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ABSTRACT

Alow dose of 1 pg rhBMP-2 was immobilised by four different functionalising techniques on recently developed
poly(L-lactide)-co-(g-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified
scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently
linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distrib-
uted on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted
mass spectrometry for up to 70 days. PHY scaffolds had an initial burst of release while MICS showed a gradual
and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release,
although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro
showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-
PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed
by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed
collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization.
After 4 weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson
trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results
demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not
seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous
low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used
here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed

onto a polymer alone and the short distance effect prevents adverse systemic side effects.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

the importance of introducing a potent bone substitute or a scaffold
that can induce bone healing by unlocking the body's own powers of

Reconstruction of critical-sized bone defects continues to be a chal- self-repair; not only should the substrate be osteo-inductive, it must
lenge. The limitations of current treatment methods [1] highlight also act as a delivery system for the regenerative cues necessary [2].

The osteo-inductive capacity of the FDA approved recombinant
human bone morphogenetic protein (rhBMP-2) in bone and car-
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bolus injections with supra-physiological doses to attain a therapeu-
tic effect, leading to severe side effects ranging from heterotopic
bone to oedema or high morbidity in cases of spinal fusion [5]. The
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high doses of rhBMP-2 chosen were used to compensate for short
half-life in vivo (1-4 h) [6,7].

Many studies have pursued the design of different carriers delivering
BMP-2 including implant coatings or organic and inorganic matrices
[8-10]. Control over its bioactivity and spatial-temporal presence is es-
sential for a beneficial effect but has been difficult to achieve [1]. To im-
prove the unsatisfactory outcomes resulting from bolus delivery of
BMP-2, attempts have been made to develop biomaterial carriers that
maintain a sufficient concentration at the application site to stimulate
the normal physiological mechanism required for bone regeneration
[11]. Adsorption to collagen sponges and soaking of collagen sponges
and hydrogels in BMP-2 are the most commonly used potential carrier
approaches due to their high binding capacities and successful induc-
tion of trabecular bone volume in critical defects of the canine has
been reported [12]. Recent reports using FDA approved polymers,
such as poly(lactide-co-glycolide) (PLGA) and polycaprolactone (PCL)
have looked at functionalising with BMP-2 [13] due to the affinity of
rhBMP-2 for molecules such as heparin or RGD peptides [14]. Covalent
immobilisation of BMP-2 to biomaterials modified with heparin, plasma
treatment, UV light or disulphide bonds [15,16] has also been examined
in attempts to improve the stability and increase retention in regenera-
tion sites by reducing the release of BMP-2 and sustaining its activity.

The introduction of micro- and nano-structured materials has been
shown to increase the surface area of scaffolds, allowing for numerous
non-covalent interactions between the scaffold surface and protein
[17]. Protein encapsulation within microspheres is a potent tool to
protect its biological activity and enable sustained release over longer
periods [18]. PLGA has generated great interest as a copolymer for mi-
crosphere fabrication due to its biocompatibility as well as the ability
to tailor its in vivo lifetime [11]. This can be achieved by varying the
polymer molecular weight, composition, microsphere size and distribu-
tion. Several studies have shown that the rate of release depends on the
microsphere size, therefore by mixing particles with different sizes one
can obtain a degree of control over release [19]. This control of the re-
lease profile of growth factors results in optimised concentrations for
growth, making it suitable for experimental designs lasting for a long
term.

Surface coatings with diamonds at the nano-level gained signifi-
cance in the medical field after it was shown to demonstrate chemical
stability, and to enhance mechanical properties and biocompatibility
[20]. In recent years, research has focused on nano-topographic surface
modifications aiming to allow for numerous non-covalent interactions
between the surface and protein, resulting in adsorbed protein layers
which in turn increase cellular adhesion and durability of biomedical
implants [21,22], improving various biological applications including
delivery of growth factors [23,24]. Previous work showed enhanced cel-
lular response through coating with nanocrystalline diamond (NCD)
films [25]. NCD modified titanium dental implant surfaces with terminal
oxygen groups that interacted strongly with rhBMP-2 allowing the
physisorption of BMP-2. This was demonstrated by greatly enhanced
osseointegration [26]. Nanodiamond particles (nDPs) provided en-
hanced surface properties enhancing bone formation [27,28], encourag-
ing further studies of binding growth factors onto nDP to evaluate their
bioactivity.

Long-term delivery of BMP-2 in mini pig models proved enhance-
ment of in vivo osteogenic efficacy of the protein compared to short-
term delivery [29], while burst release has shown significance in an ec-
topic bone-forming model using transplanted hydrogels [30] rather
than in long-term osteogenic activity. It is, however, difficult to compare
these approaches due to the variety in animal models, doses and deliv-
ery vehicles used, although collectively, they have resulted in under-
standing how to design an optimum delivery system. Therefore, since
the release of BMP-2 and its effect on the tissues depend on the carrier,
method of immobilisation and subsequent mode of delivery, the release
kinetics and osteoinductive capacity of different loading approaches
need further evaluation.

Degradable poly(L-lactide-co-g-caprolactone) [Poly(LLA-co-CL)], an
aliphatic polyester, copolymer of L-lactide and &-caprolactone has
been extensively studied as a scaffold for bone regeneration [31,32]
proving its biocompatibility and osteoconductivity. Mechanical and sur-
face properties can be modified [33] to enhance the regenerative poten-
tial, and functionalisation of these scaffolds with nDP to improve cellular
response and subsequent bone formation has been reported [28].

In an effort to further improve these scaffolds, the aim of the current
study was to study the effect of rhBMP-2 in low amount (1 pg) im-
mobilised on poly (LLA-co-CL) scaffolds utilising four different methods.
The release kinetics of rhBMP-2 from the different methods was first
quantified in vitro and bioactivity evaluated on human mesenchymal
stem cells (hMSCs) and then the osteogenic effect of these different
methods was further compared in vivo.

2. Materials and methods
2.1. Poly(LLA-co-CL) scaffold fabrication (CL scaffold)

Scaffolds were fabricated as previously described [31]. Scaffolds
were punched out in two different dimensions for in vitro and in vivo ex-
periments (in vitro: 12 mm diameter and 1.3 mm thickness) and
(in vivo: 6 mm diameter and 2.5 mm thickness).

2.2. Scaffold functionalisation and BMP-2 immobilisation techniques

2.2.1. BMP-2 production

BMP-2 cDNA was prepared corresponding to residues 283-396 of
the mature protein plus an N-terminal MA extension. The BMP-2 pro-
tein was expressed in Escherichia coli (E. coli), isolated from inclusion
bodies, renatured and purified as previously described [34]. One micro-
gram of BMP-2 was used per scaffold for each type of functionalisation
for in vitro with hMSC and in vivo experiments.

2.2.2. Physisorbed BMP-2 (PHY scaffold)

BMP-2 was physisorbed onto unmodified poly(LLA-co-CL) scaffolds
as follows: scaffolds were placed on a sterilised hydrophobic surface
(M Barrier Film, Parafilm®) and 1 pug of BMP-2/50 pl phosphate buffered
saline (PBS) was dropped in two increments of 25 pl each onto the sur-
face of the scaffold. The first aliquot was allowed to adsorb under humid
shaking conditions for 30 min, after which the second aliquot was
added and left for 30 min before the scaffold was used for in vitro or
in vivo experiments.

2.2.3. Colloidal nDP production

Acid purified detonation diamond (Gansu Lingyun Corp. Lanzhou,
China) was subjected to attrition milling using a method previously
described [35] achieving a narrow size distribution at ~5 nm particle
diameter (measured by dynamic light scattering in water) and low
agglomeration of the diamond particles.

2.24. Scaffolds modified with nDP and physisorbed with BMP-2 (nDP-PHY
scaffold)

Scaffolds were modified with the nDP solution (2% (w/v), i.e.
20 mg/ml) by a vacuum technique: 0.5 ml nDP solution and one scaffold
were put in a glass beaker and perfused in vacuum. The vacuum chamber
was evacuated down to the pressure where the nDP-water-solution
changes into the vapour phase and the nDP burst into the scaffold surface.
This cycle was repeated 10 times. After the modification, the nDP modi-
fied scaffolds were rinsed with distilled water and dried in vacuum for
8 h. Brunauer-Emmett-Teller (BET) method using Argon at 87 K accord-
ing to DIN ISO 9277 was performed to quantify the amount of nDP on the
porous scaffold and the concentration of nDP was determined to be 14 mg
in 1 g scaffold material. To physisorb the BMP-2, the modified scaffolds
were treated with aforementioned protocol for PHY.
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2.2.5. nDP functionalisation with BMP-2 (nDP-COV scaffold)

To functionalise nDP with benzoquinone, 189 mg of mechanically
de-agglomerated nDP was suspended in 20 ml of PBS (pH 8) and
150 mg of benzoquinone (1.38 mmol) was added (all from VWR Inter-
national, Radnor, PA, US). After stirring for 24 h at room temperature
(RT) the reaction mixture was centrifuged and the nDP was washed
with PBS (pH 7.4) and deionized water. Then nDP scaffolds were
functionalised with BMP-2 by suspending 20 mg of benzoquinone-
functionalised nDP in 15 ml of PBS buffer (pH 6). After adding
10 pg BMP-2 the reaction mixture was stirred for 24 h at RT. The
nDP was centrifuged and then the supernatant was checked for re-
sidual BMP-2 and then discarded. The precipitate was washed with
PBS (pH 7.4) and deionized water. The scaffolds were then modified
with the functionalised nDP according to the procedure described in
Section 2.2.4.

2.2.6. Microsphere preparation and scaffold modification (MICS scaffold)

BMP-2-loaded PLGA5050 (Purac Biochem, Gorinchem, Netherlands)
microspheres were fabricated using a previously described water-in-
oil-in-water double emulsion solvent extraction technique [11,36].
Briefly, 1 ml of a 50 ug/ml BMP-2 solution was emulsified in a solution
of 15% (w/v) PLGA5050 in 5 ml of dichloromethane using a probe
ultrasonicator (Branson sonifier cell disruptor 200, USA). The mixture
was then immediately re-emulsified for 60 s in 10 ml of a 1% w/v aque-
ous poly(vinyl alcohol) (PVA, 87-89 mol% hydrolysed, Mw = 13,000~
23,000) solution to create the double emulsion. The product was then
added to 100 ml of a 0.5% w/v aqueous PVA solution and 100 ml of a
2% w/v aqueous isopropanol solution and stirred for 2 h. The micro-
spheres were centrifuged, washed 5 times and vacuum dried into a
free flowing powder (Braun Biotech International SpeedVac Concentra-
tor SVC 10H Savant, USA). BMP-2 loaded microspheres were incorporat-
ed into the porous poly(LLA-co-CL) scaffold using a seeding technique
described previously [37] with slight modifications. Depending on
the amount of BMP-2 for loading, dry microspheres were dispersed in
100 pl ethanol using an ultrasonic bath (VWR International). Fifty
microlitres of the microsphere suspension was placed onto both sides
of the scaffold and dried overnight under vacuum.

The loading efficiency of the microspheres was determined using a
solvent-extraction technique [38]. Approximately 20 mg of microparti-
cles was dissolved in 1 ml of dichloromethane for 6 h at 37 °C. The
entrapped rhBMP-2 was extracted from the organic phase to the aque-
ous phase by incubation with 5 ml of PBS for an additional 24 h. The con-
centration of rhBMP-2 was analysed by a commercially available human
BMP-2 enzyme-linked immunosorbent assay (ELISA) (RnD Systems,
Minneapolis, Minnesota, USA). The average loading efficiency was
0.04%. This optimization method was performed three times. Accordingly
the amount of microspheres needed to contain exactly 1 pg of BMP-2
from loading efficiency is calculated, i.e 2.5 mg microparticles contains
1 pg, each optimisation added 2.5 mg to the scaffold.

2.3. In vitro BMP-2 release kinetics

Scaffolds were immersed in 1 ml of PBS in glass test tubes
(Duran®, Wertheim, Germany) and incubated in a shaking water
bath (Julabo®, SW22, Germany) at 37 °C. Half of the supernatant
was collected and replaced with fresh PBS at predetermined time
points up to 70 days.

2.4. Sample preparation for selected reaction monitoring (SRM) analysis

rhBMP-2 (residues 283-396) expressed in E. coli was purchased
(RELIATech GmbH, Wolfenbiittel, Germany). Four peptides derived
from the 26 kDa protein by trypsinisation were tested for SRM analysis.
Only one peptide NYQDMVVEGCGCR representative of BMP-2 revealed
good transitions and was therefore selected for relative quantification
of the protein. A stable isotope-labelled internal standard (SIS)

corresponding to that signature peptide was purchased in AQUA
QuantPro quality (Thermo Fisher Scientific, Waltham, MA, USA). The
C-terminal arginine for the SIS was labelled with '3C and '°N resulting
in a mass difference of 10 Da to the corresponding non-labelled peptide.
In addition, cysteine was carbamidomethylated and methionine was
oxidized. The chemically synthesised modified peptides were reported
to be stable by the manufacturer. The peptide was optimised by direct
infusion on a Q-Trap 5500 (AB SCIEX, MA, USA). Twenty five femtomole
of SIS peptide NYQDMVVEGCGCR was spiked into samples containing
unknown amounts of BMP-2 in low-binding tubes (LoBind, Eppendorf).
The mixture was lyophilised (Centrivap® Centrifugal, USA) prior to in-
solution protein digestion according to the protocol described previ-
ously (http://www.uib.no/file-archive/in-solution-proteindigestion.
pdf). Prior to liquid chromatography SRM-mass spectrometry (LC
SRM-MS) analysis, the mixtures of reduced and alkylated tryptic pep-
tides were desalted using reverse phase Oasis® HLBuElution Plate
30 pm (Waters, Milford, MA, USA) as described previously [39]. The
eluted peptides were dried in a speed vacuum drier and finally
suspended in 8 pl of 1% FA and 2% ACN. In order to oxidize all methio-
nine residues, H,0, was added in a final concentration of 0.5%, and
the samples were incubated for 30 min at 30 °C. The experiment was
performed in triplicate. For each measurement, slightly different
SRM methods were used and improved progressively to measure the
release with addition of heavy peptide. The data shown in Fig. 1 were ob-
tained with the most optimised SRM method, considered the most robust
and representative of the conclusion derived from all measurements
performed.

2.5. SRM analysis

LC SRM-MS analysis was performed on a Q-Trap 5500 coupled to a
Dionex Ultimate system (Thermo Scientific, MA, USA) as previously de-
scribed [39]. The protein digest was dissolved in 2% ACN, 0.1% FA and
loaded into the instrument. For quantification of the signature peptide
from BMP-2, all y transitions with significant intensity were used and
a mean of the ratio values calculated to obtain ratio Light/Heavy (L/H).
The Q1 values for the light peptide were 802.319, that for the SIS
heavy labelled peptide 807.32. The collision energy used for SRM analy-
sis was 45.5 eV. The raw data files generated were processed using
Skyline (MacCoss Lab Software version 2.5).
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Fig. 1. Release kinetics of BMP-2 measured by SRM. (Axis-A) Relative amount released
where 100% value corresponds to the highest value observed for the total amount of
BMP-2 measured at a specific time point. (Axis-B) Release over time of rhBMP-2 from
the different scaffolds expressed by the ratio (L/H) between endogenous light (L) and
heavy synthetic (H) peptide spiked-in our sample measured by SRM. The figure is a
representative of the data from the most optimised SRM method obtained from triplicate
measurements.
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2.6. Cell maintenance and seeding

Primary hMSCs (StemCell™ Technologies, Vancouver, BC,
Canada) were expanded in MSCGM™ complete medium (Lonza,
Basel, Switzerland) following the manufacturer's instructions. Flow
cytometry used to assess the cells' purity showed that >90% of
cells expressed CD29, CD44, CD105, and CD166 and that they lacked
expression of CD14, CD34, and CD45. Morphology of the hMSCs was
assessed by a light microscope (Nikon TS100, Tokyo, Japan). Cells
used in the experiments were from passages 3 to 6. The cells were
seeded onto the scaffolds at a density of 2 x 10° per scaffold
and allowed to distribute better by a plate shaker (MixMate®
Eppendorf, Hamburg, Germany) for 5 min before incubation at 37
°C and 5% CO, [40]. Once the cells reached 80-90% confluence the
medium was replaced with osteogenic medium (MSCGM™ com-
plete medium plus 50 pg/ml ascorbic acid, 10~8 M dexamethasone,
and 3.5 mM B-glycerophosphate) and changed every fourth day. All
cultures were performed in triplicate and the experiments were re-
peated three times.

Human osteoblast-like cells (HOB) were used as a positive control
for the in vitro mineralization staining (Alizarin red S) (Section 2.10).
They were isolated from routine surgical samples from patients being
treated at the Section for Oral and Makxillofacial Surgery, Department
of Clinical Dentistry, University of Bergen and Haukeland University
Hospital. The procedure was approved by the Ethics Committee at the
University of Bergen. The protocol for isolation and expansion has
been previously described [41].

2.7. Scanning electron microscope (SEM) analysis

Attachment and spreading of hMSC on scaffolds at 1 and 3 days after
seeding were analysed by SEM (Jeol JSM 7400F, Tokyo, Japan), voltage
of 10 kV as previously described [40].

2.8. Genes expressed by cultured hMSC in vitro

Total RNA was isolated from in vitro cultures at week 1 and week
3 using a Tissue RNA isolation kit (Maxwell®, Promega, Madison,
WI, USA), and reverse transcribed according to the manufacturer's
instructions using the High capacity cDNA Reverse Transcription
Kit (Applied Biosystems®, Carlsbad, CA, USA). Real-time reverse
transcription-polymerase chain reaction (RT-PCR) was performed as
previously described [40]. Tagman® gene expression assays (Applied
Biosystems®) were used to detect mRNA levels of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), Antigen KI-67 (Ki-67), Runt-
related transcription factor 2 (Runx2), BMP-2 receptor 1A (BMPRIA),
BMP-2 receptor 2 (BMPRII), Alkaline phosphatase (ALP), Collagen type
1 alpha 2 (Col12), Bone morphogenetic protein-2 (BMP-2) and
Osteocalcin (OC). The data were analysed with a comparative Cg
method and GAPDH served as endogenous control. Unmodified scaf-
fold (CL) at week 1 was the reference.

2.9. Enzyme-linked immunosorbent assay

The culture medium was collected at week 1 and week 3. Human
BMP-2 ELISA Development Kit (900-M255, Peprotech, Rocky Hill, NJ,
US) was used to measure extracellular and intracellular BMP-2 fol-
lowing the manufacturers’ instructions. To measure the intracellular
production of BMP-2, the scaffolds with cells from both time points
were washed with PBS before incubation at 4 °C on a shaker for
20 min with 175 pl RIPA buffer (Thermo Scientific), 1 x Halt™ Prote-
ase Inhibitor Cocktail and 1x Halt™ Phosphatase Inhibitor Cocktail
(Thermo Scientific). This was followed by sonication for 5 min and
then centrifugation for 20 min at 16,000 g at 4 °C. The extracted pro-
tein was collected and measured using a bicinchoninic acid assay

(BCA) (Pierce BCA Protein Assay Kit, Thermo Scientific) following
the manufacturer's instructions.

2.10. In vitro mineralization

The cell/scaffold constructs were harvested at week 1 of culture,
washed thrice in PBS and fixed for 10 min in 4% paraformaldehyde
(PFA) (Merck & Co, White House Station, NJ, USA). Alizarin red S stain-
ing was performed to determine matrix mineralization. Two percent of
alizarin red S powder (Sigma Aldrich) was dissolved in distilled water
and pH was adjusted to 4.2 with 0.5% ammonium hydroxide. Constructs
were stained for 20 min and imaged with a Nikon TS100 microscope.
HOB cells cultured on CL scaffolds for 1 week were used as a positive
control.

2.11. Animal model of mandibular defects

Male Sprague-Dawley rats (300-350 g) were anaesthetised with
isoflurane (IsobaVet®; Schering-Plough, Kenilworth, NJ, USA) com-
bined with O, using a custom-made platform and mask. A 1 cm in-
cision was made along the lower border of the mandible and after
retracting the muscles a round-shaped bone defect (5 mm diame-
ter) was created in the mandibular angle region. A trephine bur
(Komet Medical, Lemgo, Germany) was used. The defect was filled
with a scaffold (n = 8 for each experimental group). The muscles
were repositioned and the skin closed with resorbable sutures (Vicryl
Rapide 4-0; Ethicon, Somerville, NJ, USA). Animals were euthanised
with an overdose of CO, after 2 and 4 weeks. Mandibles were dissected
and the samples were stored in RNAlater (Invitrogen, Carlsbad, CA,
USA) for RT-PCR, micro computed tomography (micro-CT) and histolog-
ical analyses.

2.12. Gene expressions in vivo

Total RNA was isolated from in vivo scaffolds at 2 weeks. Tagman®
gene expression assays (Applied Biosystems™, USA) were used to
detect mRNA levels of GAPDH, ALP, OC, Runx2, Colla2, BMP-2, Bone
morphogenetic protein-4 (BMP-4), Tartrate-resistant acid phosphatase
(TRAP) and Cathepsin K (CTSK). The data were analysed with a com-
parative Cr method and GAPDH served as endogenous control. CL
served as reference.

2.13. Micro-CT analysis

The amount of bone formation within the defects was examined using
micro-CT (micro-CT 40, Scanco Medical AG, Bruettisellen, Switzerland)
with 19 um isotropic voxel size and 70 kV, 43 pA tube current, 380 ms ex-
posure time, and 1000 projections [42]. Three-dimensional isosurface
rendering and images were constructed with the software provided by
Scanco Medical and measurements included the ratio of new bone vol-
ume relative to the tissue volume (BV/TV).

2.14. Histological evaluation

Specimens for histological examination were processed as previous-
ly described [43]. Sections were then stained with Masson's trichome to
confirm the osteoid-like tissue and images were made with an inverted
microscope (Nikon Ti, Tokyo, Japan) using the software NIS-Elements
AR 4.10.

2.15. Statistical analysis

The average values were analysed using SPSS Statistics 21.0 (IBM,
Armonk, NY, US). The data were expressed as mean +/— standard
deviation (SD). Data were tested for variance homogeneity and normal
distribution and One-way ANOVA were followed by a multiple-
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3. Results
3.1. In vitro kinetics of BMIP-2 release

The release of BMP-2 was monitored through identification of
signature peptide NYQDMoxVVEGCcamGCcamR as analysed by SRM.
The amount of a signature peptide (L, endogenous peptide) for BMP-2
is related to a known amount of internal standard (H, heavy synthetic
peptide) spiked-in our sample, and the ratio (L/H) is used as an index
for the amount of BMP-2 released (Fig. 1). The figure is a representative
of the data from the most optimised SRM method obtained from triplicate
measurements.

In the first 24 h, the PHY scaffolds had an initial burst of release.
There was a steady release from the MICS scaffolds starting from 24 h
while the nDP-COV scaffold group showed no release. MICS scaffolds
showed a gradual increase in release from day 7 on, with the greatest
release being found between days 21 and 40. In comparison to the
MICS scaffolds, the PHY scaffolds showed a smaller increase in release
between days 21 and 40, while the nDP-PHY scaffolds showed a main-
tained level.

3.2. hMSC attachment and proliferation

SEM images at day 1 and day 3 of culture show the spreading and
attachment of hMSC on the different scaffolds. Significantly more cells
on the MICS modified group were proliferating on day 7 compared to
the other scaffold groups (Fig. 2 G).

3.3. BMP-2 signalling and hMSC differentiation

Similar results were seen between the groups (Fig. 3) for expression
of the two main receptors of BMP-2 signalling (BMPRIA and BMPRII).
Results showed the highest expression of receptor significantly from
the MICS at 3 weeks (p = 0.033, p = 0.029). At week 1 the nDP-PHY
group showed higher but not statistically significant expression com-
pared with the PHY group, while at week 3 the PHY group showed a
higher trend, coinciding with the release profile during that period,
which was again not statistically significant. A tendency was seen for
an increase in the master transcription factor Runx2 in all groups at
week 3 compared to week 1 (Fig. 3). Colla2 was upregulated in all
groups at week 3 compared to week 1 except in the nDP-COV group,
where it was downregulated. In all the other groups, ALP was upregulat-
ed at week 3 with nDP-PHY showing the highest tendency (Fig. 3). MICS
and nDP-PHY showed the highest BMP-2 expression at both early and
late time points (Fig. 3), although this was only significant in the MICS
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- ®\Week 1~ Week 3 MICS group followed by the nDP-PHY group, compared with the other
o groups.
w
§ . T 1 :
a 1’2 po 34. In vitro endogenous BMP-2 protein expression
2 i
= '
% 11 ‘ ‘ ‘ ‘ ‘ The medium was collected at week 1 and week 3 to determine
ﬂé 08 - the extracellular release of endogenous BMP-2 from hMSC. The BMP-2
P 82 T ] I ELISA kit used is sensitive to natural and mammalian-expressed BMP-
= a7 Z
5 02 ’ ’ I ir
e o
Fig. 2 Attachment and proliferation of hMSC cultured on the different scaffolds. SEM im-
0\’ ,?:\ ,e:k O\\ 0‘5 ages at days 1 and 3 showing attachment of hMSCs (red arrows) (A) CL, (B) PHY,
R Q- Q‘o ‘\\\ (C) nDP-PHY, (D) nDP-COV and (E) MICS. Scale bar = 200 um. (F) Higher magnification
(\0 (\0 of MICS scaffold without cells showing the increased surface area resulting from the mi-

crospheres. Scale bar = 2 um. (G) The proliferative activity of the hMSC seeded onto the
different scaffolds evaluated in terms of mRNA expression of the proliferative marker
(Ki67) (*p <0.05, **p <0.001).
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Fig. 3. Relative MRNA expression from hMSC cultured in vitro after week 1 and week 3.
Relative mRNA levels of BMP-2 signalling receptors, transcription factor and osteogenic
markers (*p < 0.05, **p < 0.001).

2 and does not recognize E. coli-expressed rhBMP-2. The levels detected
here were therefore protein originating solely from hMSC. Extracellular
endogenous BMP-2 showed the lowest expressions in the CL and nDP-
COV groups, with minor differences between time points. The highest
expression was seen from the MICS group at early and late time points
and nDP-PHY at week 1 (Fig. 4A). Intracellular BMP-2 showed the
highest levels in the MICS group at both time points and lowest in the
nDP-PHY group (Fig. 4B). None were significant.

3.5. Alizarin red staining for in vitro mineralization

Staining revealed surface mineralization. Most groups showed vari-
able reddish extracellular matrices while vast extracellular darker spots
could be observed in the MICS and nDP-PHY group scaffolds as evidence
of calcium deposits in the matrix (Fig. 5).
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Fig. 4. In vitro endogenous BMP-2 protein expression by ELISA at week 1 and week 3.
(A) for extracellular concentration of BMP-2 secreted in medium and (B) intracellular
BMP-2.

3.6. Gene expressions from in vivo experiments

In vivo RT-PCR results showed coherence in several genes with the
expressions in vitro. The transcription marker Runx2 showed the
highest expression on the MICS scaffolds, although not significant. Sig-
nificant upregulation of the early osteogenic marker ALP was expressed
on MICS while COL1 was higher from the PHY scaffolds. OC was upreg-
ulated most on MICS scaffolds, followed by expression on nDP-PHY scaf-
folds, consistent with the in vitro results indicating deposition of bone
matrix and mineralization. MICS scaffolds also demonstrated significant
upregulation of the osteoclast markers TRAP and CTSK at 2 weeks.

3.7. De novo bone formation

Morphometric results with micro-CT show that most of the treated
groups had increased bone volume inside the defined defect area com-
pared to the empty group. Bone volume recover was greatest in the PHY
and MICS groups at 4 weeks, and that both were significant in compar-
ison to the nDP-COV scaffold group (Fig. 7A). They were followed by
nDP-PHY.

Masson's trichrome staining was carried out to identify the osteoid-
like tissue and collagen enriched areas in the defects. In the empty
group (Fig. 7 B) it was predominantly soft tissues growing around and
into the defect. The scaffold architecture was highly preserved in
the CL and nDP-COV groups compared with other 3 functionalised
scaffold groups. Most of the pores of the CL scaffolds were filled
with loose fibrous connective tissue without much evidence of oste-
oid tissue formation. Histological results were in line with the micro-
CT analysis showing mostly osteoid formation among the pores of
the scaffolds in PHY, nDP-PHY and MICS at an early time point of 4
weeks (Fig. 7D, E and G).

4. Discussion

We evaluated the in vitro and in vivo efficacy of four different modes
of rh-BMP-2 delivery utilising a low dose of 1 pg.
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In vitro hBMP-2 release from scaffolds was evaluated with targeted
quantification using SRM and an absolute quantification method
(AQUA). The SIS peptide was chemically identical to the native peptide
with respect to retention time, ionization efficiency, and fragmentation
characteristics. Its mass unit was higher and could therefore be distin-
guished from the native counterpart during MS analysis permitting
the detection of very low concentrations [44]. In the PHY scaffold most
of the BMP-2 was located superficially with weak bonds causing the
initial burst release. A second increase in release from PHY was seen at
a time point when the scaffold is beginning to degrade. This hypothesis
is supported by the degradation profile from the same scaffold analysed
by in vitro hydrolysis where forty days showed to be a sufficient time for
significant reduction of its molecular weight contributing to increased
degradation [45].

In contrast, the release of BMP-2 from MICS scaffolds was different.
Several factors explain this difference, such as the microsphere size
and its rate of degradation, which controlled the BMP-2 diffusion in a
steadily increased fashion retaining the BMP-2 for an extended time.
0OC was highly expressed in cells grown on MICS at week 1 (p < 0.05)
and week 3 in vitro and at 2 weeks in vivo, implying increased mineral-
ization in comparison to that seen on PHY scaffolds. This demonstrates
how long-term sustained delivery of BMP-2 enhances its osteogenic ef-
ficacy at the same dose compared to short-term delivery [46]. Differ-
ences in the initial burst release of BMP-2 from PHY and nDP-PHY
scaffolds could be attributed to the lower amount of protein being
only weakly bound to the scaffold in the case of nDP-PHY. No burst re-
lease was encountered as in PHY because the interaction of proteins
with nDPs is known to be rather strong [47]. Also previous reports
where spectroscopic and theoretical investigations were carried out,
showed a strong binding of BMP-2 with NCD surfaces [25], supporting
the contention that nDP could express similar properties [27]. The nDP
modification of copolymer scaffolds has been shown to increase its hy-
drophilicity [28], facilitating stronger physisorption of rhBMP-2. An
overview of different O-termination techniques facilitating surface at-
tachment of organic groups has been reported [21]. The overall binding
strength of the noncovalent interaction is governed by a multitude of
individual interactions. Several forces were reported to contribute to
the overall binding on NCD, such as van der Waals forces, H-bonds
and electrostatic interactions. Although the release kinetics were not re-
markably different between nDP-PHY and nDP-COV scaffolds, it is clear
from our results that the bioactivity of rhBMP-2 was conserved on nDP-
PHY scaffolds. Studies suggest that slightly acidic environments stimu-
late the release of proteins loaded noncovalently on nDP modified sur-
faces [24], a condition that was absent in our PBS buffer set-up. Body
fluids aid degradation of carriers and release of BMP-2 in a variable
manner, which is why comparison to the present in vivo results is
important.

The burst release and degradation of the scaffolds might be accentu-
ated in vivo [45], explaining why PHY might show higher trends of early
markers such as Runx2 and COL1 in vivo, although the difference was
not significant. Several factors play a role in bone regeneration in vivo
[48], which could have assisted the PHY to form mineralized tissue
in vivo but not in vitro. The in vivo experiments had different time points
from the in vitro, bringing another variable to the effect of the release ki-
netics of the various scaffolds. At 2 weeks in vivo, the release profile
showed a relatively higher release from MICS, which continued to in-
crease, compared to PHY, and thus had a significant effect on the

Fig. 5 3D mineralization in vitro visualised with Alizarin red S staining. Macroscopic images
(round) and increased magnifications (x4) images of (A) unseeded CL scaffold,
(B) cultured hMSC for 1 week on CL scaffold (C) on PHY, (D) on nDP-PHY, (E) on nDP-
COV, (F) on MICS, and (G) HOB cells on CL scaffold (positive control). Scale
bar = 500 um.3D mineralization in vitro visualised with Alizarin red S staining. Macro-
scopic images (round) and increased magnifications (x4) images of (A) unseeded CL scaf-
fold, (B) cultured hMSC for 1 week on CL scaffold (C) on PHY, (D) on nDP-PHY, (E) on nDP-
COV, (F) on MICS, and (G) HOB cells on CL scaffold (positive control). Scale bar = 500 pm.
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Fig. 6. Relative mRNA expression in vivo after week 2. Expression of BMP-2 transcription,
osteogenic genes and remodelling markers by RT-PCR from animals samples after 2 weeks
in place (*p < 0.05).

osteogenic marker, ALP. The second cross-sectional analysis in vivo was
at four weeks which corresponds to bet'ween 21 days and 40 days of
in vitro release kinetics. PHY and MICS showed the significantly higher
bone regeneration and nDP-PHY came later, perhaps suggesting the ef-
fects of sustained release in low doses from the latter group as seen in
the release curve (Fig. 1). Longer-term evaluation in vivo is required to
fully assess the quality and architecture of new bone.

The in vitro results in the present study demonstrated lower ALP ex-
pression by cells grown onto MICS scaffolds than on nDP-PHY, with cells
from the MICS group still significantly highly proliferative as seen by
Ki67 expression at week 1, possibly related to the increased surface
area from the microspheres. It has been reported that osteosarcoma
cells cultured on NCD implant surfaces showed increased ALP activity
in less than 2 weeks of culture [25]. In vivo, a significantly higher
expression of mRNA ALP was demonstrated from MICS scaffolds indi-
cating bone induction. ALP expression tended to be higher in cells
on nDP-PHY scaffolds than on PHY scaffolds both in vitro and in vivo,
although not significantly so, highlighting the effect of nanoparticles

on enhancing the osteoinduction of copolymer scaffolds. A slight up-
surge in the BMP-2 kinetic release after almost 40 days in nDP-PHY is be-
lieved to be due to the degrading polymer, but in this case the rhBMP-2 is
still bound to nDP and bioactive in levels to increase osteogenic differen-
tiation when compared with PHY scaffold. This was confirmed by Alizarin
red staining in the nDP-PHY and MICS scaffold groups.

The nDP-COV group showed no release of BMP-2 during the 70 days
of incubation and also showed lesser osteogenic potential both in vitro
and in vivo. This demonstrates the high stability of the covalent immo-
bilization of the protein on the diamond surface. The loss of the BMP-2
functionality indicates that the protein is most likely deformed during
the binding onto the diamond surface by both the covalent linker and
additional, non-covalent interactions. Similar results have been report-
ed previously for the covalent immobilization of other proteins such
as enzymes [49]. This brings to our notice the necessity of improving
the method for covalently bonding the rhBMP-2 to the nDP without af-
fecting the bioactivity of rhBMP-2. Furthermore, we take into consider-
ation that the in vitro design of 3 weeks was not suitable for the nDP-
COV group; additional degradation of the scaffold is required to release
rhBMP-2. This was evidenced by the observation of limited osteoid
tissue around the nDP areas at 4 weeks in vivo (Fig. 7F).

BMP-2 exerts a bipolar effect depending on its concentration:
osteoprogenitor cells are recruited and differentiated at low doses,
whereas osteoclasts are transiently activated at high doses [50]. This
was reflected by the in vivo expression of TRAP and CTSK, (Fig. 6),
both highly expressed by osteoclasts. They were significantly highly
expressed in the MICS scaffold group after 2 weeks; in vivo this release
could be amplified due to environments favourable to erosion of the mi-
crospheres. Recent reports [51] have underlined the importance of de-
creasing the dose of BMP-2 to the lowest level that is compatible with
the desired effect of bone formation. BMP-2 is expressed from days 1 to
21 during bone healing [48], hence for delivering BMP-2 for bone regen-
eration, the ideal carrier would provide sustained release over a period of
at least three weeks. Following injury, BMP-2 is released locally into the
defect site from the surrounding matrix [48], consistent with the in-
creased BMP-2 levels in vivo seen here in all groups, although this increase
was not statistically significant. Also consistent with trends seen here,
BMP-2 expression is upregulated in differentiating osteoprogenitor cells
and maintained for about 21 days [52]. At week 3 in vitro, the highest ex-
pression was seen in the MICS (p < 0.05) and followed by nDP-PHY at
both time points. A similar trend in the extracellular protein levels of
BMP-2 was shown by ELISA. Comparing the gene and protein expressions
of BMP-2 between PHY and nDP-PHY highlights the valuable effect of nDP
functionalisation. BMIP-2 is an extracellular signalling molecule which is
washed out rapidly, thus the protein level of extra- and intra-cellular
BMP-2 was reduced at week 3 in all groups [53]. Small amounts induce
cellular responses in vitro; however exogenously delivered BMP-2
requires ultra-physiological doses for humans compared to animals to
overcome the rapid wash out.

It is important to note that in vitro statistical relevance was seen in
mRNA expressions of the potent osteogenic markers BMP-2 and OC
in vitro, hence our discussion and subsequent conclusions are based
on this finding. Significance in vivo was only demonstrated for ALP
mRNA from MICS scaffold compared to other osteogenic markers.
However, microCT and histological evaluations disclosed a confirmative
dimension supporting the interpretations and conclusions related to the
osteogenic potential of these scaffolds. The nDP-PHY and MICS scaffolds
have strong potential for future applications due to their controlled
release of growth factors. Furthermore, the data demonstrated that
the protein on nDP-PHY was bioactive with comparable efficacy despite
being strongly bound to the carrier (scaffolds), indicating a short dis-
tance effect on the local surrounding tissues.

In the clinical trials, high doses of not less than 1 mg BMPs per ml
have been used and the complications of this dose have been discussed
[54]. However, it is difficult to establish a correlation from animals to
humans due to different bone healing mechanisms [55]. Interestingly,
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Fig. 7. De novo bone formation after 4 weeks post-implantation. (A) Micro-CT analysis
showing different bone formation volumes inside the region of the defect at 4 weeks
(*p<0.05). (B-G) Masson trichrome staining of defects implanted with different scaffolds
at 4 weeks post-implantation. The bluish green colour indicated osteoid-like tissue and
collagen-rich areas. Scale bar = 100 pm.

in our study a low dose of only 1 pg was sufficient to induce de novo
bone. Very few experiments using comparably low doses in vivo have
been reported. Researchers used carrier minerals, which might have a
confounding osteoinductive effect [56] or including osteoprogenitor
cells in the construct [57]. A recent study using collagen sponges in crit-
ical sized defects in rat calvaria [ 58] concluded that rhBMP-2 accelerates
local bone formation once reaching an osteoinductive dose threshold at
1.25-2.5 pg in their model, which is not load bearing. Previous reports
also proved that non-glycosylated BMP-2 which is produced via bacte-
rial expression systems is less soluble. Despite it having lower biological
activity and release in vitro compared to glycolysated BMP-2, it signifi-
cantly increased bone formation at low dosages [59].

Taken together, we conclude from our results that low doses of BMP-
2 are found to be bioactive for bone regeneration. Obtaining bone after
just 4 weeks in vivo suggests accelerated bone regeneration in the
PHY, nDP-PHY and MICS groups. Physisorption onto nDP modified co-
polymer scaffolds is a material reported for the first time in critical
sized bone defects and appears to hold great promise compared to
growth factors adsorbed solely onto a polymer.
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