

University of Bergen

Master thesis

Using RDFa to reduce privacy concerns for
personal web recommending

Author:

Christoffer M. Valland

Supervisor:

Andreas L. Opdahl

Department of Information Science and Media Studies

June 2015

i

University of Bergen

Abstract

Faculty of Social Sciences

Department of Information Science and Media Studies

Master’s degree

Using RDFa to reduce privacy concerns for personal web recommending

by - Christoffer Valland

The amount of available information on the web is increasing, and companies are expanding the

way to both collect and use the information available. This is the situation for both personal

information, and technological information such as HTML-documents. Throughout this paper, I

will describe the development of a semantic web recommender system that aims to reduce the

amount of personal information needed to provide personal web recommendations. Semantically

marked up documents on the web contain information, which is not necessarily provided in a

user interface. This means there are possibilities to expand the area of use for this technology.

The use of Semantic Web-technologies can therefore contribute to reduce the need of giving

away personal information on the web.

This thesis is divided in two parts: The first part focuses on the development of a semantic

application, and the new area of use of this technology. The other part focuses on how standard

recommenders handle privacy concerns on the web. The thesis will provide a description of the

development of the recommender system, as well as an explanation of online privacy and how

different web service providers’ deals with it. The system uses an RDFa-API to collect semantic

information available on web-documents, and further uses this information to provide

recommendations for the users. This thesis concludes that it is possible to recommend new web

content for a user with this method, but the collected information varies wildly. This is related to

both the complexity of the developed system and the way “things” are marked on the web. It is

further shown that this method can reduce personal information, however it is shown that users

who are comfortable with social medias are not worried about privacy on the web.

ii

Acknowledgement
First of all I would like to thank my supervisor Andreas L. Opdahl. He has been a great help and

motivator. Andreas’ knowledge about the field is inspiring, and his feedback and guidance on this

thesis have been crucial for me during these semesters.

I would like to thank my family, Live and Eskil, for being patient with me during the long days at

the study room.

In the end I would like to thank my fellow students and friends at reading room 637. You have

been entertaining, motivating and helping me a lot throughout these years.

Thank you all!

iii

Table of content

1.	 INTRODUCTION	 ..	 1	
1.1.	 MOTIVATION	 ...	 2	
1.2.	 RESEARCH	 QUESTION	 ..	 4	

2.	 THEORY	 ...	 5	
2.1.	 PRIVACY	 ...	 5	
2.1.1.	 Informational	 privacy	 ..	 5	
2.1.2.	 Google’s	 privacy	 policy	 ...	 6	
2.1.3.	 Users	 privacy	 concerns	 ..	 7	

2.2.	 THE	 SEMANTIC	 WEB	 ...	 8	
2.2.1.	 RDF	 –	 Resource	 Description	 Framework	 ...	 8	
2.2.2.	 Microformats	 ...	 10	
2.2.3.	 RDFa	 –	 Resource	 Description	 Framework	 in	 attributes	 ..	 10	
2.2.4.	 Usage	 of	 markup	 on	 the	 web	 ..	 11	

2.3.	 COLLECTING	 INFORMATION,	 COMMON	 TECHNIQUES	 ..	 12	
2.3.1.	 User-‐provided	 information	 ...	 12	
2.3.2.	 Cookies	 ...	 14	
2.3.3.	 Click	 tracking	 ..	 15	

2.4.	 OTHER	 RECOMMENDERS	 AND	 CONTENT	 PROVIDERS	 ...	 16	
2.4.1.	 RSS	 ...	 16	
2.4.2.	 Flipboard	 ...	 17	
2.4.3.	 Facebook	 Instant	 Articles	 ..	 17	

3.	 TECHNOLOGIES	 ..	 18	
3.1.	 JAVASCRIPT	 ...	 18	
3.2.	 JQUERY	 ..	 18	
3.3.	 MONGODB	 AND	 MONGOLAB	 ..	 18	
3.4.	 CHROME	 EXTENSION	 ..	 18	
3.4.1.	 Chrome	 Extension	 Manifest	 ..	 19	
3.4.2.	 Browser-‐	 or	 page-‐action	 ..	 19	
3.4.3.	 Background	 or	 content	 script	 ..	 20	

3.5.	 GREEN	 TURTLE	 ..	 20	
3.6.	 GIT	 AND	 GITHUB	 ...	 21	
3.7.	 SPIDER	 ...	 21	

4.	 METHODS	 ...	 22	
4.1.	 DESIGN	 SCIENCE	 ..	 22	
4.1.1.	 Design	 as	 an	 Artifact	 ..	 23	
4.1.2.	 Problem	 Relevance	 ...	 23	
4.1.3.	 Design	 Evaluation	 ...	 24	
4.1.4.	 Research	 Contributions	 ..	 24	
4.1.5.	 Research	 Rigor	 ...	 24	
4.1.6.	 Design	 as	 a	 Search	 Process	 ...	 25	
4.1.7.	 Communication	 of	 Research	 ...	 25	

4.2.	 DEVELOPMENT	 METHOD	 –	 RUP	 (RATIONAL	 UNIFIED	 PROCESS)	 ...	 25	

iv

4.2.1.	 Develop	 software	 iteratively	 ..	 26	
4.2.2.	 Manage	 requirements	 ...	 26	
4.2.3.	 Use	 component-‐based	 architectures	 ...	 26	
4.2.4.	 Visually	 model	 software	 ...	 27	
4.2.5.	 Verify	 software	 quality	 ...	 27	
4.2.6.	 Control	 changes	 to	 software	 ..	 27	

5.	 IMPLEMENTING	 THE	 EXTENSION	 ..	 28	
5.1.	 RESEARCH	 ...	 28	
5.2.	 DEVELOPMENT	 ..	 29	
5.2.1.	 Iteration	 1	 –	 Pre-‐programming	 work	 ..	 29	
5.2.2.	 Iteration	 2	 –	 Modifying	 Green	 Turtle	 ...	 31	
5.2.3.	 Iteration	 3	 -‐	 Database	 ...	 32	
5.2.4.	 Iteration	 4	 –	 Database	 (continues)	 ...	 33	
5.2.5.	 Iteration	 5	 –	 User	 Interface	 ..	 34	
5.2.6.	 Overview	 of	 the	 complete	 system	 ...	 36	

5.3.	 DATA	 FLOW	 /	 INFORMATION	 FLOW	 ..	 36	

6.	 ANALYSIS	 AND	 DISCUSSION	 ...	 38	
6.1.	 WHY	 RDFA?	 ..	 38	
6.2.	 THE	 EXTENSION	 IN	 USE	 ..	 39	
6.2.1.	 Limitations	 ...	 39	
6.2.2.	 Clearing	 the	 database	 ...	 40	
6.2.3.	 Installing	 the	 extension	 ..	 40	
6.2.4.	 In	 use	 ...	 41	
6.2.5.	 Result	 of	 use	 ...	 42	

6.3.	 SOLVED	 PRIVACY	 ISSUES	 ..	 44	
6.3.1.	 Storing	 information	 ...	 45	
6.3.2.	 Reducing	 personal	 information	 ..	 45	

6.4.	 UNSOLVED	 PRIVACY	 ISSUES	 ...	 46	
6.5.	 WHY	 IT	 STANDS	 OUT	 FROM	 THE	 CROWD	 ..	 46	
6.5.1.	 Compared	 to	 RSS	 ...	 47	
6.5.2.	 Compared	 to	 Facebook	 Instant	 Articles	 ..	 47	
6.5.3.	 Compared	 to	 Flipboard	 ...	 47	

6.6.	 FUTURE	 WORK	 AND	 IMPROVEMENTS	 OF	 THE	 EXTENSION	 ...	 48	
6.6.1.	 Collecting	 information	 ..	 50	
6.6.2.	 Recommending	 ...	 54	
6.6.3.	 Searching	 ..	 55	
6.6.4.	 Posting	 objects	 to	 the	 database	 ..	 56	
6.6.5.	 Improving	 User	 Interface	 and	 User	 experience	 ..	 57	

6.7.	 EXPANDING	 THE	 VISION	 OF	 THE	 SYSTEM	 ..	 58	
6.8.	 EVALUATION	 OF	 RESEARCH	 METHODOLOGY	 ..	 61	
6.8.1.	 Solving	 a	 problem	 ...	 61	
6.8.2.	 Changing	 the	 way	 to	 solve	 a	 problem	 ..	 62	
6.8.3.	 Evaluating	 the	 artifact	 ...	 62	
6.8.4.	 Contributing	 to	 research	 ..	 63	
6.8.5.	 Research	 Rigor	 ...	 63	
6.8.6.	 Search	 process	 ..	 63	

v

6.8.7.	 Communicating	 the	 research	 ...	 63	
6.9.	 EVALUATING	 THE	 DEVELOPMENT	 METHODOLOGY	 ...	 64	

7.	 SUMMARY	 AND	 CONCLUSIONS	 ..	 65	

8.	 SOURCES	 ...	 67	

9.	 APPENDIX	 ..	 71	
9.1.	 APPENDIX	 1:	 DESIGN-‐SCIENCE	 RESEARCH	 GUIDELINES	 ...	 71	
9.2.	 APPENDIX	 2:	 DESIGN	 EVALUATION	 METHODS	 ...	 72	
9.3.	 APPENDIX	 3:	 INFORMATION	 SYSTEMS	 RESEARCH	 FRAMEWORK	 ..	 73	
9.4.	 APPENDIX	 4:	 LIST	 OF	 LITERALS	 FROM	 IRENE	 CELINO’S	 TEST	 SITE	 ..	 74	

vi

List of Figures

Figure 2.1: Example of RDF triples shown in a graph ... 9	

Figure 2.2: Difference between browsers and humans, collected from:

http://www.w3.org/TR/xhtml-rdfa-primer/. ... 11	

Figure 2.3: Graph showing the spread of markup-methods, from Webdatacommons.org (Bizer

et al., 2014) ... 12	

Figure 2.4: Komplett.no’s online registering sheet .. 13	

Figure 3.1: Screenshot of icon used in browser-action marked with a ring 19	

Figure 3.2: Screenshot of icon used in page-action marked with a ring 20	

Figure 5.1: Image of my Kanban board late in the development phase 29	

Figure 5.2: Screenshot of the User Interface .. 35	

Figure 5.3: Data- and Information-flow ... 37	

Figure 6.1: Number of documents in each collection .. 40	

Figure 6.2: The button to load unpacked extension ... 41	

Figure 6.3: Screenshot of the list of most common objects. Example of RDFa-objects not

understandable for users. .. 43	

Figure 6.4: Screenshot of the result of searching for the object marked in Figure 6.3 44	

Figure 6.5: Extending the architecture of the system ... 50	

Figure 6.6: Sketch of a suggested new design .. 58	

Figure 6.7: ITavisen.no's approach to marking articles with topics ... 59	

Figure 6.8: Chrome's overview of my "most visited" sites .. 60	

1

Chapter 1

1. Introduction
Given the fact that most people spend many hours of web surfing each week, we can say that

the web has become a quite central part of our everyday-life. The amount of information and

applications increases all the time, giving us even more reasons to spend time on digital

platforms. What we also see online is the amount of information being collected about the

users. This collected information is both from information you voluntary give away to

different web providers, and information being automatically collected from use. The vision

for my system is to create an application that both stores information from visited web sites,

and are capable of finding similar web content on other web sites. The information should be

semantically marked up information from the user’s web surfing, and the system should

further be able to produce recommendation for other web content.

Semantic web technologies make us capable of implement such a system. Using semantic

technologies will not only extract the information needed, but also reduce the need of

spreading any personal information. A system that is installed directly on a user’s web

browser, and which does not require any information in order to work, will not interfere with

privacy concerns. The only information it needs is information provided in the web sites’

HTML documents. When collecting information that is technologically provided by the web

service providers, there is no leak of personal information to the web providers or the system

provider. The recommendation could be done through parsing the user’s browser history, but

in order to recommend “new” web content it’s necessary to go through more than the browser

history. If the system only parses the user’s history, it will never be recommended any new

content. The system will then only provide content and web sites the user already has visited.

Therefore I aim to, in addition to the history log, also crawl the web sites a user visits, so that

I build up an understanding of what web sites and services the user are interested in. Almost

like an online user profile.

This thesis is further developed to show possibilities with semantic web technologies,

especially the semantic web markup technology RDFa. Through this thesis I will describe the

development of an extension in Google Chrome that collects information through the user’s

2

web surfing, and recommend new web content based on the collected information. There are

two reasons why this is an interesting topic of research: The amount of structured and

connected data on the web is increasing, and the privacy concerns regarding web surfing. This

means the use of semantic technologies is a possible technology to be used in a recommender.

When using semantic technology for a recommender tool, it can become highly accurate, and

avoid the need of making users describe what they are interested in or creating an account on

the web service.

The extension is developed in JavaScript, HTML and CSS. The actual development of the

extension is described in detail in chapter “5 Implementing the extension”. It is developed as a

proof-of-concept, meaning it’s not a complete and fully working extension. It only provides a

proof for how such technologies could be used, and in addition how it can contribute to

reduce privacy concerns on the web. The source code of the extension is published on my

GitHub profile: https://github.com/christoffervalland/Semantic.

The development of the extension has been based on the methodology “Design Science in

Information Systems Research” by Hevner, March, Park, & Ram (2004). This methodology is

followed to ensure that the extension and its quality reach the highest quality possible. The

methodology is described in detail in section “4.1 Design Science”. The actual programming

part of the extension follows the development methodology called RUP, Rational Unified

Process, see section “4.2 Development method – RUP (Rational Unified Process)” for details.

This is because following a development methodology makes it easier to keep smaller tasks at

hand, having the focus on the most important part, and work more purposeful.

1.1. Motivation
Starting off with this thesis, I thought the interest of making the web more personal and

private was a hot topic. Thinking of all the web content created and collected on the web

today. People are posting pictures to Facebook and Instagram, writing personal status

messages, checking in to places with positional data, and much more. A lot of today’s web

sites and web applications are storing unnecessary much information about their users. We

can divide this information into two groups: Information users voluntarily inform to the web

service, and information the service provider collects in the background without any user

involvement. This, and privacy in general, will be discussed in more detail in section “2.1

Privacy”.

3

For me in personal, I won’t say that I’m afraid of web providers collecting or using

information about me. There’s still something strange about the necessity of collecting that

much information about me to provide a service. With service I mean for instance advertises,

mail, recommendations and more. Some of this will be discussed further in section “2.1.2

Google’s privacy policy” and “2.1.3 Users privacy concerns”. To provide accurate advertises

online, the provider needs to know what their users are interested in, but not all other data

such as what devices are used to surf the web, what web browser was used, time of the day, or

other personal information. Then this question comes up: How can web service providers

know what you’re interested in without knowing all this personal information? This is

discussed in the upcoming section (“1.2 Research question”).

“So, like our universe, the digital universe is something to behold – 1.8 trillion gigabytes in

500 quadrillion ‘files’ – and more than doubling every two years. That’s nearly as many bits

of information in the digital universe as stars in our physical universe.” (Gantz & Reinsel,

2011).

With the citation above in mind, there’s no doubt that there’s a need for good organization-

and search- methods in the digital universe. Organizing the entire digital universe is very hard

or completely impossible. That’s why the urge for other methods has become as central as it

has. In the early phase of the web, the tools and methods were for instance Web Crawlers,

which crawled around the web to collect information. “But it has long been apparent that an

approach based only on the full-text indexing of the contents of Internet sites is not a

complete or fully adequate solution for providing access to these resources. We need means to

augment and enrich the ‘self-description’ of materials and encourage creators and third party

agencies to engage in this task.” (Efthimiadis & Carlyle, 1997)

 The use of semantic technologies is becoming more and more central when discussing the

web today. “This is the vision of the Semantic Web – an organized worldwide system where

information flows from one place to another in a smooth but orderly way.” (Allemang &

Hendler, 2011, p. 11). Since more and more web creators and web service providers have

started using semantic technologies, and especially semantic markup on web sites, the need

for applications using this technology are becoming bigger.

4

RDFa seems to be one of the leading semantic web markup technologies together with

Microformats, which means we need more applications and different approaches to benefit

from this technology. RDFa are explained further in section “2.2.3 RDFa – Resource

Description Framework in attributes”, and Microformats in section “2.2.2 Microformats”. As

explained in section 2.2.3, RDFa is a new approach provided by W3C to add structured data

directly in HTML attributes. Since the web creators add this information, it’s information they

want to become useful. Further this is technological information that does not directly

describe a person surfing the web in any way, which brings me back to another important

topic of this thesis: Privacy.

1.2. Research question
The idea is to understand how new web technologies can be used to recommend web content

without the need of collecting any personal information. To withhold the privacy concerns, I

aimed to collect as little as possible information that is directly related to the user, but at the

same time collect enough to be able to produce accurate recommendations. My focus will be

on using semantic web technology, specifically RDFa, to collect information provided by the

web sites a user visits. This information is detailed, technologically provided information in

the HTML documents, which the web providers add to their web services for different

reasons. The information will later be used in a recommender system, suggesting “new” web

content for the user based on what gets collected from the user’s web surfing. The research

question I ended up with was therefore:

Can semantic web technologies be used to reduce the privacy concerns when recommending

web content?

5

Chapter 2

2. Theory
This section will describe theory covering my field of research, including topics as the

semantic web in general, RDF and RDFa, some information about privacy and more. This

will help to understand the research question, and also create an understanding of what I write

about in the upcoming chapters.

2.1. Privacy
One of the main drivers and research areas of this thesis is the privacy issue. Privacy is

becoming more and more central regarding the web and web surfing. When creating new

accounts around on different web systems, you always need to accept some terms. I’ll

describe examples of such terms in greater detail later on. What most users don’t know is that

when they’re logged in to a web system, it often stores information about you. Either personal

information or just technical information, such as time and date, what URLs you visit and

similar. Google is one of the leading companies when coming to information gathered from

the web.

There’s no easy definition of what privacy is. A very general definition of privacy is the

“right to be let alone”, a form of freedom from intrusion. This definition comes from a law

review from Brandeis and Warren (1890), with the title “The Right to Privacy”. When talking

about privacy today, we often divide between intrusion or physical privacy, and informational

privacy. This informational privacy is what will be discussed in this thesis.

2.1.1. Informational privacy

Informational privacy is the concern about privacy around computers and the web. In the

early 90s, Moor (1990) raised a concern around personal information in computer systems.

“Furthermore, because personal information about us is stored in computer databases, most of

us have no control over how that stored information is used” (Moor, 1990, p. 75). This is also

the situation today, even though web services are becoming better and better to inform users

about the information stored. When including computers in the discussion around privacy, it

raises several new issues and concerns as well.

6

First is the information part. The issue here is that instead of anything physical, the focus is on

the information. As Moor highlighted: Most of us don’t have any control over how this

information is used. Second when adding the word personal in front of information, it often

seems even more frightening. Many services are storing personal information such as name,

e-mail address, phone number, birthdate and more. When not having any control of this

information one could be suspicious around what the information is used for.

2.1.2. Google’s privacy policy

Since Google is one of biggest companies on the web, I decided to use them as an example.

Once you register a Google account, you also approve that Google can start collecting

information about you. Google has two different categories of information to store:

Information you as a user provide to the service, and information they get from your use

while using their services.

The former one is often seen as the least frightening. This can be information such as name,

email, and other information you need to provide to create an account. Since this is

information users voluntarily give away, they know what and how much information they

give up. Most users don’t think this is frightening the same way as information they don’t

even know is collected.

The latter one is often unknown to most people, and might be frightening to some people.

This is information gathered from your use. “We collect information about the services that

you use and how you use them, like when you watch a video on YouTube, visit a website that

uses our advertising services, or you view and interact with our ads and content.” (Google,

2015c). Details around this information gathering is found on “Google - Privacy & Terms”

(2015a) page, and I’ll describe examples of some of them now:

-‐ Device information; including hardware model, operating systems and even phone

number.

-‐ Location information; where you are when using Google’s services. This is collected

in several ways such as IP-address, GPS and cell towers and more.

-‐ Log information; that is details of how users use their service, such as search queries.

Phone log information like phone number, time and date of calls, duration of calls and

more. Device event information such as crashes, activity, hardware, browser and

more.

7

2.1.3. Users privacy concerns

There are several statistics and analysis around users privacy concerns. Already in 1999, we

find analysis around Internet users privacy concerns. A technical report by AT&T Labs-

Research from April 14. 1999, reports several interesting findings. They found for instance

that Internet users dislike automatic data transfer. “When asked about several possible

browser features that would make it easier to provide information to Web sites, 86% of

respondents reported no interest in features that would automatically transfer their data to

Web sites without any user intervention.” (Cranor, Reagle, & Ackerman, 1999).

The report also describes how Internet users dislike unsolicited communications. They

reported that 61% of the respondents who said they would be willing to provide their name

and postal information to receive free pamphlets and coupons said they would be less likely to

provide the information if it would be shared with other companies and used to send them

additional marketing materials.

This was reported already in 1999, and the automatically collected information hasn’t been

reduced in modern times. As mentioned in section “2.1.2 Google’s privacy policy”, different

web services are able to collect information about both software and hardware. This

information is then used to “personify” the web for each user. An example of this is

advertisement on the web.

On Google’s “Privacy & Terms” page, you’ll find information about their advertising-tools

where they explain what information they collect about users. “For example, if you frequently

visit websites and blogs about gardening, you may see ads related to gardening as you browse

the web. And if you watch videos about baking on YouTube, you may see more ads which

relate to baking.” (Google, 2015d). In addition they write on the same webpage that they are

able to automatically scan content of their own services, such as Gmail. This means they are

able to know if you bought a shirt and received the receipt on your email address. They can

further use this information to show you ads about similar shirts.

In more recent times, research shows that people aren’t necessarily that concerned about

informational privacy. In 2012-13 Tessem and Nyre (2013) studied people’s willingness to

share personal information. In their study (called “The Influence of Social Media Use on

8

Willingness to Share Location Information”) they looked into how people are sharing

personal information through mobile phones, the high connectivity and social media. In their

report they discuss and highlight the issue around informational privacy. Their study was

specifically about location-based applications and the willingness to share location, but this is

still interesting regarding informational privacy.

According to Tessem and Nyre (2013) informational privacy is about protecting personal

information or controlling its propagation and use. Users need to balance the value gained

from sharing (with recipients), thinking that recipients can be everything from family to

distant organizations. They found for instance that users who are frequently using social

medias are more willingly to share location and other personal information than others. “The

analysis shows that frequent social media users are more inclined to share location and other

personal information than others.” (Tessem & Nyre, 2013). One of their main findings were

that the more experienced a person was with social media in general, was an important cause

for the increased confidence.

2.2. The Semantic Web
As you already might have guessed: It has something to do with the World Wide Web

(WWW) and semantics. Semantic means “meaning”, and as (Hebeler, Fisher, Blace, & Perez-

Lopez, 2009) describes: “Meaning enables a more effective use of the underlying data.

Meaning is often absent from most information sources, requiring users or complex

programming instructions to supply it.” Further they describe the semantic web as a “…web

of data described and linked in ways to establish context or semantics that adhere to defined

grammar and language constructs” (Hebeler et al., 2009).

When data is connected it is easier to understand it’s actual meaning. For instance ambiguous

words like spot, live, skin and so on. The word “spot” has no actual meaning without its

context. A person reading the word doesn’t know if it’s about LED spots or a spot on

someone’s shirt. This is what the semantic web adds to the World Wide Web.

2.2.1. RDF – Resource Description Framework

Resource Description Framework (RDF) is a framework based on the foundation of the web:

the connection between two “things”. “RDF relies heavily on the infrastructure of the Web,

using many of its familiar and proven features, while extending them to provide a foundation

9

for a distributed network of data.” (Allemang & Hendler, 2011, p. 27). RDF extends the

standard linking between two “items”, adding a third feature to describe the relationship

between them. RDF uses URIs (Uniform Resource Identifier) to describe the two ends of the

link. These two URIs and a third one to describe their relationship creates a “triple”. “RDF

extends the linking structure of the Web to use URIs to name the relationship between things

as well as the two ends of the link (this is usually referred to as a “triple”).” (Herman, 2009).

The three properties of a triple are called subject, predicate and object. “The subject of a

statement is the thing that statement describes, and the predicate describes a relationship

between the subject and the object.” (Hebeler et al., 2009, p. 68).

Without going too much into depth the object of a triple could be either a literal or a resource.

A literal is a constant value that, according to Hebeler et al. (2009, p. 69), represents concrete

data values like numbers or strings and cannot be the subjects of statements, only the objects.

In contrast, resources could be subjects in a triple, meaning they could represent “… anything

that that can be named.” (Hebeler et al., 2009, p. 69).

It is easier to understand what a triple is with the use of examples. To describe what music

that exists in my music playlist with RDF, we could say it like this: “Christoffer listens to Led

Zeppelin”. Other examples could be the relationship between me and my friends at the

University: “Christoffer knows Lars Petter”, “Christoffer knows Stian” and so on.

Figure 2.1: Example of RDF triples shown in a graph

10

2.2.2. Microformats

Microformats is a method that is based on the idea of adding structured information in web

pages. Microformats rely on a standard vocabulary, making web providers add very specific

data to the web sites. A vocabulary is according to W3.org (W3.org, 2015) a set of terms that

can be used in a particular application, to describe possible relationships, and to define

possible constraints on using those terms. According to Allemang & Hendler (2011, p. 53) the

first Microformats were used for business cards and events. Further Allemang & Hendler

(2011, p. 53) also explains that the vocabulary for business cards included names, position,

company, and phone number. While for events it included location, start time, and end time.

This is both a limitation and an advantage of the Microformats. The advantage is that there is

a controlled environment, meaning everyone who uses this technique is using it the same way

with the same vocabularies. The limitation is this exact controlled environment: The need for

a specific vocabulary for different topics, and the need of a specific parser to process the

vocabularies.

2.2.3. RDFa – Resource Description Framework in attributes

In response to the above-mentioned limitations to Microformats, W3C proposed Resource

Description Framework in attributes (RDFa) as the way to add structured data (in form of

RDF) to web sites. RDFa is a single syntax for marking up HTML pages with RDF data

(Allemang & Hendler, 2011, p. 53). “…the ability to add structured data to HTML pages

directly. RDFa (Resource Description Framework in Attributes) is a technique that allows just

that: it provides a set of markup attributes to augment the visual information on the Web with

machine-readable hints.” (Herman, Adida, Sporny, & Birbeck, 2015). This means RDFa

opens for adding attributes in HTML or XHTML documents that adds structured data and

data connections in HTML and XHTML documents. RDFa works as an extension of the

existing HTML and XHTML. RDFa uses the attribute tags in HTML to provide such

structured data that can be parsed into RDF according to Allemang & Hendler (2011, p. 53).

RDFa also tends to reduce the gap between machine and human. When you open a website in

your browser, the only thing the machine sees is the HTML attributes telling the machine

whether it’s a headline, bold or italics font, if it’s a link to another page and so on. What

humans see is much more detailed. We understand that the headline is the title of a webpage,

11

what the context of the text on the site is and much more. W3.org have created a nice figure,

showing this exact problem (see Figure 2.2). The left side of the figure shows what the

browser see, and the right side what humans see.

Figure 2.2: Difference between browsers and humans, collected from: http://www.w3.org/TR/xhtml-
rdfa-primer/.

2.2.4. Usage of markup on the web

In December 2014, Web Data Commons did a crawl of over two billion URLs. They looked

for how many of these who included structured data in some form. Their results showed that

approximately 620 million HTML pages contained structured data (Bizer, Meusel, &

Primpeli, 2014). From all these URLs the most used methods to create structured data, were

Microdata and RDFa (see Figure 2.3). From the statistics provided by webdatacommons.org

we find that RDFa existed on 257,251,367 URLs crawled in December 2014 (Bizer et al.,

2014).

12

Figure 2.3: Graph showing the spread of markup-methods, from Webdatacommons.org (Bizer et al.,

2014)

2.3. Collecting information, common techniques
To go in depth on many of the techniques used on the web will be too time consuming and

also be a bit out of my research topic. It is still interesting and necessary to explain some of

the techniques used to collect information about web users. Therefore the upcoming sections

will explain cookies (web cookies) and click tracking, two different techniques for collecting

information about web users.

2.3.1. User-provided information

One of the easiest ways to collect information from users of different web services are to let

the users add the details themselves. This is a well-known situation for online shopping, mail

systems, social media and much more. Often on such services, you’ll not only have to provide

a name, but also your address, e-mail address and phone number. This means all your

personal contact information. Regarding online shopping users does not only need to provide

contact information, but it’s also very common to provide payment information. According to

Statistics Norway throughout the second half of 2013 up to September 2014, as much as 77%

of the Norwegian population has performed some form of online shopping (SSB, 2014).

13

These web services or online shops need this information the first time you order something,

and some also need it for the upcoming visits. Very often do web services provide the

functionality of creating an account for their service, this way users don’t need to provide all

this information the next time they are using the service. Below you’ll find an example of

such registration. The example is collected from www.komplett.no. As you see in Figure 2.4

you have to provide name, last name, address, postal code, postal place, phone number and

email address. Some may wonder why you need to provide phone number or email address

instead of a username.

Figure 2.4: Komplett.no’s online registering sheet

14

2.3.2. Cookies

Maybe the most well known technology for everyday users of the web is the cookies. Cookies

are a way to let applications on the web transfer data between browser and server. They are

small pieces of information that are sent between browser and server. A cookie is often used

to identify users; meaning cookies are capable of storing usernames and other HTML filled

forms. “Cookies are data, stored in small text files, on your computer. When a web server has

sent a web page to a browser, the connection is shut down, … Cookies were invented to solve

the problem “how to remember information about the user: …” (W3Schools, 2015a).

Advertisers use cookies to build a “profile” of web users. “A typical profile might say how

much a person is interested in sports or in consumer electronics, or how much he follows

current events and the news.” (Garfinkel & Spafford, 2002, p. 219). This is of course

information intended to be anonymous. Garfinkel & Spafford (2002, p. 219) further explains

that when such anonymous information is combined with either IP-address or information

provided at the web service, it becomes possible to unmask the anonymous data.

Using cookies can both improve and weaken privacy. It improves privacy because it helps

reduce the amount of personal information needed by different web services. Web services no

longer need to store information in a central location (server), since they’re now able to store

information in the cookie itself. As highlighted by Garfinkel & Spafford (2002, p. 220) one of

the most important benefits of storing information in the cookie instead of a server, is that

there is no database of personal information that needs to be protected.

On the other hand cookies can weaken privacy. An example of this is provided by Garfinkel

& Spafford (2002, p. 220): “When cookies are used to tie together a whole set of seemingly

unconnected facts and pieces of information from different web sites to create an electronic

fingerprint of a person’s online activities.” Further they explain that such cookies usually

contain an identifier that works as a key into a database. Cookies are able to help search

engines create a “user profile” of anonymous users. In a Utah Law Review, they explain that

cookies enable search engines to recognize a user as a recurring visitor and amass his or her

search history (Tene, 2008, p. 1447).

15

2.3.3. Click tracking

As the name of this technique indicates, this is about tracking a user’s clicks around on the

web. This technique is often used in advertisement on the web, such as Facebook Marketing

or search results from search engines. Alberdeston, Dondyk, & Zou (2014, p. 570) write that

when users are using search engines, the user’s click action are first tracked by returning back

to the search engine before redirecting to the corresponding target website. This is a common

method, and is used by all big search engines and other web services. Alberdeston et al.

(2014, p. 570) highlights two reasons for search engines using such techniques: Improving

advertisement relevancy and maximizing revenue.

Even though users are not logged in to a user account related to a search engine (as for

instance Google Mail), the search engine still collects a wide range of information. According

to Alberdeston et al. (2014, p. 571) this information includes IP address, query term, and

cookie based ID. What this actually means is that whether you are a registered user of a web

service or not, they are capable of collecting information about you and your surf habits.

Keeping this in mind, we see that there are several privacy issues with this method. Even

though these are anonymous data, search engines and other web services can create a user

profile without any actual personal information about the user. The way you search and the

search habits in general, may help identify you as a person. Back in 2006, AOL released the

search history of more than 650,000 users’ search history. “The 21 million search queries also

have exposed an innumerable number of life stories ranging from the mundane to the illicit

and bizarre.” (McCullagh, 2006). Not very complex methods were needed to create an

understanding of the persons behind the different searches. The search histories were

connected to an anonymous identifier, such as six digit numbers. Even though this is

anonymous, the search terms are connected to you no matter how anonymous it is done.

In the AOL released search histories, they found that a user had searched for terms making it

easy to create an understanding of whom this person is. “… AOL user 710794 is an

overweight golfer, owner of a 1986 Porsche 944 and 1998 Cadillac SLS, and a fan of the

University of Tennessee Volunteers Men's Basketball team.” (McCullagh, 2006). What they

also could tell about user 710794, was that he was interested in the Cherokee County School

District in Canton, GA., and had looked up the Suwanee Sports Academy. This was pretty

16

disturbing since the same user also had searched for “lolitas”, a term commonly used to

describe photographs and videos of minors who are nude or engaged in sexual acts according

to McCullagh (2006).

2.4. Other recommenders and content providers
There are a bunch of recommenders out there, and I will only introduce some of them. I have

chosen the technology RSS, the application Flipboard, and the newest arrival from Facebook:

Instant Articles. If we look on the web, we will find several others also, but I decided to limit

my focus to the three that I found comparable to my system.

The big Internet firms such as Google, Facebook and others seem to be continuously

competing to be the number one site to visit when surfing the web. In 2006 Google bought

Youtube for $1.65 billion according to La Monica (2006). Meaning Google is not only a

search engine, but also a media center on the web. Facebook has several methods to keep the

users on their application. For instance are they providing an own browser inside the

Facebook app so users do not need to leave the application to get the information they want.

A problem with this could be their methods for handling privacy. All the above-mentioned

methods are user-based, meaning you have to be a registered user to benefit from these

technologies. In addition is the information you give away, and probably more, stored in a

central database.

2.4.1. RSS

RSS stands for Rich Site Summary, and is a technology where users can add certain web sites,

blogs, newspapers and more to their RSS feed. The RSS feed is continuously updating every

time one of the subscribed RSS providers is posting something on the web. “RSS is

technology used to monitor rapidly changing information on the web in an organized and user

friendly way.” (RSS.com, 2015). RSS uses XML to tell the RSS feed when a page has been

updated or changed. This means that if for instance a newspaper or a blog provide RSS on

their web site, a visitor of the blog doesn’t need to visit the actual blog to know if something

is new. The user will know if there’s something new, and what has been updated through the

RSS feed.

17

2.4.2. Flipboard

Flipboard is an application both on the web and on mobile devices. Its goal is to provide

personal content to their users. A user can choose topics they are interested in, and the

application will provide content regarding these topics. As Flipboard writes on their own web

site: "With the world’s best sources organized into thousands of topics, it’s a single place to

follow the stories and people that matter to you.” (Flipboard, 2015).

Flipboard only works for registered users meaning they store your registered information.

Flipboard let you sign up with either Facebook or manually by email address. In addition to

your email address, they need you to provide a full name and a password. It seems like they

have tried to keep the amount of personal information needed as low as possible.

2.4.3. Facebook Instant Articles

A fairly new technology is Facebook’s “Instant Articles”. The aim for this system is to

provide articles directly into Facebook users’ feed. This way news-publishers can easily

distribute articles to their readers directly in the Facebook application. As of today, Instant

Articles are under testing with just a small set of publishers. What Facebook aim to do is to let

the web providers post articles on Facebook, and that these become readable and interactive

directly in the users’ Facebook feed.

On the FAQ-page of Facebook’s Instant Articles, one of the questions asked is how it will

influence referral traffic, where Facebook answers: “Instant Articles display within the

Facebook app, so readers no longer redirect to the publisher's website.” But they further

assure that they work with both publishers and comScore to “… enable Instant Articles views

in Facebook's app to count as traffic to the original publisher, just as they do on the mobile

web.” (Facebook, 2015). ComScore is a company that collects information about peoples

navigation on the web, what they click on, where they spend the most time and more. They

describe themselves this way: “comScore is a leading internet technology company that

measures what people do as they navigate the digital world - and turns that information into

insights and actions for our clients to maximize the value of their digital investments.”

(ComScore, 2015).

18

Chapter 3

3. Technologies

3.1. Javascript
JavaScript is a programming language to be used on the web. Many, or all, modern websites

are using JavaScript to make their websites more interactive. All modern browsers including

Internet Explorer, Safari and Google Chrome support it.

3.2. jQuery
JQuery is meant to make it easier to develop web applications with JavaScript. JQuery makes

common programming tasks much more easy and possible with fewer lines of code.

According to (W3Schools, 2015b) jQuery supports HTML/DOM-manipulation, CSS-

manipulation, HTML event methods, effects and animations, AJAX and utilities.

3.3. MongoDB and MongoLab
MongoDB is an open source database system. According to MongoDB, Inc. (2013)

introduction site, their focus is flexibility, power, speed and ease of use. MongoDB stores data

in JSON-documents. This makes it easy to use with several programming languages,

including JavaScript.

MongoLab is a cloud host for MongoDB databases. When registering you get 500MBs free,

and hopefully that’s enough to support my system. If the storage comes up as a problem, it’s

easy to buy more storage without doing anything with your information stored in the

database. MongoLab also supports the REST API. This means you could easily connect, get,

post and edit information stored on the database with JavaScript. In addition MongoLab

provides a user interface where you can easily check the documents in a collection, empty a

collection, add or remove collections and more.

3.4. Chrome Extension
As Google themselves describe an extension: “Extensions are extra features and functionality

that you can easily add to Google Chrome.” –(Google, 2015a). Extensions support integration

with other websites and services than Google, and may therefore give you a personal

experience of web browsing.

19

3.4.1. Chrome Extension Manifest

To allow a script to run in the background, it needs to be declared in the manifest of the

extension. A manifest is a JSON formatted document providing important information about

the extension. This information is name, version, description and more specific information

about the extension. It also provides information about user interaction, permissions and

more.

3.4.2. Browser- or page-action

Browser-action based extensions have the extension icon visible at all times in the browser

toolbar, similar to Chrome’s menu-button (see Figure 3.1). This means the extension will be

visible and possible to access all the time, and is not depending on the site a user visits.

Figure 3.1: Screenshot of icon used in browser-action marked with a ring

Page-action based extensions are displayed in the end of the address bar (see Figure 3.2). On

Google’s developer page about page action (Google Developer, 2015c), they write that

extensions developed with page action have certain requirements and aren’t applicable to all

web sites. This means that the same requirements need to be fulfilled before the extension

becomes visible and interactive. If the requirements aren’t fulfilled or some other error

occurs, the extension won’t be accessible at all since the extension icon won’t be displayed.

Examples for this type of extension are the RSS feed symbol, which becomes visible when

users visit sites with an RSS feed.

20

Figure 3.2: Screenshot of icon used in page-action marked with a ring

3.4.3. Background or content script

The background script allows extensions to perform tasks with longer lifetime than content

scripts. This means you can use background script to handle events not directly affected by

the web sites visited. As described on Google Developer: “… you can use the background

page to handle events such as user clicks” (Google Developer, 2015a).

The content scripts are directly affected by the content of the web sites. These scripts can

read, collect, and make changes to the DOM (Document Object Model) of web sites visited.

Google describes content scripts as “… JavaScript files that run in the context of web pages”

(Google Developer, 2015d).

3.5. Green Turtle
Green Turtle is an implementation of RDFa for browsers. It works as an extension for Google

Chrome, and makes it possible to find RDFa triples on websites you visit. The author of the

extension writes this about the extension: “By simply adding a bit of JavaScript, the DOM is

extended to include the RDFa API and an RDFa 1.1 processor is available to process any

ancillary documents to harvest triples” (Milowski, 2015). When these triples are discovered

on a web page, you get the opportunity to open a page in the extension to view these triples in

a graph.

21

3.6. Git and GitHub
“Git is a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency.” (Git, 2015). Git is a

command line-based version control system. It allows users to create repositories that they

can commit, pull and push to. The commit is to record changes to the repository, pull to fetch

and integrate with branches or other repositories, and push to update the remote repositories

and references with the local changes.

GitHub is a Git repository host service. “At the heart of GitHub is an open source version

control system (VCS) called Git. Git is responsible for everything GitHub-related that

happens locally on your computer.” (GitHub, 2015). In addition to Git’s properties, it adds a

user interface to the Git repository. GitHub also provides some other functions, such as

watching the code directly in the web browser, a graph showing your activity and more. With

GitHub you are enabled to work on several hardware setups without affecting the others.

3.7. Spider
The site spider is a program or script that visits web sites, and reads and collect connected

pages and other information. The classic way these spiders work is that they follow all

hypertext links on a given web site, and does this for a certain number of iterations to reach a

certain depth. One called “Site Spider” by Neil Fraser (2011) is written entirely with

JavaScript, and allows setting the depth of crawling very easy.

22

Chapter 4

4. Methods
This chapter will describe the different methods used throughout the work with this thesis.

The research in this thesis follows the methodology and guidelines from design science

research, presented (in the article “Design Science in Information Systems Research”) by

Hevner et al. (2004). The development, or programming part, of the extension follows the

development method called RUP, with some modifications.

My implementation and evaluation of the methods is described in section “6.8 Evaluation of

research methodology” and “6.9 Evaluating the development methodology”. In section “6.8

Evaluation of research methodology” I will describe how each of the guidelines (provided by

Hevner et al. (2004)) suit my project. In section “6.9 Evaluating the development

methodology” I describe how the development method worked for my project, in addition to

the modifications needed order to make it work for my project.

4.1. Design Science
In order to understand the research behind an Information System, we need to understand two

different paradigms that characterize the research: behavioral science and design science.

Since the former is regarding more of human and organizational behavior, this thesis will deal

with the latter one; design science.

Design science rooted from engineering and the science of the artificial (Hevner et al., 2004,

Simon, 1996). According to (the article by) Hevner et al. (2004), design science creates and

evaluates IT artifacts intended to solve identified organizational problems. Design science

researchers need to understand the problem addressed by the artifact and the feasibility of

their approach to its solution (Hevner et al., 2004). In the article, they provide seven

guidelines to follow when working with design-science research. These guidelines are also

provided in the appendix “9.1 Appendix 1: Design-Science Research Guidelines”.

23

1. Design as an Artifact

2. Problem Relevance

3. Design Evaluation

4. Research Contributions

5. Research Rigor

6. Design as a Search Process

7. Communication of Research

4.1.1. Design as an Artifact

This is the first guideline provided in the article, and states that “Design-science research

must produce a viable artifact in the form of a construct, a model, a method or an

instantiation.” (Hevner et al., 2004, p. 83). They describe artifacts constructed in design

science research as rarely full-grown information systems that are used in practice. “Instead,

artifacts are innovations that define the ideas, practices, technical capabilities, and products

through which the analysis, design, implementation, and use of information systems can be

effectively and efficiently accomplished.” (Hevner et al., 2004, Denning, 1997; Tsichritzis,

1998). In the article they highlight that the construction of an artifact in a research setting is

only a first step towards deployment, but that it is a necessary step. The research results can

contribute to highlight new possibilities or address problems of the design of an information

system.

4.1.2. Problem Relevance

The main goal with this guideline is according to Hevner et al. (2004) to acquire knowledge

and understanding that enable the development and implementation of technology-based

solutions of unsolved and important business problems. “Formally, a problem can be defined

as the differences between a goal state and the current state of a system.” (Hevner et al., 2004,

p. 85). Solving such problems will be discussed further in section “4.1.6 Design as a Search

Process”. The research in design-science further needs to be relevant to a community.

According to Hevner et al. (2004) the community consists of practitioners who plan, manage,

design, implement, operate and evaluate the technologies that enable their development and

implementation.

24

4.1.3. Design Evaluation

The third guideline tells that “The utility, quality, and efficacy of a design artifact must be

rigorously demonstrated via well-executed evaluation methods.” (Hevner et al., 2004, p. 85).

There exist several methods to evaluate an artifact. A table in the article describes five

different evaluation methods: Observational, analytical, experimental, testing and descriptive.

I won’t go into depth on each of these, see the appendix “9.2 Appendix 2: Design Evaluation

Methods” for the complete table. Such evaluation of artifacts can involve functionality,

consistency, accuracy, performance, usability, and more.

4.1.4. Research Contributions

The introductive line for guideline four is: “Effective design-science research must provide

clear contributions in the areas of the design artifact, design construction knowledge (i.e.,

foundations), and/or design evaluation knowledge (i.e., methodologies).” Hevner et al. (2004,

p. 87). Further it says that the ultimate assessment for any research is: “What are the new and

interesting contributions?” When working with design-science research, you have the

potential to contribute in the knowledge base. According to (Hevner et al., 2004) design-

science research holds the potential for three types of research contributions. The three types

are the novelty, generality and significance of the artifact.

As shown in the figure in “9.3 Appendix 3: Information systems research framework”, the

development of an artifact contributes to both the environment and the knowledge base. The

arrow pointing left on the bottom of the figure points on the “artifact in the environment

produces significant value to the constituent IS community.” (Hevner et al., 2004, p. 87). The

arrow pointing to the right side shows the contribution to the knowledge base. In addition “…

use of evaluation methods (…) and new evaluation metrics provide design-science research

contributions.” (Hevner et al., 2004, p. 87).

4.1.5. Research Rigor

The fifth guideline describes how design-science research requires rigorous methods:

“Design-science research requires the application of rigorous methods in both the

construction and evaluation of the designed artifact. ” (Hevner et al., 2004, p. 87). The aim is

to see how well an artifact works. This means the researcher needs to find suitable ways to

evaluate the artifact, and in addition the right theory to justify the artifact.

25

4.1.6. Design as a Search Process

“The search for an effective artifact requires utilizing available means to reach desired ends

while satisfying laws in the problem environment.” (Hevner et al., 2004, p. 83). This is the

description of the sixth guideline. The search relates to the search for an optimal design,

which often means an iterative process of developing. Means, in this context, relates to a set

of actions and resources to construct a solution or artifact. The laws are related to the

environment thinking of uncontrollable forces and everything else that is unforeseeable.

The way design science research works, is to divide problems into smaller problems or set of

problems. As the smaller problems get a solution and the scope of the problems are expanded,

the design artifact also becomes more realistic and valuable. “Such simplifications and

decompositions may not be realistic enough to have a significant impact on practice but may

represent a starting point.” (Hevner et al., 2004, p. 89).

4.1.7. Communication of Research

Guideline seven explains how “Design-science research must be presented effectively both to

technology-oriented as well as management-oriented audiences.” (Hevner et al., 2004, p. 90).

The technology-oriented audience need detailed enough information to be able to implement

the artifact in an appropriate organizational context. It is also important that the technology-

oriented audience understands the process of developing and evaluating the artifact. For the

management-oriented audience, they need sufficient details to determine if the artifact will

give any advantages for their organization.

4.2. Development method – RUP (Rational Unified Process)
Since I’m not working with anyone else, in a team, it’s hard to follow any development

method accurately. I found several development methods that could suit my project in some

form, but all required several modifications to work well. For developing my system, I ended

up with following the development method called RUP – Rational Unified Process. This is

actually a development methodology, which enhances team productivity in several ways

(IBM, 1998, p. 1). My application and modification to RUP are discussed in section “6.9

Evaluating the development methodology”.

RUP is an iterative and incremental development method, with roots from the spiral method.

In RUP we find a description of some “best practices”. These best practices are described in

26

details in the article “Rational Unified Process - Best Practices for Software,” (1998, p. 1–2),

and consist of:

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software

4.2.1. Develop software iteratively

The first practice is “Develop software iteratively”. This means that with today’s complexity

in software systems, it’s not possible to first define the entire problem, design the entire

solution, build the software and then test the product at the end (IBM, 1998, p. 2). RUP

supports developing software in iterations, which helps to attack risk through demonstrable

progress, executable releases and feedback. “… iterative approach to development that

addresses the highest risk items at every stage in the lifecycle, significantly reducing a

project’s risk profile.” (IBM, 1998, p. 2).

4.2.2. Manage requirements

The second practice is “Manage requirements”. This is used to document required

functionality and different constraints, but is also used to track and document tradeoffs and

decisions made through the development (IBM, 1998, p. 2). Further, they explain that use

cases and scenarios have proven to be an excellent way to capture functional requirements

which again making it more likely to fulfill the end user needs.

4.2.3. Use component-based architectures

The third practice explains how RUP supports developing through components, where a

component is seen as “non-trivial modules, subsystems that fulfill a clear function.” (IBM,

1998, p. 2). Some components are seeking to solve a wide range of common problems, and

are built for reuse. This way developers are able to use existing components rather than

building it all from scratch. A specific way to show that RUP supports components is through

the iterative process, developers are able to “progressively identify components, and decide

which ones to develop, which ones to reuse, and which ones to buy.” (“Best Practice: Use

Component Architectures,” 2001).

27

4.2.4. Visually model software

This step wasn’t a central part of my development, but shortly explained in (IBM, 1998, p. 2):

“… write code using ‘graphical building blocks’.” This means the use of visual elements shall

provide an understanding of how the elements of the system fit together. Further they explain

that the use of UML (Unified Modeling Language) is the foundation for successful visual

modeling (IBM, 1998, p. 2).

4.2.5. Verify software quality

RUP focuses on keeping quality a part of the whole process of developing. It’s highlighted

that quality assessment is part of all activities and involves all participants, and are not treated

as a separate activity performed by a separate group (IBM, 1998, p. 2).

4.2.6. Control changes to software

The last practice provided is the “ability to manage change”. “The process describes how to

control, track and monitor changes to enable successful iterative development” (IBM, 1998, p.

2). This practice is mostly suited for teamwork, and therefore not directly affecting my

development. The practice aims to control changes in “an environment in which change is

inevitable” (IBM, 1998, p. 2).

28

Chapter 5

5. Implementing the extension
In the next section I’ll go through how I implemented this system. This includes some of the

choices I’ve made, how I used the technologies, implementation of the database and more.

My development will be based on existing scripts and extensions that use RDFa. The reason

for this is described in details in both the upcoming sections, in section “2.2.3 RDFa –

Resource Description Framework in attributes” and in section “6.1 Why RDFa?”. The

extension and its source code is found on my GitHub profile:

https://github.com/christoffervalland/Semantic.

5.1. Research
It all started with a lot of research on the topic. What had been done before, what could I

reuse for my system, was it possible to do this at all? In the early stages I felt it necessary to

collect some information about building extensions, JavaScript applications and web browsers

in general. When this was covered, I needed some information about semantic technologies

on the web. This includes existing APIs, applications and so on.

As shown through section “2.2.3 RDFa – Resource Description Framework in attributes”,

RDFa and Microformats are the leading semantic markup technologies. Regarding the fact

that Microformats are more closed and not as agile, my focus has been on the RDFa

technology. I found out early that there is some semantic APIs developed in JavaScript. For

my system, I ended up using one called “Green Turtle” (described in section “3.5 Green

Turtle”. Since Green Turtle is an open source extension for Chrome, I could use this as a

foundation for my own extension. I used this to learn how Chrome extensions actually work,

and I also use this as an RDFa API in my extension.

Green Turtle is working client side meaning nothing gets stored about the users. It is just an

extension that lets users get information about what RDFa triples that exist on the web site

visited. This means there is no privacy concerns regarding use of Green Turtle.

29

5.2. Development
This section will explain how I developed and programmed the system. It will include an

overview of each of the iterations of development, from research to complete system. Each of

these iterations will describe my goal for the iteration and how I worked to get it done.

5.2.1. Iteration 1 – Pre-programming work

My goal during this iteration was to get an overview of what resources I needed, and create a

plan for the programming. I decided to create a simplified Kanban with four fields: “To do”,

“In progress”, “Review” and “Done”. This way I could continuously set minor goals for

development. In addition this made me keep track of what parts that needed a review and

which where completed. I wrote down the goals on yellow post-it notes, together with an

estimation of how many hours I would need to get it done. These estimates rarely matched the

actual hours used, but it was nice to use as a motivation. It helped me become more focused

on the task at hand, in addition in times where I could risk becoming distracted, I had these

post-it notes telling me that I only had that many hours to get the task done.

Figure 5.1: Image of my Kanban board late in the development phase

30

On the start of this iteration I also needed to find tools and frameworks for development in

JavaScript. I wanted to find the suitable tools so that I could reduce the frustration and the

time spent being unproductive. In case something happened, I would need some backup of the

system. Since virtually every developer either uses or at least have heard about GitHub

(described in section “3.6 Git and GitHub”), I felt that this was the system to use. I used

GitHub to backup my daily work on the system. It was also great to have in case something

would happen during development. If I managed to hit the wrong button, write non-functional

code or anything, I could easily just go back to a previous working version of the system.

Green Turtle (described in section “3.5 Green Turtle” and section “5.2.2 Iteration 2 –

Modifying Green Turtle”) is an extension meant to find and visualize RDFa triples on visited

web sites. I therefore needed to modify it, remove several lines of code and make it more

suitable for my system. The biggest part was finding out how and which lines of code I would

be using. This way I could more easily keep track of how I could use the Green Turtle API. It

involved removing several lines of unnecessary code, adding some of my own code and

creating a completely new user interface for my users. This part will be described in “5.2.5

Iteration 5 – User Interface”.

1 {	 	 	
2 	 	 	 ...	
3 	 	 	 "background":	 {	 	 	
4 	 	 	 	 	 	 "scripts":	 ["background.js"]	 	 	
5 	 	 	 },	 	 	
6 	 	 	 "browser_action"	 :	 	 	 	
7 	 	 	 	 	 	 {	 	 	
8 	 	 	 	 	 	 	 ...	
9 	 	 	 	 	 	 },	
10	 	 	 	 "content_scripts":	 [
11	 	 	 	 	 	 {	 	 	
12	 	 	 	 	 	 	 "matches":	 ["<all_urls>"],	 	 	
13	 	 	 	 	 	 	 "js":	 ["harvest.js",	 "Thirdparty/SiteSpider/spider.js"],	 	 	
14	 	 	 	 	 	 	 "run_at":	 "document_end"	 	 	
15	 	 	 	 	 	 }	 	 	
16],	 	 	
17	 	 ...	
18	 	 }	 	 	

 Snippet 5.1: JSON of the extension's manifest file

31

I also needed to create the manifest file as explained in section “3.4.1 Chrome Extension

Manifest”. The snippet above (“Snippet 5.1”) is rewritten from my own manifest file. I’ve

chosen not to include the entire file since it’s not everything that is very interesting. The code

snip shows my declaration of what script should be run in the background, that it’s a browser-

action based extension and that there are two script that are working with the content of

visited web sites.

As you can see in the “Snippet 5.1”, I have one background script. This background script is

used to post all the visited URLs to the database (described further in section “5.2.3 Iteration

3 - Database”), and also to handle the browser action when users click the extension icon.

Further I have two content scripts. These are used for several purposes including collecting

the RDFa triples, crawling URLs and posting collected content to the database. I’ll explain

them more detailed in the upcoming sections.

5.2.2. Iteration 2 – Modifying Green Turtle

For my own extension I used Green Turtle to harvest the triples that is used to build an

understanding of the user’s interests. The Green Turtle extension extracts all the triples, so my

goal for this iteration was to collect them in a way so I could easily reuse them. I also aimed

to collect URLs a user visits, and the URLs connected to the visited page.

When a user opens my extension, the Green Turtle scripts are running in the background

checking for RDFa and extracting triples. For this to work, I had to do quite some changes to

the scripts. The original Green Turtle script didn’t show any information, triples or anything

without a user interacting with it. I needed to collect information from the triples without any

interaction, that means as a background function. I needed to use several of the scripts from

Green Turtle, and each of the scripts I needed were quite long. The main RDFa script is

originally more than 3200 lines of code, and the script to actually collect this RDFa

information is more than 1700 lines. This means it was quite time consuming when I needed

to remove a lot of the existing code in order to make Green Turtle suit my project better.

In section “2.2.1 RDF – Resource Description Framework” I describe the difference of a

literal and a resource in an RDF-object. From the collected RDFa-triples I was interested in

collecting the literals of these object, since these are actual data values. As a result, I spent

32

some time reading and understanding how the API processes RDFa. In the end I managed to

collect only the literals, meaning the collected information was valuable data.

Next thing was to implement a method to collect the information without any user

involvement. The easy part of this method was to extract the URLs someone visits. To do this

I only needed to add a listener on the open tab in Google Chrome. To write the current tab’s

URL, you could do it as easily as this:

In the code above, the id is just a unique integer for each tab, the changeInfo is a list of all

changes to the state of a given tab, and the tab is what I’m interested in. The “tab” keeps

information and properties about the tab.

The URL a user visits isn’t the only information I needed to extract without any interaction. I

needed to get the objects from the triples on each site that has RDFa markup. Therefore I

added code in the background script of the extension so that these methods are called

automatically when a site is loaded. In addition to the visited URLs, I needed to collect

information about which pages are connected to these. I needed to implement a crawler or a

spider. Since this has already been done many times before, and there’s nothing special about

doing this, I found one already written in JavaScript by a person named Neil Fraser (see

section “3.7 Spider”). Since this script is written in JavaScript it was easy to implement in my

own system.

5.2.3. Iteration 3 - Database

The needed information was now available in a proper format, so my goal for this iteration

was to create a functional way to store the collected information. The first step was to find the

different opportunities to this problem. With some time spent on Google, I found two

different approaches:

1. Storing on Google’s Chrome Storage (Google Developer, 2015b), or;

2. Make my own database.

1. chrome.tabs.onUpdated.addListener(function(id, changeInfo,tab){

2. console.log(tab.url);

3. });

Snippet 5.2: A way to collect the URL from the open tab

33

I tried to read me up on the topic and add some test information to Chrome Storage, but I soon

found out that it lacked some of the functionality I wanted. In the development phase I needed

to have some sort of control of, and being able to access, the information at any time. Chrome

storage has quite strict limits on both size and number of items. The size limit is 102,400

bytes, and maximum number of items that can be stored are 512 (Google Developer, 2015b).

With such limitations I saw the need of a more flexible and functional way of storing my

collected information. Therefore before spending too much time on it, I decided to make my

own database.

The solution I ended up with was creating a MongoDB hosted by MongoLab. Since

MongoLab support REST API, there was no need for any installation or setup, and I could

start adding collections and documents right away. Now I needed to decide what and how the

information should be stored, so that I could easily extract information from the database

again. The database collections I ended up with was one collection for visited URLs (“urls”-

collection), one for URLs found during crawling the visited web sites (“spiderurls”-

collection), and one for storing the objects (“objects”-collection). The objects are the objects

from the RDFa triples found with Green Turtle.

5.2.4. Iteration 4 – Database (continues)

As already mentioned I made three different collections. In the upcoming iteration I needed to

fill these collections with documents. Both the visited URLs and the objects were on the right

format, and could be posted right away. Regarding spidered URLs I needed to modify the

spider script with a call to the database, so that I could post all the URLs found with the spider

script. The documents in the collections contained two name-fields, one for what I’m storing

and one named “weight”. For the collection of visited URLs, this meant that I created one

name-field called “visited” consisting of two new name-fields “url” and “weight”.

1. “visited”: {

2. “url”: http://christoffervalland.no,

3. “weight”: 17

4. }

Snippet 5.3: JSON of a collected URL

34

I created the field “weight” to work as a counter. The first time I add a document to a

collection the weight is set to one. When I find a document (in this case a URL) that already

exists in the database, the weight is increased by one. This is also why the weight of the URL

in the JSON code snip is 17.

My approach to updating the weight-field was to check if a tab’s URL already exists on the

database or not. If it exists I increase the weight with one, and if it doesn’t exist I create a new

document containing the tab’s URL with the weight one. To manage to do this with the

crawled URLs and objects needed a lot more thinking and coding. That’s because it can be

several hundreds or thousands of URLs and objects on larger web sites. In addition I can’t put

them all up at once since that will result in too many request to the database.

A solution could be to put all the URLs found on a web site to an array, and put the entire

array up on the database. This could bring up some other problems: For instance if a user

opened the main site of an online newspaper to just check the headlines, it’s not sure that

anything would be posted to the database at all. This is because the user most likely has

closed the browser window before the list has been pushed to the database. Therefore I

implemented a method that posts or update the collection every time a new URL is found on a

web site. This way if a user just opens an online newspaper to check the headlines, at least

some URLs will be posted or updated to the database.

Regarding the last collection “objects”, this had the same problem as crawled URLs. With the

objects I wouldn’t risk loosing too much information, so I had to be careful that objects

actually got stored as soon as possible. Therefore this script is added as a background script,

which means it can run for as long as possible. In the developer section of Google’s web site,

they describe background scripts like this: “Makes Chrome start up early and shut down late,

so that apps and extensions can have a longer life.” (Google Developer, 2015e).

5.2.5. Iteration 5 – User Interface

This iteration was all about building an interface for the users to interact with. The goal here

was to create the interface in a way that the user was shown the most possible information

without creating too much of a mess. To do this I used the Twitter Bootstrap framework to

build the HTML page. I ended up with using Bootstrap because of its easy grid system and

35

its focus on responsiveness. I use the grid system to divide the different content collected

from the database.

Figure 5.2: Screenshot of the User Interface

There’s a JavaScript connected to this page that are doing all the queries to the database. The

script is sorting the content on the database so that the ones with highest weight come first.

This means it’s just to iterate from highest to lowest, and loop through the amount of objects I

want to present to the user. On the screenshot above, I’ve chosen to present ten of each; ten

objects, ten visited URLs and ten crawled URLs. If I want to expand to show 15, 20 or more

documents from each collection, I can just update the script with a loop going through the

number of iterations wanted. I’ve also implemented a refresh-button, which updates the

object-list with ten new objects every time the user clicks the button.

In addition I need the lists to be interactive. Since the list of visited URLs and crawled URLs

consists of only URLs, this was easy. The solution is to add a HTML <a> href attribute to

each list item. On the objects-list I needed to make them clickable, but instead of opening a

URL, I needed it to search for the object on visited URLs and crawled URLs. I expanded the

script with a method, which loads each page in the background and searches for the object on

the web sites stored in the database. If the object exists on a site, the site gets added in an

36

empty grid, the one on the upper right side of the screenshot in Figure 5.2: Screenshot of the

User Interface. Since the database will contain more and more URLs, searching every single

site will be quite time consuming in the end. The list is, as already mentioned, sorted with the

highest weight first, so setting limits to 50 or 500 isn’t any different than setting the limit for

how many documents that should be presented in the user interface. It’s only to loop through

the amount needed.

5.2.6. Overview of the complete system

The extension itself is built up by several different modules. The modules are coupled in a

way that they don’t affect one another when edited or modified. The modules are:

-‐ Green Turtle API for finding RDFa triples (section “3.5 Green Turtle”).

-‐ Green Turtle module, which harvest the objects from the triples (section “5.2.2

Iteration 2 – Modifying Green Turtle”).

-‐ Crawler/spider to find URLs (Fraser, 2011).

-‐ Database created with MongoDB, and hosted by Mongolab.com.

-‐ User interface created with Twitter Bootstrap 3 (http://getbootstrap.com/).

-‐ A module to recommend potential interesting URLs for a user.

5.3. Data flow / Information flow
Figure 5.3 below shows an overview of how data and information flows in the system. A user

who uses the extension injects scripts to sites they visit. These scripts are connected to a

database, which stores all the information about URLs visited, and RDFa objects found on

these websites. When the user interacts with the extension, they are presented with a web site

created to show the user’s surf habits. This means that the web site the users are presented

with calls the database for information, and presents it in tables. There are four tables; one for

the often visited URLs, one for URLs found through the site spider, one for the objects found

during web surfing and the last one to show the users new sites they might be interested in.

37

Figure 5.3: Data- and Information-flow

38

Chapter 6

6. Analysis and Discussion
This section will provide an analysis and a discussion of the application in relation to the

research question: Can semantic web technologies be used to reduce the privacy concerns

when recommending web content? First I will go through a use case scenario where I have the

extension installed on my own web browser. Then I will discuss the results from this user test.

I will discuss solved and unsolved privacy issues, future improvements and visions, in

addition to an evaluation of the methodology used for this research work.

6.1. Why RDFa?
As mentioned in section “2.2.2 Microformats”, Microformats have quite some limitations.

These limitations are making it a lot harder to work with the data provided, especially the fact

that microformats need a parser to process the specific vocabulary. RDFa are easier to work

with this way (see section “2.2.3 RDFa – Resource Description Framework in attributes”).

The method is to add information that can be parsed into RDF through the HTML attribute

tags. This makes it easier to collect and use the actual data provided in these tags.

In addition, several of the big web service providers adopt RDFa. According to Allemang &

Hendler (2011, p. 53), web providers such as Google, BestBuy, Overstock.com and Facebook

adopt RDFa. There are also other advantages of using RDFa: Regarding the data consumers,

“… it is easier to harvest the RDF data from pages that were marked up with structured data

extraction in mind” (Allemang & Hendler, 2011, p. 53), and from the perspective of authors

of different web sites: “… it allows them to express the intended meaning of a web page

inside the web page itself.” (Allemang & Hendler, 2011, p. 53).

In Figure 2.3 I provide a chart from Webdatacommons.org (Bizer et al., 2014), where one

clearly sees that the most used semantic markup technologies are Microformats and RDFa.

Even though Microformats is the most used according to this chart, the limitations of using

this technology helped me decide to use RDFa for my project. If it was the right choice or not,

I will discuss in “6.2.5 Result of use”.

39

6.2. The extension in use
I decided not to include any other persons to contribute in evaluating the system. This

decision was made due to lack of time and the complexity of the system. The results during

the test throughout development and my own test case (see section “6.2.5 Result of use” for

more details) have shown that the created system is not accurate enough. In addition I thought

of the problem around potential users testing my extension regarding a user’s surf habits.

Most likely a potential test user would not surf the way they otherwise would. I believe that a

user who knows that I am collecting information about his or hers web surfing, would keep

this in mind at all times, and therefore not visit all the same sites as they otherwise would.

When starting my own test of the system I will start with an empty database and the newest

update of Google Chrome (version 42.0.2311.135 on Mac) with no other extensions active.

This way I will not get any results from previously completed tests, such as the tests during

development and similar.

6.2.1. Limitations

The extension has some serious limitations. Probably the biggest one is how it collects and

stores the RDFa-information. I tried to store both the predicate and the object of a triple, but

this was later reduced to only storing the RDFa-object. This was decided as a result of new

problems when recommending web content. If the system should take the predicate in

consideration too, the number of recommendations would be heavily reduced. In my own test,

it resulted in no recommendations at all.

In addition when storing both the predicate and the object, it was more demanding for the

database. A result of this was several errors when using the extension, in addition to the more

serious problem of some of the information not getting posted to the database. These

problems helped me decide to only store the object of the found triples. When using only the

objects, the extension works more like I first thought it should, and the recommendations are

more extensive. The recommendations are not as precise as they should be, and this is

discussed further in section “6.6.1 Collecting information”.

40

6.2.2. Clearing the database

As pointed out in section “3.3 MongoDB and MongoLab”, Mongolab provides a user

interface where I can see and edit the collections and their documents. To assure that I was

testing the application from an empty database, I removed all the existing documents in each

collection before installing the extension.

Figure 6.1: Number of documents in each collection

6.2.3. Installing the extension

Since my extension is not published or released in a way that people can access and use a

working version, I need to install it manually from the local space on my hard drive. Google

has made it easy for developers to run and test their extensions, and has a button called “Load

unpacked extension…”. This button lets us add our own extension to Chrome without any

approvals, official releases or similar.

41

Figure 6.2: The button to load unpacked extension

6.2.4. In use

To get enough data, I decided that as much as possible of my web surfing should be

performed with Google Chrome, and with the extension activated. This means that the

amount of web surfing from mobile phone, tablet or other web browsers should become

highly reduced. The period needed to get enough data wasn’t decided in advance, so therefore

I had a continuous check on the database how many URLs I had visited and how many

objects were collected. This was all done through another web browser to avoid that for

instance the web page of MongoLab or MongoDB would become the most visited URLs.

Since all the functions of extracting and collecting the information needed are done in the

background, I did not notice any difference from browsing with or without the extension

activated. This was also one of my goals with developing such a system.

After the first day in use, I had spent a lot of time in school writing for this thesis. That means

the amount of visited URLs wasn’t especially high, only 27. I noticed that the intensity of

surfing the web wasn’t as high as I first thought, so the days after I did a lot more web surfing.

A conclusion to the actual usage is not shocking in any way; the more it gets used, the more

interesting the results became. This means that the more URLs and objects that are collected

in the database, the more new, and hopefully interesting, content I manage to extract and

provide with the extension.

42

6.2.5. Result of use

The results vary wildly. Some of the results are complete and highly accurate according to my

surfing and my own preferences, but some are totally inaccurate. There may be several

reasons for this, both regarding the semantic technologies used on the websites, the web

service providers knowledge regarding semantic web technologies, and in addition my own

extension’s limitations and bugs. When the system had found 500 RDFa-objects from my web

surfing, I counted how many of these I personally meant were understandable and useful. Of

the collected objects, I found 157 of the 500 useful. Meaning the accuracy is approximately

31%. This number would be a lot higher if the semantic markup were more extensive than on

the sites I visited. This is further discussed in section “6.6.1 Collecting information”.

Considering the results that I find valuable and interesting, they are gathered from my web

surfing alone, and are definitely providing me new interesting content. After visiting just the

27 web sites the first day, the recommender tool came up with new articles that I might be

interested in. From these 27 web sites, I had visited the Norwegian technology web site

ITavisen.no, several Norwegian newspapers and some other web sites. During this surfing I

had visited mostly web sites and articles regarding technology, such as iPhone 6, some

Android wearable technology, an article about Samsung’s new Galaxy S6 Edge and more.

From this surfing the extension added objects such as Apple Watch, Engadget and Google’s

Nexus TV. In my test, I chose to continue with Apple Watch. The recommender part of the

extension managed to provide me articles I had not read yet, and contained information about

Apple’s watch. Specifically my recommender suggested me articles such as: “Apple Watch

fungerer ikke på alle håndledd”, “Apple forbyr fise-apper” and “Så lenge må du vente på

Apple Watch i Norge”.

Since there are several ways to mark sites with semantic technologies, I noticed that a big part

of the collected RDFa-objects weren’t interesting at all. RDFa-objects such as “websites”,

“article”, and more were provided in the list of the most found. In addition we find RDFa-

objects that probably are used as an ID for the web providers, or at least not meant to be

understandable or used for an everyday-user. Figure 6.3 and Figure 6.4 shows this exact

problem. This is far from ideal, and will be discussed further in section "6.6 Future work and

improvements of the extension”. Figure 6.3 shows the problem of using the markup on some

sites.

43

Figure 6.3: Screenshot of the list of most common objects. Example of RDFa-objects not

understandable for users.

As we see in Figure 6.3, the list of most visited objects are consisting of pretty much IDs,

numbers and objects that does not give any meaning for a human. Number six in the figure is

an ID used by the newspaper Verdens Gang, and is used as an ID for Facebook Insights. It is

correctly used, but it isn’t useful for my system. Figure 6.4 shows the results retrieved from

searching for the object in Figure 6.3.

44

Figure 6.4: Screenshot of the result of searching for the object marked in Figure 6.3

In contrast to the RDFa-objects shown in Figure 6.3, the online video sharing web site

YouTube has quite good and informative markup on their site. To give an example, I visited

some of the videos by Felix Kjellberg (better known as “PewDiePie”). His videos on

YouTube are marked with RDFa-objects such as “pewdiepie”, “pewdie”, “pewds”,

“playthrough”, “walkthrough”, “walk through”, and “video games”. These objects are very

interesting for a system as mine, and describe the user’s interest very accurately. We can tell

that a user that has “pewdiepie” or “walk through” as the most found RDFa-object, are into

video games.

6.3. Solved privacy issues
The great focus of this thesis is the informational privacy (see section “2.1.1 Informational

privacy”). My goal was to see whether it is possible to provide personal web content or not,

without storing any personal information from the users in a central database or similar. The

way this was done is shown throughout chapter “5 Implementing the extension”. The answer

is: Yes, it is possible, but there are several limitations with this feature. For the results of use,

we see that RDFa does have some limitations. These limitations and possible solutions for

them are discussed further in section “6.6 Future work and improvements of the extension”.

45

Some privacy issues are already covered and solved with this extension. In relation to many

other web services, the extension doesn’t require the user to provide any information at all; it

only needs to be used. The information gathered is technological information that the web site

owners want their users to use in some way.

6.3.1. Storing information

The extension is made in such a way that the information gathered could be stored almost

anywhere. In my development, I chose to store them on a server. This way I could make a

website, not only the site provided through the extension, gather the recommendations from

the website. It also opens for a possible mobile application since all you actually need to get

the information is an Internet connection. Many will be arguing that storing the information

on an online web server is against my privacy focus, but; given the fact that this could be

stored anywhere, it means you could just as easily store it on your hard drive. The issue then

is what happens if the hard drive crashes.

Today more and more people are connecting their external hard drives to their Internet router

so they can store and collect elements from it through the Internet. Given the above

information; we see that if we make our own personal web server from an external hard drive,

you’ll actually have the same opportunities as with the server I used in my development.

6.3.2. Reducing personal information

The extension further helps proving that there’s not always need for giving away personal

information or the need for creating an account. This means my extension is reducing the

information you otherwise need to give away to the web service. Further we see that

technologies and methods such as the previously mentioned click tracking and cookies (see

section “2.3.2 Cookies” and “2.3.3 Click tracking”) aren’t needed everywhere it otherwise

would be used. When reducing the use of these methods, one also reduces information spread,

or misusage of information. For instance if one web service installs cookies on your machine,

this could be used to provide unwanted advertisement on the web as discussed previously.

In section “2.3.1 User-provided information”, “2.3.2 Cookies” and section “2.3.3 Click

tracking”, I explained how the older methods still have privacy issues. Such a system that I

have developed shows how new technologies can contribute in reducing the concern for

privacy online. The need of cookies, click tracking or user-provided information isn’t as

46

important as previously to create good web services and applications.

6.4. Unsolved privacy issues

Since the application as of now stores every URL a user visits in a Mongo database, one could

see this as a privacy concern. With the use of such an extension, storing objects and URLs a

user has visited, clearing the browser’s history is not any longer enough. To get rid of all the

surf history, the users will also need to clear the extension’s storage.

In section “2.3.3 Click tracking” I showed an example of how data, which are seen as

anonymous, can easily be used to create an understanding of the person behind the

technology. This example is referring to search engines, and is not directly applied to my

project and my attempt to resolve some privacy issues, but there is still some of the same

problem with the use of my extension.

If the objects found through use of the extension are seen as a whole, it is possible to

understand who the person is. The AOL example described a man searching for both a 1986

Porsche 944 and a 1998 Cadillac SLS, in addition to places and universities in one specific

place. Seeing all his search history makes other people capable of creating an understanding

of who this person actually is in real life. The same could happen with the use of my

extension.

If the RDFa markup is done in a correct way, “things” such as Porsche 944, Cadillac SLS,

universities and more become objects on websites. When several objects are stored in the

same place, it gives an accurate description of who this person is. This is only a problem if the

data gets released or in other ways gets out to the crowd. If the data are stored locally on the

user’s hard drive (as mentioned in section “6.3.1 Storing information”), they should be

completely private and without the risk of someone collecting them.

6.5. Why it stands out from the crowd
There are several distinct differences between my developed artifact, and existing

technologies and applications; both regarding privacy and the way it collects information. I

will give a brief comparison to the other systems described in section ”2.4 Other

recommenders and content providers”: RSS, Facebook Instant Articles and Flipboard.

47

6.5.1. Compared to RSS

The RSS technology exists of two things: The web sites providing content through RSS, an

application to read or collect the feed of web sites. There are a lot of different RSS readers out

there today, both for desktops but also mobile devices. The RSS technology does not provide

any recommender function, but notices the user of new content on the subscribed feeds. This

means that to benefit from the RSS-technology, the user is required to add all the RSS feeds

manually to their RSS-reader. In comparison to my system, we see that my approach to

collecting information is to collect it in the background. Comparing the way to handle privacy

between my system and RSS are difficult due to the fact that each RSS reader have their own

privacy policy.

What could be interesting to see is how RSS are using methods to measure “popularity” of

their RSS feed. Google have developed something called “FeedBurner”. This analytic tool

helps web providers keep track of their traffic. On Google’s FeedBurner site, Google has

explained how it works: “…is based on an approximation of how many times your feed has

been requested in a 24-hour period.” (Google, 2015b). Further Google explains how they

match IP addresses to make additional inferences.

6.5.2. Compared to Facebook Instant Articles

Facebook Instant Articles are a new phenomenon, and are as of today only working on the

newest Facebook application on iOS (Apple’s mobile operating system). In addition this is a

system that is meant to only work in Facebook’s News feed, meaning it requires a Facebook

account.

Facebook explains how they have worked with comScore and the publisher directly to enable

referral traffic from Facebook to the publisher’s web site. This means it is quite more complex

to understand the privacy concerns from using my system. We would need to take a closer

look on Facebook’s, comScore’s and each individual publisher’s privacy policy.

6.5.3. Compared to Flipboard

Flipboard has several almost similar functions as my system. They provide recommendations

out of your interests. Facebook differ from my system in one particular way: While Flipboard

requires users to mark topics or words of what they find interesting, will my system follow

the user on the web and decide from that information what the user is interested in.

48

Flipboard is open about what they collect from their users. On their page about privacy

policy, they describe both the information their users voluntarily give away, and information

gathered automatically from use of Flipboard. Further they describe how they use and

disclose your information. They are writing several places that they wont give up any

personal information except if there are reasons to comply with a law. “… our policy is to

provide you with reasonable advance notice under the circumstances unless we’re prohibited

from doing so by law or court order (e.g., an order under 18 U.S.C. § 2705(b)).” (Flipboard,

2014).

What is interesting about this is that right below the above-mentioned citation, they also write

that they give up your information for third parties helping them offer and improve their

service. They do not provide any description of what these services are, except from that they

are “…technical tools and analytics services (including marketing partners) that help us

understand how people use Flipboard so we can make it better. We require those companies

to observe the limitations in this privacy policy.” (Flipboard, 2014).

In addition to all the above-mentioned, they also describe how they can use an anonymous ID

to share with advertising partners. Flipboard’s privacy policy mentions several places that it is

only meant for Flipboard, and that it “… doesn’t cover the practices of other services.”

(Flipboard, 2014). Comparing Flipboard to my system, we see a big difference. While

Flipboard collects a lot of information both automatically and manually, my system collects a

lot less information.

6.6. Future work and improvements of the extension
I have a vision about how to get this extension to the next level. As a technological

application in itself, I would like to see this functioning and providing accurate

recommendations on other platforms. This means not being only an extension on Google

Chrome, but also as a stand-alone application or at least available from mobile units.

As the dataflow diagram in ”Figure 5.3: Data- and Information-flow” shows, the data and

information flow today is pretty simple. It goes from users interacting with their web browser,

to a database that stores visited URLs, objects and crawled URLs, the extension then calls the

database to get the collected information, which are presented in a GUI for the users.

49

This is quite a simple architecture, and there are several ways to improve or make it more

complex. As discussed in the previous sections, for instance collecting the URIs in addition to

the objects will help improve the recommending and searching part. It will become more

accurate without the need of very complex coding.

If we think of bigger architecture, and having a team to contribute the work, we could think of

having a connection to a dataset. This will help extend the recommending part with facts from

the dataset. Example of such a dataset is DBpedia. Extending the architecture of the system

this way will contribute in a positive way. The connection to a dataset will for instance

remove ambiguous words. This is because when the collected objects are stored with unique

identifiers for objects in a dataset, there will be an understanding of what the object is

referring to. An example of this is shown in the end of section “6.6.1 Collecting information”,

where I discuss how “Apple” and “Apple Inc.” is not the same. The recommendations would,

with such improvement, only produce recommendations of content that is related to the user’s

interests. This also means that the system becomes more precise in the recommending part,

the system in a whole will become more reliable. We can also provide new content in the user

interface with this extension. If we were to connect the system to the DBpedia, this system

could work as a “wiki” for the users. The user interface could be extended with another table

including facts about the given topic.

50

Figure 6.5: Extending the architecture of the system

In addition to above-mentioned benefits, there will also be an improvement on response time

when posting to the database. Because of the fact that the extension as it is now posts both

visited URLs, spidered URLs and objects to the database at the same time, it do take time for

the posting to complete. If the extension first connects to the dataset, all other posting will

most likely be completed before requesting a new connection to the database.

6.6.1. Collecting information

Getting the needed information wasn’t as straightforward as I first hoped for when I found the

RDFa API. As previously mentioned, several of the scripts I needed were very long. My time

time spent on just modifying the scripts therefore took a lot more time than first intended.

51

The collected information includes a lot of inaccurate objects, such as the one in “Snippet

6.1” above. These objects are not wanted in the database, and do not provide any useful

information for neither any user nor my system. If this is an RDFa-object that occurs on many

of the visited web sites, it could become one of the most found objects. If such objects are the

most found ones, the user will be confused about what it actually is and why it is one of the

most popular. This is quite a serious problem since the system relies on these objects found on

the visited web sites.

The problem seems to be most common in digital newspapers, and especially Norwegian

ones. An example of this is the Norwegian technological newspaper “ITavisen”, which has a

triple with the object “article”. See the snippet below, “Snippet 6.2”.

{

 "_id": {

 "$oid": "554c9815e4b09e8ca58c8e6e"

 },

 "collectedobject": {

 "object": "kvweathers=3;kvarticleid=;",

 "weight": 2

 }

}

{

 "_id": {

 "$oid": "554c99f1e4b00d721e5bb91f"

 },

 "collectedobject": {

 "object": "article",

 "weight": 7

 }

}

Snippet 6.1: JSON of RDFa object not understandable for people

Snippet 6.2: JSON of the collected "article"-object

52

Collecting the information does also have other concerning problems. As of now, I have

chosen to only store the object of the triple. This is because the way, at least for my surf

habits, the web sites I visit are using semantic markup in various ways. Surfing around on

Norwegian web sites like VG.no (the newspaper Verdens Gang), BT.no (the newspaper

Bergens Tidende) and ITavisen.no (Norwegian technology newspaper), we find triples like:

Subject Predicate Object

http://www.itavisen.no/ og:site_name ITavisen.no

http://www.itavisen.no og:url http://www.itavisen.no

Table 6.1: Example of triples collected from ITavisen

The above table is extracted from http://www.itavisen.no on May 8. 2015. Even though it

actually is correct semantic markup using the Open Graph predicate, it still doesn’t help my

system very much. To show why this is inaccurate information, I found an example of a

marked up web site: http://iricelino.org/rdfa/sample-annotated-page.html. The website is

developed by Irene Celino, who is an Italian semantic web researcher. On this page we find

triples that are related to each other in some form. As we see in the table, Albert Einstein is

connected to his name, his date of birth and his birthplace. In addition is his birthplace related

the long name of Germany: “Federal Republic of Germany”.

Subject Predicate Object

dbr:Albert_Einstein foaf:name Albert Einstein

dbr:Albert_Einstein dbp:dateOfBirth 1879-03-14

dbr:Albert_Einstein dbp:birthplace dbr:Germany

dbr:Germany dbp:conventionalLongName Federal Republic of

Germany

Table 6.2: Example of triples collected from Irene Celino's web site

The goal with the thesis was to collect such connected information as this, but since there are

very few web sites that actually use this method, we get results as shown in the ITavisen

example above. With some minor changes, we could change the entire document to look

different. It could include URI and predicates with just changing the way it is stored in the

53

database. As previously mentioned, it is only about 30% of the collected RDFa-objects that

are interesting for a potential user. If sites were marked in such way as Irene Celino has done

on her example web site, the amount of interesting objects would become much higher. The

test site from Irene Celino consists of 33 triples, and from these there are 14 literals that my

extension collects (the entire list of collected literals from Irene Celino looks is shown in

appendix “9.4 Appendix 4: List of literals from Irene Celino’s test site”). From this list I will

say that “Sue”, “Sample page annotated with RDFa 1.1” and “2015-09-16T16:00:00-05:00”

may not be accurate enough for a recommender tool. If we say that 11 of the 14 collected

literals are valuable, we see that we have reached 78% accuracy. Note that this is not enough

proof to say that the entire system would become as accurate as this, but is showing that the

collected literals could potentially become more accurate with good markup.

Since an object is not a single identifier, one cannot be sure that the results are accurate. If the

object provided in the recommended list of objects, and it is an ambiguous word, there’s no

check to see if it’s actually the same object. One of the main reasons why semantic

technologies are as interesting as they are is because they link data. Semantic technologies

link data so that both humans and computer know the context of an object.

{

 "_id": {

 "$oid":

"554ca336e4b00d721e5bc831"

 },

 "collectedobject": {

 “uri”:” <dbr:Albert_Einstein>”,

 “predicate”:”foaf:name”,

 "object": "Albert Einstein",

 "weight": 2

 }

}

Snippet 6.3: JSON of potential improvements on the collected information

54

Since today’s markup vary as much as they do, and some sites are good and some bad, we

could aim on creating new tags and attributes to make it easier for the web service providers.

This could be for instance be if we were to add a <topic></topic> tag on the web site, we

could easily know what a given web site actually is about. The problem is that the different

providers could understand this in different ways. One could for instance be specific and use

the tag such as <topic>Apple Watch</topic>, someone else could split this same tag into two:

<topic>Apple</topic> and <topic>Watch</topic>.

If for instance my system were to store this as an object on the database, we would get totally

wrong recommendations. Since Apple and Watch are two general and ambiguous words, we

would need to provide an exact URI to these as well. If the URI for Apple was connected to a

dataset, we would have either the fruit apple or the company Apple Inc. Regarding the

example above, Apple Watch, the URI for Apple Inc. is not specific enough if the user was

interested in Apple Watch. This means there would be a problem with both unspecific

markup, and unspecific URIs. If the dataset doesn’t provide a specific URI for Apple Watch

at all, we could argue that the URI for Apple Inc. is specific enough for the purpose.

6.6.2. Recommending

Regarding the recommendations part of this thesis, I want it to be more accurate in form of

the collected objects and the recommendations provided. As of now the collected information

is as accurate as possible, but the technology and those who provide such semantic

information are not yet at the level I need (as shown in the previous section). Since it is not

only actual objects that are seen on as objects for the RDFa API, things such as “article”,

“website”, and some unique IDs are also provided in the list for recommendations. If the

markup eas more standard and the providers where more observant of how they marked up

their websites, the collected objects would also be much more accurate.

Maybe if I found some way to exclude or be more selective of which objects to actually store

in the database, these inaccurate objects wouldn’t be as many as they are now. I’ve also

wondered about how one can store URIs and/or predicates. The predicates aren’t needed as

much as the URI, but can indeed help to improve the recommendations in form of more

accurate recommendations. The URI can help create an understanding of what the object

actually is in the real world. To continue using the Albert Einstein example above; if we have

55

stored the object “1879-03-14” in the database, we would know that the user is interested in

that exact date as a result of the user’s interest in Albert Einstein.

Taking the above-mentioned in consideration, it means there is need for complete, reliable

and big datasets also. Examples of such datasets are as previously mentioned DBpedia.

DBpedia is a dataset created by the users of the system. This means that the system is a result

of crowd sourcing. On their own web site DBpedia writes: “DBpedia is a crowd-sourced

community effort to extract structured information from Wikipedia and make this information

available on the Web.” (DBPedia, 2015). For a system such as the extension developed

throughout this thesis, a dataset could contribute in several ways.

6.6.3. Searching

Regarding the searching part of the recommender, it’s now only a search for the object on the

URL’s you have visited or spidered previously. The search is done through a temporarily

download of the given web sites’ HTML. The web sites here are the same ordered list of web

sites as used for showing the most visited URLs and spidered URLs in section “5.2.5 Iteration

5 – User Interface”. The lists of URLs in that section are limited to iterate through the ten

most visited and spidered URLs. I thought this was too little in order to provide new

recommendations, so the limit of iteration on the search-function is raised to 50 of each. 50

spidered URLs and 50 visited URLs, meaning it is iterating through 100 different URLs. The

reason of limiting this search is because it will be very time-consuming iterating all the

collected URLs. In addition if the object searched for is a common object that exists on many

web sites, the list of recommendations could become very long.

The HTML downloaded from these URLs is not stored any places, but is parsed through a

script when the user needs to find the object on other web sites. With other words: the script

loads the HTML from the URLs, parses it, and if the object is found in the HTML, the

recommender adds the URL to the list of recommendations. This means there are no checks to

see if it’s actually the same object as you are interested in, as mentioned in section “6.2.1

Limitations”. When a user clicks on an object in the object list, the system checks the URLs

(from both visited URLs and crawled URLs) to see if the word exists in the HTML connected

to the URL. This should be done more precisely, and should provide an additional check for

URI and predicate. This way one would be sure that it is actually the same objects provided in

the recommendation as found through the user’s surfing habits. If this could be linked to for

56

instance DBPedia (http://wiki.dbpedia.org) or other big ontologies and datasets, the results

would become a lot more accurate and not only a “proof-of-concept”-extension.

It is possible to collect and store the entire triple on the database. Due to the fact that I have

no method to check if the crawled web sites have the same triples on them, I found out that

the system would work better if I only stored the object. The stored objects look like the one

in “Snippet 6.4”.

As mentioned in section “6.2.1 Limitations”, the extension only stores the object of a triple,

and not the URI and predicates. This way I save both space on the database, false objects, and

the system is more time efficient in use. It would be of interest to develop a more complex

database, including predicates so that we were able to control if it is talking about the same

object. This is previously mentioned in section “6.6.1 Collecting information”.

6.6.4. Posting objects to the database

Since the system now posts both visited URLs, spidered URLs and objects found on each web

site, it is quite time consuming. There is a big need for prioritizing what information that gets

posted to the database at which time. This is just if there are no other way to store the

information except a database. When posting to the database, the objects should be

prioritized. This way it will be a continuous update of which objects are the most popular.

{

 "_id": {

 "$oid":

"554ca336e4b00d721e5bc831"

 },

 "collectedobject": {

 "object": "Albert Einstein",

 "weight": 2

 }

}

Snippet 6.4: JSON of the collected "Albert Einstein"-object

57

In section “5.2.4 Iteration 4 – Database (continues)” I mention that I manage to collect the

objects as soon as possible due to the background script-function. The problem is that even

though it gets collected effectively and almost before the user interface is done loading, it

doesn’t necessarily get posted to the database as effectively. If there are several calls to the

database, one connection needs to end before another will open. Now there is no priority,

meaning both URLs, spidered URLs and objects are posted as soon as they are done working

locally.

6.6.5. Improving User Interface and User experience

Today the prototype’s user interface is divided in four parts, which all are just list of elements.

This is not inviting to use, and is not very user friendly at all. I see the potential of expanding

the user interface to make it more useful and inviting for the users. The prototype system is

developed with Bootstrap, as described in section “5.2.5 Iteration 5 – User Interface”. This

was done both to make an interface that is understandable for a user, but mostly so that I

could keep track of the actual results of each of the calls to the database. With the calls

divided into separate columns and rows, I could more easily check if the actual results from

the database were correct or not.

I further have a vision of including the web sites recommended in a “preview-box”. If for

instance a user clicks on a recommended web site or article, the extension will provide the

article directly in the extensions user interface. This will not work on smaller screens, but I

see the usefulness on at least a desktop version of the system.

58

Figure 6.6: Sketch of a suggested new design

The figure above shows how I could include a preview of the wanted article. Instead of

providing a wall of recommended URLs, I could include a preview of the articles below the

list of URLs. Figure 6.6, shows an example of a suggested new design. The figure looks a

little messy in small scale, but as mentioned this is something I thought of for a desktop

version. As you see in the figure, I’ve reduced the list of recommended objects, and increased

the size of the list of recommended URLs. This way leaves much more space to include a

preview of the recommended web site.

Without any information about the topic, I could see a potential of expanding the user’s

interaction with the extension. I see the potential of developing a user interface with both a

preview of the recommended web site, in addition to the entire web site as a read and

interactive part of the extension’s user interface. This means that we could get up the entire

web site in the extension, without the need of leaving the extension’s user interface.

6.7. Expanding the vision of the system
To think bigger for the entire system in general, I think it could potentially be developed as a

part of an existing web browser, or as a completely new web browser. Web browsers today

store bookmarks, search logs and more on a central server, providing you the same surfing

experience on both mobile devices and on a desktop version. If we add the semantic

59

information gathered through such an application as developed in this thesis, we could

manage to give the users new experiences with their web browser. This is also why Google,

and others, opens up for their users to produce extensions for their web browser.

If I were to create a vision for the semantic web and its markup methods, I would like to see

an improvement or an expansion regarding what is marked as objects on the web. If web sites

could get a tag for marking their articles with topics or tags, systems such as the one I have

developed would benefit directly from this tag. Some web sites already have similar

functionality see Figure 6.7.

Figure 6.7: ITavisen.no's approach to marking articles with topics

The figure above shows how ITavisen.no marks their articles with different topic or tags.

They have this field “Stikkord” at the bottom of each article where they mark one or several

keywords in the article. The article in the figure explains how Apple Watch can function as a

remote for Apple TV. A problem with doing it this way is that the web providers have to

mark this manually, and there’s no check to see if it’s accurate in any way. Regarding the

article in Figure 6.7, we see that the list of keywords is not precise. It only stands “apple tv”

even though the article clearly is about both “apple tv” and “apple watch”.

If though these were to be semantically marked, we could easily get a connection between

different keywords or objects on the web. Such linking could be used directly in new

applications. As another approach to this exact topic, we could develop more advanced

60

checks for what objects are collected in the system I have developed. If we had advanced

checks that controlled the URIs and the objects before collecting them, we would avoid such

problems as discussed previously and shown in Figure 6.3.

Figure 6.8: Chrome's overview of my "most visited" sites

Chrome, and others, provides a quick access to most visited web sites directly from their

“New Tab”-page. Figure 6.8 is an example of this. In the figure you see my most visited web

sites displayed. Apple’s Safari browser provides web sites that you have added to your

bookmarks above the most visited web sites. Both of these methods are meant to help users

quickly access what they spend the most time on when surfing the web. The problem with this

is that it doesn’t tell anything about what the user actually is interested in.

If we could fit such an application as my system directly into the web browser’s “New Tab”-

page or somewhere else, users could easily get personalized web content without the need of

any particular interaction with the browser. More specific we could say that I see a vision for

61

such a system that I have developed to not only work as an extension to existing web

browsers. It could be a part of the browser, or as an entirely new standalone browser. This

would though require more from both the development and the technology RDFa.

Expanding the system in such direction wouldn’t necessary interfere more with privacy than it

does as an extension. This is because the information gathered from surfing still could be

stored in the same way as it is: Either on a personal server, or locally on the hard drive as

previously discussed.

6.8. Evaluation of research methodology
The methodology used and followed throughout this research, is described in details in

chapter “4 Methods”. In this section I will describe how the methodology suits my project. I

will also evaluate how well and why it suits my project. The methodology is provided by the

article “Design science in information systems” by (Hevner et al., 2004). Several of the

provided guidelines in the article suit my project directly, and I will describe further why they

suit my project.

6.8.1. Solving a problem

The first guideline in the article describes how an IT artifact should solve different problems,

and how such research and development can contribute to highlight new possibilities or

problems. More of this in section “4.1.1 Design as an Artifact”. This thesis keeps a focus on

the development of a new system that focuses on privacy on the web. The artifact developed

for this thesis is a prototype of a web browser extension that produces personalized

recommendation for each user. During the work the focus has been on finding new ways to

keep the web personal, and at the same time avoid interfering with the privacy issues

addressed with personal information on the web.

The system uses RDFa to extract objects, topics or keywords from different sites a user visits,

stores them on a personal storage location, and uses this information to produce

recommendation for “new” web content that may be interesting for the user. This system tries

to add new ways to think of the problem of giving personalized web content, without the need

for giving away any personal information to the system.

62

6.8.2. Changing the way to solve a problem

The second guideline focuses on how developing IT artifacts can change the way one solves a

problem. See section “4.1.2 Problem Relevance“ for more details. The artifact created tries to

use information already available on the web to provide personal recommendation for other

web content you might be interested in. This means that a problem tried to solve or answer

with this thesis is the research question: “Can semantic web technologies be used to reduce

the privacy concerns when recommending web content?”

The technology used to be able to collect information about users interests are RDFa. Reading

RDFa markup on websites a user visits makes me capable of collecting information about

certain topics, people or other content the user may be interested in. The RDFa information is

the foundation of recommending new information and web content for the users. The way this

changes the way one solve a problem is by showing the possibility of developing an IT

artifact as a proof-of-concept, meaning the new way to solve the “old” problem of

recommending web content could be the use or RDFa markup.

6.8.3. Evaluating the artifact

In the article, we find the third guideline providing information about the need of well-

executed evaluation methods. My system hasn’t yet been tested as a stand-alone application

with actual users and test objects. The only test is a use case scenario using my own surf

habits as described in section “6.2 The extension in use”. The system has also been tested for

functionality during development and between iterations. If I had more time, test objects and a

more precise result list, I see several methods to conduct a better evaluation.

The most suitable method for evaluating my system would include an observational, testing

and descriptive evaluation. Due to lack of time and restriction on the scope, there hasn’t been

done any actual evaluation of the system other than the descriptive one (in form of this

thesis). If there was to become possible to perform such tests, I would like to do an

observational study where I could see the system in use. This could highlight the potential

users’ thoughts and meanings about the system.

From the table provided in “9.2 Appendix 2: Design Evaluation Methods”, we see that several

others of the provided evaluation methods could be used for evaluating such artifact as I have

developed. We find methods such as different analysis of the artifact, experiments and

63

testing. As already mentioned, I could conduct a case study using potential users of the

system. As shown in section “6.6.1 Collecting information” I tested the extension on a web

site marked with RDFa by a semantic web researcher. This was done to see if the collection of

objects and recommendations became better in a controlled environment, which they did.

6.8.4. Contributing to research

As the fourth guideline in the article says: “What are the new and interesting contributions”

This is related to how the development of an artifact may contribute others’ work, with

showing novelty, generality and significance of the artifact. My contribution will be the

developed artifact, and the documentation done in this thesis. The way I do this is to use seek

to prove that already existing technologies can be used for creating a new artifact. The

research shows that use of semantic technologies can be used for creating a “user model” for a

personal recommendation system.

6.8.5. Research Rigor

The way I created the artifact was with the use of an iterative process (see section “4.2

Development method – RUP (Rational Unified Process)” and section “5.2 Development”).

This way I keep a continuous control of functionality. This is an important part because it

shows new errors occurring. At the same time it’s making me able to correct these errors in a

continuous flow. Working in an iterative process further makes it more flexible and agile

when it comes to changes of requirements. For more details about the iterative process and

development phase, see section “5 Implementing the extension”.

6.8.6. Search process

This is related to the section above, regarding ”Research Rigor”, and as described has my

project been developed in iterations. This has made me able to keep smaller tasks at hand, and

also kept me focused on the one given problem. As soon as one problem was solved giving

me the wanted result, I continued with another one.

6.8.7. Communicating the research

The result of the research I’ve done through this project will be communicated through this

thesis. In addition the coded project is published in the developer community GitHub (see

section “3.6 Git and GitHub”). That means anybody can use my project and my code to

develop new artifacts, continue developing my system or in any other way use my code.

Direct link to my GitHub repository is: https://github.com/christoffervalland/Semantic.

64

6.9. Evaluating the development methodology
Since I’m working alone on this project, I thought that the use of use cases or scenarios was

more than I needed. For developing my system, I ended up with creating smaller tasks. I also

used a Kanban board to keep track of the minor tasks, and keep track of what are the most

important things on the system. Details about this are found in section “5.2.1 Iteration 1 – Pre-

programming work”.

On my system I’ve used some existing components. The main component of my system is the

already existing RDFa API, which makes me able to collect RDFa elements from the web.

This is explained in section “3.5 Green Turtle” and “5.2.2 Iteration 2 – Modifying Green

Turtle”. In addition to the RDFa API, I have used an already existing JavaScript spider

(crawler). Described in section “3.7 Spider” and in the end of section “5.2.2 Iteration 2 –

Modifying Green Turtle”.

This is also done through my development process. For each module, I’ve had a continuous

control of functionality and quality. Before starting off with a new component, there’s been a

check that the other components are working together with new modules and components.

65

Chapter 7

7. Summary and conclusions
The research question provided in section “1.2 Research question” was: "Can semantic web

technologies be used to reduce the privacy concerns when recommending web content?”. We

see that the thesis and development of the extension provide answers to it. The conclusion is

therefore: yes, it is possible to recommend “new” web content for users without interfering

with privacy and personal information on the web, but new generations does not think of

privacy on the web as that important.

The development of a recommender extension has shown that the RDFa technology can be

used for recommending web content without interfering with privacy issues. With the use of

RDFa, we are able to collect and provide recommendations without any information about the

user. Using RDFa has shown the technology’s potential, but also it’s problems. Today’s use

of RDFa can, but not always, provide rich markup of web sites. The web sites shown in

examples throughout this thesis shows both good and bad markup. This thesis and the

extension further show that it is possible to use such markup in other contexts than originally

intended. The development of the extension shown in this thesis, can address the way to

develop a recommender with privacy in focus.

To give an answer regarding the privacy topic of the research question, we see that the use of

semantic web technologies on such level actually can reduce the amount of personal

information on the web. This is a result of using only technologically provided information

from the web service providers, rather than a personal user account, storing information about

the user’s clicks, and similar. During the work with theory for this thesis, I noticed that the

importance of privacy on the web is not as central as I thought when starting off with it. It is

shown that frequent users of social media are willing to share personal information and

location.

The provided semantic information is not yet good enough in many occasions, meaning the

result of using such a system isn’t very accurate. As shown in section “6.6.1 Collecting

information” the web services that are taught to use semantic markup can help create a very

66

accurate and rich database of objects for the user. The better the markup is, the better the

performance of the extension will be.

There’s no doubt that the developed extension in general has both big and minor problems

with it. The idea was not to have a complete, working and complex system when I was

finished with the development, but to have a working proof-of-concept of a system. Working

with this thesis has shown, both through programming and writing, the actual development of

such a personal recommender extension using RDFa. Throughout the work with this project, I

found out that RDFa has not yet become as widespread as I first thought and hoped for. The

limitations shown in section “6.6 Future work and improvements of the extension”, show that

different websites write triples in different ways. This means that those who spend time on

understanding RDFa and semantic web technologies, can produce exact enough information

for such a system that I have created. Web systems such as the Norwegian newspapers

mentioned throughout this thesis have a lot of flaws in their markup, giving my system

inaccurate data, which again give the users inaccurate recommendations.

The limitations with my system are not to hide away. They are of big importance for the

entire result of the system. My extension actually is not contributing to the semantic field

when talking about the recommender part, but rather highlights the potentials with using

semantic markup. The information needed for the system to work is collected through an

RDFa-API “Green Turtle”, described in section “3.5 Green Turtle”.

67

8. Sources

Alberdeston,	 R.,	 Dondyk,	 E.,	 &	 Zou,	 C.	 C.	 (2014).	 Click-‐Tracking	 Blocker :	 Privacy	
Preservation	 by	 Disabling	 Search	 Engines	 ’	 Click-‐Tracking,	 570–575.	 Retrieved	 from	
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7036868	

Allemang,	 D.,	 &	 Hendler,	 J.	 (2011).	 Semantic	 Web	 for	 the	 Working	 Ontologist.	 Semantic	
Web	 for	 the	 Working	 Ontologist	 (2nd	 editio).	 Waltham:	 Morgan	 Kaufmann	
Publishers.	 doi:10.1016/B978-‐0-‐12-‐385965-‐5.10016-‐0	

Best	 Practice:	 Use	 Component	 Architectures.	 (2001).	 Retrieved	 April	 27,	 2015,	 from	
http://sce.uhcl.edu/helm/rationalunifiedprocess/manuals/intro/im_bp3.htm	

Bizer,	 C.,	 Meusel,	 R.,	 &	 Primpeli,	 A.	 (2014).	 Web	 Data	 Commons	 -‐	 RDFa,	 Microdata,	 and	
Microformat	 Data	 Sets	 -‐	 December	 2014.	 Retrieved	 May	 6,	 2015,	 from	
http://webdatacommons.org/structureddata/2014-‐12/stats/stats.html	

ComScore.	 (2015).	 About	 us.	 Retrieved	 May	 27,	 2015,	 from	
http://www.comscore.com/About-‐comScore	

Cranor,	 L.	 F.,	 Reagle,	 J.,	 &	 Ackerman,	 M.	 S.	 (1999).	 Beyond	 Concern:	 Understanding	 Net	
Users’	 Attitudes	 About	 Online	 Privacy.	 Retrieved	 April	 16,	 2015,	 from	
http://arxiv.org/html/cs/9904010/report.htm	

DBPedia.	 (2015).	 About.	 Retrieved	 from	 http://wiki.dbpedia.org/	

Efthimiadis,	 E.	 N.,	 &	 Carlyle,	 A.	 (1997).	 Organizing	 Internet	 Resources:	 Metadata	 And	 The	
Web,	 (October/November),	 4–5.	 Retrieved	 from	
http://onlinelibrary.wiley.com/store/10.1002/bult.68/asset/68_ftp.pdf?v=1&t=i8a
0uuxn&s=418d2b5f0262e5a532ab82039923f647161c36f1	

Facebook.	 (2015).	 Instant	 Articles.	 Retrieved	 May	 15,	 2015,	 from	
https://s0.wp.com/wp-‐content/themes/vip/facebook-‐
instantarticles/library/docs/FB_IA_FAQS.pdf	

Flipboard.	 (2014).	 Privacy	 Policy.	 Retrieved	 May	 19,	 2015,	 from	
https://about.flipboard.com/privacy/	

Flipboard.	 (2015).	 Flipboard	 is	 your	 personal	 magazine.	 Retrieved	 May	 15,	 2015,	 from	
https://flipboard.com/	

Fraser,	 N.	 (2011).	 Google	 Code	 -‐	 Site-‐Spider.	 Retrieved	 March	 5,	 2015,	 from	

68

https://code.google.com/p/google-‐site-‐spider/	

Gantz,	 J.,	 &	 Reinsel,	 D.	 (2011).	 Extracting	 Value	 from	 Chaos	 State	 of	 the	 Universe :	 An	
Executive	 Summary,	 (June),	 1–12.	

Garfinkel,	 S.,	 &	 Spafford,	 G.	 (2002).	 Web	 Secruity,	 Privacy	 &	 Commerce.	 (D.	 Russel	 &	 C.	
Gorman,	 Eds.)	 (2nd	 ed.).	 Sebastopol:	 O’Reilly	 Media	 Inc.	 Retrieved	 from	
https://books.google.no/books?hl=en&lr=&id=KzabAgAAQBAJ&oi=fnd&pg=PT4&d
q=privacy+issues+on+the+web&ots=XGWOXLi7As&sig=sj4ISpq3blFK-‐-‐
Y26kyqn6bkm98&redir_esc=y#v=onepage&q&f=false	

Git.	 (2015).	 Git	 -‐-‐fast-‐version-‐control.	 Retrieved	 March	 24,	 2015,	 from	 http://git-‐
scm.com	

GitHub.	 (2015).	 Help	 -‐	 Set	 Up	 Git.	 Retrieved	 March	 24,	 2015,	 from	
https://help.github.com/articles/set-‐up-‐git/	

Google.	 (2015a).	 About	 extensions.	 Retrieved	 March	 5,	 2015,	 from	
https://support.google.com/chrome/answer/154007	

Google.	 (2015b).	 FeedBurner	 Help.	 Retrieved	 May	 19,	 2015,	 from	
https://support.google.com/feedburner/answer/78955	

Google.	 (2015c).	 Privacy	 &	 Terms.	 Retrieved	 April	 7,	 2015,	 from	
https://www.google.com/intl/en/policies/privacy/#infocollect	

Google.	 (2015d).	 Privacy	 &	 Terms.	 Retrieved	 April	 16,	 2015,	 from	
http://www.google.com/policies/privacy/example/ads-‐youll-‐find-‐most-‐
useful.html	

Google	 Developer.	 (2015a).	 Background	 Pages.	 Retrieved	 March	 16,	 2015,	 from	
https://developer.chrome.com/extensions/background_pages	

Google	 Developer.	 (2015b).	 Chrome	 Storage.	 Retrieved	 March	 9,	 2015,	 from	
https://developer.chrome.com/extensions/storage	

Google	 Developer.	 (2015c).	 chrome.pageAction.	 Retrieved	 March	 16,	 2015,	 from	
https://developer.chrome.com/extensions/pageAction	

Google	 Developer.	 (2015d).	 Content	 Scripts.	 Retrieved	 March	 17,	 2015,	 from	
https://developer.chrome.com/extensions/content_scripts	

Google	 Developer.	 (2015e).	 Declare	 Permissions.	 Retrieved	 March	 10,	 2015,	 from	
https://developer.chrome.com/extensions/declare_permissions	

69

Hebeler,	 J.,	 Fisher,	 M.,	 Blace,	 R.,	 &	 Perez-‐Lopez,	 A.	 (2009).	 Semantic	 Web	 Programming.	
Journal	 of	 experimental	 psychology	 General	 (Vol.	 20).	 Wiley	 Publishing,	 Inc.	
doi:10.1016/S0022-‐5371(81)90569-‐7	

Herman,	 I.	 (2009).	 W3C	 Semantic	 Web	 Frequently	 Asked	 Questions.	 Retrieved	 April	 10,	
2015,	 from	 http://www.w3.org/RDF/FAQ	

Herman,	 I.,	 Adida,	 B.,	 Sporny,	 M.,	 &	 Birbeck,	 M.	 (2015).	 RDFa	 1.1	 Primer	 -‐	 Third	 Edition.	
Retrieved	 April	 15,	 2015,	 from	 http://www.w3.org/TR/xhtml-‐rdfa-‐primer/	

Hevner,	 A.	 R.,	 March,	 S.	 T.,	 Park,	 J.,	 &	 Ram,	 S.	 (2004).	 Design	 Science	 in	 Information	
Systems	 Research.	 MIS	 Quarterly,	 28(1),	 75–105.	 doi:10.2307/25148625	

IBM.	 (1998).	 Rational	 Unified	 Process	 -‐	 Best	 Practices	 for	 Software.	 Development,	 1–21.	
doi:10.1.1.27.4399	

La	 Monica,	 P.	 R.	 (2006).	 Google	 to	 buy	 YouTube	 for	 $1.65	 billion.	 Retrieved	 May	 20,	
2015,	 from	 http://money.cnn.com/2006/10/09/technology/googleyoutube_deal/	

McCullagh,	 D.	 (2006).	 AOL’s	 disturbing	 glimpse	 into	 users'	 lives.	 Retrieved	 May	 5,	 2015,	
from	 http://news.cnet.com/2100-‐1030_3-‐6103098.html	

Milowski,	 A.	 (2015).	 Google	 Code	 -‐	 Green-‐Turtle.	 Retrieved	 March	 5,	 2015,	 from	
https://code.google.com/p/green-‐turtle/	

MongoDB	 Inc.	 (2013).	 Introduction	 to	 MongoDB.	 Retrieved	 March	 9,	 2015,	 from	
http://www.mongodb.org/about/introduction/	

Moor,	 J.	 H.	 (1990).	 The	 Ethics	 of	 Privacy	 Protection.	 In	 Library	 Trends,	 vol	 39	 (1-‐2)	 (pp.	
69–82).	 Retrieved	 from	
https://www.ideals.illinois.edu/bitstream/handle/2142/7714/librarytrendsv39i1
-‐2h_opt.pdf?se	

RSS.com.	 (2015).	 What	 is	 RSS?	 Retrieved	 May	 15,	 2015,	 from	
https://www.rss.com/whatisrss	

SSB.	 (2014).	 Statistics	 Norway	 -‐	 Bruk	 av	 IKT	 i	 husholdningene,	 2014,	 2.	 kvartal.	
Retrieved	 May	 3,	 2015,	 from	 https://www.ssb.no/teknologi-‐og-‐
innovasjon/statistikker/ikthus/aar/2014-‐09-‐17#content	

Tene,	 O.	 (2008).	 What	 Google	 Knows:	 Privacy	 and	 Internet	 Search	 Engines.	 Utah	 Law	
Review,	 2008(4),	 1433–1492.	 Retrieved	 from	
http://works.bepress.com/omer_tene/2/	

70

Tessem,	 B.,	 &	 Nyre,	 L.	 (2013).	 The	 Influence	 of	 Social	 Media	 Use	 on	 Willingness	 to	 Share	
Location	 Information	 (pp.	 161–172).	 Springer	 Heidelberg	 Dordrecht.	

W3.org.	 (2015).	 Vocabularies.	 Retrieved	 May	 20,	 2015,	 from	
http://www.w3.org/standards/semanticweb/ontology	

W3Schools.	 (2015a).	 JavaScript	 Cookies.	 Retrieved	 April	 20,	 2015,	 from	
http://www.w3schools.com/js/js_cookies.asp	

W3Schools.	 (2015b).	 jQuery	 Intro.	 Retrieved	 March	 5,	 2015,	 from	
http://www.w3schools.com/jquery/jquery_intro.asp	

71

9. Appendix

9.1. Appendix 1: Design-Science Research Guidelines
Table rewritten from the article by (Hevner et al., 2004).

Table 1. Design-Science Research Guidelines

Guideline Description

Guideline 1: Design as an artifact Design-Science research must produce a viable

artifact in the form of a construct, a model, a

method, or an instantiation

Guideline 2: Problem relevance The objective of design-science research is to

develop technology-based solutions to important

and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design artifact

must be rigorously demonstrated via well-executed

evaluation methods.

Guideline 4: Research Contributions Effective design-science research must provide

clear and verifiable contributions in the areas of the

design artifact, design foundations, and/or design

methodologies.

Guideline 5: Research Rigor Design-science research relies upon the application

of rigorous methods in both the construction and

evaluation of the design artifact.

Guideline 6: Design as a Search

Process

The search for an effective artifact requires utilizing

available means to reach desired ends while

satisfying laws in the problem environment.

Guideline 7: Communication of

Research

Design-science research must be presented

effectively both to technology-oriented as well as

management-oriented audiences.

72

9.2. Appendix 2: Design Evaluation Methods
Table rewritten from the article by (Hevner et al., 2004).

Table 2. Design Evaluation Methods

1. Observational Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact inmultiple projects

2. Analytical Static Analysis: Examine structure of artifact for static qualities (e.g.,

complexity)

Architecture Analysis: Study fit of artifact into technical IS architecture

Optimization: Demonstrate inherent optimal properties of artifact or

provide optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities (e.g.,

performance)

3. Experimental Controlled Experiment: Study artifact in controlled environment for

qualities (e.g., usability)

Simulation – Execute artifact with artificial data

4. Testing Functional (Black Box) Testing: Execute artifact interfaces to discover

failures and identify defects

Structural (White Box) Testing: Perform coverage testing of some metric

(e.g., execution paths) in the artifact implementation

5. Descriptive Informed Argument: Use information from the knowledge base (e.g.,

relevant research) to build a convincing argument for the artifact’s utility

Scenarios: Construct detailed scenarios around the artifact to

demonstrate its utility

73

9.3. Appendix 3: Information systems research framework
Screenshot from the article by (Hevner et al., 2004, p.80)

74

9.4. Appendix 4: List of literals from Irene Celino’s test site

List of literals from Irene Celino’s test site

Irene Celino

Sample page annotated with RDFa 1.1

one last summer Barbecue

2015-09-16T16:00:00-05:00

White's autobiography

Giovanni

Understanding Semantics

John Doe

Sue

Albert Einstein

1879-03-14

Spinoza

Federal Republic of Germany

Canteen Cuisine

