
WiRoM: a High-level Mission
Planning System for

Heterogeneous Multi-Robot
Simulations

Joakim Moss Grutle

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and
Physics,

Bergen University College

Department of Informatics,
University of Bergen

June 2020

Abstract

Robots are complicated machines. Today we have a lot of different types of
robots, each with different types of sensors and actuators which have their
own practical (and impractical) applications. Utilizing the benefits of having
multiple heterogeneous robots is useful for creating a more diverse repos-
itory of executable tasks, some that might be impossible to execute for a
single robot or homogeneous multi-robots. Having a more diverse reposi-
tory of tasks would allow robots to execute complex missions and increase
the efficiency of mission execution. Planning new missions for heterogeneous
multi-robots is a complicated and convoluted assignment for most users be-
cause of the robotics and programming knowledge that is required to plan
such complex missions. This thesis will present WiRoM, a web-based mis-
sion planning system for heterogeneous multi-robot setups that have been
designed and developed by combining the core concepts of Model-Driven
Software Engineering with robot programming. By abstracting the mission
planning to a higher level and implementing the user interface as a low-code
platform, we can make mission planning, task development, and task alloca-
tion more trivial and efficient for users.

Acknowledgements

Firstly, I would like to thank my supervisor Prof. Adrian Rutle for his
engagement in the project and thesis. He provided continuous guidance,
knowledge, and assistance throughout my work, and his contributions are
irreplaceable. I need to thank my co-students and other friends from my
studies, they have been one of the driving factors for making my study period
as great as it has been. I would also like to thank my family and childhood
friends for backing my choices and providing encouragement and motivation
throughout my entire study. Finally, I would like to thank my girlfriend for
her continuous perseverance and support allowing me to work on my studies
and conduct this research.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 3
1.3 Motivation . 4
1.4 Research question . 4
1.5 Method . 4
1.6 Thesis Outline . 6

2 Theoretical Background 7
2.1 Field of study . 7

2.1.1 Robotics . 7
2.1.2 Tasks . 8
2.1.3 Missions . 8
2.1.4 Simulation . 9
2.1.5 Verification and validation 9

2.2 Model Driven Software Engineering 10
2.2.1 What is a model? . 10
2.2.2 MDSE concepts . 11
2.2.3 Model Driven Architecture 13
2.2.4 Domain-Specific Languages 14
2.2.5 Low-code development 14
2.2.6 MDSE and robotics . 17

2.3 Multi-robot task allocation . 18
2.3.1 The Multi-robot task allocation problem 19
2.3.2 Taxonomy . 21

2.4 Distributed Autonomous Robotic Systems 28
2.4.1 DARS review . 28

2.5 Research methodology . 30

i

3 Related work 33
3.1 Criteria . 33
3.2 Task definition language . 34
3.3 PROMISE . 34
3.4 FLYAQ . 35
3.5 The ERGO framework . 36
3.6 Lowcomote . 37
3.7 Additional work . 38
3.8 Related work conclusion . 39

4 Design and Implementation 40
4.1 Technological requirements . 40
4.2 Technological review . 41

4.2.1 Requirement 2: Simulation software 41
4.2.2 Requirement 1: The programming language and frame-

work . 43
4.2.3 Requirement 3: Web interface technology 45

4.3 Development process . 46
4.4 Mission abstraction levels . 46
4.5 System architecture and design 48
4.6 Simpleaction structure . 54
4.7 Robot synchronization . 56
4.8 Folder structure . 57

4.8.1 Frontend folders . 57
4.8.2 Backend folders . 59

4.9 Web interface . 60
4.9.1 Navigating the mission planner 60
4.9.2 Implementation . 62
4.9.3 Mission timeline . 63

4.10 Server implementation . 64
4.11 Simpleaction implementation 64
4.12 Model transformation . 66
4.13 Multi-robot task allocation . 69

5 Users, cases and workflow 72
5.1 System cases and user roles 72
5.2 Workflow . 76

5.2.1 Setup . 76

5.2.2 Mission planning . 77
5.2.3 Extending the mission setup 77
5.2.4 Extending the mission planner and change low-level

technology . 79

6 Evaluation and Assessment 81
6.1 Research strategy . 81
6.2 Data collection . 82
6.3 Mission scenario example . 82

6.3.1 The quarantine delivery mission 83
6.3.2 Quarantine delivery expectations versus results 86

6.4 User testing . 86
6.4.1 Questionnaire . 87
6.4.2 Results . 89
6.4.3 User testing expectations versus results 89

6.5 Threats to validity . 91
6.5.1 Internal validity . 91
6.5.2 External validity . 92

6.6 Discussion . 93

7 Conclusion 97

8 Further Work 99

List of Figures

1.1 Screen-capture from the simulated environment in WiRoM . . 2

2.1 Overview of the MDSE methodology (top-down process) [9] . 12
2.2 The three levels of modeling abstraction codified in MDA [9] . 15
2.3 Screenshot from the Mendix development platform 16
2.4 MRTA problem [19]. 20
2.5 Visual representation of the three axes of Gerkey and Mataric’s

taxonomy [21] . 22
2.6 Illustration of Zlot’s task types [21]. 24
2.7 Examples illustrating the four high-level categories of the new

taxonomy [21]. 25

3.1 Screenshot from the FLYAQ mission planning interface 35
3.2 Lowcomote in a nutshell [55] (page 2) 38

4.1 Webots illustration from the Webots reference manual: https:
//cyberbotics.com/doc/reference/index 42

4.2 Python growth over time presented by Stack overflow [72] . . . 44
4.3 Meta-model of the abstraction levels and relations between

missions, tasks, simpleactions and robots 47
4.4 Overall system architecture model 50
4.5 Mission planner web application architecture model 51
4.6 Design of the mission planner 53
4.7 Design of the simulation stream client 53
4.8 Screenshot of the folder structure for the project 58
4.9 Screenshot of web interface . 61
4.10 Mission timeline for a scouting mission 63

iv

https://cyberbotics.com/doc/reference/index
https://cyberbotics.com/doc/reference/index

5.1 Use case diagram showing the different cases for each type of
user and the relations between the users 75

6.1 Screenshot from quarantine delivery mission for the Scout neigh-
borhood task allocated to the mavic2pro 85

6.2 Screenshot from quarantine delivery mission for the Receive
and go to location task allocated to the moose 85

6.3 Table containing results from user testing the system 90

List of Tables

5.1 Distribution of cases to users of the system 74

vi

List of Listings

1 Code snippet from Moose simpleaction 65
2 Code snippet from mission planning data stored in JSON format 67
3 Code snippet of a scouting mission, in the format that is used

by the server . 69

vii

List of Algorithms

1 Task allocation algorithm . 71

viii

Chapter 1

Introduction

1.1 Background

Robots have become a more abstract construct ever since they were intro-
duced. If you mention the word robot to someone, they may think of some-
thing completely different then you do. Many people might think of a science
fiction humanoid machine walking around serving real humans, while others
think of something more trivial like e.g. a lawnmower, a toy, a car, or maybe
even the robot-dance popularized in the 60s.

The Oxford English Dictionary provides this definition of the word robot:
“A machine capable of carrying out a complex series of actions
automatically, especially one programmable by a computer” [1]

Traditionally, robots have been programmed or hardwired to solve some
specific actions in a static environment, for instance as a robot factory assem-
bly line or an autonomous vacuum cleaner. As technology is moving forward
we get more advanced robots which are continuously increasing the efficiency
and the scope of problem-solving. The optimal scenario would be to have a
single type of robot that could solve all given problems with minimal human
programming. Such a robot does not currently exist, but working towards
this goal by combining existing solutions and technologies would help move
the domain towards this optimal scenario.

Robots have become tools used by humans in everyday life, both indus-
trial and private. Different robots have different actions and purposes, where
some robots are very simple, and some are more advanced. But what hap-
pens when we have a complex mission, where the possibilities of physical

1

Figure 1.1: Screen-capture from the simulated environment in WiRoM

human interaction are slim, and no robot exists that possess all the required
components to perform such a mission? One cannot simply ask a rover to fly
or a drone to swim, we have to remember that robots are not only complex
but also limited and fragile tools.

A multi-robot system can make it possible for multiple robots to cooperate
to solve missions that couldn’t be solved by a single robot alone. A system
where we could combine heterogeneous robots, where each robot has different
applications, could offer more actions and tasks for more advanced mission
execution. Raising the abstraction levels of such a system and having a simple
user interface would provide a foundation for the system to allow users with
different levels of experience to utilize the system. Having a safe and low-
cost environment for mission planning was also desired, and this could be
provided by a simulation tool. Planning missions for simulated environments
would provide proper missions that could be transferred to real-life scenarios.

This thesis present WiRoM (Web interface based Robot Mission plan-
ner) as a new solution to the heterogeneous multi-robot mission planning
problem. Figure 1.1 shows a screen-capture from the simulated environment
used in WiRoM, where we can see a drone and a rover in action. This so-

2

lution will be a prototype since no other system currently exists that does
it in the same way. The system will be implemented as a high-level web
application, where a user can plan missions directly from the browser. The
user interface will be designed as a low-code platform, letting users with
minimal robotics and programming experience plan, execute, and observe
heterogeneous multi-robot missions directly from the browser.

1.2 Problem Description

There will be challenges that need to be resolved when developing WiRoM.
One challenge is the problem of programming heterogeneous robots at the
lower levels, and running them in a simulated environment. Each robot will
have individual components that need to be controlled, e.g. wheels, arms,
cameras, etc. Some language or framework that allows for efficient robot
programming will need to be located and utilized to solve this challenge.

Going between the abstraction levels, i.e. transforming high-level mission
to low-level programming will also be a challenge. This will be resolved by
using Model-Driven Software Engineering (MDSE) core concepts in
combination with robot programming and simulation tools to bridge the gap
between the high and low abstraction levels.

Another challenge will be to create a high-level interface which is ca-
pable of complex mission solving. Users with little experience should be able
to plan complex missions without having to spend a lot of time learning
how to program robots. Users should also avoid having to download and
install unnecessary software in order to make it work. This challenge will
be resolved by developing the interface of the system as a web interface by
locating a web development framework and use it to implement the system
as a low code platform.

Additionally, there will be challenges with task allocation in heteroge-
neous multi-robot setups. This problem is often introduced as the Multi
Robot Task Allocation (MRTA) problem. There are two main approaches
to task allocation, which is automatic task allocation and manual task
allocation. It is desired for the system to find some combination of auto-
matic and manual task allocation to increase the efficiency and optimization
of task allocation, and have the possibility for the system to be used for
further testing of different task allocation algorithms.

3

1.3 Motivation

New technology and solutions are developed every day to solve different types
of challenges that humans have in the real world. Robots become more
integrated into our lives, and there are many real-life problems and challenges
(missions) that can be solved better using robots. Developing a usable and
functional prototype of WiRoM would provide more research that would be
useful for further work and/or research, which the main motivating factor
for providing a proper solution to the problems stated in this thesis.

1.4 Research question

The problem description provides the foundation for the research questions
asked in this thesis. We are looking to create a new solution as a functional
prototype for the heterogeneous multi-robot mission planning problem. The
following research questions will be answered in the thesis:

Main research question

RQ1 How well do Model Driven Software Engineering core concepts com-
bined with robot programming enhance the practicality and usability of
a high-level heterogeneous multi-robot mission planning system?

Sub-questions

RQ2 How well do the concepts and principles of low-code platforms enhance
the user-friendliness of the system

RQ3 How efficiently are tasks allocated to multiple heterogeneous robots within
the system?

1.5 Method

The research in this thesis will be conducted as a case study. Case studies
are defined by Yin [2] as “an empirical inquiry that investigates a contempo-
rary phenomenon within its real-life context, especially when the boundaries

4

between phenomenon and context are not clearly evident”. One of the main
preconditions for conducting case study research is that the research ques-
tion is concerned about how some phenomena occur. This thesis will create
WiRoM as a prototype solution to the heterogeneous multi-robot mission
planning problem, using several different concepts to reach the desired re-
sults. Data collection will be done by user-testing the system and developing
a practical mission example using the system. This data will be used to
evaluate the system, and assess the validity of our results.

5

1.6 Thesis Outline

• Chapter 2 provides the theoretical background for the thesis. This
chapter starts by defining the field of study in the context of the thesis,
before it goes into the theory of Model-Driven Software Engineering,
Distributed Autonomous Robotics Systems, Multi-Robot Task Alloca-
tion, and finally Methodology to discuss the relevant theory and infor-
mation which is the theoretical background for the thesis.

• Chapter 3 looks at related work to the thesis, providing information on
similar projects preceding the one provided in this thesis.

• Chapter 4 is the design and implementation of the system that is pro-
vided in the thesis. The chapter goes through each step of the project
and provides insight into why different choices were made and how the
different parts were designed and implemented.

• Chapter 5 presents the different user roles of the system and the which
cases they will act upon the system, as well as the workflow of the
system for said users and cases. This chapter shows how the system is
intended to be used by users with varying amounts of experience.

• Chapter 6 discusses the research strategy and method used to collect
data for evaluating the system. The data collection methods are then
presented and the results are discussed alongside the topics from the
research questions.

• Chapter 7 provides the conclusion of the thesis. The conclusion pro-
vides the answer to the research question, before wrapping up the thesis
and system as a solution to the presented problems.

• Chapter 8 present the suggested improvements and opportunities for
further work on the system.

6

Chapter 2

Theoretical Background

2.1 Field of study

This section will present and define the different topics that cover the basic
knowledge that is in the scope of this thesis. These topics will be explained
shortly concerning the problem of this thesis to provide the reader with
some basic insight into these topics and clarify the meaning and purposes
of the topics in this context. The more advanced topics of this thesis will be
discussed after we have defined the field of study.

2.1.1 Robotics

Robotics is defined in the Oxford English Dictionary as “The branch of tech-
nology that deals with the design, construction, operation, and application
of robots” [3]. This tells us that robotics is considered as the technological
domain that acts upon robots, including the robots themselves. The robot
definition proposed in the introduction by the Oxford English Dictionary de-
fines robots a“machines capable of carrying out actions automatically” and
are “programmable by a computer”, but what does this tell us? The book
Elements of robotics by M. Ben-Ari and F. Mondada [4] explains that it de-
pends on how one would define the complexity of the actions that the robot
performs because otherwise it could just be defined as an automaton. It is
also difficult to define what a computer is, maybe the computer could be
another robot? The book claims that there is one part of robots that fall
outside of this definition, which is the sensors of a robot. These sensors make
the robot capable of acting in complex environments and adapts its action

7

based on the data gathered by the sensors. Acting out actions using robots
with multiple sensors and data would, therefore, pose a difficult challenge.

When considering a heterogeneous multi-robot setup, one would not only
focus on one type of robot but multiple different types of robots. There are
many different classifications of robots as can be seen in [4], and they all
need to be programmed to operate. We can see why it would be useful and
efficient to have a high-level system that provides a way of programming said
robots, without having to learn all the specifics of each robot.

2.1.2 Tasks

A task is formally defined in the Oxford English Dictionary as “A piece of
work to be done or undertaken” [5]. A task can be considered as one specific
part of a larger project, working towards some goal. Tasks in robotics can
be considered as small sub-problems that need to be solved by robots. These
tasks should be big enough such that there is significant progress towards
the overall goal when a task is complete. Tasks should also be small and
independent enough such that they have the possibility of being distributed
to the robot that can execute the task the best. Defining tasks can be done
by combining robot actions at a lower level, and then distribute the tasks
to the robots that can perform said actions the best. Having a set of such
tasks working towards a goal will be considered as a mission, where tasks are
executed by multiple heterogeneous robots to reach the goal of that mission.

2.1.3 Missions

A mission is formally defined in the Oxford English Dictionary as “An im-
portant assignment given to a person or group of people, typically involving
travel abroad” [6]. A mission is an assignment (or set of smaller assignments)
with a specific goal that needs to be reached. The Oxford English Dictio-
nary definition is based on human missions, which typically go abroad. In
the robotics case, this would be similar, having robots or groups of robots
solving missions in some environment. Solving a mission would mean solving
multiple different sub-assignments, or in our case tasks. A mission consists
of some set of tasks, all of which need to be executed to reach the goal of the
mission. Letting users define missions and tasks for each robot will provide
an easy and high-level solution to execute missions using robots. The prob-
lem with robotics is that it is very costly and requires prior knowledge within

8

this domain, but by using simulation tools, one can avoid such problems.

2.1.4 Simulation

Zlajpah [7] defines simulations as “Simulation is the process of designing
a model of an actual or theoretical physical system, executing the model,
and analyzing the execution output”. Simulations are widely used in many
different fields, such as research from engineering and computer science to
economics and social science. Digital simulation tools are a big part of the
simulation field practiced within the software and robotics domain. Such
simulations can make it possible for a user to execute scenarios with systems
that would be expensive, dangerous, or maybe even impossible to execute in
the real world. They could also assist in scaling the system and provide a
solid foundation for testing other parts of the reality it simulates. Simulations
of any system are not one-to-one comparable to real life, and different tools
will have different pros and cons, so choosing the correct tool for a project is
important. Creating simulated models of real-world missions would provide
a solid foundation for verifying and validating whether that mission would
be suitable as a mission that could be solved in the real world.

2.1.5 Verification and validation

Simulations can be seen as models of some real-life scenarios. R. Sargen
mention in the paper [8] that there are two generally considered definitions
of simulated model verification and validation. Model verification is of-
ten defined as “ensuring that the computer program of the computerized
model and its implementation are correct”. Model validation is usually de-
fined to mean “substantiation that a computerized model within its domain
of applicability possesses a satisfactory range of accuracy consistent with the
intended application of the model”. Two main concepts are considered to
be applied to robot mission planning, computerized mission verification, and
operational mission validation. Computerized mission verification would be
an automatic process that could verify whether a mission has been imple-
mented correctly and is a valid mission (i.e. it can be executed). There are
tools and modeling languages that allow developers to create models and
perform dynamic testing for automatic verification. Operational validation
of the simulation model would be done by simply executing a mission in

9

a simulation tool and observe whether the goal of the mission was reached
properly, proving that it’s intended application is valid.

2.2 Model Driven Software Engineering

This section will discuss the theoretical background behind Model-Driven
Software Engineering (MDSE)1, discussing the core concept and definitions,
highlighting the most relevant parts for solving our challenges (Section 1.2).
The book Model-Driven Software Engineering in Practice: Second Edition
by M. Brambilla, J. Cabot, and M. Wimmer [9] will be the main material in
addition to other sources that are cited throughout this section.

Model-Driven Software Engineering (MDSE) is a methodology for soft-
ware development where models are at the core of the development process.
In MDSE, a model is usually a diagram created using a modeling language,
for instance, the Unified Modeling Language (UML) [10]. The purpose of
using such models in software engineering is to provide a specification of the
software and raise the abstraction level of the software. One of the main
principles of MDSE is raising abstraction levels, this helps reduce the com-
plexity of the system for users and simplify the development process. Besides,
MDSE contributes to concepts such as model transformation and automatic
code generation, using models to help build the codebase [9].

2.2.1 What is a model?

In short, a model can be defined as a simplified or partial representation of
reality. A model will never describe reality in its entirety but will capture
the main characteristics of reality. Models have central importance in many
scientific contexts. Humans use models to understand and teach difficult
or complex ideas presented in different scientific scenarios. For instance,
imagine how hard it would be to explain concepts like atoms or the universe
without creating a model to capture the features of such a concept. It is also
important to have well-defined rules and semantics within certain domains,

1We use the term MDSE, but there are many different names and definition such as
MDE, MDD, MBE, etc. as seen in [9], and although they have some differences, we focus
on the core concepts and will therefore not separate these definitions unless it is required
for some cases.

10

such that the idea that is being modeled isn’t being misrepresented by the
model [9].

Models can have different purposes:

• Descriptive models, which are models that explain a reality or a concept

• Prescriptive models, which are models that determine the scope and
details of how to study a problem

• Models that define how a system should be implemented

New technology and concepts are making it possible to use such models
to develop software, and have models at the core of the engineering process
[9].

2.2.2 MDSE concepts

MDSE is a methodology because it applies the advantages of its core concepts
to the software engineering domain. Figure 2.1 shows an overview of the main
aspects of the MDSE methodology. These are the core aspects of MDSE
represented at different levels of reality. We describe the model by going
through each row (core aspects) and its columns (levels):

• The first row is the model concept. The model of the application is de-
fined at the application level. The next level is the application domain,
where the modeling language is defined. The final level of modeling
is the meta-level, which is the modeling language that describes the
modeling language, or the meta-modeling language.

• The second row is the automation concept. Automation is defined
in the application level as automatic model transformation or code
generation. The transformation definition is defined at the application
level, while the meta-level define the transformation language used to
create the transformation.

• The third row is the realization concept. The realization is defined by
artifacts such as code at the application level. The implementation
platforms of specific domains are defined at the application domain for
the artifacts [9].

11

Figure 2.1: Overview of the MDSE methodology (top-down process) [9]

12

The core flow of MDSE is from the application models down to the run-
ning realization, through subsequent model transformations. This allows the
reuse of models and execution of systems on different platforms. Indeed,
at the realization level, the running software relies on a specific platform
(defined for a specific application domain) for its execution [9].

2.2.3 Model Driven Architecture

The Object Management Group (OMG) defined a comprehensive proposal
for applying MDSE practices to systems development [11]. This proposal
goes under the name of Model-Driven Architecture (MDA). MDA itself is
not an OMG specification but rather an approach to system development
which is enabled by existing OMG specifications. The entire MDA infras-
tructure is based on a few core components and their definitions: System,
model, architecture, platform, viewpoint, view, and transformation. These
components are defined in MDA in line with MDSE and are an incarnation
and representation given by OMG to the various aspects of system definition
[9].

Figure 2.2 shows the three levels of abstraction that are defined in MDA.
These levels are defines as:

• Computation-Independent Model (CIM): The model at the highest ab-
straction level. This model represents the context, requirements, and
purpose of a target system without explaining the computational parts
of the system. The CIM presents an exact solution for the system, and
what the solution is expected to do. The CIM should not show the
specification at the lower levels, keeping the model-independent from
the implementation process for the system. The CIM is also referred
to as the business model or domain model, and may not (in principle)
even need a map to a software-based implementation citeMDSEbook.

• Platform-Independent Model (PIM): This model is at the level of the
system where the behavior and structure are defined, regardless of the
implementation platform. The PIM will model the parts of the CIM
that can be solved using a software-based solution, and further refines
the requirements for the software system presented in the CIM. The
PIM is more specific than the CIM, but still exhibit a sufficient degree
of independence from the lower levels, implying that it can map to one
or more implementation platforms [9].

13

• Platform-Specific Model (PSM): The model at the lowest abstraction
level. This model is not executable, but contain the required infor-
mation regarding the structure and behavior of a system on a specific
platform. The developers can use this platform in combination with
the PIM to implement the executable code for the system [9].

2.2.4 Domain-Specific Languages

Domain-Specific Languages (DSL) are languages with individual and specific
syntax and notation that is used to develop a system within a specific do-
main. A DSL is the opposite of a General-Purpose Language (GPL) which
is a language that is created such that it can be applied to many different
domains. A. Nordmann et al. published the paper [12] which highlights two
fundamental characteristics of well-designed DSLs: “their expressive power
targeted a specific domain and the definition of formal notations intuitively
understandable for domain experts while being machine-processable, eventu-
ally yielding executable models of robotics applications”. A DSL has to be
powerful within its domain, and also intuitive, otherwise, there would most
likely be no actual utilization of that DSL within that domain.

A survey on DSLs in robotics was performed in [12]. They analyzed 41
different DSLs, to find that the most common way of creating DSLs was to
use the Eclipse Modeling Framework (EMF) [13]. EMF provides a toolchain
for creating DSLs and metamodels using the popular Eclipse IDE. Follow-
ing EMF was other custom toolchains and also the approach of extending
a GPL. The latter is interesting because it means creating a DSL from a
GPL like Java, Python, C++, etc. Such a DSL is called an internal DSL
because it extends the syntax and notation from the GPL to perform more
specific action within the domain at hand. This would open up for having
all the benefits of the GPL available when developing different parts of the
application.

2.2.5 Low-code development

Low-code development and low-code development platforms (LCDP) are two
terms that derive from the usage of low-code applications to perform soft-
ware development. Mendix [14] is a low-code platform that is considered as
one of the leading enterprises within the field. Figure 2.3 shows a screenshot

14

https://adtmag.com/blogs/dev-watch/2017/05/low-code-tools.aspx

Figure 2.2: The three levels of modeling abstraction codified in MDA [9]

15

Figure 2.3: Screenshot from the Mendix development platform

from one of Mendix low-code platform development tools, which operates
much like a modeling tool. Mendix focuses on the connection between low-
code and model-driven development. In a blog-post that was posted on
their website by Johan den Haan, he mentions that model-driven develop-
ment is the most important concept in low-code platforms [15]. Additionally,
modeling-languages.com mentions that low-code is just a new buzzword [16]
for model-driven engineering, because the definitions of the two are so sim-
ilar, and low-code sell better because it is ”new”. Now whether it is just a
new buzzword or not is not important to us, but the fact that low-code has
a strong correlation to MDSE is the important part. Low-code can be seen
as a method of developing software that uses MDSE principles and concepts.

LCPDs are software development platforms where a user can develop
software using something like a graphical user interface, reducing the amount
of manual coding needed when making new applications [17]. Such platforms
come with several benefits. It allows for a wider range of users, such as users
without much experience or users who are experts in other fields can take part
in the development process of software, since the threshold for contribution
has been lowered. The cost and time of production may also go down, since
an application may be quick to set up using LCDP, and only require minimal
manual coding for providing specific functionality. LCDP also has some
drawbacks. Each LCDP is usually very domain-specific, meaning it can only

16

be applied when developing software within a certain domain. It may also
require some learning for users before they can use the platform, which may
not be worth it if it’s only for short term results.

2.2.6 MDSE and robotics

There are many users from multiple scientific and technological domains that
are experts within their respective fields of work. They can benefit greatly
from being able to transfer their knowledge to robotics and vice versa. The
appliance of models and MDSE principles can have a big impact on robotic
software systems, mainly by making robotics more accessible for domain
experts from other domains, increasing the level of work and research that
can be performed within the robotics domain [18].

The cost of creating new robotics products is significantly related to the
complexity of developing software control systems that are flexible enough
to easily accommodate frequently changing requirements:

1) more advanced tasks in highly dynamic environments

2) in collaboration with unskilled users

3) in compliance with changing regulations

Recent initiatives aimed at developing the MDSE approaches that simplify
the static and dynamic reconfiguration of a robot control system according
to specific application requirements and operational conditions [18].

D. Brugali [18] discuss different parts of MDSE within the robotics do-
main. One of the points made in this paper is that one of MDSEs core
principles, which is automation (automatic code generation), does not pro-
vide the biggest benefits when it comes to robotics development. This is be-
cause they argue that robotics go through a lot of change, making automatic
code generation tools obsolete whenever new (and possibly groundbreaking)
technology is introduced within the robotics domain. They also argue that
code generation leads to higher training costs and organizational changes,
reducing the benefits of using such an approach for developing robotics.

They rather claim that the architectural parts of MDSE provide the main
benefits to robotics. We already provided a short introduction to MDA in
Section 2.2.3 and the core concepts of that approach. The paper [18] shows
that using MDA creates a clear difference between functional components and

17

the Platform-Independent Models (PIMs) of a software system. Transform-
ing PIMs to Platform-Specific Models (PSMs) when programming robots
provide resilience to the constant changes in the robotics world, because of
the PIMs independence from elements like functional components and code
generators. The paper concludes that the architectural model was a central
artifact of all the different activities during the development process (analy-
sis, design, implementation, configuration, and documentation).

MDSE conclusion Using Model-Driven Software Engineering as a method-
ology by creating models as a means of developing the system is not that in-
teresting for this project. On the other hand, using the principles of MDSE
as a foundation for creating a Mission Planning system for heterogeneous
multi-robot setups will be a beneficial approach to reach the goals of the
system.

As discussed in Section 2.2.6, principles from MDA would be the most
useful and relevant for a robotics project. Creating high-level models that
can be mapped or transformed into lower-level models (CIMs to PIMs to
PSMs) could be a good approach to develop how the system moves between
the different abstraction levels of the application. The high-level models can
be created as an internal DSL, using a modern GPL or multiple GPLs at
different abstractions levels. This would allow for easier access to simulation
tools and also bring the benefits of using a modern GPL with its features
and frameworks.

Having the internal DSL implemented as a Graphical User Interface
(GUI) using principles from Low-Code Development Platforms would provide
a simple and user-friendly interface. It was also required for DSLs to be pow-
erful within its domain, and using MDSE concepts such as automatic code
generation and model transformation would make the application powerful
at the lower levels of the application. The only problem is that these parts of
the system could become outdated (as stated in Section 2.2.6), and should,
therefore, be at such a level that it is independent of the code generator,
making it a simple process to replace this at a later stage if so desired.

2.3 Multi-robot task allocation

Missions and tasks can become complex, especially when they are to be
allocated to heterogeneous multi-robot setups. This problem is known as

18

the Multi-Robot Task Allocation (MRTA) problem. There are many different
types of tasks that robots can perform, with many different types of ways to
allocate them.

2.3.1 The Multi-robot task allocation problem

MRTA is a complex problem, especially when it comes to heterogeneous
robots with many different capabilities and functions that will work together
to solve some human-defined mission. MRTA problems addresses the prob-
lem of assigning tasks to robots in a way that increases the efficiency and
reliability in such a system. Figure 2.4 shows an illustration of the MRTA
problem. In this problem, it is given:

1. R: a team of mobile robots ri; i = 1, 2, ...n

2. T: a set of tasks tij; j = 1, 2, ...nt

3. U: a set of robot utilities, uij is the utility of robot i to execute task j

For the general case, the problem is to find the optimal allocation of a set
of tasks to a subset of robots, which will be responsible for accomplishing it:
A : T → R. [19]

This problem can be defined as an optimization problem, or more specif-
ically, a variation of the optimal assignment problem. Solving the MRTA
problems using optimal assignment algorithms is widely considered as an ef-
ficient method of allocating tasks to robots, and the extent of the efficiency
depends on the optimization of the algorithm. In [19] they perform a brief
overview of the MRTA field and review the state-of-the-art MRTA solutions
to different types of MRTA problems.

Many methods have been proposed for solving the MRTA problem. The
MRTA problem can be seen as a range of different problems, depending
on the approach. Some of these problems are the Discrete Fair Division
Problem, the Multiple Traveling Salesman Problem, the Alliance Efficiency
Problem, and (as mentioned) the Optimal Assignment Problem. All of these
are well-known problems that have been researched over a long time, and
many different solutions have been proposed to try to solve these problems.

19

Figure 2.4: MRTA problem [19].

Organizational approaches

There are two different organizational approaches when it comes to task al-
location for a multi-robot setup. The first one is a centralized approach.
This approach is when there is some controller that performs the task allo-
cation based on the information available in the system and communicates
with all the robots which task they are to perform. The second approach
is a decentralized or distributed approach. This approach would have all
the robots communicate with each other to decide who performs which task.
Both approaches have their pros and cons, e.g. centralized is more efficient,
especially for smaller systems. The problem with the centralized approach
is its robustness to faults, which is not a problem with the decentralized ap-
proach because each robot will continue its work if one of the others breaks
down.

MRTA approaches

The first and most popular MRTA approach is the market-based approach,
which consists of having each robot in a system bid on tasks that they can
perform. An auctioneer announces the available tasks, then each robot cal-
culates their utility and lets the auctioneer know their bid for each task.
The auctioneer then uses some optimization strategy to decide who wins
each bid. The market-based approach is efficient, robust (can utilize both
organizational approaches), scalable, and well able to operate in unknown
or dynamic environments. The disadvantages of market-based approaches

20

lie in the inconsistency and informality that come with calculating the util-
ity for each robot since different utility functions might fit well for different
approaches.

The second MRTA approach is the optimization-based approach. Op-
timization is the branch of applied mathematics focusing on solving a specific
problem to find the optimal solution for this problem out of a set of available
solutions. Many different approaches have been proposed for different MRTA
problems: stochastic, linear programming, population-based, and hybrid op-
timization solutions. The optimization-based approach performs as well as
the market-based approach, while also being more robust.

2.3.2 Taxonomy

To help organize this work and identify the theoretical foundations of what
they describe largely ad hoc approaches, B. P. Gerkey and M. J. Mataric pro-
posed a taxonomy for MRTA problems [20]. This taxonomy, which is now
widely used, provides a common vocabulary for describing MRTA problems.
Korsah, Dias, and Stentz claim that this taxonomy is limited in scope. Their
publication [21] provides an even more comprehensive and complete taxon-
omy called iTax that explicitly handles the issues of interrelated utilities and
constraints which applies to a much larger space of important task allocation
problems.

Defining a task allocation problem

We begin by looking into Gerkey and Mataric’s work. In [20] they show that
there are axes that are considered in a task allocation problem: the type of
robot, the type of task, and the type of allocation. Defining the respective
axes and finding the appropriate setup for the current task allocation problem
scenario will provide more insight into how this problem can be solved. A
visual representation of the axes can be seen in Figure 2.5.

Two different types of robots are considered for task allocation problems:
single-task robots (ST) and multi-task robots (MT). ST robots are only ca-
pable of solving a single task, while MT robots can perform multiple different
tasks at the same time. Having a setup of MT robots would provide more
challenges to the task allocation problem than with ST robots because the
number of possible allocation scenarios would increase greatly by the capa-
bilities of each robot.

21

Figure 2.5: Visual representation of the three axes of Gerkey and Mataric’s
taxonomy [21]

There are also two types of tasks: single-robot tasks (SR) and multi-
robot tasks (MR). SR tasks are tasks that require one robot to be able to be
executed, while MR tasks would require the combined efforts of more than
one robot to be able to solve that one specific task. The same happens with
MR tasks as with MT robots, making the number of possible allocations
increase with the number of robots needed for each MR task.

Finally, there is also considered two types of allocation: instantaneous as-
signment (IA) and time-extended assignment (TA). The process of IA would
be to assign one task at a time to each robot, not planning for future tasks.
TA on the other hand would assign multiple tasks to robots, needing future
planning to decide which robots should perform which task after their first.

The three different axes for the task allocation problem has two different
types each. This gives us a total of 23 or 8 possible scenarios.

Utility

The MRTA problem is mostly considered as an optimization problem, con-
sidering how one is trying to use task allocation algorithms to optimize the
performance of the overall system. To achieve this, one would need some
sort of performance value, or in this case a utility value. The utility value is
a concept in economics, game theory, and operations research, as well as in
multi-robot coordination. Having a utility function for each robot is based

22

on the notion that each individual can internally estimate the value (or the
cost) of performing an action or a task.

The formal MRTA taxonomy paper [20] provides a function that can be
used to calculate the utility based on two factors:

• The expected quality Q of which the robot is able to execute the task
(e.g. accuracy and fault-handling)

• The expected resource cost C, given the spatio-temporal requirements
of the task (e.g., the amount of battery required to drive the motors)

So given robot R and task T, if R is able to execute T, then one can define
on some standardized scale QRT and CRT such that one can calculate the
utility score of that robot. This results in a combined, non-negative utility
measure:

URT =

{
QRT − CRT if R is capable of executing T and QRT > CRT

0 otherwise

(2.1)
The calculated utility value in Expression 2.3.2 will however be inexact

due to unforeseen factors like noise on sensors, faults in hardware, or envi-
ronmental problems. When we talk about optimal allocation in this sense we
base this on the information we have available when the task allocation al-
gorithm runs in the system. Calculating the utility is supposed to be flexible
because the requirements for calculating utility changes a lot based on the
setup, so being able to include all of the most important aspects for setups
within the system is important to get the optimal result.

iTax

Korsah, Dias, and Stentz [21] describe more thoroughly the types of tasks
that can be present within a system. Figure 2.6 shows an illustration of the
different levels of complexity for a task. This is based on terminology for
MRTA that was proposed by Zlot [22]:

• The elemental tasks are tasks that consist of one single (atomic) action.

• Simple tasks are tasks with multiple actions required, that are all given
to a single robot.

23

Figure 2.6: Illustration of Zlot’s task types [21].

• Compound tasks are more advanced tasks that have a set of actions
that can’t be allocated to one single robot, requiring multiple robots.

• Complex tasks are similar to compound tasks, except it is unknown
before the allocation process which actions should be allocated together
to resolve the task.

Dotted circles indicate potential valid allocations of tasks to robots. Shaded
circles represent elemental tasks while shaded rectangles represent decom-
posable tasks, whose decomposition into elemental tasks is illustrated by a
tree-like structure. The superimposed trees in the rightmost figure illustrate
multiple possible ways of decomposing the example complex task.

This definition is used to determine how advanced a system is. The
more advanced the tasks, the more advanced the system. Additionally, iTax
proposes a two-level taxonomy in which the first level comprises a single di-
mension defining the degree of interdependence of robot-task utilities. The
second level provides further descriptive information about the problem con-
figuration, utilizing Gerkey and Mataric’s taxonomy.

iTax represents the degree of interdependence with a single categorical
variable with four possible values, listed below and illustrated in Figure 2.7.

• No Dependencies (ND): These are task allocation problems with simple
or compound tasks that have independent robot-task utilities. That is,
the effective utilities of a robot for a task do not depend on any other
tasks or robots in the system.

• In-Schedule Dependencies (ID): These are task allocation problems
with simple or compound tasks for which the robot-task utilities have
intra-schedule dependencies. That is, the effective utilities of a robot
for a task depend on what other tasks the robot is performing.

24

Figure 2.7: Examples illustrating the four high-level categories of the new
taxonomy [21].

• Cross-Schedule Dependencies (XD): These are task allocation problems
with simple or compound tasks for which the robot-task utilities have
inter-schedule dependencies (in addition to in-schedule dependencies
for each robot). That is, the effective utilities of a robot for a task
depend not only on its schedule but also on the schedules of other
robots in that system.

• Complex Dependencies (CD): These are task allocation problems for
which the robot-task utilities have inter-schedule dependencies for com-
plex tasks (in addition to any in-schedule and cross-schedule dependen-
cies for simple or compound tasks). That is, the effective utilities of a
robot for a task depend on the schedules of other robots in the system
in a manner that is determined by the particular task decomposition
that is ultimately chosen.

Shaded circles represent tasks and solid lines represent robot routes. Ar-
rows between tasks indicate constraints. The superimposed routes in the
rightmost figure illustrate multiple possible task decompositions.

A problem will be defined using a prefix using this two-level approach.
This means that a task allocation problem like e.g. MT-SR-IA will also
fit within one of the four categories illustrated in Figure 2.7. If this MT-
SR-IA is a problem with in-schedule dependencies (ID), then this problem
would be categorized as a ID [MT-SR-IA] task allocation problem. The
label ID [MT-SR-IA] refers to the category of problems with in-schedule
dependencies for which we need to perform instantaneous allocation (TA) of
multi-robot tasks (SR) to single-task robots (ST).

The types of task, robot, and allocation processes are not the only com-
ponents to be considered when analyzing the task allocation problem. iTax

25

specifies that there may exist some constraints in the context of the given
task or mission which may decide whether the task can be solved by a specific
robot (or any robot). These constraints include concepts such as capability,
time, proximity, or simultaneous execution, and can be considered as a set
of joint side constraints. An example of a constraint would be that a robot
must be capable of executing a task within a certain time-frame. It might
also need to be in proximity of some objects to perform the task and not in-
terfere with simultaneous executions. These are just some typical constraints
that need to be considered together with other factors that can affect the task
allocation process.

The XD [ST-SR-IA] MRTA problem in this thesis

Defining the task allocation problem for the system will be entirely dependent
on how complex the missions that will be the target for the system should
be, and the way the tasks and robots are implemented at the lower levels.
Developing WiRoM to execute overly complex missions are not needed to
show an example of the possibilities of the system. The same thing applies
to the MRTA problem because it could be an entire thesis by itself. We want
to go for a simple task allocation problem in the prototype, to show that it is
possible, and argue that the system can be extended, such that it can solve
more complex MRTA problems.

We want to avoid multi-robot tasks (MR) and multi-task robots (MT),
as well as not focusing on future planning (TA), such that most of the time is
spent developing a proper functional prototype of WiRoM. This means the
system will be developed such that we can solve the task allocation problem as
an ST-SR-IA problem. The complexity of missions that can be solved using
the ST-SR-IA will still be very extensive and will provide a good prototype
for solving such problems.

There will be some cooperation between different robots on missions level,
i.e. the missions consist of multiple tasks that need to be performed by
multiple robots. Otherwise, we would not have a multi-robot mission solving
system. This is not the same as having multi-robot tasks (MR) because
it does not provide simultaneous task solving, however, it fits nicely into
the category of having Cross-Schedule Dependencies when solving missions.
Even though each robot and task is allocated one to one, they still need to
cooperate to execute the final mission goal together. The task allocation
problem for the system will be labeled as a XD [ST-SR-IA] problem.

26

The ST-SR-IA problem can be seen as an optimal assignment problem in
the following way: if we have m robots, n prioritized tasks, and utility esti-
mates for each of the mn possible robot-task pairs, assign at most one robot
to each task. The amount of robots is not large, and a centralized approach
can, therefore, be used to collect the robots’ utilities and then calculate the
optimal task allocation in O(mn2) time using for instance Kuhn’s Hungarian
method [23].

All of the previous MRTA solutions for XD [ST-SR-IA] discussed in
the iTax paper [21] have been using a market-based approach with a cen-
tralized controller, because this makes the most sense for such a problem. A
market-based approach is therefore the desired solution to the MRTA prob-
lem in this project. iTax proposes the mathematical model below for the XD
[ST-SR-IA] problem. N is the set of robots, M is the set of tasks, T is the
time-limit for a constraint and K is the set of joint side constraints.

Maximize: ∑
i∈N

∑
j∈M

uijxij (2.2)

Subject to: ∑
i∈N

∑
j∈M

tijxij ≤ Tk, ∀k ∈ K

∑
i∈N

xij ≤ 1, ∀j ∈M (2.3)

xij ∈ {0, 1}, ∀i ∈ N ∀j ∈M

This problem wants to maximize (2.2) subject to the constraints shown
in (2.3). In (2.2), uij is the utility estimate and xij is whether a task is
allocated to a robot. The first expression in (2.3) tells us that the time t it
takes for robot i to perform task j should be less than or equal to the time
limit for that constraint. The second expression says that the sum of all task
j assigned to a robot i should be less than or equal to one, meaning each
robot is only assigned one task, and each task has been assigned to only one
robot. The final expression is a constraint that tells us that each robot and
task pair should be either 0 or 1, so either the robot is allocated to the task
(0) or not (1).

27

This is supposedly one of many mathematical models for this problem,
but this is the one presented in the paper because it fits the problem at hand.
Having such a model shows how one should approach this MRTA problem
from a mathematical standpoint, and will be useful for the development
process of the task allocation algorithm in the system.

MRTA conclusion Going through the literature has given a good indica-
tion of how to go forward with creating a task allocation algorithm for the
system. Our approach is in the form of a XD [ST-SR-IA] problem that
can be solved using a market-based approach with a centralized controller.
The robots bid using a utility estimate combined with the considered cross-
schedule dependencies, and the mission planner allocates the tasks to the
best fitting robots.

2.4 Distributed Autonomous Robotic Systems

The Distributed Autonomous Robotic Systems (DARS) is an international
symposium. Searching for and finding relevant publications from these books
can provide a lot of knowledge about several different aspects of robots that
are related to the topics that are presented in this thesis.

2.4.1 DARS review

The first book was published in 1994 [24] and the next book will be the 15th
version of the book, published after the next international symposium which
is to be held in Kyoto, Japan in November of 2020 [25]. These books contain
many publications, some more relevant to the thesis than others. Reading
through the titles and abstracts of these publications and compare them to
a set of keywords will filter out all unwanted publications, making it easier
to focus on the publications that contain relevant information.

Keywords for assessing relevance: Heterogeneous, multi-robot, mis-
sion planning, task allocation, high-level, mission execution, simulation.

The publications [26] [27] [28] [29] [30] provide research on exploratory
missions. These types of missions have clear practical use cases in the real
world and have clear benefits of being executed by robots. All except [27] used
simulations to provide an evaluation for the work done by the researchers.
Instead [27] discusses different types of exploratory missions, categorizing

28

different types of missions and their purposes, hazards, etc. It proceeds
to explain why some missions are enhanced by or even require robots for
optimal performance. This paper help creating many different scenarios for
exploratory missions that can be executed by the mission planning system
[29]. The publication [26] performs topological exploration using different
types of external factors like human interaction and odor to explore the
terrain, providing feedback on findings. The project [28] simulates the usage
of heterogeneous robots to perform exploration, by using several different
Marsus-bots for exploring the terrain, while a ”motherbot” is used as a
power-station which can move around and provide power to the Marsus-
bots, showing the benefits of using a heterogeneous setup for such missions.
The paper [30] provides a path planning solution using real ocean data for
multi-robot environmental monitoring, taking into account all the different
variables in such an environment to collect data using robots.

Several publications in DARS confront the task allocation problem from
many different perspectives, and publications like [31] [32] provide more in-
sight into specifically multi-robot task allocation. These two publications
execute the task with the given task allocation in simulations to get their
results. Both provide solutions to the multi-robot task allocation problem
within environments that are similar to real-life setups. Both also use market-
based solutions to reach their conclusion. [31] uses a decentralized hetero-
geneous multi-robot setup, which is also able to select the right amount of
robots needed based on priority. [32] focuses more on real-time task alloca-
tion, stating that solving the task allocation problem itself does not mean we
get perfect task allocation, since the world around them robots constantly
change. The paper provides a possible solution to the overall problem, tested
in a US NAVY simulator. One other notable task planning paper [33] focuses
on the high-level social capabilities of a robot, i.e. the ability to collaborate
with humans. The propositions from this paper could be interesting to test
using the mission planning system created during this thesis.

One thing to be noted is that some of the latest DARS symposiums have
been focusing a lot on robotic swarms, implying that a lot of the publica-
tions brought forward in the most recent symposiums have been performed
on decentralized homogeneous multi-robot setups. This is different from a
heterogeneous setup, in that all of the robots in a swarm are the same type
of robot. This suggests that their relevance needs to be assessed on the other
topics of the publication and whether the topics can be easily compared
or transferred to a heterogeneous setup. Publications [34] [35] [36] present

29

some robot swarm topics, but these topics can be considered as multi-robot
topics because the robots being either homogeneous or heterogeneous does
not matter to the topic. [34] discusses the scalability and fault tolerance of
robot swarms. The paper starts out stating that swarm scalability and fault
tolerance is often taken for granted, saying that this might not always be
the case. The paper argues that if a single robot fault or breaks down in a
robotic swarm, then this one issue can be detrimental to the entire mission
of the swarm unless the swarm is prepared to handle such a problem. The
paper states that increasing the size of a homogeneous swarm will increase
the possibility of faults and breakdowns, which would be detrimental to the
swarm.

Another paper on swarms is [35], and it provides several different solutions
for communication within a swarm of robots, helping the robots provide each
other with information and solve missions together. The proposed solutions
are based on the type of communication devices that are available for robots
like infra-red, WiFi, Bluetooth, etc. These solutions will work regardless of
the type of robot, meaning they can be heterogeneous as long as they possess
the same type of communication device. [36] uses machine learning to create
more complex task solving using swarms. By using supervised learning as
a tool for teaching the swarm how to act and react to different scenarios,
one could create a multi-robot setup that could be completely decentralized
and self-sustaining. The paper provides one possible solution on very simple
robots, which could be extended to different setups.

DARS conclusion DARS provides good insight into many different as-
pects of distributed autonomous robotic systems. This will be a good re-
source for many different parts of WiRoM, especially for more specific solu-
tions to problems that are presented when using robots.

2.5 Research methodology

In the introduction, we presented the method of the thesis as a case study.
This section will define case studies and resolve how the research process
should be conducted as a case study in software engineering.

The paper Research Methods in Computer Science by Serge Demeyer
[37] proposes that the dominant method of research in software engineering
is case studies. We have already seen one definition of case studies by Yin

30

[2] in Section 1.5. Demeyer mentions that case studies are dominant in the
software engineering domain, but claims that the term case study might be
used a bit too liberal because the extensiveness of research might not be what
one would consider as a proper case study. Whether this thesis is eligible to
be conducted as a case study was assessed as follows.

The research questions for this thesis were laid out in the introduction.
The main research question and both of the sub-questions are all how -
questions (see Section 1.4), meaning they want to get an answer to how
phenomena occur. Each question focuses on the topic of one issue to a spe-
cific case, within the respective context. In Yin’s book about case study
research [2], he explains that “how and why questions are more explanatory
and likely to lead to the use of case studies, histories, and experiments as the
preferred research strategies. This is because such questions deal with oper-
ational links needing to be traced over time, rather than mere frequencies or
incidence.” Yin adds to this by stating that collecting data without affecting
the behavioral events and examine the contemporary events while trying to
answer how and why questions will indicate that the research is being con-
ducted as a case study. What this means is that the subject of study (in this
case the users of the system) should not be manipulated by the researcher
when collecting data, but rather observed and interviewed afterward. This
means that the way we collect data for the research in this thesis will be a
determining factor for deciding whether we are conducting a case study or
not.

Collecting data for research is usually done in one of three approaches:
qualitative methods, quantitative methods, or a mixed approach. Creswell
[38] describe these approaches as: - Qualitative research is an approach for
exploring and understanding the meaning of individuals or groups ascribe
to a social or human problem. - Quantitative research is an approach for
testing objective theories by examining the relationship among variables. -
Mixed methods research is an approach to an inquiry involving collecting
both quantitative and qualitative data, integrating the two forms of data,
and using distinct designs that may involve philosophical assumptions and
theoretical frameworks.

Answering the research questions proposed in this thesis will require more
than one source of data to increase the validity of the answers, which is also
normal when conducting case studies. To answer the research questions
(Section 1.4), we will have to see if the prototype that was developed using
these concepts works, and how well the system as a whole work in practice.

31

This can be done by observing the system in its environment, looking at the
types of missions that can be solved by it. It can also be done by observing
and interviewing users of the system to gather data about how well the
system is. Two different approaches to gathering data have therefore been
proposed to get the data that is needed to answer the questions presented in
this thesis: user testing and mission example.

This type of data collection is mostly non-numerical, having the system as
the subject and missions and humans affecting the system. This method of
data collection leans away from the quantitative methods and more towards
qualitative methods. The research question is also more typical for quali-
tative methods according to Creswell [38]. He explains that how -questions
are one of the main types of qualitative research questions. Having how -
questions combined with one specific issue for one topic also strengthens
the question as a qualitative-type question. Case studies are generally con-
sidered to use qualitative methods, but this depends on the case at hand.
Some cases might use a mixed approach, or even lean towards quantitative
methods. As mentioned earlier Yin [2] claimed that when dealing with a
how -question, observation and interviewing is a central part when perform-
ing the case study, and this is exactly the desired method to perform data
collection for answering the questions.

Research methodology conclusion Case studies are regarded as the
most dominant research methodology in software engineering, and this the-
sis does not seem to fall outside of this assumption. This thesis provides
how -questions as research questions, and the method for data collection is
qualitative, meaning data will be collected through observation and inter-
viewing. For this reason, our choice of conducting the research as a case
study is eligible.

32

Chapter 3

Related work

3.1 Criteria

In this chapter, we review work that is related to the work in this thesis.
The related work will focus mostly on the state of the art projects that use
concepts that are similar to the ones presented in this thesis.

This thesis will not follow any literature review methodologies like Sys-
tematic Literature Review (SLR) or Systematic Mapping Study (SMS) [39]
to find and review related work. The literature will be reviewed, but not
systematically, which means we will be having a more loose (but defined)
approach to locating relevant information and reviewing it.

Some search criteria and exceptions were defined for work related to this
thesis:

Inclusion criteria: Robotics, simulation, DSL, heterogeneous, high-
level, mission planning, MRTA, low-code

Exclusion criteria: Non-functional (no working example), homoge-
neous (exact same robot, not types of robots), older than 2010

Exceptions: Not all inclusions criteria need to be fulfilled in a single
search because this will be too strict. For instance, using all of the inclusion
criteria in the search query would give no results when searching in academic
databases, because of low-code being such an infrequent keyword. It is,
however, desired to cover all of the inclusion criteria using multiple different
sources, and sources that cover more criteria are considered as more relevant.

Databases used for searching for relevant work are Google Scholar and
the Bergen University Library (Oria, all sources).

33

3.2 Task definition language

WiRoM is inspired by an earlier project called the Task Definition Lan-
guage (TDL). TDL is a high-level robot programming DSL that was created
to be able to program heterogeneous multi-robot setups for a mission plan-
ning system [40] (GitHub page: [41]). The main focus of the TDL was to
create some domain-specific language that defined the actions of robots and
have them perform missions in a simulated environment. It also had a sim-
ple web interface that could control robots and start the simulation. TDL
also provides a solution to the MRTA problem by using an auction-based
algorithm (see Section 2.3).

TDL and WiRoM have a lot in common, and WiRoM can be considered
as a continuation or a different take on the problems solved in TDL. The
main difference is that WiRoM will put more focus on the higher abstraction
levels. The users should not only be able to run missions from a web interface
but also plan missions without the need of learning an entirely new language
like TDL. WiRoM will also be aimed towards less experienced developers,
and we will, therefore, put more focus on this part of the application, unlike
the web interface implementation in TDL.

3.3 PROMISE

PROMISE [42] is a novel language that enables users to specify missions
on a high level of abstraction for autonomous multi-robots. PROMISE
stands for simPle RObot MIssion SpEcification, and it is a high-level DSL
developed as a user-friendly way to define multi-robots missions, while having
well-defined semantics. PROMISE uses a combination of textual syntax and
graphical syntax to plan missions. It is integrated into a software framework
that allows executing the specified missions on simulators, as well as actual
robots. Their work was illustrated using running examples and user testing.

In [42] they mention that Model-Driven Engineering is a core technology
for robotic systems, emphasizing the DSL parts of MDE. The upper levels
of the language are created such that they are platform-independent and
highly customizable. The platform-independent models are compiled down
to an intermediate language, which is then interpreted by robots. Such a
system allows the specification of complex missions by providing executable
tasks and operators.

34

Figure 3.1: Screenshot from the FLYAQ mission planning interface

PROMISE is related to the WiRoM prototype in many different ways, as
they both provide high-level heterogeneous mission planning systems. They
both also provide the possibility of graphical planning and execution in sim-
ulated environments. The main difference is that WiRoM is going to be a
web-based solution, using a low-code approach to the graphical interface.
Much inspiration can be drawn from PROMISE when developing WiRoM.

The paper on PROMISE [42] was published by S. Garci et al. in October
2019, which is after the work on WiRoM had already started. This gives us
an indication that the WiRoM solution is relevant to the problems that exist
in the robotics domain.

3.4 FLYAQ

FLYAQ [43] was created as a mission planning system for allowing non-
expert users to specify and generate missions using autonomous drones.
FLYAQ provides a DSL for mission planning called Monitoring Mission Lan-
guage (MML) using a graphical user interface as can be seen in Figure 3.1.

Planning mission using FLYAQ is done by specifying a mission using the

35

modeling constructs provided by the language, then specify the context, and
lastly the map (location) of where the mission should be performed. The
mission is then represented using an intermediate language named QBL, and
QBL models are interpreted during run-time by robot controllers. The gener-
ation from MML to QBL has been implemented using model transformation.

FLYAQ has become very popular and has been extended numerous times.
In [44] they add support the high-level specification of adaptive and highly-
resilient missions because one of the weaknesses of FLYAQ is that the mis-
sions are planned at design time, and wasn’t resilient when facing unforesee-
able or emergent situations. The paper [45] also discusses FLYAQ with the
context of MDE and Mobile Multi-robots, where they also extended FLYAQ
to be applied to underwater robots. Other work extending FLYAQ include
[46] [47] [48] [49].

It was mentioned that the WiRoM project was inspired by TDL (see
Section 3.2), and TDL used FLYAQ as one of its main sources for relevant
work [40]. In TDL they had implemented a web interface, and this web
interface was highly inspired by the FLYAQs web interface, using a map
to define the mission. Similarly to FLYAQ, the interface in WiRoM will be
developed as a web interface that can be used by non-expert users but will be
able to support multiple types of heterogeneous robots from the beginning,
allowing for focus on extending other parts of the system.

3.5 The ERGO framework

The European Robotic Goal-Oriented Autonomous Controller (ERGO)
[50] is a space robotics project which is one part of six space robotic projects
in the frame of the PERASPERA SRC. The objectives of these projects
are to deliver key technologies for orbital and explorational missions within
2023/2024 (https://www.h2020-ergo.eu/project/objetives/). The main
objective of the ERGO project is to develop a fully functional autonomous
system that can solve missions such as Mars exploration using heterogeneous
multi-robot setups, with the possibility of being able to operate at several
different levels of autonomy [51].

ERGO uses a model-based approach to perform the Missions planning
for the robots. The mission planner uses PDDL 3.0 as a standard language
for the scheduling and planning community. PDDL stands for Planning
Domain Definition Language, and this language was made to standardize

36

https://www.h2020-ergo.eu/project/objetives/

artificial intelligence planning languages. PDDL is used for modeling the
inputs (domain and problem), which allows the generation of suitable code
skeletons, and glue code that can be combined with code developed by the
user into an application’s executable. Another part of the ERGO framework
that uses a model-based approach is that the ERGO agent is conceived as
a TASTE [52] component. TASTE is a tool-chain targeting heterogeneous
embedded systems, using a model-based development approach, to let the
user focus on the functional code while the TASTE tools are responsible for
putting everything together [51] [52] [53].

The ERGO framework was field-tested in November 2018, in an environ-
ment on Earth which is similar to the environment on Mars, which was the
Moroccan desert. The project ended after this achievement, but it is stated
on the ERGO homepage [50] that the project will be continued in the second
phase of the PERASPERA project [54].

ERGO and WiRoM are looking to solve similar issues using similar so-
lutions. The ERGO framework provides a lot of new and state of the art
technology that has been field-tested, and is, therefore, a good source for
inspiration.

3.6 Lowcomote

Low-code related work was hard to come by, but we believe that lowcomote
can provide some insight into the world of Low-Code Development Platforms.

Lowcomote has published an article [55], which discusses the pros and
cons parts of the Low-Code Development Platforms, and shows its proposed
solutions. Lowcomote is a project dedicated to highlighting and fixing some
of the limitations of LCDPs. Lowcomote recognizes three main limitations
that hamper the use of LCDPs: Scalability, fragmentation, and software-only
systems. LCDPs are good for creating small applications, specifically soft-
ware, using a defined toolkit that is tailored to a certain type of application
or domain [55].

The article [55] mentions that LCDPs have been especially successful
for the development of domain-specific applications in four market segments:
database applications, mobile applications, process applications, and request-
handling applications, with Internet of Things (IoT) being the potential fifth
market in the future. The desire is therefore to extend beyond these markets,
into other potential domains, both within the software engineering and other

37

Figure 3.2: Lowcomote in a nutshell [55] (page 2)

engineering domains.
Lowcomote identifies as an Innovative Training Network, which means

the project intends to train professionals to create new LCDPs where the
limitations of older LCDPs are minimized, and the benefits are further en-
hanced. Lowcomote claims that these individuals will upgrade the current
landscape of LCDPs to Low-Code Engineering Platforms. Figure 3.2 shows
how Lowcomote intends to combine Model-Driven Engineering (MDE), Ma-
chine Learning and Cloud Computing with existing LCDPs to obtain the
desired LCDPs.

This thesis will present a solution that can be considered as a Low-Code
Platform for the heterogeneous multi-robot mission planning problem. It is
desired for WiRoM to follow some of the principles presented in Lowcomote,
to become a modern, well rounded, and scalable solution to the problems
presented in the thesis. This is to make sure that the research is relevant
and the project can be utilized or extended by other actuators in the future.

3.7 Additional work

Other related work was also reviewed, but will not be discussed as thoroughly,
because they are not as related to this thesis, but are still relevant.

The Buzz language [56] is analogous to TDL, because it is also a
DSL used to program heterogeneous robots. This DSL was created to be
a novel programming language for large robot swarms containing many dif-
ferent robots. It is built upon other popular robot programming technologies.

RobotML [57] is a Robotic Modeling Language. RobotML is made

38

to ease the design of robotic applications, simulation, and deployment to
multiple target execution platforms. RobotML provides a high-level solution
to programming heterogeneous robots, by using abstraction to hide lower-
level details.

Robotbenchmark [58] is a web-based robot programming learning tool
that allows users to execute robot controllers in a simulated environment
straight from the browser. Robotbenchmark acts as a learning tool, offering
a series of robot programming challenges that address various topics across
a wide range of difficulty levels.

A. Hussein and A. Khamis presented in [59] a market-based approach
used for solving the MRTA problem. They propose an approach that will
be used to find the best allocation of heterogeneous robots to heterogeneous
tasks, in the context of Multi-robot Systems (MRS).

PsAIM was presented in [60] as a proposed pattern catalog for specifi-
cation patterns in robotic systems. PsAIM is a tool that uses these proposed
patterns to assist developers in designing complex missions, such that they
can be executed.

Additionally, we have the Robotics DSL Zoo [61] created by Nord-
mann et al. provide a list of available DSLs that have been developed for
programming and controlling robots of all forms and shape. The index on
their website provides all the publications in the Robotics DSL Zoo, as well
as the paper [61] where they provide the survey on these publications.

3.8 Related work conclusion

There exist many different projects that are related to the work in this the-
sis. TDL, PROMISE, FLYAQ, the ERGO framework are all some of the
most relevant projects to look at for inspiration when implementing the ap-
plication. Lowcomote will assist in developing the high abstraction levels as
a low-code platform, bringing abstraction to even higher levels than most
we have seen. This means languages like TDL or others mentioned in the
Robotics DSL Zoo could be applied at the lower abstraction levels when pro-
gramming robots using WiRoM. Other related work was also presented to
provide a solid foundation.

39

Chapter 4

Design and Implementation

4.1 Technological requirements

Defining a set of requirements for choosing the different technologies will
assist in the process of rationalizing the choices of technologies for WiRoM.
It’s ideal to locate the technologies that would fulfill the requirements and
provide an efficient development process when developing WiRoM

Firstly, we need to define some requirements based on the challenges that
were described in Section 1.2. The following technological requirements are
presented for this thesis:

R.1 A high-level programming language with a framework and/or library
for programming robots being applicable by a viable simulation tool.

R.2 A powerful simulation tool with a wide repository of robots and sup-
port for heterogeneous setups with feature support for WiRoM, with a
minimal gap between simulation and reality.

R.3 A powerful and simple to use web application framework with good
library support for developing a high-level low-code platform web in-
terface.

Having defined these technological requirements, the next section will be
dedicated to reviewing the technology that is needed to fulfill these require-
ments.

40

4.2 Technological review

The initial programming framework proposition was to use something like
Johnny-Five [62][63] or Cylon.js [64] to program the the lower levels of the
robots. Both are based on JavaScript and Node.js, [65] which means they
are high level libraries, have good platform support and are simple to use.
The problem with these frameworks was that there was no obvious way to
simulate the missions with multiple advanced robots in a simple and inex-
pensive way. Therefore they were dismissed, and it was decided to look at
requirement R.1 and requirement R.2 the other way around, beginning with
finding a compatible simulation tool rather than frameworks and program-
ming languages. Hence, it will be presented the same way in this thesis,
starting with requirement R.2 then requirement R.1, before moving on to
requirement R.3.

4.2.1 Requirement 2: Simulation software

We have already discussed some of the benefits of using simulations in sec-
tion 2.1.4. Looking into several listings of robotics simulation tools from
different sources such as [66] [67], three different simulation tools stood out:
V-REP, Gazebo and Webots. All three would be feasible for requirement
R.2, as they all support heterogeneous setups and have large robot reposi-
tories while having the possibility of using higher-level languages to control
robots within the simulation. Webots already stands out, as it is the sim-
ulation tool that was used to create robotbenchmark, the web-based robot
programming learning tool we briefly mentioned in Section 3.7, meaning this
simulation tool is already applied in practice as a web application. Webots
also support a wider variety of programming languages than Gazebo, and has
superior documentation compared to V-REP 1, making Webots the preferred
simulation tool for this thesis.

Webots is a graphical robotics simulation tool that has been used by the
industry and universities for research and education purposes ever since the
beginning of the software. The Figure 4.1 below show an illustration from the
Webots reference manual. The development of Webots started in 1996 by Dr.
Olivier Michel at the EPFL in Lausanne but was taken over by Cyberbotics
Ltd. in 1998. Cyberbotics are still developing Webots, updating the software

1This has to be taken as a subjective remark: I found it much easier to find information
in Webots’ documentation compared to V-REP’s when I was doing research about the two

41

Figure 4.1: Webots illustration from the Webots reference manual: https:

//cyberbotics.com/doc/reference/index

several times a year, continuously adding robot models and features to the
software. Webots was made open source after 20 years as proprietary software
in the R2019a update. The codebase was then published to GitHub [68],
hoping to make the software more accessible for research advancement [69].

Webots has good world-building and robot customization GUI, where
one can interact with and get information about all the different parts of the
simulated world. Because of robotbenchmark (Section 3.7), we also know
that Webots supports streaming directly to the browser, meaning that this
specific simulation tool can be integrated into the application, avoiding the
need to interact with the simulation tool when executing missions.

This thesis will stick to simulations, being well aware of the gap between
the simulation and reality. Luckily Webots has good support for bridging this

42

https://cyberbotics.com/doc/reference/index
https://cyberbotics.com/doc/reference/index

gap as well. It is possible to cross-compile code to some supported robots,
or create a remote control plugin for robots which are not compatible with
cross-compilation at this point in time. This is mostly for future work, as we
will focus on the simulated environments in this thesis.

4.2.2 Requirement 1: The programming language and
framework

Using a high-level GPL/DSL will be the best approach for this project. Some
of the ambitions for the heterogeneous system is that it also should be scalable
and easily replaceable with similar setups and tools at the lower levels, oth-
erwise it wouldn’t be a proper abstraction, just a hard-coded robot controller
created for one specific system and setup. The choice of robot programming
method and tools is therefore an ambiguous choice, so this choice will be
more based on the power and features of specific tools that can be applied
for this system, in addition to personal experiences and preferences.

There are many languages that fulfill the requirement R.1. It is therefore
desired to prioritize the efficiency of development when choosing a language
and framework. The robot programming itself will not be the main focus of
the thesis, we will focus on bringing robot programming to higher abstraction
levels, but having good functions programmed will nonetheless be crucial for
assessing the benefits of WiRoM.

As mentioned, Webots fills the technological requirement R.2 for the
project by having a diverse robot repository [70], with the support of hetero-
geneous multi-robot setups. Webots also has it’s own high-level robot pro-
gramming framework, called the controller framework (also used in robot-
benchmark), which can be utilized by multiple different languages like C,
C++, Java, Python, MatLab or technologies like the Robot Operating Sys-
tem ROS [71]. This is a simple framework that allows the user to control
and program robots using a wide variety of packages that are included in
the framework. The fact that the framework has multiple different language
options open up for users with different amounts of experience with different
languages to explore robot programming.

Python is one of my most preferred languages, because of previous ex-
perience with the language. Python has quickly become one of the most
popular programming languages according to the popular online community
Stack Overflow, as can be seen in Figure 4.2 which was posted in a blog on

43

Figure 4.2: Python growth over time presented by Stack overflow [72]

their website [72].
Python is powerful and quick to use for development with its simple

syntax and wide repository of libraries and frameworks at hand that can be
utilized. Python fits the requirement well, being efficient and powerful to use
for the developer. Using the Webots controller framework with Python fulfills
the requirement R.1, and its additional benefits and previous experience
with the language makes it the chosen programming method for the actions
performed in the simulation [72].

44

4.2.3 Requirement 3: Web interface technology

WiRoM should provide a user-friendly interface that is intuitive for new
users with varying amounts of experience with robotics and/or programming.
Making sure that the web interface is created properly is, therefore, one of
the main interests when developing WiRom.

There are a lot of different options to use for creating the web interface
since a lot of frameworks will fit the requirement R.3. Just like selecting
a language and framework for requirement R.2, a lot of it comes down to
personal preference, but unlike requirement R.2, I do not possess a lot of
preferences for which framework to use (not enough to make a preferred
choice). Some research will follow to find out which framework that fits our
requirements the best.

E. Wohlgethan published the paper [73] in 2018, comparing the three
major JavaScript frameworks used today: React, Vue and Angular. The
paper concludes that the difference is very small between the three, but some
of the frameworks are better than others for certain projects. React seems
to be the one that sticks out by being the most popular, both supported
by the industry and the community, having the most downloaded packages,
and highest presence in jobs and forums. Having a lot of good packages
available will be a benefit when creating the GUI and visualizing different
mission planning components. React is also component-based and has good
state handling, which makes it powerful and easy to use for large applica-
tions where the state of the components is important. This makes it simple
to store missions and missions states, splitting up functionality to different
components.

Considering the points brought up in [73], React is considered as the
best choice for developing the web interface of WiRoM, as it fulfills the
requirement R.3 better than the main competitors Angular and Vue.

Technology conclusion Locating technologies was not a simple assign-
ment. Selecting the simulation tool and robot programming framework re-
quired a lot of documentation review (especially for simulation tools), and
we ended up finding Webots and Python as the technologies that best fit the
requirements. React has shown to be the best choice for creating the web
interface, but there will always be a challenge when developing using new
technologies.

45

4.3 Development process

We want to briefly present the development process and underlying techno-
logical choices that were done in order to erase any doubts surrounding these
parts of the thesis.

No specific methodology was selected for going forward with developing
the system, but some form of Scrum and Kanban combination was used in
practice. A Trello board was used to keep control of the tasks that were
supposed to be done in the project. The work was also divided into two-week
sprints. This meant that at the end of each sprint (every two weeks) the
developer met with the supervisor to go through the work of the previous
sprint and they planned the next sprint until the next meeting.

All of the technological choices were made based on my own opinions and
experiences, combined with the requirements presented in Section 4.1.

We use Mac OS as the operating system, meaning the project will be
optimized towards Mac OS. We also have access to Windows, so the system
will be tested by on that Windows to make sure that it works. Visual Stu-
dio Code was used for developing the project because it fits well with both
React.js (JS in general) and Python. This also allows for using the same
editor for both of the codebases. Git was used as version control of the sys-
tem, where GitHub [74] was the choice of Git tool, and not bothering with
branching because of this being a solo-project.

4.4 Mission abstraction levels

The missions will be structured in such a way that the functionality is dis-
tributed over multiple levels of abstraction. Defining each level of the mission
planning system and examining its purposes will help to develop a better so-
lution of the system, while also contributing to the analysis found in the
thesis.

Figure 4.3 shows a meta-model of the relations between the different com-
ponents at different abstraction levels of WiRoM. The dotted line separates
the levels of abstraction, and the higher abstraction levels are on the left,
while the lower abstraction levels are on the right. The lowest abstraction
level contains the simpleaction and robot, the middle abstraction level is
the task, and the highest abstraction level is the mission.

Simpleactions and robots, can be seen all the way to the right in Fig-

46

Figure 4.3: Meta-model of the abstraction levels and relations between mis-
sions, tasks, simpleactions and robots

ure 4.3. A simpleaction is a basic function or action that is implemented
for a robot, that can be used to execute some behavior for that robot. Sim-
pleactions can range from very basic functionality, e.g. blink light, to more
advanced, e.g. go to location. Some simpleactions are also programmed only
to enable some static functionality for a robot e.g. enable collision avoidance,
such that the robot will now have collision avoidance on when moving around
the environment. The simpleactions that are available in the system would
depend on which robots are added to the system, and how their functionality
can be implemented as simpleactions.

The mission planning system will come with a set of existing robots and
simpleactions but can be extended by a developer to provide more function-
ality. When adding a new robot to the system which has not been previously
applied, one would need to implement all the new simpleactions for that
robot’s functionality. One benefit of using simpleactions is that it works in
the same way as an Application Programming Interface (API), meaning that
a developer can use any language and framework to program that simple-
action, as long as the function name is properly defined. For instance, a
simpleaction called go forward can easily be converted to call for a function
in any programming language for any robot, as long as it is implemented as a
function that makes the robot go forward. This could be added either using

47

the same naming or a default naming scheme (e.g. in python: go forward
would be parsed to go forward()) or manually create some relation from a
simpleaction in the code to the simpleaction in the web interface.

On the level above the simpleactions, we find the task, as can be seen in
the middle of Figure 4.3. A task is in practice only a sequence of simpleactions
that a robot can perform. Each of the simpleactions is executed in the order
of the sequence they are defined in. For instance, if we have a task called
scout room it could consist of the simpleactions: go forward, turn left, go
forward and turn left. This task would make the robot go around in a room
executing one and one simpleactions in the given sequence, such that the
robot can scout a small area. In Section 2.3.2 we defined the MRTA problem
for this thesis as an XD[ST-SR-IA] problem, meaning that one task can
only be allocated to one robot, as can be seen in Figure 4.3. One robot can be
allocated to multiple tasks, but not with simultaneous execution or forward
planning, but dynamically, one task at a time. In order for two tasks in a
mission to be executed simultaneously, we would need two different robots,
each allocated to one of the two tasks.

The final and highest abstraction level is the mission, found to the far
left in Figure 4.3. A mission is a sequence of tasks that are to be executed by
one or multiple robots. For instance a mission called scout and fetch sample
could consist of the tasks scout area and fetch sample. Scout area and fetch
sample are sequenced tasks, which again consist of sequenced simpleactions
to perform the mission. One robot would scout an area looking for a sample,
sending the location of the sample to another robot which will then go out
and fetch that sample.

Missions and underlying tasks and simpleactions are intended to act at
such a high abstraction level that they can easily be used by inexperienced
users and changed or modified by developers and domain expert users, while
also being practical and efficient, as is a part of the research questions (Sec-
tion 1.4) that are asked in this thesis. The system will also provide the users
with default missions, tasks, and simpleactions that can be modified or used
for other missions.

4.5 System architecture and design

Developing WiRoM will require different layers of design and programming.
Modeling the systems architecture and design will help both developers and

48

other users to understand how the system works and is implemented. The
system is shown using two models, one more general model of the architec-
ture of the entire system (Figure 4.4), and one model that shows the design
of the mission planning web application, and how the missions, tasks, and
simpleactions interact with the system (Figure 4.5).

Figure 4.4 shows the overall architecture model. In this model, each
pointed arrow represents levels of abstraction, each abstraction level pointing
towards the abstraction level it acts upon.

At the top, we find the web application interface, which contains the
mission planner and all its components, as well as the simulation stream. The
simulation stream is separate in this case because this is a specific extension
of the selected simulation tool (Webots), which is why it is directly connected
to the simulation software.

The two next levels are the Python server and the robot program-
ming framework. The Python server receives all messages from the web
application interface, processes them, and forwards them in the right format
to the robot programming framework. The robot programming framework
is in this case the Webots controller framework (also Python, see Section
4.2.2).

Below the robot programming framework, we have the simulation soft-
ware and middleware/ native API, robot/ hardware and compo-
nents. This thesis only focuses on using simulation software (Webots). The
simulation software is technically much higher abstraction level than some-
thing such as the hardware, but in this case, they are both controlled by some
robot programming framework, which is why they are both at the same level.
This level contains the robots, and these robots receive instructions from the
robot programming framework and execute them within their environments.

One of the main purposes of raising the abstraction levels is that any given
abstraction level is interoperable, meaning that if you select any level of the
system, all of the levels it is pointing to can be replaced, without affecting the
selected level. The only exception to this would be the simulation stream,
because of the streaming clients’ direct connection to Webots.

Figure 4.5 shows the mission planner web application architecture
model. There are two different arrows in this model, green and black. Black
arrows show manual flow in the system, i.e. parts of the system that need
user interaction in order to act between them, while green arrows represent
the automatic flow of the system, i.e. parts of the system that need no human
interaction between them.

49

Figure 4.4: Overall system architecture model

50

Figure 4.5: Mission planner web application architecture model

51

The mission planning web application is broken down into two parts,
the mission planner and the simulation stream client. The mission
sequencer is the graphical depiction of how a mission is going to be executed.
The missions (green) contain a sequence of some tasks (blue) and each task
contain a sequence of some simpleactions (purple). These sequences are
created by the user in order to define how a mission will be executed.

When the mission has been created, the tasks can be allocated to robots
using an automatic allocation algorithm that runs in the server, so when
the user asks for automatic allocation, the mission is sent back and forth to
the server. This allocation can then be checked and modified by the user if
so desired before being sent. Each task needs to be distributed to a robot,
and when all tasks are allocated, the user can start executing the mission.
The mission will then be sent to the server, which processes the mission and
forwards each task to their respective robots. These robots will then execute
their tasks one simpleaction at a time in the simulated environment, in order
to execute the mission as a whole.

Figure 4.6 shows the design of the mission planner in the web interface.
This design was developed by applying the low-code principles and similar
work discussed in Sections 2.2.5 and 3.6 with the system architecture that
we have proposed (Figures 4.3, 4.4 and 4.5). Our design reflects the relations
between mission, task, and simpleaction in an easy to understand low-code
format. We have the missions on the top, while the task and simpleactions
are below. The mission selection act as tabs, selecting a mission will show the
task within that mission. The same goes for tasks, showing the simpleactions
within that task. Each task in this case has already been distributed to a
robot.

The simulation stream is a continuous stream directly from the simulated
environment that can be viewed in the web application. This simulation
stream can be controlled from the web application, making it possible for
users to avoid having to interact with the simulation software when executing
missions, they can simply plan missions in the mission planner and execute
them directly from the browser.

Figure 4.7 shows the design of the simulation stream. This includes a
player that is created by Webots, which the user can use to control the
simulation. The stream also allows for changing the viewpoint in the same
way as from in the simulating tool by dragging the screen around.

More about the details and implementation of both Figure 4.6 and Fig-
ure 4.7 will be discussed further in Section 4.9. The concurrency of robot

52

Figure 4.6: Design of the mission planner

Figure 4.7: Design of the simulation stream client

53

execution will be further discussed in Section 4.7.

4.6 Simpleaction structure

Simpleactions will be one of the core components of the mission planning
system. The name ”simple actions” was a term that was used by D. Losvik
in TDL [40] to define the lowest level of programming that needed to be done
for robots, and in this thesis we simply put ”simple actions” together to one
word ”simpleactions”, to have a single name for the construct of the actions
or functions that are executed by robots at the lowest level. The benefits
and utility of the mission planning system grow in parallel with the number
of robots with corresponding simpleactions that are available. This is why
the system must support a wide range of robots and different development
methods for simpleactions. The simpleactions can also be classified into
different categories of simpleaction, where some are more specific for some
mission, while others are more generic. All simpleactions will show up in the
web interface as can be seen in Figure 4.6 and the relations and flow can be
seen in Figure 2 and Figure 4.4.

Generic simpleactions Generic simpleactions are simpleaction that im-
plies that they can easily be shared between different robots without the need
for little (if any) additional implementation. Implementing an action like go
forward would be a unique function to each robot, depending on the robots’
set of motors, size, sensors, etc. But, when the function for going forward
is implemented, one would only need to point to which function is to be
executed when the simpleaction go forward is called from the higher abstrac-
tion levels (for levels, see section 4.4). Many simpleactions can, therefore,
be shared between robots, as long as the correct simpleaction gets matched
with the corresponding function for the robots.

The easiest way to define simpleactions is by looking at the given frame-
work, and deduce which functions that are already exist and export them to
WiRoM to be used as a simpleaction. The chosen framework for this thesis
is the Webots controller module. This module contains a lot of prefabricated
classes and functions for controlling the robots within the simulation, with
a short route to a real-world robot implementation. This framework gives
very easy access to most of the nodes, actuators and sensors available in the
different robots. This process usually consists of importing different modules

54

and calling their functions.
A weakness of the Webots controller module is that it does not include

any API or algorithms for doing path finding, flight stabilization, collision
avoidance etc. The framework has some innate algorithms for functionality
such as object recognition for the cameras, but other than such exceptions,
it is required to implement these algorithms manually. Luckily there exist a
lot of samples, demos, and tutorials for Webots which use a lot of algorithms
that can be easily be reproduced to create the desired simpleactions.

Specific simpleactions Specific simpleactions would consist of simpleac-
tions which are too specific to be used generically, having to be applied to
either a very unique robot or a specific assignment in a mission. A specific
simpleaction can easily be as big as an entire task within a mission. Or in
other words, it is when a problem is so complex and unique that using pre-
defined simpleactions in a sequence won’t be sufficient for solving the given
problem, and the need for more specific implementation is needed.

One specific type of robot that would require a lot of different types of
specific simpleactions would be robot arms. Robot arms would have to adjust
a lot of variables for picking up different items. A simpleaction like Pick up
item would in itself be very complex to program because one would need to
move the arm to the right position, and then pinch the item with enough
force to be able to pick it up. But then you consider that not all items can
be picked up equally. As mentioned in the earlier example, a cup with liquid
cannot be picked up in the same way as a bottle of liquid. An apple might
be crushed by the force required to hold a steel ball. For this reason, one
would need a lot of specific programming to make the arm work. One might
be able to create simpleactions like Pick up cup, which would be specific for
cup and could be reused with for the same type of robot arms, but may be
limited for other robot arms because of different arm lengths, joints, etc.

The gray area Then there are also robot actions that are in the ”gray-
area” of the simpleactions, which are algorithms (like the ones mentioned
above), communication, and synchronization of the robots. These imple-
mentations are often reusable, but some might be more specific and not as
easily reused. They are not simpleactions themselves, because they won’t be
exposed to the mission planning system directly, and therefore lie a level be-
low the simpleactions. They are still a part of (or used by) the simpleactions,

55

which means that in some frameworks one would also need to implement some
algorithms, communication, and synchronization. Different frameworks con-
tain different functionality, meaning that there might be some framework
where none of this is needed and one could simply implement simpleactions
to be used.

Simpleaction structure conclusion We know that there are multiple
different ways to develop simpleactions in WiRoM. Most robots would re-
quire some initial programming to set up the use of simpleactions, but some
require more than others depending on their uniqueness and complexity, com-
bined with the amount of API/functions and simpleactions available to the
developer. Some robots or missions may require specific simpleactions which
are more ”hard-coded” to autonomously solve a specific problem, which is
to complex for any task sequenced by generic simpleactions. There are no
specific simpleactions developed for the missions that are part of WiRoM in
this thesis, which means that all simpleactions that are mentioned can be
considered as generic simpleactions unless something else is mentioned.

4.7 Robot synchronization

Robot synchronization is very important when working with multi-robot se-
tups. We have seen that missions are defined as sequences of tasks, which
again consist of sequences of simpleactions (Figures 4.5 and 4.3). It is there-
fore required to make it clear when and how the different simpleactions will
be executed for each respective robot.

The robots running in Webots will run similarly to what they do in real
life. Physical robots have their own respective hardware, and if two robots
are given two separate tasks at the same time, they will execute them in
parallel. Each robot runs a separate controller that is programmed by a
developer. We want the simpleactions to be executed in a sequence, and the
easiest way to do so is to let the robots have a queue. Each robot executes it’s
respective queue asynchronously by taking one and one simpleaction out of
the queue. This means that each simpleaction in a queue has to wait for the
previous simpleaction of that same queue to finish. Some simpleaction takes
little-to-no time to execute, e.g. simpleactions that enable sensors, while
others take more time, e.g. simpleactions that perform a movement. The
ordering of the simpleactions matters a lot when creating missions. There is

56

no use in enabling the sensors for a scouting mission after all the movement
is done.

Robots can execute tasks in parallel, and this means that if we want to
use two robots to solve a mission, and one robot depends on the actions of
the other, then we need to program that robot to wait for some signal from
the other in order to work. We need to have some communication between
the different robots, such that they can synchronize with each other when a
mission requires them to do so. It is, therefore, useful to implemented some
simpleactions that actively wait and notify, such that this kind of synchro-
nization is possible. There are many ways to do so, and using simulations
would allow us to use things like the internet connection in order to provide
a communication platform for any robot.

Showing the synchronization and execution of robots can be difficult with
a low-code setup, without having to add a lot of details and complexity to
the web interface (Figure 4.6). It will be useful to have some external graph
or timeline that can be brought forward by the user to show the mission
execution and synchronization between robots in a mission.

Now that we have discussed the design and architecture of the system,
we can move on to the resulting system and the implementation of it.

4.8 Folder structure

We start out by presenting the folder structure to show what the codebase
looks like and how the entire project is structured.

Figure 4.8 shows the folder structure of the WiRoM project, which can
be found at the WiRoM GitHub repository WiRoMgithub The left part is
the web interface, while the right is server and simpleactions.

4.8.1 Frontend folders

The outer folder for the frontend is the web interface folder. A standard
React.js boilerplate called create react app 2 was used to initialize the project.
In the web interface folders we find the node modules folder, and the files
package-lock.json and package.json, these are always present in any project
that uses the Node Package Manager (NPM) and is used to store the packages
that are used in the project. The folder public contain standard React files

2https://github.com/facebook/create-react-app

57

https://github.com/facebook/create-react-app

Figure 4.8: Screenshot of the folder structure for the project

58

like index.html used to show the website, this was added with the boilerplate
as well as index.js, index.css and serviceWorker.js.

The folder src and the file data.json are the parts that contain the code
for the system and the data used by it, as well as metadata about robots and
simpleactions. React is divided into components, so each component that
has been created has its own folder in src/components containing the .js and
.css files for that component. Data.json is the file that stores all the data
used in by the web interface. This includes information about the robots,
missions, tasks, and simpleactions (this will be discussed further in Section
4.9). This information lets the user know what kind of robots are available
and what types of simpleactions are implemented for them.

4.8.2 Backend folders

The outer folder for the backend is simply called backend. This folder
contains a lot of information used by Webots, like the worlds folder and
robotname controller.py files. These files are used to define the simulation
world and the controller that is connected to each robot. The files robot-
name simpleactions.py contain the simpleactions for the respective robot,
and these files are initialized from the controller files. App.py is the server
of the system, and the file config.json contains the configuration specifica-
tions for how the server act on the information it receives (task allocation,
task forwarding to robots). This also contains metadata about the robots
and simpleactions, to know which robot can do which simpleactions (and the
quality/cost). Requirements.txt contains a list of packages that are needed in
order to make the system work. All files and folders that are grey are cache
folders used by Python.

When new robots are added to the simulation or new simpleactions are
added to any robot, one would also need to change the metadata in the
data.json and config.json files, such that they are up to date with the cur-
rent state of the robots and simpleactions. Changing up the robots or sim-
pleactions (without changing names) will fix itself automatically and won’t
need to be updated in said files. Other parts of the system like missions,
tasks, and mission environments will add new parts to them automatically.
Having support for the same when adding robots or simpleactions is also a
feature that can be added to the system for future work, to improve on the
user-friendliness of adding new robots and simpleactions.

Changes to the web interface will be done mostly through the different

59

components (in each component folder), changes to the server will happen in
app.py and changes to simpleactions/robots are in the robotname simpleactions.py)
files. Some changes to the system would require making changes to the meta-
data in data.json and config.json files. These files contain the state of the
system for the frontend and the backend, and it needs to be up to date with
the robots and simpleactions in the environment.

Changes to the system that would require editing data.json and con-
fig.json include:

• Adding new simpleactions to robots (in their robotname simpleactions.py)

• Adding new robots

• Changing a simpleaction such that the quality or cost is changed for a
robot solving that simpleaction

Other changes to the systems source code (or changes to missions and
tasks that can be made through the web interface) happen automatically
and won’t need any additional documenting to work. It is ideal for the sys-
tem to avoid users having to edit data.json and config.json when adding new
simpleaction and robots, by having some function read the scripts automat-
ically or let users fill information into some form in the web interface. This
has not been implemented in the system but is up for future work.

4.9 Web interface

The system is implemented as a web application, meaning one of its main
components is the web interface that runs in the browser. Missions are
planned in the web interface (at the highest level) by the user before it is
sent for processing at the lower levels. The web interface communicates
directly with a server, which in turn communicates with the simulation, as
shown in the system architecture model in Figure 4.4.

4.9.1 Navigating the mission planner

Figure 4.9 shows a screenshot of the implemented web interface in its en-
tirety. We have already looked at the mission planner design a bit in Figure
4.6 in Section 4.4, but now we go more in-depth on how it actually works.

60

Figure 4.9: Screenshot of web interface

Missions are selected at the top, and tasks and simpleactions are below.
Each task shows its name, then the name of the robot that will execute it,
and next to the name of the robot there is a delete-button to remove the
task if so desired. The simpleactions have numbers, which will indicate the
sequence of simpleaction execution, next to the number there is the name of
the simpleactions and the arguments it takes, followed by a delete-button for
the simpleaction. Hovering over the argument box will show information on
what the simpleaction wants in that field

The tasks and simpleactions are manipulated by drag-and-drop, chang-
ing the order of the simpleactions and tasks. This way it makes it easy and
intuitive for users to change around the sequence of tasks and simpleactions.
Adding a new mission can be done at the top by typing in the name of the
wanted mission, and pressing add new mission. This adds a new mission
with no tasks or simpleactions. Then adding new tasks is done in the same
way, typing in a name and pressing add new task. This creates a new task
with no simpleactions and no robot assigned to it.

The user can add new simpleactions either by searching for it using the
search for simpleactions button or dragging and dropping a simpleaction
from the Robot simpleactions list on the right. The Robot simpleactions list
shows information for each robot in available, and the user can select a robot
from this list, and then simply drag and drop simpleactions from this list to
the simpleactions box to add them to the task. After selecting a simpleaction

61

for the task, one can add appropriate arguments to it through the form in
the simpleaction (some are disabled if they take no arguments).

The button show mission timeline will display the mission timeline for
the selected mission. The mission timeline will be discussed further below.

The button Automatic task allocation will provide an allocation of
robots to the current mission. The task allocation will be discussed further
below.

At the bottom of the page, we find the simulation stream, and by pressing
the button connect, it tries to look for a Webots instance streaming to
localhost:1234, and if then show the stream if it finds it. Pressing send
mission will send the currently selected mission to the simulation, and one
can press play from the simulation window (see Figure 4.7) to execute the
mission.

Further instructions and videos using the system can be found in the
readme in the WiRoM GitHub repository [74]

4.9.2 Implementation

This web interface is developed using React.js, as was decided in Section
4.1. React.js is based on creating reusable components, such that one can
add multiple cases of the same component without having to rewrite a lot
of HTML code. React.js also uses states to handle the data in the system.
Each component is written in JavaScript and returns HTML to show in the
browser, and each component has a state that controls all the data within
that component. The initial state for all of the components is based on data
that is stored in the data.json file as seen in Section 4.8, and this data is
brought in to the states when the webserver is deployed. This data will be
stored in a database if the system is ever deployed.

React bootstrap was used to create the interface itself, in order to be
efficient when developing the design of the web interface (see Figure 4.9).
This can be improved upon a lot if we had some proper designer look at the
application, but will be good enough for this prototype of the system. A lot
of different libraries and packages were used to create the web interface, but
going into the details of this is unnecessary and provides minimal content to
this section. The main ones were ReactSortable for the drag-and-drop effect
and Dropdown for dropdown buttons.

62

Figure 4.10: Mission timeline for a scouting mission

4.9.3 Mission timeline

As discussed in Section 4.7, the mission planner (Figure 4.6) might not pro-
vide good insight into how and where the sequencing of the simpleactions
and the synchronization of the robots happen in the simulation. Providing a
more detailed and visual representation of the sequence and synchronization
would give the user a more clear view of how the mission will be executed.

Figure 4.10 shows the mission timeline that represents the mission exe-
cution and robot synchronization in the system, which can be seen from the
web interface.

Every arrow in the graph represents a synchronization, meaning that a
simpleaction can only start executing after all simpleactions pointing to it
are finished. The arrows do not represent time, so the length of the arrows
does not matter. The actual time it takes to execute each level (and the
entire sequence) is unique to each robot. The first simpleaction of all robots
will start at the same time, but the second simpleaction of each robot will
(most likely) start at completely different times.

The mission timeline is a directed graph that is created using a library for
React called react-d3-graph. This graph provides a representation of the order
of the simpleactions in each task. The graph also shows which simpleaction
that is notifying a waiting robot, to let it move on with its execution.

63

4.10 Server implementation

The server acts as the central part of the system, communicating with the
robots in the simulation environment and the web interface (as seen in Figures
4.4 and 4.5). The server is a Python server, and most of its job is running
Flask. Flask is an HTTP request handler that is used in Python, and it
opens up a port for communication via HTTP, such that it can communicate
with other entities. This Flask instance is what is used to communicate with
the robots and web interface. The server uses the config.json file (Section
4.8) to get information about the robots and simpleactions that exist in the
system. This information is then used to parse the missions and forward them
using HTTP. The information is also used in the automatic task allocation
algorithm, which is running on the server when called via HTTP from the
web interface (Figure 4.9), which will be further discussed later.

4.11 Simpleaction implementation

We have already looked at the simpleaction structure in Section 4.6. Simple-
actions are implemented as functions that manipulate global variables in a
script that runs on each robot. This means that if we want a robot to go for-
ward it triggers a function that runs on the robot that changes some variable
called e.g. forward speed to 10 (what 10 means depends on the robot and the
developer would need to figure this out to set an appropriate speed). Each
robot also has a main loop, which runs in a separate thread while the robot
is running in the simulation. This main loop processes the global variables
when they are changed by the simpleactions. For instance, the main loop
would be responsible for applying the updated global variable forward speed
to the corresponding motors of the robot, such that it moves forward. The
simpleactions are received and started via HTTP through separate Flask in-
stances. This Flask instance and the main loop run in separate threads, but
in the same process, meaning they are in the same scope and have access
to the same global variables. This is why the main loop can run while the
Flask instance changes a variable, and this variable then gets read by the
main loop afterward.

The implementation of the robot synchronization as mentioned in Section
4.7 is done by utilizing the same Flask instances that were mentioned earlier.
Flask also allows robots to communicate with each other, as long as we know

64

their ports that are provided through Flask. All the ports of the robots are
stored in the config.json file (see Section 4.8) and can be used by any robot
in the system. The communication has also been created as simpleactions,
meaning that the user needs to define in the mission when they want robots
to communicate.

def moose_main():

...

while robot.step(timestep) != -1:

if navigate:

navigate_to_location()

for motor in left_motors:

motor.setVelocity(left_speed)

for motor in right_motors:

motor.setVelocity(right_speed)

...

def go_forward(duration):

global left_speed

global right_speed

left_speed = 7.0

right_speed = 7.0

if duration is not 0:

time.sleep(duration)

left_speed = 0

right_speed = 0

...

@app.route('/location', methods=['POST'])

def receive_location():

global location

msg = request.get_json()

location.append(msg['location'])

return "Received location", 200

...

Listing 1: Code snippet from Moose simpleaction

65

Listing 1 show two simpleactions that are implemented for the robot
called Moose. The first simpleaction show a go forward(duration) func-
tion, which will go forward for some duration. It sets the global variables
for the left and right motors to seven, then waits for the duration using
time.sleep(duration), before it resets the variables to 0. This way, we have
made the robot go forward for duration amount of seconds.

The second simpleaction in Listing 1 is a communication simpleaction
called receive location(). This simpleaction is running in the Flask instance
of the robot and catches an HTTP Post request, which triggers the function.
This simpleactions lets the robot receive a message containing some location
and then stores this location in its own global variable location. This location
can then used to navigate using for instance a go to location simpleaction.

At the top of Listing 1 we see a snippet from the main loop, which con-
tinuously manipulates the speed of each motor for the wheels based on the
global variables left speed and right speed.

4.12 Model transformation

Having everything stored in JSON-format makes it simple to use HTTP
to send messages to the server via the API that is exposed from the server.
The server received these messages and processes the missions before sending
them to the robots (see Figure 4.4).

Listing 2 shows a code snippet from some of the JSON that is stored in
data.json. This data includes information on the robots, which port they run
on, which simpleactions the robots have and the language it is implemented
in. The file also contains information about the mission, the tasks within it,
the robot allocated to that task, and the simpleactions in that task.

{

"robots" : {

"mavic2pro": {

"language" : "python",

"port" : "5001",

"simpleactions": [

{

"name":"set_altitude",

"numArgs": 1,

66

"type":"move"

}, # simpleactions ...

]

}, # robots ...

},

"missions": {

"Scout location and deliver item": {

"tasks": [

{

"name":"Scout location",

"id": 0,

"robot":"mavic2pro",

"simpleactions":[

{

"name":"set_altitude",

"args":"1",

"id":0

}, # simpleactions ...

]

}, # tasks ...

]

}, # missions ...

}

}

Listing 2: Code snippet from mission planning data stored in JSON format
The JSON object can be seen as a model of the data which is used by

the system. The data that is shown in Listing 2 is used by the web interface
to create the GUI, and contain more information than the server actually
needs, and in a format that is hard to process. In order to process missions
efficiently, we need some way to transform this model to code that can be
executed by the robots.

One of the advantages of this project was using MDSE core concepts, and
model transformation is one concept that can be used to raise the abstraction
levels. The low-code model that is created by the mission planning system,
shown in Listing 2, can be considered as a PIM, which we can transform

67

to a PSM and further down to runnable code/ function calls, much like the
concepts we discussed in Section 2.2.3. Listing 3 shows a sample of the Listing
2 transformed into an object where we only see the mission that the server
will receive. Missions are sequences of tasks, which again are sequences of
simpleactions, and these need to be structured in a way that can be processed
easily by the server. The transformation from the model in Listing 2 to the
model in Listing 3 is created by a simple method that loops through all the
tasks in a mission and saves the information needed for each robot to execute
the mission. The object is structured this way because we only want to send
the information that is necessary for the server to parse it and generate the
desired code, hence we do not care about the mission name or the task names
in this object, only the robot configuration needed to parse the mission and
simpleactions that the robot will solve in the mission.

"currentMission":{

"mavic2pro":{

"language" : "python",

"port" : "5001",

"simpleactions":[

{"name":"set_altitude",

"args":"1", "id":0},

{"name":"recognise_objects",

"args":"", "id":1},

{"name":"go_to_location",

"args":"[388, -365]", "id":2},

{"name":"set_message_target",

"args":"'moose'", "id":3},

{"name":"send_location",

"args":"", "id":4}

]

},

"moose":{

"language" : "python",

"port" : "5002",

"simpleactions":[

{"name":"receive_location_from_robot",

"args":"", "id":0},

{"name":"go_to_location",

68

"args":"[]", "id":1}

]

}

}

Listing 3: Code snippet of a scouting mission, in the format that is used by
the server

The code generation itself is not a very advanced process. Each robot has
a file robotname simpleactions.py (Section 4.8), and each respective robot is
running a Flask instance in said script, as mentioned in Section 4.11. When
the Python server receives the JSON file as depicted in Listing 3, it packs out
the simpleactions, and generate strings that resemble function calls. These
strings are then sent via HTTP to their respective robot. The Flask instances
running on each robot will receive these strings and add all the strings to a
queue. This queue is then executed using the eval() function. This function
accepts strings and executes them as Python code within the context that
the function is running. This means that eval(”go forward(10)”), will run
then function go forward(10) as if it was written normally in the script.

Using function like eval() is generally recognized as bad practice. The
reason why it is used here is that we want the robots to be able to receive
missions dynamically, i.e. receive new missions at run-time, without having
to redeploy. The code that runs within the simulation is not easily called
from outside of the simulated context. A possible solution that wouldn’t use
eval() would be to have the robots share some global variables stored outside
the simulation context, which can then be manipulated from the outside. The
problem with this is that the robots must read the variable constantly for it
to be interactive, making it a costly procedure, and it would also require a lot
of time to produce a good solution (because of concurrency). Eval presents
a simple and low-cost solution to the problem, even though it might be bad
practice. Creating a better solution to this problem has the potential to be
solved by some future work.

4.13 Multi-robot task allocation

Having performed the theoretical foundation for the multi-robot task alloca-
tion problem (MRTA) provided a proper label for our MRTA problem (Sec-
tion 2.3.2). This MRTA problem was labeled as an XD [ST-SR-IA] problem,

69

meaning the problem was a single-task robot executing single-robot tasks, al-
located instantaneously via a centralized controller and with cross-schedule
dependencies.

Algorithm Our approach wanted to use a centralized controller. This part
was also discussed in Section 4.5 and naturally selected to be the Python
server (Section 4.10) of the application.

The algorithm that will be used is a simple auction-based algorithm, much
like the ones we have seen earlier. It calculates the bid for each robot based
on its quality and cost for each simpleaction in a task. If the robot cannot
perform a given task (e.g. it is lacking some of the simpleactions) it will
be given a score of 0 (see Figure 2.1). The cross-site dependencies will also
factor into the bid that each robot has for each task (see Section 2.3.2). The
robot with the highest bid for each task (between 0 and 1) will be allocated
to that task.

Algorithm 1 shows the pseudo-code for the algorithm used to solve this
problem. The first loop is the first part of the algorithm. This starts by
looping through all the tasks and then the robots, and if a robot can execute
a simpleaction in a task we calculate the utility for this simpleaction and
multiply it with the existing bid that the robot will give for that task. The
function calculateUtility() subtracts the quality with the cost that the given
robot has for the given simpleaction. The function calculateUtility() also
calculate and factor in the eventual cross dependency constraints. If the
robot cannot execute a simpleaction then the robot cannot execute any task
containing that simpleaction, and the bid is instantly set to 0.

After this, the bid is added to the list of bids, under its task and robot.
This is performed for each task, resulting in a list of all bids for all tasks by
all robots. The second part is the function allocateTasksToHighestBidders().
This function is simply sorting the robot within the tasks based on the highest
bidder, and then update the list of tasks with the new robot allocations and
then return that list.

This is a prototype, the quality and cost estimates are only rough esti-
mates done by us, and the algorithm is not optimal for solving this problem.
The algorithm is called via a simple HTTP call to a python server, so chang-
ing or replacing the algorithm is as simple as routing the HTTP call to some
other algorithm and make sure it returns the proper response.

70

Algorithm 1 Task allocation algorithm

1: function TaskAllocation(tasks, robots)
2: bids← None
3: for task ∈ tasks do
4: for robot ∈ robots do
5: bids.tasks← task
6: bids.tasks.robots← robot
7: bid← 1
8: for sa ∈ task.simpleactions do
9: if sa ∈ robot.simpleactions then

10: utility ← calculateUtility(robot.simpleactions.sa)
11: bid← bid ∗ utility
12: else
13: bid← 0
14: end if
15: end for
16: bids.tasks.robots.bid← bid
17: end for
18: end for
19:

20: tasks← allocateTasksToHighestBidders(tasks, bids)
21: return tasks
22: end function

71

Chapter 5

Users, cases and workflow

5.1 System cases and user roles

It is already mentioned throughout the thesis that the system should pro-
vide a high-level solution while being operable at all the different levels of
abstraction (see Section 4.5 and 4.4). We, therefore, want to define some
different use cases of the system, and different types of users who want to
use the system. The system should be able to be used in different cases by
users of different levels. It is also desired for the system to be as user friendly
as possible when operating within all of the cases.

Four different cases provide the main use cases of the system. These four
are the following:

Case 1 Mission planning: this case would require a user to perform mission
planning in the web interface using all the available robots, simpleac-
tions, and simulation setups. This would include creating new missions
and manipulating existing ones.

Case 2 Extending the mission setup: a user would in this case be able to
change the setup by adding or manipulating simpleactions, robots, and
the simulation environment. This would require the user to program
simpleactions for either existing robots or new robots, as well as change
the configurations of the system for it to match the setup. A user
with knowledge of the simulation tool could also use this to extend
the simulation environment to something that they want to use for
planning some specific mission.

72

Case 3 Extending WiRoM: this case would require more programming ex-
perience from the user. Extending WiRoM is in itself a multi-case,
meaning there are many different ways the system can be extended.
The user might be the domain-expert or researcher within some field,
that would want to extend the functionality of the mission planning
system. This could include adding things like new task allocation al-
gorithms, machine learning, optimization, etc. or simply making the
system better with adding new features.

Case 4 Changing the low-level development technology: this case would
require some knowledge about programming and simulation tools from
the user. The system should be able to let the user select a simula-
tion tool and language (or framework) for programming the robots at
the lowest level. Users should be able to use whatever technology they
are comfortable with, and it should be simple to integrate with the
existing client/server setup. The system should be able to send mis-
sions regardless of language, and let the user have some predefined API
or easy configuration for adding things like simpleactions and robots.
Doing this would however lose some of the innate benefits and fea-
tures of using the current simulation tool but should be possible to do
nonetheless without losing any functionality from a mission planning
standpoint.

Naturally, the different cases would require different amounts of experi-
ence for the users. Defining the different users and possible cases are useful
to see the level of user-friendliness the system needs for the different cases,
and how the different users might think to interact with the system. Below
is Figure 5.1 which is an illustration showing the different cases for each type
of user and the relations between them in the form of a use case diagram.
Users of the system can be categorized into three roles based on domain and
programming experience:

• Non-developer: the non-developer is a user with little-to-no experi-
ence with programming or robotics.

• Intermediate developer: the intermediate developer is a user with
at least some experience with programming and technologies in the
software development domain. Such experience would include working
with source code from other developers, as well as use technologies like

73

git and command line for running software. These types of users would
include students in the later years of their studies, software developers,
and some more advanced hobby developers.

• Domain-expert developer: the domain-expert developer is not only
a user with programming and technology experience but also with some
expertise within a relevant domain. The scope of their domain expertise
may decide which of the parts of the system they would work within
since it would depend on the type of experience the user has.

Table 5.1 show the proposed distribution of the different types of users
for the different cases:

Case 1 Case 2 Case 3 Case 4

Non-developer x
Intermediate-developer x x

Domain-expert developer x x x x

Table 5.1: Distribution of cases to users of the system

This distribution is based upon the experience required to operate within
the different use cases of the system.

Figure 5.1 is a use case diagram of the relation between users and cases in
the system. This use case diagram also shows some of the different operations
within the cases that each of the users should be able to perform.

Non-developers with little software development experience will work
within the highest abstraction levels of the system. The abstraction level
of the system were shown in the Figure 4.4 in Chapter 4. Non-developers
will work with the mission planner itself, manipulating the missions, running
them, and viewing the execution directly from the browser.

Intermediate developers will work at the lower abstraction levels (Figure
4.4), within the scope that the system is already in. This means using the
existing technologies and solutions to extend the missions by manipulating
robots, simpleactions, or the simulation environment.

Domain-expert developers will be able to work at all the different levels
shown in Figure 4.4, while also working outside of the scope that the system
is currently in. This means replacing the lower level parts of the application
(as discussed in Section 4.5). The focus of their domain expertise would

74

Figure 5.1: Use case diagram showing the different cases for each type of user
and the relations between the users

75

define where this user would actually apply their expertise, domain experts
within task allocation might want to change the task allocation algorithm in
the server, while robot hardware experts might want to swap the simulation
software for real-world components.

5.2 Workflow

The workflow of a system is generally defined as the pattern of activity for
one user of that system. WiRoM has different user roles, so the workflow will
be different based on which type of user is operating the system, and which
cases the user is working with (e.g. one could be an expert user, but only
work with the mission planning case). This section will discuss the different
workflows for different cases and users.

5.2.1 Setup

One of the main purposes of creating the system as a web application was
that the system could be deployed online such that mission planning could
be performed by any user without having to do any setup. The project
of this thesis did not prioritize to actually deploy the system, but rather
provide a functional prototype. This means that the non-developer users
are not assumed to be able to perform the setup of the source code that is
required for the system to run as it is, because it uses several technologies
like command line and git. Any non-developer would be recommended to
have someone with experience with such technologies perform the setup for
them.

Setting up the system from source is still required for performing all other
cases, so the intermediate developers and domain-expert developers are the
main target for performing this type of setup, and should be able to perform
the task with ease.

We present a quick summary of the setup that is needed to set up the
system. The readme for WiRoM found on GitHub [74] contains the full
installation instructions for setting up and running the system.

To run the system locally, one needs to clone the repository from git.
After the repository is cloned, one can install all the needed packages using
npm install and pip install, and then simply start the application by running
the client and server. Starting the client from the terminal is done by the

76

command npm start and the server is flask run. After using these commands,
a window should pop up in the browser containing the user interface of
the application. This interface is used to plan missions, all communication
between the browser and the simulation (aside from the streaming) goes via
the server.

Webots can be downloaded and installed from cyberbotics.com, and you
can either run the software normally or in streaming mode. It is required to
open Webots in streaming mode in order to view the simulation directly from
the browser. Opening in streaming mode requires the user to open Webots
from the command line using the argument –stream. After opening the first
time, one would need to import the simulation world file that comes with
the repository, which will fit the default missions that come with the mission
planner. After this is done, and the user had the client and server running,
the user can start to use the system. The details of the design and how to
use the software comes later in this chapter.

5.2.2 Mission planning

Mission planning is considered to be a case for all user roles as we have seen
in Table 5.1. To plan missions we first want to connect to the simulation
stream, as shown in 4.9. Now we have established the connection between
Webots and the web interface as we showed in Section 4.5.

When this is done we can use the low-code web interface to manipulate
existing missions or create new actions. As discussed in Section 4.9, the
web interface is implemented in such a way that a user can drag and drop
simpleactions and tasks around to plan a mission. This case also allows for
using automatic task allocation in combination with manual allocation to
distribute robots to the tasks and viewing the mission timeline. When we
want to execute a mission, we can send the mission and start the simulation.
A mission can be altered during run-time, making it possible to start the
simulation once and send multiple missions, or stop a mission during execu-
tion and send a new one, without having to redeploy the robot or reset the
simulation. See Section 4.9 for more information on the web interface.

5.2.3 Extending the mission setup

This part requires some development experience, so this is not for the non-
developer (Table 5.1). Users would be in the server and robot programming

77

cyberbotics.com

language levels of the system during this case, as we showed in the architec-
tural model in Figure 4.4. To extend the mission setup, one needs to install
the system from source (as described in the setup Section 5.2.1). There are
a few different ways one can extend the mission setup:

• Modify existing simpleactions: this is a fairly simple process, that can
be done by modifying the robotname simpleactions.py file that exists
for each robot (see Section 4.8). Section 4.11 describe how different
simpleactions are implemented.

• Adding new simpleactions: this is the same as the process above, but
now one would also have to add that simpleaction to the client of
the system, such that it can be used from the mission planner. This
was also discussed in Section 4.8. The metadata about the new sim-
pleaction would be needed to be added to the data.json file, under
robots:”robotname”:simpleactions. In order to make the automatic task
allocation work with the new simpleaction one would also need to add
the simpleaction metadata to the config.json file in the server. This will
require the developer to add an estimated quality and cost in order for
the algorithm to calculate the robot’s performance of that simpleac-
tion. A function that adds these variables to their files automatically
would be desired as an improvement for future work.

• Modify/add simulation environments: environment manipulation will
be done directly from Webots, and the documentation on their website1

contains a lot of information on how to do this. Nothing is needed to
be modified anywhere else for this to work.

• Adding new types of robots to the system: This can be done in Webots
by simply clicking the + button in the top left and then selecting: Proto
nodes (Webots project) → robots, and select some robot that hasn’t got
any simpleaction implemented for it. One would have to create a new
file with all the new simpleactions for that robot and add their data to
the required files (as mentioned above). A new robot also requires a file
that runs within the simulated environment, that simply initializes the
robot simpleactions.py file (see Section 4.8). The existing implementa-
tions of robots and simpleactions should provide a good template to

1https://www.cyberbotics.com/doc/guide/index

78

https://www.cyberbotics.com/doc/guide/index

how the different parts of a new robot should look like. Future improve-
ments to this would be to have this done automatically when adding a
new robot and new simpleactions, such that the user wouldn’t have to
focus on editing all the data and config files for everything to work.

5.2.4 Extending the mission planner and change low-
level technology

This part is designed for users with more domain-expertise because it requires
some knowledge about how the mission planner can be extended, and how
other low-level technology works and can be applied to the existing system
(Table 5.1). Some of these processes would also be time-consuming, even
for someone with a lot of domain expertise. In this case, users would act
on all of the levels in which were shown in the architectural model in Figure
4.4 (including middleware, etc. if so desired). Users here would be able
to manipulate the system in its entirety in order to improve the system or
perform research. These are the different processes that fit within these two
cases:

• Extending web interface: This would require knowledge about front-
end technologies, specifically React.js in this case. This is the place
where there is the most room for improvements in the system. This
can be done by modifying the files in the robot-mission-planner folder of
the project (see Section 4.8). The design of the system is due for some
improvements, and a lot of functionality that lets the user add data
about simpleactions and robots without having to locate different types
of files can be added to the system. Also, there are a lot of possibilities
to receive data from the simulation and use this for showing more data
on the screen or maybe use it for planning missions.

• Extending underlying algorithms: this part includes both existing al-
gorithms and possible extensions for future work. Right now the main
underlying algorithm is the MRTA algorithm (Section 4.13). Changing
this to some other algorithm is as simple as letting the new algorithm
be triggered by an HTTP request and send the new allocation as the
response (this can be done by any language, it does not need to exist in
the same server, one simply needs to specify where to send it). Other
parts that can extend the mission planner is having automatic mission

79

validation, automatic mission optimization, use machine learning to
plan missions or improve the algorithms for the robots (pathfinding,
object recognition, collision avoidance, etc.)

• Changing the language for programming robots: the system uses the
Webots controller framework, which is specifically created for the We-
bots simulation tool. Using any other framework with Webots is not
recommended, but the language that uses said framework can be changed
to any of the supported languages for the framework (see Section 4.1).
Taking the current setup, one can convert everything from the sim-
pleactions files to equivalent code in another language, and simply add
those new files to the system, and specify the new language in the meta-
data (config.json, see Section 4.8)for that robot. As is, the check for
language is not used (because the only language used is Python), but
everything is ready for making the server distribute to other languages.

• Changing the simulation tool: The server communicates with the robots
via HTTP (see Section 4.10). This means that the server does not re-
ally care how the robots are programmed and what tool it uses, because
it can still communicate with it. To make some new setup compati-
ble one would, therefore, need the robots to receive instructions from
the server via HTTP, and then call individual simpleactions in a sim-
ilar manner to what is done with the current setup (see Section 4.11
for specific implementation practices). If adding the new simulation
tool with new simpleaction files in another language is done correctly,
then the rest of the process is as simple as adding new robots and
simpleactions to the existing system (i.e. adding the metadata to the
config.json and data.json files as shown in Section 4.8). This would
obviously require some domain expertise to find a reason to swap the
simulation tool and then program the robots such that they will fit the
system. The simulation tool could also be replaced with real robots,
but this would obviously require a lot of work on programming these
robots, and create the simpleactions such that they fit the system web
interface.

These are the different proposed use cases of WiRoM. The system is
strongest in the hands of domain experts who can manipulate and use the
system in all the different cases.

80

Chapter 6

Evaluation and Assessment

6.1 Research strategy

The means of evaluation is referred to as the research strategy. This is
mainly a three-part strategy, which in itself conforms to the overall research
methodology in this thesis, which is a case study, as discussed in Section 2.5.
M. Shaw wrote an article called What makes good research in software en-
gineering? [75] in 2002 where she had researched different types of research
strategies was used by software engineers when submitting papers to In-
ternational Conference on Software Engineering (ICSE), showing the most
common strategies, and which types of research strategies that were most
likely to get accepted. Mary Shaw proposes that there are three components
of a research strategy, and those components are: type of research question,
type of results, and type of validation.

One type of research question is Method or means of development, which
Mary Shaw defined as the types of questions with the nature of “How can
we do/create (or automate doing) X? What is a better way to do/create
X?”. This research question definition fits well with the research questions
presented in this thesis in Section 1.4. WiRoM has been developed as a
prototype, to see if the new approach works. This type of result is very
obviously a Procedure or technique which Mary Shaw defined as a “New or
better way to do some task, such as design, implementation, measurement,
evaluation, selection from alternatives”.

In [75] M. Shaw show that the most common types of research strategies
when dealing with method or means of development question are to provide

81

procedure or technique results and validate with example. It is also common
to have similar research strategies, but with experience or analysis as val-
idation. M. Shaw mentions that using persuasion as validation was never
good for anything other than feasibility type questions because only rely-
ing on displaying something that works is not valid enough. This thesis is
conducted as a case study, and we will gather quantitative data about the
system to evaluate the results from two different sources, as mentioned in
Section 2.5. The user testing will validate the system through experience
while the mission will validate the system by example. Both types of valida-
tion combined with the given questions and results are considered by Mary
Shaw as good strategies, they are common and a high percentage of papers
using such strategies are accepted.

This means that we combine the validations in this thesis, and have the
following research strategy: Method or means of development → procedure
or technique → example and experience.

6.2 Data collection

There are several ways to collect data from WiRoM. The key is to find the
right data that can be used to answer the research questions asked in the
thesis. Two different methods of data gathering have already been mentioned
shortly several times throughout the thesis, and that is mission scenario
example and user testing

These two methods of collecting data will provide a solid foundation for
evaluating the system and answer the research questions. It is required to
do a bit of work to decide what kind of missions that can be used on the
system, and how to go forward with user testing the system and interviewing
the users afterward.

6.3 Mission scenario example

There are infinitely many possible missions that can be developed using the
system, since one can always add another simpleaction to a task with any
arbitrary argument, in addition to being able to extend the simpleactions
and robots of the system. It’s therefore important to focus on some simu-
lated scenarios that can be easily translated to a real-life scenario, a scenario

82

that has some practical usability. The chosen scenario will also have many
different ways to reach its goal, so trying to get a simple and efficient solution
to the scenario is also important.

The initial mission scenario for this evaluation was an exploration mission.
Much of the literature that was reviewed (see Sections 2.4.1 and 3.5) focused
on such missions because they have clear connections to real-world scenarios.
These types of missions are also easily compatible with heterogeneous multi-
robot setups, where different robots have different purposes in the exploration
mission. E.g. a small but nimble robot can scout an area, while a bigger
robot can transport or fetch materials since it can carry more weight. A
separate robot might be present to load/unload items from the bigger robot
etc.

An implementation of this scenario was provided using a drone and a
rover. The drone is a Mavic 2 Pro drone, having a camera that can be used
for object recognition. The rover is a Moose, an unmanned vehicle with a
big loading space on the top. The goal of this mission was to deliver/fetch
supplies or other items to humans out in the field. A simple version was
developed, and it was working fine with the current setup. But when the lock-
down happened due to Covid-19, there suddenly was a real-world example
at hand that we could solve using WiRoM.

6.3.1 The quarantine delivery mission

This mission would be a different take on the same exploratory missions
scenario. When the lock-down started, people were recommended to stay at
home, and people who were sick or came home from travel was quarantined
or isolated and couldn’t go outside of their homes. Robots could be used
to drive around with necessary supplies to people in quarantine, such that
they wouldn’t have to be in contact with any people to get their groceries,
medicine, and other supplies. A drone could fly around a neighborhood and
look for some signal that would notify the drone that there were people in
quarantine in that household that needed supplies (e.g. a flag that was put
out). The drone would then send a message to a rover (or set of rovers) that
would drive around with supplies. This way, the rovers would avoid having
to drive to every house, only to the ones that needed it. The goal of this
mission is to have autonomous delivery of supplies to people in quarantine,
without knowing who needs it beforehand. Several news articles and posts
have already been published on such solutions that have been deployed in

83

the real world, for instance, [76], [77] and [78], just to mention a few. By
showing that WiRoM could plan such a mission we give a good indicator of
the practicality of the system.

If WiRoM was poorly designed or developed, then creating such a mis-
sion from the existing set of simpleactions would have been difficult, luckily
that was not the case. There were some minor changes needed in the code
of the simpleactions, but no new simpleactions had to be added to solve a
version of this mission. Changing the simulation world to conform to the
new mission was also a part of creating the quarantine delivery-mission be-
cause the current setup would not let us successfully test the mission in a
compatible environment. Converting from the standard exploration mission
to the quarantine delivery-mission was an easy assignment, one could simply
use the mission planner to plan this new mission after doing some simple
tweaks. The tasks were automatically allocated using the MRTA algorithm
to the best fitting robots. This mission supports the execution of one route,
for one drone-rover pair in the prototype.

A video recording of the quarantine delivery-mission can be viewed on
YouTube1. The description contains more information about what you see
and timestamps for events in the mission. Screenshots from the quarantine
delivery-mission that is used in the video can be seen in Figures 6.1 and 6.2.
The mission executes as follows:

1) The drone starts by setting its altitude such that it avoids obstacles,
then enable object recognition to see flags, and set the message target
to moose such that it knows where to send the messages. The moose
starts by actively waiting for its first location.

2) The drone will try to fly to the first given locations, and when reaching
the location, it will send that location to the moose if there is a flag
there. When the rover receives a location it will go to that location
and actively wait for the next one.

3) The drone will keep flying to the next location looking for flags, and the
rover will follow if there are flags at the location. If the moose receives
a while it was driving, it will put that location in a queue, and skip
the next active wait. Send location will be called after reaching each
location, even if there are no flags (if there are no flags, the message will
not contain any new location). This will repeat for each given location.

1https://www.youtube.com/watch?v=TE_qN2Zqp8E

84

https://www.youtube.com/watch?v=TE_qN2Zqp8E

Figure 6.1: Screenshot from quarantine delivery mission for the Scout neigh-
borhood task allocated to the mavic2pro

Figure 6.2: Screenshot from quarantine delivery mission for the Receive and
go to location task allocated to the moose

85

Some assumptions and requirements are needed for the mission to work.
There need to be a rover and a drone (with a camera) present in the simula-
tion (in this case the moose and the mavic2pro) and a simulation environment
that emulates a neighborhood. The mission also assumes that the user who
plans the mission knows the exact coordinates of the location, i.e. where
the drone needs to look for flags (i.e. where the drone has to fly to look for
flags, in real life this would be addresses or street names). Flags being de-
tectable are defined in the simulation environment, not by the simpleactions,
so this being a flag is arbitrary, just to show the example. The loading and
unloading of supplies are assumed to be done by humans in this scenario and
is therefore not a part of the mission (the rover drives around with a supply
box but this is not interacted with inside the simulation).

6.3.2 Quarantine delivery expectations versus results

The description of the problem WiRoM is supposed to solve in this thesis
is a good indicator of the expectations from our mission scenario example:
heterogeneous multi-robot mission planning. The expected results were to
be able to plan missions using heterogeneous multi-robot setups in WiRoM.
The quarantine delivery-mission is such a mission fulfills our expectations
and also has clear parallels to a real-life scenario that would be useful today.

This does not however mean that the system can execute any thinkable
mission possible. Going from a more generic exploratory-mission to the quar-
antine delivery-mission was a fairly easy process, but this could be because
they require roughly the same simpleactions to be executed. This is not to
take away from the fact that the quarantine delivery-mission is some of the
more complex missions that can be executed by the robots that we have used
in this project.

6.4 User testing

Disclaimer Collecting user data for this research will be somewhat re-
stricted because of the current state of the world. Covid-19 has restricted
the ability to perform physical user testing. This greatly affected the number
of users that tested the system, because it would require more from the users.
Many adjustments had to be made, which resulted in the entire process of
user testing to be very time-consuming. In retrospect, this could have been

86

avoided had we put less emphasis on functionality, and rather prioritize to
deploy the system as a web application from the beginning, but predicting
such events is impossible, and we have been making the most out of what we
had available during these times.

We wanted to have users with different backgrounds and different amounts
of experience test the system for the different cases (as shown in Section 5.1).
User testing the system will provide data that can be used to answer our
research question in Section 1.4. This data was intended to be collected by
interviewing and observing users as they test the system, performing a set of
given instructions, without interference from the observer (Section 2.5).

We wanted to do this by approaching different users that were physically
available but this had to be changed because of lock-down, narrowing down
the possibilities of physical testing. The observation part will fall away be-
cause we cannot observe the user’s struggles and realizations in the same
way as with physical testing. The interview will also be slightly altered, we
decided to use a questionnaire instead of a normal interview, making it sim-
pler for people to answer the same questions over the web. This would also
simplify the process of categorizing the answers and compare the different
results.

6.4.1 Questionnaire

Some research was performed to create the questionnaire. We wanted to
find some template or sample questionnaire with questions about a similar
topic that could be used to create the questionnaire for this evaluation. The
problem was that there were no templates or samples that fit the criteria
for this evaluation. Therefore, we focused on finding some guides, or a set of
rules that was pretty standard for creating questionnaires. Two good articles
were located, one from the Harvard University program on survey research
[79] and one from NHS England [80].

Both articles mention a few common concepts for writing a questionnaire:

• Being short and concise with the questions, otherwise, the users might
be swayed away from answering properly (if at all)

• Ordering of questions is important to make the questionnaire flow nicely

• Be specific with the questions, to get the answers you desire

87

• Avoid double-barreled questions, i.e. one question asking about two
different things

• Use clear language, such that the user is not confused or misinterpret
the questions.

When writing a questionnaire there are different ways to create questions
and options, deciding how the users should provide feedback to the questions.
The main different questions are:

• Open-ended questions, where the users will have to type some answer

• Close-ended questions, where that the user will have some options avail-
able to choose from when answering

We want to use close-ended questions when collecting data to keep the
answers consistent. This also makes it easier to read the answers and put
them up against each other, but we need some strategy to do so.

Close-ended questions also have a lot of different types of styles one can
use. One of those styles is to use a Likert scale. Likert scale is when each
question is written as a statement, and the user answer based on how much
they agree with that statement (strongly agree, agree, neither agree nor dis-
agree, disagree, strongly disagree). We wanted to use this type of question in
our questionnaire, but with slight alterations.

Neither agree nor disagree would provide very little information from the
users based on the statements because it might not be a proper answer to
some of the questions. E.g. answering Neither agree nor disagree to the
statement I had few to no complications with X) does not provide much of
an answer. Additionally, some experiences that users have with the system
might not fall within the Likert scale at all, depending on the situation.
Because of this, it was decided to remove the neither agree nor disagree
option and add an other option instead, letting users type out some answer
to the question that they see fit more than the Likert scale (so they could
still answer neither agree nor disagree, but they would have to type it out in
the other option).

The articles mention some different things about the types of answers
that can come in. [79] mentions that having agree or disagree options for
questions that ask about positive experiences might make the answer bias
towards answering agree. This is important to note if all of the users seem

88

to tip towards agreeing with most of the statements. [80] mentions that it
can be useful to provide some questions at the beginning about the user that
is being questioned, to have some data on which type of user provides which
types of answers.

The questions themselves can be seen in the next subsection together
with the results from the questions (to avoid repeating the questions). This
questionnaire was sent out together with the setup and test instructions [74]
[81] to a group of users.

6.4.2 Results

A few questions were asked at the beginning about the users’ experience, the
time they spent on the instructions, as well as spent on installation (if it was
needed). This was to gather some info about the user that may have affected
the results.

• How much experience would you say you have with programming? (No
experience, Novice, Intermediate, Advanced, Expert)

• How much time would you say that you spent on completing the given
instructions? (Fill in the answer)

• If you had to install the software before testing it, how much time would
you say that you spent on this process? (Fill in the answer)

The most common users were advanced programmers, with one user hav-
ing no experience. All except one user also spent 30 minutes on their instruc-
tions. One person noted their installation time, to also be 30 minutes.

Table 6.3 show the questions that were asked, as well as the results. No
more than four users were able to perform the user testing of the system,
and these were the answers that were given.

6.4.3 User testing expectations versus results

Some initial surprises such as no strongly disagree answers nor other answers
were provided. One additional note was also added to the end of one of the
answers, which was asking for more pictures in the instructions of the system.

It was expected for the users to experience some complications when
running such a system for the first time, because of either bad instructions,

89

Figure 6.3: Table containing results from user testing the system

system faults, or user errors, but not a lot of complications. The points
of interest for complications were expected with running missions or with
changing and modifying missions (as reflected in the questions). The results
were mostly as expected, maybe even slightly better, and everyone made it
through the instructions.

The system was expected to be intuitive for users (especially when they
were given proper instructions), because of its low-code design. The re-
sults showed that users found the web interface more intuitive than counter-
intuitive. The web interface might not be overly intuitive in the beginning,
but it seems like people quickly learned how to make use of the system. The
lack of problems while running and modifying missions also indicate that
the system was intuitive. Even though the web interface is designed and
developed as a low-code platform, the actual design has not been done by a
proper designer, so this might affect the initial intuitive aspects.

The automatic task allocation was expected to perform well, and the
manual task allocation was expected to be useful. The automatic task allo-
cation seemed to satisfy most users, but then as expected, the manual option
was very useful for all users, implying that the users who were dissatisfied
with their automatic allocation were happily making the desired corrections.

90

The system was generally accepted as a system for simple missions rather
than advanced missions. It was expected for it to be accepted for both types
of missions, but this shows that the design and low-code approach might not
be the best fit for more advanced missions, because it does not provide the
necessary tools needed to perform more advanced missions. Some mission
configurations might go missing, or it is necessary to go to the lower abstrac-
tion levels of the system to change things to perform the desired missions. It
is important to note that it is not specified in the questionnaire what a sim-
ple or advanced mission was, which might be an invalidating factor for these
results. However, the initial user impression of the system and their view on
what is simple and advanced will still be useful for providing perspective on
the capabilities of the system, especially considering the differences in the
amount of experience.

Finally, it was expected for most users to want to recommend the sys-
tem for both inexperienced and experienced users. The results reflected this
nicely, most people would recommend it to both. This shows that after
performing all of the instructions, the users generally found it simple and
user-friendly to use the system, and would recommend it as a system for
planning robot missions.

6.5 Threats to validity

When discussing the validity of our results, two different types of validity are
considered: Internal validity and external validity [82]. Threats to internal
validity include faults in the research method or data collection. Threats to
external validity are considered as faults that prevent the system from being
valid in practice.

6.5.1 Internal validity

Showing that one mission (or one type of mission) fulfill our requirements
does not automatically mean that all missions will fulfill the same require-
ments. Only a few mission was planned using WiRoM that had some parallel
to practical real-world scenarios, and the evaluation is focusing on the most
relevant mission and use this to argue the validity of the system. Having one
such mission does not mean that any thinkable mission, or even any type of
mission, can be planned using WiRoM, but it shows that it works for this

91

scenario (and similar scenarios). To increase the internal validity of mission
scenarios we would set up an experiment to develop new missions that were
considered practical. The diversity and sample size of missions would be
increased, to increase the validity of mission execution in WiRoM.

The users that test the system are not randomly selected, but rather a
selected group of people. This could lead to bias towards choosing good
options for the statements because most of the users have personal relation-
ships with us, and would want us to get good results rather than just being
honest about their opinions. Additionally, using a Likert scale with positive
statements can skew any user to give more ’agree’-answers (as discussed in
Section 6.4.1). To increase internal validity we would have randomized the
users for testing the system, as well as applying a control group, comparing
the usage of WiRoM to non-usage of WiRoM for mission planning.

6.5.2 External validity

The missions planned by the same people who designed and developed the
system, which means that the mission might not reflect what a user without
the same knowledge about the system might be able to achieve. The explo-
ration-type of missions was the main type of missions that was intended for
the system, so the simpleactions have been created with this type of mis-
sion in mind, and might not be easily transferable. Having an experiment
where external users would plan missions and try to solve different practical
problems would be a good way to increase the validity of the missions.

The mission scenario (and the system as a whole) only use two different
robots, which is not ideal when testing a heterogeneous multi-robot setup.
Validity could be improved by adding more robots to the system an running
them through the same missions and task allocation.

The sample size of users testing the system is very low, and the quality of
testing is also affected, because of the lack of physical observation. Having
a low-sample size makes it difficult to assess how valid the system might be
for more than just the selected people that tested the system. Increasing
external validity would be done by increasing the sample size of people that
tested the system. All cases (Section 5.1) would be tested to provide valid
results for the entirety of the system.

92

6.6 Discussion

The research questions (Section 1.4) for this thesis are all how-questions, ask-
ing how well some concepts affected our results. To answer these questions,
we need to assess whether we got to our wanted results using the proposed
methods and means of development, and to what extent our results cover
the topics in the questions.

The research questions that were for this thesis were the following:

Main research question

RQ1 How well do Model-Driven Software Engineering core concepts com-
bined with robot programming enhance the practicality and usability of
a high-level heterogeneous multi-robot mission planning system?

Sub-questions

RQ2 How well do the concepts and principles of low-code platforms enhance
the user-friendliness of the system

RQ3 How efficiently are tasks allocated to multiple heterogeneous robots within
the system?

To answer the main research question (RQ1), we must assess the prac-
ticality and usability of WiRoM. There are two main perspectives when
describing the practicality of the system. The main perspective is the practi-
cality of the tool as a mission-solving tool. The quarantine delivery-mission
is a practical mission, as we have seen in Section 6.3.1, there already exists
similar robot missions that are being applied to the real world right now,
and the need for good solutions to this problem in the future is clear. It
also solves a mission (or type of mission) that is similar to missions that
are proposed by related work like TDL, ERGO, and FLYAQ, as well as pro-
posed missions that we reviewed in DARS (see Sections 3 and 2.4.1). The
quarantine delivery-mission provides a good example that the system can be
practical for planning missions in a simulated environment.

Practicality of the system can also be seen as the practicality the system
has as a research/learning tool. The results from the questionnaire show that
adding/modifying missions and running missions in the simulation were not
considered a complicated process for both experienced and inexperienced

93

users. The benefit of this is that the system will provide a platform for easy
mission planning as well as mission execution in simulated environments,
letting domain-expert users create some set of missions that they can use to
test their research topics, without having to learn much about robotics or
mission planning.

Based on our results from both the quarantine-delivery-mission and user
testing, the system can be seen as practical. We would expect WiRoM to
be most practical as a research tool because of said benefits, but we cannot
validate these expectations because we haven’t had any domain expert users
try to perform research using the system.

The usability of the system can be seen as a factor of how well the
system can be used by all of the different users and cases that are proposed
as use cases for the system. There are some different perspectives when
trying to assess whether the system is usable, or at least to what extent.
It does not only have to be able to work, but it has to work well for the
different use cases. As mentioned, because of current restrictions, the data
that was collected through the questionnaire only could only focus on the
mission planning case of the system, but with various types of users, which
means that this is where we can evaluate the usability of the system. From
the results that were collected, all users who tried managed to get quickly
through the instructions, and were able to make use of the system, regardless
of programming experience. The system was also generally recommended for
other users and considered as a system that worked well with simple missions.
The sample size is not large, but the data collected does point towards the
system being used for the mission-planning case. We can assess the system
as usable for mission-planning, but because of a lack of data on other use
cases, we cannot assess it for the other use cases of the system.

The MDSE core concepts brings the practicality and usability of
WiRoM to a higher level, and it all happens autonomously. We can argue
that practicality and usability have been enhanced because the system has
raised the abstraction levels and therefore reduced the complexity of hetero-
geneous multi-robot mission planning while maintaining the complexity of
mission execution at the lower levels. When using MDSE core concepts in
combination with robot programming allowed us to create a prototype for
this system, such that it could be tested.

Answering the first sub-question (RQ2), we need assess the user friend-
liness of the system. Low-code principles are considered a driving factor for
increasing the user- friendliness of systems. We have already seen other low-

94

code platforms that have been created as such, to provide programming for
users with little experience (see Sections 2.2.5 and 3.6). The intuitiveness of
the system from the user testing results show that the system was leaning to-
wards being intuitive, and the fact that all users got through the instructions
with a maximum time of 40 minutes regardless of programming experience
are some clear indications of user-friendliness. Our results also told us that
most users would recommend the system to users with different amounts of
programming experience, and additions like the mission timeline and means
of allocating tasks are assisting the users to understand the system and were
accepted as good contributions.

We need to remember that the user-friendliness could propose a threat
to the complexity of the system. This is always a risk when abstracting a
system (because reducing complexity is one of the purposes of abstraction),
but the key challenge when abstracting is to keep as much functionality as
possible. The results from the questionnaire generally showed that the system
was accepted as a system for simple missions rather than advanced missions,
and this is one of the possible drawbacks that we try to avoid when using
this type of low-code design. The quarantine delivery mission is considered
a complex mission, which shows that we have done a good job of abstracting
without loosing too much complexity. Based on these results, the system can
be considered as user-friendly, with definitive room for improvements from a
design standpoint.

Higher abstraction levels are considered as synonymous with user-friendliness,
as we have seen earlier in Section 2.2 because it removes complexity from the
system. A high-level low-code platform for mission planning is assessed as
user-friendly based on the results from user testing the system, meaning it
successfully enhanced the user-friendliness of the system, while maintaining
relatively complex mission execution.

Answering the second sub-question (RQ3), we need to assess the how
task were allocated efficiently in the system. Having good MRTA al-
gorithms that run automatically is the most efficient approach to allocating
tasks to robots (see Section 2.3), but one problem is to get correct results
when having heterogeneous robots. WiRoM, therefore, provides manual al-
location such that the users can make up for any faults in the task allocation
algorithm. The results from the questionnaire show that automatic task allo-
cation seemed to work well for most, providing good task allocations for their
missions. These tasks were allocated mostly according to the expectations,
and if they were not, then the users would use manual allocation to get their

95

desired allocation.
The literature tells us that MRTA algorithms are efficient for the MRTA

problem (see Section 2.3), as well as some related work like TDL which used
MRTA algorithms 3.2. Since we know that MRTA algorithms are efficient,
we provided an implementation of one such algorithm in WiRoM, to show
that MRTA algorithms can be used to allocate tasks efficiently in the sys-
tem. The results from our data indicate that the implementation works as
intended, and manual allocation was available as a solution to the flaws of
the MRTA algorithm. These results are less prone to threats to their validity
because very few examples and experiences are needed to show that a type
of algorithm works. We can use the literature to show that being able to
implement any MRTA algorithm is an efficient solution because the extent
of the efficiency can be increased by optimizing the MRTA algorithm while
mentioning that this could be the topic for an entire thesis in itself.

Discussion conclusion Based on the information we have gathered, we
can argue that WiRoM is showing indications of being practical, usable,
user-friendly, and provide good task allocation efficiency. We choose to say
that we have indications of such because the threats to the validity make it
difficult to realistically assess all the results as valid. This does not mean that
the results are invalid, but rather that there needs to be more data collected
and research done on the system to further confirm the indications that we
have seen throughout this thesis.

96

Chapter 7

Conclusion

This thesis presented a solution to the heterogeneous multi-robot mission
planning problem. WiRoM was developed as a prototype to solve this
problem. The system was designed and developed using MDSE core concepts,
low-code principles, and multi-robot task allocation, providing solutions to
the challenges and questions presented in this thesis.

We have used studied MDSE and located the core concepts that were
useful for the development of WiRoM. The core concepts included system
abstraction, model-driven architecture, code generation, and model transfor-
mation. These core concepts acted as the foundation for how the different
parts of WiRoM were to be developed. By having such a foundation and
combining it with robot programming (using the Webots controller frame-
work in Python), we achieved a system that was considered as practical and
usable, based on the data gathered in this thesis.

We started by looking into the limited literature that surrounds low-code
platforms and proposed a low-code design for the web interface of WiRoM
from what we learned. The data collected in this thesis showed that the
users that tested the system found the web interface user-friendly, implying
that the low-code platform web interface, combined with other assisting tools
from the system, was a driving factor for user-friendliness.

By studying MRTA problems and algorithms, we located an algorithm
for solving the XD [SR-ST-IA] problem that was presented in WiRoM and
implemented it in the system to show that such an efficient solution could
be used. The data gathered confirmed that both the automatic allocation
and the manual allocation worked as intended. The extent of efficiency of
the MRTA algorithm provided in this thesis is not optimized, but this shows

97

that it’s possible to increase the efficiency of the automatic task allocation
in WiRoM by simply optimizing or replacing the existing algorithm.

WiRoM comes with some useful propositions to the heterogeneous multi-
robot mission planning problem, with the possibility of further improvements
both to the system and the research. The robotics and mission planning
domain is rapidly evolving and having new solutions like the one developed in
this thesis provide some perspective on the future of research in this domain.

98

Chapter 8

Further Work

There are several different parts of the system that can be optimized or
utilized for further work. A high-level system was to allow domain-expert
users to easily plan missions in a simulated environment and use this to
research within the robotics domain. Possible research topics that can be
performed using the system include optimizing and testing robotic algorithms
(collision avoidance, path planning, task allocation, etc.), apply machine
learning, and create automatic validation and verification of missions. These
are some of the possible topics that could make use of having such a system
as the base for performing research.

The system is a prototype, which means that it is not a finished product
that is can be applied commercially. Almost all of the different parts of the
source code for WiRoM can be optimized for future usage. Everything is
created such that it was functional, just to show that the approach works,
but this means there are lots of room for further improvements. For instance,
the web interface can be improved (greatly), information about robots could
be utilized better and low-level programming is not optimal because it was
not the main focus of the project. This is just to mention a few things that
would be next on the priority list.

The system could also be deployed properly as a web application, making
it closer to a commercial prototype, and making it easier to distribute. This
would require hosting the web interface, the Python server, and a Webots
instance on separate servers, making the entire system available over the
internet, straight from the browser without having to do any installation.
This would also require things like a database for the system to store data.
This project has been created to be able to be deployed in the future, meaning

99

it runs locally in the exact way that it would if it was deployed.
If the system itself is not worked on in the future, we hope that the

WiRoM prototype can be used as inspiration for future work on the hetero-
geneous multi-robot mission planning problem.

100

Bibliography

[1] Oxford Dictionary, Robot definition. [Online]. Available: https://www.
lexico.com/en/definition/robot (visited on 01/20/2020).

[2] R. Yin and SAGE., Case Study Research: Design and Methods, ser. Ap-
plied Social Research Methods. SAGE Publications, 2003, isbn: 9780761925521.
[Online]. Available: https://books.google.no/books?id=BWea%5C_
9ZGQMwC.

[3] Oxford Dictionary, Robotics definition. [Online]. Available: https://
www.lexico.com/definition/robotics (visited on 01/20/2020).

[4] M. Ben-Ari and F. Mondada, “Robots and their applications,” in El-
ements of Robotics. Cham: Springer International Publishing, 2018,
pp. 1–20, isbn: 978-3-319-62533-1. doi: 10.1007/978-3-319-62533-
1_1. [Online]. Available: https://doi.org/10.1007/978-3-319-
62533-1_1.

[5] Oxford Dictionary, Task definition. [Online]. Available: https://www.
lexico.com/definition/task (visited on 01/20/2020).

[6] ——, Mission definition. [Online]. Available: https://www.lexico.
com/definition/mission (visited on 01/20/2020).

[7] L. Zlajpah, “Simulation in robotics,” Mathematics and Computers in
Simulation, vol. 79, no. 4, pp. 879–897, 2008, 5th Vienna Interna-
tional Conference on Mathematical Modelling/Workshop on Scientific
Computing in Electronic Engineering of the 2006 International Confer-
ence on Computational Science/Structural Dynamical Systems: Com-
putational Aspects, issn: 0378-4754. doi: https://doi.org/10.

1016/j.matcom.2008.02.017. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0378475408001183.

101

https://www.lexico.com/en/definition/robot
https://www.lexico.com/en/definition/robot
https://books.google.no/books?id=BWea%5C_9ZGQMwC
https://books.google.no/books?id=BWea%5C_9ZGQMwC
https://www.lexico.com/definition/robotics
https://www.lexico.com/definition/robotics
https://doi.org/10.1007/978-3-319-62533-1_1
https://doi.org/10.1007/978-3-319-62533-1_1
https://doi.org/10.1007/978-3-319-62533-1_1
https://doi.org/10.1007/978-3-319-62533-1_1
https://www.lexico.com/definition/task
https://www.lexico.com/definition/task
https://www.lexico.com/definition/mission
https://www.lexico.com/definition/mission
https://doi.org/https://doi.org/10.1016/j.matcom.2008.02.017
https://doi.org/https://doi.org/10.1016/j.matcom.2008.02.017
http://www.sciencedirect.com/science/article/pii/S0378475408001183
http://www.sciencedirect.com/science/article/pii/S0378475408001183

[8] R. Sargent, “Verification and validation of simulation models,” vol. 37,
Jan. 2011, pp. 166–183. doi: 10.1109/WSC.2010.5679166.

[9] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software En-
gineering in Practice: Second Edition, 2nd. Morgan & Claypool Pub-
lishers, 2017, isbn: 1627057080.

[10] Object Management Group, “Omg unified modeling language® (omg
uml) version 2.5.1,” Dec. 2017. [Online]. Available: https://www.omg.
org/spec/UML/2.5.1/PDF (visited on 05/24/2020).

[11] ——, “Object management group model driven architecture (mda)
mda guide rev. 2.0,” Jun. 2014. [Online]. Available: https://www.

omg.org/cgi-bin/doc?ormsc/14-06-01 (visited on 05/24/2020).

[12] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on domain-
specific languages in robotics,” in Simulation, Modeling, and Program-
ming for Autonomous Robots, D. Brugali, J. F. Broenink, T. Kroeger,
and B. A. MacDonald, Eds., Cham: Springer International Publishing,
2014, pp. 195–206.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd. Addison-Wesley Professional, 2009, isbn:
0321331885.

[14] Mendix, Mendix home page. [Online]. Available: www.mendix.com (vis-
ited on 05/19/2020).

[15] J. den Haan, Low-code principle number 1: Model-driven development,
the most important concept in low-code, Jan. 2020. [Online]. Available:
https://www.mendix.com/blog/low-code-principle-1-model-

driven-development/ (visited on 05/19/2020).

[16] J. Cabot, Low-code platforms, the new buzzword, Sep. 2016. [Online].
Available: https://modeling-languages.com/low-code-platforms-
new-buzzword/ (visited on 05/19/2020).

[17] Mendix, Mendix low code guide, Mar. 2020. [Online]. Available: https:
//www.mendix.com/low-code-guide/ (visited on 05/19/2020).

[18] D. Brugali, “Model-driven software engineering in robotics: Models are
designed to use the relevant things, thereby reducing the complexity
and cost in the field of robotics,” IEEE Robotics Automation Magazine,
vol. 22, no. 3, pp. 155–166, Sep. 2015, issn: 1558-223X. doi: 10.1109/
MRA.2015.2452201.

102

https://doi.org/10.1109/WSC.2010.5679166
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
www.mendix.com
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://modeling-languages.com/low-code-platforms-new-buzzword/
https://modeling-languages.com/low-code-platforms-new-buzzword/
https://www.mendix.com/low-code-guide/
https://www.mendix.com/low-code-guide/
https://doi.org/10.1109/MRA.2015.2452201
https://doi.org/10.1109/MRA.2015.2452201

[19] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:
A review of the state-of-the-art,” in. May 2015, vol. 604, pp. 31–51,
isbn: 978-3-319-18299-5. doi: 10.1007/978-3-319-18299-5_2.

[20] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” The International Jour-
nal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. doi: 10.
1177 / 0278364904045564. eprint: https : / / doi . org / 10 . 1177 /

0278364904045564. [Online]. Available: https://doi.org/10.1177/
0278364904045564.

[21] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxon-
omy for multi-robot task allocation,” The International Journal of
Robotics Research, vol. 32, no. 12, pp. 1495–1512, 2013. doi: 10 .

1177 / 0278364913496484. eprint: https : / / doi . org / 10 . 1177 /

0278364913496484. [Online]. Available: https://doi.org/10.1177/
0278364913496484.

[22] R. Zlot, A. Stentz, C. Dias, M. Veloso, and T. Balch, “An auction-
based approach to complex task allocation for multirobot teams thesis
committee,” PhD thesis, Dec. 2006.

[23] H. W. Kuhn, “The hungarian method for the assignment problem,”
in 50 Years of Integer Programming 1958-2008: From the Early Years
to the State-of-the-Art, M. Jünger, T. M. Liebling, D. Naddef, G. L.
Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A.
Wolsey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 29–
47, isbn: 978-3-540-68279-0. doi: 10.1007/978-3-540-68279-0_2.
[Online]. Available: https://doi.org/10.1007/978-3-540-68279-
0_2.

[24] H. Asama, T. Fukuda, T. Arai, and I. Endo, Distributed Autonomous
Robotic Systems. Jan. 1994, isbn: 978-4-431-68277-6. doi: 10.1007/
978-4-431-68275-2.

[25] Call for papers dars 2020. [Online]. Available: https://www.swarm-
systems.com/dars-swarm2020/cfp (visited on 01/23/2020).

[26] V. Govindarajan, S. Bhattacharya, and V. Kumar, “Human-robot col-
laborative topological exploration for search and rescue applications,”
in Distributed Autonomous Robotic Systems, N.-Y. Chong and Y.-J.
Cho, Eds., Tokyo: Springer Japan, 2016, pp. 17–32.

103

https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-4-431-68275-2
https://doi.org/10.1007/978-4-431-68275-2
https://www.swarm-systems.com/dars-swarm2020/cfp
https://www.swarm-systems.com/dars-swarm2020/cfp

[27] D. Hougen, M. Erickson, P. Rybski, S. Stoeter, M. Gini, and N. Pa-
panikolopoulos, “Autonomous mobile robots and distributed exploratory
missions,” Nov. 2000. doi: 10.1007/978-4-431-67919-6_21.

[28] D. Martinez and A. Halme, “Marsim, a simulation of the marsubots
fleet using netlogo,” in. Jan. 2016, pp. 79–89, isbn: 978-4-431-55877-4.
doi: 10.1007/978-4-431-55879-8_6.

[29] A. Marjovi and L. Marques, “Multi-robot topological exploration using
olfactory cues,” in. Jan. 2013, vol. 83, pp. 47–60, isbn: 978-3-642-32722-
3. doi: 10.1007/978-3-642-32723-0_4.

[30] K.-C. Ma, Z. Ma, L. Liu, and G. S. Sukhatme, “Multi-robot informa-
tive and adaptive planning for persistent environmental monitoring,”
in Distributed Autonomous Robotic Systems: The 13th International
Symposium, R. Groß, A. Kolling, S. Berman, E. Frazzoli, A. Marti-
noli, F. Matsuno, and M. Gauci, Eds. Cham: Springer International
Publishing, 2018, pp. 285–298.

[31] J. Guerrero and G. Oliver, “Multi-robot task allocation method for het-
erogeneous tasks with priorities,” in Distributed Autonomous Robotic
Systems 6, R. Alami, R. Chatila, and H. Asama, Eds., Tokyo: Springer
Japan, 2007, pp. 181–190.

[32] S. Sariel and T. Balch, “A distributed multi-robot cooperation frame-
work for real time task achievement,” in. Jun. 2007, pp. 187–196. doi:
10.1007/4-431-35881-1_19.

[33] S. Alili, R. Alami, and V. Montreuil, “A task planner for an autonomous
social robot,” in Distributed Autonomous Robotic Systems 8, H. Asama,
H. Kurokawa, J. Ota, and K. Sekiyama, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 335–344.

[34] J. D. Bjerknes and A. F. T. Winfield, “On fault tolerance and scala-
bility of swarm robotic systems,” in Distributed Autonomous Robotic
Systems: The 10th International Symposium, A. Martinoli, F. Mon-
dada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker,
and K. Støy, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 431–444.

104

https://doi.org/10.1007/978-4-431-67919-6_21
https://doi.org/10.1007/978-4-431-55879-8_6
https://doi.org/10.1007/978-3-642-32723-0_4
https://doi.org/10.1007/4-431-35881-1_19

[35] D. Jeong and K. Lee, “Distributed communication and localization al-
gorithms for homogeneous robotic swarm,” in Distributed Autonomous
Robotic Systems, N.-Y. Chong and Y.-J. Cho, Eds., Tokyo: Springer
Japan, 2016, pp. 405–418.

[36] G. Vorobyev, A. Vardy, and W. Banzhaf, “Supervised learning in robotic
swarms: From training samples to emergent behavior,” in Distributed
Autonomous Robotic Systems, M. Ani Hsieh and G. Chirikjian, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 435–448.

[37] S. Demeyer, “Research methods in computer science,” Sep. 2011, p. 600.
doi: 10.1109/ICSM.2011.6080841.

[38] J. Creswell, Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches. SAGE Publications, 2014, isbn: 9781452226095. [On-
line]. Available: https://books.google.no/books?id=PViMtOnJ1LcC.

[39] B. Kitchenham, O. [Brereton], D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering –
a systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7–15, 2009, Special Section - Most Cited Articles
in 2002 and Regular Research Papers, issn: 0950-5849. doi: https:
/ / doi . org / 10 . 1016 / j . infsof . 2008 . 09 . 009. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/

S0950584908001390.

[40] D. S. Losvik and A. Rutle, “A domain-specific language for the develop-
ment of heterogeneous multi-robot systems,” in 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), 2019, pp. 549–558.

[41] D. S. Losvik, Task definition langauge repo. [Online]. Available: https:
//github.com/95danlos/Task-Definition-Language (visited on
01/20/2020).

[42] S. Garcia, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “High-
level mission specification for multiple robots,” in Proceedings of the
12th ACM SIGPLAN International Conference on Software Language
Engineering, ser. SLE 2019, Athens, Greece: Association for Computing
Machinery, 2019, pp. 127–140, isbn: 9781450369817. doi: 10.1145/
3357766.3359535. [Online]. Available: https://doi.org/10.1145/
3357766.3359535.

105

https://doi.org/10.1109/ICSM.2011.6080841
https://books.google.no/books?id=PViMtOnJ1LcC
https://doi.org/https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/https://doi.org/10.1016/j.infsof.2008.09.009
http://www.sciencedirect.com/science/article/pii/S0950584908001390
http://www.sciencedirect.com/science/article/pii/S0950584908001390
https://github.com/95danlos/Task-Definition-Language
https://github.com/95danlos/Task-Definition-Language
https://doi.org/10.1145/3357766.3359535
https://doi.org/10.1145/3357766.3359535
https://doi.org/10.1145/3357766.3359535
https://doi.org/10.1145/3357766.3359535

[43] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“Flyaq: Enabling non-expert users to specify and generate missions
of autonomous multicopters,” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015, pp. 801–
806.

[44] D. Swaib, B. Meyers, and P. Pelliccione, “A generated property speci-
fication language for resilient multirobot missions,” Aug. 2017, pp. 45–
61, isbn: 978-3-319-65947-3. doi: 10.1007/978-3-319-65948-0_4.

[45] F. Ciccozzi, D. Di Ruscio, I. Malavolta, and P. Pelliccione, “Adopting
mde for specifying and executing civilian missions of mobile multi-robot
systems,” IEEE Access, vol. 4, pp. 6451–6466, 2016.

[46] D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli, “Automatic
generation of detailed flight plans from high-level mission descriptions,”
in Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS ’16,
Saint-malo, France: Association for Computing Machinery, 2016, pp. 45–
55, isbn: 9781450343213. doi: 10.1145/2976767.2976794. [Online].
Available: https://doi.org/10.1145/2976767.2976794.

[47] D. Bozhinoski, I. Malavolta, A. Bucchiarone, and A. Marconi, “Sustain-
able safety in mobile multi-robot systems via collective adaptation,” in
2015 IEEE 9th International Conference on Self-Adaptive and Self-
Organizing Systems, 2015, pp. 172–173.

[48] D. Di Ruscio, I. Malavolta, and P. Pelliccione, “A family of domain-
specific languages for specifying civilian missions of multi-robot sys-
tems,” vol. 1319, pp. 16–29, Jan. 2014.

[49] S. Gerasimou, N. Matragkas, and R. Calinescu, “Towards systematic
engineering of collaborative heterogeneous robotic systems,” in 2019
IEEE/ACM 2nd International Workshop on Robotics Software Engi-
neering (RoSE), 2019, pp. 25–28.

[50] ERGO, Ergo homepage. [Online]. Available: https://www.h2020-

ergo.eu/ (visited on 11/13/2019).

[51] J. Ocón, J. M. Delfa, A. Medina, D. Lachat, R. Marc, M. Woods, I.
Wallace, A. Coles, A. J. Coles, D. Long, T. Keller, M. Helmert, and
S. Bensalem, “Ergo: A framework for the development of autonomous
robots,” in ICRA 2017, 2017.

106

https://doi.org/10.1007/978-3-319-65948-0_4
https://doi.org/10.1145/2976767.2976794
https://doi.org/10.1145/2976767.2976794
https://www.h2020-ergo.eu/
https://www.h2020-ergo.eu/

[52] M. Perrotin, ESA/ESTEC, and TEC-SWE, What is taste? 2017. [On-
line]. Available: https://download.tuxfamily.org/taste/misc/
what_is_taste.pdf (visited on 01/28/2020).

[53] Taste home page. [Online]. Available: taste.tools (visited on 01/28/2020).

[54] I.-E. Dragomir, The ergo framework presentation. [Online]. Available:
https://sites.google.com/site/modevva/program (visited on
11/13/2019).

[55] M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M. Guerra, D.
Di Ruscio, A. Pierantonio, and M. Wimmer, “Lowcomote: Training
the Next Generation of Experts in Scalable Low-Code Engineering
Platforms,” in STAF 2019 Co-Located Events Joint Proceedings: 1st
Junior Researcher Community Event, 2nd International Workshop on
Model-Driven Engineering for Design-Runtime Interaction in Complex
Systems, and 1st Research Project Showcase Workshop co-located with
Software Technologies: Applications and Foundations (STAF 2019),
ser. CEUR Workshop Proceedings (CEUR-WS.org), Eindhoven, Nether-
lands, Jul. 2019. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-02363416.

[56] NESTLab, Buzz home page. [Online]. Available: https://the.swarming.
buzz/ (visited on 01/24/2020).

[57] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a
domain-specific language to design, simulate and deploy robotic appli-
cations,” in Simulation, Modeling, and Programming for Autonomous
Robots, I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 149–160, isbn: 978-
3-642-34327-8.

[58] Cyberbotics Ltd., Robotbenchmark. [Online]. Available: robotbenchmark.
net (visited on 05/24/2020).

[59] A. Hussein and A. Khamis, “Market-based approach to multi-robot
task allocation,” in 2013 International Conference on Individual and
Collective Behaviors in Robotics (ICBR), 2013, pp. 69–74.

[60] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
Specification patterns for robotic missions, 2019. arXiv: 1901.02077
[cs.SE].

107

https://download.tuxfamily.org/taste/misc/what_is_taste.pdf
https://download.tuxfamily.org/taste/misc/what_is_taste.pdf
taste.tools
https://sites.google.com/site/modevva/program
https://hal.archives-ouvertes.fr/hal-02363416
https://hal.archives-ouvertes.fr/hal-02363416
https://the.swarming.buzz/
https://the.swarming.buzz/
robotbenchmark.net
robotbenchmark.net
http://arxiv.org/abs/1901.02077
http://arxiv.org/abs/1901.02077

[61] A. Nordmann, N. Hochgeschwender, D. L. Wigand, and S. Wrede,
“A Survey on Domain-Specific Modeling and Languages in Robotics,”
Journal of Software Engineering in Robotics (JOSER), vol. 7, no. 1,
pp. 75–99, 2016. [Online]. Available: https://corlab.github.io/
dslzoo/index.html (visited on 05/20/2020).

[62] R. Waldron, Johnny-five github repository. [Online]. Available: https:
//github.com/rwaldron/johnny-five (visited on 09/25/2019).

[63] ——, Johnny five home page. [Online]. Available: johnny- five.io

(visited on 09/25/2019).

[64] thehybridgroup, Cylon.js home page. [Online]. Available: https://

cylonjs.com (visited on 09/25/2019).

[65] Node.js foundation, Node.js home page. [Online]. Available: https:

//nodejs.org/en/ (visited on 10/02/2019).

[66] Wikipedia, “Wiki listing robotic simulation tools,” [Online]. Available:
https://en.wikipedia.org/wiki/Robotics_simulator (visited on
09/26/2019).

[67] Jslee02, Awesome robotics libraries. [Online]. Available: http://jslee02.
github.io/awesome-robotics-libraries/ (visited on 09/26/2019).

[68] Cyberbotics Ltd., Webots github repository. [Online]. Available: https:
//github.com/cyberbotics/webots (visited on 05/05/2020).

[69] ——, Webots home page. [Online]. Available: https://cyberbotics.
com/ (visited on 06/02/2020).

[70] ——, Webots robot repository. [Online]. Available: https : / / www .

cyberbotics.com/doc/guide/robots?version=develop (visited
on 06/02/2020).

[71] ——, Webots language support guide. [Online]. Available: https://
cyberbotics.com/doc/guide/language-setup (visited on 06/02/2020).

[72] D. Robinson, Blog-post: The incredible growth of python, Sep. 2017.
[Online]. Available: https://stackoverflow.blog/2017/09/06/

incredible-growth-python// (visited on 05/20/2020).

[73] E. Wohlgethan, “Supporting web development decisions by comparing
three major javascript frameworks: Angular, react and vue. js,” PhD
thesis, Hochschule für Angewandte Wissenschaften Hamburg, 2018.

108

https://corlab.github.io/dslzoo/index.html
https://corlab.github.io/dslzoo/index.html
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
johnny-five.io
https://cylonjs.com
https://cylonjs.com
https://nodejs.org/en/
https://nodejs.org/en/
https://en.wikipedia.org/wiki/Robotics_simulator
http://jslee02.github.io/awesome-robotics-libraries/
http://jslee02.github.io/awesome-robotics-libraries/
https://github.com/cyberbotics/webots
https://github.com/cyberbotics/webots
https://cyberbotics.com/
https://cyberbotics.com/
https://www.cyberbotics.com/doc/guide/robots?version=develop
https://www.cyberbotics.com/doc/guide/robots?version=develop
https://cyberbotics.com/doc/guide/language-setup
https://cyberbotics.com/doc/guide/language-setup
https://stackoverflow.blog/2017/09/06/incredible-growth-python//
https://stackoverflow.blog/2017/09/06/incredible-growth-python//

[74] J. M. Grutle, Multi-robot-mission-planner. [Online]. Available: https:
//github.com/joakimgrutle/WiRoM (visited on 06/03/2020).

[75] M. Shaw, “What makes good research in software engineering?” STTT,
vol. 4, pp. 1–7, Oct. 2002. doi: 10.1007/s10009-002-0083-4.

[76] E. Guizzo, “Robot vehicles make contactless deliveries amid coron-
avirus quarantine,” [Online]. Available: https://spectrum.ieee.

org/automaton/transportation/self-driving/robot-vehicles-

make- contactless- deliveries- amid- coronavirus- quarantine

(visited on 05/24/2020).

[77] C. Metz and E. Griffith, “A city locks down to fight coronavirus, but
robot come and go,” [Online]. Available: https://www.nytimes.com/
2020/05/20/technology/delivery-robots-coronavirus-milton-

keynes.html/ (visited on 05/24/2020).

[78] R. Baldwin, “Robot deliveries might end up being common, post-
coronavirus pandemic,” [Online]. Available: https://www.caranddriver.
com/news/a32133440/robot-car-delivery-pandemic/ (visited on
05/24/2020).

[79] H. university Program on Survery Research, “Tip sheet on question
wording,” [Online]. Available: https://psr.iq.harvard.edu/files/
psr/files/PSRQuestionnaireTipSheet_0.pdf (visited on 05/01/2020).

[80] NHS England, Writing an effective questionnaire. [Online]. Available:
https://www.england.nhs.uk/wp-content/uploads/2018/01/

bitesize-guide-writing-an-effective-questionnaire.pdf (vis-
ited on 05/01/2020).

[81] J. M. Grutle, Mission planner test instructions. [Online]. Available:
https://github.com/joakimgrutle/WiRoM/blob/master/Mission%

20planning%20instructions.pdf (visited on 06/03/2020).

[82] R. McDermott, “Internal and external validity,” in Cambridge Hand-
book of Experimental Political Science, J. N. Druckman, D. P. Green,
J. H. Kuklinski, and A. Lupia, Eds. Cambridge University Press, 2011,
pp. 27–40. doi: 10.1017/CBO9780511921452.003.

109

https://github.com/joakimgrutle/WiRoM
https://github.com/joakimgrutle/WiRoM
https://doi.org/10.1007/s10009-002-0083-4
https://spectrum.ieee.org/automaton/transportation/self-driving/robot-vehicles-make-contactless-deliveries-amid-coronavirus-quarantine
https://spectrum.ieee.org/automaton/transportation/self-driving/robot-vehicles-make-contactless-deliveries-amid-coronavirus-quarantine
https://spectrum.ieee.org/automaton/transportation/self-driving/robot-vehicles-make-contactless-deliveries-amid-coronavirus-quarantine
https://www.nytimes.com/2020/05/20/technology/delivery-robots-coronavirus-milton-keynes.html/
https://www.nytimes.com/2020/05/20/technology/delivery-robots-coronavirus-milton-keynes.html/
https://www.nytimes.com/2020/05/20/technology/delivery-robots-coronavirus-milton-keynes.html/
https://www.caranddriver.com/news/a32133440/robot-car-delivery-pandemic/
https://www.caranddriver.com/news/a32133440/robot-car-delivery-pandemic/
https://psr.iq.harvard.edu/files/psr/files/PSRQuestionnaireTipSheet_0.pdf
https://psr.iq.harvard.edu/files/psr/files/PSRQuestionnaireTipSheet_0.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/01/bitesize-guide-writing-an-effective-questionnaire.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/01/bitesize-guide-writing-an-effective-questionnaire.pdf
https://github.com/joakimgrutle/WiRoM/blob/master/Mission%20planning%20instructions.pdf
https://github.com/joakimgrutle/WiRoM/blob/master/Mission%20planning%20instructions.pdf
https://doi.org/10.1017/CBO9780511921452.003

	Introduction
	Background
	Problem Description
	Motivation
	Research question
	Method
	Thesis Outline

	Theoretical Background
	Field of study
	Robotics
	Tasks
	Missions
	Simulation
	Verification and validation

	Model Driven Software Engineering
	What is a model?
	MDSE concepts
	Model Driven Architecture
	Domain-Specific Languages
	Low-code development
	MDSE and robotics

	Multi-robot task allocation
	The Multi-robot task allocation problem
	Taxonomy

	Distributed Autonomous Robotic Systems
	DARS review

	Research methodology

	Related work
	Criteria
	Task definition language
	PROMISE
	FLYAQ
	The ERGO framework
	Lowcomote
	Additional work
	Related work conclusion

	Design and Implementation
	Technological requirements
	Technological review
	Requirement 2: Simulation software
	Requirement 1: The programming language and framework
	Requirement 3: Web interface technology

	Development process
	Mission abstraction levels
	System architecture and design
	Simpleaction structure
	Robot synchronization
	Folder structure
	Frontend folders
	Backend folders

	Web interface
	Navigating the mission planner
	Implementation
	Mission timeline

	Server implementation
	Simpleaction implementation
	Model transformation
	Multi-robot task allocation

	Users, cases and workflow
	System cases and user roles
	Workflow
	Setup
	Mission planning
	Extending the mission setup
	Extending the mission planner and change low-level technology

	Evaluation and Assessment
	Research strategy
	Data collection
	Mission scenario example
	The quarantine delivery mission
	Quarantine delivery expectations versus results

	User testing
	Questionnaire
	Results
	User testing expectations versus results

	Threats to validity
	Internal validity
	External validity

	Discussion

	Conclusion
	Further Work

