
University of Bergen
Department of Informatics

Specifying Actor-Based

Computer Games

Author: Tor Andreas Røsæg

Supervisors: Crystal Chang Din, Mikhail Barash

August, 2023

Abstract

The actor model provides a higher level of abstraction for writing concurrent and dis-

tributed systems. It alleviates the developer from having to deal with explicit locking

and thread management, making it easier to implement and control concurrent and dis-

tributed systems. Among all the languages which support actors, we choose Scala as

the one in this thesis work to implement computer games. While the complex thread

management using explicit locking and unlocking is avoided in the implementation, not

all the Scala syntax is specifically relevant for the design of computer games. It can be

challenging for the game designers to master the Scala language in order to concretize

their ideas through programming. To assist the game designers even further, we create

a Domain-specific Language (DSL), i.e, GameLang, for specifying actor-based computer

games in Scala. GameLang is designed based on the characteristic and the concurrency

criteria of computer games. The game developers can utilize this DSL with the syntax

such as player, actions and from-to statements to specify the logistics of a game.

Our DSL hides the accidental complexity of the Scala code. The concurrency-related

implementation details in Scala is abstract away in our DSL. We discuss about possible

approaches to generate Scala code from GameLang specification, and leave the complete

code generation to the future work.

Acknowledgements

Thank you to my supervisor Associate Professor Crystal Chang Din for your excellent

guidance and deep knowledge on concurrency. Thank you for the countless meetings filled

with discussions, status updates, laughter and joys. You truly made me look forward to

every meeting and each stepping stone. Your academic guidance have also been invaluable

and I could not have done this without you.

Thank you to my co-supervisor Associate Professor Mikhail Barash for your excellent

guidance on DSL and code generation. Thank you for the countless hours you dedicated

to our meetings and supporting me. Your input on both code generation and concurrency

issues have been invaluable as well as the many past papers and previous experiences have

been great and likewise I could not have done this without your help.

Thank you to my girlfriend Molly Keeble for the motivational and emotional support.

The long nights and many hours of work could not have been done without your support.

The words of encouragement and the amount of love and care I have received have been

invaluable.

Thank you to my friends and family for all the support I have received.

Tor Andreas Røsæg

Tuesday 15th August, 2023

Contents

1 Introduction 1

2 Background 3

2.1 Multithreading . 3

2.1.1 Explicit Locking and Unlocking Mechanism 4

2.2 Concurrency in Computer Games . 6

2.3 Actor-Based Concurrency . 7

2.3.1 The Behaviours of Akka Actors 10

2.4 Domain-specific Languages and Language Workbenches 11

3 GameLang 13

3.1 The Domain-Specific Language GameLang 13

3.1.1 The GameLang Syntax . 14

3.1.2 A GameLang Example . 16

3.2 The Workflow . 18

4 Implementation 20

4.1 Xtext Grammar for the GameLang Language 20

4.2 Mapping DSL Constructs to Scala Syntax 24

4.2.1 Self Loops . 29

4.2.2 Group Messages into Different Behaviours 29

4.2.3 Behaviour Switching . 31

4.2.4 Code Generation in Xtext . 32

5 Related Work 34

6 Conclusion and Future Work 38

Bibliography 40

A The Complete GameLang Example 45

i

B The Complete Scala Code Mapped from GameLang 47

ii

List of Figures

2.1 Life of thread in Java [40] . 4

2.2 How actors use message passing [16]. 8

3.1 Visualization of how we choose our approach. 14

3.2 The workflow from the DSL to the Scala code 18

iii

List of Tables

4.1 Mapping from the DSL to the Scala syntax 25

iv

Listings

2.1 Example for how to use semaphore in Java 5

2.2 An simple example of Akka Scala . 8

4.1 . 25

4.2 . 25

4.3 . 25

4.4 . 25

4.5 . 25

4.6 . 25

4.7 . 25

4.8 . 25

4.9 . 26

4.10 . 27

4.11 . 27

4.12 . 27

4.13 . 27

4.14 . 27

4.15 . 28

4.16 Algorithm for splitting the behaviours 29

A.1 The complete GameLang Example in Section 3.1.2 45

B.1 The corresponding Scala code for the prisoner example in Section 3.1.2 . 47

v

Chapter 1

Introduction

Concurrency in programming is a great mechanism to divide the overall task into several

smaller ones that can be executed concurrently. In computer games, multiple elements

can interact with each other at runtime. It is therefore very difficult to predict what

elements and objects will interact with each other. Without knowing what elements

are interacting with each other, it becomes very difficult to control the behaviour of the

system.

Multi-threaded programming is a common approach to implement concurrent pro-

grams. However, it is notoriously difficult to decide where to lock and unlock threads in

the programs, especially when the dynamics of the program execution increases. In this

thesis, we will give an insight into the difficulties of using explicit locking and unlocking,

specifically in the domain of computer game design, and how it is utilized today. We will

get an insight of a possible paradigm shift that might help solve this issue. Specifically,

we will explain what actor-based paradigm is and why we choose to use it instead of

explicit locking and unlocking in the multithreaded programming.

However, writing actor-based programs can also be a non-trivial task for the game

designers who are not necessary programmers, especially when they need to grasp a new

programming language that supports the actor-based programming paradigm. Take an

example of implementing games using Scala actors, the game designers need to understand

the meaning of behaviours in Scala, how to switch between behaviours, and why it is

needed to switch between behaviours. The concept of behaviours is language specific

and is not relevant for the game design. As a response to this difficulty, we created a

Domain-specific Language (DSL), i.e., GameLang, for the game design. GameLang seeks

1

to ease the design and control of concurrency in computer games. It hides irrelevant part

of the Scala syntax that is not relevant for the game design. This means that the users

of the DSL only need to care about the game design and the flow of the game. They can

concentrate on specifying what messages are going to be sent or received and how the

game will respond when those messages are received.

GameLang is a stepping stone in the game design. The ultimate goal of using Game-

Lang is to generate Scala code from the given GameLang programs. A mapping table

from the GameLang syntax to the equivalent Scala syntax is provided in Section 4.2.

What should appear in the Scala code but is hidden in the GameLang programs for

the game designers should be generated by the code generator. For example, the code

generator will utilize the concurrency specification given by the GameLang users to infer

what messages of an actor should be grouped together in one identifiable behaviour. The

algorithm presented in Section 4.2.2 describes this grouping process. In Section 4.2.3

we discuss the possible approaches for implementing the code generator. The complete

implementation of the code generator is however left in the future work.

The thesis is structured as follows: Chapter 1 gives an introduction of the work,

Chapter 2 provides the background knowledge, Chapter 3 introduces the syntax of the

DSL language GameLang, Chapter 4 explains the implementation details of GameLang,

Chapter 5 presents the related work, and Chapter 6 concludes the thesis and discusses

future work.

2

Chapter 2

Background

In this chapter, we provide sufficient background knowledge for the readers to understand

the contribution of this master thesis. The topics include multithreading, the current state

of art in game engines, actor-based concurrency, domain-specific languages and language

workbenches.

2.1 Multithreading

Multithreading [2] allows an application to create a small unit of tasks to execute concur-

rently. A thread executes the code statements one by one in sequence. A single processor

computer can run multiple threads concurrently, i.e., every thread runs sequentially but

interleaves with each other. A multicore computer can execute threads in parallel on sep-

arate processors with each core processing only one instruction at a time. Note that we

only focus on the concurrency-related issues in this work and do not consider multicore

or the performance of computation.

A thread by itself is not a program. It cannot run on its own [7]. Instead it runs

within a program as we can see in Figure 2.1. When a thread is created and started, it is

in the Runnable state. Only when it is scheduled for execution, the state is changed from

Runnable to Running. The scheduled thread either runs until it finishes the execution

and ends in the Dead state, or it is Blocked when it is suspended, sleeping, or waiting for

the resources that are held by another thread. A scheduler can reschedule a thread and

move the thread from the Blocked state back to the Runnable state or kill the thread so

the thread is Dead.

3

Figure 2.1: Life of thread in Java [40]

2.1.1 Explicit Locking and Unlocking Mechanism

The basic requirement in concurrent programming is coordinating the execution of multi-

ple threads so that whatever order they are executed in, they produce the correct answer.

Given that threads can be started and preempted non-deterministically, any moderately

complex program will have essentially an infinite number of possible orders of execution.

These systems are not easy to test [23].

Race condition is one of the common concurrency issues. Threads may share data and

this can lead to race conditions if it is done improperly. A race condition is created when

two processes share the same memory space. The execution outcome of the program

becomes unpredictable because one process may modify a value before the other process

read it. One solution to race conditions is to use the locking and unlocking mechanism.

In Java the explicit locking and unlocking mechanism can be utilized by the use of

semaphores. It can be implemented by using atomic blocks with semaphores to manually

lock and unlock threads. This is done by the acquire and the release statements in

Java. The atomic block, i.e., critical section, is defined between the acquire and the

release statements. A thread, which grabs the lock, holds the lock until it finishes

4

executing the critical section. Only after that, another thread can grab the lock and

enter the critical section.

1 public class SemaphoreDemo {

2

3 // creating a Semaphore

4 Semaphore s = new Semaphore (1);

5 public static class myThread extends Thread{

6 // Multiple threads call this method on the same/shared instance of

↪→ "myThread"

7 public void run() throws InterruptedException {

8 ...

9 // Acquire the permit

10 s.acquire ();

11

12 // Code that runs inside the critical section

13

14 // Release the permit

15 s.release ();

16 ...

17 }

18 }

19

20 public static void main(String [] args){

21 myThread t1 = new myThread(s);

22 myThread t2 = new myThread(s);

23 myThread t3 = new myThread(s);

24

25 t1.start();

26 t2.start();

27 t3.start();

28 }

29 }

Listing 2.1: Example for how to use semaphore in Java

Listing 2.1 displays how a semaphore is declared and used in Java. The program

creates three threads and uses one semaphore to synchronize them. Since only the thread

who obtains the semaphore can execute the atomic block, at most one thread can be

active in the atomic block at a time. An atomic block is used in order to safely prevent

other threads from interfering with the one currently executing the block until the current

thread leaves the critical section.

Concurrency can speed up the execution of programs by optimizing the use of re-

sources and waiting time that would be otherwise wasted. This is often seen in the real

5

time apps and video games. However, it is shown to be non-trivial to use multithreading

in the game design. In the next section, we will discuss about the concurrency difficulties

in the design of computer games.

2.2 Concurrency in Computer Games

Most game engines today use C++ or C#. Concurrency was first introduced in C++11,

which was published in 2011. C++11 supports threads, mutexes and locks. Among game

engines made in C++, less than 10% [19] use a version older than C++11. Which means the

concurrency concept is relatively new in the implementation of game engines. According

to a developer at Rockstar[8], a gaming company, their propiatery engine had dedicated

threads and a pool of worker threads. Some of the dedicated threads were the Renderer,

the Input/Gameplay dispatcher, the Network dispatcher, the physics dispatcher and the

animation dispatcher. These dedicated threads would create tasklets to be run on the

worker threads. The boundaries between concurrent dispatchers were pretty well-defined,

e.g. physics and gameplay must be separated, gameplay and networking must be sep-

arated, gameplay and AI must be separated. Once each frame, the visual state of the

game is handed over to the renderer, which goes about rendering things while the other

threads simulate the next frame. Given those boundaries, you decide on a partial order-

ing of tasks that theoretically maximizes the saturation of worker threads at all times.

The dispatchers themselves aren’t really supposed to be doing too much work, although

the renderer tends to do plenty because the render passes have to be done in-order. But

almost every other operation could be broken down into chunks worthy of multiplexing.

The Difficulty of Concurrency in Computer Games The difficulty of concurrency

in computer games today is that they are very single-threaded, or are utilizing very few

cores. This is due to programming concurrency is difficult while many different things

can happen during the program execution. As a result, we propose to utilize actor-

based concurrency over the explicit locking and unlocking mechanism in our concurrent

programming as the former one is much easier to control. Besides, we can easily scale

the number of actors according to the game design.

6

2.3 Actor-Based Concurrency

Actor-based concurrency is a different concurrency paradigm where actors use message

passing to communicate with each other. Actors send and receive messages concurrently

with the use of a mailbox system. When an actor receives a message, it can either change

its state, send messages to other actors or create a finite number of child actors. By look-

ing at the example in Section 2.1.1 which has to lock and unlock threads explicitly in the

program code, the Actor Model provides a higher level of abstraction for writing concur-

rent and distributed systems. It alleviates the developer from having to deal with explicit

locking and thread management, making it easier to implement and control concurrent

and distributed systems. The Actor Model was defined in 1973 by Carl Hewitt [27] but

has been popularized by the Erlang language [4, 10, 11], and used at Ericsson with a

great success to build highly concurrent and reliable telecommunication systems.

Akka [15, 26, 42] is a scalable library for implementing actors on top of Scala and

Java. The API of Akka actors has borrowed some of its syntax from Erlang. Interactions

between actors in Akka only use message passing. Akka actors interact in the same

way regardless whether they are on the same or separate hosts, communicate directly

or through routing facilities, run on a few threads or many threads, and so on. Such

details may be altered at deployment time through a configuration mechanism, allowing

a program to make use of more (powerful) servers without modification. Akka is also well

suited for hybrid cloud architectures and the elastic scaling of cloud platforms. Based

on the strength of Akka, we choose Akka as our actor-based concurrency framework and

specifically we choose Akka Scala [6, 26, 42] as the programming language for constructing

computer games.

In Akka, an actor is the primitive unit of computation. It receives a message and

performs computation based on the message received. The idea is very similar to what is

used in object-oriented languages: an object receives a method call and does something

depending on which method is invoked. The main difference is that actors are completely

isolated from each other and they do not share memory. It is worth noting that an actor

can maintain a private state that can never be changed directly by another actor, except

through message passing. It is also important to know that the order of messages an

actor sends to another actor is preserved at the receiving side.

Although multiple actors can run in parallel, an actor can only process one message at

a time. This means that even if there are three messages sent to the same actor, the actor

7

Figure 2.2: How actors use message passing [16].

will just execute one at a time. To have these three messages being executed in parallel,

three actors need to be created, one for each message. Messages are sent asynchronously

to an actor, that means the messages being sent need to be stored somewhere while the

receiving actor is processing another message. As described in Figure 2.2, actors use

message passing to communicate with each other. Every actor has a mailbox and an

isolated state, as presented in the blue part of the figure. This mailbox preserves the

order of the messages received in. The isolated state presents the current execution state.

Actor-based concurrency in Akka Scala We provide a simple example of actor-

based concurrency in Akka Scala in Listing 2.2 and explain it in details as the following.

1 object ActorDemo {

2 sealed trait MessageType

3 case class MessageName(from: ActorRef[MessageType]) extends

↪→ MessageType

4

5 def apply(var: String): Behavior[MessageType] = {

6 functionName(var)

7 }

8

9 private def functionName(var: String): Behavior[MessageType] =

10 Behaviors.receiveMessage {

11 case MessageName(from) =>

12 if (condition) {

13 Behaviors.stopped

14 } else {

15 from ! OtherActor.MessageName(context.self)

8

16 Behaviors.same

17 }

18 }

19 }

Listing 2.2: An simple example of Akka Scala

The apply function initializes the actor in such a way that it is ready to receive

messages from other actors. It defines the initial behaviour and the type of message that

it will receive. In this example, the ActorDemo actor will start in the functionName

behavior and will receive messages with and only with the MessageType type. When

a message arrives, the actor will store the message in its mailbox until it can process

that message. Then the code inside the matched case with message MessageName will

be executed. The code then checks for a condition. If the condition is met, the actor

will stop working, i.e., Behaviours.stopped. If the condition is not met, the actor will

then send an asynchronous message with a name MessageName to another actor from

and retain in the same state, i.e., Behaviours.same. In Akka, each specific behaviour

can only receive one message type. If that message fails to be understood by the actor,

the default behaviour is for the actor to crash and restart.

The default property when sending a message is using at-most-once delivery system.

This delivery mechanism means that each message is delivered once or not at all. After

the message has been sent, the sender does not require any verification if the message

was successfully delivered, nor is there a system for the recipient to handle the unknown

messages. In other words, the message will be lost [1]. A different delivery mechanism

is at-least-once. This mechanism means for each message sent there could be multiple

attempts at delivering it in such a way that at least one succeeds.

At-most-once is very cheap and require the least programming overhead as it just

needs to send out the message at most once and it does not care for the delivery status

of the message. It can be seen as a “fire and forget” mechanism. At-least-once requires

more programming overhead as it is needed to keep track of the lost messages and how

to follow up them, while also keeping in mind that multiple messages can be sent when

only one message is meant to be sent. Typically this is solved by retrying to send the

message to counter the lost of the message and have an acknowledgement1 mechanism at

the receiving end in order to stop the sender from sending more, once the recipient has

received the message.

1Acknowledgement is a mechanism where the recipient will send a message back to the sender.

9

2.3.1 The Behaviours of Akka Actors

Behaviours of an Akka actor represent the states of the actor as noted in Figure 2.2.

One of the core capabilities of the actor model [27] is to react to the message received.

Depending on what state an actor is currently in, it can react in different ways when

receiving the same message. In this code snippet we have two behaviors: idle and

active. The program execution switches between the two behaviors.

1 object Worker {

2 sealed trait Event

3 final case class pause() extends Event

4 final case class start(obj: Event) extends Event

5 private case object stop() extends Event

6

7 // initial state

8 def apply(): Behavior[Event] = idle()

9

10 private def idle(): Behavior[Event] =

11 Behaviors.receiveMessage[Event] {

12 case pause () =>

13 Behaviour.same

14 case start(evt) =>

15 active(evt)

16 case _ =>

17 Behaviors.unhandled

18 }

19

20 private def active(event: Event): Behavior[Event] =

21 Behaviors.receiveMessagePartial {

22 case pause() =>

23 idle()

24 case start(evt) =>

25 // ... execute event

26 active(evt)

27 case stop() =>

28 behaviour.stopped

29 }

30 }

Each behavior has its own set of messages that it can handle. Behavior idle can

handle the messages pause and start(evt) and everything else becomes unhandled.

Behavior active can handle pause(), stop() and start(evt). We can see that in

this example both behaviors can receive pause() and start(). However, they execute

10

different code depending on the behavior. The object starts by running the apply()

function, where it initializes the behavior to idle. When receiving start(evt) it will

then switch over to the active behaviour and keep the event it is about to handle. If the

actor then receives another start(evt) message, it will stay in the same behaviour as

before and handle the event. The unchanged behavior is represented by simply running

the active(evt) function while already being inside the active state.

In the idle state, we see a final case with the body of Behaviors.unhandled. This

is one of three universal behaviors of Akka where it will return to its previous behavior

and tell the system that the previous message was not handled. The other two universal

behaviors in this example are Behaviors.same and Behaviors.stopped. The former

one is used in the idle behavior’s pause() case. It tells the system to reuse the same

behavior and is identical to how we told the system to stay in active() while being in

the active state. The latter one is used in the active state’s stop() case. It shuts down

the actor and prevents it from receiving further messages.

2.4 Domain-specific Languages and Language Work-

benches

A Domain-specific Language (DSL) is a computer language that is targeted to express

solutions to a particular kind of problems, unlike general-purpose languages which are

aimed at expressing arbitrary software.

A DSL does not attempt to please all. Instead, it is created for a limited sphere of

application and use, but it is powerful enough to represent and address the problems and

solutions in that sphere. A good example of a DSL is HTML. It is a language for the

web application domain. It can’t be used for use cases like number crunching, but it is

clear how widely used HTML is on the web.

The purpose of a DSL is to capture or document the requirements and behavior of

one domain. A DSL’s usage might be even narrower for particular aspects within the

domain (e.g., commodities trading in finance). This does not imply that a DSL is only for

business use. DSLs can bring domain experts and technical teams together. For instance,

designers and programmers can use a DSL to communicate and develop an application

together [41].

11

DSLs can be implemented for interpretation or code generation for an addressed

domain or problem. Interpretation means to read the DSL script and executing it at run

time. Code generation from a DSL is not considered mandatory, as its primary purpose

is domain knowledge. But, when it is used, code generation is an advantage in domain

engineering. Usually the generated code is in a high level language, such as Java or C.

12

Chapter 3

GameLang

Multithreading can be a very daunting task for new game designers. As demonstrated

in the Java language, it is done through creating explicit locks and manually locking

and unlocking them. It requires precise knowledge of how programming works, how the

software works, how multithreading works and what kind of concurrency issues might

occur. Instead of using the explicit locking/unlocking mechanism in multithreading, we

simplify the design process for the game designers by utilizing the Actor Model [15,

27], which provides a higher level of abstraction for writing concurrent and distributed

systems. However, writing actor-based programs is still not yet trivial for game designers,

who are not necessary programmers. They would have to do some form of research to find

out which actor-based programming language suits their needs and master the language.

This adds an extra layer of complexity to the game design.

In order to assist them further, we develop a domain-specific language (DSL), i.e.,

GameLang, that is easy to use and easy to understand for the game designers, and

can be transformed into a real-world actor-based programming language. As shown in

Figure 3.1, several programming languages support actor-based concurrency, for instance,

Erlang [4, 10, 11], Scala [6, 26], Haskell [5, 29, 30], and ABS [25, 31]. In this thesis, we

choose Akka Scala [15, 26, 42] as the end-product language.

3.1 The Domain-Specific Language GameLang

GameLang is a domain-specific language (DSL) for game designers. The game designers

can use GameLang to define how the players in a computer game interact with each

13

Figure 3.1: Visualization of how we choose our approach.

other and how the game functions. We aim to create a DSL that will generate Akka

Scala programs from GameLang programs. This DSL assist the generation of the Scala-

related concurrency syntax, which the game designers do not have to master.

3.1.1 The GameLang Syntax

In this section, we will introduce the syntax of GameLang. A game specification written

in GameLang can be divided into three parts: the player specification, the action

specification, and the game specification, which initializes the game.

// players specification

player <Player_Name > { ... }

// actions specifications

action <Action_Name > { ... }

// game initialization specifications

game <Game_Name > { ... }

14

In GameLang, a player specification corresponds to an actor in Scala, and can simi-

larly have fields (of primitive types integer and boolean) and functions (whose bodies

contain Scala code). A specification of a player additionally contains signatures of

messages which can be received and sent by the player, as well as a concurrency specifi-

cation stating which messages are “not compatible” with each other, i.e., which messages

cannot be handled concurrently.

player <Player_Name > {

// field declarations

<Field_Name >: <Type_Name > = <Init_value >

// function declarations

func <Function_Name >(<Arguments >): <Return_type > {

// <Scala_code >

}

// message signature declarations

message <Message_Name >(<Arguments >)

// behaviour specifications

message <Message_Name > # message <Message_Name >

}

We introduce an operator ̸∥ in the concurrency specification in order to differentiate

the messages that can not be run concurrently. By default, we assume all messages of an

actor can be handled concurrently. The concurrency specification restricts it further. For

instance, for two messages M1 and M2 on actor A , an expression M1 ̸∥ M2 means that

the messages M1 and M2 cannot be run concurrently. Since all the messages belonging

to one behaviour can be handled concurrently, the actor A should have at least two

behaviours, one for each message so that the requirement M1 ̸∥ M2 can be fulfilled.

The syntax of the concurrency specification in GameLang is shown below. Note that

we use notation # to denote the ̸∥ operator in GameLang.

receive <Message_Name_1 > # receive <Message_Name_2 >

The action specification defines the ordering of messages sent between players, i.e.,

the first player and the second player given in the argument and the implicit “system”,

which starts the game.

action <Action_Name > (

first: <Player_Name >, second: <Player_Name >, <Arguments >){

15

<Statements >

}

The body of an action specification may contain a composed Statements, which can

either be a conditional, a player’s internal method call, or a message passing statement.

The general form of a message passing statement is as follows:

from A1 to A2: M { S }

Such a statement specifies an asynchronous message passing of message M from an actor

A1 to an actor A2. From actor A1’s point of view, A1 sends the message M to A2, whereas

from actor A2’s point of view, A2 will execute statements S after receiving the message M

from A1. There are four kinds of message passing statements supported by GameLang :

• from system to the first player:

from system to first : <Message_Name >(<Arguments >){

<Statements >

}

• from system to the second player:

from system to second : <Message_Name >(<Arguments >){

<Statements >

}

• from the first player to the second player:

from first to second : <Message_Name >(<Arguments >){

<Statements >

}

• from the second player to the first player:

from second to first : <Message_Name >(<Arguments >){

<Statements >

}

3.1.2 A GameLang Example

In this section, we present a small example to showcase how to use GameLang and

what this DSL is capable of. The complete code can be found in Appendix A.1. The

player block in this example contains the following fields: score, shield, xCoordinates,

yCoordinates, and range. The types of the field are also given.

16

1 player Prisoner{

2 // fields

3 score: integer

4 shield: boolean

5 xCoordinates: integer

6 yCoordinates: integer

7 range: integer

8

9 // functions

10 func CheckCollision(xPos:integer , yPos:integer){

11 // check if two players are in viscinity of each other

12 ...

13 }

14

15 // messages

16 message ActorInfo(x: Prisoner)

17 message AskToFight(x: integer)

18 message ChangeScore(x: integer)

19

20 // concurrency specification

21 receive AskToFight(x) # receive ChangeScore(x)

22 }

The communication between the players is specified in the action specification below.

Both the first player and the second player are Prisoners. The argument s is an integer

value, which defines the points used in the game.

1 action Fighting(first:Prisoner ,second:Prisoner ,s:integer){

2 from system to first : ActorInfo(second){

3 from first to second : AskToFight(s) {

4 if(second.CheckIfColliding(first , s)){

5 from second to first : ChangeScore(s){}

6 second.changeScoreAndCheckShield(s)

7 if(s < 0){ second.die() }

8 else { from second to first : AskToFight(s) {} }

9 }

10 else{

11 from second to first: Escape

12 second.relocate ()

13 }

14 }

15 }

16 }

17

A message ActorInfo containing the identity of the second player is sent from the

system to the first player. This is in essence a way to start the whole sequence of

events that we have defined later. After the first player receives the message, it sends

a message AskToFight to the second player.

The second player then check if it collides with the first player. In other words if

they are within a certain distance of one another, i.e., range. If this condition is violated,

i.e., the two players are not close enough, the second player will relocate its position. Our

design principle is that the player who initiates the fight always gains points. So if the two

players collide with each other, the second player will send a message ChangeScore to

the first player, which allows the first player to gain some points, which is defined by

the parameter s. After the message is asynchronously sent, the second player reduces its

points by invoking its own function changeScoreAndCheckShield, which checks if there

is a shield to protect itself or not. More points are lost if there is no shield. If the total

points of the second player are still larger than zero after losing s points, then the second

player will continue fighting by sending another message AskToFight to the first player.

The fighting cycle then repeats again but this time in the opposite direction, i.e., from

second to first. If the total points of the second player is unfortunately below zero

after losing s points, the second player dies and the battle ends.

We design a game, in which an actor always gains points by initializing a fight and

always loses points when defending. So if an actor A fights back with an actor C while

initializing a fight with an actor B, it might die unnecessarily because the point gaining

happens too late, although the fight with actor B was started first. If this situation

is left unchecked, it will lead to race conditions and points will not be calculated cor-

rectly. So we define the concurrency specification receive AskToFight(x) ̸∥ receive

ChangeScore(x) in the player block to avoid race conditions.

3.2 The Workflow

Figure 3.2: The workflow from the DSL to the Scala code

Figure 3.2 presents the workflow from our DSL to the Scala code. It starts with the

users specifying a computer game in the DSL GameLang, which contains the player

18

specifications, the action specifications, and the game specification. The player specifi-

cations and the action specifications together would contribute to the code generation

of Akka actors. The game specification defines the initializetion of a game. The grammar

of GameLang is written in Xtext. There are still some research problems relevant for this

code generation to be solved. In the next chapter we discuss how the code generation

would be implemented. The complete code generation is left for the future work.

19

Chapter 4

Implementation

In this chapter we will look at how the GameLang workflow is implemented, specifically

how we map DSL constructs to Scala code. The source code of GameLang is available

at GitHub1.

4.1 Xtext Grammar for the GameLang Language

The grammar of the GameLang Language is implemented in Xtext. The player specifi-

cation consists of fields, functions, messages and concurrencySpecs. We will explain

them one by one in the following.

Player:

"player" name=ID "{"

fields += Field*

functions += Function*

messages += Message*

concurrencySpecs += ConcurrencySpec*

"}"

Every player has an ID. The fields defines variables, which can only be a number,

a string text or a boolean variable.

Field:

NumberField | TextField | BooleanField

;

1https://github.com/metrolink/GameLang/

20

https://github.com/metrolink/GameLang/

The func defines functions. A function argument FunctionArgument is a parameter to

the function being created or called. The function argument is optional and may contain

values with types number, string, or boolean. A function may return a number, a

string, a boolean value or nothing. Similar to Java, the return type of a function which

returns nothing is void. The function body in player is one-to-one mapped to Scala.

Function:

"func" name=ID "("

(arguments += FunctionArgument ("," arguments += FunctionArgument)

↪→ *)?

")" ":" returnType =(" number" | "string" | "boolean" | "void")

"{"

scalaCode = ScalaCode

"}"

;

FunctionArgument:

name=ID ":" argType =(" number" | "string" | "boolean ")

;

Messages are a collection of the messages that a player can receive.

Message:

"message" name=ID "("

(arguments += MessageArgument ("," arguments += MessageArgument)*)?

")"

;

A message is created with either none or multiple arguments, which can be of types

number, string, boolean, or player.

MessageArgument:

name=ID ":" (argType =(" number" | "string" | "boolean ") | argTypeRef =[

↪→ Player])

;

The concurrency specification concurrencySpecs defines which two messages can-

not be handled concurrently by a player. By default, all the messages can be handled

concurrently by a player. However, this may not always be the case, as the game de-

signers can restrict it by specifying those that cannot be handled concurrently in the

concurrencySpecs. An Akka actor can have one behaviour at a time, so if we generate

Scala code by assigning each one of the two messages in two separate behaviours, it is

guaranteed that these two messages will not be handled concurrently.

21

ConcurrencySpec:

"receive" msgLeft =[Message]

isNotParallel ?="#"

"receive" msgRight =[Message]

;

The action describes a sequence of message sending and message receiving between

the first player, the second player and the system.

Action:

"action" name=ID "("

"first" ":" firstPlayerType =[Player]

","

"second" ":" secondPlayerType =[Player]

("," otherArgs += MessageArgument (","

otherArgs += MessageArgument)*)?")"

"{" statements += Statement *"}"

;

Inside the body of the action we can have communication statements, if-and-else

statements or function call statements.

Statement:

CommunicationStatement |

IfStatement |

FunctionCallStatement

;

A communication statement is a “from sender to receiver” statement. The fea-

ture sender can either be the system, the first player or the second player. The system

is purely meant to be the very first sender and not utilized in subsequent from-to state-

ments beyond the first statement. The feature receiver represents the receiving player

that will receive the message, which is specified in the feature msgName. Note that it

is not allowed to send messages to the system. The feature statements specifies the

actions which will be performed by the receiver.

CommunicationStatement:

"from" sender =(" system "|" first "|" second ") "to" receiver =(" first "|"

↪→ second ")

":" msgName =[Message]"(" ")"

"{"

statements += Statement*

22

"}"

;

The FunctionCallStatement specifies the internal function of a player. It should be

the receiving player that calls the function.

FunctionCallStatement:

(" first "|" second ") "." functionName =[Function]

;

The if statement can be found in many other languages such as Java. If the condition

is evaluated to true then the trueBranchStatements will be executed, if the condition

is violated, the falseBranchStatements will be executed.

IfStatement:

"if" "(" cond=Expr ")" "{"

trueBranchStatements += Statement*

"}"

"else" "{"

falseBranchStatements += Statement*

"}"

;

Model is the top level view of what is in the game. It contains the implementation of

players, the actions between the players, and the declaration of the game.

Model:

players += Player*

actions += Action*

gameDeclaration = GameDeclaration

;

The GameDeclaration gives a name to the game and starts the game by initializes

the first sequence of events.

GameDeclaration:

"game" name=ID "{" "}"

;

As our DSL is based on Akka Scala, we also provide the opportunity to write Scala

code directly in the DSL.

23

ScalaCode:

"scala" "{"

code=STRING

"}"

;

4.2 Mapping DSL Constructs to Scala Syntax

In this section, we list our suggestion for the one-to-one mappings for code generation in

Table 4.1. They are mappings from the GameLang DSL construct to the Scala syntax.

An example of how the DSL can be mapped to a complete Scala code can be found in

Appendix B.1.

24

Table 4.1: Mapping from the DSL to the Scala syntax

Constructs in the DSL Corresponding Scala syntax Explanation

player Player { ... } object Player { ... }

class Player { ... }

A player specification corresponds to a Scala

class and an object accompanying this class

with the required messages.

x: integer;

b: boolean;

w: string;

var x: Int;

var b: Boolean;

var w: String;

Each field declaration corresponds to a Scala

variable declaration. We do this by assign-

ing a :Type modifier at the end of each type

corresponding to the type in the DSL. It will

always be var in the Scala code.

message Message(

arg1: integer ,

argN: string)

final case class

msg_Message(

arg1: Int ,

argN: String)

extends msgType_T

In the generated Scala code, every message

is represented as a case class that extends

sealed trait msgType T. The generated case

classes appear in the companion object of the

corresponding player class. Arguments of the

message specified in the DSL are converted

to case class’s arguments.

func f(): integer {

// code

}

def f(): Int = {

// code

}

The DSL supports integer, boolean,

string and void as return types of func-

tions; in the generated Scala code they cor-

respond to Int, Boolean, String and Unit,

respectively.

25

action ActionName(

first:Player1 , second:Player2)

{

from system to first: M(){

...

from first to second: M_2(){

...

}

}

}

The corresponding mapping is ex-

plained in the row below.

The action statement specifies a message

passing chain between the players. The body

of the actions consists of from-to statements

and their corresponding body.

The order of the from-to statements corre-

sponds to the order of events that will hap-

pen in the computer game.

26

from P1 to P2 : M(){

// stmts

}

class P1 {

...

case ... => {

P2 ! M();

...

}

class P2 {

...

case M => {

// stmts

}

...

}

The from-to statement specifies that a mes-

sage M is being asynchronously sent from ac-

tor P1 to actor P2, and actor P2 is receiving

the message. In the generated Scala code,

this manifests in classes corresponding to ac-

tors (i.e., players) P1 and P2. In the class cor-

responding to P1, a statement P2 ! M();

appears in one of the actor P1’s message han-

dling cases. In class corresponding to P2, a

new case for handling message M appears and

its code is the one specified in the body of the

from-to statement in the DSL.

game GameName{

player P1();

}

object myGame{

playerName instanceOfPlayer ();

}

The game object lists all relevant objects

that will be created at game start. This in-

cludes the starting actors of the game as well

as their initial values.

27

object SystemStart extends App

↪→ {

val mainSystem :

↪→ ActorSystem [myGame .

↪→ StartGame] = ActorSystem

↪→ (system () ,

" AkkaQuickStart ")

mainSystem ! myGame .

↪→ StartGame ()

}

The Scala code that starts the game is the

same for all the systems. So we hide it in

the DSL. The code first creates the actor sys-

tem and then sends the initial message to the

game object.

28

4.2.1 Self Loops

In an asynchronous setting, we cannot control when a message will be received and when

it will be handled by an actor, except that the ordering of the messages coming from the

same sender is preserved by the Scala language. A message may get lost if the actor is in

a behaviour which does not define how to handle the message upon the message arrival.

In order to prevent lost messages, our proposed solution to solve this for a future code

generator would be to make sure that all behaviours of an actor define a case for each

message. For the messages that should not be handled within a specific behaviour, the

code generator would provide a self-loop to resend the message to itself again and store

the resent message to its mailbox so that the message does not get lost and is postponed

for a later use. This can be done by moving a message from the front of the mailbox of

an actor to the back of the mailbox, essentially making it an at-least-once system.

4.2.2 Group Messages into Different Behaviours

In an asynchronous setting, we cannot control when a message will be received and when

it will be handled by an actor, except that the ordering of the messages coming from the

same sender is preserved by the Scala language. We can however use the not-concurrent

operator, i.e., ̸∥ , in the ConcurrencySpec to constraint which two messages can not be

executed concurrently, i.e., should not belong to the same behaviour. Initially, all the

messages are grouped in the same behaviour and stored in a list. Then new behaviours

containing new set of messages will be generated based on what is expressed in the

ConcurrencySpec. The algorithm of how our code generator would group messages into

different behaviours is shown in Listing 4.16 and explained below.

1 Set <ConcurrencySpec > C

2 Set <Messages > M

3

4 func behaviourList(M, C):

5 LS = [M]

6 for each M1 ̸∥ M2 in C{

7 LS ’ = []

8 for each B in LS{

9 B1 = B

10 B2 = B

11 mark(M1 , B1)

12 mark(M2 , B2)

13 add(B1 , B2 , LS ’)

29

14 }

15 LS = LS ’

16 }

17 return minimize(LS)

Listing 4.16: Algorithm for splitting the behaviours

The function behaviourList takes two input values, i.e., a set of messages M and

a set of concurrency specification C. It returns a list of behaviours. Line 5 creates a

list LS, which contains a set of messages M. Line 6 loops through each of the term in

the concurrency specification, for instance, M1 ̸∥ M2. Line 8 loops through each of the

message sets (identified by behaviours). Each behaviour is represented by a set of marked

or unmarked messages. The marking symbolizing self-loops. Initially, there is no markings

over the messages. Lines 9 and 10 make two copies of the message set B. Lines 11 and

12 mark M1 in one of the copies and mark M2 in the other copy, respectively. This means

either M1 or M2 has no progress other than being resent to itself. Consequently, we avoid

M1 and M2 to be handled concurrently in either of the assigned behaviours and at the

same time we avoid losing messages. Line 13 adds the two new message sets B1 and B2

to the behaviour list LS’. Note that when the nested for-loops terminates, some of the

behaviours in the list LS might be supersets of the others. The subsets are redundant.

For instance, we say a behaviour containing messages A B C D is a superset of a behaviour

containing messages A B C D because the former one can handle all the messages that the

latter one handles, i.e., message D, but even more. Finally, the function behaviourList

returns a minimized list of behaviours, in which none of the behaviours is a superset of

another.

Example. As an example for how the algorithm defines messages in different behaviour

groups, say we have four messages A, B, C, D, and two concurrency specifications A ̸∥ C

and B ̸∥ D. In the beginning, A, B, C, and D belong to the same behaviour. We specify

that the messages A and C cannot be in the same behaviour, and the messages B and D

cannot be in the same behaviour.

message set:

A B C D

concurrency specification:

A ̸∥ C

B ̸∥ D

30

Note that a message may get lost if the actor is in a behaviour which does not define

how to handle the message upon the message arrival. In order to prevent message lost,

our proposed code generator makes sure that all behaviours of an actor define a case for

each type of message. See the at-least-once mechanism defined in Section 1. We use

overlines to mark which messages in a behaviour should be resent in a self-loops.

The two behaviours below are the result of applying the concurrency specification A

̸∥ C to messages ABCD.

message sets:

A B C D

A B C D

concurrency specification:

B ̸∥ D

Finally, the four final behaviours below are the result of applying the concurrency

specification B ̸∥ D to the message sets ABCD and ABCD.

message sets:

A B C D

A B C D

A B C D

A B C D

4.2.3 Behaviour Switching

In Akka Scala, an actor is the basic building block of concurrent computation. The

behaviour of an actor defines the set of messages an actor can handle and react to. In

this thesis work, we develop a DSL to express which pairs of messages cannot be executed

concurrently in GameLang, based on which the code generator will separate messages into

different behaviours as discussed in Section 4.2.2. This also means an actor may need to

switch its behaviours in order to receive the next expected message.

As discussed in Section 2, the concept and the construct of Scala behaviours is not

relevant for the game design and should be abstracted away in our DSL and be taken care

of by the code generator. The possible approaches to generate Scala code for behaviour

switching from our DSL is discussed as follows. First, the code generator needs to identify

which message the actor should receive next. This can be done by parsing the action

31

specifications in the DSL code and apply static analysis [37]. Next, the code generator

should determine a behaviour which contains the identified message. However, a message

may be supported by more than one behaviours, as the example shown in Section 4.2.2.

So, how does the code generator choose between several possible behaviours for behaviour

switching? A rough guideline is given below:

• In case that the current behaviour also contains the next expected message, the

actor will not switch the behaviour. Otherwise, the following cases describe how

the behaviour is switched.

• Assume among the set {B1, . . . , Bk} of behaviours, one of the behaviours Bi is

deemed clearly better than the others2. In that case, the algorithm will switch to

Bi.

• Assume that all behaviours {B1, . . . , Bk} have an equal amount of non-self-loop

messages. In this case, all the behaviours are valid choices to switch to, and the

algorithm makes a randomized choice.

Finally, a statement stating the next behaviour is added by the code generator into

the current case of the message handling.

In a game that there are multiple actors trying to communicate with the same actor,

the receiving actor needs a way to process the receiving messages in a manner that do

not create concurrency issues. Although each of the action block only specifies the

interaction between two players, the number of players can scale up. There can be

naturally several players in a game which communicating with each other. Which also

means, there can be interleaving of messages. The concurrency specification using the

̸∥ operator in this case constrains the concurrency behaviour of an actor.

4.2.4 Code Generation in Xtext

The language workbench Xtext provides built-in code generation capabilities via model-

to-text transformations [41]. Based on the grammar of the language, Xtext generates an

object model that represents the language constructs, which is populated during parsing.

To specify code generation in Xtext, one needs to define a polymorphic function (such

2A possible scenario where one of the behaviours is clearly superior, is when B1 has four non-self-loop
messages, B2 has two non-self-loop messages, and B3 has three non-self-loop messages. In this case B1

is superior as it is less risky for the actor having to switch behaviour again in the near future.

32

as compile) for every language construct3; this function should return a string that

represents the generated code for the particular language construct. The bodies of the

compile functions follow the description presented in Table 4.1.

3That is, for every node type in the syntax tree of a program written in the language.

33

Chapter 5

Related Work

Actor-based concurrency The actor-based concurrency is very different from the

thread-based concurrency with locks. Isolated states and asynchronous message passing

yield another programming pattern than what the traditional multithreading do. Isolated

mutable states and immutable messages together guarantees implicit synchronization.

However, the concept of asynchronous message passing and no global state challenges the

coordination. An application may require consensus or a concerted view of state between

multiple actors. When multiple actors must be strictly orchestrated in order to provide a

distinct application function, correct messaging can become very demanding. Thus, many

implementations provide higher-level abstractions that implement low-level coordination

protocols based on complex message flows, but hide the internal complexity from the

developer. For Erlang, OTP is a standard library that contains a rich set of abstractions,

generic protocol implementations and behaviors [16]. The Erlang design philosophy is

to spawn a new process for every event so that the program structure directly reflects

the concurrency of multiple users exchanging messages. So with lightweight processes,

it is not unusual to have hundreds of thousands, even millions, of processes running in

parallel, often with a small memory footprint. The ability of the runtime system to scale

concurrency to these levels directly affects the way programs are developed, differentiating

Erlang from other concurrent programming languages [12].

ABS The work by Kamburjan et. al. [33] proposed a framework to statically verify

communication correctness in a actor-based concurrency model of ABS using futures.

The framework provided a type discipline based on session types, which gives a high-

level abstraction for structured interactions. By using it the users of the framework can

34

statically verify if the local implementations in ABS comply with the communication

correctness. In this work, the programmers need to implement the ABS concurrent

programs themselves. No code generation was involved.

Session types We are not aware of works on session types that perform complete

code generation to Scala. However, there have been several works [13, 32, 39, 38] in

generating Scala APIs from session types. With the use of the generated API, the Scala

programs written by the programmers can be type checked at the compile time against

the communication protocol defined as session types.

Chor [3] is a programming framework for choreographic programming [14, 36]. Chor

provides an IDE for programming with choreographies, equipped with a type checker

for verifying that choreographies respect protocol specifications given as session types.

Programs in Chor can be compiled to executable endpoint implementation in the Jolie

programming language, a general-purpose language for distributed computing, which is

extended to support the development of multiparty asynchronous sessions.

Multiparty asynchronous session types [28] extends the foregoing theories of bi-

nary session types to multiparty, asynchronous sessions, which often arise in practical

communication-centred applications. It introduces a new notion of types in which inter-

actions involving multiple peers are directly abstracted as a global scenario. A global

type plays the role of a shared agreement among communication peers, and is used as a

basis of efficient type checking through its projection onto individual peers.

Computer games Compared to other software applications where concurrency is eas-

ier to predict and handle such as in Listing 2.1, computer games differ by providing

gameplay, which has been described in number of different ways though it is most com-

monly described as the way the player handles the game and the rules. These game

rules exist in all computer games, and they could as such serve as unifying element and

provide a common ground for all computer games [35]. Through this work it is possible

to identify the main properties of a computer game, and develop concurrency on top of

this system.

Game engines Through understanding the game engine architecture it is possible to

identify the main properties of a computer game, and develop concurrency on top of this

system. The state-of-the-art game engine Unreal [22] is implemented in C++. Since the

35

programming language used in most modern game engines is C++[24], we should briefly

consider whether C++’s native start-up and shut-down semantics can be leveraged in order

to start up and shut down the engine’s subsystems. In C++, global and static objects are

constructed before the program’s entry point is called. However, these constructors are

called in a totally unpredictable order. The destructors of global and static class instances

are called after the entry point returns, and once again they are called in an unpredictable

order. This behavior is not desirable for initializing and shutting down the subsystems

of a game engine, or indeed any software system that has interdependencies between its

global objects such as Akka actors. This is problematic for systems that could utilize

concurrency, because a common design pattern for implementing major subsystems such

as the ones that make up a game engine is to define a singleton class (often called a

manager) for each subsystem. If C++ gave us more control over the order in which global

and static class instances were constructed and destroyed, we could define our singleton

instances as globals, without the need for dynamic memory allocation. If this was the

case, then identifying and creating concurrency in computer games would be a lot simpler.

Paradigms used in game development A common programming paradigm in com-

puter game design is object-oriented design (OOD), though data-oriented design (DOD)

is receiving traction as games seek to be more optimized. Research has shown that OOD

and DOD are well used in games. Both have their advantages and disadvantages in any

part, such as performance, maintainability, entry-level and other aspects that architects

and managers usually face when choosing a technology stack, design principles, and team

building [20]. While OOD was found to be much easier to understand for juniors, the

DOD approach was found to require knowledge of computer science to understand, in

particular how memory and the OS work. DOD allows for the ability to design and de-

velop software with effective use of multicore processors due to the uniform distribution

of load across multiple threads.

Language workbenches Language workbenches are a generic term that refers to the

tools that implement the idea of language-oriented programming. That in turn is the

general style of development which operates about the idea of building software around

a set of domain-specific languages [21]. This thesis seeks to utilize this technology in

conjunction with concurrency and game engines to develop a new tool that helps game

designers.

Language workbenches exist in many different flavors with a common goal to facilitat-

ing the development of (domain-specific) languages [17]. Common features of language

36

workbenches include notation, semantics, validation, testing and composability as well

as an editor. A language workbench must support notation, semantics, and an editor

for the defined languages and its models. It may support validation of models, testing

and debugging of models and the language definition, as well as composition of different

aspects of multiple defined languages. Xtext, which is our language workbench of choice,

is characterized by the following features [18]:

• textual notation

• interpretative as well as model2text and model2model semantics

• structural, type and programmatic validation

• DSL testing and debugging

• free-form editing mode

• syntax highlighting, outline, folding, syntactic completion, diff and autoformatting

• semantic reference resolution, semantic completion, error marking, quickfixes, origin

tracking and live translation

37

Chapter 6

Conclusion and Future Work

In this thesis, I have studied how actor-based concurrency in Akka Scala can be used to

implement a game genre of computer games. I used a genre known as point chasers to

simulate a simple game. In this example, each player is implemented as an actor and the

players communicate with each other through asynchronous message passing. As point

chasers are interacting with each other and at the same time influencing each others

scores, we found this to be a good example to show how actor-based concurrency can be

used to express similar types of computer games.

We designed a DSL which is called GameLang to help game designers generate actor-

based concurrent computer games without having to master all the technical details of

the Akka library. We have abstracted the concepts of behaviours and states in Akka as

well as simplified the terminology to closer resemble terms in a computer game. In our

DSL we have explored a way to describe the order of events in the computer games, as

well as an approach to express concurrent communication. These are expressed via the

action blocks, which use from-to statements to specify message sending from one actor

to another, as well as the concurrency operator ̸∥ , respectively. In order to find the best

implementation of the concurrency specification we have created an algorithm that will

generate behaviours. These behaviours will contain groups of messages that best fits the

action.

Future work

We have identified the following directions of future work.

38

• As behaviours of an actor are not relevant for the game design, we want to apply

static analysis in the code generation to identify the necessary behaviour switching

and generate the corresponding Scala code in the future. If the designers have the

technical knowledge, it is possible to further inspect the generated Scala code and

make further adjustments.

• We want to evaluate our DSL by conducting user studies, mainly aimed at game

designers and beginner programmers who just start their studies, as this group has

little to no game developing experience. We believe that this group is the most

accurate representation of our target user group.

• We want to extend our approach to support other game genres. Though it is

already possible to specify arbitrary games within our system, the tools to do so

are somewhat limited. Other genres of interest would generally still be 2D games

with text-based interfaces and minimal graphical interfaces. Given more DSL-level

support, it will be possible to specify turn-based games, such as chess or Pong1.

• We would like to investigate how our approach can be applied to other actor-based

languages, such as Erlang [9], ABS [31] and Haskell [34]. As the concepts of actor-

based programming are universal and the concepts of utilizing actors as players

in games is not a unique concept bound to Akka, it should be possible to create

various translation layers from our DSL to other actor-based languages.

• Finally, we plan to implement extensive IDE support for the DSL.

1https://en.wikipedia.org/wiki/Pong

39

https://en.wikipedia.org/wiki/Pong

Bibliography

[1] Message Delivery Reliaibility.

URL: https://doc.akka.io/docs/akka/current/general/message-delivery-

reliability.html.

[2] Multithreading in Java - Everything You Must Know.

URL: https://www.digitalocean.com/community/tutorials/multithreading-in-java/.

[3] Chor.

URL: http://www.chor-lang.org/.

[4] Erlang.

URL: https://www.erlang.org/.

[5] Haskell.

URL: https://www.haskell.org/.

[6] Scala.

URL: https://www.scala-lang.org/.

[7] What is a thread?

URL: https://www.iitk.ac.in/esc101/05Aug/tutorial/essential/threads/

definition.html.

[8] 7Geordi. How do you handle concurrency in your games?

URL: https://www.reddit.com/r/gamedev/comments/108fjg/

how do you handle concurrency in your games/c6bhvff/.

[9] Joe Armstrong. Making reliable distributed systems in the presence of software errors.

PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2003.

URL: https://nbn-resolving.org/urn:nbn:se:kth:diva-3658.

40

https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://www.digitalocean.com/community/tutorials/multithreading-in-java/
http://www.chor-lang.org/
https://www.erlang.org/
https://www.haskell.org/
https://www.scala-lang.org/
https://www.iitk.ac.in/esc101/05Aug/tutorial/essential/threads/definition.html
https://www.iitk.ac.in/esc101/05Aug/tutorial/essential/threads/definition.html
https://www.reddit.com/r/gamedev/comments/108fjg/how_do_you_handle_concurrency_in_your_games/c6bhvff/
https://www.reddit.com/r/gamedev/comments/108fjg/how_do_you_handle_concurrency_in_your_games/c6bhvff/
https://nbn-resolving.org/urn:nbn:se:kth:diva-3658

[10] Joe Armstrong. Erlang - Software for a Concurrent World. In Erik Ernst, editor,

ECOOP 2007 - Object-Oriented Programming, 21st European Conference, Berlin,

Germany, July 30 - August 3, 2007, Proceedings, volume 4609 of Lecture Notes in

Computer Science, page 1. Springer, 2007.

[11] Joe Armstrong. A History of Erlang. In Barbara G. Ryder and Brent Hailpern,

editors, Proceedings of the Third ACM SIGPLAN History of Programming Languages

Conference (HOPL-III), San Diego, California, USA, 9-10 June 2007, pages 1–26.

ACM, 2007.

[12] Francesca Cesarini and Simon Thompson. Erlang Programming - A Concurrent

Approach to Software Development. O’Reilly, 2009. ISBN 978-0-596-51818-9.

URL: http://www.oreilly.de/catalog/9780596518189/index.html.

[13] Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. API

Generation for Multiparty Session Types, Revisited and Revised Using Scala 3. In

Karim Ali and Jan Vitek, editors, 36th European Conference on Object-Oriented

Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, volume 222 of

LIPIcs, pages 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[14] Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A Formal Theory of

Choreographic Programming. CoRR, 2022.

[15] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas,

Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah,

Kiko Fernandez-Reyes, and Albert Mingkun Yang. A Survey of Active Object Lan-

guages. ACM Comput. Surv., 50(5):76:1–76:39, 2017. doi: 10.1145/3122848.

URL: https://doi.org/10.1145/3122848.

[16] Benjamin Erb. Concurrent Programming for Scalable Web Architectures. In In-

formatiktage 2012 - Fachwissenschaftlicher Informatik-Kongress 23. und 24. März

2012, B-IT Bonn-Aachen International Center for Information Technology in Bonn,

volume S-11 of LNI, pages 139–142. GI, 2012.

[17] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi

Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex

Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen

Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin

van der Vlist, Guido Wachsmuth, and Jimi van der Woning. The State of the Art

in Language Workbenches - Conclusions from the Language Workbench Challenge.

In Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, Software Language

41

http://www.oreilly.de/catalog/9780596518189/index.html
https://doi.org/10.1145/3122848

Engineering - 6th International Conference, SLE 2013, Indianapolis, IN, USA, Oc-

tober 26-28, 2013. Proceedings, volume 8225 of Lecture Notes in Computer Science,

pages 197–217. Springer, 2013. doi: 10.1007/978-3-319-02654-1\ 11.

URL: https://doi.org/10.1007/978-3-319-02654-1 11.

[18] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi

Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex

Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen

Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin

van der Vlist, Guido Wachsmuth, and Jimi van der Woning. Evaluating and compar-

ing language workbenches: Existing results and benchmarks for the future. Comput.

Lang. Syst. Struct., 44:24–47, 2015. doi: 10.1016/j.cl.2015.08.007.

URL: https://doi.org/10.1016/j.cl.2015.08.007.

[19] Eleonora Fanouraki. Did you know that 60% of game developers use game engines?

URL: https://www.slashdata.co/blog/did-you-know-that-60-of-game-developers-use-

game-engines.

[20] Kirill Fedoseev, Nursultan Askarbekuly, Ekaterina Uzbekova, and Manuel Mazzara.

A Case Study on Object-Oriented and Data-Oriented Design Paradigms in Game

Development. 07 2020. doi: 10.13140/RG.2.2.16657.66405.

[21] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-

guages?

URL: https://www.martinfowler.com/articles/languageWorkbench.html.

[22] Epic Games, 2023.

URL: https://www.unrealengine.com/en-US/.

[23] Ian Gordon. Foundation of scalable systems. O’Reilly Media, Inc., 2022. ISBN

9781098106065.

[24] Jason Gregory. Game Engine Architecture. CRC Press, 2018. ISBN 978-1-1380-

3545-4.

[25] Reiner Hähnle. The Abstract Behavioral Specification Language: A Tutorial In-

troduction. In Elena Giachino, Reiner Hähnle, Frank S. de Boer, and Marcello M.

Bonsangue, editors, Formal Methods for Components and Objects - 11th Interna-

tional Symposium, FMCO 2012, Bertinoro, Italy, September 24-28, 2012, Revised

Lectures, volume 7866 of Lecture Notes in Computer Science, pages 1–37. Springer,

2012.

42

https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://www.slashdata.co/blog/did-you-know-that-60-of-game-developers-use-game-engines
https://www.slashdata.co/blog/did-you-know-that-60-of-game-developers-use-game-engines
https://www.martinfowler.com/articles/languageWorkbench.html
https://www.unrealengine.com/en-US/

[26] Philipp Haller and Martin Odersky. Scala Actors: Unifying Thread-based and Event-

based Programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

[27] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular AC-

TOR Formalism for Artificial Intelligence. In Nils J. Nilsson, editor, Proceedings

of the 3rd International Joint Conference on Artificial Intelligence. Standford, CA,

USA, August 20-23, 1973, pages 235–245. William Kaufmann, 1973.

URL: http://ijcai.org/Proceedings/73/Papers/027B.pdf.

[28] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous

Session Types. In George C. Necula and Philip Wadler, editors, Proceedings of

the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages

273–284. ACM, 2008.

[29] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,

Joseph H. Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas Johns-

son, Richard B. Kieburtz, Rishiyur S. Nikhil, Will Partain, and John Peterson.

Report on the Programming Language Haskell, A Non-strict, Purely Functional lan-

guage. ACM SIGPLAN Notices, 27(5):1, 1992.

[30] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler. A History

of Haskell: Being Lazy With Class. In Barbara G. Ryder and Brent Hailpern,

editors, Proceedings of the Third ACM SIGPLAN History of Programming Languages

Conference (HOPL-III), San Diego, California, USA, 9-10 June 2007, pages 1–55.

ACM, 2007.

[31] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Stef-

fen. ABS: A Core Language for Abstract Behavioral Specification. In Bernhard K.

Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Formal Methods

for Components and Objects - 9th International Symposium, FMCO 2010, Graz,

Austria, November 29 - December 1, 2010. Revised Papers, volume 6957 of Lecture

Notes in Computer Science, pages 142–164. Springer, 2010.

[32] Sung-Shik Jongmans and José Proença. ST4MP: A Blueprint of Multiparty Session

Typing for Multilingual Programming. In Tiziana Margaria and Bernhard Stef-

fen, editors, Leveraging Applications of Formal Methods, Verification and Valida-

tion. Verification Principles - 11th International Symposium, ISoLA 2022, Rhodes,

Greece, October 22-30, 2022, Proceedings, Part I, volume 13701 of Lecture Notes in

Computer Science, pages 460–478. Springer, 2022.

43

http://ijcai.org/Proceedings/73/Papers/027B.pdf

[33] Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. Session-Based Com-

positional Analysis for Actor-Based Languages Using Futures. In Kazuhiro Ogata,

Mark Lawford, and Shaoying Liu, editors, Formal Methods and Software Engineer-

ing - 18th International Conference on Formal Engineering Methods, ICFEM 2016,

Tokyo, Japan, November 14-18, 2016, Proceedings, volume 10009 of Lecture Notes

in Computer Science, pages 296–312, 2016.

[34] Konrad Kleczkowski. Actor Model in Haskell.

URL: https://kleczkow.ski/actor-model-in-haskell/.

[35] Lars V Magnusson. Game Mechanics Engine. 1 2011. doi: 10.13140/

RG.2.2.16657.66405.

[36] Fabrizio Montesi. Choreographic Programming (Ph.D. thesis). 2013.

[37] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program

analysis. Springer, 1999. ISBN 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6.

URL: https://doi.org/10.1007/978-3-662-03811-6%7D.

[38] Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala.

In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European Con-

ference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,

Italy, volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2016.

[39] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decom-

position of Multiparty Sessions for Safe Distributed Programming. In Peter Müller,

editor, 31st European Conference on Object-Oriented Programming, ECOOP 2017,

June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages 24:1–24:31. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[40] SciencetechEasy. Life Cycle of Thread in Java — Thread State, 2020.

URL: https://www.scientecheasy.com/2020/08/life-cycle-of-thread-in-java.html/.

[41] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-

lander, Lennart CL Kats, Eelco Visser, and GH Wachsmuth. DSL engineering-

designing, implementing and using domain-specific languages. 2013.

[42] Derek Wyatt. Akka Concurrency. Artima Inc, 2013. ISBN 0981531660.

44

https://kleczkow.ski/actor-model-in-haskell/
https://doi.org/10.1007/978-3-662-03811-6%7D
https://www.scientecheasy.com/2020/08/life-cycle-of-thread-in-java.html/

Appendix A

The Complete GameLang Example

1 game myGame{

2 Prisoner P1

3 Prisoner P2

4 Prisoner P3

5

6 action fighting(P1 ,P2 ,1000)

7 action fighting(P1 ,P3 ,500)

8 }

9 player Prisoner{

10 // fields

11 score: integer

12 shield: boolean

13 xCoordinates: integer

14 yCoordinates: integer

15 range: integer

16

17 // functions

18 func CheckCollision(xPos:integer , yPos:integer){

19 // check if two players are in viscinity of each other

20 ...

21 }

22

23 // messages

24 message ActorInfo(x: Prisoner)

25 message AskToFight(x: integer)

26 message ChangeScore(x: integer)

27

28 // concurrency specification

29 receive AskToFight(x) # receive ChangeScore(x)

30 }

31

45

32 action Fighting(first:Prisoner ,second:Prisoner ,s:integer){

33 from system to first : ActorInfo(second){

34 from first to second : AskToFight(s) {

35 if(second.CheckIfColliding(first , s)){

36 from second to first : ChangeScore(s){}

37 second.changeScoreAndCheckShield(s)

38 if(s < 0){ second.die() }

39 else {

40 from second to first : AskToFight(s) {}

41 }

42 }

43 else{

44 from second to first: Escape

45 second.relocate ()

46 }

47 }

48 }

49 }

Listing A.1: The complete GameLang Example in Section 3.1.2

46

Appendix B

The Complete Scala Code Mapped from GameLang

1 //full example of the Scala code

2

3 import akka.actor.typed.{ActorRef , ActorSystem , Behavior}

4 import akka.actor.typed.scaladsl .{ ActorContext , Behaviors}

5 import akka.util.Timeout

6 import com.typesafe.config.ConfigFactory

7

8 import scala.concurrent.duration._

9 import scala.language.postfixOps

10 import scala.util.Random

11

12

13 object Prisoner{

14

15 sealed trait msgType_T

16

17 final case class msg_AskToFight(replyTo: ActorRef[msgType_T],xPos:Int

↪→ , yPos:Int , point: Int) extends msgType_T

18

19 final case class msg_ActorInfo(name: ActorRef[msgType_T], point: Int)

↪→ extends msgType_T

20

21 final case class msg_ChangeTheScore(point: Int) extends msgType_T

22

23 def apply(): Behavior[msgType_T] = {

24 Behaviors.setup(context => new Prisoner(context).behaviour_B2 ())

25 }

26 }

27

28 class Prisoner(context: ActorContext[Prisoner.msgType_T]) {

29

47

30 import Prisoner._

31

32 val rand = new scala.util.Random

33 var score :Int = 2000

34 var shield :Boolean= true

35 var position = Array.ofDim[Int](2) //(x,y)

36 val positionRange :Int= 5

37 xCoordinate :Int= rand.between(1, 10) //x cordinates

38 yCoordinate :Int= rand.between(1, 10) //y cordinates

39

40 def relocate (): Unit = {

41 xCoordinate = rand.between(1, 10)

42 yCoordinate = rand.between(1, 10)

43 }

44

45 def ChangeScoreAndCheckShield(point:Int): Unit = {

46 if (shield) {

47 score -= point /2

48 shield = false

49 }

50 else {

51 score -= point * 2

52 println(context.self.toString + " lost points and now have: " +

↪→ score)

53 }

54 }

55

56 def CheckIfColliding(xPosition: Int , yPosition: Int): Boolean = {

57 if (xPosition <= xCoordinate + positionRange && xPosition >=

↪→ xCoordinate - positionRange //check if players are close

58 && yPosition <= yCoordinate + positionRange && yPosition >=

↪→ yCoordinate - positionRange){

59 return true

60 }

61 else{

62 return false

63 }

64 }

65

66 def behaviour_B1 (): Behavior[msgType_T] = {

67 Behaviors.receiveMessagePartial {

68 case msg_ChangeTheScore(point) =>

69 score += point

70 println(context.self.toString + "now has " + score)

71 behaviour_B2 // Change behavior

48

72

73 case msg_AskToFight(replyTo , xPos , yPos , point) =>

74 xCoordinate = rand.between(1, 10)

75 yCoordinate = rand.between(1, 10)

76 // Pushes the current message to the back of the mailbox.

77 context.self ! msg_AskToFight(replyTo , xPos , yPos , point)

78 behaviour_B1 // Behavior.same

79

80 case msg_ActorInfo(name , point) =>

81 name ! msg_AskToFight(context.self , xCoordinate , yCoordinate ,

↪→ point)

82 behaviour_B1 // Behavior.same

83 }

84 }

85

86 def behaviour_B2 (): Behavior[msgType_T] = {

87 Behaviors.receiveMessagePartial {

88 case msg_AskToFight(replyTo , xPos , yPos , point) =>

89 if (CheckIfColliding(xPos ,yPos)) {

90 replyTo ! msg_ChangeTheScore(point)

91

92 ChangeScoreAndCheckShield(point)

93

94

95 if (score < 0) {

96 println(context.self.toString + " stopped")

97 Behaviors.stopped

98 }

99 else {

100 replyTo ! msg_AskToFight(context.self , xCoordinate ,

↪→ yCoordinate , point)

101

102 behaviour_B1

103 }

104 } else {

105 replyTo ! msg_ChangeTheScore (0)

106 relocate ()

107 behaviour_B2

108 }

109

110

111 case msg_ChangeTheScore(point) =>

112 // Pushes the current message to the back of the mailbox queue.

113 context.self ! msg_ChangeTheScore(point)

114 behaviour_B2 // Behavior.same

49

115

116 case msg_ActorInfo(name , point) =>

117 name ! msg_AskToFight(context.self , xCoordinate , yCoordinate ,

↪→ point)

118 behaviour_B1 // Change the behavior

119 }

120 }

121 }

122

123 object Prison {

124

125 final case class StartGame ()

126 val change_points :Int= 500

127 def apply(): Behavior[StartGame] =

128 Behaviors.setup { context =>

129 //create -actors

130 val prisoner = context.spawn(Prisoner (), "P1")

131 val prisoner2 = context.spawn(Prisoner (), "P2")

132 val prisoner3 = context.spawn(Prisoner (), "P3")

133

134 Behaviors.receiveMessage { message =>

135 //Send messages to P2 and P3

136 prisoner ! Prisoner.msg_ActorInfo(prisoner2 , change_points)

137 prisoner ! Prisoner.msg_ActorInfo(prisoner3 , change_points)

138 Behaviors.same

139 }

140 }

141 }

142

143 //main -class

144 object AkkaQuickstart extends App {

145

146 val customConf = ConfigFactory.parseString(

147 """

148 akka.log -dead -letters = OFF

149 akka.log -dead -letters -during -shutdown = false

150 """)

151 // create the actor -system

152 val prisonMain: ActorSystem[Prison.StartGame] = ActorSystem(Prison (),

↪→ "AkkaQuickStart", ConfigFactory.load(customConf))

153

154 prisonMain ! Prison.StartGame ()

155 }

Listing B.1: The corresponding Scala code for the prisoner example in Section 3.1.2

50

	Introduction
	Background
	Multithreading
	Explicit Locking and Unlocking Mechanism

	Concurrency in Computer Games
	Actor-Based Concurrency
	The Behaviours of Akka Actors

	Domain-specific Languages and Language Workbenches

	GameLang
	The Domain-Specific Language GameLang
	The GameLang Syntax
	A GameLang Example

	The Workflow

	Implementation
	Xtext Grammar for the GameLang Language
	Mapping DSL Constructs to Scala Syntax
	Self Loops
	Group Messages into Different Behaviours
	Behaviour Switching
	Code Generation in Xtext

	Related Work
	Conclusion and Future Work
	Bibliography
	The Complete GameLang Example
	The Complete Scala Code Mapped from GameLang

