
Automatic Model Repair Using
Machine Learning

Magnus Marthinsen

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 2020

1

Abstract

Model Driven Software Engineering is a field that lets developers focus on the
problem they are trying to solve, rather than aiming their attention at imple-
mentation details. This is done by creating executable models instead of source
code, where the model either is parsed and executed on the fly or used to gen-
erate source code. Either way, the models need to be kept correct without any
errors. This is a challenging task, as models are worked on by several develop-
ers that impose changes on the model. Currently, there exist tools that help
developers in dealing with correctness issues. Many of these, however, do not
prioritize customization to produce repairs complying with user requirements.
Furthermore, they do not allow extension of their components, providing devel-
opers with the opportunity to adapt how the algorithm works and extending
the reach of what it can handle. This thesis introduces an extensible model
repair framework that allows users to customize how the algorithm works by
implementing new preferences or adapting the algorithm to handle new model
types. The framework uses reinforcement learning to repair models, automati-
cally finding the best sequence of actions that results in a consistent model whilst
respecting the preferences declared by the user. This is evaluated by repairing
several models with different preference combinations specified through the ex-
tensible components, comparing their results. The results from the experiments
show that the models are affected by even small changes in the preferences,
rendering the user with considerable control over the final repair solution.

Acknowledgements

First and foremost, I would like to thank my supervisors Adrian Rutle, Angela
Barriga and Rogardt Heldal, for guidance and helpful advice whilst working on
this thesis. Additionally, I would like to thank Ludovico Iovino for his help
in implementing the distance function and for his part in calculating quality
characteristics of models.

I wish to express my gratitude to my family for the continued support, both
academically and otherwise. Come to think of it, mostly otherwise. A special
thanks to my father for fostering my interest in computers and technology from
an early age, resulting in this degree.

I would also like to thank my room-mate Adrian Storm-Johannessen for not
killing me during the Covid-19 pandemic, as we were locked in the apartment
together for several months. I would also like to thank him for at least acting
interested when I explained the problems I faced in this thesis.

This thesis signals the end of five brilliant years spent at Western Norway Uni-
versity of Applied Sciences, and in that respect, I would like to sincerely thank
Kronbar for the important job the organization does for all the students in
Bergen. I am extremely grateful for all the wonderful memories I have gathered
and lost within the brick walls, and for all the friendships I have made as a
result.

2

Contents

Acronyms 8

1 Introduction 9
1.1 Context and Approach . 10
1.2 Problem Description . 12
1.3 Methodology . 13
1.4 Contribution . 14
1.5 Outline . 15

2 Background 16
2.1 Model Driven Software Engineering 16

2.1.1 Modeling languages . 17
2.1.2 Metamodeling . 19
2.1.3 Transformations . 19
2.1.4 Automating Development 20
2.1.5 Distance . 20

2.2 Model Repair . 21
2.2.1 Model Repair Approaches 21
2.2.2 Model Repair Taxonomy 22
2.2.3 Personalizing the repair process 25

2.3 Machine Learning . 25
2.3.1 Supervised Learning . 26
2.3.2 Unsupervised Learning . 27
2.3.3 Reinforcement Learning 27

3 Design and Implementation 30
3.1 Demonstration . 32
3.2 Code origin . 36
3.3 Development method . 37
3.4 Code structure . 38
3.5 Actions . 39
3.6 Rewards . 40
3.7 Errors . 41
3.8 Representation of knowledge . 42

3.8.1 Tree structure . 43
3.8.2 Map structure . 44

3.9 Extensibility . 45
3.10 Edit distance . 50

3

4 Use cases 53

5 Analysis and Assessment 57
5.1 Does preferences affect final model quality? 58
5.2 Can the preferences be customized? 63
5.3 What is the effect of the model distance? 64
5.4 Can the algorithm handle other model types? 66

6 Discussion 69
6.1 Analysis results . 69
6.2 Infrastructure challenges . 71

7 Related Work 73

8 Conclusion 76

9 Further Work 78

A Source code 80

B Error explanations 81

4

List of Figures

1.1 A model having issues with the properties of the variables xMLNSPre-
fixMap and the xSISchemaLocation. 11

1.2 A screenshot of the Parmorel plug-in being applied to a broken
model. 11

2.1 A generic GCS metamodel adopted from [17]. 18
2.2 A simple Web Modeling Language fragment modeling a confer-

ence management system in GCS and TCS adopted from [17]. . . 18
2.3 Illustration of the relationships conform to and instance of adopted

from [17]. 19
2.4 Model repair features adopted from [36]. 23
2.5 An example function fitted to training points by a regression

algorithm adopted from [3]. The input is simplified to only take
mileage, and a linear model is used. 26

2.6 The agent interacts with the environment. The new state of the
environment and the reward for the action is returned to the agent. 27

3.1 An overview of the episodes, steps and solutions in Parmorel. . . 31
3.2 A model with three errors. 32
3.3 The settings used in the demonstration. 32
3.4 A model with the errors solved by the algorithm. 36
3.5 The package structure of the algorithm annotated with I for in-

terfaces, A for abstract classes and E for enums. The arrows
show inheritance. Note that not all preferences are included in
this illustration. 38

3.6 Visualization of a tree structure. 43
3.7 Visualization of a HashMap structure. 44
3.8 Parmorel components. 46
3.9 An overview of where in the repairing process the different preference-

methods are called. 49
3.10 An overview of the model org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore

and its residing errors. 51

4.1 A model containing two errors. 53
4.2 An example of a preference selection. 54
4.3 A list of potential solutions. 54
4.4 Three screenshots of the actions residing in each of the possible

solutions present in the example. 55

5

4.5 A screenshot comparing one of the proposed solutions (left) with
the original (right). 55

5.1 A graph showing the difference in maintainability between the
results of different settings. The different preference IDs are ex-
plained in table 5.2. 60

5.2 A graph showing the difference in understandability between the
results of different settings. The different preference IDs are ex-
plained in table 5.2. 61

5.3 A graph showing the difference in complexity between the results
of different settings. The different preference IDs are explained
in table 5.2. 62

5.4 A graph showing the difference in the reuse of the metamodel
between the results of different settings. The different preference
IDs are explained in table 5.2. 63

5.5 A graph showing the difference in the relaxation index of the
metamodel between the results of different settings. The different
preference IDs are explained in table 5.2. 64

5.6 A graph showing the difference in execution time between the
results of different settings. The different preference IDs are ex-
plained in table 5.2. 65

B.1 Error 11 identified in xwt09 updating.ecore 81
B.2 Error 13 identified in activityDiagram.ecore 82
B.3 Error 14 identified in primer.ecore 83
B.4 Error 17 identified in diagramrt.ecore 84
B.5 Error 22 identified in OPF31.ecore 85
B.6 Error 29 identified in car.ecore 85
B.7 Error 32 identified in GSML.ecore 86
B.8 Error 38 identified in OPF31.ecore 87
B.9 Error 44 identified in GUIdancerComponentHierarchy.ecore . . . 88
B.10 Error 48 identified in tableur modifie.ecore 88
B.11 Error 50 identified in org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore 89
B.12 Error 51 identified in diagramrt.ecore 90

6

List of Tables

3.1 The empty Q-table for error 1. 33
3.2 The empty Q-table for error 2. 33
3.3 The empty Q-table for error 3. 33
3.4 Q-table for error 1 in the fifth episode. 34
3.5 Q-table for error 2 in the fifth episode. 35
3.6 Q-table for error 3 in the fifth episode. 35
3.7 The empty Q-table for error 4. 35
3.8 The distance resulting from actions applied to the model dis-

played in fig. 3.10. 52

5.1 Explenation of the acronyms used in the quality characteristic
formulas. 59

5.2 Explanation of the preference ID’s. 61
5.3 Model maintainability optimized with custom distance calculator. 66
5.4 Model complexity optimized with custom distance calculator. . . 67
5.5 Model relaxation index optimized with custom distance calculator. 67
5.6 Percentage of models that improved, worsened or remained un-

changed with respect to the quality characteristics after applying
custom distance. 68

7

Acronyms

API Application Programming Interface.

EMF Eclipse Modeling Framework.

GCS Graphical Concrete Syntaxes.

IDE Integrated Development Environment.

MDE Model Driven Engineering.

MDSE Model Driven Software Engineering.

ML Machine Learning.

PDE Plug-in Development Environment.

RL Reinforcement Learning.

RQ Research Question.

SE Software Engineering.

TCS Textual Concrete Syntaxes.

TDD Test-Driven Development.

UML Unified Modeling Language.

XMI XML Metadata Interchange.

XML Extensible Markup Language.

8

Chapter 1

Introduction

Software Engineering (SE) is an engineering discipline that focuses on the de-
velopment of high-quality software systems [60]. One of the challenges in SE
is the high complexity in the systems created [18, 50]. The systems are very
difficult to implement correctly, sometimes consisting of millions of lines of code.
Furthermore, the core of all programming is formal logic, which is either correct
or incorrect. A single flaw can invalidate an argument.

Another challenge in SE is that software is invisible and cannot be visualized
[18]. In other fields, geometric abstractions can be very powerful. An example
is the floor plan of a building that helps both the client and the architect eval-
uate the spaces. A geometric abstraction represents the geometric reality and
help communicate ideas and avoid contradictions. Software, however, does not
embed itself in physical space. Therefore, no geometric representation works
like it does for maps over land or connectivity schematics for computers. When
software is represented in a diagram, it results in several overlapping directed
graphs. They may represent flow of control, flow of data or time sequence to
mention some system aspects. These graphs are usually neither planar nor hi-
erarchical. Because software is unvisualizable the brain cannot use some of its
most powerful conceptual tools, which not only hampers the design process but
cripple communications with others.

Model Driven Software Engineering (MDSE) is an engineering discipline that
aims at dealing with these challenges. The core concepts in the MDSE context
are models and transformations [17]. Models are abstractions and can be used to
reflect something and transformations are operations that manipulates models.
Models are important for understanding and communicating complex software,
and MDSE applies the advantages of modeling to SE activities.

Modelling is an important activity in the field of SE [62]. To maintain a good
quality during development it is important to keep the models correct and ac-
curate [8]. The challenge of keeping the models free of errors grows with the
number of changes made to the models and the size of the teams working on
them. Keeping track of all the versions of the same model and confirming its
validity is a difficult task.

9

This thesis will aim to reduce this burden for developers by proposing a tool
extending the algorithm created in [8, 9, 10] that can automate some of the pro-
cess. If successful, the time spent on manually dealing with correctness issues
diminishes. Such tools have the potential of improving delivery time, the final
quality of the developed product and greatly improve how organizations deals
with Model Driven Engineering processes [8]. The tool proposed in this thesis
utilizes Reinforcement Learning (RL), a form of Machine Learning (ML). Be-
cause the repair process is automatic with personal preferences, the tool is called
Parmorel (Personalized and Automatic Repair of Models using Reinforcement
Learning)1.

1.1 Context and Approach

When selecting the modeling framework to work with, we wanted our approach
to be as unrestricted as possible. Hence, the code is built in such a way that
it can be extended to support multiple modeling frameworks. We chose the
Eclipse Modeling Framework (EMF) as the first framework to be supported by
the plug-in because EMF is widely used in the modeling community [56].

EMF is the core technology in Eclipse for model driven engineering [17]. It allows
the definition of metamodels (section 2.1.2) based on Ecore, a metamodeling
language. Ecore is based on a subset of UML class diagrams for describing
structural aspects and is tailored to Java for implementation purposes. Ecore
is itself an EMF model, and can be viewed as a meta-metamodel [56].

EMF provides generator components that can produce a Java-based API from
the metamodels [17]. This provides a way of manipulating the models pro-
grammatically. The generator components can also produce modeling editors
to build models in tree-based editors from the metamodels. EMF comes with
a powerful API that covers various aspects such as serializing and deserializing
models to and from XMI in addition to powerful reflection techniques. Several
other projects are based on EMF and provides further functionality for building
model-based development support within Eclipse.

Considering EMF exploits facilities provided by Eclipse, the plug-in is devel-
oped using the Eclipse Plug-in Development Environment (PDE). We chose to
implement the algorithm in Java in order for it to be easily integrated in the
plug-in and work well with EMF.

The resulting plug-in can trigger a repair process on a broken model file (e.g. fig.
1.1) as shown in figure 1.2. If the file is an ecore-file, the Parmorel repair option
appears. When selected, the user is prompted with a list of preferences on which
to base the repair. After the repair process has finished the user is presented
with several solution alternatives, ordered by how the solutions matches the
user’s preferences. In order to understand the various alternatives, the user
can view the actions taken in each solution, and graphically compare it to the
original. If the user likes a solution, it can be selected as a repair replacing the
original model.

1https://ict.hvl.no/project-parmorel/

10

https://ict.hvl.no/project-parmorel/

Figure 1.1: A model having issues with the properties of the variables
xMLNSPrefixMap and the xSISchemaLocation.

Figure 1.2: A screenshot of the Parmorel plug-in being applied to a broken
model.

11

[36] defines a unifying taxonomy for model repair approaches explained in sec-
tion 2.2.2. Most of the domain-related features and the constraint features are
not relevant for Parmorel, due to the fact that Parmorel leaves the reporting
of errors and the finding of available actions to the modeling framework. The
Parmorel algorithm is metamodel independent but needs some extending for
each metamodel before it supports it (explained in section 3.9). This is also the
case for the technical space, where the current implementation only supports
EMF.

Parmorel can be decoupled from the modeling framework, because the algorithm
is state-based. It uses a decoupled checking procedure that must return a set of
violations occurring in the model along with some information about the errors.
The information must include a unique identifier for the type of error and a
location specifying the package and the context in the model where the error
resides.

The algorithms core is search-based, but also incremental as it reuses the Q-table
to improve efficiency over time. The repair is represented both state-based, i.e.
as a new generated model instance, and operation-based, i.e. as a repair plan
listing the actions that have been applied to the model in order to solve the
errors.

1.2 Problem Description

In this thesis a useful tool for developers is proposed, providing the ease of auto-
matic bug fixing when performing modeling activities. The tool is a continuation
of the work done in [8, 9, 10] proving RL feasible when repairing models. The
proposed tool is inspired by quick fix solutions already implemented in Eclipse,
highlighting errors and provides actions that can be undertaken to repair them.
The proposed tool differs by working on models rather than just coding and
compiling errors for source code.

The aim was to achieve human performance in fixing models by applying ML
for autonomous model repair. When working with model repair and ML, a few
challenges arise. One of them is the lack of datasets available publicly in the field
of modeling [8]. Most ML algorithms requires big labeled datasets referred to
as training data in order to achieve good results (explained in section 2.3). RL,
however, does not require training data and thus it becomes useful for domains
where the historical data is inadequate. We chose Q-learning, explained in
section 2.3.3, as our RL-algorithm because of its table structure. By storing the
knowledge in a generic format, it is easy to export and import the data between
executions.

When performing automatic repair on a model, the search space can grow expo-
nentially dependent on the content of the model [8]. The search space is the set
of all feasible outcomes [13], and there might exist an overwhelming number of
updates to resolve any given set of inconsistencies [36]. Complexity and uncer-
tainty are added to the algorithm as a result of the variety in possible solutions.
Additionally, potential fixes are generally not unique.

12

Automated repairing techniques has a weakness in providing the same solutions
for certain errors. Yet, developers possess different preferences for repairing
models [10]. Automated techniques must find a balance between the user guid-
ance when generating the alternative solutions and the level of automation [36].

Hence, we have identified the following research questions:

• RQ1 - To what degree does the personal preferences affect the proposed
solutions?

• RQ2 - How can the application be reengineered and what adaptions must
be made to:

A add new preferences to the algorithm?

B make the algorithm work with other model types?

Concretely, RQ1 refers to how much the user can affect the resulting model
through the preferences selected before the repairing process begins. RQ2 asks
how the application can be altered and improved. This is detailed in two further
questions regarding preferences (RQ2A) and the ability to handle other model
types (RQ2B).

1.3 Methodology

This paper is a solution-seeking study [57] that aims to ameliorate the process
of repairing models in MDSE. The study is a method of development [51],
looking at improving how developers work in MDSE by evolving the model
repair algorithm proposed by [8, 9, 10]. To improve how developers work with
models we will attempt to build a plug-in and test how much the users’ choices
affect the repaired models. We will also explore different ways of providing the
algorithm with the users’ preferences and how the algorithm can be evolved to
handle other model types.

There is also an element of feasibility study in this thesis [29, 38], because it
explores whether or not it is possible and practical to create a tool for developers
to use whilst constructing and altering models. However, it misses the business
aspect of a feasibility study in that it disregards financial components and focus
solely on the technical aspects.

The success of this thesis will be evaluated on how much the user can affect the
outcome of the repair procedure, and how extensible the algorithm is. If the
algorithm has successfully been implemented in Eclipse and a user can achieve
different solutions from the model repair procedure using different preferences
the project will be considered successful. If the process can be even more tailored
to the users by adding custom preferences this is a major bonus. Lastly, the
approach should be generic meaning models other than Ecore can be supported.
This is not vital to the assignment but is an interesting way of finding the
algorithms limits. The project has failed if the tool does not offer the user with
any ways of affecting the repair procedure, or if it is not able to repair models
at all. The algorithm will be tested on broken models. The datasets containing
these models are introduced in chapter 5.

13

1.4 Contribution

As mentioned, this thesis did not start from scratch, but expands upon the work
done in [8, 9, 10]. To this end, Q-learning had been proven to work for EMF
model repair by creating an algorithm combining RL-automation with personal
preferences before the start of this thesis.

Clean code can be read, and enhanced by a developer other than its
original author [37].

This was unfortunately not the case for the original code. It was built as proof-
of-concept, consisting of few classes containing many lines of code. As a result,
it was hard to understand and almost impossible to expand upon. A lot of
work has gone into refactoring the original code to follow modern programming
practices and creating a simple API towards the algorithm. This will, hopefully,
enable the algorithm to be maintained over time and make it possible to add
new functionality to it.

Adding functionality has also been a major part of this thesis. One major change
is that the algorithm is no longer tied to EMF but has become an extensible
framework that can be extended to support other model types. This was the
primary focus during the refactoring process.

The original algorithm provided seven preference options to the user. In addition
to adding another preference based on the distance (explained in section 3.10)
to the original model, the preference implementation has become customizable
as part of the framework. This results in other developers now being able to
create custom preferences and add them to the algorithm.

How the algorithm gathers experience has also been altered in this thesis. In-
stead of just relying on the preferences, the end user has been given the option
to select a solution and reward it. This will make the algorithm prefer solutions
similar to the chosen ones over time.

The code has also been documented with Java-docs, making the code more
understandable to other developers.

The Eclipse-plug-in is also a contribution from this thesis, providing a graphical
user interface for repairing models in the development environment.

In addition, the thesis assesses the approach and conducts a set of experiments
to evaluate the impact of personal preferences on the final model and the success
of the preference extensibility.

These contributions made to enhance the extensibility of Parmorel and its as-
sessments are submitted as a scientific paper [11] to the technical track of
the Models 2020 conference2. The Models 2020 conference, MODELS, the
ACM/IEEE 23rd International Conference on Model Driven Engineering Lan-
guages and Systems, is the premier conference series for model-driven software
and systems engineering and is organized with the support of ACM SIGSOFT
and IEEE TCSE.

2https://conf.researchr.org/track/models-2020/models-2020-technical-track

14

https://conf.researchr.org/track/models-2020/models-2020-technical-track

1.5 Outline

This thesis is structured with the theoretical background that is important to
know in order understand the main aspects of this study in chapter 2, and
the technical design and implementation of the produced repair tool presented
in section 3. Chapter 4 presents various anticipated use cases for the tool.
Different aspects of the algorithm are analyzed by experiments in chapter 5,
with the results discussed in chapter 6 along with other aspects of the thesis.
Related work is presented and compared to the work conducted in this thesis
in chapter 7 before the conclusion is presented in chapter 8. Finally, chapter
9 presents aspects not explored in this thesis that should be conducted in the
future.

15

Chapter 2

Background

In this chapter, we will present some of the knowledge that our research is
built upon. This theory is important to know in order understand the following
chapters.

2.1 Model Driven Software Engineering

In this section Model Driven Software Engineering (MDSE) is explained as
described by [16, 17]. It can be defined as a methodology for implementing
the advantages of modeling in engineering activities. The core concepts in the
MDSE context are models and transformations. Models are abstractions and
can be used to reflect some system by using two features.

1. They only reflect a relevant section of the original’s properties. This is
called a reduction feature.

2. Models are based on some original individual that is abstracted and gen-
eralized to a model representing a category of individuals. This is called
a mapping feature.

Transformations are operations that manipulates models. Models are the pri-
mary development artifact in MDE.

An example of a model from a scientific context is the Bohr model of the atom.
This model is probably an unacceptable simplification, but it has been out-
standingly helpful in understanding the basics of chemistry and physics. A
transformation on an atom could be to combine it with another atom creating
a molecule.

MDSE aims at dealing with increasingly complex software by focusing on the
problem domain instead of on the solution domain. The problem domain is
defined as the environment that needs to be studied in order to understand and
define a problem. A conceptual model of this domain is called a domain model.
This model describes different entities in the environment by specifying their
attributes, roles and relationships. The model also describes the constraints and

16

interactions regarding the entities that make up the problem domain, granting
integrity to the model. The solution domain is the choices made at design,
implementation and execution level when creating a software application that
solves a problem specified within the problem domain.

2.1.1 Modeling languages

Modeling languages are tools for specifying models in graphical or textual rep-
resentations. As models can be defined both graphically and textually, existing
framework currently support two kinds of concrete syntaxes: Graphical Con-
crete Syntaxes (GCS) and Textual Concrete Syntaxes (TCS). These languages
have a formal definition, and the designers must follow their syntax when mod-
eling.

A GCS defines graphical symbols for visualizing model elements, e.g. lines,
graphic figures and labels for representing textual information. It also defines
compositional rules which defines how the graphical symbols can be nested and
combined. Finally, a mapping from the graphical symbols to the elements de-
fined in the abstract syntax is defined, stating which graphical symbol should
be used for which modeling concept.

Current graphical modeling editors use a modeling canvas, which allows the
model elements to be positioned in a two-dimensional pixel map. The model
elements are usually arranged as a graph contained in the modeling canvas. A
piece of a generic GCS metamodel (explained in section 2.1.2) is shown in fig.
2.1. The metamodel states that a diagram consists of various elements in the
form of nodes, edges, compartments and labels. Nodes and edges are graph
concepts represented by shapes and lines, respectively. Compartments are used
to nest elements, namely diagrams are nested graphs. Additional information
can be attached to nodes and edges with labels, i.e., diagrams are also attributed
graphs.

Textual specifications assume that the text consist of a sequence of characters.
A grammar is needed to specify all the valid character sequences, as arbitrary
sequences probably will not conform to a valid specification. This grammar
needs to be generic to allow the rendering of models textually as well as parsing
the text to models. It is also desirable with syntactic sugar like language-
specific keywords to enhance the readability. Consequently, a TCS requires
some additional concepts.

Model information is one of the common elements that is important for every
TCS and must be supported to allow model information to be stored in the
abstract syntax. This is achieved through the use of labels in GCS. Another
element is keywords, i.e., words that has a particular meaning in the language.
These words become reserved and cannot be used as values for model elements.
Scope borders are also needed, as no figure exists to define the border of a
model element like in GCS. In TCS this is usually achieved by special dedicated
characters to mark the beginning and the end of a certain section. Separation
characters is another special character used to separate entries in lists, providing
the possibility to list elements at certain positions. Lastly, links that allow
referencing elements related by non-containment references must be supported.

17

Figure 2.1: A generic GCS metamodel adopted from [17].

This is equivalent to edges in GCS. In TCS however, we only have one dimension
in which to define the elements. Instead of edges, identifiers are defined for the
element which other elements can use to reference it.

Possible visualizations of a conference management system are shown in figure
2.2 as an example, with a GCS on the left and a TCS on the right. This side-by-
side comparison will be used to clarify the elements described above. The model
information are things like the name of the model elements as well as their type.
The keywords, marked in bold in the TCS, are in this example used to introduce
the various model elements. The scope-borders are curly brackets, opening after
an element is introduced by its keyword and closing after the element is defined
to make up the compartment of the element. The separation characters are
semi-colons, separating the different attributes introduced for the class. Lastly,
the page must be linked to a class of the content layer. Programming languages
are commonly using class names as types, so the name of the class becomes a
natural identifier.

Figure 2.2: A simple Web Modeling Language fragment modeling a conference
management system in GCS and TCS adopted from [17].

18

2.1.2 Metamodeling

Now that the models can be defined by a syntax, the next step is to represent
the models themselves as instances of more abstract models. In much the same
way as models describe something in the real world through abstractions, a
metamodel can be defined as yet another abstraction emphasizing properties of
the models. The definitions of modeling languages can be viewed as metamodels,
because they provide a way of describing the whole class of models that can be
produced from the language.

Figure 2.3: Illustration of
the relationships conform to
and instance of adopted
from [17].

In other words, models describe something from
the real world. These models can again be de-
scribed by other models (called metamodels).
Additional models describing the metamodels
(called meta-metamodels) can be defined recur-
sively. This could go on for infinity, but it has
been shown that meta-metamodels can be defined
based on themselves. As a result, it does not make
sense to abstract more levels than this. If all ele-
ments of a model can be expressed as instances of
(meta)classes in a corresponding metamodel, it is
said that the model conforms to the metamodel.
This is illustrated in figure 2.3.

Metamodeling frameworks allow dedicated edi-
tors to specify the metamodels and generate mod-
eling editors out of the metamodels. The metamodel can be interpreted as a
set of production rules for building the model. This can be used to render the
model elements in different representations, e.g. a TCS. The metamodels can
also be interpreted as a set of constraints that is used to verify that a model
conforms to the metamodel.

2.1.3 Transformations

Transformations allow mappings between different models to be defined. These
transformations are defined at the metamodel level but applied at the model
level to models that conform to the metamodels. In other words, the transfor-
mation is performed between a source and a target model but is defined upon
the respective metamodels.

Designers use appropriate languages for defining model transformations for spec-
ifying transformation rules. These languages can be used for defining model
transformations through templates that can be applied to models correspond-
ing to some matching rules checked upon the model elements.

Transformation rules can be written by a developer from scratch. Alternatively,
existing ones can be redefined for a more specific use case. Transformations
can also be produced automatically based on some higher-level mapping rules
between models. This technique includes two steps:

19

1. Define a model mapping, mapping elements of a model to elements of
another.

2. Use a system that receives the two models and a mapping between them
as input and generates the actual transformation rules.

This process lets the developer focus on the conceptual aspects of the model
relations and pass on the responsibility for producing the transformation rules.

Transformations on a model can be either out-place or in-place. Out-place
transformations generates the resulting transformed model from scratch. This
is well suited for transformations between two different languages, e.g. from a
platform independent model like UML to a platform specific model like Java.
This is called exogenous transformations. In-place transformations rewrites a
model by creating, deleting and updating the elements in the model. This is
convenient for operations like refactoring.

Models can, as mentioned in section 2.1.1, be expressed as graphs. As a result,
the models can be manipulated by graph transformation techniques. Graph
grammars consist of an initial graph and a set of graph transformation rules
to be applied to it. A left-hand side (LHS) graph and a right-hand side (RHS)
graph makes up the root of the rule. The pre-conditions are expressed through
the LHS, whilst the RHS specifies the post-conditions. Combined, both sides
imply what actions will be executed when the rule is applied. All elements
exclusive to the LHS will be deleted, all elements that only reside in the RHS
will be added and the remaining elements are preserved. The elements require
an identifier assigned to them in order to detect equality between elements in
the LHS and the RHS.

2.1.4 Automating Development

The models created in MDSE are not only artifacts created to help the devel-
opment. They are the development. The models are used to generate a running
system, and this requires the models to be executable. Two strategies exist for
making the models execute.

Code generation works in much the same way as code compilers creating bi-
nary files from source code, by generating code from the higher-level model.
The “code” generated can be source code, but also test cases, documentation,
configuration files etc.

Model interpretation is another approach that does not generate code from
a model in order to create a working application. Rather, a generic engine is
implemented, parsing and executing the models themselves. This interpretation
approach works like interpreters do for interpreted programming languages.

2.1.5 Distance

Models can, as mentioned in section 2.1.1, be viewed as graphs. As a result,
graph theory can be applied to the models. This includes edit distance, the
shortest sequence of edit operations to transform one graph to another [20].

20

Edit distance is also applicable to text, again the smallest number of operations
required to transform one string into another [28].

When calculating differences between models, existing approaches can be di-
vided into three main phases [1]:

1. Compared models are imported in a differencing friendly format, typically
graph-based structures.

2. A matching algorithm traverses the models, detecting and establishing
correspondences between entities in them.

3. The differences of the matched elements in terms of (at least) additions,
deletions and changes of the model entities is computed by a dedicated
algorithm based on the matches from the previous phase.

2.2 Model Repair

Model repairing is a research field that can improve how engineers interact with
model-driven projects. In this section Model Repair is explained as described
by [36].

The models developed with MDE are modified by different stakeholders. This re-
quires a consistently monitored and managed MDE environment. Consequently,
various activities involved in the detection, diagnosis, handling and tracking of
inconsistencies is essential to MDE.

These inconsistencies might be introduced to the environment due to mistakes
or careless decisions as developers apply changes to the models. The impact of
these changes might not be obvious right away, taking into account the complex-
ity of the MDE environment. The inconsistencies must be handled eventually,
and automated techniques that helps the user restore consistency is a necessity
for this to be manageable.

One such technique is to propose update actions to the user that will repair the
models, hence improving the consistency level of the MDE environment. One
of the main challenges in model repair is the potential huge number of updates
that might exist for each set of inconsistencies. The decision of the most suitable
update to fix the model is ultimately up to the developer. Therefore, approaches
to model repair must find a balance between the level of automation and the
need for user guidance.

2.2.1 Model Repair Approaches

There are several ways to approach model repair. Rule-based model repair is
one approach that require a set of previously defined rules that is applied to
the model when an error occurs. This provides full control over how to resolve
errors but demands more from the designer having to specify how the constrains
are fixed. The flexibility of the approach is also restricted to the fixed set of
resolution rules.

21

Generative approaches rely on production rules that define what a well-formed
model is. From these rules a set of transformation rules are derived. Generative
approaches are suitable to use with graph grammars, where repair rules are
derived from the grammar productions.

Syntactic approaches automatically derive the repair plans from a syntactic
analysis of the constraints instead of from the production rules that generative
approaches use. These repair plans are typically calculated at static-time, and
only instantiated to concrete model instances when inconsistencies are found at
run-time. Syntactic techniques may be able to derive repair solutions without
user input but may result in so many potential solutions that the user will
struggle to select one. Additionally, these techniques are ill equipped to handle
multiple inconsistencies in one model and inconsistencies that affect a big chunk
of the model.

Search-based approaches interpret model repair as a model search problem. In
contrast with the syntactic approaches, these procedures are well-suited to han-
dle inconsistencies affecting large parts of the model. Although the approaches
are able to automatically find fully consistent models, they have problems with
scaling. These techniques differ in how they find consistent states. Some rely
on off-the-shelf solvers to search for consistent states sometimes resulting in un-
predictable solutions due to total disregard of the application domain. Others
rely on domain-specific search procedures using domain-specific knowledge, like
available edit operations, that results in a finer control when generating repair
updates.

Some techniques are hybrid, meaning they are built over more than one of
these features. An example is rule-based approaches that utilizes search-based
methods to calculate repair plans from the rules.

When repairing models, different techniques can handle different domain spaces.

2.2.2 Model Repair Taxonomy

A unifying taxonomy for model repair approaches is defined by [36] and describes
several feature groups illustrated in figure 2.4. It sums up features making up the
domain, i.e. which model instances the technique can handle and whether the
user is able to customize the domain space. One of these features is formalism
that explains what model representations the repair technique can handle (e.g.
graphs, object-oriented specifications etc.). Another feature is whether or not
the approach aims to be independent of the application domain, i.e. meta-model
independent. If the technique deals with fixed metamodels it is aimed at some
particular classes of models, for example UML diagrams. Otherwise, it allows
the designer to restrict the model domain space, adapting it to the user’s needs.
The technical space is the space in which the user specifies the various artifacts
of the MDE development environment, e.g. XML or EMF. If restrictions are
imposed on the model elements, the repair technique is said to be bounded. A
typical restriction is not allowing the creation of new elements, resulting in the
repair being bounded by the elements present in the model. The last feature
in the domain is multi-model, meaning the technique focuses on handling inter-

22

Figure 2.4: Model repair features adopted from [36].

model constraints between several models rather than intra-model consistency
in a single model.

Constraints is another feature group defined by the taxonomy. The implementa-
tion of the constraints affects the repair procedure, as a violation of a constraint
translates to a broken model. Hence, the way the constraints are shaped de-
termines what type of properties the repair procedure can handle. How the
constraints are specified and whether or not they are customizable by the user
is one feature called specification. This feature also includes if the approach
supports repair hints, meaning that each constraint is supplied with hints from
the user on how to repair a violation. Lastly, the specification includes the op-
tional support of distinguished constraints, meaning the procedure can focus on
a few constraints even if this results in negative effects for the other constraints.
The feature kind defines what type of constraints are supported, referring to
inter-model or intra-model constraints. The last constraint feature determines
the shape of the constraints supported by the approach, e.g. logical predicates
of pattern matching in a graph.

Different repair techniques have different information available to them regard-
ing the evolution of the model from the previous known state to the current
one. This information is addressed by the update features. The first feature
is update representation, which is either state-based or delta-based. Delta-based
approaches have information about the user actions that led to the current
state of the environment, whilst state-based only considers the current state
of the model. The former call for a dedicated modeling framework, whilst the
latter allows the framework to be decoupled from the repair technique. The
inconvenience of tracking the actions are rewarded with more predictable repair
updates. The second feature in the update category is what extra information is
available to the algorithm, e.g. the model state before the error was introduced
or the history of the model evolution.

Other differences between repairing schemes is the reliance on the validation
procedure of the model. This is the procedure that tests if the resulting model
violates the provided constraints after an action is applied. The taxonomy
calls this feature category check. In addition to specifying whether or not the
resulting model is valid, it might supply additional information. The check
procedure might be decoupled, meaning that external tools detects the violations
and reports them. Some techniques supply a checkonly mode, meaning the
inconsistencies in the model is detected and reported, but not repaired. The

23

reporting of the checking procedure classifies what information is reported about
the model. This might be a simple Boolean specifying whether or not the model
is valid or report the number of violations in the model. The most common is to
return the set of violations detected, containing various information regarding
the violations. Such reports can be compared to check the consistency level of
the model. It might be more consistent after a repair has been completed, but
maybe not fully consistent yet.

Repair is another feature category classifying the overall repair behavior. The
feature core categorizes the underlying repair generation procedure. This can
for example be rule-based, applying a previously defined rule whenever an in-
consistency is detected. Search-based techniques interprets model repair as a
model search problem. These can either rely on domain-specific search pro-
cedures requiring domain-specific knowledge or be oblivious to the application
domain. Incremental techniques reuse data from previous executions in or-
der to improve efficiency. The repair category also includes the feature repair
representation. This feature describe what information is returned by the re-
pair procedure. State-based approaches return a new generated model instance,
whilst operation-based approaches return a repair plan listing the actions that
have been applied to the model in order to solve the errors. The content of the
repair updates is either concrete, meaning they can be applied directly to the
environment without any user input, or abstract, requiring input from the user
before they can be instantiated.

Another feature group is Enumeration defining how the repair updates are se-
lected and presented to the user, in addition to how this can be controlled.
One enumeration feature is output, describing how many repair alternatives are
returned by the algorithm. This might be a single repair update, or several.
If it returns all possible repair updates, it is said to be complete. Order is
the other enumeration feature, describing the ordering of the returned updates.
This might be opaque to the user, or predefined making the procedure more
predictable. The order might be parameterizable, meaning the user has some
control over the repair procedure.

The last feature group, semantics, explores what semantic properties the repair
procedure is guaranteed to follow. Totality is a feature explaining how good
a procedure is when finding solutions. If the algorithm can produce a repair
update for every user update that results in an error (as long as one is available
and the modeling framework provides the necessary actions), the technique is
said to be total. Correctness is another feature in semantics. This defines what
guarantees the technique provides for correctness. If the inconsistency level of a
model does, at least, not increase when a repair update is applied the procedure
is well-behaved. A technique that guarantees to improve the inconsistency level is
consistency improving, and if the inconsistency level is guaranteed to be reduced
to the minimum it is fully consistent. Semantics also include stability, saying a
procedure is stable if it does not return any repair updates if provided with a
stable model.

24

2.2.3 Personalizing the repair process

Regarding the enumeration output, the approaches need to present the user
with a manageable number of acceptable updates. This forces the techniques to
restrict themselves, given the possible number of repair updates might initially
be overwhelming. When restricting the number of presented repair updates,
different procedures output even a single repair update or multiple repair alter-
natives.

Techniques that return every possible repair update within the parameters of
the execution is said to be complete. The parameters of the execution include
the bounds of the search space, allowed edit operations and constraints imposed
by the enforced semantic properties. If an approach is not complete, it might
discard interesting repair options or fail to handle certain inconsistencies.

The set of returned repair updates and the order in which they are presented to
the user must somehow be chosen by the procedure. Users may be allowed to
affect the calculation of this order, giving the user more control over the repair
procedures behavior. One example of this is a procedure that uses graph-edit
distance and lets the user attach weights to the meta-model, hence prioritizing
repair update for some model element types over others. Alternatively, the
weights can be attached directly to the model elements, promoting changes to
concrete parts of the model instances.

Another way of letting the user affect the repair process is to allow control over
the edit operations that makes up the repair updates by assigning them with
costs. Users might also be able to prioritize the defined constraints, making the
procedure focus on specific classes of violations. Lastly, the user might be able to
control the procedure through additional meta-data like versioning information.

Interaction is another way for the user to control the algorithm. To facilitate
this, the technique uses interactive dialogs to refine the set of possible repair
updates.

2.3 Machine Learning

In this section Machine Learning (ML) is explained, including some popular
algorithms and different branches of the field.

ML are algorithms learning from the surrounding environment, designed to em-
ulate human intelligence [42]. The learning process uses input to automatically
change the algorithms architecture, and through repetition it performs better
and better. This repetition is referred to as experience, and the process of
altering the architecture is called training.

There are multiple ways in which ML algorithms can learn, and two of them
are supervised learning and unsupervised learning [14]. When an algorithm uses
supervised learning, it uses some training data to construct a function. The
training data is usually a dataset with a label for each entry that specifies
the correct answer. The algorithm uses this data to construct a function for

25

predicting the results. Unsupervised learning does not use labeled data but
involves pattern recognition without a label specifying the target attribute [15].

2.3.1 Supervised Learning

Supervised learning is commonly used to estimate a mapping from input to
output, based on known sample data [42]. The output is labeled, making this
sort of algorithms suitable for tasks like classification and regression.

In classification, the algorithm takes an input and returns either a specific label,
or a number specifying the confidence score for a particular label [21]. An
example of a classification task of distinguishing apples from oranges [42]. Even
though all apples and oranges are unique, we are still usually able to tell them
apart. For this to be supervised learning, we need some training data describing
color, shape, odor etc., and a label specifying the correct prediction. A successful
learner should be able to recognize previously unseen apples and oranges after
training on this data. Some common methods used for classification tasks are
decision trees, probabilistic methods and SVM-methods [2].

Figure 2.5: An example function fitted to training points by a regression al-
gorithm adopted from [3]. The input is simplified to only take mileage, and a
linear model is used.

In regression, the algorithm takes an input and returns a number as output
[3]. An example of a regression task is taking in attributes for a used car and
returning the current selling price of the car. Examples of input attributes are
brand, year and mileage. By examining transactions for used cars, we can collect
training data for a regression algorithm. The algorithm will fit a function to the
data to predict the output price Y as a function of the input X. An example
is visualized in figure 2.5. Some common methods used for regression tasks are
Least Squares [21], Logistic Regression [34] and SVM-methods [54].

26

2.3.2 Unsupervised Learning

Supervised learning finds a mapping from input to output, and the correct
output is provided by labels on training data [3]. Unsupervised learning does
not have these correct labels, only the input data. The algorithm looks to find
some regularity in the input, for example a structure where some patterns occur.
These regularities can be used to see what generally happens and what does not.
This is referred to as a density estimation in statistics.

An example of a common unsupervised learning task is clustering [42]. Clus-
tering is a task for finding clusters/groups within the input data [3]. This is
useful for operations like image compression, where the objective is to reduce
the file size of the image. The input are the pixels that make up the image, and
each pixel is represented by an RGB-value. If the image consists of 16 million
colors each pixel needs 24 bits to be able to represent all of them. However,
if we group similar colors together so all the colors are displayed as shades of
64 main colors only 6 bits per pixel is required. For example, an image with
various shades of blue can display the same color for all the pixels. This will
reduce the details of the image but save storage space.

Another example of unsupervised learning is throwing a dart at a bull’s eye [42].
When throwing the dart, it can be thrown in different angles and with different
strength. The learner will practice throwing the dart, and for each throw the
angles and strengths are adjusted so the dart gets closer to the bull’s eye. This
is unsupervised, because the training does not associate an input of angles and
strengths with an outcome but finds its own way from the training input data.
A successful learner should be able to adjust for changes in the environment,
for example a reposition of the target.

2.3.3 Reinforcement Learning

Some algorithms output a sequence of actions [3]. In such cases, a single action
is not important. What is important is that the sequence of actions together
reaches the goal. There is no single best action in the sequence, but an action is
good if it is part of a good sequence. The algorithm needs to assess how good a
sequence is and be able to learn from good sequences in order to generate new
sequences. Such learning methods are called Reinforcement Learning (RL).

Figure 2.6: The agent interacts with
the environment. The new state of
the environment and the reward for
the action is returned to the agent.

In RL the learner is called an agent [3].
The agent performs actions in an en-
vironment that results in a change of
the environments state. The feedback to
the agent is given in the form of reward
or punishment, illustrated in figure 2.6.
When selecting what action to perform
the agent tries to maximize the total re-
ward of the action sequence. It is not re-
quired to give feedback to the agent for
each action, and sometimes the reward is
only given at the end when the complete sequence is produced.

27

A good application of RL is game playing, where a single move itself is not
important [3]. A move is only good if it is part of a sequence of moves that
together perform well in the game. If the game is chess, the game-player will
be the agent and the board will be the environment.

Another application for RL is a robot in a maze [3]. In this case, the agent is
controlling the robot, the environment is the maze and the state of the environ-
ment is the robot’s position. The agent can move in any of the four compass
directions and should make a sequence of moves to eventually reach the exit of
the maze. In this case, no feedback is given until the robot reaches the exit.
Even though there is no opponent, shorter paths can be preferred. This implies
that the agent is playing against time.

Q-learning

In this section an RL algorithm called Q-learning will be explained with regards
to [8, 10, 61].

Q-learning is a form of RL. The agent tries an action in the environment at
a particular state. It evaluates the consequences of the action based on the
immediate reward/penalty it receives and its estimate of the value of the new
state of the environment as a result of the action. It learns which actions are
the best overall by evaluating a long-term discounted reward.

The long-term discounted reward is stored in a structure called Q-table and is
continuously updated while the agent interacts with the environment. From
a given state the algorithms find the most optimal action by consulting this
Q-table. For each action (at) it selects a Q-value calculated by the Bellman
Equation. This Q-value is the maximum future reward (r) the agent received for
entering the current state (st) with the selected action (at), plus the maximum
future reward for the next state (st+1) and action (at+1). To avoid falling into
a local maximum this score is reduced by a discount factor γ. When performing
optimizations there might be several viable solutions. Some methods might find
the closest viable solution from the starting point (local maximum), even though
there might exist a better solution in the environment. The best solution in the
environment is a global maximum. The Q-value allow to infer the value of the
current state (st) based on the calculation of the next state (st+1), which can
be used to calculate an optimal policy for selecting actions.

Q(st, at) = r + γ

(
max
at+1

Q(st+1, at+1)

)
The calculated Q-value is used to update the Q-table. A factor α specifies a
learning rate, which regulates how much the stored Q-value changes from one
iteration to the next.

Qt+1(st, at) = Qt(st, at) + α

(
r + γ

(
max
at+1

Qt(st+1, at+1)

)
−Qt(st, at)

)

28

The algorithm can now determine the value of a state and select the optimal
action until the final goal is achieved. This process is called exploitation and is
repeated every time (t) an action is selected by the algorithm.

The algorithm can also pick actions at random, instead of choosing the optimal
action from the Q-table. This process is called exploration as it explores al-
ternative, possibly more optimal, solutions. By combining the exploitative and
explorative approaches a wider range of solutions can be found.

The agent is given several attempts at solving the problem, and one attempt is
called an episode. For each episode the agent will try to reach the final goal by
performing several steps, performing exploitative or explorative choices trying
to find the best action for the current state. For every chosen action the Q-
table is updated. The number of episodes and the number of steps per episode
is decided with regards to the problem size and should ensure enough time to
reach the final goal.

29

Chapter 3

Design and Implementation

In this chapter the implementation of the algorithm will be explained. First
an overview of Parmorel is given including an example, with detailed technical
information regarding specific components later in the chapter. Because Par-
morel is developed and tested with regards to EMF, the examples will be based
on the Ecore metamodel. In section 3.9, an explanation on how the algorithm
can be extended to handle models derived from other metamodels is provided.

The repairing algorithm is powered by Q-learning (section 2.3.3), in which the
experience gained is stored in a Q-table. In our implementation, the Q-table is
three-dimensional. Every entry in the table is a combination of what actions
have been applied to which error, and to what context. The entry has a weight
that reflects how good an action is for repairing an error at a given location in
the model.

The first thing the algorithm does when repairing a model is to find all the
errors currently in the model. Then it makes sure all the error codes found in
the model exist in the Q-table. If the Q-table does not contain an error code,
it is added along with corresponding contexts and actions. The contexts are
objects describing the error by being the primary source of the problem, or
objects associated with or describing the problem. For example, if two features
have the same name, each feature and the class containing them represents a
context in which the error can be repaired. The algorithm will search through
this Q-table to find actions that can be applied to the model when attempting to
repair it. To narrow the search space for the algorithm, actions that do not result
in a change in the model are omitted (get-methods etc.) when populating the
Q-table. The algorithm checks if the error still exists after the action is applied,
and if it does not the action is added to the Q-table for the corresponding action.

After the Q-table is initialized, the Q-learning algorithm starts repairing the
model over several episodes. Each episode is an iteration where the algorithm
repairs the model within a predefined number of steps. Each step is an appli-
cation of one action to the model. The action is either the most optimal action
from the Q-table chosen by weight, or a random action. A random action might
be chosen to find an alternate path, avoiding a local maximum. The maximum
number of steps is determined by formulae 3.1. It is set to 1.4 times the number

30

of errors (NOE) in the model but never below 20. This is to accommodate mod-
els with few errors as new errors might be introduced in the repairing process.
The algorithm should have enough steps available to reach a consistent model.
However, the algorithm might get stuck if it consistently tries to apply the wrong
action. This is resolved when the maximum number of steps is reached and the
episode is terminated (or by a random action), but this might take a long time
if the algorithm has many steps remaining. A balance between a high and low
maximum number of steps must be found, and formulae 3.1 have provided good
results on the models we have tested.

Maximum number of steps =

{
1.4 ·NOE , 1.4 ·NOE > 20

20, 1.4 ·NOE ≤ 20
(3.1)

Figure 3.1: An overview of the episodes, steps
and solutions in Parmorel.

When the action is applied
to the model, the Q-table is
initialized for any new errors
that potentially has entered
the model. The new state of
the model is used to calculate
the reward for applying the
action to the old state. When
calculating rewards user pref-
erences are considered, tailor-
ing the repair process to the
user. The reward starts as
zero and is updated by it-
erating over all the selected
preferences that add or sub-
tract preference-specific nu-
meric values to the reward.

In this implementation, the
number of episodes is set to
25 if no previous knowledge is
found or 12 otherwise. This
may result in the same num-
ber of possible solutions, but
equal solutions are discarded.
By repairing the model many

times, the chances for finding the optimal solution increases. The solution the
user selects will receive a boost in the Q-table for all the actions performed in
order to achieve it.

Figure 3.1 shows an overview of the algorithm regarding how the episodes, steps
and solutions are connected. In the first episode several steps are executed until
no more errors exist in the model, resulting in a solution. This is repeated
several times, and if the resulting solution is valid and unique it is added to the
list of possible solutions. Otherwise the solution is filtered out. The knowledge
is accumulated over several episodes, meaning that the experience gained in
episode 1 is used and evolved in episode 2 and so forth.

31

Figure 3.2: A model with three errors.

3.1 Demonstration

In this section some details of the algorithm will be explained with an example.
For simplicity, the Q-table is initially empty at the beginning although it is
possible to load the Q-table from earlier executions of the algorithm. Note that
the algorithm has a random element and might not produce the same result for
each execution.

Consider the model shown in figure 3.2. This is an Ecore model describing
a central heating system, where a heater has sensors in various rooms. The
model has three violations of the constraints imposed by the metamodel. EMF
reported the following errors:

• Error 1: There may not be two features named ’room’

• Error 2: The typed element must have a type

• Error 3: A container reference must have upper bound of 1 not 5

The error numbers have been altered for simplification in this example and
are not the same numeric values reported by EMF. Error 1 is referring to the
Sensor-class, that has two attributes named room. Error 2 is referring to the
room-attribute that does not have a type, highlighted in red. Error 3 is referring
to the reference between the classes. It specifies that if the heater is to contain
the sensors, a sensor can only belong to one heater and not five.

Figure 3.3: The settings used in the demonstration.

Each of these errors can
be solved in different
ways. Error 1 can for ex-
ample be fixed by renam-
ing or deleting one of the
attributes or delete the
entire Sensor-class. Er-
ror 2 can be fixed by giv-
ing the attribute a type or
deleting it. Error 3 can be
solved by setting the upper bound to 1, modifying the containment to a regular
reference or deleting the whole reference. This small example illustrates the
complexity involved in repairing models, no matter how simple they are.

In the following example, the algorithm is run with the settings shown in figure
3.3.

32

Context Action name Weight

0 delete 0.0
1 setName 0.0
1 delete 0.0
2 setName 0.0
2 delete 0.0

Table 3.1: The empty Q-table for error 1.

Context Action name Weight

0 setEType 0.0
0 delete 0.0

Table 3.2: The empty Q-table for error 2.

First, the algorithm extracts the errors from the model and initializes the Q-
table with actions for these errors. This will result in a Q-table like table 3.1,
3.2 and 3.3.

The algorithm starts the first episode, consisting of up to 20 steps. The max-
imum of 20 steps is set by formulae 3.1 based on three initial errors. For each
step, the algorithm might take the optimal action or a random action, as ex-
plained in section 2.3.3. The algorithm starts by repairing Error 1.

In this demonstration, the algorithm chose to start with a random action setName

in context 2. It receives a reward of 200 based on the preferences and calculates
a new Q-value for entering the next state Error 2.

Qt+1(st, at) = Qt(st, at) + α

(
r + γ

(
max
at+1

Qt(st+1, at+1)

)
−Qt(st, at)

)

QError 2(sError 1, asetName) =0 + 1 · (200 + 1 · 0− 0) (3.2)

=200 (3.3)

In the next step, the algorithm chose an optimal action. Because all the values
are zero for this error, the algorithm does not know which action is considered

Context Action name Weight

0 setContainmentGen 0.0
0 setContainment 0.0
0 delete 0.0
1 setEOpposite 0.0
1 setUpperBound 0.0
1 delete 0.0

Table 3.3: The empty Q-table for error 3.

33

Context Action name Weight

0 delete 0.0
1 setName 273.77570694444444
1 delete 0.0
2 setName 392.24155
2 delete 0.0

Table 3.4: Q-table for error 1 in the fifth episode.

optimal. As a result, the chosen action depends on the implementation. This
implementation chooses the first action in the table setEType. It receives a
reward of 100 based on the preferences and calculates the new Q-value to the
same value.

The next step attempts to solve Error 3. It chooses the optimal action, but all
the values for this error is also zero. It takes the action setContainmentGen and
receives a reward of 100. The new Q-value has a slightly different computation
when there are no errors left to fix. It is not possible to calculate the maximum
reward for the next step, because no more steps remain. The computation then
looks like this:

QFinished(sError 3, asetContainmentGen) =Qt(st, at) + α (r −Qt(st, at)) (3.4)

=0 + 1 · (100− 0) (3.5)

=100 (3.6)

The first episode received a total reward of 400. Next, the algorithm starts
another episode. The Q-table is kept from the previous episode, but the model
is reset with all the errors. The first episode is Error 1, and this time the
algorithm chose the optimal action setName with a weight of 200. The new
Q-value is calculated, but now the alpha has a new value. This is because the
implementation used in this demonstration gradually decreases the alpha. In
other words, the algorithm is less and less influenced by new discoveries.

Qt+1(st, at) =200 + 0.9608333333333333 (200 + 1 · 100− 200) (3.7)

=296.0833333333333 (3.8)

For the following steps in the episode the algorithm chose the optimal action,
both being the same options as the first episode. The algorithm continues to
run episodes, sometimes mixing it up with random actions. When the algorithm
starts on Error 3 in the fifth episode, the Q-tables look like table 3.4, 3.5 and
3.6. In the third step the algorithm chooses a random action setUpperBound,
which sets an unknown error as the next step. This new error states that the
lower bound 5 must be less than or equal to the upper bound 1.

• Error 4: The lower bound 5 must be less than or equal to the upper
bound 1

34

Context Action name Weight

0 setEType 189.82506752083333
0 delete 0.0

Table 3.5: Q-table for error 2 in the fifth episode.

Context Action name Weight

0 setContainmentGen 89.1325
0 setContainment 0.0
0 delete 0.0
1 setEOpposite 0.0
1 setUpperBound 0.0
1 delete 0.0

Table 3.6: Q-table for error 3 in the fifth episode.

The algorithm notices it does not have any entries in the Q-table for this error
and initializes it with actions provided by EMF. The Q-table now contains
an entry for the newly introduced error with the actions displayed in table 3.7.
After the initialization is complete, it finishes the calculation of the new Q-value
for setUpperBound.

Since the model still contains errors a fourth step is executed. It chooses the
optimal action delete in context 0 and receives a reward of -1000. The Q-value
for the action is computed and stored in the Q-table. The problem with this
delete-action is that the opposite reference in the Heater-class is deleted. This
does not fix the error, so in the next step the algorithm is still attempting to solve
it. This time the optimal action is setLowerBound. However, after deleting the
opposite the algorithm is unable to apply the action. It still receives a reward of
100 and calculates a Q-value of 84,33. This makes setLowerBound the optimal
action, and the algorithm gets temporarily stuck in a loop as it cannot be applied
to the model. This is ended by reaching the maximum number of steps or by
a random action. In the execution, step 12 chose to delete in context 0 again
which deleted the entire reference and the error disappeared.

In episode 10 the algorithm chooses the optimal action setName for error 1, the
optimal action setEType in context 0 for error 2, the optimal action setUpperBound

in context 1 for error 3 which again introduces error 4 to the model. This time
the algorithm chooses the optimal action setLowerBound and is able to apply it,
not having deleted the opposite. This gave the best reward of all the solutions
with a value of 500 and resulted in a model like figure 3.4.

Context Action name Weight

0 delete 0.0
1 setLowerBound 0.0
1 delete 0.0

Table 3.7: The empty Q-table for error 4.

35

Figure 3.4: A model with the errors solved by the algorithm.

The model is not perfect, and some need for human completion is needed. For
example, the duplicate Room-attribute is now named placeholder9737771, and
the developer has to delete it or name it appropriately.

3.2 Code origin

This research project did not start from scratch. [8, 9, 10] proved that it is pos-
sible to repair models with Q-learning by building an algorithm and displaying
its potential by repairing 100 broken models. That algorithm was the starting
point of the repairing tool.

The original code was, unfortunately, difficult to build and expand upon due
to its complexity and the lack of interface towards the algorithm. It was con-
structed with most of the code in one class containing 1612 lines of code. [37]
states that classes should be kept small, because as systems become more com-
plex, they will take more time for other developers to understand.

In the initial phase of the refactoring, different responsibilities were identified
and separated into classes. This process proved effective in gradually building
an understanding of the system.

Whilst this project started, the authors of [8, 9, 10] was still continuing their
development of the algorithm. A tool for allowing both projects to continue the
development without causing problems for each other, whilst still being able
to retrieve the latest versions of the working code from each other was needed.
Git, a distributed revision control system [55], proved very helpful in dealing
with this challenge.

Git allows to fork a repository, creating a personal copy of the code base. This
new copy is still connected to the original code base, and new code can be ex-
changed between the two versions. However, the future of the two projects and
the commonality between them was a little ambiguous at the beginning of this
project. As a result, we opted to make the common algorithm a separate Git
project and put other artifacts like execution scripts and models not relevant to
the algorithms function in an isolated project. This separation made it possible
to include the algorithm as a submodule in other projects without getting un-
necessary files and models. The common code can now be used and improved
upon and different projects can be built on top of it. These projects do not
break if the underlying algorithm changes, as Git holds submodules in detached
head state meaning changes need to be actively fetched.

36

The distance algorithm described in section 3.10 was also added as a submodule.
The reasoning behind this was twofold. Firstly, Git allows quick updating of
the distance algorithm if any improvements are made to the distance project.
This would require more manual work if the code had been copied into the
Parmorel project. Secondly, Git now shows where the code comes from to other
developers, and it can be tracked back to its original creators. Because the
Parmorel tool is created for a thesis, this felt like an appropriate way to credit
the original code authors in the repository.

Never having worked with submodules before, two minor irritations was expe-
rienced considering this way of structuring the code. Firstly, the code in the
submodules are not fetched automatically with the git clone command. It
leaves an empty folder, rendering a lot of the code with errors as references
to classes in the submodules break. To clone everything, the user must either
use a recursive-flag or pull each submodule manually. This might not be in-
tuitive to users who checks out the project. Secondly, all changes to the code
in a submodule is pushed back to that submodule. This might seem obvious
but caused an issue when the distance project was altered slightly to comply
with Parmorel. The original repository did not provide write permissions, so
the required changes could not be pushed. As a result, each time the Parmorel
code base was pulled into a new workspace, the required changes to the distance
algorithm had to be made locally. This was resolved by forking out a copy of
the code, resulting in a new repository with write access that could be updated
as desired.

3.3 Development method

One of the best ways to ruin a program is to make massive changes
to its structure in the name of improvement [37].

As stated in section 3.2 this project did not start from scratch but expands
upon the work done in [8, 9, 10]. To avoid breaking the algorithm, it was a
desire to work in the discipline of Test-Driven Development (TDD). TDD is a
programming practice where test cases are written before the production code.
One of the advantages with TDD is that any regression errors introduced when
modifying or adding features to the program is detected when running the tests
[27]. This gives the programmer a confidence that no new errors have been
introduced to the program. In this project, TDD could provide a verification
that the behavior of the system remained unchanged while refactoring.

To work with TDD a test suite of automated tests that could verify that the
behavior of the system remained unchanged was required [37]. This test suite
should consist of tests at different levels. The unit tests make sure the indi-
vidual software components does the right thing in isolation, the integration
tests combine units to make sure they work correctly together, and acceptance
testing makes sure the software works as the specifications required [27].

These testing levels are each different part of the V-model of software testing
[39]. The V-model illustrates that while programming it is unit tests that are
executed, and integration tests are executed after the unit is finished to make

37

sure it functions as expected. Unfortunately, it was almost impossible to create
unit tests for the initial code because the majority of the code was in units
too big to write unit-tests for. Instead, we opted for using the initial repairing
script for fixing 100 models as an integration test. If this still executed without
problems, we considered the behavior unchanged. This might not cover all code
paths and is therefore a lot less accurate, but it made sure the behavior did not
diverge massively from the original code.

3.4 Code structure

The project is created in the Eclipse IDE using the programming language Java,
where the classes are organized into packages. The Parmorel algorithm contains
6 different packages illustrated in figure 3.5 and is available on GitHub from the
link specified in appendix A.

Figure 3.5: The package structure of the algorithm annotated with I for inter-
faces, A for abstract classes and E for enums. The arrows show inheritance.
Note that not all preferences are included in this illustration.

The package no.hvl.projectparmorel is the top package and contains all the
other packages. In this package, the interface ModelFixer and the abstract
Solution-class returned from methods in this interface are contained. These
artifacts are meant to be general so that they can be implemented by other
model repair approaches, and still use the same execution scripts (section 3.9).

38

Plug-ins and other artifacts depending on these classes should not have to change
a lot if the underlying algorithm is changed.

All the custom exceptions that can be thrown in the Parmorel algorithm are
located in the hvl.projectparmorel.exceptions package.

no.hvl.projectparmorel.qlearning is a package containing the Q-learning
related classes. This includes the QModelFixer that implements the Mod-
elFixer interface. Tree more packages are organized inside the qlearning pack-
age. Two of them are no.hvl.projectparmorel.qlearning.knowledge and
no.hvl.projectparmorel.qlearning.reward. Inside knowledge, all the classes
regarding the knowledge (section 3.8) are stored. The classes that handles re-
wards are located in the reward-package. This includes preferences, as they
are the source of which rewards are derived. The reason that knowledge and
reward are located inside the qlearning package is that only the Q-learning al-
gorithm should be dependent on their contents. Other model repair algorithms
will probably structure the knowledge and reward in other formats.

The last package is no.hvl.projectparmorel.qlearning.ecore. Inside this
package, all the abstract classes and interfaces dependent on the metamodel are
implemented with respect to the Ecore metamodel. To ensure that the rest of
the algorithm is metamodel independent, the files in this package are the only
ones that are allowed to import from emf-packages.

3.5 Actions

An action is some operation being applied to the model. Every action has
a unique id, a name, a method, a context ID and a weight. The method is
the action itself and contains a java.lang.reflect.Method that can be called
by the algorithm to change the model. The context ID is what context the
action is applied to. This corresponds to the contexts in the error, and one
action instance can only correspond to one context. This is because an action
is considered for each context, and not all methods are suitable for all of them.
Say two elements have the same name, this can be solved by setting a new name
or deleting one of them in the context of the attributes. In the context of the
containing class, a rename would not solve the error. However, deleting the
class will. Additionally, the method might have different weights for different
contexts.

When actions are applied to the models, they often need some parameters.
setEType, setName and setUpperBound are some of the actions chosen by the
algorithm in section 3.1. How does the algorithm select what type to give
an attribute, or what name to give a duplicate? Our implementation is not
advanced in this area and has a set of standard parameters to use in the methods.

If the action requires parameters, the method shown in listing 3.1 is called. It
receives a list of all the parameter types and returns a list of default values
corresponding to the parameter type. All attributes with a missing type will be
set to EString, all bounds will be set to 1 etc.

660 private Object [] ge tDe fau l tVa lues (L is t<Str ing> l i s t) {

39

661 List<Object> va lue s = new ArrayList<Object>() ;
662 Random rand = new Random() ;
663 for (int i = 0 ; i < l i s t . s i z e () ; i++) {
664 i f (l i s t . get (i) . contentEquals (” i n t ”)) {
665 va lue s . add (1) ;
666 }
667 i f (l i s t . get (i) . contentEquals (” boolean ”)) {
668 va lue s . add (fa l se) ;
669 }
670 i f (l i s t . get (i) . contentEquals (”booleanTRUE”)) {
671 va lue s . add (true) ;
672 }
673 i f (l i s t . get (i) . conta in s (” St r ing ”)) {
674 va lue s . add (” p l a c eho ld e r ” + rand . next Int ((999999 − 1) + 1) +

1) ;
675 }
676 i f (l i s t . get (i) . contentEquals (” org . e c l i p s e . emf . e co re .

EC l a s s i f i e r ”)) {
677 va lue s . add (EcorePackage . L i t e r a l s .ESTRING) ;
678 }
679 i f (l i s t . get (i) . contentEquals (” org . e c l i p s e . emf . e co re .

EClassi f ierCLASS”)) {
680 va lue s . add (EcorePackage . L i t e r a l s .ECLASS) ;
681 }
682 i f (l i s t . get (i) . contentEquals (” org . e c l i p s e . emf . common . no t i f y .

Not i f i c a t i onCha in ”)) {
683 va lue s . add (new Not i f i ca t i onCha in Impl ()) ;
684 }
685 i f (l i s t . get (i) . conta in s (”TypeParameter”)) {
686 va lue s . add (EcoreFactory . eINSTANCE. createETypeParameter ()) ;
687 }
688 i f (l i s t . get (i) . conta in s (”Reference ”)) {
689 va lue s . add (EcorePackage . L i t e r a l s .

EREFERENCE EREFERENCE TYPE) ;
690 }
691 i f (l i s t . get (i) . conta in s (” L i t e r a l ”)) {
692 va lue s . add (null) ;
693 }
694 }
695 Object [] va l = new Object [va lue s . s i z e ()] ;
696 va l = va lue s . toArray (va l) ;
697

698 return va l ;
699 }

Listing 3.1: The method providing default parameters.

This is sufficient to make the algorithm work, but it would be interesting to see
if ML could be applied to this part of the algorithm as well. This is left for
further work.

3.6 Rewards

The rewards given to the algorithm can have different weights. A weight of 200
is a greater reward than a weight of 100. If a reward has a negative weight this
is considered a punishment. The preferences selected by the user is represented
by weights in the algorithm. Currently, these weights are selected by trial and

40

error figuring out what worked well and what did not. This can be changed in
the implementation to allow more user control, discussed in chapter 9.

When the user selects a solution, the plug-in will give a reward to all the actions
used to construct it. If a solution has used an action several times, the action
will be rewarded correspondingly. By allowing this post repair interaction, the
user is allowed to influence how the algorithm learns without relying heavily
on strong user interaction during the repair process. Furthermore, the user has
more information available after the repair process is complete and can compare
the different solutions and reward the best one.

3.7 Errors

As explained at the beginning of this chapter, the Q-table is populated with
actions for an error when it is encountered by the algorithm for the first time.
To make sure the error is supported, the algorithm checks if the error still exists
after an action is applied. If the error is gone, the action was successful and is
added to the Q-table. If none of the provided actions removed the error, it is
marked as unsupported. Detecting if an error still exists is done by comparing
a list of all the errors residing in the model before and after an action is applied
but this is not a trivial task.

An error consists of a numeric error code unique to a specific type of error, a
message explaining the error in a human readable form and a list of contexts de-
scribing the error. An example is an error with code 32 and the message There

may not be two features named ’address’. The lists of context would con-
tain the object that is the primary source of the problem (i.e. the attribute
named address), an object describing the problematic feature or aspect of the
primary source (i.e. the attribute with the same name), and the remaining ele-
ments are additional objects associated with or describing the problem (e.g. the
class containing the attributes).

Problems may occur if all the components of an error are compared to see if
their values are the same. Some of the messages describing the error contain
information dependent on a memory address causing the message to be different
for the exact same error every time the error is extracted from the model. As a
result, the errors will not be equal, and the algorithm will not discover that the
error still exists in the model. This leads to the algorithm thinking the action
worked for the error, whilst in reality it did not.

If only the error code is used to compare errors, problems arise when models
have several of the same error type. Let’s say we have a model with several
errors with code 44, indicating that names are not well formed. Even if the
algorithm fixes one of these errors, the error code 44 will still remain in the
model as there still exists names that are not well formed. This results in the
algorithm thinking the action did not work for the error, even if it really did.

The current implementation solves this by counting the number of times the
error code occurs in the model before and after an action is applied. If the error
being fixed has less occurrences after the action is applied, the algorithm can

41

assume the action worked.

Unsupported errors will be ignored at repair time by the algorithm. The unsup-
ported errors for EMF are usually related to proxies (i.e. elements existing in
other resources) and namespaces. Although EMF does not provide actions to
solve all errors, the possibility of adding custom actions are discussed in chapter
9.

3.8 Representation of knowledge

In the original code, the knowledge gained by the algorithm was stored in a
triple HashMap. In the first map, the key was the error code. This would return
a second map, were the key was the context that again returned a third map
where the action id was used as a key to get the action.

This data structure worked in the sense that it was fast and kept the actions
for different error codes or contexts separate from each other. The problem was
that it was very hard for programmers unfamiliar with the project to understand
how to use it. Listing 3.2 shows how actions were added to the Q-table.

155 i f (! getNewXp () . getqTable () . containsKey (e . getCode ())) {
156 d . put (a . getCode () , weight) ;
157 dx . put (num, d) ;
158 getNewXp () . getqTable () . put (e . getCode () , dx) ;
159 i f (! getNewXp () . ge tAct i onsDic t i onary () . containsKey (e . getCode

())) {
160 hashaux . put (a . getCode () , new ActionExp (a , new HashMap<

Integer , Integer >())) ;
161 hashconta iner . put (num, hashaux) ;
162 getNewXp () . ge tAct i onsDic t i onary () . put (e . getCode () ,

hashconta iner) ;
163 } else {
164 i f (! getNewXp () . ge tAct i onsDic t i onary () . get (e . getCode ()) .

containsKey (num)) {
165 hashaux . put (a . getCode () , new ActionExp (a , new HashMap<

Integer , Integer >())) ;
166 getNewXp () . ge tAct i onsDic t i onary () . get (e . getCode ()) . put (

num, hashaux) ;
167 }
168

169 else i f (! getNewXp () . ge tAct i onsDic t i onary () . get (e . getCode ()
) . get (num) . containsKey (a . getCode ())) {

170 getNewXp () . ge tAct i onsDic t i onary () . get (e . getCode ()) . get (
num) . put (a . getCode () ,

171 new ActionExp (a , new HashMap<Integer , Integer >())) ;
172 }
173 }
174 }

Listing 3.2: Parts of the original code to add an action to the Q-table if it is
the first time an error is encountered.

Listing 3.2 only covers the scenario that the error code is encountered for the
first time. If the Q-table already contained the error code only the code from
line 164 would be necessary and were implemented again in a different if-
branch. This illustrates one of the problems with the old Map-structure. The

42

programmer always had to check if there existed a Map for the key. If it did
not, a new HashMap had to be created. This resulted in many lines of code that
was unnecessarily hard for programmers to understand, given the need to keep
track of what values should be placed where.

When refactoring, alternative structures was considered. Primarily two struc-
tures were discussed: the existing Map-structure and a tree-based structure.

3.8.1 Tree structure

A tree-structure is a hierarchical data structure constructed by nodes [35]. A
node can have an arbitrary number of sub-nodes, referred to as children. If the
knowledge were to be implemented as a tree, it might look like figure 3.6. In
this implementation, the first layer of nodes represents the error codes. Each
error can have several child nodes that each represents a context where the error
resides. Each of these context nodes can again have several children nodes, each
representing an action that might fix the error.

Figure 3.6: Visualization of a tree structure.

The advantages found with this approach was how easily it could be visualized,
making it understandable for new developers. In reality, however, this imple-
mentation does not differ much from the Map-structure. The only difference
between the implementations is that the information is stored as a node in a
tree, rather than an entry in the Map. The programmer would still have to
navigate between nodes to access the information.

43

3.8.2 Map structure

We chose to implement the knowledge in a Map containing other maps like the
original code. This can be visualized similarly to the tree structure, although it
looks slightly more complex as shown in figure 3.7. The main difference between
the structures is that we do not have to iterate over the child nodes to find the
one we want when traversing a tree. Instead we can look up what value we want
from the Map, which results in a slightly faster implementation.

Figure 3.7: Visualization of a HashMap structure.

The main difference from the original implementation was an interface added to
the structure, providing more intuitive method names. This makes it easier for
other programmers to understand the system, as they don’t have to depend on
or even understand the implementation. This is illustrated by listing 3.3, where
a caller only references the directory with the addAction-method. Interfaces
also makes it easy to change the implementation later, for example to a tree
structure, without breaking the code depending on it [37].

By wrapping the inner Map-structures in classes, a lot of the logic could be
more expressive rendering the detailed implementation easier to understand.
An example of this is the class ErrorMap in listing 3.4. The ContextMap-class
behaves very similar to the ErrorMap-class, but handles the next layer in the
data structure, mapping from context id’s to possible actions.

10 public class HashErrorContextActionDirectory implements
ErrorContextAct ionDirectory {

11 private ErrorMap e r r o r s ;
12

13 public HashErrorContextActionDirectory () {
14 e r r o r s = new ErrorMap () ;
15 }
16

17 @Override
18 public void addAction (In t eg e r errorCode , In t eg e r contextId ,

Action ac t i on) {
19 e r r o r s . addAction (errorCode , contextId , a c t i on) ;
20 }
75 }

44

Listing 3.3: Base class of the knowledge structure.

15 class ErrorMap {
21 private Map<Integer , ContextMap> context s ;
22

23 protected ErrorMap () {
24 context s = new HashMap<>() ;
25 }

116 protected void addAction (In t eg e r errorCode , In t eg e r contextId ,
Action ac t i on) {

117 i f (context s . containsKey (errorCode)) {
118 context s . get (errorCode) . addAction (contextId , a c t i on) ;
119 } else {
120 context s . put (errorCode , new ContextMap (contextId , a c t i on)) ;
121 }
122 }
184 }

Listing 3.4: Implementation of nested HashMap wrapped in a class.

3.9 Extensibility

The algorithm is built and tested using the EMF API, but by implementing
various interfaces and abstract classes the algorithm can be introduced to other
model types. The Template Method pattern allows subclasses to redefine certain
steps of the algorithm without changing the algorithms structure [25], and this
is the basis for implementing new types of models. In this section the various
required extension points will be explained, and figure 3.8 illustrates the various
components in relation to each other.

By implementing the interface ModelFixer the entire Q-learning algorithm can
be replaced with another type of algorithm. As explained in section 2.2.1 there
are several ways to repair a model. If other solutions implement this interface,
the plug-in will still work, and the test scripts and models used in Parmorel
can be tested and compared to other repair approaches. The main methods in
the interface is fixModel(File model) which returns a Solution. If the repair
approach produces several solutions, these can be obtained through the method
getPossibleSolutions(). If only one solution is produced, the list should only
contain that solution.

The Solution is an abstract class describing the final result of the repair
process. It contains a file referring to the original model and a file referring
to the repaired version. This is not dependent on the metamodel, but the
calculateDistanceFromOriginal()-method on the solution object is. This
method calculates the editing distance between a suggested repaired version and
its original. The distance is currently only used by some specific preferences in
the Q-learning algorithm, and if there is no intention of using these preferences or
provide the user with the distance information a DistanceUnavailableException
can be thrown.

45

Figure 3.8: Parmorel components.

This thesis focuses on Q-learning and has implemented the ModelFixer interface
in an abstract class called QModelFixer. This class is abstract in order to handle
all the logic regarding Q-learning but separate the algorithm from the Ecore
metamodel. This is one of the main classes that needs implementation in order
to support other metamodels. The derived classes do not contain much logic
themselves but are responsible for providing the QModelFixer with metamodel
specific components.

One of these components is a Model. This wraps the model representation,
allowing the QModelFixer to handle the model whilst delegating the meta-
model specific implementation to specific components. Two of the methods are
getRepresentation() and getRepresentationCopy() which both returns an
Object. Changes can be made to the copy without altering the original model,
but any changes made to the representation might. Object is the root of the
Java class hierarchy, meaning all classes has Object as a superclass [45]. This
allows the model to be represented by any Java class, and the only important
aspect is to return the same type of class as the other metamodel specific com-
ponents expects as input. The Ecore-implementation, for instance, returns an
org.eclipse.emf.ecore.resource.Resource-object. The last two methods
on a Model are save(), which saves the representation, and getModelType().
ModelType is an Enum specifying what type of model it is. Different metamod-
els might have different problems that cannot be handled, so each Enum type
contains a set of unsupported error codes. If the developer knows of any prob-
lems, these can be added to the Enum type constructor when it is implemented.

46

Otherwise, the Parmorel algorithm will automatically add error codes to this
list if no actions from the modeling framework resolves the error.

ActionExtractor and ErrorExtractor are two components specific to the
metamodel. The ActionExtractor provides Parmorel with all the actions
that can be applied to the model in order to fix a list of errors. In order to
speed up the algorithm, methods that do not result in any change (get-methods
etc.) should be omitted. The Action class is also abstract, but isDelete()

and getActionType() are the only methods that depends on the metamodel.
ErrorExtractor simply returns a list of the errors in the model.

The last component specific to the metamodel is the ModelProcessor. This
is the class responsible for applying actions to the model. There is a lot more
behind this task than meets the eye. Applying actions include determining if
the method requires parameters and what they should be.

In the process of initializing the Q-table with new actions, the actions are applied
to the model to see if they remove the error from the model. If the action does
not get rid of the error, it is not added to the Q-table in order to reduce the
search space for the algorithm when looking for an action during the repair
process. Because the Q-table initialization is closely related to applying actions
to the model, this task is also delegated to the ModelProcessor.

After all the components above are implemented for a metamodel, the algorithm
should be able to handle all models derived from that metamodel.

The preferences used by Parmorel can be altered or supplied with com-
pletely new preferences by extending the abstract class Preference and adding
an enum constant to PreferenceOption1. The Preference contains a method
called rewardActionForError(Model model, Error error, Action action)

which is called for every action the algorithm applies to the model, and returns
the reward given from the preference in the form of an integer. Not all the
parameters are required in generating the reward, depending on the preference.
Some preferences require additional method calls for initialization, post process-
ing etc., and can be achieved by implementing various interfaces. An overview
of the algorithm and at what point the different methods regarding preferences
are called can be viewed in figure 3.9. Lastly, the PreferenceOption must be
added to the switch-statement in the RewardCalculators initializeFrom(

List<PreferenceOption> preferences)-method with the corresponding pref-
erence implementation.

Some preferences might want to compare the model being repaired with the
original or with the state of the model just before the action is applied. If this
is the case, the preference should have some initializing call to store information
about the model prior to any changes made to it. In order to accomplish this
the preference must implement the interface InitializablePreference. This
has two method calls, both with the model as a parameter and allows the
preference to store the information required in order to calculate the reward at
a later stage. The first initializing call is made prior to any episodes having

1A video demonstration is available here: https://github.com/MagMar94/

ParmorelExperimentResults/wiki/Creating-custom-preferences

47

https://github.com/MagMar94/ParmorelExperimentResults/wiki/Creating-custom-preferences
https://github.com/MagMar94/ParmorelExperimentResults/wiki/Creating-custom-preferences

started (Initialize preferences1 in fig. 3.9), and the other is called just before
selecting an action to apply to the model (Initialize preferences2 in fig. 3.9). It is
usually necessary to write model-specific code in these preferences, as the model
only returns an Object. In order to maintain extensibility, it is recommended
to throw an exception that explains what has happened if someone were to use
the preference for an unsupported metamodel. An example of this can be seen
in listing 3.5, where the preference depends on the initial number of errors. If
the model conforms to the Ecore metamodel the preference works as expected,
but if it does not an exception is thrown.

9 class PunishModi f i cat ionOfModelPre ference extends Pre f e r ence
implements I n i t i a l i z a b l e P r e f e r e n c e {

10

11 private int numbersOfErrorsBeforeApplyingAction ;
12 private ErrorExtractor e r r o rExt ra c t o r ;
13

14 public PunishModi f i cat ionOfModelPre ference (int weight) {
15 super (weight , Pre ferenceOpt ion .PUNISH MODIFICATION OF MODEL) ;
16

17 }
18

19 @Override
20 public void i n i t i a l i z e P r e f e r e n c e (Model model) {
21 switch (model . getModelType ()) {
22 case ECORE:
23 e r r o rExt ra c t o r = new EcoreErrorExtractor () ;
24 break ;
25 default :
26 throw new UnsupportedOperationException (”This p r e f e r en c e i s

not yet implemented f o r t h i s model type . ”) ;
27 }
28

29 }
30

31 @Override
32 public void i n i t i a l i z eBe f o r eApp l y i n gAc t i on (Model model) {
33 numbersOfErrorsBeforeApplyingAction = er ro rExt ra c t o r .

extractErrorsFrom (model . getRepresentat ionCopy () , fa l se)
34 . s i z e () ;
35 }

Listing 3.5: An example of how a preference can maintain extensibility to
support other models.

Some preferences do not look at individual steps, but rather at the finished
solution. If this is the case, the preference should implement the interface
SolutionPreference. The method in this interface is called once a complete
solution is derived, with the complete solution as a parameter. Additional pa-
rameters include the model (in the same way as in InitializablePreference)
and the Q-table. The reason the preference gets the Q-table is that all the
actions used to create the solution have received a weight whilst repairing the
model, and these weights can now be altered in retrospect considering the fi-
nal result. To make sure the Q-table is updated correctly with respect to the
existing reward it is recommended to leave to the altering of the table to the
rewardAction method available through the abstract Preference class.

The last type of preference available is one that compares all the finished solu-

48

Figure 3.9: An overview of where in the repairing process the different
preference-methods are called.

tions. Preferences that requires this functionality implements PostRepairPreference,
which method is called with a list containing all the solutions as a parameter,
along with the Q-table for post-repair updates. This is useful for preferences
like prefer long or short sequences of actions because long and short are circum-
stantial. Whether the action sequence is long or short can easily be deduced
post-repair by comparing the length of all the action sequences. This differs
from SolutionPreference because it is calculated after the repair has finished
producing solutions and is thus not able to use the knowledge in the current
repair.

When the algorithm is executed the user might select to combine preferences.
This is handled by the RewardCalculator by looping over all the selected pref-
erences and adding up the total.

49

3.10 Edit distance

As mentioned in section 2.1.5 it is possible to measure the distance between
two models. A distance measure has been implemented in the plug-in to see
if knowing the distance between a broken model and the repair alternatives
could be beneficial for the developer when selecting the optimal solution. The
distance algorithm is based on EMF Compare [19], with a custom matching
engine provided by [1]. The matching engine is responsible for reporting what
elements are equal to each other, and the distance is calculated based those
matched elements.

Once the distance calculation was implemented, the concept was taken a step
further by implementing a preference working to minimize the distance to the
original model. In order to minimize undesired side-effects when repairing mod-
els, [33, 59] has highlighted the importance of preserving the model structure.
Knowing the distance between the proposed solution and the original model can
be a powerful tool in order to accomplish this [1, 32, 58]. Parmorel uses the
distance value as a reward, being a high value for similar models, resulting in
the framework learning how to repair models with the result being as close to
the original as possible.

EMF Compare is an Eclipse project that provides support for model comparison
and merging of EMF models, in a generic and customizable way [19]. The com-
parison process is split into different activities, and these activities are handled
separately by different software entities, i.e. engines. EMF Compare provides
full support to create custom or metamodel-specific solutions by extending its
default behavior, resulting in a completely customizable comparison process.

The matching engine provided by [1] calculates the similarity between two given
model elements by integrating ontological information, i.e. information showing
the relations between the meaning of the words in English. This ontological
information is extracted from the WordNet lexical dictionary [47]. Words are
grouped into sets of synonyms called synsets, including a generic definition ty-
ing the words together. The set also includes information specifying semantic
relationships connecting the contained words to other synsets. Some of these
relationships constitute is-a-kind-of and is-a-part-of hierarchies. For example,
a beer ontology can be used to determine that Hansa is a kind of Pilsner which
is a kind of beer. Hops is a part of beer. These semantic relationships apply
to all members of a synset, as their meaning is the same. Words can also be
connected to other words through lexical relations, e.g. antonyms. By using
this ontological information, the engine can compare model element names and
calculate a semantic distance.

Distance values ranges from 0 to 100, with 100 meaning the models are iden-
tical with respect to the properties included in the calculation. A model with
multiple repair solutions can have different distances for the various solutions.
An example from the ACMR set (introduced in chapter 5) has identical errors
in two classes, displayed in figure 3.10. Parmorel finds four possible actions for
each error:

• Set the upper bound to 1

50

Figure 3.10: An overview of the model
org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore and its residing errors.

• Set the unique property

• Delete the faulty reference

• Unset the containment property

By combining these actions for the two errors a total of 16 solutions can be
obtained. These solutions will result in different distance values, and a subset
of these are highlighted in table 3.8. Solution 1 and 4 are closest to the original
because they alter the uniqueness and the containment properties, and neither
of these are considered by the comparison matching in question. However,
solution 2 and 3 modify properties considered in the matching comparison: a
modified upper bound and a deleted reference. This will have an impact on
what actions gets chosen by Parmorel, and as a result the user is provided with
an additional way to impact the repair procedure. By changing or adapting
the distance algorithm, making it take into account more properties or be less
strict, Parmorel will adapt the chosen actions accordingly.

Another distance algorithm tested in this thesis was the EditionDistance-class
implemented in EMF Compare [23]. However, this implementation did not work
for Parmorel as it always returned a distance of zero even though there where
changes to the model. When the Eclipse Community Forum was consulted, the
reply stated that the required use case was not what they had in mind when
implementing it [22].

51

Solution
number

Actions Distance

1
a1: unset containment
a2: unset containment

100

2
a1: change upper bound
a2: change upper bound

89

3
a1: change upper bound
a2: delete reference

89

4
a1: set unique
a2: set unique

100

Table 3.8: The distance resulting from actions applied to the model displayed
in fig. 3.10.

52

Chapter 4

Use cases

In this chapter, some common use cases and corresponding workflow for the
plug-in are presented.

Figure 4.1: A model containing two errors.

The first use case is when an error occurs in a model being worked on by a
developer, as the example illustrated in fig. 4.11. In order to get suggested
solutions on how to repair the error, the developer triggers the repair action in
the Parmorel plug-in and selects some preferences (an example of the preference

1A video demonstration is available here: https://github.com/MagMar94/

ParmorelExperimentResults/wiki/Using-Parmorel

53

https://github.com/MagMar94/ParmorelExperimentResults/wiki/Using-Parmorel
https://github.com/MagMar94/ParmorelExperimentResults/wiki/Using-Parmorel

selection is illustrated in fig. 4.2). Different solutions are presented to the
developer (fig. 4.3), and the preferred option is selected as a repair resulting in
a consistent model that can be developed further. In order to understand the
various solution alternatives, the user can view what actions have been taken
in each of them (fig. 4.4), and the proposed repaired models can be compared
to the original (fig. 4.5). The comparison view is provided by EMF and can be
used to partially merge the two versions. If the user likes the solution, it can
be selected as a repair replacing the original model and rewarding the chosen
solution.

Figure 4.2: An example of a preference selection.

Another use case presents itself when a model contains several errors. They
might have been introduced by a developer ignoring the error messages, post-
poning the repair to a later time, or by merging the work of several team mem-
bers. Either way, someone has to handle the errors. The designated developer
calls on Parmorel to present repair alternatives and solves all the errors in the
model simultaneously.

A third use case is a developer not satisfied with Parmorel. The preferences
do not allow the desired control over the repair process, and the developer
concludes that additional preferences are required. These are created and added
to the algorithm by the developer as explained in section 3.92, resulting in better

2A video demonstration is available here: https://github.com/MagMar94/

ParmorelExperimentResults/wiki/Creating-custom-preferences

Figure 4.3: A list of potential solutions.

54

https://github.com/MagMar94/ParmorelExperimentResults/wiki/Creating-custom-preferences
https://github.com/MagMar94/ParmorelExperimentResults/wiki/Creating-custom-preferences

Figure 4.4: Three screenshots of the actions residing in each of the possible
solutions present in the example.

Figure 4.5: A screenshot comparing one of the proposed solutions (left) with
the original (right).

55

control over the outcome for all future repairs.

If a project is based on another framework than EMF and this framework does
not provide any tools for repairing the broken model, the Parmorel algorithm
can be extended to handle those models as well. In this use case, the developer
creates the required extensions explained in section 3.9 adopting Parmorel to
handle the model type, whilst still using the existing Q-learning algorithm.

Another option is a developer not satisfied with Parmorel’s Q-learning algo-
rithm. However, the work process with the plug-in has become familiar and
no other tool presents the desired algorithm. The developer decides to write a
new algorithm, extending the ModelFixer interface presented in section 3.4 and
making the necessary alterations to make the plug-in run with the new source
code.

The last use case is another research proposing alternative solutions to repair
model and want to compare its approach to Parmorel. By extending the same
ModelFixer interface the same test-scripts can be run on the new solution, and
the resulting models can be compared.

56

Chapter 5

Analysis and Assessment

In this chapter, the algorithm and plug-in developed in the thesis is assessed
in experiments1. The experiments are divided into four activities described by
[31]:

1. Definition of the objectives of the experimentation

2. Design of the experiments

3. Execution of the experiments

4. Analysis of the results/data collected from the experiment

When defining the objectives, a hypothesis is created describing what variables
will be examined, and what metrics will be used to assess the results. The
design phase involves planning the experiments, determining what conditions
to apply (e.g. number of executions). Then the experiments are executed, and
the results analyzed.

Two datasets containing broken models have been used to test the approach.
The first set, named the AMOR set in this thesis, consists of 100 broken models
achieved from breaking five consistent models of different sizes from GitHub
with the AMOR Ecore Mutator 20 times per model [4]. This provides the
models with some validity, as they are developed for a real-life purpose. As a
result, they have the complexity and diversity of the models the Parmorel-tool
can face in the industry. The disadvantage with this dataset is that the errors
have not emerged naturally but have instead been introduced by an algorithm.
This brings into question the authenticity of the errors, and whether or not they
represent the errors the algorithm will face when utilized by developers.

The second set comes from the authors of [44], having searched through GitHub
looking for Ecore-models and created a dataset containing 2410 models. From
this dataset all the valid ones were detected and removed using the same Diagnostician-
tool used for detecting errors in Ecore-models with Parmorel. This left 1184
models containing 31 different types of errors. Not all of these errors are sup-
ported by Parmorel because EMF does not provide actions to handle them. The

1The results of the experiments and the datasets can be found on GitHub: https://

github.com/MagMar94/ParmorelExperimentResults

57

https://github.com/MagMar94/ParmorelExperimentResults
https://github.com/MagMar94/ParmorelExperimentResults

dataset was filtered again with the criteria that all the errors in the model could
be handled by Parmorel. Unfortunately, this left only 6 models in the datasets.
The reason for this turned out to be that many of the models contained error
4 that deals with unresolved proxies (i.e. elements existing in other resources),
which is not supported by Parmorel. However, most of the models also had er-
rors that Parmorel could handle. Finally, the dataset was filtered to only include
models supported by Parmorel plus error 4. This left 107 models containing 12
different error types. This dataset is called the ACMR-set in this thesis (from
its source Automated Classification of Metamodel Repositories [44]), and its
supported errors with examples and explanations are listed in appendix B.

By repairing the models from these datasets, the algorithm can prove that it
can handle errors introduced to models whilst they are being developed, and
that it can handle large industry scale models.

5.1 Does preferences affect final model quality?

The algorithm is heavily dependent on the preferences, as they are the source
of the rewards given for the chosen actions. RQ1 revolves around how much the
preferences affect the proposed solutions. A hypothesis was created, stating that
different preferences significantly affect the quality of the proposed solutions.

To calculate quality characteristics on models, some common metrics for the
results were required. [12] provides a generic approach to assess the quality of
models quantitatively, and proposes the following definition of maintainability:

Maintainability =
NC +NA+NR+DITMax +HAggMax

5
(5.1)

The acronyms are explained in table 5.1. If the maintainability is easy the result-
ing numeric value will be low, whilst models with more difficult maintainability
will result in higher values.

The understandability is adopted from [53] and complexity is adopted from [52],
and defined as follows:

Understandability =

∑NC
i=1 PRED(Ci) + 1

NC
(5.2)

Complexity = NR−NUR+NOPR−Understandability +(NR−NCR) (5.3)

PRED(Ci) is the number of predecessor classes of the ith class. This matter
because in order to understand a class one also has to understand its predecessors
affecting it through inheritance. Both values are better if they are low, as this
highlights better understandability and less complex models.

There are several ways to calculate reusability, and one of them is the attribute
inheritance factor (AIF) proposed by [6]. This will give a high value for a high
level of reuse, and can be defined as presented in [30]:

Reusability = AIF =
INHF

TNF
(5.4)

58

Acronym Meaning

AIF Attribute Inheritance Factor
DIT the longest path from a class to the root of the containing generalization hierarchy
DITMax the maximum DIT value obtained from each class in the model
HAgg the longest path from a class to other classes in the relation chain
HAggMax the maximum HAgg value obtained from each class in the metamodel
INHF the sum of all the Inherited Features in the classes
NA Number of Attributes
NC Number of Classes
NCR Number of TotalReference containment
NOPR Number of Opposite References
NR Number of References
NUR Number of Unidirectional References
PRED(Ci) the number of predecessor classes of the ith class
REFint the difference between the upper bound and lower bound in a reference
TNF Total Number of Features
UPBmax the maximal Upper Bound of a set of references
UPBmin the minimal Upper Bound of a set of references

Table 5.1: Explenation of the acronyms used in the quality characteristic for-
mulas.

INHF is the sum of all the inherited features in the classes, and TNF is the
total number of features. It is preferable with a high reusability value.

The last quality characteristic used to measure the results are inspired by the
metamodel relaxation concept [5], called relaxation index defined as follows:

Relaxation Index =

∑NR
k=1REFint− UPBmin

UPBmax − UPBmin
(5.5)

The relaxation index indicates how strict a model is with respect to its cardinal-
ity constraints. A reference with its cardinality constraints set to [0..*] is more
relaxed than [i..i] (for i ∈ N), because the developer has more freedom to define
the number of instances. The last case requires exactly i instances, resulting
in less elasticity to the developer. Relaxed models with a high relaxation index
are preferred.

In addition to the quality characteristics of the models, the time it took to
repair the models was also measured for each experiment. When the algorithm
is used to repair a model in a development process, the time taken to produce a
repaired version should be as low as possible in order to let the developer spend
the time productively.

When a new experiment started with new preferences, the knowledge gained
from the previous experiment was deleted to make sure the results did not affect
each other. All the experiments returned the solution with the highest weight,
and this is the chosen model on which to calculate the quality characteristics.
Other potential solutions were discarded.

The different combinations of preferences were:

59

• Prefer to repair higher in the context hierarchy.

• Prefer shorter sequences of actions and prefer to repair higher in the con-
text hierarchy.

• Punish deletion.

• Prefer longer sequences of actions and punish modification of the original
model.

• Prefer to repair higher in the context hierarchy and punish deletion.

• Prefer shorter sequences of actions, punish deletion and punish modifica-
tion of the original model.

• Prefer longer sequences of actions, prefer to repair lower in the context
hierarchy and reward modification of the original model.

All of the quality characteristics explained above are numeric, and can be seen
plotted in figure 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 for the ACMR-set. The data is
plotted as a line chart because of its ability to visualize trends, and this will show
if any selection of preferences clearly performs better or worse than the others
overall. If this is the case, a majority of the line representing the preference
results will be higher or lower than the other lines.

Figure 5.1: A graph showing the difference in maintainability between the results
of different settings. The different preference IDs are explained in table 5.2.

The analysis of the results shows very little variation in the data, as all the lines
in the plots are placed almost exactly on top of each other. This results in the
line primarily being green. The breaks in the graph are solution models in which

60

Figure 5.2: A graph showing the difference in understandability between the
results of different settings. The different preference IDs are explained in table
5.2.

the metric calculation tool was not able to calculate the quality characteristics,
because it was not able to count the number of classes etc. A closer look re-
vealed that these models contained several instances of error 4 (an unsupported
error included in the dataset), that might be related to the calculation tool not
working.

One outlier in the results is the eclipsecon.ecore-model (hidden label between
accregator 1.0.1.ecore and backbone.ecore in the plot) resulting in an orange
line. Although all the preferences result in a valid repair for this model, the
orange is the only one that the quality characteristics tool can handle. It is
uncertain why this is, but the model does initially contain several of the error 4.

Acronym Explanation

SS Prefer shorter sequences of actions
LS Prefer longer sequences of actions

HCH Prefer to repair higher in the context hierarchy
LCH Prefer to repair lower in the context hierarchy
PD Punish deletion
PM Punish modification of the original model
RM Reward modification of the original model

Table 5.2: Explanation of the preference ID’s.

61

Figure 5.3: A graph showing the difference in complexity between the results of
different settings. The different preference IDs are explained in table 5.2.

The orange solution was the only one to select the delete-action twice for this
model, that might have resulted in some of these disappearing.

In the relaxation plot (fig. 5.5), there is several values for the pom.ecore. This
model contained several of error 50 (A containment or bidirectional reference
must be unique if its upper bound is different from 1, see fig. B.11). Some of the
preference combinations chose more delete actions than others. For instance,
the green line (LS + LCH + RM) choose 27 delete actions for the error 50,
whilst the yellow line (PD) chose none. Because the relaxation index is based
on adding up the reference bounds difference, this will naturally become lower
when a lot of references are deleted.

The time plot shows that most models were fixed very fast, but there are some
peeks. In these, there is a clear difference between the faster and the slower
settings. The pom.ecore-file was the highest peek at just above 35 minutes
(2109571 ms) for the green line (LS + LCH + RM), whilst the yellow (PD)
finished in 2 minutes and 23 seconds (143320 ms). Like the relaxation index,
this is related to the number of delete-actions. The logs from the execution
shows that every time a delete-action was chosen it took a longer time to apply
to the model than other actions (often 2-3 seconds). In addition to the 27 delete
actions taken in the solution with the highest weight, several others were tried
out in the other episodes. As a result, the preferences that try to avoid deletion
becomes faster. The other big peak in the time plot is SVG.ecore, and this is
also the result of delete actions.

62

Figure 5.4: A graph showing the difference in the reuse of the metamodel be-
tween the results of different settings. The different preference IDs are explained
in table 5.2.

The same experiment was conducted on the AMOR set, and the results2 match
with the findings from the ACMR set.

5.2 Can the preferences be customized?

RQ2A questions how new preferences can be added to the algorithm, which is
explained in section 3.9. To find out how well this works in practice a hypothesis
was put forward, stating that someone other than the author could implement
other preferences with only the extensibility-section to guide the development.
The success of this experiment was based on whether or not the preferences
were implemented correctly combined with feedback from the developer that
implemented them.

The developer was one of the authors of [8, 9, 10] and was already familiar
with how Parmorel works. However, its structure had changed so much during
the work of this thesis that the developer did not recognize the part relating to
preferences. As a result, the developer had to follow the content of section 3.9
and look at the existing preferences in order to understand how to implement
the new ones.

2Available on GitHub: https://github.com/MagMar94/ParmorelExperimentResults/

tree/master/Experiments/Experimen-compare-preferences

63

https://github.com/MagMar94/ParmorelExperimentResults/tree/master/Experiments/Experimen-compare-preferences
https://github.com/MagMar94/ParmorelExperimentResults/tree/master/Experiments/Experimen-compare-preferences

Figure 5.5: A graph showing the difference in the relaxation index of the meta-
model between the results of different settings. The different preference IDs are
explained in table 5.2.

The following preferences were added to the algorithm:

• Prefer complexity

• Prefer maintainability

• Prefer relaxation

• Prefer reuse

• Prefer understandability

These preferences are based on the quality characteristics described in section
5.1, and each preference works to optimize one of them.

The developer successfully managed to implement all the preferences without
guidance and characterized it as quite easy to integrate them. Eclipse depen-
dencies led to some problems, but that was possible to overcome. The file
describing the project set-up in the repository was updated to make the Eclipse
dependency-issues easier for other developers.

5.3 What is the effect of the model distance?

Working with the new preferences added as a result of the experiment in sec-
tion 5.2, a new experiment with regards to RQ1 was created. Given that quality

64

Figure 5.6: A graph showing the difference in execution time between the results
of different settings. The different preference IDs are explained in table 5.2.

characteristics are linked to model elements [26], Parmorel should produce re-
paired updates which optimizes quality characteristics for the model elements
impacted by the error. An example is a model containing two classes with the
same name. If one of these classes are involved in a hierarchy, the repair can im-
pact all characteristics using the number of hierarchies in their calculation (e.g.
understandability). The hypothesis was that altering the distance function used
by the distance preference (section 3.10) in combination with preferences trying
to optimize the quality characteristics can improve the quality of the resulting
solution. By making the distance algorithm stricter considering more aspects
of the model, actions affecting properties that was not considered before will
equate to the actions that were in terms of distance. As a result, the distance
preference will have less of an influence leaving more of the work to the quality
characteristic preferences. The findings of this experiment have been submitted
as a scientific paper [11] to the technical track of the Models 2020 conference3.

In order to test this hypothesis, the distance algorithm was altered to take into
account the unique and containment properties. As stated in section 3.10, this
was not the case before. Note that this is a tiny modification to the distance
algorithm that will make all the combinations listed in table 3.8 getting a dis-
tance of 89, because the matching algorithm now will discover that the model
elements are different to the original. This modified distance algorithm is hence-
forth referred to as the custom distance. The repair process was executed on
the ACMR-set with a combination of the quality characteristic preferences from
section 5.2 and the closest distance preference.

3https://conf.researchr.org/track/models-2020/models-2020-technical-track

65

https://conf.researchr.org/track/models-2020/models-2020-technical-track

maintainability

model original custom

abapobj.ecore 16.6 16.6

com.ibm.commerce.foundation.datatypes.ecore 30.2 29.8

com.ibm.commerce.member.datatypes.ecore 14.8 14.8

com.ibm.commerce.payment.datatypes.ecore 37.8 37.8

componentCore.ecore 6.6 6.6

ddic.ecore 18.4 18.6

FacesConfig.ecore 120.6 120.4

ICM.ecore 13.2 13.2

org.eclipse.component.api.ecore 9.4 9.4

org.eclipse.component.ecore 7 6.8

org.eclipse.wst.ws.internal.model.v10.registry.ecore 4 4

org.eclipse.wst.ws.internal.model.v10.rtindex.ecore 3.8 3.4

org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore 4.8 4.6

org.eclipse.wst.ws.internal.model.v10.uddiregistry.ecore 4 4

pom.ecore 47.8 45.2

RandL.ecore 22.4 22.4

rom.ecore 10 10

XBNF.ecore 11.8 11.6

XBNFwithCardinality.ecore 2 2

Table 5.3: Model maintainability optimized with custom distance calculator.

As noted in section 3.10, error 50 stating that a containment or bidirectional
reference must be unique if its upper bound is different from 1, resulted in
different distances because the unique and containment properties were not
considered. The 20 models in the ACMR-set containing this error is listed in
table 5.3, 5.4 and 5.5, and the quality characteristics either improved (green),
worsened (red) or remained unchanged. The reusability and understandability
are not shown in the tables, as the values did not change with respect to the
20 models. In each table, the preference used is the one trying to optimize the
quality characteristic in question combined with the distance. Note that this
means the resulting characteristics in the different tables are not from the same
solution for the given model.

Looking at the entire ACMR-set, the evolution of the quality characteristics
with respect to the custom distance calculation can be seen in table 5.6.

5.4 Can the algorithm handle other model types?

RQ2B questions how the algorithm can be adapted to handle other model types.
A lot of work has been done to make the algorithm extensible (explained in
section 3.9) in order for this to be possible. The hypothesis is that the algorithm
can handle other model types as long as it is supplied with the errors in a model
and the available actions. If no such model type is found the hypothesis would
be rejected. It would have been very interesting to test this hypothesis by
implementing support for another model type, but unfortunately, there was not

66

complexity

model original custom

abapobj.ecore 8.54 8.54

com.ibm.commerce.foundation.datatypes.ecore 1.06 1.06

com.ibm.commerce.member.datatypes.ecore 1.22 1.22

com.ibm.commerce.payment.datatypes.ecore 1.44 1.44

componentCore.ecore 6 5

ddic.ecore 36.4 34.4

FacesConfig.ecore 12.12 12.12

ICM.ecore 15.76 15.76

org.eclipse.component.api.ecore 3 1

org.eclipse.component.ecore 3 1

org.eclipse.wst.ws.internal.model.v10.registry.ecore 3 1

org.eclipse.wst.ws.internal.model.v10.rtindex.ecore 3 1

org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore 3 1

org.eclipse.wst.ws.internal.model.v10.uddiregistry.ecore 3.33 1.33

pom.ecore 19.13 15.03

RandL.ecore 99.13 97.13

rom.ecore 25.2 24.2

XBNF.ecore 24.13 22.13

XBNFwithCardinality.ecore 2.83 2.83

Table 5.4: Model complexity optimized with custom distance calculator.

relaxation index

model original custom

abapobj.ecore 57 57

com.ibm.commerce.foundation.datatypes.ecore 25 25

com.ibm.commerce.member.datatypes.ecore 51 51

com.ibm.commerce.payment.datatypes.ecore 157 157

componentCore.ecore 17 17

ddic.ecore 47 45

FacesConfig.ecore 374 371

ICM.ecore 32 32

org.eclipse.component.api.ecore 14 14

org.eclipse.component.ecore 12 12

org.eclipse.wst.ws.internal.model.v10.registry.ecore 4.5 5

org.eclipse.wst.ws.internal.model.v10.rtindex.ecore 11 11

org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore 13 13

org.eclipse.wst.ws.internal.model.v10.uddiregistry.ecore 8 8

pom.ecore 148 126

RandL.ecore 139 139

rom.ecore 43 43

XBNF.ecore 24 24

XBNFwithCardinality.ecore 1 1

Table 5.5: Model relaxation index optimized with custom distance calculator.

67

Quality Characteristic Improved Unchanged Worsened

Complexity 14.46% 81.93% 3.61%
Maintainability 12.05% 78.31% 9.64%
Relaxation index 2.53% 89.87% 7.59%
Reusability 8.64% 83.95% 7.41%
Understandability 2.41% 97.59% 0.00%

Table 5.6: Percentage of models that improved, worsened or remained un-
changed with respect to the quality characteristics after applying custom dis-
tance.

enough time before the due date of this thesis. The expected result is that the
algorithm could be made to handle another type of model because the algorithm
itself has no dependencies on EMF.

68

Chapter 6

Discussion

In this chapter, various aspects of the Parmorel framework and the work done
in this thesis are discussed. First, we examine the results from chapter 5. Then
we present a review of some of the challenges faced in the thesis.

6.1 Analysis results

Looking at the experiment conducted in section 5.1 there is some variation in
the quality characteristics. However, these are usually very small and hardly
noticeable in the graphs. Thus, this contradicts the hypothesis that “preferences
significantly affect the quality of the repaired models”. The algorithm results
in models with similar quality regardless of the preferences. One reason could
be that a majority of actions do not affect the attributes listed in table 5.1,
hence the numbers will stay the same, and in turn provide the same value when
calculating quality based on them. Another reason might be that the actions
taken do not affect the quality characteristics considerably because the affected
elements only constitute a small portion of the model. As a result, the original
structure of the faulty model has the largest impact on the characteristics and
the repairing actions only introduces minor variations. However, the preferences
have a greater impact on the execution time than the quality characteristics.
This could be because some actions take longer to perform than others. Which
actions are chosen are affected by the preferences, and as a result, they also affect
the repair time. In addition, preferences affect how many actions are applied
to the model. This is either done directly by rewarding shorter or longer action
sequences, or indirectly by for example preferring to repair higher in the context
hierarchy (e.g. deleting an entire class in one step instead of deleting several of
its attributes over several steps).

Regarding the experiment conducted in section 5.2, the developer managed to
implement new preferences relating to completely different aspects of a model
than the previously defined ones. A threat to the validity of the experiment
could be that developer was already familiar with how the algorithm works.

69

However, it is expected that developers integrating their own preferences have
a better understanding of how the algorithm works than an ordinary user.

The experiment in section 5.3 did affect the quality metrics, as shown in table
5.6. Some of them improved with the stricter distance calculation but remember
that the distance only got customized with respect to the matching of references.
As a result, only the quality characteristics calculated with references as a factor
should improve. The unimproved cases depend on what model elements are
involved in the calculation of the quality characteristics, and what errors are in
the model. There is also a random element to the Q-learning that can affect
the outcome. Different executions will get slightly different results and some
quality characteristics could be more or less favored.

In order to get a better understanding of the experiment conducted in section
5.3, the quality characteristics must be understood. Maintainability is defined
by the number of structural features, hierarchies, and reference siblings in for-
mulae 5.1, and complexity is defined in terms of static relations between classes
(i.e. number of references) in formulae 5.3. Looking at the formulas, both can
be improved by lowering the number of references. Removing a reference will,
as detailed in table 3.8, increase the distance to the original model. Hence,
the algorithm will prefer to change the unique or containment properties when
running with the distance preference. However, the custom distance measure
detects changes in these properties and makes all the action combinations listen
in table 3.8 register a distance of 89. Deleting a reference will now provide a
model equally close to the original as making changes to the containment or
unique properties. This should result in the model selecting delete actions more
often, improving complexity and maintainability. Indeed, the characteristics
improve as can be seen in table 5.6. The references play a larger role in the
complexity than the maintainability, as can be seen in the formulas. Hence it
makes sense that the complexity performs better. Looking at the models that
did not improve, error 38 is the most prominent occurrence (example in fig.
B.8). This error reports invalidly specified literals and should not be affected
by the different distance algorithms.

Understandability (defined in formulae 5.2) and reusability (defined in formulae
5.4) should not improve with respect to the custom distance. They are cal-
culated based on the number of predecessors, classes and features. Table 5.6
shows a very balanced effect on the reusability, with a similar number of im-
proved and worsened models. This is probably down to the randomness of the
Q-learning algorithm or individual specific feature differences in each model.
Understandability has actually improved slightly in two models, but the errors
in these models are regarding names that are not well formed. The improvement
is likely the result of the Q-learning randomness.

Lastly, the relaxation index defined in formulae 5.5 is the only quality charac-
teristic to be noticeably harmed by the custom distance. This characteristic
indicates how relaxed references are with respect to bounds. Cardinality con-
straints set to, e.g., [1..5] are more relaxed than constraints set to [1..1]. As
with the maintainability and complexity characteristics, the original distance
preferred to make changes to the unique and containment properties. However,
the custom distance makes changes to these properties equal to deleting the
reference or changing the upper bound. As a result, changing the upper bound

70

will get chosen more frequently by the algorithm running with the distance
preference. In section 3.5 it was pointed out that actions requiring integer pa-
rameters, like setUpperBound, always will get the parameter 1. As a result, the
upper bound always becomes 1, which decreases the relaxation. The possibility
to provide better parameters, possibly based on the error messages using ML,
are discussed further in section 9.

Both of the experiments conducted in sections 5.1 and 5.3 use datasets. The
datasets are constructed from existing projects on GitHub, but they differ in how
the errors are introduced to them. The ACMR-set is taken directly from GitHub
without any alteration and consists of 107 models, whilst the AMOR-set consists
of 100 models that have been mutated from five consistent models. Although
the datasets could be considered small, this threat may be mitigated with the
heterogeneity of the sources; these models have been retrieved from different
GitHub repositories and hence from different modelers. Likewise, errors in the
dataset are of different nature, organic and mutated. It would be interesting to
see if larger datasets or multiple runs would give the same results.

6.2 Infrastructure challenges

The tool developed in this thesis is the first Eclipse Plug-in created by the
author, as well as the first project dealing with the EMF. Naturally, this led to
several challenges to overcome.

The first obstacle was poor documentation. Eclipse does provide some docu-
mentation for classes and methods for the EMF API, but this was not always
sufficient. One example is the EditionDistance-class from EMF Compare men-
tioned in section 3.10. A lot of time was spent trying to make this class calculate
a distance between two models, but the lack of documentation made it difficult.
This resulted in a post in the Eclipse Community Forum, before aborting it
altogether when the community stated this was not the designed use case for
the distance calculation [22].

One issue encountered early was the way Eclipse handles dependencies. The
project relies on packages provided by Eclipse plug-ins, but they were not always
easy to find and import. The code was separated into several Git Submodules,
and different modules had different dependencies. Since the code was nested,
one might expect the encapsulating project to automatically get the same de-
pendencies as the encapsulated project. However, this had to be done manually.
Some modules had a manifest file where the dependencies could be listed, whilst
others did not. At first, this was resolved by finding the matching jar-file and
adding it to the project, but later the projects were converted so they got a
manifest-file. The project could possibly benefit from a project management
tool like Maven or Gradle.

Several classes were altered when refactoring the code. The changes were incre-
mental, and in between changes, the original repair script was used to make sure
the code still worked. When classes contained in the Q-table were changed or
deleted the program failed. The exception message referred to altered or deleted
classes. This was confusing, as old classes should not affect new executions. The

71

reason for this error had to do with the way the Q-table was stored. It serialized
the actions, and when it tried to load them from the file, the class definition
had changed. In turn, the classes could not be instantiated.

72

Chapter 7

Related Work

Many tools and research efforts for automatically resolving bugs already exist,
and these have shown promising results [40]. The capability to learn from
each repaired model and the extensibility the framework provides are the main
features that distinguish Parmorel from other model repair approaches.

We could not find any research applying RL to model repair, nor any approaches
providing Parmorel’s degree of customization. The closest alternative found
is Badger, a tool proposed by [48] that uses a recursive best-first search to
generate repair plans from an inconsistent model to a consistent one. The user
can attach costs to actions and select the desired repair plan but allowing the
user more control through customization of the cost function is left for future
work. Parmorel grants the user more control by specifying custom preferences
if the existing ones are not satisfactory. Another difference is that RL allows
Parmorel to perform better after each execution.

One model repair approach is a technique that repairs process models with
respect to a behavior log [24]. The implementation focuses on the fitness of
process models, i.e. the observed behavior in the logs can be explained by the
model. If this is not the case, a repair is performed on the unfitting model. By
aligning the model and the log, the unfitting events in the log are identified.
These are decomposed into several sublogs, and for each sublog there is either
discovered a loop that can replay the sublog or a subprocess is derived and
added to the repaired model. In other words, the technique both discovers
lacking conformance between the log and the model and fixes it. This differs
from our solution, as our algorithm needs to have the inconsistencies reported.
However, our solution does not require a behavior log and can handle any error
if provided with the appropriate actions.

Another approach using behavior logs is proposed by [7]. The authors claim
that existing repair methods add too much behavior to the model as a result of
their autonomy and results in over-generalized solutions. Instead, they present
an approach that shows the deviations from the log to the user along with visual
guidance on how the model can be repaired. The user is then responsible for
incrementally deciding which discrepancies to fix and how. Parmorel provides
more autonomy but counters the over-generalized solutions by letting the user

73

select a satisfactory repair. This combined with the visual comparison between
the solution and the original model allows the user to see where the model
has changed and make potential necessary changes after the repair has finished
(e.g. change attribute names). It might be easier for the user to make the
required alterations when the complete solution is presented, than during the
repair process when the outcome is unknown.

An Eclipse-plug-in is proposed by [43]. This approach repairs models with a
rule-based approach but can take input from the user in an interactive manner.
In this solution, the repair process follows specified steps in a certain order, but
the user can be consulted every time a decision has to be made. Typical decisions
could be what node to delete to avoid exceeding an upper-bound invariant or
what type of node to create if a node is missing. The algorithm can alternatively
make these decisions randomly. This differs from our solution in that it is heavily
dependent on the user during the repair process (or not dependent at all if the
decisions are made randomly), whilst our solution provides more autonomy.
Our technique repairs the model with respect to the user requirements provided
to the algorithm before the repair process starts, and the algorithm does not
consult the user whilst repairing.

ReVision is another proposed interactive tool implemented on top of the Eclipse
modeling technology stack [46]. It exploits information from the editing history
of a model containing information about where the defect originated. It searches
all the applied operations and looks for the corresponding change in the model.
If the operation leads to an inconsistency, the tool searches for a complementing
repair. This is then given to the user in form of recommendations, meaning the
algorithm does not make any decision. Parmorel, on the other hand, will execute
the repair action directly providing the user with the final repaired solution.
Another difference is that ReVision is dependent on the models editing history.

Other efforts have been made to improve the modeling experience that do not
address the repair of bugs. One example is a recommender system with proactive
modeling that has been proposed in the form of a plug-in [41]. Proactive mod-
elling is a technique that anticipate model transformations and executes them
automatically, only consulting the modeler when necessary. This works until
the algorithm is faced with non-deterministic modeling actions like add, delete
or edit. At this point the modeler has to tell the engine how to progress, but this
can be a challenging task in large and complex Domain Specific Modelling Lan-
guages. This is where the recommender system helps the modeler by providing
appropriate actions. The proposed solution uses machine learning in the form
of ensemble learning, i.e. multiple classifiers or learning algorithms combined
into one. The classifiers are built for different recommendation parameters, and
weights can be assigned by the user to select parameters to emphasize their
subjective importance. The parameters tell something about the action with
regards to the its context and history. For example, one parameter specifies
how recently a modeling action was chosen, because a recently chosen action is
likely to be chosen again. In comparison, Parmorel do not have the historical
information regarding the actions. However, the Parmorel preferences can be
extended to handle anything from action specific rewards to end result quality.
Other differences between the algorithms is the autonomy Parmorel provides,
whilst the recommender system suggest operations to the user that applies them

74

manually. This is a result of the different use cases the solutions targets.

Another effort by [49] is working on improving how developers deal with the
complexity of software modeling by implementing a software agent using arti-
ficial intelligence. This software agent will be embedded in an IDE and help
the developer to create models by catering for new ideas, providing recommen-
dations and help. The implementation of software agents requires a knowledge
repository, which also will be provided by the authors. This is another way
of using machine learning in dealing with MDSE that does not focus on the
handling of errors. Although the agent might be able to handle errors in the
model, no such claims have yet been made. Another difference to Parmorel is
the need for a knowledge repository on which to train the agent. Parmorel uses
RL and thus do not require training data, making it easier to adapt to other
model types and environments.

75

Chapter 8

Conclusion

Models are central objects in MDSE, and errors might be introduced to them
in the development process. Model repair solutions can help developers deal
with these inconsistencies. The ACMR-set introduced in chapter 5 showed
that 49% of the models found by [44] contained errors, which indicates the
need for such tools. In this thesis, an extensible plug-in has been created that
provides automatic model repair based on personal preferences. By making
the underlying algorithm extensible, a framework has been produced with the
possibility of implementing support for other model types and new preference
options.

RQ1 questioned how much personal preferences affected the solutions. The
experiment conducted in section 5.1 tried to measure this on maintainability,
understandability, complexity, reusability, and relaxation index. Although the
numbers were not significantly affected by the preferences, this proves that the
algorithm performs equally well with respect to the quality characteristics re-
gardless of the preferences. In order to see the impact of one specific preference,
the experiment in section 5.3 compared an execution with a slightly altered
preference to the original and noted a clear difference. Indeed, the quality char-
acteristics were affected by the preferences. This in spite of the change made
to the preferences was very small, only considering two more properties of the
reference attributes. The preferences do not have a huge impact on the final
quality of the model, as only the portions of the model containing errors will be
affected. However, the proposed solutions are heavily dependent on the prefer-
ences. As a result, the conclusion is that personal preferences have a significant
impact on the proposed solutions.

RQ2A asked how new preferences could be added to the algorithm. The work
done in this thesis has made it possible to supply Parmorel with new preferences
by extending interfaces and implementing an abstract class as explained in sec-
tion 3.9. This was verified by the experiment conducted in section 5.2, in which
a developer unfamiliar with the new layout of the preferences established new
ways of rewarding actions. The new preferences were based on quality char-
acteristics, an aspect of the model previously not considered by the algorithm.
This indicates that the algorithm can be influenced by any model aspect which

76

has a numerical representation.

RQ2B asked how the application can be reengineered, and what adaptations
are required in order for the algorithm to handle other model types. Section 3.9
explains how the work done in this thesis has made it possible to extend the al-
gorithm to handle other model types and even other approaches to model repair.
As explained in section 5.4 this was, unfortunately, never tested in the thesis.
However, because no classes outside the no.hvl.projectparmorel.qlearning.ecore-
package import from the Ecore-library, and the repair procedure is done outside
of this package, the algorithm is not dependent on EMF. As a result, only the
constraints introduced by the abstract classes and interfaces in the Parmorel
framework limits what model types can be implemented.

77

Chapter 9

Further Work

Although the code has been through several revisions, there is still lots of work
that should be done in order to improve the quality. Some classes are big and
can quickly become unmanageable, especially for developers new to the project.
One such class is QModelFixer. It would be interesting to see if this class and
some of the contained methods could be made smaller and more expressive.
One way to do this might be to make the episodes and the steps into separate
classes where the logic can be placed.

The testing also needs improvement. As of now, very few unit tests exists
and the result of the integration tests are not automatically verified. This
can make it hard to refactor the code, as it cannot quickly be proven to still
work like it should. Adding more automatic test cases would be good when
improving the code quality, but also for helping implementing support for new
metamodels etc. If test cases are written for the abstract classes and interfaces,
the implementation can quickly be verified to function in accordance with the
specification.

The error messages are currently ignored by Parmorel, which only focuses on
the error codes. Additionally, the parameters provided to the actions are fixed.
This is an interesting area to explore even further, considering the error messages
often provide a better description of the models’ state. Error messages combined
with a more advanced parameter selection using ML could prove powerful, and
potential new solutions can be found. An example where this could be beneficial
is for EMF error number 39, “The lower bound -1 must be greater than or equal
to 0”. If the algorithm could read the error message, the algorithm might try
to set the lower bound to a valid number (0 or above). As of now, all integer
parameters are fed the number 1 regardless of the message.

Another task that could be very beneficial is extending the algorithm, making it
able to handle models derived from other metamodels. A theoretical explanation
on how this can be achieved is provided in section 3.9, but once the implemen-
tation starts one might find more or less similarity than anticipated between
the model types. This can again lead to more abstractions being required.

Currently, the weights used by the Q-learning are decided through experiments

78

figuring out what worked and what did not. These weights could alternatively
be set by the user, but that would require a greater understanding of the algo-
rithm. Instead, the default weights could be influenced by the user. Rather than
selecting the preference Punish deletion, the user could select Punish deletion a
little or Punish deletion moderately. A slider could be implemented, providing
the user with a visual tool for deciding how much a preference should affect the
algorithm.

Unsupported errors were explained in section 3.7. An error is marked as not
supported if none of the actions available results in the removal of an error.
Allowing users to supply custom actions to the algorithm in addition to what is
supplied by the modeling framework would make it possible to handle previously
unsupported errors.

An interesting option would be to avoid the users selecting preferences, but
rather have them select the solution they like the most to a broken model. The
algorithm could randomly choose preferences and repair the model in different
ways. After enough iterations, the algorithm would be more likely to present the
users with a solution tailored to them. Given this time consuming and tedious
work, this would require a training phase prior to deployment. This training
phase would still use RL, but most of the rewards would be given at the end
of the repairing process when a solution is selected by a developer. Developers
could be included in training the algorithm by using the tool whilst they work,
providing data to gradually build some knowledge. When enough knowledge is
obtained, the tool could be released to benefit all developers. This idea can be
expanded even further, by letting the algorithm train itself. A way to achieve
this could be to break consistent models and attempt to repair them again,
rewarding the solutions closest to the original based on their distance.

79

Appendix A

Source code

The source code for the plug-in is available at this URL: https://github.com/
MagMar94/ParmorelEclipsePlugin.

The source code for the underlying Parmorel algorithm is available here: https:
//github.com/MagMar94/projectparmorel.

80

https://github.com/MagMar94/ParmorelEclipsePlugin
https://github.com/MagMar94/ParmorelEclipsePlugin
https://github.com/MagMar94/projectparmorel
https://github.com/MagMar94/projectparmorel

Appendix B

Error explanations

What follows are explanations of the errors in the ACMR-set introduced in
chapter 5 that are supported by Parmorel. The error codes are based on the
values reported by EMF.

Figure B.1: Error 11 identified in xwt09 updating.ecore

Error 11 is triggered when a transient reference has an opposite reference that
is not declared transient. This error only occurs in xwt09 updating.ecore but
appears twice in that model. Figure B.1 illustrates the transient reference chil-

81

dren (left) has the opposite parent in class Control that is set as not transient
(right).

Figure B.2: Error 13 identified in activityDiagram.ecore

Error 13 only appears only once in a model called activityDiagram.ecore and
can be seen in fig. B.2. This is related to the fact that a reference, in this
case elements in the class Activity has set the opposite to activity in class
Element. However, the Element class seems to be empty. The opposite is
incorrectly declared in the class ControlFlow instead.

82

Figure B.3: Error 14 identified in primer.ecore

Error 14 is shown in fig. B.3. In this example, the reference deployed (at the
bottom) has set the opposite reference to deploy but deploy (at the top) has
not set the opposite. One of the effects is that the diagram shows two references
instead of a single one, since one of the references has an unset opposite.

83

Figure B.4: Error 17 identified in diagramrt.ecore

Error 17 appears 7 times in the dataset. This error states that an attribute
not declared as transient must have a datatype that serializable. An example is
visualized in fig. B.4. In this case the attribute domainResource is not declared
transient, but its type EResource is not serializable.

84

Figure B.5: Error 22 identified in OPF31.ecore

Error 22 has 4 occurrences in the data set, with all of them located in OPF31.ecore.
This error states that “The primitive used type cannot be used in this con-
text”. In this example, the attribute coordinatePairs is a Map from EFloat

to EFloat. EFloat cannot be used in this context and needs to be replaced it
with another type.

Figure B.6: Error 29 identified in car.ecore

85

Error 29 states that two or more classifiers have the same name. This error
occurs twice in the data set. The example in fig. B.6 highlights two classes
AirCond and Aircond that only differs in letter casing; hence the names are
considered equal.

Figure B.7: Error 32 identified in GSML.ecore

Error 32 occurs when two or more feature in the same classifier have been
defined with same name, or the names only differ in letter casing. This error
has 20 occurrences in the data set. The example illustrated in fig. B.7 shows
the class Course containing two features where names are considered equal:
gradingscheme and gradingScheme.

86

Figure B.8: Error 38 identified in OPF31.ecore

Error 38 is a very common error in the data set with 166 occurrences. This error
states that the default value specified is not coherent with the literals specified
in the enumeration. The example in fig. B.8 shows the attribute limitType

of type LimitType is set to 1, when the literals in the enumeration consists of:
Reporting, Hard, SoftLinear, SoftQuadratic.

87

Figure B.9: Error 44 identified in GUIdancerComponentHierarchy.ecore

Error 44 is another diffused error in the data set appearing 216 times, but most
of them exist in GUIdancerComponentHierarchy.ecore. This error states that
names are not well formed. The example in fig. B.9 highlights two of these
errors, where the names contain forbidden characters, e.g., / or empty spaces.

Figure B.10: Error 48 identified in tableur modifie.ecore

An operation cannot be declared with the same signature as an accessor method
for a feature, and this is reported by error 48. The example in fig. B.10 shows
a class containing an operation getFunction() and a feature named function.

88

This will result in a conflict, because EMF automatically generates getter- and
setter-methods for the structural features of the classes. The signature of the
generated method will be equal to the defined method, hence the error.

Figure B.11: Error 50 identified in org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore

Error 50 reports that a containment reference must be unique if the upper bound
is different from 1. This error exists 160 times in the dataset and is one of the
most diffused errors. Fig. B.11 displays an example of this error, where the
containment references xMLNSPrefixMap and xSISchemaLocation are neither
declared unique, nor is the upper bound set to 1.

89

1..1

1..1

Figure B.12: Error 51 identified in diagramrt.ecore

Error 51 says that a containment reference of a type with a container feature
that requires instances to be contained elsewhere cannot be populated. This
error occurs 94 times in the data set. Looking at the example in fig. B.12,
the class DiagramCanvas contains the class DiagramNode through the contain-
ment reference nodes. In turn, DiagramNode contains ChildNode through an-
other containment reference childNodes. The ChildNode requires at least one
DiagramNode to be contained in because of the childNodes opposites lower
bound of 1, but the nodes reference has a lower bound of 0. As a result, a
DiagramCanvas might not exist for the ChildNode to be contained in, and this
violates the constraints.

90

Bibliography

[1] Lorenzo Addazi et al. “Semantic-based Model Matching with EMFCom-
pare.” In: Proceedings of the 10th Workshop on Models and Evolution co-
located with ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2016), Saint-Malo, France,
October 2, 2016. Ed. by Tanja Mayerhofer et al. Vol. 1706. CEUR Work-
shop Proceedings. CEUR-WS.org, 2016, pp. 40–49. url: http://ceur-
ws.org/Vol-1706/paper6.pdf.

[2] Charu C. Aggarwal, ed. Data Classification: Algorithms and Applications.
CRC Press, 2014. isbn: 978-1-4665-8674-1. url: http://www.crcnetbase.
com/doi/book/10.1201/b17320.

[3] Ethem Alpaydin. Introduction to machine learning. eng. Third. Adaptive
computation and machine learning. Cambridge: MIT Press, 2014. isbn:
9780262028189.

[4] Kerstin Altmanninger et al. “AMOR–towards adaptable model version-
ing.” In: 1st International Workshop on Model Co-Evolution and Consis-
tency Management, in conjunction with MODELS. Vol. 8. 2008, pp. 4–
50.

[5] Sanaa Alwidian and Daniel Amyot. “Relaxing metamodels for model fam-
ily support.” In: 11th Workshop on Models and Evolution (ME 2017).
Vol. 2019. 2017, pp. 60–64.

[6] Thorsten Arendt. Quality Assurance of Software Models - A Structured
Quality Assurance Process Supported by a Flexible Tool Environment in
the Eclipse Modeling Project; Qualitätssicherung von Softwaremodellen -
Ein strukturierter Qualitätssicherungsprozess unterstützt durch eine flexi-
ble Werkzeugumgebung innerhalb des Eclipse Modeling Project. eng. 2014.

[7] Abel Armas Cervantes et al. “Interactive and Incremental Business Pro-
cess Model Repair.” In: On the Move to Meaningful Internet Systems.
OTM 2017 Conferences. Ed. by Hervé Panetto et al. Cham: Springer In-
ternational Publishing, 2017, pp. 53–74. isbn: 978-3-319-69462-7.

[8] Angela Barriga, Adrian Rutle, and Rogardt Heldal. “Automatic model
repair using reinforcement learning.” In: MODELS Workshops. Vol. 2245.
CEUR Workshop Proceedings. Copenhagen: CEUR-WS.org, Oct. 2018,
pp. 781–786. url: http://ceur-ws.org/Vol-2245/ammore_paper_1.
pdf.

[9] Angela Barriga, Adrian Rutle, and Rogardt Heldal. “Journal of Object
Technology.” In: Applying reinforcement learning to personalize automatic
model repairing (2019).

91

http://ceur-ws.org/Vol-1706/paper6.pdf
http://ceur-ws.org/Vol-1706/paper6.pdf
http://www.crcnetbase.com/doi/book/10.1201/b17320
http://www.crcnetbase.com/doi/book/10.1201/b17320
http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf
http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf

[10] Angela Barriga, Adrian Rutle, and Rogardt Heldal. “Personalized and Au-
tomatic Model Repairing using Reinforcement Learning.” In: 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). Sept. 2019, pp. 175–181. doi:
10.1109/MODELS-C.2019.00030.

[11] Angela Barriga et al. “An extensible framework for customizable model
repair.” In: 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2020, Montreal, Canada,
October 18-23, 2020. IEEE, 2020: Submitted, waiting for review.

[12] Francesco Basciani et al. “A tool-supported approach for assessing the
quality of modeling artifacts.” In: Journal of Computer Languages 51
(2019), pp. 173–192.

[13] Brian Beavis and Ian Dobbs. “STATIC OPTIMIZATION.” In: Optimisa-
tion and Stability Theory for Economic Analysis. Cambridge University
Press, 1990, pp. 32–72. doi: 10.1017/CBO9780511559402.003.

[14] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up Ma-
chine Learning: Parallel and Distributed Approaches. Cambridge Univer-
sity Press, 2011. isbn: 9781139501903. url: https://books.google.no/
books?id=9u0gAwAAQBAJ.

[15] Michael W. Berry. Supervised and Unsupervised Learning for Data Sci-
ence. eng. Cham, 2020.

[16] Jean Bézivin. “On the unification power of models.” In: Software and
Systems Modeling 4.2 (2005), pp. 171–188. doi: 10.1007/s10270-005-
0079-0. url: https://doi.org/10.1007/s10270-005-0079-0.

[17] Marco Brambilla. Model-driven software engineering in practice, second
edition. eng. 2nd ed. Synthesis lectures on software engineering ; 4. S.l.]:
Morgan & Claypool Publishers, 2017. isbn: 1627057080. url: http://
portal.igpublish.com/iglibrary/search/MCPB0006316.html.

[18] Frederick P. Brooks. “No Silver Bullet Essence and Accidents of Software
Engineering.” In: Computer 20.4 (Apr. 1987), pp. 10–19. issn: 1558-0814.
doi: 10.1109/MC.1987.1663532.

[19] Cédric Brun and Alfonso Pierantonio. “Model differences in the eclipse
modeling framework.” In: The European Journal for the Informatics Pro-
fessional 9.2 (2008), pp. 29–34.

[20] Horst Bunke. “On a relation between graph edit distance and maximum
common subgraph.” In: Pattern Recognition Letters 18.8 (1997), pp. 689–
694.

[21] Field Cady. “Machine Learning Classification.” eng. In: The Data Science
Handbook. New York: John Wiley & Sons, Incorporated, 2017, pp. 97–120.
isbn: 9781119092940.

[22] Eclipse Community Forum post. url: https : / / www . eclipse . org /

forums/index.php/t/1102085/ (visited on May 13, 2020).
[23] EditionDistance documentation. url: https://www.eclipse.org/emf/

compare/documentation/latest/developer/javadoc/org/eclipse/

emf/compare/match/eobject/EditionDistance.html (visited on Apr. 9,
2020).

[24] Dirk Fahland and Wil M.P van Der Aalst. “Model repair — aligning
process models to reality.” eng. In: Information Systems 47.C (2015),
pp. 220–243. issn: 0306-4379.

92

https://doi.org/10.1109/MODELS-C.2019.00030
https://doi.org/10.1017/CBO9780511559402.003
https://books.google.no/books?id=9u0gAwAAQBAJ
https://books.google.no/books?id=9u0gAwAAQBAJ
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0
http://portal.igpublish.com/iglibrary/search/MCPB0006316.html
http://portal.igpublish.com/iglibrary/search/MCPB0006316.html
https://doi.org/10.1109/MC.1987.1663532
https://www.eclipse.org/forums/index.php/t/1102085/
https://www.eclipse.org/forums/index.php/t/1102085/
https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/match/eobject/EditionDistance.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/match/eobject/EditionDistance.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/match/eobject/EditionDistance.html

[25] Guojun Gan. “Design Patterns.” eng. In: Data Clustering in C++: An
Object-Oriented Approach. Chapman and Hall/CRC, 2011, pp. 57–77.
isbn: 9781439862247.

[26] Marcela Genero and Mario Piattini. “Empirical validation of measures
for class diagram structural complexity through controlled experiments.”
In: 5th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering. 2001.

[27] Shekhar Gulati. Java Unit Testing with JUnit 5 : Test Driven Develop-
ment with JUnit 5. eng. Berkeley, CA, 2017.

[28] Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa. “Computing the Edit-Distance
between a Regular Language and a Context-Free Language.” In: Develop-
ments in Language Theory. Ed. by Hsu-Chun Yen and Oscar H. Ibarra.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 85–96. isbn: 978-
3-642-31653-1.

[29] W. Heath Hoagland and Lionel Williamson. “Feasibility studies.” In: De-
partment of Agricultural Economics, the University of Kentucky (2000).

[30] Jubair J. Al-Ja’Afer and Khair Errin M. Sabri. “Metrics for object oriented
design (MOOD) to assess Java programs.” In: King Abdullah II school for
information technology, University of Jordan, Jordan (2004).

[31] Natalia Juristo and Ana M. Moreno. Basics of Software Engineering Ex-
perimentation. Springer US, 2013. isbn: 9781475733044. url: https://
books.google.no/books?id=iJTkBwAAQBAJ.

[32] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “A rule-based approach
to the semantic lifting of model differences in the context of model version-
ing.” In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE. 2011, pp. 163–172.

[33] Djamel Eddine Khelladi, Roland Kretschmer, and Alexander Egyed. “De-
tecting and exploring side effects when repairing model inconsistencies.”
In: Proceedings of the 12th ACM SIGPLAN International Conference on
Software Language Engineering. 2019, pp. 113–126.

[34] David G. Kleinbaum and Mitchel Klein. Logistic Regression. Third. Statis-
tics for Biology and Health. New York: Springer, 2010. isbn: 978-1-4419-
1742-3. doi: https://doi.org/10.1007/978-1-4419-1742-3.

[35] Liwu Li. Java : data structures and programming. eng. Berlin, Germany ;
1998.

[36] Nuno Macedo, Tiago Jorge, and Alcino Cunha. “A Feature-Based Clas-
sification of Model Repair Approaches.” In: IEEE Transactions on Soft-
ware Engineering 43.7 (July 2017), pp. 615–640. issn: 2326-3881. doi:
10.1109/TSE.2016.2620145.

[37] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.
isbn: 0-13-235088-2.

[38] James Matson. “Cooperative feasibility study guide.” In: (2000).
[39] Ali Mili. Software testing : concepts and operations. eng. Hoboken, New

Jersey, 2015.
[40] Martin Monperrus. “Automatic Software Repair: A Bibliography.” eng. In:

ACM Computing Surveys (CSUR) 51.1 (2018), pp. 1–24. issn: 03600300.
[41] Arvind Nair. “Integrating recommender systems into domain specific mod-

eling tools.” MA thesis. Indianapolis, Indiana: Purdue University, 2017.

93

https://books.google.no/books?id=iJTkBwAAQBAJ
https://books.google.no/books?id=iJTkBwAAQBAJ
https://doi.org/https://doi.org/10.1007/978-1-4419-1742-3
https://doi.org/10.1109/TSE.2016.2620145

[42] Issam El Naqa, Ruijiang Li, and Martin J. Murphy. “What is machine
learning?” eng. In: Machine Learning in Radiation Oncology : Theory and
Applications. 1st. Cham: Springer, 2015, pp. 3–11. isbn: 3-319-18305-2.

[43] Nebras Nassar, Hendrik Radke, and Thorsten Arendt. “Rule-Based Repair
of EMF Models: An Automated Interactive Approach.” In: Theory and
Practice of Model Transformation. Ed. by Esther Guerra and Mark van
den Brand. Cham: Springer International Publishing, 2017, pp. 171–181.
isbn: 978-3-319-61473-1.

[44] Phuong T Nguyen et al. “Automated Classification of Metamodel Reposi-
tories: A Machine Learning Approach.” In: 2019 ACM/IEEE 22nd Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE. 2019, pp. 272–282.

[45] Object documentation. url: https : / / docs . oracle . com / en / java /

javase/13/docs/api/java.base/java/lang/Object.html (visited
on Apr. 22, 2020).

[46] Manuel Ohrndorf et al. “ReVision: A Tool for History-based Model Re-
pair Recommendations.” eng. In: Proceedings of the 40th International
Conference on software engineering. Vol. 137351. ICSE ’18. ACM, 2018,
pp. 105–108. isbn: 9781450356633.

[47] Peter Oram. “WordNet: An electronic lexical database. Christiane Fell-
baum (Ed.). Cambridge, MA: MIT Press, 1998. Pp. 423.” eng. In: Applied
Psycholinguistics 22.1 (2001), pp. 131–134. issn: 01427164. url: http:
//search.proquest.com/docview/200949690/.

[48] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. “Re-
solving model inconsistencies using automated regression planning.” In:
Software & Systems Modeling 14.1 (2015), pp. 461–481.

[49] Maxime Savary-Leblanc. “Improving MBSE Tools UX with AI-Empowered
Software Assistants.” In: 22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion, MODELS
Companion 2019, Munich, Germany, September 15-20, 2019. Ed. by Loli
Burgueño et al. IEEE, 2019, pp. 648–652. doi: 10.1109/MODELS-C.2019.
00099. url: https://doi.org/10.1109/MODELS-C.2019.00099.

[50] Bran Selic. “Model-Driven Development: Its Essence and Opportunities.”
In: Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’06). Apr. 2006. doi: 10.1109/
ISORC.2006.54.

[51] Mary Shaw. “Writing good software engineering research papers.” eng.
In: 25th International Conference on Software Engineering, 2003. Pro-
ceedings. IEEE, 2003, pp. 726–736. isbn: 076951877X.

[52] Frederick T. Sheldon and Hong Chung. “Measuring the complexity of class
diagrams in reverse engineering.” In: Journal of Software Maintenance and
Evolution: Research and Practice 18.5 (2006), pp. 333–350.

[53] Frederick T. Sheldon, Kshamta Jerath, and Hong Chung. “Metrics for
maintainability of class inheritance hierarchies.” In: Journal of Software
Maintenance and Evolution: Research and Practice 14.3 (2002), pp. 147–
160.

[54] Alex J. Smola and Bernhard Schölkopf. “A tutorial on support vector
regression.” In: Statistics and Computing 14.3 (Aug. 2004), pp. 199–222.
issn: 1573-1375. doi: 10.1023/B:STCO.0000035301.49549.88. url:
https://doi.org/10.1023/B:STCO.0000035301.49549.88.

94

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Object.html
http://search.proquest.com/docview/200949690/
http://search.proquest.com/docview/200949690/
https://doi.org/10.1109/MODELS-C.2019.00099
https://doi.org/10.1109/MODELS-C.2019.00099
https://doi.org/10.1109/MODELS-C.2019.00099
https://doi.org/10.1109/ISORC.2006.54
https://doi.org/10.1109/ISORC.2006.54
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88

[55] Diomidis Spinellis. “Git.” In: IEEE Software 29.3 (2012), pp. 100–101.
[56] Dave Steinberg et al. EMF: Eclipse Modeling Framework. eng. 2nd ed.

Eclipse Series. Pearson Education, 2008. isbn: 9780132702218. url: https:
//books.google.no/books?id=sA0zOZuDXhgC.

[57] Klaas-Jan Stol, Michael Goedicke, and Ivar Jacobson. “Introduction to the
special section—General Theories of Software Engineering: New advances
and implications for research.” In: Information and Software Technology
70 (2016), pp. 176–180.

[58] Eugene Syriani, Robert Bill, and Manuel Wimmer. “Domain-specific model
distance measures.” In: Journal of Object Technology 18.3 (2019), pp. 1–
19. issn: 16601769.

[59] Gabriele Taentzer et al. “Change-Preserving Model Repair.” In: Funda-
mental Approaches to Software Engineering - 20th International Confer-
ence, FASE 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings. Ed. by Marieke Huisman and Julia Rubin. Vol. 10202.
Lecture Notes in Computer Science. Springer, 2017, pp. 283–299. doi:
10.1007/978-3-662-54494-5_16. url: https://doi.org/10.1007/
978-3-662-54494-5%5C_16.

[60] Frank Tsui and Orlando Karam. Essentials of software engineering. eng.
2nd ed. Sudbury, Mass: Jones and Bartlett, 2011. isbn: 9780763785345.

[61] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning.” In: Machine
Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10.1007/
BF00992698. url: https://doi.org/10.1007/BF00992698.

[62] Jon Whittle, John Hutchinson, and Mark Rouncefield. “The State of Prac-
tice in Model-Driven Engineering.” In: IEEE Software 31.3 (May 2014),
pp. 79–85. issn: 0740-7459. doi: 10.1109/MS.2013.65.

95

https://books.google.no/books?id=sA0zOZuDXhgC
https://books.google.no/books?id=sA0zOZuDXhgC
https://doi.org/10.1007/978-3-662-54494-5_16
https://doi.org/10.1007/978-3-662-54494-5%5C_16
https://doi.org/10.1007/978-3-662-54494-5%5C_16
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/MS.2013.65

	Acronyms
	Introduction
	Context and Approach
	Problem Description
	Methodology
	Contribution
	Outline

	Background
	Model Driven Software Engineering
	Modeling languages
	Metamodeling
	Transformations
	Automating Development
	Distance

	Model Repair
	Model Repair Approaches
	Model Repair Taxonomy
	Personalizing the repair process

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Design and Implementation
	Demonstration
	Code origin
	Development method
	Code structure
	Actions
	Rewards
	Errors
	Representation of knowledge
	Tree structure
	Map structure

	Extensibility
	Edit distance

	Use cases
	Analysis and Assessment
	Does preferences affect final model quality?
	Can the preferences be customized?
	What is the effect of the model distance?
	Can the algorithm handle other model types?

	Discussion
	Analysis results
	Infrastructure challenges

	Related Work
	Conclusion
	Further Work
	Source code
	Error explanations

