microglia; Microglia_deact: genes downregulated in activated microglia; 
OligoPrecursors: oligodendrocyte precursor cells; GabaViPReln: VIP and Reelin-positive cells; NeuNall: All peaks with log2 fold change > 3 and 
adjusted p-value < 0.05 between neuronal (NeuN+) and glial (NeuN−) cells
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Cell type estimations based on MSPs, but not CETS, 
recapitulate the expected differences in cellular 
composition between individuals with AD and controls
We first examined whether CETS or MSPs reliably 
recapitulate the expected severe neuronal loss in the 
entorhinal cortex of individuals with terminal AD. In 
addition, we evaluated whether the decrease in neu-
ronal abundance can be adequately captured by the 
transcript level of the neuronal marker ENO2, which 
was measured by the authors using real-time PCR 
(deltaCTEno2). The AD/control group difference for 
each type of estimates (CETS, neuronal MSPs, and del-
taCTEno2) was assessed by linear models, adjusting for 
sex and age (represented as ordered factor, in compli-
ance with the original analysis [14]). While all three 
measures exhibited the expected direction of change 
(decrease in CETS and neuronal MSPs, and increase 
in deltaCTEno2 in the AD group), this difference did 
not reach significance for CETS (p = 0.056, Fig.  4b). 
The difference observed for neuronal MSPs was highly 
significant and more pronounced than the difference 
observed for deltaCTEno2 (p = 9.9 × 10−3 vs. p = 0.028, 
Fig. 4b).

In addition to the extensive neuronal loss, changes 
in additional cell types, e.g. reduction in microglia, 
has been shown to take place in the hippocampus 
and entorhinal cortex of individuals with AD [36, 37]. 
Thus, we investigated whether the MSP approach 
can detect alterations in additional cell types. Since 
estimates of different cell types are not independent 
of each other but rather exhibit co-linearity, we per-
formed a step-wise regression analysis to identify cell 
types independently changing with the disease. This 
analysis indicated a decrease in neuronal and micro-
glia MSPs and an increase in oligodendrocyte MSPs 
in individuals with AD (Fig.  4c). In addition to being 
corroborated by IHC-based studies [36, 37], both the 
decrease in microglia MSPs and the increase in oligo-
dendrocyte MSPs are supported by a recent single-cell 
study of entorhinal cortex from individuals with AD 
[38].

H3K27ac ChIP‑seq data cluster samples based on cellular 
composition as estimated by MSPs
We next assessed the contribution of CETS, MSPs, 
and demographic variables provided by Marzi et  al. 
[14] to the variance in the ChIP-seq data. Hierarchi-
cal clustering based on pairwise sample correlation of 
the ChIP-seq data indicated that the samples cluster 
mainly based on oligodendrocyte and neuronal MSPs 
(Fig.  5a). Accordingly, the first principal component 
of the data was significantly associated with these two 
MSPs, while the 3rd–5th principal components were 

associated with microglia MSP (Fig.  5b). None of the 
first five principal components (explaining 52% of the 
variance) was associated with CETS.

CETS adjustment does not sufficiently account for neuronal 
loss in AD
Subsequently, we tested to what extent model adjust-
ment using different approaches for estimation of cell 
type abundance is sufficient to account for neuronal 
loss in AD. We postulated that insufficient adjustment 
would result in neuron-enriched H3K27-acetylated 
regions to be identified as hypoacetylated in AD sam-
ples, while glia-enriched H3K27-acetylated regions will 
appear hyperacetylated. For these analyses, we quantified 
H3K27ac ChIP-seq reads from human NeuN+ (neurons) 
and NeuN− (glia) cells [25], mapped to regions defined as 
peaks in Marzi et al., and carried out differential acetyla-
tion analysis between the two cell types (Fig. 4a). Next, we 
compared the cell type enriched H3K27ac regions with 
the differentially acetylated regions based on: (1) CETS-
adjusted model (CETS model, similar to Marzi et  al.) 
(2) model adjusted for neuronal MSPs and converted 
to ordered factor with five levels, similarly to the CETS 
model (MSPneuron) and (3) model adjusted for neuronal, 
microglia and oligodendrocyte MSPs, treating MSPs as 
continuous variables (MSPall model). While we believe 
that the MSPall model is more appropriate given that all 
three cell types exhibited group differences, the MSPneu-
ron model allowed for direct comparison between CETS 
and neuronal MSPs. The outputs from the three mod-
els were compared to the output from a model without 
cell type adjustment (NoCellAdjustment), or a model in 
which the CETS estimates were randomly shuffled across 
the subjects within each group (CETS_Shuffled).

In concordance with the expected cell composition 
bias between AD and control samples, the analysis out-
put based on NoCellAdjustment and CETS_Shuffled 
models mainly represented cell type-specific H3K27ac 
regions: 95% of the regions identified as hypoacetylated 
in AD corresponded to regions hyperacetylated in neu-
rons, whereas 87% of the regions identified as hyperacet-
ylated in AD corresponded to regions hypoacetylated in 
neurons (Fig. 5c). The strong bias towards cell type-spe-
cific H3K27ac regions was only slightly attenuated with 
the CETS model: 85% of the regions found significantly 
hypoacetylated in AD are hyperacetylated in neurons, 
while 83% of the regions found significantly hyperacety-
lated in AD are hypoacetylated in neurons (Fig. 5c). The 
cell type bias was substantially attenuated in the MSP-
neuron and MSPall model (hyperacetylated regions: 65.6 
and 66.0%, respectively; hypoacetylated regions: 64.1 and 
63.6%, respectively, Fig. 5c). Furthermore, a strong nega-
tive correlation between the H3K27ac fold of change in 
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AD vs. controls and the fold of change in neurons vs. glia 
was observed for NoCellAdjustment and CETS_Shuf-
fled models (Pearson’s correlation all regions: r =  − 0.67, 
significant regions: r =  − 0.85, both models, Fig.  5d). 
This correlation was moderately attenuated in the CETS 
model and substantially attenuated in both MSPneuron 
and MSPall models (Fig. 5d).

To confirm our findings, we repeated the cell type 
enrichment analysis using the recently described 
enhancer and promoter regions of neurons, astro-
cyte, microglia and oligodendrocyte cells [30]. We 
first assessed whether differentially acetylated regions 
in glia compared to neuron cells [25] indeed overlap 
with cell type-specific promoter/enhancer regions. 
As expected, 94% of the differentially hypoacetylated 
regions in glia vs. neurons overlapped with neuron-
specific promoter/enhancer regions, while overlap 
was only observed for 0.7% of the glia-hyperacetylated 

regions (Fig.  6a). Concordantly, when we assessed all 
the regions overlapping with cell type-specific pro-
moter/enhancer region, the vast majority of neuronal 
promoter/enhancer regions (> 99.3%) were hypoacety-
lated in glia compared to neurons, while the opposite 
was true for glial promoter/enhancer regions (Fig. 6b).

In the AD dataset, 52, 50, 38, 38 and 29%, out of 
the differentially acetylated regions identified based 
on NoCellAdjustment, CETS_Shuffled, CETS, MSP-
neuron and MSPall models, respectively, overlapped 
with a unique cell type-specific promoter/enhancer 
region (Additional file  1: Table  S3). Assessment of 
these regions confirmed that the CETS model does 
not sufficiently adjust for the major neuronal loss in 
entorhinal cortex in AD (Fig.  6c). Specifically, 86% of 
testable hypoacetylated regions in AD identified using 
CETS_model overlapped with a neuron-specific region 
(Fig.  6c). In sharp contrast, an overlap with unique 

Fig. 5  Impact of different cellular composition estimates on the analysis of H3K27ac ChIP-seq data. a Hierarchical clustering of the samples 
based on sample-sample correlation indicates that samples cluster according to their cellular composition, estimated by MSPs. b Association of 
demographic variables or cell estimates with the first five principal components of the data. The indicated numbers show the p-values of variables’ 
beta coefficients (y-axis) with the first five PCs (x-axis). c,d Comparison of the Marzi et al. data analysis output based on the different models, with 
cell type-specific H3K27ac ChIP-seq data from Girdhar et al. [25]. c H3K27ac fold of change in neurons vs glia in regions hypo- or hyperacetylated in 
AD based on each model. d Density plots of the correlation between the estimated H3K27ac effect sizes based on each model with the H3K27ac 
effect size in neurons compared to glial cells. Contours of the differentially acetylated regions based on each model are indicated in orange
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neuronal enhancer/promoter regions was observed 
for only 6.5% of the testable hyperacetylated regions. 
This bias was similar to that observed for the NoCel-
lAdjustment and CETS_Shuffled models (Fig. 6c). The 
cell type bias was substantially smaller in both the 
MSPneuron and MSPall models (Fig.  6c). Concord-
ant associations were observed when all overlapping 
regions were included in the analysis and the fold of 
change in AD compared to controls in each of the cell 
type-specific enhancer/promoter regions was assessed 
(Fig. 6d).

Discussion
In the absence of brain tissue datasets combining direct 
cell enumeration with omics-based estimates in the same 
sample, current methods for estimation of cell compo-
sition from bulk brain tissue data remain unvalidated. 
Thus, it remains unknown whether cell composition esti-
mates used for adjustment of brain omics data are indeed 
reliable surrogates of the cellular composition of the 
samples. This can be highly detrimental, since the imple-
mentation of cell composition estimation methods with 
sub-optimal performance can falsely lead the researcher 

Fig. 6  Assessment of the estimate performance using cell type-specific promoter/enhancer regions. Association between cell type-specific 
promoter/enhancer regions defined in Nott et al. [30], with the regions exhibiting differential acetylation between glia and neurons (a,b) or the 
outcome of differential acetylation analyses in AD using different cell composition estimation approaches (c,d). a,b Analysis of pooled glia (NeuN−) 
and neuron (NeuN+) H3K27ac ChIP-seq data from Girdhar et al. [25]. c,d Analysis of H3K27ac ChIP-seq data from bulk tissue entorhinal cortex of 
individuals with AD and controls from Marzi et. al [14]. a,c Stacked bar plots showing the proportion of differentially acetylated regions (FDR < 0.05) 
overlapping with promoter/enhancer regions unique to each of the cell types. Proportion (y-axis) was calculated relative to all significant regions 
overlapping with a cell type-specific promoter/enhancer region. The total number of hypo- and hyperacetylated regions meeting this criterion is 
indicated on the x-axis, in parenthesis. The number of peaks overlapping with neuron-specific promoter/enhancer regions is indicated on the bar 
plot area. Percentage was calculated separately for hypo- and hyperacetylated regions. b,d Violin plots showing the estimated acetylation fold of 
change in all peaks overlapping with a cell type-specific promoter/enhancer region, regardless of their significance level
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into believing that they have successfully accounted for 
the cell composition component in their analyses, and 
thus be drawn into the wrong conclusions.

In the current work, we assessed the correspondence 
between estimates of bulk brain tissue cell composi-
tion derived using different estimation methods, based 
on different omics modalities, and implementing dif-
ferent algorithms from the same or neighbouring tissue 
samples. Several key points arise from our work. First, 
cell composition can vary drastically even between two 
closely adjacent brain tissue samples from the same 
region. This can be explained by technical biases intro-
duced during dissection of the sample, such as different 
proportions of white/grey matter and blood vessels, and/
or uneven distribution of pathological changes, such as 
plaques or lesions. The implication of this finding is that 
estimates and even experimental cell counts from nearby 
tissue sample should not be used as surrogates for the 
cellular composition of bulk tissue samples subjected to 
omics analyses.

Second, as also demonstrated by our previous work 
[1, 2], different estimation methods based on the same 
transcriptomics data generally produce highly correlated 
estimates. The fact that this observation stems from fun-
damentally different methods, both in terms of the choice 
of cell type markers and the complexity of their underly-
ing algorithms, implies that more sophisticated estima-
tion methods do not offer substantial improvement over 
simpler approaches. Moreover, it strongly suggests that 
the currently employed “proof of concept” validation and 
assessment approaches are not sufficient to adequately 
evaluate the performance of estimation methods in the 
human brain.

Third, estimates based on whole brain tissue (transcrip-
tomics) produce vastly different results than estimates 
based on only the nuclear fraction (DNA methylation, 
ChIP-seq). While this finding is based on a single data-
set, the relatively large sample size and similar observa-
tions obtained for the different cell types suggest that 
it is very likely to be generalizable. We suggest that this 
discrepancy is caused by the fact that the vast portion 
of brain tissue is occupied by neuropil (i.e. dendrites, 
axons, synapses, glial cell processes and microvascu-
lature) rather than cell nuclei (Fig.  1a). The signal from 
neuropil is captured in bulk tissue transcriptomics data 
and, therefore, impacts the transcriptomics-based esti-
mates, introducing noise. Moreover, since neuropil com-
prises neuronal projections from distant neurons, often 
originating from an entirely different brain region and 
neuronal type [39, 40], estimates based on transcriptom-
ics can be compromised by the current methodological 
assumptions. Namely, currently, cell type marker genes 
used in transcriptomics-based estimation approaches are 

selected based on their specificity in relation to other cell 
types residing in the same region. A major caveat in this 
approach is that a marker deemed to be specific based 
on this criterion might also be expressed in the synaptic 
terminals of neuronal populations that are not resident, 
but rather project to the same area. Inclusion of such 
markers will introduce noise into the estimation process, 
potentially biasing the outcomes. For example, striatal 
neurons are densely innervated by dopaminergic termi-
nals, which contain transcripts overlapping with some of 
the neuron-specific markers in the striatum. Thus, unless 
the overlapping transcripts are excluded, variation in 
the state of striatal innervation, (e.g. due to parkinson-
ism) will impact the transcriptomics-based estimation of 
native striatal neuronal populations.

Lastly, our work demonstrates that, while including 
appropriate estimates of confounded cell types in statisti-
cal models can improve the outcome and interpretability 
of the analyses, it does not fully eliminate the confound-
ing signal. Thus, great caution should be exercised when 
interpreting bulk tissue data from samples where major 
differences in cell composition are expected between the 
groups being compared. In fact, our findings suggest that 
such comparisons can lead to misleading conclusions and 
should be avoided.

One limitation of our work is that we only focused on a 
small fraction of the existing estimation approaches. The 
tested approaches, however, were chosen to include both 
older and simpler (MGP [9] and CIBERSORT [7]) and more 
recent and cutting edge approaches (Bisque [10] and dtan-
gle [33]), which were demonstrated by to outperform other 
methods in the field [11]. Thus, our observations and very 
likely to generalize and our conclusions remain unchanged.

Our work raises the pertinent question—what is a 
brain cell, and particularly a neuron, in the context of 
bulk tissue analyses? Is it the nuclei, the cell bodies, the 
projections, or all of the above? Without addressing this 
conundrum, the task of “adjusting for cell composition” 
cannot be accomplished. Indeed, even if direct cellular 
enumeration from the same brain tissue sample becomes 
feasible, the architectural complexity of neurons will still 
present a challenge. The “gold standard” methods like 
IHC or Fluorescence-activated Cell Sorting (FACS) can 
only quantify cell bodies, or as in the case of human brain 
tissue, merely nuclei. Similarly, high-throughput single-
cell approaches can only provide information regarding 
the number of cell bodies/nuclei. This type of enumera-
tion would be missing a major component of the data and 
would not be able to adjust for differences in the tissue 
composition due to changes in synaptic density. This lim-
itation is particularly relevant when working with aging 
[41, 42] or neurodegenerative disorders [43, 44], where 
the density of inbound synapses is substantially altered, 
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even in areas with relatively preserved neuronal popula-
tions [45–48]. Importantly, alterations in synaptic density 
would have implications for non-neuronal estimates too. 
This is because the identical amount of starting mate-
rial used for data generation implies that decrease in one 
tissue component (e.g. synaptic mRNA or protein) will 
necessarily result in over-representation of other compo-
nents (e.g. glial mRNA or proteins).

Conclusions
To summarize, this work highlights the caveats associ-
ated with cell type estimation approaches in brain tissue 
data and demonstrates the inadequacy of the currently 
employed validation approaches. While there is no doubt 
that adjusting for cell composition is crucial for analysis of 
bulk tissue data, great caution should be taken when the 
analyses involve brain tissue. Moreover, it should not be 
assumed that adjustment for cell composition estimates (or 
even experimental cell counts, if and when these become 
available) can fully account for cell composition when it is 
severely confounded with the condition of interest.
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