
Microprocessors and Microsystems 103 (2023) 104945

A
0

H
p
J
a

b

A

K
A
B
S
P
H

1

t
s
c
c
s
t
m
e
p

o
c
t
t
w
t
A
p

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ardware architecture of Dillon’s APN permutation for different primitive
olynomials
osé L. Imaña a,∗, Nikolay Kaleyski b, Lilya Budaghyan b

Department of Computer Architecture and Automation, Faculty of Physics, Complutense University, 28040 Madrid, Spain
Selmer Center, Department of Informatics, University of Bergen, 5020 Bergen, Norway

R T I C L E I N F O

eywords:
lmost perfect nonlinear (APN)
lock cypher
-box
rimitive polynomial
ardware architecture

A B S T R A C T

Cryptographically strong functions used as S-boxes in block cyphers are fundamental for the cypher’s security.
Their representation as lookup tables is possible for functions of small dimension. For larger dimensions, this
is infeasible, especially if resources are limited. An alternative is representing the function as a polynomial
over a finite field, and constructing a circuit evaluating this polynomial. We study how the choice of primitive
polynomial affects the efficiency of hardware implementations. We take Dillon’s permutation on 6 bits (the
only known permutation in even dimension from the cryptographically optimal Almost Perfect Nonlinear
functions) as a relevant example, and present hardware architectures, polynomial representations and hardware
theoretical complexities for all primitive polynomials of degree six. To compare the efficiency, we report on
results obtained from FPGA (Field Programmable Gate Array) implementations. To the best of our knowledge,
no similar study has been given in the literature. We observe that using the primitive trinomial 𝑦6 + 𝑦 + 1
reduces the number of 2-input XOR gates up to 11.7% and the number of XOR gates × Delay metrics up
to 13.2% with respect to the worst-case implementation. Therefore, the choice of primitive polynomial can
profoundly impact the efficiency of such an implementation, and should be carefully considered.
. Introduction

Block cyphers are cryptographic primitives that provide confiden-
iality by allowing the encryption and decryption of messages once a
ecret key has been shared. They are crucial to the design of many
ryptographic protocols, and are thus critical for providing security in
ommunication. Designing secure block cyphers is not an easy task,
ince they need to be resilient against any kind of cryptanalytic attack
hat an attacker might potentially employ. Furthermore, block cyphers
ust be designed in such a way that encryption and decryption are

fficient in terms of time and memory, since cyphers may be used to
rocess large amounts of data in practice.

The design of virtually all modern block cyphers revolves around
ne or more highly non-linear transformations combined with linear
omponents. Since linear functions behave in a predictable way, it is
he non-linear part of the cypher that provides its security; and it is
he properties of this nonlinear part that can be used to measure the
eakness or resilience to various cryptanalytic attacks. The nonlinear

ransformations are typically referred to as substitution boxes, or S-boxes.
n S-box is a function that takes a sequence of 𝑛 bits as input, and
roduces a sequence of 𝑚 bits as output; for this reason, they are also

∗ Corresponding author.
E-mail addresses: jluimana@ucm.es (J.L. Imaña), Nikolay.Kaleyski@uib.no (N. Kaleyski), Lilya.Budaghyan@uib.no (L. Budaghyan).

called (𝑛, 𝑚)-functions. One of the most important cases of such functions
is when 𝑛 = 𝑚, i.e. when the input sequence of bits is replaced with
another sequence of the same length.

Differential [1] and linear [2] cryptanalysis are two of the most
efficient attacks against block cyphers. Specific design criteria for S-
boxes have been formulated that characterize how resilient they are
against these attacks. The resistance of an S-box to differential and
linear attacks is quantified by the differential uniformity [3] and the
nonlinearity of the S-box, respectively. In order to resist differential
attacks, the differential uniformity is required to be as low as possible;
while in order to resist linear attacks, the nonlinearity of the S-box
should be high. In the case when 𝑛 = 𝑚, the functions having the
best possible differential uniformity are called almost perfect nonlinear
(APN), while those having the best possible nonlinearity are called
almost bent (AB). Furthermore, it can be shown that any AB function is
APN [4]. Unfortunately, AB functions exist only when 𝑛 is odd, while
in practice some of the most natural cases involve an even number of
bits.

Besides being cryptographically strong (in terms of e.g. the dif-
ferential uniformity and nonlinearity), it is frequently desirable, or
vailable online 6 October 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2023.104945
eceived 26 January 2023; Received in revised form 13 July 2023; Accepted 3 Oct
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ober 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:jluimana@ucm.es
mailto:Nikolay.Kaleyski@uib.no
mailto:Lilya.Budaghyan@uib.no
https://doi.org/10.1016/j.micpro.2023.104945
https://doi.org/10.1016/j.micpro.2023.104945
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104945&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

s
u
w
e
t
t

h
p
w
e
v
p

c
i
F
t
k
a
o
a

e
t
h
t
t
p
i
i
b
p
f
o
m
f
r
t
h
d
r
c
o

t
f
o
s
t
a
a
m
f
s
o
k
F
i

necessary, for S-boxes to be bijective. For instance, a generic construc-
tion of block cyphers called a Substitution Permutation Network (SPN)
requires the S-box used to be bijective. The Rijndael cypher, imple-
mented as the Advanced Encryption Standard (AES) by the National
Institute of Standards and Technology (NIST) [5], is one of the most
secure and widely used block cyphers today, and its design is based on
an SPN. Rijndael has a bijective (8, 8)-function at the core of its design;
urprisingly enough, this function is not APN so that its differential
niformity is not optimal. The reason for this is that, at the time of
riting, no bijective APN functions on 8 bits are known. Moreover, the
xistence of bijective APN functions on an even number of bits larger
han 6 is currently one of the most important open problems in the
heory of cryptographic Boolean functions.

In contrast, optimal permutations with an odd number of variables
ave been known for years [6], but it was long believed that APN
ermutations on an even number of variables do not exist (in fact, it
as proven [7,8] that APN permutations with four variables do not
xist). However, Dillon et al. [9] found an APN permutation on six
ariables, and this is currently the only known example of an APN
ermutation with an even number of variables (up to equivalence).

APN permutations on an even number of bits are clearly of signifi-
ant practical interest. For example, Dillon’s permutation has been used
n the design of the lightweight authenticated encryption algorithm
IDES [10]. Finding an APN permutation on 8 bits would allow us
o construct an even more secure version of the Rijndael cypher; and
nowing APN permutations on a larger number of variables would
llow the construction of strong cyphers operating with larger blocks
f data, which will becomes necessary in the future when technological
dvances make the currently available designs insecure.

While APN functions and permutations are mostly studied as math-
matical objects and represented as e.g. polynomials over finite fields,
heir use in practice frequently requires them to be implemented in
ardware. For small dimensions, it is possible to simply use a lookup
able containing all values of the function. Since the size of this lookup
able grows exponentially with the dimension, this clearly becomes
roblematic for functions on a larger number of bits, and especially
n the case of a resource-constrained environment. For this reason,
t is important to consider other hardware implementations that may
e more efficient in terms of memory requirements [11]. A natural
ossibility is to make a hardware implementation performing finite
ield arithmetic and to have it evaluate the function (as a polynomial
ver the corresponding finite field) for a give input. However, there are
ultiple choices of a primitive polynomial with which to construct a

inite field of a given dimension, each leading to a different univariate
epresentation of the function. It is then important to know whether
he choice of primitive polynomial affects the complexity of such a
ardware implementation, and if so, by how much. As our results will
emonstrate, while the cryptographic properties of a given function
emain the same regardless of the choice of primitive polynomial, the
omplexity with which it can be computed in practice highly depend
n the concrete implementation.

In this paper, we present a hardware architecture for Dillon’s permu-
ation implemented using the six different primitive polynomials of the
inite field F26 . Dillon’s permutation is a natural choice for a function
n which to study the effects of the choice of the primitive polynomial,
ince it is an APN function (and thus cryptographically optimal from
he point of view of resistance to differential cryptanalysis) as well
s bijective (since some constructions of cryptographic cyphers, such
s substitution-permutation networks, require the S-box to be a per-
utation). We also give the corresponding univariate representations

or the different polynomials. In order to compare the different repre-
entations, we give the hardware theoretical complexities and report
n results obtained from FPGA implementations. To the best of our
nowledge, no similar study has been given in the literature so far.
rom the theoretical and experimental results, we observe that the
2

mplementation of Dillon’s permutation using the primitive trinomial
Table 1
Dillon permutation 𝑔(𝑥) in hexadecimal.

𝑤

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 04 05 0F 19 26 2B 03 2A 1A 10 29 0D 2F 12 20
𝑣 1 25 36 33 2C 37 22 30 3B 24 17 0E 0B 18 32 3A 34

2 23 07 31 3E 0A 0C 3C 08 01 02 39 16 1B 13 15 28
3 35 2D 1C 11 3D 06 1D 21 1E 09 1F 27 3F 14 2E 38

𝑓 (𝑦) = 𝑦6+𝑦+1 presents the highest reduction in complexity (compared
to the worst case), as measured by the number of 2-input XOR gates
and in the number of XOR gates × Delay metrics. Therefore the use of
the primitive polynomial 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 with which the
function is typically represented does not provide the best results from
the point of view of a hardware implementation. We stress that Dillon’s
permutation is used here merely as one example of a cryptographically
relevant function in low dimension, and the methodology and hardware
architecture presented here can be generalized to other cryptographic
functions, in such a way that univariate polynomial representations
for different primitive polynomials could be considered and similar
architectures to the one here proposed could also be determined.

The paper is organized as follows. Section 2 introduces the funda-
mental concepts used throughout the paper. Dillon’s permutation, its
univariate representations with respect to the different primitive poly-
nomials of F26 , and related analysis are given in Section 3. Section 4
presents the hardware architecture of Dillon’s permutation and the
description of its different components. Theoretical complexity analysis
of the hardware architecture for the different primitive polynomials is
given in Section 5. Section 6 gives FPGA implementation results and
discussion. Finally, Section 7 concludes the paper with a summary of
our observations and some potential directions for future work.

2. Notation and preliminaries

Let F2 = {0, 1} be the finite field with two elements; we will also
refer to it as the binary field, and to any extension field F2𝑛 as a binary
extension field. Let 𝑓 (𝑦) =

∑𝑚
𝑖=0 𝑓𝑖𝑦

𝑖 be a monic irreducible polynomial
of degree 𝑚 over F2, where 𝑓𝑖 ∈ F2 for 𝑖 = 0, 1,… , 𝑚. All elements of
the binary extension field F2𝑚 can be represented in the standard basis
𝛺 = {1, 𝑝,… , 𝑝𝑚−1}, where 𝑝 is a root of 𝑓 (𝑦). Any element 𝑥 ∈ F2𝑚 can
be represented in 𝛺 as 𝑥 =

∑𝑚−1
𝑖=0 𝑥𝑖𝑝𝑖 = (1, 𝑝,… , 𝑝𝑚−1) ⋅ (𝑥0,… , 𝑥𝑚−1)𝑇 ,

with 𝑥𝑖 ∈ F2, where (𝑥0,… , 𝑥𝑚−1) are the coordinates of 𝑥 with respect
to the standard basis.

Vectorial Boolean functions, or (𝑛, 𝑚)-functions, are mappings be-
tween the vector spaces F𝑛

2 and F𝑚
2 for some positive integers 𝑛 and

𝑚 [12]. Practically all modern block cyphers include one or more
(𝑛, 𝑚)-functions as their only nonlinear components, and so these func-
tions are of critical importance in cryptography. Due to the natural
identification of the vector space F𝑚

2 with the binary extension field
F2𝑚 , we can also see (𝑛, 𝑚)-functions as mappings between the finite
fields F2𝑛 and F2𝑚 . When 𝑛 = 𝑚, any (𝑚,𝑚)-function can be uniquely
expressed as a polynomial in the form 𝑔(𝑥) =

∑2𝑚−1
𝑖=0 𝑎𝑖𝑥𝑖, for 𝑎𝑖 ∈ F2𝑚 ,

called the univariate representation of 𝑔. We note that, while any two
binary extension fields F2𝑚 of the same degree 𝑚 are isomorphic, the
polynomial representing an (𝑚,𝑚)-function depends on the concrete
binary extension field F2𝑚 , i.e. on the choice of primitive polynomial.

The algebraic degree of 𝑔 is the largest binary weight (number of
1’s in the binary representation) of an exponent 𝑖 with 𝑎𝑖 ≠ 0 in the
univariate representation. Functions of algebraic degree at most 1 are
called affine. Functions of algebraic degree 2 and 3 are called quadratic
and cubic, respectively. A linear function is an affine function 𝑔 that
satisfies 𝑔(0) = 0.

Given an (𝑚,𝑚)-function 𝑔, the derivative of 𝑔 in direction 𝑎 ∈ F2𝑚 is
given by 𝐷𝑎𝑔(𝑥) = 𝑔(𝑥+𝑎)+𝑔(𝑥). The differential uniformity of 𝑔 (denoted

by 𝛥𝑔) is the largest value of 𝛥𝑔(𝑎, 𝑏) among all 𝑎 ≠ 0 and 𝑏 from F2𝑚 ,



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

T
s
e
p
𝛥
t
f
c

o
s
(
N

3

t
i
n
b
t
o
b
s
t
u
t
p

3

t
a
p
𝑦

𝑝

𝑝

d
t
o

f
t
i
(
t
m
e
r

3

𝑝
e
p
s
4
r
n
c
h
w
c
𝑗
w

p

a
S
a
e
𝑥
d
t
t

4

f
i
n
f
T
I
G
t

where 𝛥𝑔(𝑎, 𝑏) is the number of solutions 𝑥 to the equation 𝐷𝑎𝑔(𝑥) = 𝑏.
he lower the differential uniformity of a given function, the better its
ecurity against differential cryptanalysis [1], which is one of the most
fficient attacks that can be employed against block cyphers. The lowest
ossible value that 𝛥𝑔 can take for any (𝑚,𝑚)-function 𝑔 is 𝛥𝑔 = 2, and if
𝑔 = 2, then 𝑔 is called almost perfect nonlinear (APN). For this reason,
he study and construction of APN functions are of great importance
or the design of secure block cyphers. Examples of APN constructions
an be found in [13,14], and as general references we can cite [15,16].

When used in practice for the construction of block cyphers, it is
ften desirable for APN functions to possess other beneficial properties,
uch as being a permutation. The latter is a necessary condition for an
𝑚,𝑚)-function to be used as an S-box in a Substitution Permutation
etwork, or SPN.

. Dillon’s permutation

The existence of APN (𝑚,𝑚)-permutations for even 𝑚 (known as
he ‘‘big APN problem’’) is one of the most important open questions
n the area; it was long believed that an APN function on an even
umber of bits cannot be a permutation. Dillon disproved this in [9]
y constructing an APN permutation of F26 . Dillon’s permutation is
herefore of great theoretical and practical importance because it is the
nly known APN permutation for even dimension so far (efforts are
eing made recently [17] to find more APN permutations in dimension
ix). Furthermore, it has been used in the design of the lightweight au-
henticated encryption algorithm FIDES [10]. However, it is currently
nknown whether APN permutations exist in even dimensions greater
han 6, and so the Big APN Problem [18] on the existence of APN
ermutations of even dimension greater than six remains unsolved.

.1. Univariate polynomial representations

The univariate polynomial representation of Dillon’s APN permu-
ation 𝑔(𝑥), with 𝑥 ∈ F26 , generated by the Magma computational
lgebra software [19] is given in Eq. (1), where 𝑝 is Magma’s default
rimitive element, which is a root of the primitive polynomial 𝑓 (𝑦) =
6 + 𝑦4 + 𝑦3 + 𝑦 + 1 over the binary field F2:

𝑔(𝑥) = 𝑝36𝑥60 + 𝑝44𝑥58 + 𝑝40𝑥57 + 𝑝55𝑥56+ (1)
26𝑥54 + 𝑝23𝑥53 + 𝑝36𝑥52 + 𝑝23𝑥51 + 𝑝17𝑥50+
54𝑥49 + 𝑝14𝑥48 + 𝑝21𝑥46 + 𝑝53𝑥45 + 𝑝21𝑥44+

𝑝7𝑥43 + 𝑝57𝑥42 + 𝑝8𝑥41 + 𝑝10𝑥40 + 𝑝12𝑥39+

𝑝20𝑥38 + 𝑝52𝑥37 + 𝑝46𝑥36 + 𝑝27𝑥35 + 𝑝44𝑥34+

𝑝18𝑥33 + 𝑝57𝑥32 + 𝑝28𝑥30 + 𝑝44𝑥29 + 𝑝42𝑥28+

𝑝26𝑥27 + 𝑝20𝑥26 + 𝑝10𝑥25 + 𝑝45𝑥24 + 𝑥23+

𝑝7𝑥22 + 𝑝57𝑥21 + 𝑝21𝑥20 + 𝑝22𝑥19 + 𝑝6𝑥17+

𝑝8𝑥16 + 𝑝43𝑥15 + 𝑝42𝑥13 + 𝑝47𝑥12 + 𝑝56𝑥11+

𝑝38𝑥10 + 𝑝36𝑥8 + 𝑝47𝑥7 + 𝑝4𝑥6 + 𝑝8𝑥5+

𝑝23𝑥4 + 𝑝39𝑥3 + 𝑝52𝑥2 + 𝑝59𝑥.

A look-up table of this permutation obtained for this first univariate
representation is given in Table 1. Here 𝑣 and 𝑤 are given in hexadeci-
mal. For example, if the input 𝑥 is given in hexadecimal as 𝑥 = 𝑣𝑤 = 2𝐶
then 𝑔(2𝐶) = 1𝐵.

We note that the above univariate representation was generated
using Magma’s default primitive pentanomial 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦+ 1
with which Dillon’s APN permutation is typically represented [18,20].
However, for the binary finite field F26 there are five other primitive
polynomials (trinomials and pentanomials). They are 𝑓 (𝑦) = 𝑦6 + 𝑦5 +
𝑦4 + 𝑦+1, 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 +1, 𝑓 (𝑦) = 𝑦6 + 𝑦5 +1, 𝑓 (𝑦) = 𝑦6 + 𝑦+1
and 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 so other univariate representations of
Dillon permutation can be given using these primitive polynomials for
3

F26 . m
Table 2
Analysis of polynomial representations.

#𝑥𝑗𝑝 #𝑝𝑗 Monic 𝑥𝑗

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 52 33 𝑥23

𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 54 38 𝑥24

𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 53 38 𝑥45

𝑦6 + 𝑦5 + 1 T4 56 36 –
𝑦6 + 𝑦 + 1 T5 54 37 –
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 51 32 𝑥3 , 𝑥12 , 𝑥18 , 𝑥44

The six univariate polynomial representations are given in Ap-
pendix A where they have been named 𝑃 1, 𝑃 2, 𝑃 3, 𝑇 4, 𝑇 5 and 𝑃 6
epending on the type of the primitive polynomial (pentanomial or
rinomial) used for generating them. The default primitive polynomial
f Magma is denoted by 𝑃 1.

The procedure for obtaining the univariate representations is the
ollowing: we first construct the look-up table in Table 1 by evaluating
he univariate polynomial 𝑃 1 representing Dillon’s permutation on all
nputs 𝑥 ∈ F26 , and converting the finite field elements to binary vectors
representing the coordinates of the finite field elements with respect
o the standard basis). We then choose some other primitive polyno-
ial, convert the binary vectors expressed in Table 1 to finite field

lements, and use Lagrange interpolation to reconstruct the polynomial
epresenting the function.

.2. Analysis of polynomial representations

The expressions given in Appendix A consist of terms of the form
𝑖𝑥𝑗 , where 𝑝 is a root of the primitive polynomial 𝑓 (𝑦) under consid-
ration. Some of the terms are monic, i.e. of the form 𝑥𝑗 , and their
resence may affect the efficiency of the hardware implementation
ince they are easier to evaluate. The exponents 𝑗 have algebraic up to
, which is to be expected as Dillon’s permutation (and therefore any
epresentation of it) is known to have algebraic degree 4. Nonetheless,
ot all exponents of algebraic degree 4 (or less) appear with non-zero
oefficients. As we shall see, the presence or absence of different terms
as a profound impact on the cost of implementing the function in hard-
are. Another reason for this is that, for a given representation, some

oefficients 𝑝𝑖 are common to several terms 𝑝𝑖𝑥𝑗 for different values of
, so expressions of the form 𝑝𝑖(𝑥𝑗1 + 𝑥𝑗2 + ⋯) = 𝑝𝑖𝑣𝑖 can be obtained,
hich allows to cut down the complexity of the implementation.

Following Appendix A, Table 2 shows the number of different
owers of 𝑥 that are multiplied by 𝑝𝑗 terms (represented by #𝑥𝑗𝑝 in

Table 2), the number of different powers of 𝑝 (represented by #𝑝𝑗)
nd the monic 𝑥𝑗 terms for the different univariate representations.
ince the algebraic degree is 4, the powers 𝑥31, 𝑥47, 𝑥55 and 𝑥59 (of
lgebraic degree 5) do not appear in the expressions. Furthermore, the
xpression 𝑃1 includes neither 𝑥9, 𝑥14 nor 𝑥18; 𝑃 2 does not include
35; 𝑇 5 does not include 𝑥48 and 𝑃 6 does not include 𝑥56. These
ifferences among the univariate polynomial representations influence
he hardware implementation complexity, as we illustrate in Section 4;
he effect is quite substantial.

. Hardware architecture of Dillon’s permutation

Following the analysis in Section 3.2, the hardware architecture
or Dillon’s permutation given by any of the univariate representations
n Appendix A is shown in Fig. 1 which shows the different modules
eeded for the computation. The 6-bit input 𝑥 is represented in the
inite field F26 generated by the six different primitive polynomials.
he powers of 𝑥 are computed by the method of square and multiply.
n order to do this, the successive squares of 𝑥 are computed in the
enerator of 𝑥2𝑖 module shown in Fig. 1, the combined products of

hese squares are then computed in the Generator of 𝑥ℎ = 𝑥2𝑖 ⋅ 𝑥2𝑗
𝑘
odule, and the powers 𝑥 (given by the multiplication of some of



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

d

Fig. 1. Hardware architecture of Dillon’s permutation.
4

p
𝑥
a

𝑝
f
A
𝑥

the previously computed powers) are given by the Generator of 𝑥𝑘 =
𝑥𝑙 ⋅ 𝑥𝑚 module presented in Fig. 1, where these two last modules use
F26 multipliers in parallel for the different primitive polynomials. As
etailed in Section 3.2, the addition of some powers 𝑣𝑖 = (𝑥𝑗1 +𝑥𝑗2 +⋯),

is computed in the Addition of powers 𝑥𝑛 with common terms 𝑝𝑠 module.
The products 𝑝𝑖𝑥𝑗 and 𝑝𝑖𝑣𝑗 are computed in the Generator of 𝑝𝑖 ⋅ 𝑥𝑗
and 𝑝𝑖 ⋅ 𝑣𝑗 terms module. Finally, the sum (XOR) of 𝑥𝑖, 𝑝𝑖𝑥𝑗 and 𝑝𝑖𝑣𝑖
is computed in the Addition of terms module in Fig. 1.

The following subsections describe the implementation of the indi-
vidual modules in detail.

4.1. Generator of 𝑥2𝑖

This module computes the powers 𝑥2, 𝑥4, 𝑥8, 𝑥16 and 𝑥32 modulo
the primitive polynomial 𝑓 (𝑦). These powers are easily computed in
the finite field F26 due to the fact that 𝑥2𝑖 , for 𝑖 = 1, 2,… , 5, is 𝑥2𝑖 =
𝑥5 ⋅𝑝5⋅2

𝑖 +𝑥4 ⋅𝑝4⋅2
𝑖 +𝑥3 ⋅𝑝3⋅2

𝑖 +𝑥2 ⋅𝑝2⋅2
𝑖 +𝑥1 ⋅𝑝1⋅2

𝑖 +𝑥0 ⋅𝑝0⋅2
𝑖 and the powers

of 𝑝 are reduced using the corresponding primitive polynomial.
For example, for 𝑇 5 with primitive polynomial 𝑓 (𝑦) = 𝑦6 + 𝑦+1, we

have 𝑥8 = 𝑥5𝑝40+𝑥4𝑝32+𝑥3𝑝24+𝑥2𝑝16+𝑥1𝑝8+𝑥0, where 𝑝40, 𝑝32, 𝑝24, 𝑝16
and 𝑝8 must be reduced modulo 𝑓 (𝑦). Since 𝑝 is a primitive element, we
have that 𝑝6 = 𝑝+1, so 𝑝40 = 𝑝5+𝑝3+𝑝2+𝑝+1, 𝑝32 = 𝑝3+1, 𝑝24 = 𝑝4+1,
𝑝16 = 𝑝4+𝑝+1 and 𝑝8 = 𝑝3+𝑝2, and substituting this into the expression
for 𝑥8 leads us to

𝑥8 = (𝑥5)𝑝5 + (𝑥3 + 𝑥2)𝑝4+ (2)
(𝑥5 + 𝑥4 + 𝑥1)𝑝3 + (𝑥5 + 𝑥1)𝑝2+

(𝑥5 + 𝑥2)𝑝 + (𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥0).

Therefore the coordinates of the successive powers of 𝑥 are given as
the XORs of the coordinates of 𝑥 (depending on the reduction modulo
𝑓 (𝑦)). The hardware architecture of 𝑥8 for the primitive trinomial
𝑓 (𝑦) = 𝑦6 + 𝑦 + 1 is given in Fig. 2.

4.2. Generator of 𝑥ℎ = 𝑥2𝑖 ⋅ 𝑥2𝑗

This module computes the powers 𝑥3, 𝑥5, 𝑥6, 𝑥9, 𝑥10, 𝑥12, 𝑥17, 𝑥18,
𝑥20, 𝑥24, 𝑥33, 𝑥34, 𝑥36, 𝑥40 and 𝑥48 by means of the parallel multiplication
of some of the terms 𝑥, 𝑥2, 𝑥4, 𝑥8, 𝑥16 and 𝑥32. For example, 𝑥36 = 𝑥4⋅𝑥32,
where this product is implemented with a multiplier over F26 using
the corresponding primitive polynomial. Multipliers selected for the
implementation are described in Section 4.7.

4.3. Generator of 𝑥𝑘 = 𝑥𝑙 ⋅ 𝑥𝑚

The remaining powers 𝑥𝑘 (up to the maximum value 𝑥60 in all primi-
tive polynomials except 𝑇 5) are computed by the parallel multiplication
of some of the terms given by the above module (including the input
𝑥). For example, 𝑥53 = 𝑥20 ⋅ 𝑥33, where 𝑥20 and 𝑥33 are generated in
the previous module. The product is also implemented using a multi-
plier over F26 for the corresponding primitive polynomial. Multipliers
4

selected for the implementation are described in Section 4.7.
Fig. 2. Hardware architecture of 𝑥8 for primitive trinomial 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1.

.4. Addition of powers 𝑥𝑛 with common terms 𝑝𝑠

As discussed in Section 3.2, some terms 𝑝𝑖 are common to several
roducts 𝑝𝑖𝑥𝑗 for different values of 𝑗, so expressions of the form 𝑝𝑖(𝑥𝑗1+
𝑗2 +⋯) = 𝑝𝑖𝑣𝑖 can be obtained. Therefore, the sums 𝑣𝑖 = (𝑥𝑗1 +𝑥𝑗2 +⋯)
re computed in this module.

Appendix B shows the additions of powers 𝑥𝑛 with common terms
𝑠 for the different primitive polynomials. For example, for 𝑇 5 the
ollowing expressions can be found in the univariate representation (see
ppendix B): 𝑝7(𝑥26+𝑥39) = 𝑝7𝑣7, 𝑝21(𝑥6+𝑥17+𝑥44), 𝑝24(𝑥4+𝑥12), 𝑝26(𝑥27+
40), 𝑝28(𝑥11 + 𝑥15), 𝑝32(𝑥8 + 𝑥41), 𝑝34(𝑥2 + 𝑥7 + 𝑥52), 𝑝37(𝑥14 + 𝑥32 + 𝑥58),

𝑝39(𝑥16+𝑥49), 𝑝42(𝑥42+𝑥51), 𝑝43(𝑥35+𝑥54), 𝑝45(𝑥21+𝑥50), 𝑝49(𝑥24+𝑥56) and
𝑝57(𝑥28 +𝑥37) = 𝑝57𝑣57. The use of these expressions allows us to reduce
the complexity of the implementation. The sum of such powers 𝑥𝑛 is
simply performed as the bitwise XOR of the corresponding coordinates.
The architecture of the addition of powers 𝑣57 = (𝑥28 + 𝑥37) for the
primitive trinomial 𝑇 5 is given in Fig. 3.

4.5. Generator of 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 terms

The univariate representations given in Appendix A involve the
addition of terms 𝑝𝑖 ⋅𝑥𝑗 and 𝑝𝑖 ⋅𝑣𝑖, where 𝑣𝑖 = (𝑥𝑗1 +𝑥𝑗2 +⋯) as given in
previous subsection, and 𝑥𝑗 , 𝑣𝑗 ∈ F26 . In general, the term 𝑝𝑖 ⋅ 𝐴, with
𝐴 ∈ F26 , will be 𝑝𝑖 ⋅ 𝐴 = 𝑝𝑖 ⋅ (𝑎5𝑝5 + 𝑎4𝑝4 + 𝑎3𝑝3 + 𝑎2𝑝2 + 𝑎1𝑝 + 𝑎0) =
(𝑎5𝑝5+𝑖 + 𝑎4𝑝4+𝑖 + 𝑎3𝑝3+𝑖 + 𝑎2𝑝2+𝑖 + 𝑎1𝑝1+𝑖 + 𝑎0𝑝𝑖), where the powers of 𝑝
are reduced using the corresponding primitive polynomial.

For example, for 𝑃1 with primitive polynomial 𝑓 (𝑦) = 𝑦6+𝑦4+𝑦3+𝑦+
6 11 10 9 8 7 6
1, we have the term 𝑝 ⋅𝐴 = (𝑎5𝑝 +𝑎4𝑝 +𝑎3𝑝 +𝑎2𝑝 +𝑎1𝑝 +𝑎0𝑝 ) where



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

𝐓
𝐶

F
p

5

a
d
i
m
t
d

c
F
c
o
t
F
a
(
c
t
𝑇

5

c
a
(
i
𝑥
𝑥
𝑥
t
p
d
g
a
s

Fig. 3. Addition of powers 𝑣57 = (𝑥28 + 𝑥37) for primitive trinomial 𝑇 5.

𝑝11, 𝑝10, 𝑝9, 𝑝8, 𝑝7 and 𝑝6 must be reduced modulo 𝑓 (𝑦). Since 𝑝 is a
primitive element, we have that 𝑝6 = 𝑝4+𝑝3+𝑝+1, so 𝑝11 = 𝑝5+𝑝4+𝑝3+1,
𝑝10 = 𝑝5 + 𝑝4 + 1, 𝑝9 = 𝑝5 + 𝑝4 + 𝑝2 + 1, 𝑝8 = 𝑝5 + 𝑝4 + 𝑝2 + 𝑝 + 1,
𝑝7 = 𝑝5 + 𝑝4 + 𝑝2 + 𝑝, and 𝑝6 = 𝑝4 + 𝑝3 + 𝑝 + 1, and substituting this into
the expression for 𝑝6 ⋅ 𝐴 gives Eq. (3):

𝑝6 ⋅ 𝐴 = (𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎1)𝑝5+ (3)
(𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎1 + 𝑎0)𝑝4+

(𝑎5 + 𝑎0)𝑝3 + (𝑎3 + 𝑎2 + 𝑎1)𝑝2+

(𝑎2 + 𝑎1 + 𝑎0)𝑝 + (𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎0).

Therefore, the coordinates of 𝑝𝑖 ⋅ 𝐴 are given as the XORs of the
coordinates of 𝐴 (depending on the reduction modulo the primitive
polynomial 𝑓 (𝑦)). The hardware architecture of 𝑝6 ⋅𝐴 for the primitive
pentanomial 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 is given in Fig. 4.

4.6. Addition of 𝑥𝑖, 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 terms

The final addition of the terms 𝑥𝑖, 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 appearing in the
univariate expressions for Dillon’s permutation given in Appendix A is
simply performed as the bitwise XOR of the corresponding coordinates.

4.7. Multipliers over F26

Multipliers over the finite field F26 for the different primitive poly-
nomials (trinomials and pentanomials) are needed in the second and
third modules given in Sections 4.2 and 4.3, respectively, to compute
terms of the form 𝑥2𝑖 ⋅ 𝑥2𝑗 and 𝑥𝑙 ⋅ 𝑥𝑚.

Several 𝐺𝐹 (2𝑚) multipliers have been proposed in the
literature [21–24]. In this work, we have used the method presented
in [23,24] for the construction of F2𝑚 multipliers for primitive trinomi-
als and pentanomials, respectively, which exhibit lowest delay with a
balanced area×time complexity compared to other similar approaches.
In [23,24], in order to compute the product 𝐶 = 𝐴 ⋅𝐵, with 𝐴,𝐵 ∈ F26 ,
the functions 𝐒𝐢 (1 ≤ 𝑖 ≤ 𝑚) and 𝐓𝐢 (0 ≤ 𝑖 ≤ 𝑚−2) given by the addition
of terms 𝑥𝑘 = (𝑎𝑘𝑏𝑘) and 𝑧𝑗𝑖 = (𝑎𝑖𝑏𝑗 + 𝑎𝑗𝑏𝑖) were defined, with 𝑎𝑖, 𝑏𝑖 ∈ F2
being the coordinates of 𝐴 and 𝐵, respectively. These functions were
given in [23] as 𝐒𝐢 = 𝑥𝑝 +

∑𝑝−1
ℎ=0 𝑧

𝑖−ℎ−1
ℎ and 𝐓𝐢 = 𝑥𝑞 +

∑𝑟−(𝑖+1)
𝑗=1 𝑧𝑚−𝑗𝑖+𝑗 ,

where 𝑝 = ⌊𝑖∕2⌋, 𝑞 = (⌈𝑚∕2⌉ + ⌊𝑖∕2⌋), the term 𝑥𝑝 = 𝑎𝑝𝑏𝑝 only appears
for 𝑖 odd and 𝑥𝑞 only appears for 𝑚 and 𝑖 even or for 𝑚 and 𝑖 odd,
where 𝑟 = 𝑞. Otherwise, i.e., for 𝑚 odd and 𝑖 even or for 𝑚 even
and 𝑖 odd, the term 𝑥𝑞 does not exist and 𝑟 = (⌈𝑚∕2⌉ + ⌈𝑖∕2⌉). For
example, using the above expressions, the terms 𝐒𝐢 and 𝐓𝐢 for F26 are:
𝐒𝟏 = 𝑥0 = 𝑎0𝑏0, 𝐒𝟐 = 𝑧10 = (𝑎0𝑏1+𝑎1𝑏0), 𝐒𝟑 = 𝑥1+𝑧20 = 𝑎1𝑏1+(𝑎0𝑏2+𝑎2𝑏0),
𝐒𝟒 = 𝑧30 + 𝑧21 = (𝑎0𝑏3 + 𝑎3𝑏0) + (𝑎1𝑏2 + 𝑎2𝑏1), 𝐒𝟓 = 𝑥2 + 𝑧40 + 𝑧31 =
𝑎2𝑏2+(𝑎0𝑏4+𝑎4𝑏0)+(𝑎1𝑏3+𝑎3𝑏1), 𝐒𝟔 = 𝑧50+𝑧41+𝑧32 = (𝑎0𝑏5+𝑎5𝑏0)+(𝑎1𝑏4+
𝑎4𝑏1)+(𝑎2𝑏3+𝑎3𝑏2), 𝐓𝟎 = 𝑥3+𝑧51+𝑧42 = 𝑎3𝑏3+(𝑎1𝑏5+𝑎5𝑏1)+(𝑎2𝑏4+𝑎4𝑏2),

5 4 5
5

𝐓𝟏 = 𝑧2+𝑧3 = (𝑎2𝑏5+𝑎5𝑏2)+(𝑎3𝑏4+𝑎4𝑏3), 𝐓𝟐 = 𝑥4+𝑧3 = 𝑎4𝑏4+(𝑎3𝑏5+𝑎5𝑏3), 𝑥
Fig. 4. Hardware architecture of 𝑝6 ⋅ 𝐴 for 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1.

𝟑 = 𝑧54 = (𝑎4𝑏5 + 𝑎5𝑏4), 𝐓𝟒 = 𝑥5 = 𝑎5𝑏5. The coordinates of the product
= 𝐴 ⋅ 𝐵 can be computed as the sum of some of these terms.
The specific coordinate expressions of the product 𝐶 = 𝐴 ⋅ 𝐵 over

26 , given in terms of the 𝐒𝐢 and 𝐓𝐢 functions, for the different primitive
olynomials are given in Appendix C.

. Theoretical complexity analysis

Area and time theoretical complexities of the different permutation
rchitectures can be obtained from the complexities of the previously
escribed modules. Area complexity corresponds to the number of 2-
nput AND and XOR gates. Time complexity is determined by the
aximum number of 2-input AND and XOR gates that a signal must

raverse from input to output, and is given in terms of 𝑇𝐴 and 𝑇𝑋 (gate
elay of a 2-input AND and 2-input XOR gate, respectively).

Theoretical complexities of the permutation architectures can be
alculated by first determining the complexities of the F2𝑚 multipliers.
rom the expressions of 𝐒𝐢 and 𝐓𝐢 terms given in Section 4.7 and the
oordinate expressions of the product given in Appendix C, it can be
bserved that the number of 2-input AND gates is given by 𝑚2, so in
his case the number of AND gates needed is 36 for each multiplier.
urthermore, the number of 2-input XOR gates is 45, 44, 40, 45, 35
nd 42 for the 𝑃 1, 𝑃 2, 𝑃3, 𝑇 4, 𝑇 5 and 𝑃 6 multipliers, respectively
where the expressions including XORs with multiple inputs have been
onverted to equivalent 2-input XOR gates). Finally, it can be observed
hat the maximum theoretical delay of the multipliers is given by
𝐴 + 5𝑇𝑋 for 𝑃1, 𝑃 2, 𝑃 3, 𝑇 4, 𝑃 6 and 𝑇𝐴 + 4𝑇𝑋 for 𝑇 5.

.1. Area complexity

From the previous description of the different modules of the ar-
hitecture, it can be observed that all the modules (except the second
nd third ones involving multiplication in F26 ) are given as the sum
XORs) of the coordinates of their inputs. Therefore, the number of 2-
nput AND gates is given by these two modules that compute the terms
2𝑖 ⋅ 𝑥2𝑗 and 𝑥𝑙 ⋅ 𝑥𝑚. The module that generates the terms of the form
2𝑖 ⋅ 𝑥2𝑗 computes the powers 𝑥3, 𝑥5, 𝑥6, 𝑥9, 𝑥10, 𝑥12, 𝑥17, 𝑥18, 𝑥20, 𝑥24,
33, 𝑥34, 𝑥36, 𝑥40 and 𝑥48 by means of the multiplication of some of
he terms 𝑥, 𝑥2, 𝑥4, 𝑥8, 𝑥16 and 𝑥32. This module is the same for all
rimitive polynomials (that need 15 multipliers) except for 𝑇 5 (which
oes not include 𝑥48, and therefore needs 14 multipliers). The module
enerating the terms 𝑥𝑘 = 𝑥𝑙 ⋅ 𝑥𝑚 (up to the maximum value 𝑥60 in
ll primitive polynomials except 𝑇 5) are computed by the product of
ome of the terms given by the previous module (including the input

). The number of multipliers thus depend on the specific univariate



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

𝑇
m
o
d

c
o
d
e
o
o
𝑇
d
a
a
t
t
𝑃
r
a
1
a
t
n
𝑇
a
e
n
r
X
p

g
l
e
t
t

5

t
p
a
𝑥
𝑃
a
a
m
3
t
p
e
o
g
𝑃

s
s
t
𝑇

f
s
a
a
T
a
c
t

6

D
i
a
g
p
2
f
W
T
i
X
t
w
c
c
s

Table 3
Theoretical complexities for different primitive polynomials.

#AND #XOR Delay

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 1764 3003 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 1764 3000 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 1728 2757 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 1 T4 1800 3044 2𝑇𝐴 + 23𝑇𝑋
𝑦6 + 𝑦 + 1 T5 1728 2484 2𝑇𝐴 + 22𝑇𝑋
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 1764 2832 2𝑇𝐴 + 23𝑇𝑋

expression for the selected primitive polynomial. For the above two
modules, the overall number of multipliers needed for 𝑃 1, 𝑃 2, 𝑃3, 𝑇 4,
5 and 𝑃 6 are 49, 49, 48, 50, 48 and 49, respectively, where each
ultiplier needs 36 AND gates. Table 3 shows the theoretical number

f 2-input AND gates needed for each univariate expression using the
ifferent primitive polynomials.

With respect to the number of 2-input XOR gates for each ar-
hitecture, it can be observed that the first module generator of 𝑥2𝑖

nly involves XOR gates for the implementation whose number can be
educed from the corresponding expressions for each polynomial. For
xample, the number of 2-input XOR gates needed for the computation
f 𝑥8 for the polynomial 𝑇 5 given in Fig. 2 is 9 XORs. The total number
f 2-input XOR gates needed in this first module for 𝑃1, 𝑃 2, 𝑃 3, 𝑇 4,
5 and 𝑃 6 are 51, 45, 30, 47, 29 and 51, respectively. As previously
escribed, the second and third modules generating the terms 𝑥2𝑖 ⋅ 𝑥2𝑗

nd 𝑥𝑙 ⋅ 𝑥𝑚, respectively, need a total number of 49, 49, 48, 50, 48
nd 49 multipliers for 𝑃1, 𝑃 2, 𝑃 3, 𝑇 4, 𝑇 5 and 𝑃 6, respectively. Using
he complexities of the F26 multipliers previously given, we have that
he total number of XOR gates needed for these two modules for 𝑃1,
2, 𝑃3, 𝑇 4, 𝑇 5 and 𝑃6 are 2205, 2156, 1920, 2250, 1680 and 2058,

espectively. Next, it can be observed that the module performing the
ddition of terms of the form 𝑥𝑛 common to an element 𝑝𝑠 needs
14, 90, 90, 120, 102 and 114 XOR gates for 𝑃1, 𝑃2, 𝑃 3, 𝑇 4, 𝑇 5
nd 𝑃 6, respectively. The computation of the 2-input XOR gates for
he generator module of the terms 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 gives a total
umber of 435, 481, 489, 417, 457 and 399 XOR gates for 𝑃 1, 𝑃2, 𝑃 3,
4, 𝑇 5 and 𝑃 6, respectively. Finally, the last module performing the
ddition of the terms 𝑥𝑖, 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 appearing in the univariate
xpressions of Dillon’s permutation for 𝑃 1, 𝑃 2, 𝑃 3, 𝑇 4, 𝑇 5 and 𝑃 6
eeds a total number of 198, 228, 228, 210, 216 and 210 XOR gates,
espectively. Table 3 shows the total theoretical number of 2-input
OR gates needed for each univariate expression using the different
rimitive polynomials.

From Table 3, we can see that the lowest number of 2-input AND
ates corresponds to the expressions given by 𝑃 3 and 𝑇 5, while the
owest number of 2-input XOR gates corresponds to the univariate
xpression given by 𝑇 5. Furthermore, it is important to note that
rinomial 𝑇 4 exhibits the highest number of AND and XOR gates among
he different primitive polynomials.

.2. Time complexity

From the previous descriptions of the modules, it can be observed
hat the first module generator of 𝑥2𝑖 has a maximum delay of 3𝑇𝑋 for
olynomials 𝑃1, 𝑃 2, 𝑃 3, 𝑇 5 and a delay of 2𝑇𝑋 for polynomials 𝑇 4
nd 𝑃 6. The delay of the modules generating the terms 𝑥2𝑖 ⋅ 𝑥2𝑗 and
𝑙 ⋅ 𝑥𝑚 is given by the delay of the F26 multiplier (𝑇𝐴 + 5𝑇𝑋 for 𝑃 1,
2, 𝑃 3, 𝑇 4, 𝑃 6 and 𝑇𝐴 + 4𝑇𝑋 for 𝑇 5). The next module performing the
ddition of the terms of the form 𝑥𝑛 common to an element 𝑝𝑠 presents
maximum delay of 2𝑇𝑋 for all primitive polynomials. The generator
odule of the terms 𝑝𝑖 ⋅ 𝑥𝑗 and 𝑝𝑖 ⋅ 𝑣𝑖 also needs a maximum delay of
𝑇𝑋 in all cases. Finally, the last module performing the addition of
erms 𝑥𝑖, 𝑝𝑖 ⋅𝑥𝑗 and 𝑝𝑖 ⋅𝑣𝑖 has a maximum delay of 6𝑇𝑋 for all primitive
olynomials. Table 3 shows the theoretical delay for each univariate
xpression using the different primitive polynomials, where it can be
bserved that the lowest delay corresponds to the univariate expression
iven by primitive trinomial 𝑇 5 and the highest delay is obtained by
1, 𝑃 2 and 𝑃3 polynomials.
6

d

Table 4
Theoretical complexities for different primitive polynomials using subexpressions
sharing for multiplication.

#AND #XOR Delay

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 1764 2709 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 1764 2804 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 1728 2661 2𝑇𝐴 + 24𝑇𝑋
𝑦6 + 𝑦5 + 1 T4 1800 2544 2𝑇𝐴 + 25𝑇𝑋
𝑦6 + 𝑦 + 1 T5 1728 2484 2𝑇𝐴 + 22𝑇𝑋
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 1764 2685 2𝑇𝐴 + 25𝑇𝑋

5.3. Subexpressions sharing

As previously shown, the theoretical complexity of the hardware
architectures is highly dependent on the complexity of the multiplier,
so the expressions in Appendix C for F26 multipliers could be further
refined in order to obtain a reduction of the area complexity. It can
be observed that for the different primitive polynomials, some sums
of terms of the form 𝐓𝐢 can be shared among the different product
coordinates. For example, for the primitive pentanomial 𝑃1, the sum
(𝐓𝟏 + 𝐓𝟐) can be found in the product coordinates 𝑐1, 𝑐2, 𝑐4 and 𝑐5,
while the sum (𝐓𝟑 + 𝐓𝟒) is found in the coordinates 𝑐0, 𝑐4 and 𝑐5.
Therefore, subexpressions sharing can be used to reduce the theoretical
area complexity of the implementations. The new expressions for the
coordinates of the F26 multipliers using intermediate variables for
subexpressions sharing are given in Appendix C, where we note that
for the primitive trinomial 𝑇 5 no sharing can be performed.

From the new expressions given in Section 4.7 for F26 multipliers,
it can be observed that the number of 2-input AND gates is 𝑚2, so
the number of AND gates is 36 for each multiplier. Furthermore,
the number of 2-input XOR gates is 39, 40, 38, 35 and 39 for the
𝑃 1, 𝑃 2, 𝑃 3, 𝑇 4 and 𝑃6 multipliers, respectively (𝑇 5 does not apply
ubexpressions sharing). Finally, we note that the use of subexpressions
haring only modifies the theoretical delays for the multipliers using
he polynomials 𝑇 4 and 𝑃6. In these two cases, the theoretical delay is
𝐴 + 6𝑇𝑋 , whereas the delay without sharing is 𝑇𝐴 + 5𝑇𝑋 .

The application of these complexities of F26 multipliers to the dif-
erent permutation architectures gives the new theoretical complexities
hown in Table 4, where a reduced number of XOR gates is obtained for
ll polynomials (except for 𝑇 5). However, the delay complexity for 𝑇 4
nd 𝑃 6 increases by a factor of 2𝑇𝑋 with respect to the delay given in
able 3. In conclusion, the architecture given by 𝑇 5 presents the lowest
rea and time complexities, while that the highest number of AND gates
orresponds to 𝑇 4 and the highest number of 𝑋𝑂𝑅 gates corresponds
o the 𝑃 2 pentanomial.

. FPGA implementations

In order to further compare the different univariate expressions of
illon’s permutation given in Appendix A, we have developed FPGA

mplementations of the hardware architecture given in Section 4. The
rchitectures have been described in VHDL (Very High Speed Inte-
rated Circuit Hardware Description Language), synthesized and im-
lemented on Xilinx FPGA Artix-7 XC7A12T-3-CPG238 using VIVADO
021.2. Experimental post-place and route results using the expressions
or the F26 multipliers shown in Appendix C are given in Table 5.

e note that each of the six implementations fits in 6 LUTs (Lookup
ables), so in order to show the differences between the different

mplementations, we have included the optimized number of 2-input
OR gates given by the synthesizer in Table 5. The synthesizer supplies

he total number of XOR gates inferred by the tool, including XORs
ith multiple inputs and with several bits each. These XORs have been

onverted to equivalent 2-input XOR gates in order to have a fair
omparison of the different implementations. We also note that the
ynthesis tool does not provide the number of AND gates used in the

esign.



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

g
n
D
o
r
v
F
a
r
w
2
2
a
𝑦
o
o

Table 5
Experimental complexities for different primitive polynomials.

#XOR % Delay (ns) % #XOR ×Delay %

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 2860 98.4 5.542 98.1 15 850.12 96.9
𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 2865 98.6 5.633 99.7 16 138.55 98.7
𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 2603 89.6 5.625 99.5 14 641.88 89.6
𝑦6 + 𝑦5 + 1 T4 2906 100.0 5.626 99.6 16 349.16 100.0
𝑦6 + 𝑦 + 1 T5 2356 81.1 5.536 98.0 13042.82 79.8
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 2707 93.2 5.651 100.0 15 297.26 93.6
Table 6
Experimental complexities for different primitive polynomials using subexpressions sharing.

#XOR % Delay (ns) % #XOR ×Delay %

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 2566 96.1 5.631 100.0 14 449.15 96.1
𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 2669 100.0 5.631 100.0 15 029.14 100.0
𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 2507 93.9 5.625 99.9 14 101.87 93.8
𝑦6 + 𝑦5 + 1 T4 2406 90.1 5.625 99.9 13 533.75 90.0
𝑦6 + 𝑦 + 1 T5 2356 88.3 5.536 98.3 13042.82 86.8
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 2560 95.9 5.542 98.4 14 187.52 94.4
.

In Table 5, #XOR represents the optimized number of 2-input XOR

ates given by the synthesizer, 𝐷𝑒𝑙𝑎𝑦 corresponds to the delay (in
anoseconds) needed by each architecture to compute the output of
illon’s permutation, and #𝑋𝑂𝑅 ×𝐷𝑒𝑙𝑎𝑦 is the product of the number
f 2-input XOR gates and the delay (less is better). The columns %
epresents the percentages for the results (with respect to the highest
alues) corresponding to the #XOR, 𝐷𝑒𝑙𝑎𝑦 and #𝑋𝑂𝑅×𝐷𝑒𝑙𝑎𝑦 metrics.
rom Table 5, we can see that the implementation of the permutation
rchitecture for the primitive trinomial 𝑓 (𝑦) = 𝑦6+𝑦+1 presents the best
esults in the number of 2-input XORs (with a reduction of up to 18.9%
ith respect to the implementation of 𝑇 4), delay (with a reduction of
% with respect of 𝑃6) and in #𝑋𝑂𝑅 × 𝐷𝑒𝑙𝑎𝑦 (with a reduction of
0.2% with respect to 𝑇 4). The implementation results given in Table 5
lso show that the use of Magma’s default primitive polynomial 𝑓 (𝑦) =
6 + 𝑦4 + 𝑦3 + 𝑦 + 1 (𝑃 1) does not provide the best results from a point
f view of a hardware implementation. Furthermore, the worst results
btained for implementation (#𝑋𝑂𝑅 × 𝐷𝑒𝑙𝑎𝑦) of Dillon’s permutation

expressions correspond to the primitive trinomial 𝑓 (𝑦) = 𝑦6+𝑦5+1 (𝑇 4).
We obtained the above experimental results using the coordinates

given in Appendix C for the F26 multipliers. However, the complexity
of the hardware implementation is highly dependent on the complexity
of the multiplier, so the expressions given in Appendix C for the
multipliers using subexpressions sharing can be used to reduce the area
complexity of the implementations. Table 6 shows the experimental
post-place and route results obtained using subexpressions sharing for
the F26 multipliers. As in the previous case, each of the six imple-
mentations fits in 6 LUTs, so the number of 2-input XOR gates given
by the synthesizer is included in Table 6. It can be observed that
the implementation of the permutation architecture for the primitive
trinomial 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1 still presents the best results in the number
of 2-input XORs (with a reduction of up to 11.7% with respect to the
implementation of 𝑃 2), delay (with a reduction of 1.7% with respect
to 𝑃 1 and 𝑃2) and in #𝑋𝑂𝑅 × 𝐷𝑒𝑙𝑎𝑦 (with a reduction of 13.2% with
respect to 𝑃 2). The experimental results given in Table 6 still show that
the use of the default primitive polynomial 𝑓 (𝑦) = 𝑦6+𝑦4+𝑦3+𝑦+1 (𝑃 1)
does not provide the best results from the point of view of a hardware
implementation. In this case, the worst results obtained in terms of
the (#𝑋𝑂𝑅 × 𝐷𝑒𝑙𝑎𝑦) metric correspond to the use of the primitive
pentanomial 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 (𝑃 2).

We can observe that there are differences between the theoretical
complexities given in Table 3 and Table 4 and the corresponding FPGA
experimental complexities given in Table 5 and Table 6, respectively.
These differences are due to the optimizations performed by the syn-
thesizer and the mapping to the CLBs (Configurable Logic Blocks) of
the FPGA. In both the theoretical and experimental complexities, the
permutation architecture for the primitive trinomial 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1
presents the best results.
7

Table 7
Experimental complexities for different primitive polynomials using different multipliers

Polynomial #XOR Delay (ns) #XOR ×Delay

[21] 2719 5.647 15 354.19
P1 [22] 2615 5.626 14 711.99

[24] 2566 5.631 14449.15

[21] 2718 5.617 15 267.01
P2 [22] 2718 5.632 15 307.78

[24] 2669 5.631 15029.14

[21] 2555 5.623 14 366.76
P3 [22] 2507 5.633 14 121.93

[24] 2507 5.625 14101.87

[21] 2756 5.542 15 273.75
T4 [22] 2556 5.645 14 428.62

[23] 2406 5.625 13533.75

[21] 2356 5.632 13 268.99
T5 [22] 2356 5.645 13 299.62

[23] 2356 5.536 13042.82

[21] 2609 5.617 14 654.75
P6 [22] 2560 5.632 14 417.92

[24] 2560 5.542 14187.52

As previously mentioned, the complexity of the hardware imple-
mentation is highly dependent on the complexity of the multiplier.
Table 7 shows the comparison of the experimental results obtained
for different primitive polynomials using different F26 multipliers. In
Table 7, the results obtained in Table 6 for the multipliers given
in [23,24] using subexpressions sharing are compared with the results
obtained using the two-step classic F2𝑚 multiplication method (polyno-
mial multiplication and reduction modulo an irreducible polynomial)
given in [21] and the efficient matrix–vector multiplication method,
also using subexpression sharing, given in [22]. It can be observed
in Table 7 that the results obtained by [23,24] for trinomials and
pentanomials, respectively, present the lowest number of XOR gates,
the lowest delay for three of the six polynomials, and the lowest
#𝑋𝑂𝑅×𝐷𝑒𝑙𝑎𝑦 values in all cases. Furthermore, Table 7 also shows that
the implementation of the permutation architecture for the primitive
trinomial 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1 presents the best results in the number of
2-input XORs, delay and in #𝑋𝑂𝑅 ×𝐷𝑒𝑙𝑎𝑦.

From the above results, we can conclude that the choice of the
primitive polynomial can have a huge impact on the area and delay
of FPGA implementations. Dillon’s permutation works over F26 and it
is small enough to fit in 6 LUTs, but for APN permutations working
on larger dimensions the selection of the primitive polynomial can
profoundly impact the efficiency of the FPGA implementation.

In order to further compare the different univariate expressions,
Table 8 gives the area (transistor count) and delay estimates for the dif-
ferent polynomials, where some STMicroelectronics real circuits have



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.

r
i

d
𝐴

7

b
t
A
c
b
p
a
p
s
p
I
p
p
t
c
p
h
r
t
i
o
p
d
t
M
a

D

c
i

Table 8
Area-delay estimate for the different primitive polynomials.

Trans. Delay (ns) A×D

𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1 P1 25980 300 7794.0
𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1 P2 26598 300 7979.4
𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1 P3 25410 300 7623.0
𝑦6 + 𝑦5 + 1 T4 25236 312 7873.6
𝑦6 + 𝑦 + 1 T5 24504 276 6763.1
𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1 P6 25944 312 8094.5

been used. They are high-speed CMOS (Complementary Metal Ox-
ide Semiconductor) gates fabricated by silicon gate C2MOS (Clocked
CMOS) technology, with balanced propagation delays, high speed and
low power dissipation. The typical propagation delay 𝑡𝑃𝐷 has been
considered to ensure a fair comparison. The circuits used are M74HC08
(AND gate with 𝑡𝑃𝐷 = 6 ns) and M74HC86 (XOR gate with 𝑡𝑃𝐷 = 12 ns).
For the estimate of the number of CMOS transistors used in the designs,
we used the traditional counts (6 transistors for 2-input AND gate and
6 for 2-input XOR gate). In Table 8, the theoretical number of AND
gates and the theoretical delay using subexpressions sharing (given in
Table 4), and the experimental number of XOR gates given in Table 6
for subexpressions sharing have been used, where the 𝑇 𝑟𝑎𝑛𝑠. column
epresents the number of transistors and the A×D column (Area×Delay)
s given in transistors × microseconds. From Table 8, we can observe

that the estimation of the permutation architecture for the primitive
trinomial 𝑓 (𝑦) = 𝑦6+𝑦+1 presents again the best results in the number
of transistors (with a reduction of up to 7.9% with respect to 𝑃 2),
elay (with a reduction of 11.5% with respect to 𝑇 4 and 𝑃 6) and in
𝑟𝑒𝑎 ×𝐷𝑒𝑙𝑎𝑦 (with a reduction of 16.4% with respect to 𝑃 6).

. Conclusion

Modern block cyphers typically use vectorial Boolean functions (S-
oxes or substitution boxes) as their only nonlinear components, and so
he security of the encryption depends on the properties of the S-box.
PN functions are optimal with respect to their resistance to differential
ryptanalysis. Frequently, it is necessary or desirable for an S-box to be
ijective, but to date very few APN permutations are known. Dillon’s
ermutation in dimension 6 is the only known APN permutation in
n even dimension that was originally generated with the primitive
entanomial 𝑓 (𝑦) = 𝑦6+𝑦4+𝑦3+𝑦+1 for the binary finite field F26 , and
o is a good candidate for studying how the choice of the primitive
olynomial affects the complexity of the hardware implementation.
n this paper, we have presented a hardware architecture for Dillon’s
ermutation and implemented it in FPGA for the six different primitive
olynomials that can be used to construct F26 . We have also given
he corresponding univariate representations and hardware theoretical
omplexities for the implementations corresponding to the different
rimitive polynomials. To the best of our knowledge, no similar study
as been given in the open literature. From the FPGA experimental
esults, the implementation of Dillon permutation using the primitive
rinomial 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1 presents reductions in the number of 2-
nput XOR gates of up to 11.7% and in the #XOR × Delay metrics
f up to 13.2% with respect to the implementation with the primitive
olynomial using the highest number of XORs. Therefore the use of the
efault primitive polynomial 𝑓 (𝑦) = 𝑦6+𝑦4+𝑦3+𝑦+1 does not provide
he best results from a point of view of a hardware implementation.
ore generally, we see that the choice of primitive polynomial can have
huge impact on the efficiency of the implementation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
8

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank the reviewers for their valuable
comments to improve the quality of the paper.

The work of J.L. Imaña was supported in part by grant PID2021-
123041OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by
‘‘ERDF A way of making Europe’’, and by the Comunidad de Madrid,
Spain under grant S2018/TCS-4423. The work of L. Budaghyan was
supported by Trond Mohn Foundation under Grant ‘‘Construction of
Optimal Boolean Functions’’ and by the Research Council of Norway
under Grant 314395.

Appendix A. Univariate expressions for dillon permutation

The univariate expressions for Dillon permutation using different
primitive polynomials are as follows, where 𝑝 is a primitive element.

A.1. Primitive pentanomial P1: 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1

𝑔(𝑥) = 𝑝36𝑥60 + 𝑝44𝑥58 + 𝑝40𝑥57 + 𝑝55𝑥56 + 𝑝26𝑥54 + 𝑝23𝑥53 + 𝑝36𝑥52 +
𝑝23𝑥51+𝑝17𝑥50+𝑝54𝑥49+𝑝14𝑥48+𝑝21𝑥46+𝑝53𝑥45+𝑝21𝑥44+𝑝7𝑥43+𝑝57𝑥42+
𝑝8𝑥41+𝑝10𝑥40+𝑝12𝑥39+𝑝20𝑥38+𝑝52𝑥37+𝑝46𝑥36+𝑝27𝑥35+𝑝44𝑥34+𝑝18𝑥33+
𝑝57𝑥32 + 𝑝28𝑥30 + 𝑝44𝑥29 + 𝑝42𝑥28 + 𝑝26𝑥27 + 𝑝20𝑥26 + 𝑝10𝑥25 + 𝑝45𝑥24 +𝑥23 +
𝑝7𝑥22 +𝑝57𝑥21 +𝑝21𝑥20 +𝑝22𝑥19 +𝑝6𝑥17 +𝑝8𝑥16 +𝑝43𝑥15 +𝑝42𝑥13 +𝑝47𝑥12 +
𝑝56𝑥11 +𝑝38𝑥10 +𝑝36𝑥8 +𝑝47𝑥7 +𝑝4𝑥6 +𝑝8𝑥5 +𝑝23𝑥4 +𝑝39𝑥3 +𝑝52𝑥2 +𝑝59𝑥.

A.2. Primitive pentanomial P2: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1

𝑔(𝑥) = 𝑝11𝑥60 + 𝑝24𝑥58 + 𝑝40𝑥57 + 𝑝35𝑥56 + 𝑝47𝑥54 + 𝑝42𝑥53 + 𝑝9𝑥52 +
𝑝34𝑥51+𝑝50𝑥50+𝑝7𝑥49+𝑝25𝑥48+𝑝22𝑥46+𝑝37𝑥45+𝑝7𝑥44+𝑝26𝑥43+𝑝38𝑥42+
𝑝31𝑥41+𝑝48𝑥40+𝑝39𝑥39+𝑝11𝑥38+𝑝21𝑥37+𝑝9𝑥36+𝑝45𝑥34+𝑝30𝑥33+𝑝37𝑥32+
𝑝32𝑥30 + 𝑝26𝑥29 + 𝑝23𝑥28 + 𝑝45𝑥27 + 𝑝2𝑥26 + 𝑝38𝑥25 + 𝑥24 + 𝑝38𝑥23 + 𝑝40𝑥22 +
𝑝58𝑥21+𝑝38𝑥20+𝑝18𝑥19+𝑝49𝑥18+𝑝60𝑥17+𝑝32𝑥16+𝑝16𝑥15+𝑝40𝑥14+𝑝22𝑥13+
𝑝29𝑥12 + 𝑝10𝑥11 + 𝑝12𝑥10 + 𝑝4𝑥9 + 𝑝19𝑥8 + 𝑝59𝑥7 + 𝑝58𝑥6 + 𝑝28𝑥5 + 𝑝32𝑥4 +
𝑝53𝑥3 + 𝑝17𝑥2 + 𝑝30𝑥.

A.3. Primitive pentanomial P3: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1

𝑔(𝑥) = 𝑝53𝑥60+𝑝12𝑥58+𝑝61𝑥57+𝑝10𝑥56+𝑝41𝑥54+𝑝60𝑥53+𝑝12𝑥52+𝑝44𝑥51+
𝑝36𝑥50 + 𝑝19𝑥49 + 𝑝36𝑥48 + 𝑝33𝑥46 +𝑥45 + 𝑝22𝑥44 + 𝑝56𝑥43 + 𝑝38𝑥42 + 𝑝16𝑥41 +
𝑝48𝑥40+𝑝28𝑥39+𝑝22𝑥38+𝑝2𝑥37+𝑝22𝑥36+𝑝13𝑥35+𝑝58𝑥34+𝑝29𝑥33+𝑝26𝑥32+
𝑝60𝑥30+𝑝27𝑥29+𝑝31𝑥28+𝑝20𝑥27+𝑝31𝑥26+𝑝54𝑥25+𝑝44𝑥24+𝑝55𝑥23+𝑝42𝑥21+
𝑝51𝑥20+𝑝30𝑥19+𝑝8𝑥18+𝑝38𝑥17+𝑝31𝑥16+𝑝32𝑥14+𝑝11𝑥13+𝑝38𝑥12+𝑝22𝑥11+
𝑝45𝑥10 +𝑝16𝑥9 +𝑝17𝑥8 +𝑝21𝑥7 +𝑝50𝑥6 +𝑝18𝑥5 +𝑝21𝑥4 +𝑝27𝑥3 +𝑝2𝑥2 +𝑝59𝑥.

A.4. Primitive trinomial T4: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 1

𝑔(𝑥) = 𝑝16𝑥60+𝑝32𝑥58+𝑝8𝑥57+𝑝60𝑥56+𝑝60𝑥54+𝑝34𝑥53+𝑝2𝑥52+𝑝40𝑥51+
𝑝7𝑥50+𝑝53𝑥49+𝑝30𝑥48+𝑝27𝑥46+𝑝6𝑥45+𝑝26𝑥44+𝑝53𝑥43+𝑝54𝑥42+𝑝27𝑥41+
𝑝54𝑥40+𝑝51𝑥39+𝑝40𝑥38+𝑝32𝑥37+𝑝61𝑥36+𝑝8𝑥35+𝑝58𝑥34+𝑝37𝑥33+𝑝27𝑥32+
𝑝29𝑥30+𝑝58𝑥29+𝑝48𝑥28+𝑝23𝑥27+𝑝8𝑥26+𝑝23𝑥25+𝑝35𝑥24+𝑝62𝑥23+𝑝62𝑥22+
𝑝13𝑥21+𝑝27𝑥20+𝑝22𝑥19+𝑝41𝑥18+𝑝22𝑥17+𝑝33𝑥16+𝑝47𝑥15+𝑝5𝑥14+𝑝56𝑥13+
𝑝37𝑥12+𝑝38𝑥11+𝑝22𝑥10+𝑝6𝑥9+𝑝47𝑥8+𝑝4𝑥7+𝑝𝑥6+𝑝53𝑥5+𝑝51𝑥4+𝑝14𝑥3+
𝑝28𝑥2 + 𝑝15𝑥.

A.5. Primitive trinomial T5: 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1

𝑔(𝑥) = 𝑝37𝑥58+𝑝23𝑥57+𝑝49𝑥56+𝑝43𝑥54+𝑝29𝑥53+𝑝34𝑥52+𝑝42𝑥51+𝑝45𝑥50+
𝑝39𝑥49+𝑝62𝑥46+𝑝48𝑥45+𝑝21𝑥44+𝑝30𝑥43+𝑝42𝑥42+𝑝32𝑥41+𝑝26𝑥40+𝑝7𝑥39+
𝑝44𝑥38+𝑝57𝑥37+𝑝27𝑥36+𝑝43𝑥35+𝑝𝑥34+𝑝55𝑥33+𝑝37𝑥32+𝑝50𝑥30+𝑝36𝑥29+
𝑝57𝑥28 +𝑝26𝑥27 +𝑝7𝑥26 +𝑝9𝑥25 +𝑝49𝑥24 +𝑝47𝑥23 +𝑝3𝑥22 +𝑝45𝑥21 +𝑝19𝑥20 +
𝑝33𝑥19+𝑝14𝑥18+𝑝21𝑥17+𝑝39𝑥16+𝑝28𝑥15+𝑝37𝑥14+𝑝51𝑥13+𝑝24𝑥12+𝑝28𝑥11+
𝑝2𝑥10 + 𝑝8𝑥9 + 𝑝32𝑥8 + 𝑝34𝑥7 + 𝑝21𝑥6 + 𝑝56𝑥5 + 𝑝24𝑥4 + 𝑝54𝑥3 + 𝑝34𝑥2 + 𝑝4𝑥.



Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.
A.6. Primitive pentanomial P6: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1

𝑔(𝑥) = 𝑝61𝑥60 + 𝑝34𝑥58 + 𝑝45𝑥57 + 𝑝55𝑥54 + 𝑝61𝑥53 + 𝑝15𝑥52 + 𝑝11𝑥51 +
𝑝55𝑥50 + 𝑝12𝑥49 + 𝑝16𝑥48 + 𝑝52𝑥46 + 𝑝60𝑥45 +𝑥44 + 𝑝25𝑥43 + 𝑝11𝑥42 + 𝑝31𝑥41 +
𝑝41𝑥40+𝑝39𝑥39+𝑝52𝑥38+𝑝12𝑥37+𝑝49𝑥36+𝑝41𝑥35+𝑝31𝑥34+𝑝21𝑥33+𝑝16𝑥32+
𝑝41𝑥30+𝑝34𝑥29+𝑝47𝑥28+𝑝61𝑥27+𝑝35𝑥26+𝑝19𝑥25+𝑝61𝑥24+𝑝43𝑥23+𝑝24𝑥22+
𝑝59𝑥21+𝑝48𝑥20+𝑝41𝑥19+𝑥18+𝑝40𝑥17+𝑝7𝑥16+𝑝38𝑥15+𝑝47𝑥14+𝑝24𝑥13+𝑥12+
𝑝39𝑥11+𝑝2𝑥10+𝑝28𝑥9+𝑝28𝑥8+𝑝50𝑥7+𝑝6𝑥6+𝑝30𝑥5+𝑝15𝑥4+𝑥3+𝑝56𝑥2+𝑝47𝑥.

Appendix B. Addition of powers 𝒙𝒏 with common terms 𝒑𝒔

The addition of powers 𝑥𝑛 with common terms 𝑝𝑠 for the different
primitive polynomials are as follows.

B.1. Pentanomial P1: 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1

𝑝7(𝑥22 + 𝑥43) = 𝑝7𝑣7, 𝑝8(𝑥5 + 𝑥16 + 𝑥41), 𝑝10(𝑥25 + 𝑥40), 𝑝20(𝑥26 + 𝑥38),
𝑝21(𝑥20 + 𝑥44 + 𝑥46), 𝑝23(𝑥4 + 𝑥51 + 𝑥53), 𝑝26(𝑥27 + 𝑥54), 𝑝36(𝑥8 + 𝑥52 + 𝑥60),
𝑝42(𝑥13 + 𝑥28), 𝑝44(𝑥29 + 𝑥34 + 𝑥58), 𝑝47(𝑥7 + 𝑥12), 𝑝52(𝑥2 + 𝑥37) and
𝑝57(𝑥21 + 𝑥32 + 𝑥42) = 𝑝57𝑣57.

B.2. Pentanomial P2: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1

𝑝7(𝑥44+𝑥49) = 𝑝7𝑣7, 𝑝9(𝑥36+𝑥52), 𝑝11(𝑥38+𝑥60), 𝑝22(𝑥13+𝑥46), 𝑝26(𝑥29+
𝑥43), 𝑝30(𝑥+𝑥33), 𝑝32(𝑥4+𝑥16+𝑥30), 𝑝37(𝑥32+𝑥45), 𝑝38(𝑥20+𝑥23+𝑥25+𝑥42),
𝑝40(𝑥14 + 𝑥22 + 𝑥57), 𝑝45(𝑥27 + 𝑥34) and 𝑝58(𝑥6 + 𝑥21) = 𝑝58𝑣58.

B.3. Pentanomial P3: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1

𝑝2(𝑥2 + 𝑥37) = 𝑝2𝑣2, 𝑝12(𝑥52 + 𝑥58), 𝑝16(𝑥9 + 𝑥41), 𝑝21(𝑥4 + 𝑥7),
𝑝22(𝑥11 +𝑥36 +𝑥38 +𝑥44), 𝑝27(𝑥3 +𝑥29), 𝑝31(𝑥16 +𝑥26 +𝑥28), 𝑝36(𝑥48 +𝑥50),
𝑝38(𝑥12 + 𝑥17 + 𝑥42), 𝑝44(𝑥24 + 𝑥51) and 𝑝60(𝑥30 + 𝑥53) = 𝑝60𝑣60.

B.4. Trinomial T4: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 1

𝑝6(𝑥9+𝑥45) = 𝑝6𝑣6, 𝑝8(𝑥26+𝑥35+𝑥57), 𝑝22(𝑥10+𝑥17+𝑥19), 𝑝23(𝑥25+𝑥27),
𝑝27(𝑥20 + 𝑥32 + 𝑥41 + 𝑥46), 𝑝32(𝑥37 + 𝑥58), 𝑝37(𝑥12 + 𝑥33), 𝑝40(𝑥38 + 𝑥51),
𝑝47(𝑥8+𝑥15), 𝑝51(𝑥4+𝑥39), 𝑝53(𝑥5+𝑥43+𝑥49), 𝑝54(𝑥40+𝑥42), 𝑝58(𝑥29+𝑥34),
𝑝60(𝑥54 + 𝑥56) and 𝑝62(𝑥22 + 𝑥23) = 𝑝62𝑣62.

B.5. Trinomial T5: 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1

𝑝7(𝑥26 + 𝑥39) = 𝑝7𝑣7, 𝑝21(𝑥6 + 𝑥17 + 𝑥44), 𝑝24(𝑥4 + 𝑥12), 𝑝26(𝑥27 + 𝑥40),
𝑝28(𝑥11 + 𝑥15), 𝑝32(𝑥8 + 𝑥41), 𝑝34(𝑥2 + 𝑥7 + 𝑥52), 𝑝37(𝑥14 + 𝑥32 + 𝑥58),
𝑝39(𝑥16 + 𝑥49), 𝑝42(𝑥42 + 𝑥51), 𝑝43(𝑥35 + 𝑥54), 𝑝45(𝑥21 + 𝑥50), 𝑝49(𝑥24 + 𝑥56)
and 𝑝57(𝑥28 + 𝑥37) = 𝑝57𝑣57.

B.6. Pentanomial P6: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1

𝑝11(𝑥42 + 𝑥51) = 𝑝11𝑣11, 𝑝12(𝑥37 + 𝑥49), 𝑝15(𝑥4 + 𝑥52), 𝑝16(𝑥32 + 𝑥48),
𝑝24(𝑥13 + 𝑥22), 𝑝28(𝑥8 + 𝑥9), 𝑝31(𝑥34 + 𝑥41), 𝑝34(𝑥29 + 𝑥58), 𝑝39(𝑥11 + 𝑥39),
𝑝41(𝑥19 + 𝑥30 + 𝑥35 + 𝑥40), 𝑝47(𝑥+ 𝑥14 + 𝑥28), 𝑝52(𝑥38 + 𝑥46), 𝑝55(𝑥50 + 𝑥54)
and 𝑝61(𝑥24 + 𝑥27 + 𝑥53 + 𝑥60) = 𝑝61𝑣61.

Appendix C. Coordinate expressions for F𝟐𝟔 multipliers

Coordinates of the product 𝐶 = 𝐴 ⋅ 𝐵 over F26 , given in terms of
the 𝐒𝐢 and 𝐓𝐢 functions, are as follows, where (𝑐5, 𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0), with
𝑐𝑖 ∈ F2, are the coordinates of 𝐶.

C.1. Primitive pentanomial P1: 𝑓 (𝑦) = 𝑦6 + 𝑦4 + 𝑦3 + 𝑦 + 1

𝑐0 = 𝐒𝟏+𝐓𝟎+𝐓𝟐+𝐓𝟑+𝐓𝟒, 𝑐1 = 𝐒𝟐+𝐓𝟎+𝐓𝟏+𝐓𝟐, 𝑐2 = 𝐒𝟑+𝐓𝟏+𝐓𝟐+𝐓𝟑,
𝑐3 = 𝐒𝟒 +𝐓𝟎, 𝑐4 = 𝐒𝟓 +𝐓𝟎 +𝐓𝟏 +𝐓𝟐 +𝐓𝟑 +𝐓𝟒, 𝑐5 = 𝐒𝟔 +𝐓𝟏 +𝐓𝟐 +𝐓𝟑 +𝐓𝟒.

Using subexpressions sharing (with intermediate variables 𝐯𝟎 = 𝐓𝟏+
𝐓𝟐, 𝐯𝟏 = 𝐓𝟑 +𝐓𝟒, 𝐯𝟐 = 𝐯𝟎 + 𝐯𝟏): 𝑐0 = 𝐒𝟏 +𝐓𝟎 +𝐓𝟐 + 𝐯𝟏, 𝑐1 = 𝐒𝟐 +𝐓𝟎 + 𝐯𝟎,
9

𝑐2 = 𝐒𝟑 + 𝐯𝟎 + 𝐓𝟑, 𝑐3 = 𝐒𝟒 + 𝐓𝟎, 𝑐4 = 𝐒𝟓 + 𝐓𝟎 + 𝐯𝟐, 𝑐5 = 𝐒𝟔 + 𝐯𝟐.
C.2. Primitive pentanomial P2: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1

𝑐0 = 𝐒𝟏+𝐓𝟎+𝐓𝟏+𝐓𝟑+𝐓𝟒, 𝑐1 = 𝐒𝟐+𝐓𝟎+𝐓𝟐+𝐓𝟑, 𝑐2 = 𝐒𝟑+𝐓𝟏+𝐓𝟑+𝐓𝟒,
𝑐3 = 𝐒𝟒 + 𝐓𝟐 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟎 + 𝐓𝟏 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐓𝟎 + 𝐓𝟐 + 𝐓𝟑 + 𝐓𝟒.

Using subexpressions sharing (with intermediate variables 𝐯𝟎 = 𝐓𝟑+
𝐓𝟒, 𝐯𝟏 = 𝐓𝟏 + 𝐯𝟎, 𝐯𝟐 = 𝐓𝟎 + 𝐓𝟐): 𝑐0 = 𝐒𝟏 + 𝐓𝟎 + 𝐯𝟏, 𝑐1 = 𝐒𝟐 + 𝐯𝟐 + 𝐓𝟑,
𝑐2 = 𝐒𝟑 + 𝐯𝟏, 𝑐3 = 𝐒𝟒 + 𝐓𝟐 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟎 + 𝐓𝟏 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐯𝟐 + 𝐯𝟎.

C.3. Primitive pentanomial P3: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1

𝑐0 = 𝐒𝟏+𝐓𝟎+𝐓𝟏+𝐓𝟐, 𝑐1 = 𝐒𝟐+𝐓𝟏+𝐓𝟐+𝐓𝟑, 𝑐2 = 𝐒𝟑+𝐓𝟎+𝐓𝟏+𝐓𝟑+𝐓𝟒,
𝑐3 = 𝐒𝟒 + 𝐓𝟎 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟏, 𝑐5 = 𝐒𝟔 + 𝐓𝟎 + 𝐓𝟏.

Using subexpressions sharing (with intermediate variable 𝐯𝟎 = 𝐓𝟎 +
𝐓𝟏): 𝑐0 = 𝐒𝟏 + 𝐯𝟎 + 𝐓𝟐, 𝑐1 = 𝐒𝟐 + 𝐓𝟏 + 𝐓𝟐 + 𝐓𝟑, 𝑐2 = 𝐒𝟑 + 𝐯𝟎 + 𝐓𝟑 + 𝐓𝟒,
𝑐3 = 𝐒𝟒 + 𝐓𝟎 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟏, 𝑐5 = 𝐒𝟔 + 𝐯𝟎.

C.4. Primitive trinomial T4: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 1

𝑐0 = 𝐒𝟏 + 𝐓𝟎 + 𝐓𝟏 + 𝐓𝟐 + 𝐓𝟑 + 𝐓𝟒, 𝑐1 = 𝐒𝟐 + 𝐓𝟏 + 𝐓𝟐 + 𝐓𝟑 + 𝐓𝟒,
𝑐2 = 𝐒𝟑 + 𝐓𝟐 + 𝐓𝟑 + 𝐓𝟒, 𝑐3 = 𝐒𝟒 + 𝐓𝟑 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟒, 𝑐5 =
𝐒𝟔 + 𝐓𝟎 + 𝐓𝟏 + 𝐓𝟐 + 𝐓𝟑 + 𝐓𝟒.

Using subexpressions sharing (with intermediate variables 𝐯𝟑 = 𝐓𝟑+
𝐓𝟒, 𝐯𝟐 = 𝐓𝟐 + 𝐯𝟑, 𝐯𝟏 = 𝐓𝟏 + 𝐯𝟐, 𝐯𝟎 = 𝐓𝟎 + 𝐯𝟏): 𝑐0 = 𝐒𝟏 + 𝐯𝟎, 𝑐1 = 𝐒𝟐 + 𝐯𝟏,
𝑐2 = 𝐒𝟑 + 𝐯𝟐, 𝑐3 = 𝐒𝟒 + 𝐯𝟑, 𝑐4 = 𝐒𝟓 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐯𝟎.

C.5. Primitive trinomial T5: 𝑓 (𝑦) = 𝑦6 + 𝑦 + 1

𝑐0 = 𝐒𝟏 + 𝐓𝟎, 𝑐1 = 𝐒𝟐 + 𝐓𝟎 + 𝐓𝟏, 𝑐2 = 𝐒𝟑 + 𝐓𝟏 + 𝐓𝟐, 𝑐3 = 𝐒𝟒 + 𝐓𝟐 + 𝐓𝟑,
𝑐4 = 𝐒𝟓 + 𝐓𝟑 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐓𝟒.

C.6. Primitive pentanomial P6: 𝑓 (𝑦) = 𝑦6 + 𝑦5 + 𝑦2 + 𝑦 + 1

𝑐0 = 𝐒𝟏 +𝐓𝟎 +𝐓𝟏 +𝐓𝟐 +𝐓𝟑, 𝑐1 = 𝐒𝟐 +𝐓𝟎 +𝐓𝟒, 𝑐2 = 𝐒𝟑 +𝐓𝟎 +𝐓𝟐 +𝐓𝟑,
𝑐3 = 𝐒𝟒 + 𝐓𝟏 + 𝐓𝟑 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟐 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐓𝟎 + 𝐓𝟏 + 𝐓𝟐.

Using subexpressions sharing (with intermediate variables 𝐯𝟎 = 𝐓𝟎+
𝐓𝟐, 𝐯𝟏 = 𝐓𝟑 + 𝐯𝟎): 𝑐0 = 𝐒𝟏 + 𝐓𝟏 + 𝐯𝟏, 𝑐1 = 𝐒𝟐 + 𝐓𝟎 + 𝐓𝟒, 𝑐2 = 𝐒𝟑 + 𝐯𝟏,
𝑐3 = 𝐒𝟒 + 𝐓𝟏 + 𝐓𝟑 + 𝐓𝟒, 𝑐4 = 𝐒𝟓 + 𝐓𝟐 + 𝐓𝟒, 𝑐5 = 𝐒𝟔 + 𝐓𝟏 + 𝐯𝟎.

References

[1] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J.
Cryptol. 4 (1) (1991) 3–72.

[2] M. Matsui, Linear cryptoanalysis method for DES cipher, in: T. Helleseth (Ed.),
Advances in Cryptology, Vol. 765, EUROCRYPT, Springer, Berlin, 1994, pp.
386–397.

[3] K. Nyberg, Differentially uniform mappings for cryptography, in: T. Helleseth
(Ed.), Advances in Cryptology, Vol. 765, EUROCRYPT, Springer, Berlin, 1994,
pp. 55–64.

[4] F. Chabaud, S. Vaudenay, Links between differential and linear cryptanalysis, in:
Workshop on the Theory and Application of Cryptographic Techniques, Springer,
Berlin, Heidelberg, 1994, pp. 356–365.

[5] Advanced encryption standard, in: FIPS, Vol. 197, 2001.
[6] K. Nyberg, L.R. Knudsen, Provable security against differential cryptanalysis, in:

E.F. Brickell (Ed.), Advances in Cryptology, CRYPTO, Springer, Berlin, 1993, pp.
566–574.

[7] X.-D. Hou, Affinity of permutations on F𝑛
2, Discrete Appl. Math. 154 (2006)

313–325.
[8] M. Calderini, M. Sala, I. Villa, A note on APN permutations in even dimension,

Finite Fields Appl. 46 (2017) 1–16.
[9] J.F. Dillon, APN polynomials: an update, in: International Conference on Finite

Fields and Applications Fq9, 2009.
[10] B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, Q. Wang, Fides: Lightweight

Authenticated Cipher with Side-Channel Resistance for Constrained Hardware,
CHES 2013, in: LNCS 8086, 2013, pp. 142–158.

[11] J.L. Imaña, L. Budaghyan, N. Kaleyski, Decomposition of dillon’s APN permuta-
tion with efficient hardware implementation, in: WAIFI 2022, in: LNCS 13638,
2023, pp. 250–268.

[12] C. Carlet, Boolean functions for cryptography and error correcting codes,
in: Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, Cambridge Univ. Press, 2010, pp. 257–397, Ch. 8.

[13] L. Budaghyan, C. Carlet, Classes of quadratic APN trinomials and hexanomials

and related structures, IEEE Trans. Inform. Theory 54 (5) (2008) 2354–2357.

http://refhub.elsevier.com/S0141-9331(23)00189-8/sb1
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb1
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb1
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb2
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb2
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb2
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb2
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb2
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb3
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb3
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb3
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb3
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb3
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb4
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb4
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb4
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb4
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb4
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb5
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb6
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb6
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb6
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb6
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb6
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb7
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb7
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb7
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb8
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb8
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb8
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb9
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb9
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb9
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb10
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb10
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb10
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb10
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb10
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb11
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb11
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb11
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb11
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb11
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb12
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb12
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb12
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb12
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb12
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb13
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb13
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb13


Microprocessors and Microsystems 103 (2023) 104945J.L. Imaña et al.
[14] L. Budaghyan, T. Helleseth, N. Kaleyski, A new family of APN quadrinomials,
IEEE Trans. Inform. Theory 66 (11) (2020) 7081–7087.

[15] L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer,
2015.

[16] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge
University Press, Cambridge, 2021.

[17] M. Calderini, On the EA-classes of known APN functions in small dimensions,
Cryptogr. Commun. 12 (2020) 821–840.

[18] K. Browning, J. Dillon, M. McQuistan, A. Wolfe, An APN permutation in
dimension six, in: Finite Fields: Theory and Applications FQ9, Vol. 518, 2010,
pp. 33–42.

[19] Magma Computational Algebra System, Computational Algebra Group, University
of Sydney, http://magma.maths.usyd.edu.au/magma/.

[20] L. Perrin, A. Udovenko, A. Biryukov, Cryptanalysis of a theorem: Decomposing
the only known solution to the big APN problem, in: 36th International
Cryptology Conference, CRYPTO 2016, in: LNCS 9815, 2016, pp. 93–122.

[21] F. Rodríguez-Henríquez, N. Saqib, A. Díaz-Pérez, Ç.K. Koç, Cryptographic
Algorithms on Reconfigurable Hardware, Springer, New York, 2006.

[22] A. Reyhani-Masoleh, A. Hasan, Low complexity bit parallel architectures for
polynomial basis multiplication over 𝐺𝐹 (2𝑚), IEEE Trans. Comput. 53 (8) (2004)
945–959.

[23] J.L. Imaña, J.M. Sánchez, F. Tirado, Bit-parallel finite field multipliers for
irreducible trinomials, IEEE Trans. Comput. 55 (5) (2006) 520–533.

[24] J.L. Imaña, Efficient polynomial basis multipliers for type II irreducible
pentanomials, IEEE Trans. Circuits Syst. II Express Briefs 59 (11) (2012) 795–799.

José L. Imaña received the M.Sc. and Ph.D. degrees in
physics from Complutense University, Madrid, Spain, in
1989 and 2003, respectively. He was an Electronic Design
Engineer at the Madrid Institute of Technology, Spain. He
is currently with the Department of Computer Architecture
and Automation at Complutense University, where he was
promoted to an Associate Professor with tenure in 2006.
10
He has been the promoter and cofounder of the Interna-
tional Workshop on the Arithmetic of Finite Fields (WAIFI).
His research interests include algorithms and VLSI architec-
tures for computations in finite fields, computer arithmetic,
cryptographic hardware and post-quantum cryptography.

Nikolay Kaleyski received the bachelor’s and master’s
degrees in theoretical computer science from Charles Uni-
versity, Prague, in 2014 and 2016, respectively, and the
Ph.D. degree from the Selmer Centre, University of Bergen,
in 2021. In addition to his research activities, he ac-
tively reviews articles for several international journals and
takes part in outreach and propagational activities for the
Selmer Centre and the Department of Informatics, University
of Bergen, where he is currently tenure track Associate
Professor. His research interests include classes of crypto-
graphically optimal functions over finite fields, including
APN functions, AB functions, and planar functions, as well
as mathematical constructions and related computational
and algorithmic questions.

Lilya Budaghyan received the Ph.D. degree from the
University of Magdeburg, Germany, in 2005, and the Ha-
bilitation degree from the University of Paris 8, France, in
2013. She is currently a Professor and the Head of the
Selmer Center in Secure Communication, Department of
Informatics, University of Bergen, Norway. She also con-
ducted her research at Yerevan State University, Armenia;
the University of Trento, Italy; and Telecom ParisTech,
France. Her research interests include cryptographic boolean
functions and discrete structures and their applications.
Since 2018, she has been a member of the Norwegian
Academy of Technological Sciences (NTVA). She was a
recipient of the Trond Mohn Foundation Award in 2016, the
Young Research Talent Grant from the Norwegian Research
Council in 2014, a Post-Doctoral Fellowship Award from the
Foundation of Mathematical Sciences of Paris in 2012, and
the Emil Artin Junior Prize in Mathematics in 2011.

http://refhub.elsevier.com/S0141-9331(23)00189-8/sb14
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb14
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb14
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb15
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb15
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb15
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb16
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb16
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb16
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb17
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb17
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb17
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb18
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb18
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb18
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb18
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb18
http://magma.maths.usyd.edu.au/magma/
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb20
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb20
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb20
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb20
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb20
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb21
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb21
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb21
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb22
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb22
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb22
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb22
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb22
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb23
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb23
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb23
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb24
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb24
http://refhub.elsevier.com/S0141-9331(23)00189-8/sb24

	Hardware architecture of Dillon's APN permutation for different primitive polynomials
	Introduction
	Notation and Preliminaries
	Dillon's Permutation
	Univariate Polynomial Representations
	Analysis of Polynomial Representations

	Hardware Architecture of Dillon's Permutation
	Generator of x2i
	Generator of xh = x2i·x2j
	Generator of xk = xl·xm
	Addition of powers xn with common terms ps
	Generator of pi·xj and pi·vi terms
	Addition of xi, pi·xj and pi·vi terms
	Multipliers over F26

	Theoretical Complexity Analysis
	Area Complexity
	Time Complexity
	Subexpressions Sharing

	FPGA Implementations
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Univariate Expressions for Dillon Permutation
	Primitive Pentanomial P1: f(y) = y6+y4+y3+y+1
	Primitive Pentanomial P2: f(y) = y6+y5+y4+y+1
	Primitive Pentanomial P3: f(y) = y6+y5+y3+y2+1
	Primitive Trinomial T4: f(y) = y6+y5+1
	Primitive Trinomial T5: f(y) = y6+y+1
	Primitive Pentanomial P6: f(y) = y6+y5+y2+y+1

	Appendix B. Addition of powers xn with common terms ps
	Pentanomial P1: f(y) = y6+y4+y3+y+1
	Pentanomial P2: f(y) = y6+y5+y4+y+1
	Pentanomial P3: f(y) = y6+y5+y3+y2+1
	Trinomial T4: f(y) = y6+y5+1
	Trinomial T5: f(y) = y6+y+1
	Pentanomial P6: f(y) = y6+y5+y2+y+1

	Appendix C. Coordinate expressions for F26 multipliers
	Primitive Pentanomial P1: f(y) = y6+y4+y3+y+1
	Primitive Pentanomial P2: f(y) = y6+y5+y4+y+1
	Primitive Pentanomial P3: f(y) = y6+y5+y3+y2+1
	Primitive Trinomial T4: f(y) = y6+y5+1
	Primitive Trinomial T5: f(y) = y6+y+1
	Primitive Pentanomial P6: f(y) = y6+y5+y2+y+1

	References


