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ABSTRACT 

OBJECTIVE: In the western world, a high energy intake combined with limited physical 

activity have resulted in an obesity epidemic. Challenges associated with this is an altered 

glucose homeostasis, increased risk of several diseases and economical concerns. A high 

proportion of dietary protein is known to induce weight loss, but little attention is given to 

effects of different protein sources. We aimed to investigate the weight reducing effect of 

low-fat diets enriched with the different protein sources casein, cod and pork.  

RESEARCH DESIGN AND METHODS: An animal study was conducted, using C57BL/6J mice. 

Obesity was induced, by giving the animals a very high fat (VHF) diet. Three groups (n=10) 

were given a low fat diet (15 E% from fat, 16 E% from protein, 57 E% from carbohydrates, 12 

E% from sucrose) and one group continued on a VHF control diet (52 E% from fat, 16 E% 

from protein and 32 E% from carbohydrates). Feed intake was recorded and an OGTT and 

ITT was performed after 3 weeks of experimental feeding. Plasma insulin levels were 

measured using ELISA, and mRNA levels of genes were measured using qPCR. Histological 

sections were exposed to both H&E and immunohistochemical staining. Data from an earlier 

completed experiment was included, following the same design, only with 30 % energy 

restriction. 

RESULTS: Mice fed casein had the greatest loss of body weight and fat mass, but the cod – 

fed mice obtained the highest lean mass. Protein from casein also seem to improve glucose 

tolerance and insulin sensitivity in the mice, compared to cod and pork. However, when fed 

ad libitum a modest change was seen. Furthermore, our results show a significantly lower 

energy intake in the cod–fed mice. Sections of interscapular brown adipose tissue (iBAT) 

from the different groups indicate a higher degree of multilocular cells in iBAT from casein–

fed mice in addition to a higher Ucp1 expression. Possible mechanisms to elucidate the 

findings are explored and discussed. 

CONCLUSIONS: The results herein indicate that feeding obese mice a diet with casein 

decreases body weight and improves glucose and insulin homeostasis to a greater extent 

than a diet with cod or pork. Research suggests that casein can mimic the beneficial effects 

of a high-protein diet, compared to other protein sources. Further research is necessary to 

demonstrate whether these findings are of relevance to human nutrition.  
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1.0 INTRODUCTION 

1.1 Obesity and overweight  

1.1.1 Prevalence and cause  

Overweight and obesity is a problem on the rise throughout the entire world, and recent 

estimations reveal that at least 3.4 million adults succumb to diseases related to obesity 

each year (WHO, 2000). These so–called non-communicable diseases can be cardiovascular 

diseases such as heart attack, stroke, type 2 diabetes mellitus (T2DM) or cancer. Obesity is 

defined as an abnormal or excessive accumulation of fat that increase the risk of severe 

health issues. A general classification of overweight and obesity is the body mass index 

(BMI), where one is considered obese with a BMI >30, and overweight with a BMI >25 

(WHO, 2000). Abdominal fat accumulation appears to have the strongest association for 

impaired health (ORahilly, 1997). The cause of obesity is multifactorial, with genetic, 

environmental and nutritional factors having important roles in its development. The 

accumulation of body fat from an excess energy intake, combined with a low physical 

activity is a crucial cause to the obesity epidemic (Vieira et al., 2009, ORahilly, 1997). 

1.2 The adipose organ  

The adipose organ consists of two different types of coexisting adipocytes: white and brown. 

White adipose tissue (WAT) is involved in energy storage while brown adipose tissue (BAT) in 

energy expenditure and regulation of body temperature (Fu et al., 2014). The composition of 

these types within the adipose organ depends on several factors, such as age, environmental 

and nutritional circumstances (Cinti, 2005).  

1.2.1 White adipose tissue  

The white adipose tissue (WAT) consists of unilocular adipocytes, each containing one large 

lipid droplet, with few mitochondria (Townsend and Tseng, 2012, Cinti, 2005). In a healthy 

individual, the WAT represents about 10% of the bodyweight, but can increase substantially 

when the body is in a long–term positive energy balance (Seale et al., 2009). In an obese 

state, the adipose organ increases its white adipocyte component and the cells become 

hypertrophic. This increment is facilitated by allowing synthesis of triacylglyceride (TAG) 

from glucose, and accumulate TAG in lipid vesicles within the cell, adopting the tissue’s 

extensive storage-capacity (Cinti, 2005).  
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In addition to functioning as an energy storage, the WAT also has an endocrine secretory 

function. Among the signal factors secreted is the hormone Leptin, exerting a satiety signal 

to prevent overeating. However, excess food intake can lead to a hypersecretion and a 

counterproductive effect of leptin, leading to leptin resistance, decreased satiety signaling 

and consequently obesity (Ronghua and Barouch, 2007). Furthermore, obesity increases the 

secretion of pro–inflammatory cytokines from the adipose tissue, and causes an 

inflammatory state that can participate in development of several obesity – related 

challenges such as an impaired glucose homeostasis (Trayhurn and Beattie, 2001).  

1.2.2 Brown adipose tissue  

Localization and function  

The brown adipocytes consist of many mitochondria and contain a considerable amount of 

lipid droplets. The BAT is heavily innervated by nerves and blood vessels, compared to WAT 

(Cinti, 2005). One of the hallmarks of BAT is the expression of the uncoupling protein 1 

(UCP1) (Townsend and Tseng, 2012), representing 10 % of all the inner mitochondrial 

membrane proteins (Kozak and Anunciado-Koza, 2008). Its role is to uncouple protons from 

oxidative phosphorylation and adenosine triphosphate (ATP)-production, orchestrating the 

dissipation of energy as heat (Townsend and Tseng, 2012). This phenomenon is referred to 

as non–shivering thermogenesis. The brown adipocytes express the specific adrenergic 

receptor β3 (β3–AR) and their function rely on norepinephrine (NE) stimulation via the 

sympathetic nervous system (Cinti, 2005). During cold exposure, NE from the posterior 

pituitary gland will bind to G-protein coupled receptors in BAT, and lipolysis is stimulated 

after a cascade of reactions involving Cyclic adenosine monophosphate (cAMP)-activated 

protein kinase. Free fatty acids (FFAs) from this reaction stimulate formation of new 

mitochondria in the brown adipocyte. The FFAs are subjected to β-oxidation, and the 

protons in the respiratory chain and formation of ATP is uncoupled by UCP1, and heat is 

dissipated (Roman et al., 2015).  

BAT serves as a regulator of body temperature in infants and small mammals, and for years 

it was assumed not to be present or have any significant effects in the adult the human body 

(Townsend and Tseng, 2012). However, the presence of a metabolically active BAT has been 

located in the shoulder and thoracic spine area of adult humans. With the use of a positron 

emission tomography (PET), an increased uptake of 18F fluorodeoxyglucose (FDG) was 
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observed in areas believed to contain BAT. Increased uptake of this FDG marker indicates the 

amount of tissue uptake of glucose. Because this uptake increase with cold–exposure and 

treatment with β–adrenergic blockers, it can be associated with increased amounts of BAT 

(Saito et al., 2009).  

Browning of white adipocytes 

Cold-exposure has proven to be the most efficient way to activate BAT in humans (Roman et 

al., 2015). In addition, supporting studies performed with mice show that cold-exposure and 

the following β3 adrenergic (β3-AR) activation can generate a recruitment of UCP1-

containing adipocytes in the classical WAT. When brown adipocytes are identified in areas 

predominant with WAT, this is referred to as “browning of white adipocytes”, beige or 

“brite” (brown in white) adipocytes (Barbatelli et al., 2010, Cousin et al., 1992). The beige 

adipocytes contain fewer mitochondria than the classical brown adipocytes, yet more than 

the white does. Classical brown and white adipocytes are believed to arise from different cell 

lineages. The cell progenitors expressing Myf5 have shown be committed brown adipocyte 

precursors (Fu et al., 2014), although some suggest that Myf5 positive precursors also 

differentiate into a type of white adipocytes (Sanchez-Gurmaches et al., 2012). Furthermore, 

the literature proposes two ways in which the formation of beige adipocytes in WAT is 

accomplished, illustrated in fig 1.1. The beige adipocytes are either transdifferentiated from 

existing white adipocytes (Cinti, 2009) or recruited by differentiation from white precursor 

cells (Wang et al., 2013). Both pathways are thought to be initiated upon β3-AR stimulation 

or cold exposure. As the literature describe the process of browning in detail, less attention 

is given to the mechanisms causing whitening of BAT, seen in an obese state. Whitening can 

occur during a positive energy balance with accumulation of white mononuclear cells in the 

BAT (Bachman et al., 2002).  
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Figure 1.1: Developmental basis for brown, white and beige adipocytes. Embryonic cells and mesenchymal stem 

cells can differentiate into adipocyte precursors. The precursor expressing Myf5 give rise to brown and possibly 

also white precursors. The brown - like adipocyte may be recruited from white precursors upon stimulation of a 

B-adrenergic agonist, or transdifferentiate from mature white cells. Warm- and cold exposure affect this 

transformation of white to beige adipocytes, and conversely (Fu et al., 2014). 

1.3 Insulin sensitivity and glucose tolerance  

Decreased insulin sensitivity is a common complication to obesity. Insulin is a powerful 

anabolic hormone, and after a carbohydrate rich meal it allows glucose flow over cell 

membranes and stimulates energy storage in the adipose tissues (Dimitriadis et al., 2011). 

After long-term excessive intake of a diet rich in sugar, peripheral tissues such as muscles 

and adipose tissue develop a reduced response to insulin; a condition is known as peripheral 

insulin resistance (IR). Insulin loses its effectiveness, and consequently, less glucose is taken 

up via the glucose transporters (GLUTs) into the muscles and adipose tissues, causing an 

elevation of blood glucose. As an attempt to decrease blood glucose levels, the pancreas will 

produce more insulin, causing hyperinsulinemia, further decreasing the sensitivity to insulin 
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(Kanno et al., 2015). Furthermore, IR in the adipose tissues causes the free fatty acids (FFA) 

uptake in adipose tissue to fail, resulting in an increase of FFA in plasma.  IR in the liver, 

termed central insulin resistance, responds to the non-accessible circulating glucose with a 

decreased hepatic glycogen synthesis and an elevated gluconeogenesis, leading to further 

release of glucose into the bloodstream (de Luca and Olefsky, 2008, Dimitriadis et al., 2011). 

Insulin resistance is an important element of the metabolic syndrome, which also 

encompasses obesity, dyslipidemia and hypertension. All these conditions increase the risk 

of developing T2DM (Xu et al., 2003, de Luca and Olefsky, 2008). Because of the adipocyte 

hypertrophy that occurs in obese subjects, inflammatory pathways will be upregulated and 

pro-inflammatory cytokines circulate in higher levels (de Luca and Olefsky, 2008). In obese 

mice, detection of elevated levels of pro – inflammatory cytokines, among others the Tumor 

necrosis factor alpha (TNF-α) and Interleukin – 6 (IL-6) have been hypothesized to take part 

in the development of insulin resistance through downregulation of the insulin signaling 

pathway (Olefsky and Glass, 2010). The role of obesity in development of IR is illustrated in 

Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2:  The role of obesity in development of inflammation and insulin resistance (de Luca and Olefsky, 
2008). ER: Endoplasmatic reticulum, IR: Insulin resistance 
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An impaired glucose tolerance is closely related to insulin resistance, and is described as a 

decreased insulin-mediated glucose uptake in the tissues (Dimitriadis et al., 2011). Glucose 

intolerance is defined when blood glucose 2 hours after 75 g glucose load is < 7.8mmol/l or 

fasting blood glucose is < 6.1-6.9mmol/L (WHO, 2006). Impaired glucose tolerance, along 

with insulin resistance can be regarded as a pre–diabetic state. Diabetes occurs when 

pancreatic ß-cells fail to produce sufficient insulin, as a consequence of hyperinsulinemia 

and IR (Zou et al., 2014). According to WHO, a fasting blood glucose > 7.0 or > 11.0, 2h after 

a 75 g glucose load is a diagnostic criteria for type 2 diabetes (WHO, 2006). Prevention and 

alleviation of obesity and the metabolic syndrome is essential to improve this public health 

issue.  

1.4 Weight reduction and macronutrients  

In obese and overweight, weight loss have several beneficial effects, amongst them an 

improved insulin sensitivity and glucose tolerance (Westerterp-Plantenga et al., 2012, 

Roman et al., 2015). According to Knowler and colleagues, a low fat low calorie-diet has 

largely reduced the incidence of T2DM in a group of humans predisposed to T2DM (Knowler 

et al., 2002). A restriction of energy has furthermore reversed the metabolic syndrome in 

obese adults. A reduced body weight following a concomitant improvement of the lipid 

metabolism with lower levels of circulating low density lipoprotein (LDL), TAG and elevated 

high-density lipoproteins (HDL) was seen after 12 weeks (Heilbronn et al., 1999).  

Much effort has been put into exploring how the macronutrient composition can influence 

weight development and weight loss, and it is currently debated what kind of diet 

composition that is most applicable to achieve or maintain a healthy body weight. There are 

several suggestions to obtain this, such as low fat, low carbohydrate, high protein or a 

calorie-restricted variant.   

1.4.1 Dietary fat  

A high intake of dietary fat has been claimed to cause obesity, although the type of fat plays 

a vital role. In research, much attention has been given to the polyunsaturated (PUFA) ω-3 

fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from fish 

oil. The intake of these fatty acids is by many believed to decrease the occurrence of 

coronary heart disease, several types of cancer, along with an improved psychological health 

(Murru et al., 2013). When given diets enriched with fish oil, effective weight loss 
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(Thorsdottir et al., 2007) and improvement of lipid profile have been reported among obese 

humans (Augustine et al., 2014). There is a growing interest in the impact of dietary fatty 

acid amount and composition, and the increasing ratio between the ω–6 and the ω-3 fatty 

acids is of importance. In the Paleolithic Stone age, the ω–6:ω–3 was as low as 1:1, 

compared to the modern American diet with a 10:1 ratio of ω–6:ω–3 (Eaton and Eaton, 

2000). This ratio, and in which form the fat is presented in the diet, are thought to have 

great impact on health. Dietary EPA and DHA ingested incorporated in phospholipids (PL) are 

believed to have better bioavailability. Research suggests this can be alleviating to 

disturbances in glucose metabolism, dyslipidemia and inflammation in WAT in high fat (HF) 

fed mice. Higher levels of DHA were observed in the liver, WAT and muscle PL in mice given 

EPA and DHA as PL, compared to when fed as TAG (Rossmeisl et al., 2012). A diet high in ω-6, 

especially linoleic acid (LA) (18:2 ω-6) a common component in a typical western diet, has 

been linked to the increasing prevalence of obesity through its role in the endocannabinoid 

system (Alvheim et al., 2014). 

The endocannabinoid system 

The endocannabinoid system is under dietary influence and plays an essential role in energy 

metabolism. This system consists of the cannabinoid receptors 1 and 2 (CB1 and CB2), their 

lipid ligands endocannabinoids, and enzymes involved in the metabolism of these (Piomelli, 

2003, Boon et al., 2014). The endocannabinoids are synthetized from the fatty acids on the 

PL cell membrane, which composition is determined by the dietary intake of ω-3 and ω-6 

fatty acids. The best known ω-6–derived endocannabinoids are Anandamide (AEA) and 2-

Arachidonoylglycerol (2-AG), synthetized from PL Arachidonic acid (ARA), which precursor is 

Linoleic acid (LA) (Engeli et al., 2005). A high level of ω-6–derived endocannabinoids is 

associated with increased energy intake and obesity, and it is shown that mice given a diet 

with 8% LA, compared to 1%, increased their synthesis of 2-AG and AEA significantly. Adding 

EPA and DHA to these diets, led to a decrease in 2-AG and AEA synthesis, emphasizing the 

importance of dietary fatty acid on PL composition (Alvheim et al., 2012).  

The endocannabinoid receptor CB1 is present in the brain and other tissues such as liver and 

adipose tissue, while CB2 is predominantly located in immune cells (Engeli et al., 2005). 

Obesity increases circulating levels of AEA and 2-AG, and alters the expression of these 

receptors. Activation of the central cannabinoid receptors promotes an orexigenic stimuli 
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and consequently obesity (Lafontan et al., 2007). Furthermore, activating peripheral CB1 

receptors promote increased de novo lipid synthesis and fat storage in liver and adipose 

tissue (Osei-Hyiaman et al., 2005, Lafontan et al., 2007). On the other hand, blockage of CB1 

have shown to reduce obesity in diet-induced obese (DIO) mice and humans and may be 

important contributor in future therapeutic strategies (Boon et al., 2014).  

Low- fat diets 

As fat contains more calories per gram than the other macronutrients, the Norwegian Health 

Authorities recommends limiting dietary fat intake to < 40 E%. Furthermore, as an attempt 

to reduce the increasing obesity prevalence and to maintain good health, these guidelines 

include limitations regarding the intake of saturated and trans-fatty acids   

(Helsedirektoratet, 2014). Studies performed with DIO rodents indicate that a low-fat diet 

can promote weight loss, improve insulin and glucose metabolism, both with ad libitum 

feeding and energy restriction (ER) (Muurling et al., 2002). In obese and overweight 

individuals, reducing dietary fat to < 30 E% can induce weight loss and improve the blood 

lipid profile and visceral fat deposition when consumed ad libitum (Skov et al., 1999). The 

effects of low - fat diets are debated, where many advocate for a large quantity protein at 

the expense of carbohydrates for effective weight loss and health promotion (Johnston et 

al., 2004, Blair et al., 2014) 

1.4.2 Dietary proteins  

According to the Norwegian Health Authority recommendations, energy from dietary 

protein should range from 10 – 20 E % (Helsedirektoratet, 2014). Numerous studies have 

demonstrated that a high protein diet (> 25 E % from protein) has promoted weight loss in 

both animals and humans (Skov et al., 1999, Blair et al., 2014, Noakes et al., 2005, Johnston 

et al., 2004). Similar results have been presented in unpublished data within our research 

group, where increasing the protein:carbohydrate ratio led to improvements in weight loss 

and glucose and insulin metabolism, foremost in mice fed casein. Casein and whey are the 

constituent proteins in dairy products, possessing a slow and fast absorption rate, 

respectively (Boirie et al., 1997, Bendtsen et al., 2013). Inclusion of dairy products in the diet 

provides calcium, associated with increased fat oxidation (Zemel, 2004, Teegarden et al., 

2008). Studies that have evaluated differences between dietary protein sources, and 

observed that protein obtained from scallops (Tastesen et al., 2014a) or whey (Huang et al., 
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2008) can prevent obesity development. Improvements in weight development, glucose 

tolerance and insulin sensitivity have been reported in obese rats and humans when given a 

diet rich in fish protein (Ouellet et al., 2007, Thorsdottir et al., 2007, Lavigne et al., 2000).  

Proteins effect on satiety 

Dietary protein seems to yield a more dominant feeling of satiety than carbohydrates or fat 

(Johnston et al., 2004, Pichon et al., 2006), hence the decrease in energy intake observed in 

humans given HP diets (Skov et al., 1999, Weigle et al., 2005, Johnston et al., 2004). 

Observations has been made during animal feeding trials, where feeding low-protein diets, 

lead to an increased energy intake. This is termed the protein leverage hypothesis, where an 

increased feed intake aims to provide the animal with indispensable amino acids (Huang et 

al., 2013). Conversely, ingestion of protein at the expense of other macronutrients reduces 

energy intake compared to diets with adequate levels of protein (Bensaid et al., 2002, Pichon 

et al., 2006, Blair et al., 2014, Huang et al., 2013). The amino acid (AA) profile in the protein 

source can be of great importance, as intake of the AA tryptophan has been associated with 

increased satiety through serotonin – signaling (Uhe et al., 1992). Moreover, research 

suggests that high protein diets and the AA leucine (Leu) stimulates mammalian target of 

rapamycin (mTOR) signaling, subsequently decreasing feed intake through hypothalamic 

signaling (Cota et al., 2006). The energy sensor enzyme adenosine monophosphate-activated 

protein kinase (AMPK) in hypothalamus decreases its activity during high protein intake. This 

is associated with a lower energy intake through decreased neuropeptide Y (NPY) secretion. 

AMPK in muscle and adipose tissue is elevated when the cell is deprived of ATP, which 

initiates catabolic processes and is also thought to increase insulin sensitivity (Hardie et al., 

2012, Ruderman et al., 2013). Leu is believed to interact with the activity of neural AMPK. In 

addition, leptin both suppress neural AMPK activity and increase mTOR signaling in a 

reciprocal fashion (Ropelle et al., 2008), disclosing a complex regulated neural pathway in 

which dietary proteins are possible modulators. Furthermore, a diet high in protein increase 

secretion of cholecystokinin (CCK), a gut hormone that increase satiety and decrease energy 

intake (Potier et al., 2009). 

Proteins effect on energy expenditure  

In addition to increasing satiety, dietary protein has a greater potential to increase energy 

consuming processes. Our energy expenditure involves the basal metabolic rate, the cost of 
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physical activity and the diet-induced thermogenesis (DIT), or thermic effect of foods. DIT is 

determined by the diet composition and energy requiring processes in the post-prandial 

period (Westerterp, 2004, Paddon-Jones et al., 2008). To which extent the different 

nutrients cause DIT, there is a theoretical value. For dietary fat this value is 0-3%, for 

carbohydrates 5-10% and for protein 20-30% (Westerterp-Plantenga et al., 2012, Tappy, 

1996). The body does not store AAs, so they are immediately metabolized in energy-costing 

processes such as gluconeogenesis, ureagenesis and protein synthesis. (Halton and Hu, 

2004). A study demonstrated that isocaloric meals with protein increased energy 

expenditure more than meals with carbohydrates, along with a greater thermic effect 

(Acheson et al., 2011). This means a lower energy efficiency from protein, which is favorable 

if weight loss is desired. The association between satiation and DIT is hypothesized to be 

caused by an increased oxygen consumption and increase in body temperature. The 

sensation of oxygen deprivation can be translated into a sensation of satiety by the brain 

(Westerterp-Plantenga et al., 1999).  

1.4.3 Dietary carbohydrates  

To an extent, the increased intake of refined carbohydrates and sugars and low intake of 

fibers may be factors in obesity development (Ma et al., 2011). Therefore, a popular weight 

loss plan is a diet low in carbohydrates. The idea behind the beneficial effects of this type of 

diet is that carbohydrates largely controls insulin secretion, and indirectly affects lipid 

metabolism by increasing lipogenesis. Another theory is the fact that the hunter-gatherer 

society had a diet consisting of limiting amounts of carbohydrates, and the modern 

population are evolutionally designed to eat the same way (Volek et al., 2008). 
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1.5 Introduction to the study 

In relation to the increasing rate of obesity worldwide, several measures have been adopted 

to find an applicable dietary approach to the challenge this presents. Macronutrient 

composition influence several aspects of metabolism, such as regulation of hormones, 

insulin signaling and transcription of genes (Madsen et al., 2008a). HP diets are a popular 

approach to combat obesity, and research support that HP diets can increase energy 

expenditure, decrease satiety and hepatic lipid synthesis and promote weight loss (Huang et 

al., 2013, Pichon et al., 2006). In nutritional research, casein, whey or soy are commonly 

administered as protein sources (Eller and Reimer, 2010, Lillefosse et al., 2013, Tastesen et 

al., 2014b, Petzke et al., 2005). However, the amount of studies on the weight reducing 

potential of different protein sources on obese subjects are sparse. Data obtained within our 

research group indicate that varying the protein source had differential effects, where 

casein-fed mice were protected from obesity compared to mice fed cod, soy, chicken, beef 

or pork. Low fat diets have proven effective in animal studies (Vieira et al., 2009, Muurling et 

al., 2002), and ingestion of marine protein sources have resulted in weight loss in human and 

animal studies (Thorsdottir et al., 2007, Tastesen et al., 2014b). In the current study, we 

wanted to further investigate the weight reducing potential of different dietary protein 

sources. To accomplish this, we initiated a feeding experiment where DIO C57BL/6J mice 

were given low-fat diets enriched with the protein sources casein, cod or pork.  

 

1.6 Aims of the study 

This study primarily aimed to investigate whether different protein sources could exert 

differential effects on weight reduction and body composition in diet-induced obese mice.  

o Hereunder, we wanted to explore the dietary effects on insulin sensitivity and glucose 

tolerance.  

o Moreover, we aimed to determine any differences in energy intake, to evaluate the 

satiating effects of the different protein sources. In addition, we wants to investigate if 

the different diets had the capacity to increase energy expenditure.  

o Lastly, we aimed to evaluate whether the same protein sources produced different 

results when given in an energy-restricted diet. 
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2.0 MATERIALS AND METHODS 

 

2.1 The animal model  

Sixty male C57BL/6J Bomtac mice were obtained at 8 weeks of age from Taconic Europe, 

Ejby, Denmark. Upon arrival, the mice had a mean weight of 25.79 ± 1.71 g. The C57BL/6J 

(depicted in Figure 2.1) is a preferred strain for obesity research due to its ability to become 

obese, develop adipocyte hyperplasia, insulin resistance and glucose intolerance when given 

a diet very high in fat and/or sucrose (Black et al., 1998).  

 

Figure 2.1: The C57BL/6J mice (private photo). 

2.1.1 Ethical statement 

The animal experiments were carried out in accordance with the guidelines of the 

Norwegian Animal Research Authority. The care and handling were in conformity with the 

local guidelines and procedures (NIFES, 2013b). 

2.2 The animal experiment  

2.2.1 Experimental design  

Upon arrival, the mice were fed a very high fat (VHF) diet (Ssniff, Soest, Germany) until 

obesity was induced. Thereafter, the mice were assigned into three experimental groups and 

one control group (n=10), according to average fat- and lean mass. The experimental groups 

were given low-fat diets containing either casein, cod or pork as the protein source.  

The experiment was carried out in a thermoneutal room (29 ± 0.2 °C) with controlled high 

humidity (40.2 ± 0.2 % RH) and a 12-hour light/dark cycle. The mice were housed individually 

in cages enriched with a house, nesting material, bedding and a piece of wood for chewing. 

Every other week the animals were provided with clean cages and contents, and once a 
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week the water and bottles were changed. Weights were recorded once a week using a 

Mettler Toledo weight. The mice were fed three times a week, and all the feed and feed 

remains were weighed and documented. All the animals had access to ad libitum food and 

water during the entire experiment. Using a magnetic resonance imaging (MRI) technique 

with a Minispec mq 7.5, NMR analyser (Bruker, Germany), the mice were scanned three 

times during the experiment, enabling a distinction of fat mass, lean mass and free water.  

Samples of feces were collected from a selection of the mice over a course of 7 days, both 

prior to and during the experimental feeding. Subsequent fat and protein content analyses 

were carried out, and the apparent fat- and protein digestion of the mice could be calculated 

based on feed intake during this period. The apparent digestibility (AD) was calculated with 

the following formula:  

 

 

An additional animal experiment was conducted and was intended for this thesis, but due to 

unforeseen events, the collected data could not be used. Instead, raw-data collected 

previously within our research group will be presented in this thesis: A low fat experiment 

with calorie restriction. 

2.2.2 Experimental diets  

The low-fat cod and pork feed were prepared at NIFES. The pork sirloin was obtained from 

H. Brakstad AS and the cod filet from Lerøy Seafood. The casein powder is based on casein 

sodium salt from bovine milk (Sigma - Aldrich, USA).  

Before preparing the diets, the cod and pork fillets were freeze dried, and the following 

steps were executed to finish this process: The fillets were put in a steamer at 75 °C, until 

the core temperature reached 70 °C. Thereafter the fillets were minced and stored at – 20 °C 

overnight, before being inserted into a freeze-drying machine for 72-96 hours. The dried 

blocks of fillets now produced were homogenized to powder and stored at – 20 °C in vacuum 

bags to prevent moist. Samples of the powder were selected for analyzes of nutrient 

composition and level of dryness (aiming for > 90 % dry). Upon preparing the diets, the 

powder was weighed and mixed with the other components, using a Crypto Peerless EF20 

blender (Crypto, UK). The complete feed was kept at – 20 °C before given to the mice.  
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Figure 2.2: The macronutrient distribution in the experimental diets, presented in Energy percent (E%). For 
complete diet composition, see Appendix I, Tables A.1 – 4.  

The dietary macronutrient composition is presented in Figure 2.2. The amount of protein in 

the diets and protein sources was determined by multiplying the nitrogen content with a 

conversion factor of 6.15 for the casein-diet and 5.6 for the cod and pork diets (Mariotti et 

al., 2008).  

2.3 Insulin tolerance test and glucose tolerance test  

To determine whether feeding different protein sources affected glucose tolerance and 

insulin sensitivity, an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT) 

were conducted prior to, and during, the experimental diets. The blood glucose levels were 

measured with a Contour® next USB glucose meter (Bayer, Canada). Prior to the tests, the 

mice were put in clean cages, with access to water and a house. 

2.3.1 Oral glucose tolerance test  

Before commencing the test, the mice were fasted for 6 hours. At baseline, a sample of 

blood for measuring blood glucose was collected from the tail, determining fasting blood 

glucose. Thereafter, the mice were subjected to a glucose load orally by gavage. The amount 

of glucose solution (200 mg/ml) given was calculated on the basis of the mice’s lean mass (1 

mg/g lean mass). Additional blood glucose measurements were taken after 15, 30, 60 and 

120 minutes. Blood samples were collected at 0, 15 and 30 minutes for determination of 

plasma insulin concentrations. The blood samples were centrifuged at 2500 x g for 5 minutes 

at 4 °C using a Heraeus™ Fresco 21 Centrifuge (Thermo – Scientific, USA). The plasma 

obtained was kept at - 80 °C until analysis.   
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2.3.2 Insulin tolerance test 

The mice were at a randomly fed state before the ITT. Blood glucose was measured once 

before the animals were given an intraperitoneal insulin injection, dose based on their lean 

mass (1 U/kg lean mass). Blood glucose was measured in blood from the tail at baseline, and 

after the injection at 15, 30, 45 and 60 minutes. To further explore the tissues’ sensitivity for 

insulin, a homeostasis model assessment - insulin resistance (HOMA – IR) was calculated, 

using the following formula:  

 

 

 

 

2.4 Termination and data collection 

2.4.1 Termination 

After six weeks of experimental feeding, the mice were anaesthetized with Isoba® vet 

Isofluran gas (MSD Animal Health, Norway) using a Univentor 2010 Scavenger unit (Agnthos, 

Sweden) and euthanized by cardiac puncture.  

2.4.2 Blood samples   

Blood obtained from the heart was collected in a syringe, and put in a tube with Ethylene 

Diamine-Tetra-acetic Acid (EDTA) to avoid blood coagulation. The samples were then 

centrifuged at 2500 x g for 5 minutes at 4 °C to separate the plasma from the rest of the 

blood components. The plasma and the red blood cells (RBC) were stored at - 80 °C until 

further analysis. 

2.4.3 Tissue harvesting  

After termination, the liver, musculus tibialis, and several samples of adipose tissue were 

dissected out; the inguinal -, epididymal - and retroperitoneal white adipose tissue (iWAT, 

eWAt and rWAT), and interscapular brown adipose tissue (iBAT). All tissues were weighed, 

and smaller samples were put away for histology. The remaining tissues were separately 

placed in small plastic bags and snap frozen in liquid nitrogen using a freeze-clamp. The 

tissue – samples were kept on dry ice until storage at - 80°C.  
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2.5 Histological methods 

2.5.1 Fixation with paraformaldehyde and phosphate buffer  

After dissection, the tissues intended for histology were immediately put in cassettes and 

fixated in a 4 % paraformaldehyde and 0.1 M phosphate buffer (PB) solution. The fixative 

was stored at 4 °C overnight, before being washed with PB and stored at 4 °C for two days. 

The PB was prepared with 3.68 g NaH2PO4 x H2O and 16.82 g Na2HPO4 x 2 H2O dissolved in 

1000 mL double – distilled water (ddH2O). Lastly, the pH was adjusted to 7.4. 

2.5.2 Dehydration with ethanol and xylene 

A series of ethanol washes were performed to remove any water from the tissue samples. 

See Table 2.1 for time schedule. When the samples were completely dehydrated by 100 % 

ethanol, the alcohol was replaced with xylene, as xylene is soluble in both ethanol and 

paraffin (Cinti et al., 2001). 

Table 2.1: Time schedule for dehydration of tissues. 

Dehydration program    

Reagent Time (min) 

75% EtOH 45 

95% EtOH 45 x 2 

100% EtOH 45 x 2  

Xylene 45 x 2  

Paraffin 15 x 2 

 

2.5.3 Paraffin infiltration and embedding  

After dehydration, the cassettes containing the tissue-samples were emerged in baths with 

liquid paraffin (59 °C) (Histowax, Histolab products AB, Sweden) and stored overnight in a 

ventilation cabinet. The next morning, the cassettes were relocated and kept in a new 

paraffin bath for 30 minutes, to remove remaining xylene. The tissues were embedded in 

paraffin using an EC 350 tissue embedding center (Thermo Scientific, Germany). The tissue 

samples were then placed in a mold with a very small amount of paraffin in the bottom, 

before liquid paraffin was poured into the mold, covering the tissue-sample. The moulds 

were shortly stored at - 20 °C degrees until the samples could be effortlessly removed, and 

stored at 4 °C awaiting sectioning.  
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2.5.4 Sectioning and staining 

A microtome (Leica RM2165, Germany) was used for the sectioning of the tissue samples. 

After cutting 3 µm sections of the adipose tissue, the slices were quickly put in a heated bath 

(60-70 °C) of ddH2O and 0.5 dL methanol placed on a slide warmer 85 at (ADAMAS 

instrumenten bv, Netherlands). This made the sections stretch, before they were extracted 

from the bath onto a microscope slide. The slides were left to dry for a couple of days before 

commencing the staining. The staff at the Molecular Imaging Center (MIC) at Haukeland 

University Hospital were most helpful to section some of the samples.  

To be able to visualize the tissues in a microscope, the samples required staining. The 

staining was carried out with use of Hematoxylin and Eosin, one of the preeminent staining 

procedures used in histology. Hematoxylin provides the nucleus with a blue color, and the 

cytoplasma is stained pink from the eosin (Fischer et al., 2008). Before commencing, the 

slides were heated to 57 °C for 1 hour, before being rehydrated, stained and dehydrated 

according to the schedule in Appendix II, Table A.6. When having completed the staining and 

dehydration, a xylene-based glue and a glass cover was placed onto the tissues slides, and 

they were left to dry in a ventilation cabinet. For a complete list of chemicals and reagents 

used in the histological methods, see Appendix II, Table A.5 

2.5.5 Immunohistochemistry  

The principle behind immunohistochemistry is to visually detect antigens present in tissues, 

in this case UCP1 in iBAT. Firstly, the tissues were rehydrated, by xylene and a series of 

ethanol baths, following the schedule in Appendix II, Table A.8. Furthermore, the proteins 

that were to be determined were made reactive again by lowering the tissues into a citrate 

buffer and heated for 30 minutes, using a Heto OBN 18 heated bath (Heto-Holden, Denmark) 

holding 95 °C. After this, endogen peroxidase activity had to be inactivated to minimize 

background staining. This was accomplished by lowering the tissues in H2O2 in MetOH for 10 

minutes. The samples were then washed in phosphate buffered saline (PBS) and T(w)een, 

before incubating in goat serum (10 %) to further reduce non–specific background staining. 

Then the primary antibody was added to the samples prior to overnight incubation at 4 °C. It 

was crucial that the tissues did not dry, so to ensure that the liquid stayed on the desired 

tissue samples, a liquid blocker super pap-pen was used to form a hydrophobic film around 

the samples. The following day, the secondary antibody was added, following another PBS 
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wash. Then a Vectastain® Elite ABC kit was used to prepare and add the Avidin–Biotin 

Complex (ABC) mix, a marker system to amplify the signal. The next step was to wash and 

add diaminobenzidin tetrahydrochloride (DAB) to the samples, using Vector® DAB substrate 

kit. DAB will be oxidized by ABC’s peroxidase, and the antigen in the samples will acquire a 

brown color when DAB precipitates. The last step was to add hematoxylin to ensure a slight 

color to the tissue samples. The tissues were dehydrated according to the schedule in 

Appendix II, Table A.8, before mounting a glass cover on the slides to enable examination in 

a microscope. Time schedule, reagents and equipment used in the procedure are listed in 

Appendix II, Tables A.7 and A.8. ImageJ (SciJava) was used to quantify UCP1 in photos taken 

after the staining. During the procedure, sections from a cold – induction experiment was 

stained, providing a negative and positive control for our experiment. 

2.5.6 Microscopy 

The cells were examined by using an Olympus BX 51 binocular microscope. Captions of the 

cells were taken with a Nikon digital sight DS-Fi1 camera. 

2.6 Analytical methods  

2.6.1 ELISA insulin kit  

The Mouse ELISA method is based on the sandwich technique where two antibodies located 

in the wells are directed against antigenic determinants on the insulin molecules. The 

commercially available Mouse Insulin ELISA kit (DRG Instruments GmBH, Germany) was used 

for determination of insulin in mouse plasma. The enclosed reagents and the equipment 

used are listed in Appendix III, Table A.9. Before commencing the procedure, all reagents 

were allowed to reach room temperature while the plasma samples were thawed on ice. 

The enzyme conjugate 1X solution and wash buffer 1X solution were prepared according to 

the DRG Insulin (Mouse) ELISA protocol. Firstly, 10 µl of calibrators and 10 µl of each sample 

was transferred to designated wells on a 96-well microplate, along with 100 µl Enzyme 

conjugate 1X solution. The plate was then incubated for 2 hours on a Delfia® plate shaker 

(PerkinElmer, USA) at 700-900 rpm, to ensure a reaction between the insulin in the plasma 

samples and the peroxidase-conjugated anti-insulin antibodies and anti-insulin antibodies 

bound to the wells in the microplate. Then each well was washed 6 times with 700 µl wash 

buffer 1X solution using a Delfia ® platewash (PerkinElmer, USA) to ensure removal of 

unbound enzyme labeled antibodies. To detect the bound conjugate, 200 µl Substrate TMB 
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were added into each well, and the plate was incubated for 15 minutes. To stop the 

reaction, 50 µl of Stop Solution was added to each well, and the plate was put on the shaker 

for 5 seconds to properly mix the Stop solution with the samples. A VICTOR ™ X5 multilabel 

spectrophotometric plate reader (PerkinElmer, USA) was used to read optical density at 450 

and 620 nm. The results presented in absorbance could be calculated into insulin 

concentrations in the plasma samples. For more information regarding the method and kit, 

see DRG Insulin (Mouse) ELISA protocol.  

2.6.2 RNA purification with QIAzol 

The first step to be able to determine gene expression in the tissues, was to extract the ribo 

nucleic acid (RNA) from the tissue samples. All work surfaces and instruments were washed 

with RNase Zap (Sigma-Aldrich, USA) to prevent RNA degradation in the working 

environment. The frozen iBAT tissue samples were placed in a RNase free tube, and 1 ml of 

QIAzol (Qiagen, Norway) was quickly added to each sample. QUIazol is a monophase 

solution that contains phenol and guanidinium salts (NIFES, 2014). Four zirconium beads 

were added for efficient homogenization of the tissues in a Precellys 24 – machine (Bertin 

Technologies) at 6000 rpm for 3x10 seconds, with 10 seconds between the intervals. The 

samples were then incubated at room temperature (RT) for 5 minutes. Furthermore, the 

samples were centrifuged (Eppendorf centrifuge 5415 R) for 10 minutes (4 °C, 12000 x g), 

enabling the fat layer to be removed using a pipette. The homogenate was transferred to a 

clean tube and 200 µl of Chloroform was added to separate RNA from deoxyribonucleic acid 

(DNA) and proteins. The tubes were shaken forcefully for 15 seconds and incubated at RT for 

10 minutes, before 15 min. centrifugation. A clear aqueous phase containing RNA now 

developed, and was transferred to a clean tube and mixed with 500 µl Isopropanol. The 

mixture was stored at RT for 10 minutes, and at 4 °C for 10-30 minutes, during which the 

isopropanol will ensure that the RNA is separated from the water–phase. Thereafter, the 

samples were centrifuged again for 30 minutes, to separate the RNA pellet from the 

supernatant. The supernatant was carefully removed with vacuum suction (IBS Integra 

Biosciences, Vacuboy, Switzerland), and 1 ml cold 75% EtOH was added to the remaining 

pellet in order to wash it. The tubes were vortexed (Lab dancer S40, IKA) and centrifuged 

again before the supernatant was removed, and the pellet dissolved in 50 µl ddH2O.  
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The RNA concentrations were measured with a NanoDrop ND-1000 spectrophotometer 

(Savneen-Werner, Sweden). The NanoDrop accurately measures concentrations between 

260 and 280 nm, and provide A260/A280 and A260/230 ratios, indicating the degree of 

purity of the RNA samples. A desired value for the A260/280 ratio is ≥ 1.8 – 2.1. Deviations 

from these values can indicate the presence of phenol, DNA or protein in the sample. The 

A260/A230 ratio is preferably > 1.8, where a lower number may indicate salt residues or 

inhibitors in the sample (NIFES, 2014). The samples were stored at - 80 °C. For a complete list 

of chemicals and reagents used in RNA purification, see Appendix IV table A.10.   

2.6.3 RNA quality - BioAnalyzer 

Because RNA is easily degraded in the presence of RNase enzymes, the integrity is 

determined prior to measuring gene expression (Schroeder et al., 2006). At least 2 µl of 12 

selected purified RNA samples were pipetted into new Eppendorf tubes (Agilent 

Technologies, USA) for integrity testing. The RNA samples exceeding a concentration of 500 

ng/µl were diluted using RNase free water and placed on a heating plate holding 70°C 

(Grant, UK), causing denaturation.  

Using the RNA Nano 6000 kit, we were provided with a gel, dye, marker, ladder and a 

LabChip (See Appendix V, Table A.11 for complete list of reagents and equipment). The 

LabChip consisted of 16 wells, 12 for RNA samples, 1 for the ladder and 3 for a gel – dye 

mixture. The reagents were allowed to reach room temperature before the gel and the dye 

were mixed, vortexed and centrifuged for 10 minutes (RT, 13000 x g) (Eppendorf centrifuge 

5415 D). The gel-dye-mix was added to its designated wells on the LabChip, and was 

distributed into the other wells using a Chip Priming station (Agilent Technologies, USA). 

Furthermore, the marker was added to each well, along with 1 µl of  RNA sample. Before the 

chip was analyzed, 1 µl of ladder was added to its designated well, and the chip was 

vortexed for 1 minute using a Bioanalyzer Chip vortexer (IKA).  

A BioAnalyzer (2100 Agilent Technologies, USA) detects the RNA samples with laser – 

induced fluorescence, and the results can be visualized as an electropherogram, where the 

amount of fluorescence correlates with the amount of RNA. These results are quantified by 

the software, which yields a RIN value (RNA integrity number) that range from 1 to 10, 

where 10 is an indicator of an intact RNA (Schroeder et al., 2006).  In this experiment, a RIN 

>7 was recommended for running qPCR.  
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2.6.4 Reverse Transcription reaction 

Principle 

During a reverse transcription reaction (RT-reaction) complimentary DNA (cDNA) is 

synthetized from RNA (Figure 2.3). In this experiment we used Multiscribe Reverse 

Transctiptase (50U/µl) and a random primer mix in a 30 µl reaction. The RNA is reversely 

transcribed to cDNA, which is more stable then RNA (Valasek and Repa, 2005). For a 

complete list of reagents, see Appendix VI, Table A.11 

 

Figure 2.3: Reverse transcriptase creates a single stranded cDNA. DNA polymerase converts the single stranded 

cDNA into double stranded cDNA (Valasek and Repa, 2005). 

Procedure  

The RNA samples  were thawed on ice, and samples of each RNA – specimen was diluted 

with ddH2O to achieve a concentration of 50 ng/µl. A mixture for the standard curve was 

also prepared by mixing 2 µl of all the diluted RNA – samples, and prepare concentrations of 

100 ng/µl, 50ng/µl, 25 ng/µl, 12.5 ng/µl and 6.25 ng/µl in triplicates. The diluted RNA – 

samples, in duplicates, and samples for the standard curve were added to a 96-well RT plate 

(Thermo – Scientific, USA), along with RT-reaction mix (appendix VI, Table A.12). Two 

negative controls: non-amplication control (nac) and non template control (ntc) were also 

run. The well with nac did not have the enzyme multiscribe transcriptase, and the ntc had no 

RNA. The plate was covered with a lid, centrifuged for 1 minute (Eppendorf Centrifuge 5810 

R), and run on GeneAmp® PCR System 9700 (Applied Biosystems, USA) for 75 minutes, with 

the program represented in Table. 2.2. The RT plate was stored at -20 °C.  

Table 2.2: Reverse Transriptase reaction instrument setup. From 279 RT reaction method description (NIFES, 
2013a) 

Step Incubation RT RT inactivation End 

Temperature (°C) 25 48 95 4 

Time (min) 10 60 5 ∞  
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2.6.5 Quantitative polymerase chain reaction  

Principle 

A quantitative polymerase chain reaction (qPCR) was applied to enable measurement of the 

cellular gene expression in iBAT. During a qPCR, the cDNA samples are copied exponentially 

and specific nucleic acid sequences are amplified with the help of sequence specific primers 

and DNA polymerase (Figure 2.4). TATA box binding protein (TBP) was used as housekeeping 

gene, to correct for variations and errors between the different cDNA samples (Valasek and 

Repa, 2005, Arya et al., 2005). For a complete list of target genes, see appendix VII, Table 

A.14. 

 

 

 

 

 

 

 

 

Figure 2.4: The amplifications of the DNA samples in a qPCR (Valasek and Repa, 2005). 

During amplification, three steps are completed in 45 cycles.  The first is denaturation of the 

DNA double strands (95 °C), melting it into single strands. Thereafter, the primers attach to 

their specific sequences (60 °C). The third step is allowing elongation of complementary DNA 

with DNA polymerase (72 °C) (Valasek and Repa, 2005). The program for the PCR machine is 

presented in Table 2.3. While the DNA is amplified, the process makes it possible to use a 

fluorescent dye, commonly SYBRGreen, to accumulate proportionally to the amount of PCR 

products generated in each cycle. SYBRGreen is a DNA – binding dye, which has high affinity 

for the minor groove of double stranded DNA (dsDNA), and upon binding, it fluoresces 

strongly. When in presence of much dsDNA, it will emit a strong fluorescent signal and reach 

threshold early (Arya et al., 2005, Valasek and Repa, 2005).  
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Table 2.3: Time and temperature cycle program for LightCycler 480 Real Time PCR System. 

Step Pre - incubation Amplification Melting curve analysis Cooling 

Temperature (°C) 95 95 60 72 95 65 97 40 

Time 5 min 10s 10s 10s 5s 1 min 
 

10s 

Number of cycles 1 45 1 

 

Procedure  

The cDNA plate was thawed on ice while the reaction mix was prepared (see Table 2.4 for 

details), and then vortexed for 3 minutes (MixMate® Eppendorf). The SYBRGreen Master 

reagent was mixed with RNase free ddH2O and a primer pair forward and reverse. The 

volumes listed in Table 2.4 were multiplied by 115 (the number of wells + dead volume). The 

mix was aliquoted into a set of eight Eppendorf – tubes, one set per primer pair. Once the 

mix was ready, it was placed on a Biomek 3000 Laboratory Automation Workstation 

pipetting robot (Beckman Coulter, USA) along with the cDNA plate, and 2 µl of cDNA sample 

and 8 µl of master mix were transferred into each of the 384 designated wells on a 

LightCycler 480 mulitiwellplate (Roche, Norway). The new plate was covered with a 

LighCycler 480 sealing foil (Roche, Norway) and centrifuged (Eppendorf centrifuge 5810 R) 

for three minutes at 1500 x g. Lastly, it was placed in the LightCycler® 480 Real Time PCR 

System (Roche, Norway) and qPCR was performed. 

 

Table 2.4: SYBRGreen reaction mix for 10 µl reaction. 

Reagent   Volume (µl) per sample   

ddH2O 2.9 

Primer forward 0.05 

Primer reverse  0.05 

SYBRGreen Master  5 

 

To determine gene expression, the LightCycler® 480 software calculates a cycle threshold 

value (CT), which is when the fluorescence reaches threshold. This value is inversely 

proportional to the number of DNA sequences in the original template (Valasek and Repa, 

2005) and is further used in calculations to determine the gene expression. For a complete 

list of chemicals, reagents and equipment used in qPCR see Appendix VII, Table A.13.   
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2.7 Statistical analyses  

Microsoft Excel 2013 (Microsoft) was used to assemble the data into tables, and to calculate 

mean and standard error of the mean (SEM) of the raw data. Graph Pad Prism 6 was used to 

identify outliers using ROUT test (p < 0.05) and to calculate the differences between the 

experimental groups, using a one-way analysis of variance (ANOVA) with a post hocFisher 

Least significant difference (LSD) test. The normality of the data was tested with a 

D’Agostino – Pearson normality test. P values < 0.05 were considered statistically significant.  
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3.0 RESULTS 
 

3.1 Body mass development  

3.1.1 Body weight changes  

 After being fed a VHF diet for 18 weeks the C57BL/6J mice were assigned to three 

experimental groups and one control group. The experimental diets (dietary compositions 

are presented in appendix I, Table A.1) were consumed over a course of six weeks. The mice 

in the previously completed experiment with energy restriction were fed VHF for 13 weeks. 
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Figure 3.1: Body weight development on experimental diets. A,C: Body weight development presented per week 

of feeding. B,D: Body weight changes during the entire experiment. The dotted lines represents the control 

group. The results are presented as mean ± SEM. Different letters designates statistical significance between 

the groups (p<0.05), according to a one-way ANOVA with multiple comparisons of the mean of each group, with 

post hoc Fisher’s LSD test.  
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Feeding the experimental diets resulted in differences in weight-development. In the 

experiment with calorie-restriction, the casein–fed mice lost significantly more weight than 

the cod – and pork-fed mice during 5 weeks of feeding (Fig 3.1 B). This group lost a mean of 

9.6 g body weight. In the experiment where the mice had ad libitum access to feed (Fig 3.1 

D), the casein-fed mice’s weight loss was also of statistical significance compared to the cod– 

and pork-fed mice. Here, the mean weight loss was 2.9 g. 

3.1.2 Body mass composition  

Figure 3.2: MRI-scan of fat and lean mass changes after consuming the experimental diets for three weeks. A,C: 

Lean  mass change during experimental feeding B,D:  Fat mass change during experimental feeding. The dotted 

lines represent the control group. The results are presented as mean ± SEM. Different letters designates 

statistical significance between the groups (p<0.05), according to a one-way ANOVA with multiple comparisons 

of the mean of each group, with a post hoc Fisher’s LSD test.  
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During the experimental feeding, the mice were MRI scanned to determine any changes in 

body mass composition, thus the fat– and lean mass content. The scan took place at week 0, 

three weeks into the experimental period, and at week 6, the same week as termination. In 

the experiment with ER, figure 3.2 A illustrates that the cod-fed mice gained significantly 

more lean mass than the other experimental groups. The casein – fed mice lost significantly 

more fat mass compared to the cod – fed mice (Fig 3.2 B). Figure 3.2 C illustrates a significant 

increase in lean mass in the ad libitum cod - fed mice, compared to the pork-fed mice. As 

presented in Figure 3.2 D, there was a significant decrease in the fat mass in the ad libitum 

casein-fed mice, compared to the other two experimental groups. 

3.1.2 Tissue masses  

Figure 3.3: Weights of tissue-masses presented in grams. The dotted lines represent the control group. The 

results are presented as mean ± SEM. Different letters designates statistical significance between the groups 

(p<0.05), according to a one-way ANOVA with multiple comparisons of the mean of each group, with a post hoc 

Fisher’s LSD test.  

 

The different dietary protein sources led to changes in fat – deposition, but not in liver 

weights (Fig 3.3 A and D).  In the ER–experimental groups, the casein–fed mice had a 

significantly lower iWAT mass than the pork – fed mice (Fig. 3.3 B). In the ad libitum - 

experiment, giving different protein sources resulted in significant differences in weights of 

eWAT and rWAT, where the casein-fed mice had reduced fat depot weights (Fig. 3.3 C and 
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F). The iWAT weight of the casein-fed mice were significantly lower compared to the pork – 

fed mice (Fig. 3.3 E). 

3.1.3 Inguinal white adipose tissue 

To assess whether there had been any dietary effect on the adipocyte sizes, photos of 

histological sections of iBAT, iWAT and eWAT were taken.  

The captions of iWAT (Fig. 3.4) illustrates small differences between the experimental 

groups. The ad libitum casein - and cod – fed mice appear to have smaller adipocytes than 

the pork – fed mice, which also reflects on differences in the iWAT weights between casein 

and pork (Fig. 3.4 E). In the ER–experiment, there were no obvious differences in adipocyte 

size between the experimental groups, but a slightly larger phenotype in mice fed VHF 

control was observed. There is little noticeable difference between mice fed ER and ad 

libitum, except a modest reduced adipocyte size in iWAT from mice fed the ER pork diet 

compared to mice fed the ad libitum diet with pork.  

The captions of eWAT (Appendix IX, Figure A.1) show small differences between the 

experimental groups. A slightly greater degree of adipocyte hypertrophy can be seen in the 

pork – fed mice, especially compared to the the casein –fed mice, which is consistent with 

the adipose tissue weights of eWAT (Fig. 3.3 F).  
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iWAT 

  

Casein Casein (ER) 

Cod Cod (ER) 

Pork Pork (ER) 

VHF VHF 

Figure 3.4: Microscopy photos of the inguinal white adipose tissues. The photos presented are from a 

representative mouse in each experimental group. All photos are magnified 20x. 
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3.3 Glucose tolerance and insulin sensitivity  

3.3.1 Oral glucose tolerance test 

Figure 3.5: Results from the 120 min oral glucose tolerance test. A,D: Blood glucose values plotted against time 
(min). B,E: Calculated 1 hour area under the curve (AUC). C,F: Δ blood glucose (15-0). The dotted lines represent 

the control group. The results are presented as mean ± SEM. Different letters designates statistical significance 
between the groups (p<0.05), according to a one-way ANOVA with multiple comparisons of the mean of each 
group, with a post hoc Fisher’s LSD test.  

 

An OGTT was carried out in week 5 of both the experiment with ER and with ad libitum 

access to feed. Figure 3.5 A implies an improvement of glucose tolerance in the mice on an 

ER diet, compared their respective control group. Results from the group fed ad libitum 

show a less clear difference in values between the groups (Fig 3.5 D). As presented in Figures 

3.5 B and E, the calculated area under the curve (AUC) for both experiments reached 

statistical significance between the casein–fed group and the groups fed cod and pork, 

indicating a more effective glucose clearance in the group fed casein. The Δ blood glucose 

levels (0-15 min) among the experimental groups did not reach statistical significance in 

either experiments (Fig 3.5 C and F). 
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3.3.2 Plasma insulin concentrations  

During the OGTT, samples of blood were collected at baseline and at 15 and 30 minutes for 

plasma insulin analysis, and the results are presented in Figure 3.6 A and B. The same 

analysis was performed on plasma collected at termination, at a randomly fed state (Fig. 3.6 

C and D). During the OGTT, significant differences in plasma insulin concentrations only 

occurred in the ad libitum experiment. Here, the casein–fed group had a lower insulin 

concentration in plasma compared to the other experimental groups at baseline and after 15 

minutes (Fig 3.6 B). At termination, the ER casein–fed mice had significantly lower insulin 

levels compared to cod (Fig 3.6 C). In the ad libitum experiment, the mice fed casein had a 

significantly lower plasma insulin concentration at termination compared to mice fed pork 

(Fig 3.6 D).   

Figure 3.6: Plasma insulin concentrations (µg/L) A,C: during the OGTT and B,D: at termination. E,F: Δ insulin 

(15-0). The dotted lines represent the control group. The results are presented as mean ± SEM. Different letters 
designates statistical significance between the groups (p<0.05), according to a one-way ANOVA with multiple 
comparisons of the mean of each group, with a post hoc Fisher’s LSD test.  
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3.3.3 Insulin tolerance test  

An ITT was performed after 4 weeks on the experimental diets. As presented in Figure 3.7 B, 

the group fed casein reached a significantly lower AUC compared to the other groups in the 

ER - experiment. The same is observed in the ad libitum experiment (Fig 3.7 E). In addition, 

the ad libitum casein–fed mice had significantly higher decremental area under the curve 

(DAUC) compared to mice fed cod (Fig 3.7 F). A homeostatic model assessment–insulin 

resistance (HOMA – IR) was also calculated. In both experiments, the group fed casein had 

the lowest HOMA – IR, associated with improved insulin sensitivity (Fig 3.7 G and H).   

 

 

 

 

 

Figure 3.7: Results from the 60 min insulin tolerance test. A,D: Blood glucose during the test plotted against 
time. B,C: Calculated area under the curve. C,F: Calculated decremental AUC (Glucose T0 x 60) – AUC. G,H: 
Calculated HOMA – IR (mmol/L * mU/L). The dotted lines represent the control group. The results are presented 

as mean ± SEM. Different letters designates statistical significance between the groups (p<0.05), according to a 
one-way ANOVA with multiple comparisons of the mean of each group, with a post hoc Fisher’s LSD test. 
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3.4 Energy intake and metabolism   

3.4.1 Energy intake and feed efficiency  

Figure 3.8: The energy intake calculated during 3 weeks of the experiments. A,D: Accumulated MJ intake. B,D: 
Total MJ intake during 3 weeks. C,F: Feed efficiency (g/MJ). The dotted lines represent the control group. The 

results are presented as mean ± SEM. Different letters designates statistical significance between the groups 
(p<0.05), according to a one-way ANOVA with multiple comparisons of the mean of each group, with post hoc 
Fisher’s LSD test. 

The energy intake, presented in megajoules (MJ) was calculated during the first three weeks 

of the feeding experiments. Because feed intake was influenced by testing, energy intake 

documented during this period was not included in the calculations presented above (Fig. 

3.8). We observed that mice fed ad libitum cod, consumed less energy than the pork – fed 

group (Fig 3.8 E). In the ER experiment, the control group had no calorie restriction, so these 

mice naturally had a higher feed intake than the other groups (Fig. 3.8 B). As presented in 

Figure 3.8 C and F, the mice fed casein had a lower feed efficiency compared to the other 

experimental groups, in both experiments.  
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3.4.2 Expression of genes involved in regulation of energy metabolism  

Genes coding for leptin and proteins associated with energy metabolism through the 

endocannabinoid system were measured in iBAT by qPCR. As presented in Figure 3.9, 

expression of the genes  coding for the cannabinoid receptors 1 and 2 (Cnr1 and Cnr2) was 

lower in the casein–fed mice than in the pork–fed mice (Fig. 3.9 A and B). The casein–fed 

mice also presented a lower expression of N – acyl phosphatidylethanolamine phospholipase 

(Napepld) (Fig. 3.9 C). The expression of Leptin reached a higher value in the pork–fed mice 

compared to the casein–fed mice (Fig. 3.9 E). 

Figure 3.9: Relative expression of Leptin and four genes acting as markers for the endocannabinoid system: 

Cnr1, Cnr2, Napepld, and Magl. The dotted lines represent the control group. The results are presented as mean 

± SEM. Different letters designates statistical significance between the groups (p<0.05), determined by a one-

way ANOVA with multiple comparisons of the mean of each group, with a post hoc Fisher’s LSD test.  
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3.4.3 Apparent digestibility 

Samples of feces were collected and calculations were made to determine apparent 

digestibility for fat and nitrogen for the mice in each experimental group. No differences in 

digestibility for neither protein nor fat could be observed (Fig. 3.10).   
A p p a re n t d ig e s tib ility
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Figure 3.10: Calculated apparent digestibility for protein and fat, presented in %. The dotted lines represent the 

control group. The results are presented as mean ± SEM. Different letters designates statistical significance 

between the groups. Differences in digestibility (p<0.05) were determined by a one-way ANOVA with multiple 

comparisons of the mean of each group, with a post hoc Fisher’s LSD test.  
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3.4.4 Red blood cell analysis  

The fatty acid composition of the ad libitum-fed mice’s RBC was analyzed. The RBC of the 

cod–fed mice contained most ω-3 fatty acids, whereas the lowest ω-3 levels were found in 

the casein–fed mice’s red blood cells (Fig. 3.11 A). The ω-3:ω-6 ratio was also higher in the 

cod–fed mice’s blood cells compared to the other groups (Fig. 3.11 C). Furthermore, the 

cod–fed mice had a lower ω-6 content in their RBC than the other two experimental groups 

(Fig. 3.11 B). The content of ARA was lowest in the cod–fed mice, but this group had the 

highest level of LA (Fig. 3.11 E and F) in their RBC. 

 

Figure 3.11: The fatty acid content of the red blood cells, presents in mg/g sample, and the ω-6/ω-3 – ratio. The 

dotted lines represent the control group. The results are presented as mean ± SEM. Different letters designates 
statistical significance between the groups (p<0.05), determined by a one-way ANOVA with multiple 
comparisons of the mean of each group, with post a hoc Fisher’s LSD test. 
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3.5 Interscapular brown adipose tissue  

3.5.1 Adipose tissue weights 
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Figure 3.12: Weights of iBAT presented in grams. The dotted lines represent the control group. The results are 

presented as mean ± SEM. Different letters designates statistical significance between the groups (p<0.05), 

according to a one-way ANOVA with multiple comparisons of the mean of each group, with post hoc Fisher’s 

LSD test. 

The iBAT weights in the ER experiment did not differ among the experimental groups (Fig 

3.12 A). In the ad libitum experiment, the casein group had a significantly lower iBAT weight 

compared to the two other experimental groups (Fig 3.12 B). 

3.5.2 Adipocyte morphometry  

The captions of the iBAT from the different groups (Fig. 3.13) illustrate that the casein–fed 

mice in both experiments have smaller adipocytes and a greater amount of multilocular cells 

in their BAT compared to the other groups. The pictures of iBAT from mice fed cod and pork 

illustrate larger unilocular adipocytes and the tissue seem to have a greater amount of white 

components, more similar to the control groups. 

There is a clear resemblance in iBAT morphometry in mice fed ER and ad libitum. The only 

exception is a slightly higher presence of multilocular cells in the mice fed ER cod, compared 

to mice fed ad libitum cod.  
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Figure 3.13: Microscopy photos of the interscapular brown adipose tissue. The photos presented are from a 

representative mouse in each experimental group. All photos are magnified 20x. 
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3.5.3 Immunohistochemistry    

The UCP1–staining of iBAT resulted in non-significant differences between the experimental 

groups (Fig 3.14 B). A positive and negative control is presented in the same figure (Fig. 3.14 

C), where the positive control was exposed to a cold environment and have an expected high 

expression of UCP1, whereas the negative was not exposed to cold. The negative control 

present a similar result of the staining as our experimental groups.  

Figure 3.14: A: Pictures of the UCP1 – stained iBAT. B: The results of the immunohistochemistry presented as 

percentage (%) presence of stained UCP1. C: A positive and negative control. The dotted lines represent the 

control group. The results are presented as mean ± SEM. Different letters designates statistical significance 

between the groups ((p<0.05), determined by a one-way ANOVA with multiple comparisons of the mean of each 

group, with a post hoc Fisher’s LSD test. All photos are magnified 20x.  
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3.5.4 Expression of genes involved in brown adipose tissue function 

Figure 3.15 presents the expression of genes coding for proteins that relate to the BAT’s 

thermogenesis function. Feeding different protein sources affected gene expression of the 

Ucp1 gene, which was expressed highest in the casein–fed mice, compared to the other two 

experimental groups (Fig. 3.15 A). Furthermore, the Cd36 gene expression was higher in iBAT 

of the pork–fed mice compared to the cod – fed mice (Fig. 3.15 F). 

Figure 3.15: Relative expression of markers of brown adipose tissue activity: Ucp1, Dio2, CideA, Ppargc1a, 

Cox8b and Cd36. The dotted lines represent the control group. The results are presented as mean ± SEM. 
Different letters designates statistical significance between the groups (p<0.05), determined by a one-way 
ANOVA with multiple comparisons of the mean of each group, with a post hoc Fisher’s LSD test.  
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3.4.4 Expression of genes involved in redox pathways   

Figure 3.16: Relative expression of three genes in redox pathways: Gpx3, Mt1 and Fmo1. The dotted lines 

represent the control group. The results are presented as mean ± SEM. Different letters designates statistical 

significance between the groups (p<0.05), determined by a one-way ANOVA with multiple comparisons of the 

mean of each group, with a post hoc Fisher’s LSD test.  

Measuring genes involved in redox pathways in iBAT resulted in a lower expression of 

Metallothionein 1 (Mt1) in iBAT from mice fed casein compared to the cod–fed mice, with 

the highest expression of this gene (Fig. 3.16 B).  
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4.0 DISCUSSION 

Although extensive research on substituting dietary carbohydrates with protein have been 

performed, both within our group and elsewhere (Ma et al., 2011, Madsen et al., 2008b, 

Skov et al., 1999), there is limited information regarding the weight reducing effects of 

different protein sources. Unpublished data from our research group revealed that mice fed 

casein was protected against obesity development, whereas mice fed diets with protein 

derived from soy, pork, cod, beef and chicken was not. Casein has previously exhibited these 

advantageous effects, and is believed to be able to mimic the effect of a HP diet in HF fed 

mice and thus ameliorate adiposity (Lillefosse et al., 2013, Tastesen et al., 2014b). In 

addition, an increased ingestion of fish has resulted in weight loss and improved insulin 

sensitivity on several occasions (Lavigne et al., 2000, Lavigne et al., 2001, Thorsdottir et al., 

2007). Based on these previous findings, we induced obesity with a very high fat diet, and 

attempted to reduce the weight with LF, normal protein diets. Hereunder, we evaluated 

whether different protein sources could modulate the effects of the LF-diet. We 

demonstrate that the type of protein ingested is of importance, and that dietary casein 

exhibits a striking weight reducing effect compared to cod and pork, especially when ER is 

enforced. To elucidate the mechanisms in which casein induces weight loss, we investigated 

possible contributing factors in dietary fatty acid- and AA composition and gene expression.  

4.1 The dietary protein source alters body composition   

Nutritional research frequently revolve around the capability of different diets to induce 

weight loss and to correct metabolic disturbances linked to obesity. A popular dietary 

approach is to reduce the amount of dietary fat (Muurling et al., 2002, Skov et al., 1999). In 

addition, both LF and HF energy restricted diets have proven effective to induce weight loss 

(Johnston et al., 2004, Heilbronn et al., 1999, Noakes et al., 2005). This is in concordance 

with our study, where all the mice with ER reduced their weight compared to baseline. 

When given ad libitum feed access, weight loss was only induced in mice fed casein. 

Observations regarding the dietary composition of macronutrients are numerous. Research 

suggests that a HP diet promotes weight loss (Pichon et al., 2006, Blair et al., 2014), and that 

mice given a diet with a low protein:carbohydrate ratio (P:C ratio) gain heavier fat depots 

compared to a diet with a high P:C ratio. Lowering the P:C ratio have also caused a 
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simultaneous increase in energy intake to compensate for an unsatisfying dietary protein 

content (Huang et al., 2013). The dietary protein amount seem to influence weight reduction 

considerably, because compared to ours, a diet with somewhat less carbohydrates and more 

protein successfully induced weight loss in mice (Muurling et al., 2002). We can argue 

whether the dietary P:C ratio could account for the modest weight reduction in the mice fed 

ad libitum cod and pork, and if small adjustments in dietary composition might have given 

different results. However, a successful decrease in body weight was obtained in all mice fed 

ER, suggesting that the low amount of dietary fat has less impact than restriction of energy.  

Further observations of the development of body composition revealed a decreased fat 

mass in all the LF-fed groups. Mice fed casein had the greatest decrease, consistent with the 

differences observed in adipose tissue weights and to some extent histologic appearance of 

the adipose tissue. Furthermore, all the LF-fed groups increased their lean mass during 

experimental feeding. The ad libitum-fed mice had a lean mass increase exceeding total 

grams of body weight lost, suggesting a conversion of fat mass to lean mass. The ER mice 

had a sparse lean mass increase compared to the reduction in body weight and fat mass. 

Despite equal percentage of energy from protein in both diets, the absolute protein amount 

ingested was lower in the ER experiment, so a decreased muscle protein synthesis could be 

expected. Interestingly, the ER experiment’s control group had ad libitum access to feed, but 

still gained less lean mass and more fat mass than the experimental groups. This could 

indicate that lowering the dietary fat content has a favorable effect on lean mass 

development and fat mass loss.  

Within the experimental groups, we made an interesting discovery; the mice fed ad libitum 

cod gained significantly more lean mass than mice fed ad libitum pork. Furthermore, the ER 

cod-fed mice gained more lean mass compared to both experimental ER groups. Giving 

attention to this phenomenon, we see that administrating fish protein supplementation to 

obese humans, resulted in a small increase in muscle mass after four weeks (Vikoren et al., 

2013), and heavier muscle weights in rats (Kawabata et al., 2015). Furthermore, giving fish 

oil supplements have resulted in increased muscle mass and prevented further weight loss in 

cancer patients (Murphy et al., 2011). Although we could not establish that the ingestion of 

fish protein induced weight loss compared to ingestion of casein, fish protein seems to 

benefit the preservation or gain of lean mass. 
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The AA composition of the diet may provide more insight to why casein was the only protein 

source to induce weight–and fat mass loss in the mice fed ad libitum. Previous studies from 

our research group indicate that dietary AAs reflect plasma AA profile, and assuming the 

same can be applied here, we can explore the possible effects of dietary AA composition. 

The casein diet contains more of the branched chain amino acid (BCAA) Leu than the cod 

and pork diets (Appendix I, Table A.3 and A.4). The impact of Leu has been vigorously 

debated, and Leu is believed to alter several metabolic pathways that can influence or be 

influenced by weight development (Layman and Walker, 2006). Mice given a HF diet with 

Leu-supplemented drinking water lost body weight and fat mass compared to the control 

group (Zhang et al., 2007). Supporting studies confirm these findings, and indicate that Leu 

can mimic the effects of a HP diet, yet not entirely replace it (Freudenberg et al., 2012).  

We have demonstrated that inducing weight loss with a low-fat normal protein diet is best 

achieved with ER, and that feeding casein as the protein source have greater impact on 

weight loss than feeding protein from cod or pork.  

4.2 The dietary protein source affects glucose and insulin metabolism 

As a reduced glucose tolerance is related to the degree of adiposity, we observed that the 

development of body composition could readily be associated with results from the OGTT. 

According to calculations of glucose AUC, the casein–fed mice had a significantly better 

glucose clearance after sustaining a glucose load orally, compared to mice fed cod or pork. 

We saw this in direct relation to insulin concentrations in plasma, where mice fed ad libitum 

casein had lower fasting insulin concentrations compared to the mice fed cod. Moreover, at 

glucose peak, the casein–fed mice had lower insulin concentrations compared to both pork– 

and cod–fed mice, indicating a better tissue response to insulin. A study in humans 

predisposed to T2DM show that a lifestyle change effectively decreases the incidence of 

T2DM compared to using an anti–diabetic drug (Knowler et al., 2002). Our data confirm that 

improvements in glucose homeostasis relates to the weight reduction. However, we can 

speculate whether the casein–fed mice’s more efficient blood glucose clearance is indirectly 

due to lower adiposity, or directly due to dietary composition. In relation to this, we have 

considered that various metabolic systems respond differently to BCAAs, especially Leu. Leu 

supplements are believed to efficiently improve glucose tolerance by stimulating insulin 

secretion and consequently glucose uptake via the mTOR signaling pathway (Devkota and 
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Layman, 2010, Yang et al., 2010, Macotela et al., 2011). Studies show that to give humans a 

mix of glucose and Leu resulted in increased insulin secretion and glucose clearance 

(Kalogeropoulo et al., 2008), suggesting that Leu is a potent stimulator of insulin secretion, 

especially in the presence of glucose.  

Furthermore, along with a lower AUC from the ITT, the casein–fed mice in our experiment 

presented with a lower HOMA–IR index, indicating an improved insulin sensitivity compared 

to mice fed cod and pork. This is in agreement with a publication where casein is compared 

to chicken (Tastesen et al., 2014b). With regards to this, studies associate Leu intake with 

improved insulin sensitivity through the mTOR signaling pathway (Macotela et al., 2011, 

Zhang et al., 2007), and that Leu augments the insulin–mediated glucose uptake (Eller et al., 

2013). The mTOR pathway’s role in development of insulin sensitivity is still unresolved, and 

some claim that BCAA supplements can induce insulin resistance, possibly through excess 

insulin secretion (Newgard et al., 2009). Moreover, several studies with rodents associate 

ingestion of protein from cod with an improved insulin sensitivity and glucose tolerance 

compared to dietary casein (Lavigne et al., 2000, Lavigne et al., 2001, Tremblay et al., 2003, 

Tastesen et al., 2014b) and in humans, compared to ingestion of a mix of different proteins 

(Ouellet et al., 2007). Nonetheless, we did not observe these effects using LF-fed mice as our 

experimental model.  

Being two separate studies, the two experiments described in this thesis are not statistically 

comparable. We observe that both ER and ad libitum casein-fed mice had an improved 

insulin sensitivity and glucose tolerance. However, the group fed ad libitum casein presented 

with an increased DAUC compared to mice fed cod, while no significant differences in DAUC 

occurred between the ER groups. All the ER mice lost weight during LF-feeding, but casein 

was the only dietary protein source to induce weight loss when given ad libitum. These 

findings emphasize the powerful effect weight reduction exerts on glucose homeostasis. 

The results herein indicate that feeding a LF-diet with casein as protein source influences 

blood glucose regulations in a positive manner, compared to diets with cod and pork. This is 

possibly influenced by the amount of dietary Leu, although research in this area presents 

conflicting results. Further research is necessary to elucidate the mechanisms regarding 

dietary protein source and AA composition. 



46 
 

4.3 The dietary protein source affects energy intake 

Both animal and human studies present results promoting a HP diet as a satiating agent, and 

thus a strategy to reduce energy intake (Pichon et al., 2006, Huang et al., 2013). In our study, 

the mice fed cod had an inferior energy intake compared to the mice fed pork. We have seen 

the same tendency in unpublished data within our research group, with a lower energy 

intake amongst cod–fed mice compared to mice fed casein. Borzoei and colleagues observed 

that humans given fish for lunch, reported a higher feeling of satiety and consumed less 

calories during their next meal, compared to a group given beef for lunch (Borzoei et al., 

2006). The satiating effect of fish is further supported by Uhe and colleagues, who argue 

whether the elevated plasma Trp:LNAA (Tryptophan:large neutral amino acids) ratio 

observed after fish ingestion, could be connected to satiety signaling by serotonin via the 

hypothalamus (Uhe et al., 1992). The brain requires Trp to synthesize serotonin, and an 

increased Trp:LNAA ratio can promote this synthesis (Geeraerts et al., 2011). Since the 

amount of Trp in the cod diet exceeded the diet with casein, but not the pork diet, feed 

intake in the cod–fed group could be related to these signaling pathways. However, plasma 

analyses of Trp:LNAA or serotonin would further elucidate these possible effect of Trp.  

The variations we observed in energy intake could also relate to the dietary fatty acid 

composition and the influence of the endocannabinoid system. Alvheim and colleagues 

confirmed that a high amount of dietary LA increases PL–ARA and circulating AEA and 2-AG 

(Alvheim et al., 2012, Alvheim et al., 2014). However, fish intake, especially ω-3 PUFA in the 

form of PL seem to reduce formation of AEA and 2–AG (Rossmeisl et al., 2012), potentially 

suppressing energy intake. The cod diet in our experiment contained more LA than the other 

diets, which reflects the amount of LA in the cod–fed mice’s RBC. However, the amount of 

ARA in RBC was significantly lower in the cod – fed mice, compared to the other 

experimental groups. This could be associated with a decreased endocannabinoid 

production and energy intake. Nevertheless, relative expression of the cannabinoid 

receptors Cnr1 and Cnr2 was decreased, but did not reach statistical significance in iBAT 

from the mice fed cod compared to the mice fed pork. The expression of Napepld, one of the 

enzymes that participates in the formation of AEA (Okamoto et al., 2007), was also 

intermediate in cod-fed mice, compared to mice fed casein and pork. We can discuss 

whether the differences in RBC-composition and gene expression in the cod–fed mice would 
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have been more pronounced with a higher dietary fat content. As the measurements of 

endocannabinoids in plasma were not finalized before this thesis was completed, we can 

only speculate whether the cod–fed mice had a lower level of circulating endocannabinoids 

in plasma. 

Furthermore, the expression of Cnr1 and Cnr2 was significantly elevated in the pork–fed 

mice compared to the mice fed casein. This can be seen in relation to the pork–fed mice’s 

heavier body weight, as elevated circulating endocannabinoids are seen in obese, along with 

elevation of CB1 expression and promotion of fatty acid synthesis and storage (Osei-

Hyiaman et al., 2005, Lafontan et al., 2007). Several studies show that giving obese mice a 

CB1 antagonist promotes weight reduction, and this may be an important future contributor 

in the treatment of obesity (Trillou et al., 2003, Bajzer et al., 2011, Jbilo et al., 2005). In 

addition, compared to the casein–fed mice, the pork–fed mice had a higher expression of 

Napepld, which could help explain their increased feed intake compared to mice fed cod.  

Although a decreased endocannabinoid action can cause a decline in energy intake, this did 

not occur in the mice fed casein, and does not explain why this diet provoked the greatest 

weight loss. However, the casein–fed mice’s low expression of Cnr1 and Cnr2 could be 

associated with their lower body weight compared to mice fed cod or pork (Engeli et al., 

2005). Furthermore, we know that obesity can cause leptin secretion to exceed physiological 

ranges, decreasing leptin sensitivity and causing an impaired satiety signaling (Ren, 2004). 

Although circulating leptin was not measured, explaining the increased Leptin expression in 

pork-fed mice with their higher adiposity remains a possible factor. However, it is reasonable 

to think that the increased Leptin expression in the iBAT of pork-fed mice compared to iBAT 

of mice fed casein, is caused by the amount of white adipocytes present in the iBAT, as leptin 

is predominantly secreted from WAT (Cinti et al., 1997).  

4.4 The dietary protein source affects energy expenditure   

We observed that giving mice different protein sources has an impact on the appearance of 

the iBAT. These findings are in concordance with unpublished studies from our research 

group are in, in which it is clearly visible that the iBAT morphometry in mice fed casein differ 

from the iBAT from mice fed cod or pork. We observe smaller adipocytes and a higher 

degree of multilocular cells in representative pictures of iBAT from the mice fed casein. The 

sections of iBAT from cod-and pork-fed mice show a closer resemblance to WAT, along with 
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heavier fat depots and body weight. In addition, a significantly lower iBAT weight was 

observed in the casein–fed mice, compared to the cod and pork–fed mice. The differences in 

tissue weights could be related to the total reduction in body- and fat mass weight of the 

casein-fed mice, but also indicate a higher conservancy of the brown component in their 

iBAT.  

In addition to visible changes in iBAT from mice fed casein, we observed significant 

elevations in the relative expression of Ucp1, compared to cod– and pork–fed mice. When 

feeding a HP diet, an increased gene expression of genes involved in thermogenesis 

regulation of BAT, Ucp1, Dio2 and Ppargc1a have been reported (Huang et al., 2013, Petzke 

et al., 2005). We observe that still with an adequate protein intake, iBAT from the mice fed 

casein had an elevated Ucp1 expression accompanied by a reduced body weight. Thus, it is 

possible that casein hold properties that could increase the thermogenesis in the BAT in a 

similar fashion to HP diets.  

To further evaluate the thermogenic effects of different protein sources on the iBAT, we 

performed an immunohistochemical staining for UCP1. According to the quantification of 

these results, the dietary protein source did not cause significant differences in the 

occurrence of UCP1. Comparing these images to the histological appearance of a cold– 

exposed positive control, clearly confirms lower amounts of UCP1 in iBAT from the mice in 

our experiment, indicating a less metabolically active iBAT. Unlike qPCR, which only supply 

information about gene expression at mRNA level, UCP1 – staining identifies the presence of 

the protein, thus the thermogenic capacity of iBAT in mice fed different protein sources. On 

the occasion that the presence of UCP1 in iBAT is not exceeded in the casein–fed mice, we 

can speculate whether an increased energy expenditure could originate from other tissues. 

Although the mechanisms in which this is accomplished is still debated, WAT can undergo a 

“browning” and take on similar properties to BAT (Fu et al., 2014). An increased 

glucagon:insulin ratio can increase intracellular cAMP activity, which has an ability to induce 

UCP1 action in WAT (Madsen et al., 2010). Since the mice fed casein had lower insulin levels 

in both a fed and fasting state, we can speculate whether this contributes to a higher energy 

expenditure.  

On the other hand, obesity can lead to a “whitening” of the BAT with accumulation of lipid 

droplets. This is possibly due to a decreased vascular innervation and hypoxia, and causes 
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dysfunctionality of important BAT functions (Shimizu et al., 2014). This may have occurred in 

the iBAT from mice fed pork or cod, as we can see a characteristic change in the histological 

images of their iBAT compared to iBAT from the mice fed casein. In relation to this, we 

observed unexpected levels of expression of two genes that normally are indicators of an 

increased thermogenesis. We found a decreased Cd36 expression in iBAT from mice fed cod 

compared to mice fed pork. Elevated levels of CD36 has been associated with an increased 

thermogenesis in BAT, as it promotes FA uptake into the adipose tissues (Boon et al., 2014, 

Goldberg et al., 2009). A study demonstrates that BAT lacking CD36 have increased 

whitening (Anderson et al., 2015), a possible explanation to the Cd36 levels found in iBAT 

from mice fed cod. Furthermore, an increased Mt1 expression in BAT has been associated 

with an increased thermogenesis (Jbilo et al., 2005) and it has a preventative effect on 

oxidative stress during increased FA oxidation (Beattie et al., 2000). Interestingly, we 

observed an elevated expression of Mt1 in iBAT from cod-fed mice compared to mice fed 

casein, despite any clear indication of an increased thermogenesis. Since Mt1 has been 

detected in WAT, we could speculate whether also these findings could be associated with 

an increased whitening of the brown adipose tissue in mice fed cod (Trayhurn et al., 2000).  

In concordance with a study comparing casein to chicken (Tastesen et al., 2014b), we 

observed a lowered feed efficiency in mice fed casein, compared to cod- and pork-fed mice, 

illustrating a possible reason for the weight reduction. Although the mechanisms in this field 

of research is still not fully understood, we can discuss whether this may be induced by Leu’s 

ability to decrease AMPK in hypothalamus and increase energy expenditure via UCP1 (Lopez 

et al., 2010, Beiroa et al., 2014). In addition, antagonism of CB1 has been associated with an 

increased thermogenesis (Boon et al., 2014), allowing us to question whether despite  non– 

significant difference in UCP1 presence, low expression of CB1 may indicate increased UCP1 

function. Furthermore, a look into the dietary AA composition provides information that the 

casein–diet contains higher amounts of tyrosine (see appendix I, Tables A.2 and A.3). 

Tyrosine has been given attention regarding its potential role in energy metabolism, as it is a 

precursor to the catecholamines dopamine and norepinephrine (NE) (Daubner et al., 2011). 

A decreased NE turnover could cause a reduction thermogenesis caused by reduced β–

adrenergic stimulation of BAT. In light of these findings, mice fed casein seem to have an 

increased energy expenditure, possibly through thermogenesis via UCP1 in iBAT.  
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4.5 Experimental considerations    

The two experiments presented in this thesis were performed at separate times, and that 

precludes statistical comparison. We aimed for the two experiments to have similar start–

weights, causing a prolonged duration of VHF feeding in the ad libitum experiment. Taking 

into consideration that the ER mice were younger at termination, we can argue whether this 

could affect the results. For instance, a reduction of Ucp1 expression is seen with increasing 

age in rats (Iritani et al., 2002). In addition, there were noticeable variations between the 

control groups in both experiments during the OGTT and ITT (see appendix IX, Figure A.1), 

altering the impression of improvement in glucose homeostasis in the respective LF groups.  

Also worth noticing is the use of casein as protein source. Casein is naturally found in dairy 

protein such as cheese. However, in this study, the casein diet is prepared with casein 

powder, whereas the cod–and pork diets are produced from fillets. Comparing protein from 

an intact source to a protein extracted from its source may exert different effects. 

4.6 The animal model and relevance to humans   

Due to its genetic and metabolic similarities to humans, the C57BL/6J strain is a widely used 

animal model in medical and nutritional research. This strain’s ability to develop DIO, 

hyperglycemia and hyperinsulinemia makes it an ideal model in which to study the weight 

reducing effects of different diets (Black et al., 1998). 

An important aspect of animal research is the controlled environment, with feed intake, 

activity and temperatures being closely monitored. In addition, the C57BL/6J is an inbred 

strain with less genetic variations than a human population. These factors prevent direct 

transferability to a human life and consumption.  Furthermore, a diverse human diet will 

never solely consist of one food group. Nonetheless, these factors also contribute to very 

accurate results. Monitored feed intake allows the effects observed when feeding different 

diets to be regarded as diet-induced. The mice in our experiments are kept in a 

thermoneutral environment, because when exposed to lower temperatures (18 – 22 °C)  the 

mice will increase their metabolism to keep the body temperature at a satisfactory level, and 

as a consequence, obesity is not as easily induced (Feldmann et al., 2009). The 

thermoneutral surroundings help increase the relevance to humans, as a modern society 

provides with clothes and a tempered indoor environment. 
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Studies with a rat model have provided results indicating improvements in weight 

development and glucose homeostasis with an increased fish intake (Pilon et al., 2011, 

Lavigne et al., 2000, Lavigne et al., 2001), which is also confirmed in human studies 

(Thorsdottir et al., 2007, Vikoren et al., 2013). We did not obtain supporting results with 

feeding cod fillet to mice, which indicates that general observations do not apply to all 

species. It is imperative that similar research is carried out in a human model, to conclude or 

verify the results’ impact on human health. 

4.7 Future perspectives  

Observations made throughout our experiment pave the way for many interesting future 

approaches. To further investigate the effects of different protein sources on energy 

expenditure, it would be interesting to perform qPCR or an immunohistochemical staining of 

WAT. In addition, considering the considerable weight - loss in mice fed ER it would be 

interesting to measure Ucp1 levels in iBAT from this experiment.  

We can speculate whether the differences in iBAT phenotype in mice fed casein are caused 

by weight reduction, or whether the dietary protein sources differentially affects the BAT 

function, and consequently the mice are leaner. Performing an indirect calorimetry have 

shown that NE induced O2–consumption in Ucp1 (+/+) mice increased compared to Ucp1 (-/-) 

mice and that UCP1 is the only source of adaptive adrenergic induced thermogenesis 

(Feldmann et al., 2009, Golozoubova et al., 2006). It would be interesting to initiate such a 

test after feeding casein, cod and pork with caloric adjustment to clamp weight gain. Testing 

the physiological response to a diet instead of e.g. determining gene expression on mRNA 

levels could provide information whether the dietary protein source induces a difference in 

UCP1–function. 

Furthermore, it would be of importance to consider the results from ongoing analyses of 

endocannabinoids AEA and 2-AG in plasma. Lastly, considering that Leu seems to be able to 

mimic the favorable effects of HP diets, it would be interesting to compare a LF normal 

protein diet with casein to a HP diet with other protein sources. 

Lastly, it would be interesting to do a human intervention and compare the effects of giving 

diets with emphasis on different protein sources, such as dairy protein and fish protein.  
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5.0 CONCLUSION 

The current study presents several findings. Primarily, we observe that feeding diet-induced 

obese mice a low-fat diet with casein as the protein source attenuates obesity largely 

compared to diets prepared with cod–and pork fillets. The weight reducing effect is possibly 

associated with increased energy expenditure, which further can be discussed to involve 

several metabolic pathways. 

Secondly, glucose tolerance and insulin sensitivity was improved in the casein-fed mice 

compared to mice fed cod or pork.  

Moreover, there seem to be a greater satiating effect from ingestion of cod compared to 

pork. In addition, feeding cod seem to lead to an increase in lean mass, especially compared 

to feeding pork.  

A clear body weight and fat mass reduction is seen in mice fed an ER diet compared mice fed 

ad libitum. However, it is not easy to distinguish differences in adipocyte morphometry 

between the mice fed ER and ad libitum.  

Collectively, our findings together with earlier publications suggest a growing body of 

information to support that feeding casein as the dietary protein source can induce weight 

loss and prevent obesity. Further research is necessary to establish whether these findings 

have an impact on human nutrition.   
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APPENDIX 

 

Appendix I – Diets  

Table A.1: Diet compositions and analyzed nutrients in the diets (g/kg) 

Ingredients  VHF Casein Cod Pork 

Protein      

Casein g/kg  207.18 - - 

Cod g/kg  - 215.15 - 

Pork g/kg  - - 216.89 

L-cysteine g/kg  3 3 3 

Carbohydrates      

Sucrose g/kg  91.8 91.8 91.8 

Cellulose g/kg  50 50 50 

Potato starch (Dextrin) g/kg  531.4 523.86 530.02 

Dextrin from melis g/kg  1.84 1.84 1.84 

Fat       

Corn oil g/kg  69.11 68.68 60.78 

Fat from protein g/kg  0.89 1.32 9.22 

Vitamin/mineral mix       

t-Butylhydroquinone g/kg  0.01 0.01 0.01 

Min.mix: 
SDS.AIN93Gminmix 

g/kg  35 35 35 

Vit.mix: SDS. AIN93VX 
NCR95compliant 

g/kg  10 10 10 

Choline Bitartrate g/kg  2.5 2.5 2.5 

Energy percent (E%)      

Protein % 16.3 17.1 15.8 16.5 

Carbohydrates % 31.9 67.5 69.3 68.9 

Fat  % 51.8 15.4 14.8 14.6 

      

Analyzed nutrients       

Crude fat  g/kg 332.7 78.8 71.79 70.5 

Fat in protein source g/kg  4.3 6.11 42.5 

Crude protein g/kg 235.5 182 171.9 178.6 

Protein in protein source g/kg  86.87 83.66 82.99 

Cholesterol  mg/kg 158.4 30.16 841.32 474.602 

Vitamin D3 
Energy  

mg/kg 0.02 0.03 0.037  

 kJ/g 24.2 17.79 18.2 18.15 

 kcal/g 5.7 4.2 4.3 4.3 
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Table A.2: Amino acid composition of the diets (mg/g) 

Amino acid VHF Casein Cod Pork 

Histidine 6.5 4.9 3.7 6.3 
Taurine 0 0 0.8 0.1 

Serine 13.9 10.3 8.4 7.5 

Arginine 8.8 6.7 11.4 11.4 
Glycine 4.4 3.5 8.7 7.8 

Aspartic acid 17.9 13.7 20.4 19.3 
Glutamine 53.8 41.8 30.2 30.7 

Threonine 10.4 7.8 8.5 8.8 
Alanine 7.25 5.5 11.1 10.8 

Proline 26.4 20.5 6.8 7.1 

Lysine 20.7 15.3 18.3 18.5 
Tyrosine 12.2 8.6 5.5 5.3 

Methionine 7.6 6.2 6.8 6.5 
Valine 16.5 12.6 9.8 10.1 
Isoleucine 12.4 4.7 8.5 9.2 

Leucine 22.7 17.5 15.4 15.7 

Phenylalanine 12.1 9.8 7.5 7.6 
Tryptophan  2.7 2.2 2.7 4.8 

Hydroxyproline 0 0.5 0.5 0.4 

Essential aa  88.5 52.8 64.1 88.5 
Non – essential aa 165.3 121.8 118.4 165.3 
BCAA 51.6 34.8 33.7 35 
Total amount aa 253.8 174.6 182.6 253.8 

 

Table A.3: Amino acid composition of the protein sources (mg/g) 

Amino acid Casein Cod Pork 

Histidine 27.46 16.86 30.1 
Taurine 0 3.91 0.52 

Serine 54.2 40.2 36.48 

Arginine 35.02 53.51 55.8 
Glycine 18.38 39.93 37.3 

Aspartic acid 61.22 99.3 90.65 
Glutamine 204.4 146 142.9 

Threonine 40.19 39.91 42.02 
Alanine 27.13 53.4 50.71 

Proline 101.4 31.06 32.69 

Lysine 69.40 91.72 85.59 
Tyrosine 53.96 29.21 30.44 

Methionine 27.49 28.07 25.92 
Valine 64.13 45.79 45.03 
Isoleucine 47.64 39.31 41.06 

Leucine 87.59 72.07 73.60 

Phenylalanine 52.85 33.33 36.43 
Tryptophan  11.4 10.6 11.9 

Hydroxyproline 0 2.09 1.93 

Essential aa  389.3 367.2 379.2 
Non – essential aa 583.3 496.5 471.6 
BCAA 199.4 157.2 159.7 
Total amount aa 972.5 863.6 850.8 
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Table A.4: Content of lipids in neutral and phospholipids in the diets (mg/g) 

Lipid Casein  Cod Pork  

 Neutral  Phospholipid Neutral  Phospholipid Neutral  Phospholipid 

16:0 6.6 0.1 6.9 0.3 7.5 0.6 
18:0 1.3 0 1.4 0.1 1.9 0.3 

Sum SFA 8.5 0.1 8.9 0.4 10.1 1 

Sum MUFA 19.2 0.2 19.8 0.4 20.7 0.8 
Sum PUFA 36.2 0.3 38.4 0.9 33.7 1.8 

18:2 ω-6 (LA) 35.6 0.3 37 0.4 32.9 1.4 
18:3 ω-6 (GLA) 0 0 0 0 0 0 

20:4 ω-6 (ARA) 0 0 0.03 0.02 0.05 0.23 

Sum ω-6 35.6 0.3 37 0.4 33 1.6 
18:3 ω-3 0.5 0 0.5 0 0.5 0 

20:5 ω-3 (EPA) 0 0 0.2 0.1 0 0 

22:6 ω-3 (DHA) 0 0 0.4 0.4 0 0 
Sum EPA + DHA 0 0 0.6 0.6 0 0 

Sum ω-3 0.6 0 0.3 0.6 0.6 0.1 
ω-3:ω-6 ratio 0.02 0.02 0.04 1.5 0.02 0.1 

Sum identified 63.9 0.5 67.1 1.8 64.5 3.6 
Sum unidentified 0.1 0 0.1 0 0.1 0.3 
Sum fatty acids  64.1 0.53 67.2 1.8 64.6 3.9 

SFA: Saturated fatty acid, MUFA: monounsaturated fatty acid, PUFA: polyunsaturated fatty acid, LA: 
Linoleic acid, GLA: Gamma-linoleic acid, ARA: Arachidonic acid, EPA: eicosapentaenoic acid, DHA: 
docosahexaeonic acid 
 

 
 
 

Appendix II – Histological methods  

Table A.5: Chemicals and reagents used for fixation, dehydration, embedding and sectioning, 

staining of the tissues 

Product name  Supplier/catalog no.  

Formaldehyde 37 % Sigma-Aldrich/F1635 
NaH2PO4 x H2O Sigma-Aldrich 
Na2HPO4 x H2O Sigma-Aldrich 
Phosphate buffered saline  Sigma-Aldrich/107K8217 
Ethanol (100%) Kemetyl Norge/200-578-6 
ddH2O MilliQ Biocel apparatus, Lab-tec, Norway  
Methanol Sigma-Aldrich/32213 
Xylene VWR Chemicals/28975.291 
Hematolxylin Gill no. 2 Sigma-Aldrich/GHS116 
Eosin Y Sigma-Aldrich/E4382 
DPX mountant   Sigma-Aldrich/06522 
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Table A.6: Time schedule for rehydration, staining and dehydration of the tissues  

Reagents  Time (min)  

Xylene  2 x 10 
100 % EtOH 2 x 10 
95 % EtOH 2 x 5 
75 % EtOH 5 
50 % EtOH 5 
ddH2O  5 
Hematoxylin  2 
H2O wash  
Eosin  0.5 
H2O wash  
ddH2O 1 
50 % EtOH 2 
75 % EtOH 2 
95% EtOH 2 x 5 
100 % EtOH 2 x 5 
Xylene  2 x 5 

 

 

Table A.7: Chemicals and reagents used for immunohistochemistry 

Product name  Supplier/catalog no.  

100 % EtOH Kemetyl Norge/200-578-6 
Xylene VWR Chemicals/28975.291 
Phosphate buffered Saline  Sigma-Aldrich/107K8217 
Methanol  Sigma-Aldrich/32213  
Hydrogen peroxide Sigma – Aldrich/216763 

Phosphate buffer saline  Sigma-Aldrich 
Tri-Sodium citrate dihydrate  Merck/1.06448.1000 
Goat serum  Vector laboratories, USA  
Liquid blocker super pap pen  Ted Pella, inc., USA 
Primary antibody – anti UCP1 (C4/98) Prof. Jan Kopecky and Dr. Pavel Flachs  
Secondary antibody (anti rabbit IgG)   Vector laboratories, USA  
T(w)een VWR/28829.296 
VECTASTAIN® Elite ABC universal kit Vector laboratories, USA 
Vector® DAB Substrate kit Vector laboratories, USA 
Hematoxylin  Sigma-Aldrich/GHS116 
Mounting solution Entellan® New Merck , USA 
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Table A.8: Time schedule for immunohistochemistry  

Reagent   Time (min) 

Xylene  15  
100 % EtOH 5 x 2 
95 % EtOH 5 
75 % EtOH 5 
50 % EtOH 5 
ddH2O  5 x 2 
Citrate buffer (92°C) 30  
Cool down  20 
ddH2O 5 x 2  
3 % H2O2 in MetOH 10  
ddH2O 10 
PBS buffer + 0.1 % T(w)een 20 
PBS buffer 15 
Goat serum incubation 30  
Primary antibody incubation over night  
PBS buffer 15 x 2  
Secondary antibody incubation 60 
PBS buffer 15 x 2  
ABC 60 
PBS buffer 15 x 2  
DAB 5 
H2O wash 2 
Hematoxylin 1 
H2O wash 2 
95 % EtOH 20 s 
100 % EtOH 20 s 
Xylene  30 s 

 

 

Appendix III – ELISA insulin kit  

Table A.9: Reagents in and equipment used when performing Insulin Mouse ELISA kit 

Product name  Supplier  

Insulin Mouse ELISA kit  DRG Instruments GmbH, Germany  
Coated Plate   
Calibrators 1, 2, 3, 4 and 5 (5 vials)  
Calibrator 0 (1 vial)   
Enzyme Conjugate 11X (1 vial)   
Enzyme Conjugate Buffer (1 vial)   
Wash buffer 21X (1 bottle)   
Substrate TMB (1 bottle)   
Stop Solution (1 vial)   
Adhesive PCR film Thermo-Scientific, USA/ AB-0558   

 

 

 

 



65 
 

 

Appendix IV – RNA purification   

Table A.10: Chemicals and reagents used in RNA extraction  

Product name  Supplier/catalog no.  

RNase Zap Sigma-Aldrich/R2020 
Deconex 11  
QIAzol Lysis Reagent  Qiagen/5.346.994 
Chloroform  VWR Chemicals/1.02444.1000 
Isopropanol  Kemetyl Norge AS/200-661-7 
Ethanol  Kemetyl Norge AS/200-578-6 
Zirconium beads  

 

 

Appendix V – RNA quality - BioAnalyzer   

Table A.11: Chemicals and reagents used in determination of RNA quality  

Product name  Supplier/catalog no.  

BioAnalyzer 2100 Agilent Technologies, USA 
RNase Zap™ Sigma/R2020 
RNA 6000 Nano LabChip kit Agilent Technologies/5067-1511 
RNA 6000 ladder  Agilent Technologies/5065-4476 
Chip Priming Station  Agilent Technologies/5056-4401 
Bioanalyzer Chip Vortexer  IKA/3617036 

 

 

Appendix VI – Reverse Transcription reaction  

Table A.12: Chemicals and reagents used in a RT-reaction mix for a 30 µl reaction 

Product name  Supplier 

RNase free ddH2O MilliQ Biocel apparatus   
TaqMan® RT Reagents Applied Biosystems/N8080234 
10X TaqMan® RT buffer  
25 mM MgCl2  
10mM deoxyNTPs Mixture  
50 µl random hexamers   
RNase Inhibitor (20 U/µl)  
Multiscribe Reverse Transcriptase (50 U/µl)  
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Appendix VII – Real time qPCR 

Table A.13: Chemicals and reagents used in real time qPCR 

Product name  Supplier/catalog no.  

LightCycler® 480 SYBRGreen Master Roche, Norway 
Primers (see table A.10) Invitrogen Ltd, UK 

RNase free ddH2O  MilliQ Biocel apparatus   

 

 

Table A.14: List of primers used in real time qPCR 

Housekeeping gene   Sequence 5’  3’ 

β-actin 
 

Forward:  ATG GGT CAG AAG GAC TCC TAC G 
Reverse:  AGT GGT ACG ACC AGA GGC ATA C 

Calnexin Forward:  GCA GCG ACC TAT GAT TGA CAA CC 
Reverse:  GCT CCA AAC CAA TAG CAC TGA AAG G 

TBP Forward:  ACC CTT CAC CAA TGA CTC CTA TG 
Reverse:  ATG ATG ACT GCA GCA AAT CGC  

Primer  Sequence 5’  3’ 

Cd36 Forward:  AAT TAG AAC CGG GCC ACG TA 
Reverse:  CGC CAA CTC CCA GGT ACA A 

CideA Forward:  TGC TCT TCT GTA TCG CCC AGT 
Reverse:  GCC GTG TTA AGG AAT CTG CTG 

Cnr1 Forward: AAGTCGATCTTAGACGGCCTT  
Reverse: TCC TAA TTT GGA TGC CAT GTC TC 

Cnr2 Forward: ATG GCC GTG CTC TAT ATT ATC CT 
Reverse: ATG GTC ACA CTG CCG ATC TTC 

Cox8b Forward:  GAA CCA TGA AGC CAA CGA CT 
Reverse:  GCG AAG TTC ACA GTG GTT CC 

Dio2 Forward:  GCC CAG CAA ATG TAG AC 
Reverse:  TGG CAA TAA GGA GCT AGA A 

Fmo1 Forward: GCC AGT CTT TAC AAG TCT GTG G 
Reverse: TCC AGG AAT AGA GAA TTT  GGC AC 

Gpx3 Forward: CCT TTT AAG CAG TAT GCA GGC A 
Reverse: CAA GCC AAA TGG CCC AAG TT 

Leptin Forward:  ATT TCA CAC ACG CAG TCG GTA T 
Reverse:  AAG CCC AGG AAT GAA GTC CA 

Magl Forward: AGG CGA ACT CCA CAG AAT GTT 
Reverse: ACA AAA GAG GTA CTG TCC GTC T 

Mt1 Forward: AAG AGT GAG TTG GGA CAC CTT 
Reverse: CGA GAC AAT ACA ATG GCC TCC  

Napepld Forward: AGC GCC AAG CTA TCA GTA TCC 
Reverse: TCA GCC ATC TGA GCA CAT TCG 

Ppargc1α Forward:  CAT TTG ATG CAC TGA CAG ATG GA 
Reverse:  CCG TCA GGC ATG GAG GAA 

Ucp1 Forward:  AGC CGG CTT AAT GAC TGG AG 
Reverse:  TCT GTA GGC TGC CCA ATG AAC 
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Appendix XIII – Red blood cells  

Table A.15: The fatty acid composition of the red blood cells   

Fatty acid  VHF LF casein LF cod LF pork 

16:00 0.94 ± 0.03a 0.97 ± 0.04ab 1.03 ± 0.02b 1.03 ± 0.03ab 

18:00 0.45 ± 0.02a 0.33 ± 0.02bc 0.3 ± 0.01c 0.35 ± 0.01db 
Sum SFA 1.43 ± 0.05 1.33 ± 0.05 1.36 ± 0.02 0.35 ± 0.01 
Sum MUFA 0.77 ± 0.04a 0.62 ± 0.03b 0.63 ± 0.01b 0.69 ± 0.02b 
Sum PUFA 1.64 ± 0.05ab 1.61 ± 0.08a 1.69 ± 0.03ab 1.79 ± 0.06b 
18:2 ω-6 LA 0.36 ± 0.03a 0.34 ± 0.02ac 0.52 ± 0.02b 0.40 ± 0.03ac 
18:3 ω-6 GLA 0 0 0 0 
20:4 ω-6 AA 0.85 ± 0.03ab 0.86 ± 0.04b 0.51 ± 0.02c 0.94 ± 0.03ab 

Sum ω-6 1.40 ± 0.05a 1.42 ± 0.08ac 1.14 ± 0.02b 1.56 ± 0.06c 
18:3 ω-3 ALA 0 0 0 0 
20:5 ω-3 EPA 0 0 0.08 ± 0 0 
22:6 ω-3 DHA 0.22 ± 0.01a 0.19 ± 0.01b 0.44 ± 0.01c 0.22 ± 0.01a 
Sum EPA + DHA 0.22 ± 0.01a 0.19 ± 0.01b 0.52 ± 0.01c 0.22 ± 0.01a 

Sum ω-3 0.23 ± 0.01a 0.19 ± 0.01b 0.55 ± 0.01c 0.22 ± 0.01a 
ω-3:ω-6 ratio 0.17 ± 0.01a 0.14 ± 0.01bd 0.45 ± 0.01c 0.14 ± 0d 

Sum identified 3.85 ± 0.13 3.55 ± 0.16 3.68 ± 0.05 3.88 ± 0.12 
Sum unidentified 0.01 ± 0 0.01 ± 0.01 0.01 ± 0 0.02 ± 0.01 
Sum fatty acids  3.86 ± 0.13 3.56 ± 0.16 3.69 ± 0.05 3.9 ± 0.12 

 

 

Appendix IX – ITT and OGTT before diets and control groups   
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 Figure A.1: Results from ITT and OGTT before diets and control groups from both experiment. 
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Appendix X – Adipocyte size  

Figure A.2: Microscopy photos of the epididymal white adipose tissues. The photos presented are 

from a representative mouse in each experimental group. Magnified 20x  

 

Appendix XI – Musculus tibialis weights 
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Figure A.3: Weights of m. tibialis presented in grams. The dotted line represents the control group. 

No significant differences were observed between the experimental groups. 


