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Abstract

Recovering more of the available oil has been a main driver behind the extensive work

done in the field of enhanced oil recovery (EOR) over the last decades. Microbial en-

hanced oil recovery (MEOR) has been heavily researched, and is picking up pace com-

pared with other EOR methods used today. MEOR is economically attractive and has

a huge potential if applied in accordance to reservoir conditions.

This thesis considers a two-phase flow regime in homogeneous porous media, under the

influence of microbial activity. The mathematical model includes the concept of dynamic

capillary pressure, and is based on Darcy’s law, the principle of mass conservation and

the diffusion/dispersion-advection equation. The inclusion of the dynamic capillary

pressure makes this model classified as a so-called non-standard model. In this work

we aim to explore this, as well as the effect microbes have on flow, and ultimately oil

production.

Implementation of the mathematical model has been done in MATLAB by using a new,

fully implicit, iterative approach, to cope with the fact that the dynamic capillarity

induces an additional temporal derivative in the two-phase model. The spatial dis-

cretization has been carried out with the use of a control volume method, the TPFA,

on a cell-centered grid in one dimension. The scheme is related to the papers [1–3].

The effects of dynamic capillary pressure are shown to be small at the macroscale for

realistic oil reservoirs, while clearly visible in an extreme case which have been set up.

Regarding microbial activity we have constructed relations between concentration and

interfacial tension based on the work in [4–8]. This is done to model the effect of

reduced fluid-fluid tension on flow and further the oil production. It is shown that a

substantial concentration of microbes have a positive effect on the production, while

small concentrations do not differ significantly from the case of no concentration.
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Chapter 1

General Introduction

The world’s energy consumption has risen tremendously throughout the last 70 years,

mainly driven by an increase in fossil fuel use, such as oil. Recovering as much of the

available oil as possible is the reason why enhanced oil recovery has been a focus area

in both academia and industry over the last decades, and is the motivation for the topic

of this work. Microbial enhanced oil recovery is a tertiary oil recovery technique, seen

as economically attractive and environmentally friendly, aiming to increase lifetime of

mature reservoirs.

In this thesis we seek to model flow in porous media, more specifically the flow of oil and

water within an oil reservoir. The flow in such an underground petroleum reservoir is

a very complex phenomena, and can only be solved analytically when making extensive

simplifications, thus resulting in erroneous descriptions of the physical model and there-

fore invalid solutions for many fluid flow problems. This has led to the extensive use

of mathematical models, numerical methods and simulation software in the petroleum

industry, providing better correlation between the physical model, the mathematical

model and the numerical model.

We seek to explore the effect of adding microbes to an oil reservoir to enhance the recov-

ery, the so-called MEOR - microbial enhanced oil recovery. This is done by modelling a

one dimensional reservoir consisting of two phases, the oil- and water-phase, where flow

is governed by the Darcy law and mass conservation for each phase. The flow is described

by a standard two-phase model, where the phases are assumed incompressible and im-

miscible. The fate of the microbes is modelled by the advective-dispersive/diffusive

1



Chapter 1. General Introduction 2

transport equation. In addition, the flow model considers dynamic capillary effects,

which will be explored in detail through several numerical examples.

This work is interesting and innovative due to

� The standard IMPES method has been improved to account for dynamic capillar-

ity, by an iterative, fully implicit, approach on the two-phase flow model.

� We have proposed new parameterizations for the link between microbial effects

and interfacial tension.

� The model explores the coupled effect of MEOR and dynamic capillary pressure.

The outline of the thesis is set up as following:

Chapter 2 gives the reader an overview of the concepts and properties of porous media,

and the most important flow-governing equations. Further, it includes an introduction

to the MEOR method, in addition to a brief introduction to other enhanced oil recovery

methods.

Chapter 3 derives the mathematical model of interest, with a starting point at Darcy’s

law, the concept of mass conservation and the advection-diffusion/dispersion equation.

Additionally, theory on the concept of capillary pressure and dynamic capillarity is

introduced. At the end, the full mathematical model of our interest is summarized and

presented.

Chapter 4 is devoted to numerical methods, and gives an overview of the discretiza-

tion of the model and the gridding of our domain. In addition to the TPFA, it also

describes how we handle boundary conditions and which methods of approximation are

used for integrals, derivatives and physical parameters, such as the matrix- and relative

permeabilities.

Chapter 5 includes new parameterizations, based on [4–8], describing the dependence

on microbial activity for interfacial tension, capillary pressure, relative permeabilities

and residual oil saturation. Further we explore the effect of MEOR and dynamic capillary

pressure, and include sensitivity analysis of key parameters. Convergence of the new

scheme is investigated numerically.

Chapter 6 discusses our findings, offers a conclusion and outlines suggestions for further

work.



Chapter 2

Flow in Porous Media and

Microbial Enhanced Oil Recovery

This chapter is devoted to giving the reader a brief overview of the physical concepts

that forms our mathematical understanding and modelling of the flow in porous media,

along with a theoretical background for Microbial Enhanced Oil Recovery (MEOR).

Examples of porous materials are to be found everywhere around us, such as biological

tissue as skin, bones and wood, and the tarmac on roads and runways. However, in the

following, we will use a typical oil reservoir-setup, with sedimentary rocks as the porous

medium.

2.1 Flow in Porous Media

A porous medium is a material consisting of pores or void space, as well as a solid part,

often referred to as the skeleton or the matrix of the medium. Porous media that are of

our interest contains interconnected pores, which allows fluid to move continuously. In

the study of oil reservoirs it is of great importance to be able to mathematically model

the flow through the porous medium. This is necessary in order to give predictions

about production, mobility, pressure, temperature and more, inside the reservoir. For

us to be able to model the medium, it is required to understand that it is not possible

to model the reservoir at a micro-scale. Thus we introduce a commonly used spatial

averaging procedure, the Representative Elementary Volum (REV) approach [10].

3



Chapter 2. Flow in Porous Media and MEOR 4

The REV-method gives us the possibility to provide a certain bounded volume of space,

which is used for averaging the physical properties of the medium. The value at a single

mathematical point of the parameter, like e.g. porosity or permeability, is defined as the

value of this parameter in a REV of porous medium surrounding this point. The size

of the REV is, in short, defined by being sufficiently large to contain a representative

number of pores, while at the same time being small enough to preserve local proper-

ties [10]. The optimal size also depends heavily on the type of medium, and depends on

the level of heterogeneity [11].

2.1.1 Physical properties

A natural property used to describe the porous medium is its porosity, φ. The porosity

is intuitively defined as the volume of void space over the total volume of the REV,

and is therefore a dimensionless property between 0 and 1. For carbonate reservoirs the

porosity usually lies in the range between 0.05 and 0.20, depending on the depth [12].

Another common property of the medium is the absolute permeability, k. The perme-

ability is a property describing the fluids ability to flow within the medium, the flow

conductivity. Permeability has the dimension of area [L2], and can be modelled as both

a tensor accounting for heterogeneousness and anisotropic behavior, or at the other ex-

treme as a constant. As the dimension of k is area, the SI-unit is m2. This thesis make

use of the more common and practical unit Darcy (≈ 0.986 922 µm2), where we present

absolute permeability in milliDarcys, mD, throughout.

The two main properties used to describe the physics of the fluid are the viscosity, µ, and

the density, ρ. Viscosity can informally be understood as the “thickness” of the fluid, and

is of great importance to how easily the fluid flows - the higher the viscosity - the more

resistant it is to flow. The dimension of µ is [ML−1T−1]. At room temperature water

has a viscosity of approximately 1 mPa · s, while honey possesses a µ ≈ 10 000 mPa · s.

Density is defined as the fluids mass per volume, ρ = Mass of fluid
Volume of fluid , with dimension

[ML−3], hence the unit being kg/m3. In general, all fluids are compressible, due to the

density depending on e.g. pressure and temperature. However, it is customary to treat

fluids as incompressible, due to relatively small changes, letting ρ be a constant.
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2.1.2 The flow-governing equations

The two main equations describing the flow of different phases in porous media are

Darcy’s law and the mass conservation equation [13, 14]. The first is named after the

French civil engineer Henry Darcy who performed multiple experiments which lead to

a formulation of a relationship between hydraulic head and flux. This has later been

extended and formalized into Darcy’s law in its simplest formulation as

~u = −κ∇h, (2.1)

where h is the hydraulic head and κ is the hydraulic conductivity. Darcy’s law can be

formulated in different fashions, depending on which area of application it is used within,

and which variables that are relevant. For this report we make use of the relationship

between the hydraulic head and the pressure, p, as h = p
ρg+z. In addition, we express the

hydraulic conductivity, κ, in terms of permeability, density, gravitational acceleration

and viscosity, to formulate

~u = −k

µ
∇(p− ρ~g). (2.2)

Gravitational acceleration is a physical constant, while in the equation above, Equa-

tion (2.2), g is included through the gravitational acceleration vector ~g = −g · ~ez, where

we have chosen positive direction against the gravitational forces. Pressure, p, is a phys-

ical property that quantize the amount of force applied perpendicular to an object or

surface, per area. The most commonly used unit for pressure is pascal, Pa, which simply

equals 1 N/m2. Thus, the dimension of pressure is [ML−1T−2].

In Equations (2.1) and (2.2) ~u is the volumetric flux of fluid, or the volume of fluid per

total area per time, resulting in dimension [LT−1] [14].

The Darcian approach is limited to Newtonian fluids in laminar flows, where the viscous

forces rule and the fluids are moving slowly along parallel streamlines.

Mass conservation/balance

Mass conservation is an intuitive physical principle that states that the total mass re-

mains unchanged. The mathematical equation describing this principle can be derived

on a closed domain Ω, see Figure 2.1.
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Ω ∂Ω

~n

F

Figure 2.1: A domain Ω with boundary ∂Ω, possible source/sink F and outward
pointing unit normal ~n.

Assume that at time t0 = 0 there is a mass mo inside the domain. Later, at a time

t > t0, there will be a total mass m = m0 + min/out + mF , inside the domain. Here,

the mass passing through the boundary and the mass entering or leaving through any

possible sinks/sources, is accounted for. If there are no sources/sinks, such an equation

will be referred to as a conservation law, while if sources/sinks are present, it is a balance

equation [14]. One can formalize this as

∂m

∂t
= −~f · ~n+ F, (2.3)

where ~f · ~n is the flux of mass through the boundary, while F is the contribution from

the sinks/sources. Integrating this over the whole domain included the boundary, and

applying the divergence theorem yields

∫
Ω

∂m

∂t
dV = −

∫
∂Ω

~f · ~ndS +

∫
Ω
FdV

∫
Ω

∂m

∂t
dV = −

∫
Ω
∇ · ~fdV +

∫
Ω
FdV, (2.4)

which holds for arbitrary domains Ω. This, combined with the fact that the integrand

is continuous, results in the differential formulation of mass balance as

∂m

∂t
+∇ · ~f = F. (2.5)

This will be exemplified through the derivation of the two-phase flow model in the next

chapter.



Chapter 2. Flow in Porous Media and MEOR 7

2.1.3 Transport equation

For later use in the thesis it is also of interest to introduce a transport equation based

on the mass conservation equation. Say one has a component C, let c = c(x, t) be the

concentration of component C. Then the balance equation

∂c

∂t
+∇ · (−~uc+~j) = Q(x, t) (2.6)

should be satisfied for all domains Ω.

The term −~uc +~j represents the total flux through the boundary ∂Ω and is combined

of advective flux, (−~uc), and diffusive-dispersive flux, (~j). Advection is the process

whereas the component is transported with the flow, while diffusion and dispersion is the

spreading of molecules from areas of high concentration to areas of lower concentration.

The term defining the diffusion-dispersion process originates from Fick’s law of diffusion.

The Q on the right hand side is now also including internal reactions, either chemical

or biological, as well as external sources or sinks [14].

The equation will be further investigated in the next chapter, where we will rewrite the

transport equation in order to model species only living in the water phase.

2.2 EOR - Enhanced Oil Recovery

Oil recovery in general consists of three phases. In the first phase, the primary phase,

one utilizes the natural pressure within the reservoir to push crude oil to the surface. The

secondary recovery phase makes use of water, and/or gas, to re-pressurize the reservoir,

with intent to drive more of the oil towards the production wells. After this phase there

is still a substantial amount of residual oil, a tertiary potential of more than 50 %, left

in the reservoir. This is where EOR methods are brought into play.

Enhanced oil recovery is a general term for all different types of effort being made to

realize the tertiary potential. Maintaining reservoir pressure is still of key importance,

while at the same time trying to change some of the properties governing the flow of oil.

This can be done in several ways, and we will only give a very short overview of some

of the techniques that are explored and used today.
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Figure 2.2: After the initial and secondary phase there is still a huge potential for oil
recovery (courtesy of Mid-Con Energy Partners).

Chemical flooding is a collective term for the techniques where one adds different

types of chemicals to the injection water. Depending on the type of process, this can

lead to a changed interfacial tension (IFT) between water and oil (typically surfactants

and alkalis), and/or make the water viscosity match the oil viscosity (polymers) [15].

Chemical flooding has been a known EOR technique since the ’60s [16], and can poten-

tially be a very effective technique. It is crucial to account for the chemical properties of

the rock and the thermal conditions in the reservoir, when developing the solvent [15].

Chemical flooding is today mostly employed in China, and contributes to approximately

one third of a million barrels of oil per day [17].

Thermal methods, often abbreviated as TEOR, introduces heat energy to the reser-

voir, and includes injection of steam, hot water and combustion [17]. It is by far the

most widely used EOR method, contributing approximately 2 million oil barrels per

day [17]. Recent big scale applied thermal methods also includes solar EOR, where solar

power is used to produce steam.

Gas injection used as an EOR technique involves the injection of natural gas, carbon

dioxide or nitrogen, and is in general an effective way to enhance the recovery. The

main idea is to use a miscible gas that reduces the IFT between water and oil, hence

improving the displacement of oil. The availability and cost of gas locally are the main

limitations of to which extent the technique is being used today.
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2.3 MEOR - Microbial Enhanced Oil Recovery

In this thesis we will focus on microbial enhanced oil recovery, which is a method where

one introduces microbes into the reservoir in order to alter fluid and/or matrix properties.

Microbes, or microorganisms, are single-celled creatures such as bacteria, fungi, viruses

and more, so small (≈ 0.5 - 5 µm) that they are only visible with the help of a microscope.

2.3.1 Implementation

Generally, three strategies exist for implementing MEOR [18–20]:

Injection of nutrients to stimulate indigenous microbes is only desirable if there

already exist microbes in the reservoir that can alter properties in a sought-after fashion.

Identification of both the microbes, the metabolites or activity they result in or perform,

and determination of the correct nutrient is necessary before one starts stimulating the

microbes [18, 21].

Injection of exogenous microbes and nutrients consists of injecting both the mi-

crobes themselves and the nutrient they feed on. The microbes must be capable of living

and breeding within given reservoir conditions. If so, this technique might be favorable

in two ways. Firstly, one has the opportunity to choose the type of microbe(s), based on

what kind of activity one wants to obtain. Secondly, this makes sure that the activity

happens quickly [18]. A critical factor of this approach is the transport ability of such

microbes in the reservoir [18].

Injection of ex situ produced products. If indigenous microorganisms are not

suitable for the desired outcome and conditions in the reservoir are too harsh for survival

of exogenous microbes, the last possibility is to add ex situ-produced products [18, 20].

Metabolites such as biopolymers and surfactants are coming from bacteria grown ex situ

on suitable nutrients, before they are introduced into the reservoir.

The first two approaches have the added difficulties of having to compete for nutri-

tion with other indigenous microorganisms, maintaining nutrition levels throughout the

reservoir and dealing with bacteria transport [21]. Thus, it is believed that the third

strategy is the simplest and most likely to succeed in field-scale operations [22], but it

also comes with the capital cost of bioreactor operations and product purification [20].
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2.3.2 Mechanisms

Metabolic products of microbes include biosurfactants, acids, solvents, gases, biopoly-

mers and enzymes, which all have different effect on the interplay between phases and

the porous medium, see Table 2.1. The ultimate goal is to enhance the recovery of crude

oil, and this can be achieved in several ways, and by several mechanisms [18–20, 23]:

Reduction of oil-water IFT, where the bond, or tension, that keeps oil and water

together is reduced or broken down, is the most promising mechanism of MEOR. This

leads to the oil having a higher probability of being mobilized.

Selective clogging/plugging is a mechanism where one add microbes with the ability

to breed, thus resulting in biomass that plug pores, reducing the number of paths for the

fluid to flow through. If one succeeds in clogging for instance the preferred “highway”

of flow, the fluids need to find new paths through the medium, with the consequence

that immobilized oil may be mobilized. Other potential mechanisms are

� Degradation of the rocks by production of acid,

� Reduction of oil viscosity which is closely linked with the reduction of IFT,

� Formation of gas that results in local pressurization.

Table 2.1: Metabolites of MEOR and their effects [23, 24]

Metabolite Effects

Acid
- Improves permeability and porosity

by degradation of the rock
- Reduction of oil viscosity by produc-

tion of CO2 when reacting with car-
bonates

Solvents
- Dissolving the oil

Biomass
- Selective/non-selective plugging
- Altering wettability
- Reduction of oil viscosity

Gases
- Pressurization of the reservoir
- Viscosity reduction

Surfactants
- Reducing IFT
- Emulsification

Polymers
- Mobility control
- Selective/non-selective plugging
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2.3.3 Pros and cons of MEOR

MEOR was described by Beckman already in 1926 [24], but is still not widely applied as

an EOR method today. This is, and has been, due to problems or challenges regarding

the method. One of the main challenges, and reason for the failure of many MEOR

projects, is the harsh reservoir conditions. The activity of reservoir-employed microbes

depends on both chemical and physical conditions, such as e.g. temperature, salinity,

pressure, pH and redox potential. Such conditions vary a lot between different reser-

voirs [25], and the planning of the MEOR process does not emphasize these conditions

sufficiently, the project is likely to fail. However, all factors should be possible to over-

come, according to Adetunji [25]. Another aspect is, that to expect significant effects

of MEOR, there is a need for high concentrations of metabolites in small areas of the

reservoir. Lazar [26] also lists three other problems regarding MEOR:

� Lost injectivity due to wellbore plugging,

� Insufficient transport/dispersion of necessary components to the target zone,

� The existence of competition or undesirable secondary activity.

On the plus side, there are also several important and interesting points that make

MEOR an attractive method to research [26]:

� Microbes and nutrients are obtainable and inexpensive,

� MEOR processes are cheap and therefore attractive for marginally producing fields

as an alternative before abandonment,

� Microbial cell factories need little energy to produce agents,

� Less modification of field structure compared with other EOR methods,

� The cost of microbes are not dependent on the oil price since they are not petro-

chemicals,

� The effects of MEOR improves with population and therefore time, as compared

to other EOR methods,

� MEOR is environmentally compatible,

� All over economically attractive.





Chapter 3

A Simplified Mathematical Model

for MEOR with Dynamic

Capillary Pressure

To be able to mathematically investigate the effects of added microorganisms to an oil

reservoir, we need to set up a solvable, yet describable and reliable, model. In this

thesis we will assemble a one-dimensional model of a two-phase flow, and couple it with

an equation describing the dynamics of microbial transport. The mathematical model

we derive is fully based on continuum theory, in this case the REV method described

in Chapter 2.

3.1 Two-Phase Flow

Firstly, we need to be able to describe the motion of flow within a porous medium

that consists of two phases, e.g. oil/water or gas/water. To do this, we set up the

governing equations for each phase, namely Darcy’s law, see Equation (2.2), and the mass

conservation, Equation (2.5). Also, we have to define a new variable, the saturation, sα,

where α = n,w distinguishes between the non-wetting and the wetting phase. Saturation

quantize how much of the void space is filled with each of the phases, and is defined

intuitively as the volume of a phase over the total volume of voids in the REV, as

sα = volume of phase α
volume of voids in REV . Saturation is therefore a dimensionless quantity between 0

13
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Figure 3.1: A droplet of water in gas on a solid. Water is here the wetting phase, gas
is non-wetting. Illustration borrowed from [27].

and 1. Note that the sum of saturations always equals 1,

∑
α=w,n

sα = 1. (3.1)

The wetting phase is at all times defined as the phase most preferentially attracted to

the solid, with contact angle θ < 90°, see Figure 3.1.

In this thesis we are exploring immiscible fluids, fluids that do not mix with each other,

which is a commonly assumed property of a two-phase flow consisting of oil and water.

Relative permeability

When two phases compete for the space in the porous medium, they affect each others

available void space, i.e., they will block some of the pathways and space for each other.

To model this we will introduce a constitutive relation relating permeability and water

saturation, together with the effects of microbial activity, see Sections 4.4.1 and 5.2.1.

This leads to the total effective permeability for each fluid being expressed as a product

of the relative permeability for phase α times the absolute permeability of the medium,

keff,w = kr,w(sw, c)k and keff,n = kr,n(sw, c)k. (3.2)

Effective saturation

The parameterizations in this work will include the water saturation as an effective

saturation. This is done by mapping real values of water saturation to values ranging
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from 0 to 1. Mathematically, this can be expressed as

s∗ =
sw − sres
smax − sres

, (3.3)

where sres is the residual water saturation, while smax is the maximum water saturation

in the pore space. This is a special case of the so-called normalized water content

Θ =
θ − θres

θmax − θres
, (3.4)

with θ = φsw being the current water content. Also, θres is the residual water content,

and θmax is the maximum water content in the pore space. This normalization was used

by Mualem in 1976 [28], and also by van Genuchten [29].

The residual water saturation denotes the water trapped and immobilized inside the

pore space, while the maximum water saturation corresponds to 1 − sn,res, the inverse

of the residual oil/gas saturation.

In the remainder of this thesis we denote water saturation by s for simplicity.

3.1.1 The concept of capillary pressure and interfacial tension

While single phase flow is governed only by gravitational and pressure gradients, two-

phase immiscible flow involves a third gradient is in the model. This stems from the fact

that across the curved fluid-fluid interfaces there is a difference in pressure, where the

pressure on the concave side exceeds the one on the convex side. These sharp interfaces

and pressure differences on a microscopic level gives rice to capillary forces. Such forces

partly governs the flow on a macroscopic level [30]. This concept is used to link the

phase pressures together by the capillary pressure relation, as

pc = pn − pw. (3.5)

The capillary pressure itself is most commonly parameterized as an algebraic function

of water saturation [14], as we will see later, in Section 4.4.1, and may also be influenced

by microbes on the interface, see Section 5.2.1. The phenomenon can also be related

directly to the surface tension, or interfacial tension (IFT), between the fluids, by the
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Young-Laplace equation

pc =
2σcos(θ)

reff
, (3.6)

on the microscale. Above, σ is the surface- or interfacial tension between phases, θ is

the contact angle between interface and solid and reff is the effective curvature radius of

the pore. One easily notices that if the interface is close to flat (i.e., curvature radius is

big), there is a very little pressure difference/capillary pressure, and vice versa. Between

phases such as oil and water, which will be thoroughly explored in the following, the

IFT is typically of magnitude 20− 30 mN/m.

As a consequence of the relationship between IFT and capillary pressure, we will include

effects due to a potential IFT-reduction in our work at a later stage, see Section 5.2.1.

3.1.2 Dynamic capillarity

This part contains basic theory and practical consequences of dynamic capillary effects

that may occur in flow with two or more phases. Hassanizadeh et al. [31] states that

simulations and experimental studies indicates that such effects may be important for

some field situations with unsaturated flow. Thus, numerical simulators should generally

include tools for handling them. This will be implemented in our model to ensure that

we have the possibility to include these effects in our simulations of the two-phase flow.

The typical relationship from Section 4.4.1 is derived from experiments where one mea-

sures the capillary pressure at equilibrium conditions. For small changes in pc the

saturation is measured only when equilibrium is reached, which can take several days.

Hence, this may be seen as the static capillary pressure. In fact, there is ample, both

theoretical and experimental, evidence that this static relationship is not unique, cap-

illary pressure is shown to depend both on hysteresis, due to trapping of phases, and

on the rate of change of saturation [31, 32]. This is natural when we are discussing

non-equilibrium situations (i.e., there is flow). The fluid-fluid interfaces tend to change

position to equilibrate internal and external forces which governs flow dynamics when

the stable situation is breached, i.e., ∂ts 6= 0 [33]. Mathematically, the relationship

pc = pn − pw (3.7)



Chapter 3. Mathematical Modelling 17

only holds at equilibrium conditions, while at all other conditions dynamic effects may

be present. We include this as a linear approximation of the dependence on the rate of

saturation change as

pn − pw = pc(s, c)− τ
∂s

∂t
, (3.8)

which is shown to capture the effects seen in experiments [31]. Here, τ is defined as the

dynamic capillary coefficient, which is taken either to be a constant, or as a function

depending on saturation, and is of dimension [ML−1T−1], the unit being Pa · s.

In the following, pn − pw is described as the difference in phase pressures, pc is the

empirical measured capillary pressure under equilibrium conditions, and pc−τ ∂ts is the

dynamic capillary pressure.

3.1.3 Deriving the two-phase flow model

With mass as a product of porosity, saturation and density, and the flux as a product

of density and Darcy flux, we can set up a system for the two-phase flow based on the

governing equations described in Chapter 2:

~uw = −kr,w(sw)k

µn
(∇pw − ρw~g),

~un = −kr,n(sw)k

µn
(∇pn − ρn~g),

φ
∂sw
∂t

+∇ · ~uw =
Fw
ρw

,

φ
∂sn
∂t

+∇ · ~un =
Fn
ρn
.

(3.9)

Here, krn(sw) and krw(sw) are the relative permeability functions as introduced in Equa-

tion (3.2), and Fw and Fn are sink/source terms for the wetting and non-wetting phase.

Note that some simplifications have been applied in the above. Both the solid part and

the fluids are said to be incompressible, resulting in φ, ρn and ρw being constants. Also,

the fluids are assumed to be immiscible and non-diffusive.

The latter part of the system, the two conservation equations, can be summed up,

resulting in

φ
∂(sw + sn)

∂t
+∇ · ( ~uw + ~un) =

Fw
ρw

+
Fn
ρn
. (3.10)
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By using the sum of saturations from Equation (3.1), notice that the temporal derivative

vanishes and

∇ · ( ~uw + ~un) =
∑
α=w,n

Fα
ρα
. (3.11)

One possibility to simplify the above further is to introduce and define two new variables.

First we introduce the average pressure, which we in the following denote p, as an

arithmetic average of the two phase pressures,

p =
pw + pn

2
. (3.12)

The average pressure will end up being one of our primary variables in the model. The

phase pressures can now be written

pw = p− 1

2
pc +

τ

2

∂s

∂t
and pn = p+

1

2
pc −

τ

2

∂s

∂t
, (3.13)

using the capillary pressure relation Equation (3.8).

Secondly we introduce phase mobility. Phase mobility is defined as the ratio of relative

permeability of a phase to its viscosity, as λα =
kr,α
µα

for α = w, n, and has dimension

[LTM−1]. For the two phases we have

λw =
kr,w
µw

and λn =
kr,n
µn

. (3.14)

Based on this we also define the sum of mobilities (i.e., the total mobility), and the

difference in mobilities as

λΣ = λn + λw and λ∆ = λn − λw. (3.15)

Now, by combining Equations (3.12), (3.13) and (3.15) we can write the Darcy fluxes as

~uw = −λwk(∇(p− 1

2
pc +

τ

2

∂s

∂t
)),

~un = −λnk(∇(p+
1

2
pc −

τ

2

∂s

∂t
)), (3.16)
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and combine them as the total flux

~uΣ = ~uw + ~un = −k(λΣ∇p+
1

2
λ∆(∇(pc − τ

∂s

∂t
)). (3.17)

Notice that we have omitted the gravitational gradient, as this thesis only considers a

one-dimensional model in a horizontal domain.

Combining Equation (3.17) and Equation (3.11) results in a pseudo-elliptic PDE that

we from now on define as our pressure equation

∇ · (−k(λΣ∇p+
1

2
λ∆∇(pc − τ

∂s

∂t
)) =

∑
α=w,n

Fα
ρα
. (3.18)

As stated previously it is highly common to parameterize the constitutive relations

explicitly based on the water saturation, which will also be used throughout this thesis.

Later, we will extend the parameterizations to include microbial effects, through the

concentration, c. Both the static capillary pressure and the relative permeabilities are

functions of s as

kr,w = kr,w(s), kr,n = kr,n(s), pc = pc(s). (3.19)

As a consequence of the above, it is natural to couple the pressure equation with the

mass conservation equation for the water phase,

φ
∂sw
∂t

+∇ · ~uw =
Fw
ρw

. (3.20)

By substituting the water flux from Equation (3.16) we obtain the nonlinear pseudo-

parabolic equation from now on defined as the saturation equation

φ
∂s

∂t
−∇ · (kλw(∇(p− 1

2
pc +

τ

2

∂s

∂t
)) =

Fw
ρw

. (3.21)

A comprehensive study of the existence and uniqueness, as well as error estimates for

the Euler method applied on such equations, is performed by Fan and Pop in [34].
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3.1.4 The complete two-phase flow model

This leaves us with one mass conservation equation, the saturation equation, and one

summed flux equation, the pressure equation. To close the model we have to include

constitutive relations, and to ensure the uniqueness and well-posedness of it we must

apply initial- and boundary conditions. Our complete two-phase flow model is then

comprised of

∇ · (−k(λΣ∇p−
1

2
λ∆∇(pc − τ

∂s

∂t
))) =

Fw
ρw

, in Ω,

φ
∂s

∂t
−∇ · (kλw(∇(p− 1

2
pc +

τ

2

∂s

∂t
))) =

Fw
ρw

, in Ω,

Initial conditions: s = s(x, t0) and p = p(x, t0) in Ω,

Appropriate boundary conditions for s and p on ∂Ω,

Parameterizations: kr,w = kr,w(s), kr,n = kr,n(s), pc = pc(s), τ = τ(s).

3.2 Modelling the Transport

One of the main challenges of the MEOR method is to transport the microbes far enough

into the reservoir for them to have a significant effect on the oil recovery. To model the

transport of microbes in the reservoir we introduce a transport equation which describes

the spatial and temporal distribution of microbes, the advection-dispersion/diffusion

equation from Chapter 2. The transport equation for the water phase is

∂θc

∂t
= ∇ · (D∇θc− ~qc) +Q(x, t), (3.22)

where θ = φs is the water content, c is the concentration of microbes, D is the diffusion-

dispersion coefficient, ~q is the velocity of the transporting fluid and Q is a source/sink/re-

action term for the microbes.

Dispersion and advection

The term ∇· (D∇C) is the diffusion-dispersion term, and accounts for the diffusive and

dispersive effects. It is composed of both molecular diffusion and mechanical dispersion,

but these types cannot be distinguished on the Darcy scale which we operate on.
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∇· (~uC) is the advection term, accounting for the transport of microbes with the flow of

velocity ~q. If one of the terms strongly dominates the other (e.g., if advection strongly

dominates diffusion-dispersion), it is possible to omit the dominated term and express

the transport equation either as a purely advective equation (i.e., as a first order hyper-

bolic PDE), or as a purely diffusive-dispersive equation, a second order parabolic PDE.

In this thesis we will consider both effects on the microbial transport.

Growth, decay and absorption of microbes

During transport there will be a fraction of microbes that is absorbed by the surface.

This can by taken into account by an additional term on the left hand side, describing the

evolution of attached microbes. This thesis will not take into accounts such phenomenon

and therefore the theory is omitted.

Growth and decay is another natural matter to consider when modelling living organ-

isms. These effects are usually included through the source/sink term Q. A simple

inclusion can for instance be the Langmuir isotherm

r =
µmaxN

K +N
, (3.23)

where µmax is the maximum growth rate, K is the half saturation coefficient and N

is the nutrient concentration. See for instance [35, 36] for an extended practical and

theoretical overview. We also refer to the PhD thesis of Radu [37] for other possible

isotherms.

Our transport model

In this thesis we limit our exploration to microbes that live in water. This allows us to

derive a transport equation where microbes only appears in the water phase, as

φ
∂(sc)

∂t
+∇ · (−∇(φDsc) + ~uwc) = Q(x, t), (3.24)

where c is the concentration of microbes, s is the water saturation and ~uw is the water

flux.
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3.3 Our Complete System of Equations

In the remainder of this thesis we will numerically explore the two-phase model coupled

with the transport model. We will also investigate the effects microbes have on the

constitutive relations, so that the relative permeabilities and the capillary pressure are

also depending on the concentration, c. This will be done in one spatial dimension (1D),

so that our starting point is

∂

∂x
(−k(λΣ

∂p

∂x
+

1

2
λ∆

∂

∂x
(pc − τ

∂s

∂t
))) =

∑
α=w,n

Fα
ρα
, in Ω,

φ
∂s

∂t
− ∂

∂x
(kλw(

∂

∂x
(p− 1

2
pc +

τ

2

∂s

∂t
))) =

Fw
ρw

, in Ω,

φ
∂sc

∂t
+

∂

∂x
(− ∂

∂x
(φDsc) + uwc) = Q(x, t), in Ω,

Initial conditions: s = s(x, t0), p = p(x, t0), c = c(x, t0), in Ω,

Appropriate boundary conditions for s, p and c on ∂Ω,

Parameterizations: kr,w = kr,w(s, c), kr,n = kr,n(s, c), pc = pc(s, c), τ = τ(s).
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Numerical Modelling

Numerical modeling is in this thesis our main tool for solving the mathematical model. It

is widely used in most areas of technology and engineering, and is therefore defined and

understood in several ways. In any case, it is always the process of solving a simplified

physical or technical problem with the use of different numerical techniques. In our case

we use it to approximate the solutions of our coupled system of nonlinear differential

equations. Our approach to doing this is based on the so-called IMPES approach, where

one make use of both explicit and implicit techniques.

Its basic idea is to combine the flow equations to obtain a single pressure equation, as

described in Chapter 3, which is solved implicitly. After pressure has been advanced in

time one updates the saturation explicitly based on the pressure at the new time level.

The standard IMPES-method was first proposed by Sheldon et al. in 1959 [38], and has

been the subject of much interest in both the academic spheres and the industry.

In order to include dynamic capillarity in our model, we develop a new, iterative, fully

implicit scheme, based on the ideas in [1–3].

Our spatial discretization is made with the use of a certain control volume method, the

Two Point Flux Approximation (TPFA), with the support of finite differences, in one

dimension. In the following, we will give the theoretical background for the discretization

techniques, and show the discretization of our coupled system in short.

23
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Figure 4.1: A 2D-grid with (a) mesh-centered and (b) cell-centered gridpoints.
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Figure 4.2: A uniform cell-centered grid in 1D with half-cells at the boundaries.

4.1 Discretization and the TPFA

We are almost always interested in the solution to differential equations inside a fi-

nite domain in space. Therefore, whenever we need to solve a mathematical problem

numerically, defining and discretizing the domain of interest is a natural first step.

4.1.1 Gridding

Our geometric discretization turns a continuous domain into a discrete representation

of it. This is done by placing discrete mathematical points at certain locations in the

domain, and define a cell around it to be a 1D-shape (interval), 2D-shape (e.g. a triangle)

or 3D-shape (e.g. a tetrahedron). One can either let the points be the node of the cells,

a so-called mesh-centered, or vertex-centered, grid, or let the cell surround the discrete

mathematical point, a cell-centered grid, see comparison in Figure 4.1.

Thomas [39] describes the differences and similarities between the two and states that

which approach is used often depends on the area of application. In the following we will



Chapter 4. Numerical Modelling 25

mainly discuss the cell-centered grid. Our TPFA-approach utilize a point-distributed,

cell-centered grid with equidistant points in 1D, with half-cells near the boundary of

the domain, see Figure 4.2. The half-cells is one out of the two most common ways to

handle the boundary of the domain when using a cell-centered grid [13, 39]. The other

possibility is to add a ghost cell, with a ghost point, outside the domain, which causes

difficulties incorporating Dirichlet boundary conditions.

Given our setup of the point-distributed, cell-centered, grid this is not a problem, as we

are able to proceed straight forward with such conditions.

Our time-discretization is based on Euler’s method. We divide our time-interval [0,T ],

which spans from the initial time t0 = 0 to a final time T , into n equally sized time

steps. We label the size of the time step ∆t, which is the total time divided by number

of steps, ∆t = T
n .

∆t

tn tn+1t0 = 0 tN−1 tN = Tt1

t

Figure 4.3: A uniform discretization in time from t = 0 to T .

Combining the space- and time discretization give us the discrete time-space grid shown

in Figure 4.4 for our domain, T × Ω.

A function f(t, x) defined on this domain is represented discretely in matrix form as

f =



f(t0, x1) f(t0, x2) . . . . . . . . . f(t0, xN+1)

f(t1, x1) f(t1, x2) . . . . . . . . . f(t1, xN+1)
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

f(tN , x1) f(tN , x2) . . . . . . . . . f(tN , xN+1)


.

4.1.2 Methods of approximation

The main approximations used throughout the thesis, for calculating discrete derivatives,

mobilities and derivatives, are presented in this section.
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∆t

t

t0 = 0

tN = T

t1

tn

tn+1

xΩi

xi
x1 = 0 xN+1 = L

x2

Ω2

xN

∆x

tn, xi

Figure 4.4: Our time-space grid on [0, T ]x[0, L] where corresponds to known values
due to ICs or BCs, while corresponds to unknown values.

The midpoint rule

Numerical quadrature is used for the computation of integrals in numerical modelling.

A common way of approximating a definite integral is to apply the midpoint rule. For a

general integral, one divides the interval [a, b] into n equal subintervals with equal length,

h = (b − a)/n, and compute a weighted sum of functional values at the midpoints of

these subintervals, as

∫ b

a
f(x) dx ≈ h

n∑
i=1

f(mi), ∀ i = a+ h(i− 1/2), 1 ≤ i ≤ n. (4.1)

The midpoint rule is used throughout this thesis, due to the fact that we operate on a

cell-centered grid. That is, we approximate the integral of a function over the control

interval Ωi, using the midpoint of the interval multiplied by its length

∫ x+1/2

x−1/2
f(x) dx ≈ f(xi)∆x, (4.2)
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given equidistant gridpoints. The method is relatively simple, yet provides strong results,

and the error is bounded by the second derivative and the length of the subinterval

|error| ≤ L

24
∆x3, (4.3)

when |f ′′(x)| ≤ L ∀ x.

Taylor series

The derivative of a function f(x) is defined

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (4.4)

at the points x, where the limit exist [40]. This makes it natural for us to use Taylor

series for approximating the derivatives in our model. A Taylor series is a representation

of a function f as an infinite sum of terms around a point h, using the derivative of the

function, f ′. In our case we make use of the two series

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f (4)(x) . . . ,

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) +

h4

4!
f (4)(x) . . . ,

(4.5)

which are combined to approximate the first derivative using the forward difference or

the centered difference as

f ′(x) ≈ f(x+ h)− f(x)

h
= f ′(x) +

h

2
f ′′(x) +

h2

6
f (3)(x) +O(h3),

f ′(x) ≈
f(x+ h

2 )− f(x− h
2 )

h
= f ′(x) +

h2

24
f (3)(x) +O(h4).

(4.6)

Note that using forward differences yields a truncation error ofO(h), while using centered

differences is of O(h2). In general throughout this thesis, the latter is used for the spatial

derivatives, while the first is used for the temporal derivatives, due to the gridding

described in Section 4.1.1.
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Upstream weighted permeabilities

The permeability of the medium, k, at the boundaries i + 1
2 is approximated by har-

monically averaging over two adjacent intervals as

ki+1/2 =
1

1
2

(
∆xi
ki

+ ∆xi+1

ki+1

) , ∀ i. (4.7)

Using the fact that we are operating on equidistant grid throughout this thesis, this can

be simplified in the following way;

ki+1/2 =
1

∆x
2

(
1
ki

+ 1
ki+1

) , ∀ i. (4.8)

Hence, the permeability prescribed at each grid point in the input data is never used in

the simulations, as they are converted to half-point inter-cell values during the initial-

ization, overwriting original permeability values [41].

To compute relative permeability it is natural, from the standpoint of numerical analysis,

to compute this as an arithmetic average over two adjacent cells

kr,i+1/2 =
1

2
(kr(si) + kr(si+1)) . (4.9)

This is a midpoint weighted average over two intervals, and is of second order. However,

it leads to instability and erroneous results for many flow problems [13]. Because of this,

the commonly used scheme [13, 38] is the upstream weighting, which is defined as

kr,i+1/2 =


kr(si), if flow is from i to i+ 1,

kr(si+1), if flow is from i+ 1 to i,
(4.10)

for both the relative permeability functions. The above is implemented by determining

the direction of flow, and based on this, choosing the upstream cell for the calculations

of relative permeabilities, which is a physical property that moves with the flow [41].

This weighting will, as a natural cause of the above-mentioned, be used throughout this

work.
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4.1.3 Two point flux approximation (TPFA)

TPFA is a certain control volume method, which, as finite volume methods (FVMs) in

general, is more physically motivated than finite difference methods. The basic idea of all

FVMs is to integrate the equations over finite volumes which stems from the partition of

a domain Ω into a number of volumes as Ω = {Ω1, ...,Ωi, ...,ΩN}. The equations should

be, at least partly, on divergence form. For our use of the TPFA in 1D, this divergence

is the flux over the boundaries of the control interval Ωi. This may be demonstrated by

using the stationary pressure equation Equation (3.18), expressed for total Darcy flux,

as

∇ · ~uΣ =
∑
α=w,n

Fα
ρα
. (4.11)

Integrating this over Ωi ∫
Ωi

∇ · ~uΣ dx =

∫
Ωi

∑
α=w,n

Fα
ρα

dx, (4.12)

and applying the divergence theorem from calculus, yields

∫
∂Ωi

~uΣ · ~ndx =

∫
Ωi

∑
α=w,n

Fα
ρα

dx. (4.13)

By letting i-1/2 denote the left boundary with outward pointing normal ~ni−1/2, and

i+1/2 denote the right boundary with outward pointing normal ~ni+1/2, this can be

formulated

∫
∂Ωi−1/2

~uΣ · ~ni−1/2 dx+

∫
∂Ωi+1/2

~uΣ · ~ni+1/2 dx =

∫
Ωi

∑
α=w,n

Fα
ρα

dx. (4.14)

Due to the fact that ~ni−1/2 = [−1, 0], and ~ni+1/2 = [1, 0], given positive direction to the

right as normal, this yields

−
∫
∂Ωi−1/2

~uΣ dx+

∫
∂Ωi+1/2

~uΣ dx =

∫
Ωi

∑
α=w,n

Fα
ρα

dx, (4.15)

approximated as

−
~uΣ,i − ~uΣ,i−1

∆x
+
~uΣ,i+1 − ~uΣ,i

∆x
=
∑
α=w,n

Fα,i
ρα

∆x. (4.16)
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We have here assumed that the flux uΣ is continuous over each of the boundaries, and

therefore across the control volume Ωi.

When the flux-governing derivatives for pressures are approximated using centered dif-

ferences, and the source integral on the right hand side is approximated using the mid-

point rule, this results in a complete discretization of the pressure equation as shown

in Section 4.2.1.

4.1.4 Boundary- and initial conditions

To close a system of differential equations in general one needs to incorporate a set

of boundary- and initial conditions. This is necessary to ensure that the system has

a unique solution. For a one dimensional domain, the boundaries are located at the

endpoints of the interval, and the conditions accounts for the interaction with the sur-

roundings outside the domain. Boundary conditions are the most likely source of error

in mathematical modelling, and must therefore be taken care of accordingly [42].

Several types of boundary conditions (BCs), and combinations of them, exist and are

used in numerical modelling. In this thesis however, we will limit both theory and

application to the natural and essential types of boundary conditions, the Neumann and

Dirichlet BCs, which accounts for the majority of application in our field of study.

Dirichlet boundary conditions

Dirichlet BCs are often referred to as first-type or essential boundary conditions, and

are prescribed values of the unknown at the boundaries of the domain. Exemplifying

this by again using the stationary pressure equation, Equation (3.18), the values of the

unknown pressure can be Dirichlet BCs as

p(t, x = 0) = p0(t), (4.17)

p(t, x = L) = pL(t), (4.18)

where L is the length of the interval. Due to the way we have constructed the grid, these

conditions are easily incorporated, making up the first and last equation in the system
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later derived in Equation (4.41) as


1 0 . . . . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . . . . 0 1

 [p1, . . . , pN+1]n+1 =


p0

...

...

pL

 . (4.19)

The Dirichlet BCs must be incorporated in the matrix system for implicit techniques

as they affect other equations than the first and last, noticeable from Equations (4.19)

and (4.41). In this thesis we will do so for both the pressure equation as above, and for

the saturation- and transport equation in the same manner.

For explicit techniques on the other hand, the equations governing the Dirichlet BCs

are not affecting the neighboring cells at the same time level, and the boundary value

prescribed in the conditions can be applied directly to the unknown without considering

other effects.

Neumann boundary conditions

The second type of boundary conditions are the Neumann BCs, often referred to as the

natural boundary conditions in the weak sense. For the pressure equation they can be

used to express the flow rate across the boundary, and/or specify the production rate,

the known influx from aquifer, or flow from parts of the reservoir outside the domain [13].

As above, we exemplify by using Equation (3.18), so that the Neumann BCs are

∂p

∂x
(t, x = 0) = q0(t), (4.20)

∂p

∂x
(t, x = L) = qL(t). (4.21)

Note that the fluxes can vary with time, but are assumed to be constant over one time

step ∆t. An O (∆x) method at the boundary is to approximate the derivative using the

point next to the boundary point [13], see Figure 4.5, as

pn2 − pn1
∆x

= qn0 . (4.22)
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∂p
∂x = q0

p1 p2

Figure 4.5: Setup of our grid with a Neumann BC at the left boundary.

∂p
∂x = q0

p0 p1 p2

Figure 4.6: Setup of a grid with a Neumann BC at the left boundary, using a ghost
point.

To incorporate an O(∆x2) method, it it customary to use a so-called ghost point, or a

reflection technique [13, 39]. This consists of creating a new point outside the original

domain of interest, as shown in Figure 4.6. Discretizing the BC using centered differences

then results in
pn2 − pn0

2∆x
= qn0 , (4.23)

which theoretically is used to eliminate pn0 from the difference equation for the boundary

point [13].

In addition to specifying the derivative of the pressure at the boundary, the Neumann

BCs can also be used to specify the total flux at the boundary for the pressure equation,

as

~uΣ,0 = qn0 , (4.24)

~uΣ,L = qnL. (4.25)

Note that it is common to talk about and use no-flow boundary conditions, which is a

special case of the flux boundary conditions where

~uΣ = 0 (4.26)

over the boundary.
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Due to the design of the equations of interest for our model, we will use the method

in Equation (4.22) for taking care of the Neumann type conditions throughout this thesis,

whether they are prescribing values of the derivative of unknowns, or determining the

flux over the boundaries. A condition as in Equation (4.22) is easily taken care of and

yields the following completion of the implicit system Equation (4.41):


−1 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 −1 1

 [p1, . . . , pN+1]n+1 =


q0∆x

...

...

qL∆x

 . (4.27)

A no-flow flux condition as Equation (4.26) on both boundaries results in the first and

last equation being


1 −1 . . . 0
...

. . .
. . .

...
...

. . .
. . .

...

0 . . . 1 −1

 [p1, ..., pN+1]n+1 =



λ∆
2λΣ

(pc,2 − pc,1 − τ(sn+1
2 − sn+1

1 − sn2 + sn1 ))
...
...

λ∆
2λΣ

(pc,N+1 − pc,N − τ(sn+1
N+1 − s

n+1
N − snN+1 + snN ))

 .

(4.28)

The Neumann boundary conditions are incorporated in the same fashion, using the same

concepts, for the saturation- and transport equation.

Initial conditions

Describing the initial state at the entire domain, thus giving a connection to what has

been, is done through initial conditions (ICs). The conditions must be prescribed for all

the unknowns at all spatial locations in the domain. For this thesis we will in general

require the ICs for average pressure, water saturation and concentration as

p(x, t = 0) = [p0
1, p

0
2, ....p

0
N+1]T =: p0

x, (4.29)

s(x, t = 0) = [s0
1, s

0
2, ....s

0
N+1]T =: s0

x, (4.30)

c(x, t = 0) = [c0
1, c

0
2, ....c

0
N+1]T =: c0

x. (4.31)
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4.1.5 Time discretization

For the discretization in time this thesis uses the most well-known fixed step solver, the

Euler method. The Euler method consists of computing one calculation per iteration,

contrary to methods as the classical Runge-Kutta method which approximates based on

four calculations per iteration step. Euler’s method can be used as an implicit method,

seeking the solution at the next time step by implicit dependence on the new solution

at that time step

yn+1 = yn + f(tn+1, yn+1)h. (4.32)

Here, h is the increment in time, f is a function depending on t and y, and y is the

unknown depending on time. This method is referred to as the backward method [13, 39].

The forward method on the other hand, is an explicit technique using known values

from the last time step to approximate the new solution as

yn+1 = yn + f(tn, yn)h, (4.33)

where h, f and y are as above. Both methods and combinations of them will be used

during this work, but in general the approach will be implicit throughout, with most

parts being solved fully implicit, and some parts included explicitly.

The explicit approach yields a strict limitation on the time step to ensure convergence

of the method. If this limit is exceeded the method may become unstable and diverge

strongly from the correct solution. This is not the case for fully implicit methods, but

the accuracy of the solution is of course depending on the size of the time step.

4.2 Discretization of the Mathematical Model

In this section we will discuss the discretization of the mathematical model from Chap-

ter 3. We examine the equations one by one, starting with the pressure equation. The

results from this section are implemented and serve as the cornerstone for the explo-

ration in the remainder of this thesis. To cope with the fact that dynamic capillarity

induces an additional temporal derivative in our model, we develop a new, fully im-

plicit, iterative method. In the case of no dynamic effects, τ = 0, one iteration of the
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new method corresponds to the standard IMPES scheme. The idea and setup of this

new method is outlined in the following section, and commented on in Section 4.3. The

scheme is related to the work presented in the papers [1–3].

4.2.1 The pressure equation

∂

∂x
(−k(λΣ

∂p

∂x
+

1

2
λ∆

∂

∂x
(pc − τ

∂s

∂t
))) =

∑
α=w,n

Fα
ρα
. (4.34)

In the work of discretizing the pressure equation a natural starting point is the general

divergence theorem, which works as the fundamental theorem of Calculus in 1D [40],

to eliminate the derivative in front of the flux term. Thus, we integrate over a control

interval Ωi, which is the interval [xi−1/2, xi+1/2]. This is a practical way of discretizing

the equation, by approximating the flux at two points, namely the left hand side and

the right hand side of the interval. This results in

∫ xi+1/2

xi−1/2

∂

∂x
(−k(λΣ

∂p

∂x
+

1

2
λ∆

∂

∂x
(pc − τ

∂s

∂t
)))dx =

∫ xi+1/2

xi−1/2

∑
α=w,n

Fα
ρα

dx. (4.35)

By using the divergence term we can rewrite the left hand side as the difference of fluxes

over the boundaries, while we discretize the right hand side using the midpoint rule

(−k(λΣ
∂p

∂x
+

1

2
λ∆

∂

∂x
(pc−τ

∂s

∂t
)))i+1/2+(k(λΣ

∂p

∂x
+

1

2
λ∆

∂

∂x
(pc−τ

∂s

∂t
)))i−1/2 =

∑
α=w,n

Fα,i
ρα

∆xi.

A basic assumption of the standard IMPES method is that the static capillary pressure

term does not change over a time step, so that one can compute the value of pc at the

previous time step using already known values of the saturation.

In our case, because of the added dynamic capillary pressure, we are iterating several

times on the same time step so that the static capillary pressure is always computed at

the actual time step. This is included in the notation below, by adding two superscripts

where n is the time, and j is an inner loop on each time step. At every new time step,

n + 1, the final solutions from the last time step correspond to the initial value in the
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inner loop, j = 1,

pn+1,1
i = pni , pn+1,1

c,i = pnc,i, λn+1,1
i = λni , ∀ i. (4.36)

Following this, the iteration provides results for pn+1,j+1 until convergence, see Sec-

tion 4.3.

Approximation of the temporal derivative of s and collation of unknowns terms on the

left hand side and known values on the right hand side yields

− ki+1/2λ
n+1,j
Σi+1/2

∂pn+1,j+1
i+1/2

∂x
+ ki−1/2λ

n+1,j
Σi−1/2

∂pn+1,j+1
i−1/2

∂x
=
∑
α=w,n

Fn+1
α,i

ρα
∆xi

+ ki+1/2
1

2
λn+1,j

∆i+1/2(
∂pn+1,j

c,i+1/2

∂x
− τ

∂(sn+1,j
i+1/2 − s

n
i+1/2)

∂x∆t
)

− ki−1/2
1

2
λn+1,j

∆i−1/2(
∂pn+1,j

c,i−1/2

∂x
− τ

∂(sn+1,j
i−1/2 − s

n
i−1/2)

∂x∆t
).

(4.37)

As noted earlier, the permeability is estimated by the harmonic mean of two adjacent

cells as k̄i = 2
∆x( 1

ki
+ 1
ki−1

)
. This, together with the arithmetic mean of the mobilities and

the centered differences for the spatial derivatives from Section 4.1.2, results in

− k̄i+1

λn+1,j
Σ,i+1 + λn+1,j

Σ,i

2

pn+1,j+1
i+1 − pn+1,j+1

i

∆x
+ k̄i

λn+1,j
Σ,i + λn+1,j

Σ,i−1

2

pn+1,j+1
i − pn+1,j+1

i−1

∆x
=
∑
α=w,n

Fn+1
α,i

ρα
∆xi

+
1

2
k̄i+1

λn+1,j
∆,i+1 + λn+1,j

∆,i

2
(
pn+1,j
c,i+1 − p

n+1,j
c,i

∆x
− τ

sn+1,j
i+1 − sn+1,j

i − sni+1 + sni
∆x∆t

)

− 1

2
k̄i
λn+1,j

∆,i + λn+1,j
∆,i−1

2
(
pn+1,j
c,i − pn+1,j

c,i−1

∆x
− τ

sn+1,j
i − sn+1,j

i−1 − sni + sni−1

∆x∆t
).

(4.38)

Systematizing in terms of the unknown variable

pn+1,j+1
i+1 (−k̄i+1

λn+1,j
Σ,i+1 + λn+1,j

Σ,i

2
) + pn+1,j+1

i−1 (−k̄i
λn+1,j

Σ,i + λn+1,j
Σ,i−1

2
)

pn+1,j+1
i (−k̄i+1

λn+1,j
Σ,i+1 + λn+1,j

Σ,i

2
+ k̄i

λn+1,j
Σ,i + λn+1,j

Σ,i−1

2
)

=
∑
α=w,n

Fn+1
α,i

ρα
∆x2

i +
1

4
k̄i+1(λn+1,j

∆,i+1 + λn+1,j
∆,i )(pn+1,j

c,i+1 − p
n+1,j
c,i − τ

sn+1,j
i+1 − sn+1,j

i − sni+1 + sni
∆t

)−

1

4
k̄i(λ

n+1,j
∆,i + λn+1,j

∆,i−1)(pn+1,j
c,i − pn+1,j

c,i−1 − τ
sn+1,j
i − sn+1,j

i−1 − sni + sni−1

∆t
),

(4.39)
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and by letting

ai = k̄i+1

(λn+1,j
Σ,i+1 + λn+1,j

Σ,i )

2
for 1 ≤ i ≤ n,

bi =
∑
α=w,n

Fn+1
α,i

ρα
∆x2

i +
1

4
k̄i+1(λn+1,j

∆,i+1 + λn+1,j
∆,i )(pn+1,j

c,i+1 − p
n+1,j
c,i − τ

sn+1,j
i+1 − sn+1,j

i − sni+1 + sni
∆t

)−

1

4
k̄i(λ

n+1,j
∆,i + λn+1,j

∆,i−1)(pn+1,j
c,i − pn+1,j

c,i−1 − τ
sn+1,j
i − sn+1,j

i−1 − sni + sni−1

∆t
) for 1 < i ≤ n,

(4.40)

we can formulate this as a linear system A = pn+1,j+1b. The system matrix

A =



Depending on BCs

0−a1 a1 + a2 −a2 0

0 −a2 a2 + a3 −a3 0

. . .
. . .

. . .
. . .

. . .

. . . −ai−1 ai−1 + ai −ai+1
. . .

. . .
. . .

. . .
. . .

. . .

0 −an−1 an−1 + an −an
0 Depending on BCs



,

(4.41)

where the type of BCs determines the first and last equation. This is solved for the

average pressure, pn+1,j+1.

4.2.2 The saturation equation

φ
∂s

∂t
− ∂

∂x
(kλw(

∂

∂x
(p− 1

2
pc +

τ

2

∂s

∂t
))) =

Fw(t, x)

ρw
(4.42)

Solving the saturation equation is done once we have updated the solution for average

pressure. Therefore we seek to discretize the saturation equation above using newly

updated values of average pressure. First we approximate the temporal derivatives,

leading to

φ
sn+1 − sn

∆t
− ∂

∂x
(kλw(

∂

∂x
(pn+1 − 1

2
pnc +

τ

2

sn+1 − sn

∆t
))) =

Fn+1
w

ρw
. (4.43)
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Spatial discretization is again performed using TPFA, integrating over a control interval

Ωi, and applying the divergence theorem, yielding

∆xφ
sn+1
i − sni

∆t
− (kλw(

∂

∂x
(pn+1 − 1

2
pn+1
c +

τ

2

sn+1 − sn

∆t
)))i+1/2+

(kλw(
∂

∂x
(pn+1 − 1

2
pn+1
c +

τ

2

sn+1 − sn

∆t
)))i−1/2 =

Fn+1
w

ρw
∆x, (4.44)

by usage of the midpoint rule and the difference in flux over the boundaries of the

interval. At this point, we multiply through by ∆x∆t, and reorder the equation with

the unknowns at the left hand side so that

sn+1
i (∆x2φ+

τ

2
(k̄i+1λw,i+1/2 + k̄i−1λw,i−1/2)+

sn+1
i+1 (−τ

2
k̄i+1λi+1/2) + sn+1

i−1 (−τ
2
k̄iλi−1/2) =

∆x2(
Fn+1
w,i

ρw
∆t+ φsni )+ (4.45)

∆tk̄i+1λw,i+1/2(pn+1
i+1 − p

n+1
i − 1

2
(pn+1
c,i+1 − p

n+1
c,i − τ(sni − sni+1)))−

∆tk̄iλw,i−1/2(pn+1
i − pn+1

i−1 −
1

2
(pn+1
c,i − p

n+1
c,i−1 − τ(sni−1 − sni ))),

where we have approximated the derivatives and the mobilities in the same manner

as before. Once again we introduce the second superscript j, where j + 1 is denoting

unknown values, and j are known values. As earlier we use the solution from the last

time step as an initial guess for the first j-value

sn+1,1
i = sni ∀ i, (4.46)
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so that the full discretization is

sn+1,j+1
i (∆x2φ+

τ

2
(k̄i+1λ

n+1,j
w,i+1/2 + k̄i−1λ

n+1,j
w,i−1/2)+

sn+1,j+1
i+1 (−τ

2
k̄i+1λ

n+1,j
i+1/2) + sn+1,j+1

i−1 (−τ
2
k̄iλ

n+1,j
i−1/2) =

∆x2(
Fn+1
w,i

ρw
∆t+ φsni )+ (4.47)

∆tk̄i+1λ
n+1,j
w,i+1/2(pn+1,j+1

i+1 − pn+1,j+1
i − 1

2
(pn+1,j
c,i+1 − p

n+1,j
c,i − τ(sni − sni+1)))−

∆tk̄iλ
n+1,j
w,i−1/2(pn+1,j+1

i − pn+1,j+1
i−1 − 1

2
(pn+1,j
c,i − pn+1,j

c,i−1 − τ(sni−1 − sni ))).

Letting

di =
τ

4
(k̄i(λ

n+1,j
w,i + λn+1,j

w,i−1)),

ei = ∆x2(
Fn+1
w,i

ρw
∆t+ φsni )+ (4.48)

∆tk̄i+1λ
n+1,j
w,i+1/2(pn+1,j+1

i+1 − pn+1,j+1
i − 1

2
(pn+1,j
c,i+1 − p

n+1,j
c,i − τ(sni − sni+1)))−

∆tk̄iλ
n+1,j
w,i−1/2(pn+1,j+1

i − pn+1,j+1
i−1 − 1

2
(pn+1,j
c,i − pn+1,j

c,i−1 − τ(sni−1 − sni ))),

this can be expressed and solved as a system B = sn+1,j+1e, where

B =



Depending on BCs . . . . . . . . . 0

−d1 d1 + d2 + ∆x2φ −d2 0

0 −d2 d2 + d3 + ∆x2φ −d3 0
...

. . .
. . .

. . .
...

... 0 −dn−1 dn−1 + dn + ∆x2φ −dn

0 . . . . . . Depending on BCs


,

and the type of BCs determines the first and last equation. The system above is solved

for the saturation at the new time step n+ 1, and iteration step j+ 1, yielding sn+1,j+1.

After solving for the two-phase flow at iteration step j+1, the static capillary pressure is

updated to pn+1,j+1
c , and both functions for mobilities are updated to λn+1,j+1

∆ , λn+1,j+1
Σ ,

based on the newly updated saturation. Thereafter the procedure is repeated until

convergence, see Section 4.3.
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4.2.3 The transport equation

φ
∂(sc)

∂t
+

∂

∂x
(− ∂

∂x
(φDsc) + uwc) = Q(t, x) (4.49)

After having accepted the solutions for both the pressure and the saturation at the new

time, using the new scheme, we compute the concentration c, using purely implicit tech-

niques. Starting as with the saturation equation, approximating the temporal derivative,

results in

φ
sn+1cn+1 − sncn

∆t
+

∂

∂x
(− ∂

∂x
(φDsn+1cn+1) + uwc

n+1) = Q(t, x), (4.50)

which when applying the TPFA method over an interval Ωi yields

∆xφ
sn+1
i cn+1

i − sni cni
∆t

+

(
− ∂

∂x

(
φDcn+1cn+1

)
+ uwc

n+1

)
i+1/2

−
(
− ∂

∂x

(
φDcn+1cn+1

)
+ uwc

n+1

)
i−1/2

= Qn+1
i ∆x.

(4.51)

Using previously described techniques for approximating the derivatives and arithmeti-

cally averaging the water flux gives

cn+1
i (

∆xφ

∆t
sn+1
i +

1

2
(uw,i+1/2 + uw,i−1/2) + 2

φD

∆x
sn+1
i )+

cn+1
i−1 (−1

2
uw,i−1/2 −

φD

∆x
sn+1
i−1 ) + cn+1

i+1 (−1

2
uw,i+1/2 −

φD

∆x
sn+1
i+1 ) =

Qn+1
i ∆x+

∆xφ

∆t
sni c

n
i ,

(4.52)

after some manipulation, where all the unknowns are on the left hand side. Introducing

Y =
∆xφ

∆t
, (4.53)

Z =
φD

∆x
, (4.54)

fi =
1

2
(uw,i+1 + uw,i), (4.55)

and

gi = Y (sni c
n
i ) +Qn+1

i ∆x, (4.56)



Chapter 4. Numerical Modelling 41

to simplify notation, we can write the system of equations D = cn+1g.

Hence, the system matrix

D =

Depending on BCs . . . . . . 0

−f1 − Zsn+1
1 f2 − f1 + (2Z + Y )sn+1

2 f2 − Y sn+1
3

...
. . .

. . .
. . .

... fN−1 − Zsn+1
N−1 fN − fN−1 + (2Z + Y )sn+1

N fN − Y sn+1
N+1

0 . . . Depending on BCs


and the 1st and last equation depends on boundary conditions, as outlined in Sec-

tion 4.1.4. This system is solved for the concentration at the new time step, cn+1.

Stability of the standard IMPES method versus our new scheme

Due to the fact that the IMPES method utilizes explicit techniques, it is necessary to

control the time step in order to guarantee the stability of the method. A numerical

algorithm is considered to be stable if any errors introduced at some stage does not

grow during the subsequent iterations. The stability criterion for the standard IMPES

method with my choice of primary variables is as following [39];

∆t <
1

2
∆x2 min(

φ

k̄i
)

1

max|∂pc(s)∂x |
min(

µn
kr,n(s)

+
µw

kr,w(s)
), (4.57)

which informs us that the time step must be controlled in order to guarantee stability

of the method. For our new iterative scheme, we expect no stability problems due to

the fact that the scheme is fully implicit. The convergence of the scheme is still to be

analyzed theoretically, while in this work we concentrate on studying this numerically.

We have in our work compared the IMPES approach to the new scheme numerically, by

verifying that the new scheme is stable for time steps where the IMPES approach fails

due to instability. This has however not been done systematically, thus no results are

included.
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4.3 Implementation

All our three system Equations (4.41), (4.49) and (4.57) are implemented and solved

using MATLAB, a numerical computing environment suitable for our purpose. The

discretized systems are implemented in a function which is run by a main script, where all

the variables, physical parameters and initial- and boundary conditions can be changed.

To cope with the fact that we, due to the includement of the dynamic capillarity, have

an extra temporal derivative, we have developed a new iterative scheme to handle the

two-phase flow model.

The new iterative scheme is derived in the spirit of the publications [1, 2], an alternative

approach being the Newton method [43–45], which is quadratic but only locally conver-

gent. For convergence analysis of flow and/or reactive transport in porous media, we

also refer to [46–51].

For each progression in time, from time n to time n+1, we solve an additional inner loop

to ensure convergence of the approximation of pn+1 and sn+1. This is done by including a

second superscript as pn+1,j , sn+1,j , solving the two-phase model for pn+1,j+1, sn+1,j+1,

as described in Sections 4.2.1 and 4.2.2. This iteration is repeated with updated values

for pc, λ∆ and λΣ until convergence, that is when the increment between the previous and

new j-step for both variables, measured in an L2 norm as defined later, in Section 4.4.3,

is below a certain tolerance limit, ε. Mathematically, if both

‖pn+1,j+1 − pn+1,j‖L2 < ε and (4.58)

‖sn+1,j+1 − sn+1,j‖L2 < ε, (4.59)

the approximations are accepted and are used for the computation of cn+1. The con-

centration is not a part of the iterative loop and is implemented as described in the

previous section.

As a security measure we include a return statement in the implementation, together

with a maximum number of inner iterations, to prevent the code from running in the

case when it is producing non-converging results.

All systems in our implementation are consisting of a strictly sparse system matrix, and

are therefore solved effectively by using the direct solver in MATLAB. See Figure 4.15

for a schematic solution strategy.



Chapter 4. Numerical Modelling 43

4.4 Code Validation and Parameterizations

Before we start exploring MEOR activities and the effect of dynamic capillary pressure,

we must validate our implementation. We do this by separately validating the two-phase

flow model and the transport model, using accepted results from the literature for the

flow model and an analytical solution to validate and analyze the convergence of the

transport equation.

4.4.1 van Genuchten parameterization

Throughout this thesis the van Genuchten parameterization will be used for the consti-

tutive relations between relative permeabilities and water saturation, and between static

capillary pressure and water saturation. These are, see [29, 52, 53],

pc(s
∗(s)) = pe(s

∗−1/m − 1)1/n,

kr,w(s∗(s)) =
√
s∗[1− (1− s∗1/m)m]2,

kr,n(s∗(s)) =
√

1− s∗(1− s∗1/m)2m,

(4.60)

where n, m and the entry pressure, pe, are model dependent van Genuchten parameters,

and s∗ is the effective saturation. The common way to approximate m is as m = 1−1/n.

The functions for static capillary pressure and relative permeabilities fulfill the criteria

that

� pc(s
∗(s)) is continuously differentiable ∀s∗ ∈ [0, 1],

� pc(s
∗(s)) is monotonous decreasing and pc(1) = 0,

� kr,n is monotonous decreasing, kr,n(1) = 0, kr,n(0) = 1,

� kr,w is monotonous increasing, kr,w(0) = 0, kr,w(1) = 1.

Curves for the van Genuchten parameterizations are shown in Figures 4.7 and 4.8.

Related to the above it is worth mentioning that this parameterization, based solely on a

constitutive relation between static capillary pressure and water saturation, and relative

permeabilities and water saturation, is not fully descriptive. In reality the residual, or

immobilized, water and oil saturation will depend on conditions that changes over time,
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Figure 4.7: Example of van
Genuchten static capillary pressure,
for sres = 0, smax = 1, pe = 2 MPa

and n = 2.

Figure 4.8: Example of van
Genuchten relative permeabilities,

for sres = 0, smax = 1, pe = 2 MPa
and n = 2.

such as flow velocity. Additionally, the static capillary pressure and relative permeabili-

ties will exhibit the well-known hysteretic behavior, based on the sign of ∂ts [54], which

requires a more sophisticated functional that this work does not include (see e.g. [55]).

The practical importance is yet undeniable as the model in most cases is able to replicate

the reality good enough. However, the model will be expanded throughout this work to

account for potential microbial effects, see Section 5.2.1.

4.4.2 Validation of the two-phase flow model

To validate the two-phase flow model we make use of two separate examples from the

literature. The first shows an injection of gas into the left side of the domain, implicitly

included through the Dirichlet boundary condition describing the water saturation, while

the second example accounts explicitly for an injection of gas in the middle of our domain.

Table 4.1: Parameters for two-phase flow model validation 1

Property Value Property Value

φ 0.1 sres 0

k 1 mD smax 1

µn 9 · 10−6 Pa · s τ 0

µw 7.98 · 10−3 Pa · s n 2

ρw 103 kg/m3 L 100 m

ρn 0.808 kg/(m3MPa) · pn pentry 2 MPa
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Example 1

The settings of the first problem follows the paper by Amaziane, Jurak and Keko [56].

Our two-phase flow model is solved on the same one dimensional domain, [0, L], by

using the van Genuchten parameterizations as introduced in Section 4.4.1. Table 4.1

shows fluid and matrix parameters, in addition to the length of the domain, L, and the

van Genuchten parameters.

It is worth emphasizing that we have made a slight alteration from the simulation in [56],

by assuming the gaseous phase to be incompressible with constant density ρn = 2 kg/m3.

We also remark that they solve for global pressure, whereas we solve for mean pressure

in addition to phase pressures, and that the dynamic capillary coefficient τ=0.

The simulation was performed with the following boundary and initial conditions

p(0, t) = 1.8, s(0, t) = 0.4, p(L, t) = 0.1,
∂s

∂x
(L, t) = 0,

s(x, 0) = 1, p(x, 0) = 0.1,

and with both source terms equal to zero.

This simulation yielded the results shown in Figures 4.9 and 4.10 at a final time of

40 days.

Figure 4.9: Example 1: Mean and
phase pressures after t=40 days.

Figure 4.10: Example 1: Water sat-
uration after t=40 days.
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When comparing with [56] we see a strong correlation between their results and ours.

Note that they are not perfectly identical, the non-wetting pressure is a bit imprecise

due to the fact that we did not take into account the effects of compressibility.

Example 2

Secondly we compare our code by using the example defined in [52]. The fluid and solid

properties are mainly the same, apart from the viscosity of the gaseous phase, which

is here µn = 0.86 · 10−3 Pa · s. We add a constant source term of gas in the interval

[47 m, 53 m] of Fn = 0.01 kg/day, and make a slight alteration from the simulation

in [52], by assuming that the gas density does not change over a time step ∆t.

The simulation was performed with the following boundary and initial conditions

p(0, t) = 0.1, s(0, t) = 1, p(L, t) = 0.1, s(L, t) = 1,

s(x, 0) = 1, p(x, 0) = 0.1,

yielding the results shown in Figures 4.11 and 4.12 at a final time of 12 days.

Figure 4.11: Example 2: Mean and
phase pressures after t=12 days.

Figure 4.12: Example 2: Water sat-
uration after t=12 days.

Again, the results obtained are very much consistent with what is found in [52].
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These two results give us an understanding that the two-phase flow model implemented

is consistent with the physics and numerical results from others, and thus qualifies for

further exploration.

4.4.3 Validation of the transport model

To validate the implementation of the transport model we use an analytical solution,

which gives us an opportunity to analyze the convergence of the implementation. In the

simple case we let the water flux uw, the water saturation s and the porosity φ be equal

to 1, and the source term Q to be equal to zero. The dispersion-diffusion coefficient is

set to be D = 0.01.

The equation at hand is therefore simplified to

∂c

∂t
= −u ∂c

∂x
+D

∂2c

∂x2
. (4.61)

We construct an analytical solution as given in [57], where the following is given in

T × Ω = [0, 0.5]× [0, 1]:

The exact solution,

cana(t, x) =
0.025√

0.000625 + 0.02t
exp

(
− (x+ 0.5− t)2

0.00125 + 0.04t

)
, (4.62)

the boundary conditions,

c(t, 0) =
0.025√

0.000625 + 0.02t
exp

(
− (0.5− t)2

0.00125 + 0.04t

)
, (4.63)

c(t, 1) =
0.025√

0.000625 + 0.02t
exp

(
− (1.5− t)2

0.00125 + 0.04t

)
, (4.64)

and the initial condition,

c(0, x) = exp

(
−(x+ 0.5)2

0.00125

)
. (4.65)

The Euclidean norm

We now seek to validate our numerical implementation, as well as analyzing the conver-

gence of it, by comparing the numerical solution with the analytical solution for various
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grid sizes and time steps. The comparison is done with respect to the Euclidean norm,

or the L2 norm, as well as the infinity norm. We define on L2(0, 1) the scalar product

as

(f, g)L2 =

∫ 1

0
f(x)g(x) dx ∀ f, g ∈ L2(0, 1), (4.66)

with the associated vector norm

‖f‖L2 =
√

(f, f)L2 =

√∫ 1

0
f2 dx. (4.67)

In our comparison we use this to compute the L2 norm of the error E = |cana− cnum| as

‖cana − cnum‖L2 =
√

(cana − cnum, cana − cnum)L2 =

√∫ 1

0
(cana − cnum)2 dx, (4.68)

approximating the integral by usage of the midpoint rule from Section 4.1.2

‖cana − cnum‖L2 =

√√√√ n∑
i=1

∫ xi+1/2

xi−1/2

(cana − cnum)2 dx ≈

√√√√∆x

n∑
i=1

(cana,i − cnum,i)2,

(4.69)

for an equidistant grid. The maximum norm is computed as

‖cana − cnum‖∞ =
n

max
i=1
|cana − cnum|i ∀ i. (4.70)

The simulations are initially done with coarse resolution, which is refined several times

by a factor 2. ∆x and ∆t are kept equal, resulting in what is presented in Figure 4.13

and table 4.2. The reduction is computed as the previous error relative to the new error.

By this we can verify that our model is converging, and by the reduction computed we

can ascertain that the model is of O (∆t,∆x), see Figure 4.14.

Table 4.2: Error analysis for the numerical solution of the transport equation

∆x ∆t L2 error reduction ∞ norm reduction

0.1 0.1 0.25115010452 - 0.04967906036 -

0.05 0.05 0.16492175678 1.522843980 0.03240072760 1.5332698996

0.025 0.025 0.09557610089 1.725554351 0.01931483324 1.67750491

0.0125 0.0125 0.05172816959 1.847660600 0.01069415672 1.8061109211

0.00625 0.00625 0.02696745073 1.918170542 0.00563489752 1.8978440473
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Figure 4.13: The analytical solution compared with numerical solutions for different
resolutions.

Figure 4.14: Log-log plot of the error versus number of points.
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After the separate validation is performed, we couple the whole system together, and

reproduce the results to validate that the coupling is done correctly. Our whole scheme

is then solved as outlined in Figure 4.15.

Figure 4.15: Solving the fully coupled model until t = T .



Chapter 5

The Effects of MEOR and

Dynamic Capillary Pressure

In this chapter we will make use of our coupled model to explore the effects of MEOR.

We will compare different approaches and quantify the produced oil in terms of barrels.

As well we will model the effect of dynamic capillary pressure, and also explore the effects

of some chosen parameters through sensitivity analysis. Finally, convergence history of

the new inner loop is numerically examined.

5.1 Reference Reservoir

We start by defining a reference reservoir, see Figure 5.1, to compare different ap-

proaches. The reservoir has an initial saturation of water of s(0, x) = 0.3, meaning

that there is 70 % oil left in the reservoir after initial recovery. The reservoir and fluid

properties are listed in Table 5.1.

To compare different approaches we need to identify the goal, which undoubtedly is to

mobilize and recover as much of the oil as possible. Thus, we introduce the typical

petroleum unit barrel, bbl, in this context. 1 bbl ≈ 159 liters, and given our constant

oil density this gives us a relationship between mass and volume as

1 bbl ≈ 159 liters · ρo = 0.159 m3 · 770 kg/m3 = 122.43 kg. (5.1)

51
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Property Value Property Value

φ 0.25 D 3 m2/day

k 200 mD σ0 40 mN/m

µo 3 · 10−3 Pa · s σmin 0.06 mN/m

µw 1 · 10−3 Pa · s α 0.5

ρw 1020 kg/m3 smax 0.59

ρo 770 kg/m3 sres 0.1

pentry 1 MPa p(0, x) 5 MPa

A 1000 m2 L 300 m

s(0, x) 0.3 n 2

Table 5.1: Properties reference reservoir

OIP, the oil in place, is found numerically at time step n as

OIP(n) =
AL

N
(
N∑
i=2

(1− sni ) + 0.5(2− sn1 − snN+1)), (5.2)

where A is the cross-sectional area and L the length of the reservoir, n is the time and

N is the number of intervals. Further,

OOIP = OIP(0) =
AL

N
(
N∑
i=2

(1− s0
i ) + 0.5(2− s0

1 − s0
N+1)), (5.3)

OOIP ≈ 1.32 million bbl, (5.4)

is the original oil in place. Using this we can calculate the production per time step and

the total production as

Production/time step = OIP(n− 1)−OIP(n), (5.5)

Total production = OOIP−OIP(n). (5.6)

L

A

Figure 5.1: The reference reservoir with length L = 300 m, cross-sectional area
A = 1000 m², and initial water saturation of s=0.3.
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Figure 5.2: Drop in IFT from 38− 0.06 mN/m, due to bacterial effects as a function
of run time in days, from [4].

5.2 IFT Reduction - Possible Effects

This section is devoted to investigation of the most promising mechanism of MEOR,

the possible reduction of interfacial tension due to activity of surfactants on the inter-

face between oil and water. To do so, we need to link the reduction in IFT with a

reduction in static capillary pressure. This link is obvious through the Young-Laplace

equation Equation (3.6), and thus we seek to include such effects in the parameterization

of pc, kr,w and kr,n.

5.2.1 Capillary pressure, residual oil and relative permeabilities as

functions of concentration

In [4], two separate experimental results show a reduction of IFT. The first shows a drop

of IFT from 35 − 0.17 mN/m, while the second shows a drop from 38 − 0.06 mN/m,

due to bacterial activity, see Figure 5.2. Based on these results we suggest a simple,

exponential relationship between concentration, c, and interfacial tension, σ, as

σ(c) = (σ0 − σmin) e−αc + σmin. (5.7)

Above, σ0 is the IFT when no microbes are present, σmin is the lowest possible value

of the IFT and α is a coefficient determined by the effects of microbial activity. Notice
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Figure 5.3: Example of our relationship σ(c), for α=0.5, σmin = 0.06 mN/m and
σ0 = 40 mN/m.

that we do not take into account the time aspect, as we assume immediate effect. This

may be seen as a weakness of the parameterizations compared to Figure 5.2.

Capillary pressure

To couple the effect of the IFT reduction with the static capillary pressure, we include

the effects in the entry pressure, pe, which is the sought-after, possible effect [5, 22].

We express the entry pressure as

pe(c) =
pe,0
σ0

(σ(c)) = β((σ0 − σmin) e−αc + σmin), (5.8)

where pe,0 corresponds to the entry pressure in the case of no reduction in the interfacial

tension. This, together with the previously introduced van Genuchten parameterization

for the relationship between pc and s∗ from Section 4.4.1, results in a function relating

concentration, effective saturation and capillary pressure. Hence,

pc(s
∗, c) =

pe,0
σ0

((σ0 − σmin) e−αc + σmin)(s∗−1/m − 1)1/n, (5.9)

where m = 1− 1/n and n is the model dependent van Genuchten parameter as before.
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Figure 5.4: Example of the effects of
IFT reduction on residual oil content,

for so,res,initial = 0.41.

Figure 5.5: Example of a relationship
between concentration and residual oil,

for so,res,initial = 0.41.

The residual oil saturation

As an effect of the reduction of IFT the amount of residual, or immobilized, oil may

decrease. Experiments from [6] predicts a correlation between IFT and residual oil

saturation as

so,res =
σ

Aσ +B
, (5.10)

where A and B are constants depending on reservoir conditions. In our case, we choose

to use the same constants as the authors (A=2.432, B=0.1154), so that our expression

for the maximum water saturation, smax, which is our parameter in Equation (3.3)

becomes

smax(c) = 1− so,res(c) = 1− σ(c)

2.432σ(c) + 0.1154
, (5.11)

corresponding to an initial residual oil saturation of 0.41.

Relative permeabilities

Recall the standard van Genuchten relative permeabilities curves of Section 4.4.1

kr,w(s∗(s)) =
√
s∗[1− (1− s∗1/m)m]2, (5.12)

kr,n(s∗(s)) =
√

1− s∗(1− s∗1/m)2m. (5.13)

Relative permeabilities rule the flow of the different phases through porous media, and

experiments have shown that as the IFT between water and oil is reduced, the slope of
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these curves tend to move towards straighter lines [6–8]. It is also shown that, as for the

residual oil saturation, the effects are small for IFT-values above 1 mN/m.

We seek to include such effects in our parameterizations, and do so by determining a

dependence of kr,n and kr,w on the concentration c. This is done by including the effects

in the exponent m, which governs the slope of the curve. For the oleic phase, we include

the effects by reducing m for low values of IFT (i.e. below 1 mN/m), and for the wetting

phase we do the opposite, by increasing m.

We define the lowest possible value for the oleic parameter, mo=0.1, and the highest

possible value for the wetting parameter, mn=1.3, both for σ = 0.01 mN/m, which

is not reachable in practical applications. As we only want to model permeability-

changes for IFT-values below 1 mN/m, we construct one point for the water parameter

at (σ,mw)=(0.1,0.9), and for the oleic parameter at (σ,mo)=(0.1,0.3), and use this

together with the minimum value described above, and the value m0 at σ = 1 mN/m.

Logarithmic regression gives us useful relationships for the parameters based on IFT as

mw(σ(c)) = 0.5− 0.17 ln(σ(c)), ∀σ < 1 mN/m,

mo(σ(c)) = 0.5 + 0.09 ln(σ(c)), ∀σ < 1 mN/m,
(5.14)

where m0 has been fixed at a value of 0.5, which is the parameter used throughout this

work. This results in the relative permeabilities being

kr,w(mw(σ(c)), s∗(s, c)) =
√
s∗[1− (1− s∗1/mw)mw ]2,

kr,n(mo(σ(c)), s∗(s, c)) =
√

1− s∗(1− s∗1/mo)2mo .
(5.15)

Figure 5.6: Relative permeabilities as
a function of c from 0-20 kg/m3. Blue

lines are kr,w, red are kr,n.

Figure 5.7: Relative permeabilities
for IFT 0.06-1 mN/m, with residuals

sres=0.23, smax=0.85.
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5.2.2 Summary of our parameterizations depending on concentration

In this thesis we choose to use the van Genuchten parameter n=2 ⇔ m=0.5. To sum-

marize our new parameterization we have

σ(c) = (σ0 − σmin) e−αc + σmin,

pc(s
∗, c) =

pe,0
σ0

((σ0 − σmin) e−αc + σmin)(s∗−2 − 1)1/2,

smax(c) = 1− so,res(c) = 1− σ

2.432σ + 0.1154
,

mw(c) = 0.5− 0.17 ln(σ(c)), ∀σ < 1 mN/m,

mo(c) = 0.5 + 0.09 ln(σ(c)), ∀σ < 1 mN/m,

mw = mo = 0.5, ∀σ ≥ 1 mN/m,

kr,w(mw(c), s∗) =
√
s∗[1− (1− s∗1/mw)mw ]2,

kr,n(mo(c), s
∗) =

√
1− s∗(1− s∗1/mo)2mo ,

(5.16)

with

s∗(s, c) =
s− sres

smax(c)− sres
, (5.17)

so that we need to determine values for pe,0, σ0, σmin and α.

5.3 The Isolated Effect of Dynamic Capillarity for Differ-

ent Permeabilities

In this section we will explore the effect of dynamic capillarity for a single point in

space (x = 5 m), close to our left boundary. This is chosen because we expect the

saturation to change from the initial value quite early and rapidly. We will compare

the same point in space for a reservoir with high permeability, k = 500 mD, a reservoir

with medium permeability, k = 50 mD and also for a reservoir with low permeability

of k = 5 mD, in order to compare the three. In either case the fluid properties are as

described in Table 5.1, and the boundary- and initial conditions are

p(0, t) = 35, s(0, t) = smax = 0.59, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

p(x, 0) = 5, s(x, 0) = 0.01,
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with a residual saturation of sres = 0 and smax = 0.59. The results are shown in

Figures 5.8 and 5.9 for the different permeabilities, together with three different functions

for τ , one constant equal to zero, one large constant, and one linear relationship

� τ(s) = 0,

� τ(s) = 107 Pa · s,

� τ(s) = 2 · 107(1− s) Pa · s,

for all three examples. Notice that different times are plotted for the different cases, to

capture the time-period where the effects are most distinct. The different choices of τ

are inspired by [58].

In all cases α = 0.5, σmin = 0.06 mN/m and σ0 = 40 mN/m.

The literature on the subject of dynamic capillarity suggests that the effects may be

more significant in porous media with low permeability [31, 33, 59], especially in the

process of wetting [31].

This is not clear from our findings in Figures 5.8 and 5.9, but an important point is

to notice that the dynamic effect play a role for a longer time for the less permeable

reservoirs, while at the highly permeable reservoir, the effect is only present in the few

hours of wetting of the point. Due to the fact that the wetting process takes place in

less time, the effects are more visible in the figures, because of the magnitude of ∂ts,

which governs the size of the dynamic effects in our model.

We have been working on strictly homogeneous reservoirs, while [33, 58] suggests that

the effects of dynamic capillarity may be even more significant in heterogeneous porous

media.
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Figure 5.8: Saturation profiles at dif-
ferent times at x = 5 m, with different
functions for τ , for decreasing perme-
ability from k = 500 mD k = 50 mD

and k = 5 mD.

Figure 5.9: Pressure profiles at dif-
ferent times at x = 5 m, with different
functions for τ , for decreasing perme-
ability from k = 500 mD k = 50 mD

and k = 5 mD.
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5.4 The Dual Effect of Dynamic Capillarity and Bacterial

Concentration for Different Permeabilities

In order to couple the concept of MEOR and the concept of dynamic capillarity we use

the same settings as in the previous section. In addition, we apply boundary- and initial

conditions for the concentration as

c(0, t) = 6,
∂c

∂x
(L, t) = 0, c(x, 0) = 0, (5.18)

in order to model an injection of bacteria through the left boundary. Once again we

run the simulations for low, medium and high permeability, and compare them in Fig-

ures 5.10 and 5.11. One can observe that when we couple the effects, the difference

between the functions for τ becomes more distinct due to the increase of smax, explained

by the added concentration, and therefore larger possible changes in the saturation. Also

note that the wetting in the first case happens at a later time for the same reason, the

waterflood fills the first part of the reservoir, which now can hold more water than in

the previous case.

The changes are once again almost negligible for the low permeability, and the expla-

nation for this is once again that the wetting is more gradual, which explains why the

dynamic effects are smaller. Aside from that, one can clearly observe that the wetting

happens at an earlier time than in the case where there are no microbes present. The mi-

crobes thus cause a relatively big effect, leading to more porespace for the water to invade

than in the first case. Such consequences will be further investigated in Sections 5.5.1

to 5.5.3.

In [59], the authors suggests that the dynamic coefficient that governs the dynamic effects

could be higher in low permeability reservoirs than in those with higher permeability,

and in a new study by Zhang et al. [60], the reported coefficients are in the range of

1010 − 1013 Pa · s for ultra-low permeability below 1 mD.
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Figure 5.10: Saturation profiles at
different times at x = 5 m, with differ-
ent functions for τ , for decreasing per-
meability from k = 500 mD k = 50 mD

and k = 5 mD, included MEOR.

Figure 5.11: Pressure profiles at dif-
ferent times at x = 5 m, with different
functions for τ , for decreasing perme-
ability from k = 500 mD k = 50 mD

and k = 5 mD, included MEOR.
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5.5 MEOR and Dynamic Capillarity for Different Exam-

ples

In this section we will model different reservoirs with different approaches for second or

third phase recovery strategies. Results are compared for different injection volumes of

microbes, with or without dynamic capillary pressure includement.

In all cases we waterflood the reservoir from the left boundary, with boundary conditions

in the reservoir as

p(0, t) = 35, s(0, t) = smax, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

(5.19)

where the Dirichlet boundary for saturation on the left boundary is updated to the

actual value of smax at all times. We inject different amount of bacteria in the flood,

described in the Dirichlet boundary conditions for the left boundary

� c(0, t) = 0,

� c(0, t) = 6,

� c(0, t) = 12,

with a Neumann BC for the concentration at the right boundary in all cases,

∂c

∂x
(L, t) = 0. (5.20)

In the following we will present three examples, where the first example considers our

reference reservoir as introduced in Section 5.1, the second is a significantly shorter

reservoir setup and the third can be seen as an extreme case, where we apply unrealistic

parameters to force significant dynamic effects.
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5.5.1 Example reference reservoir

The simulations are first performed without the inclusion of dynamic capillarity, letting

τ=0. The initial conditions are

p(x, 0) = 5, s(x, 0) = 0.3.

Results for production rate and total production, saturation, average pressure and con-

centration are graphically presented at a time of 250 days, 500 days and at the end time

of 750 days.

The simulations are then reproduced with the inclusion of dynamic capillarity, letting

τ = 107 Pa · s. Once again the results for production rate, total production, saturation,

average pressure and concentration are presented at the same times.

Note that we have kept the same size of both the grid size and time step in the two

simulations to ensure similarity in the computations.

The plots of interest are presented in Figures 5.12 to 5.19, where the plots included

dynamic capillary pressure are on the right hand side in all figures.

When comparing the results with and without dynamic capillarity, we discover that

they are close to identical for all variables, meaning that the dynamic capillary pressure

exhibits no visible difference on the macroscale in this example. As a possible explanation

to this we observe that the wetting is rather slow, as it takes 750 days to come close to

equilibrium in the case of most concentration, and 500 days for the other two cases.

For different injected quantity of microbes we observe interesting behavior. We note

that in the case of c(0, t) = 6 the results are only slightly better than for the pure

water-wetting, in terms of overall production the difference is 2,6 %. On the other hand,

observe that, when c(0, t) = 12, the wetting happens with what can be described as a

dual front. The initial front is slightly less progressed compared to the other two in terms

of time, and significantly smaller in size, explaining the fact that the production rate is

lower during the first 250 days. The second front is due to the alteration of the residual

oil content, because of a significant reduction in the interfacial tension. It flushes the

reservoir at a later time, resulting in a substantial production of oil for a longer period

of time.
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Figure 5.12: Saturation profiles at
different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.13: Saturation profiles
at different times, for different in-
jected concentration of bacteria, with

τ = 107 Pa · s.

In terms of total production we observe that when the injected concentration is c(0, t) =

12 the result after 750 days are approximately 35 % better than for the other two. The

distinct peaks of the production rate stems from the water breakthrough, where we again

observe two peaks due to the dual front in the case of high concentration.
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Figure 5.14: Pressure profiles, for
different concentration of bacteria, no

dynamic capillarity.

Figure 5.15: Pressure profiles, for
different concentration of bacteria,

τ = 107 Pa · s.
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Figure 5.16: Concentration profiles
at different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.17: Concentration pro-
files at different times, for differ-
ent injected concentration of bacteria,

τ = 107 Pa · s.
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Figure 5.18: Production rate and to-
tal production as a function of time, for
different injected concentration of bac-

teria, τ = 0.

Figure 5.19: Production rate and to-
tal production as a function of time, for
different injected concentration of bac-

teria, τ = 107 Pa · s.
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5.5.2 Example reservoir II

In order to produce results that might show an effect of the dynamic capillary pressure,

we create a domain, and introduce physical properties, that allow for a higher rate

of change in the saturation. This rate of change rules the size of the contribution

due to dynamic capillarity. The domain and properties for the reservoir are presented

in Table 5.2.

We apply the same boundary conditions as in the previous example, but introduce a

lower initial saturation

p(0, t) = 35, s(0, t) = smax, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

p(x, 0) = 5, s(x, 0) = 0.1.

As the reservoir is one third the length of the previous one, the pressure gradient inside

is significantly larger, and the residual saturation is equal to zero.

The injection of microbes are done in the same fashion, and the results are presented as

before, at times 10 days, 20 days, and an end time of 30 days, in Figures 5.20 to 5.27.

Dynamic capillary pressure is included in the same way, with τ = 0 corresponding to

the plots on the left hand side, and τ = 107 Pa · s the right hand side.

We observe that in the case of c(0, t)=12, the total production is again higher than for

the other situations, with a 26 % higher production after 30 days, while the dynamic

capillary pressure neither here seems to cause much effect.

Property Value Property Value

φ 0.4 D 6 m2/day

k 200 mD σ0 4 mN/m

µo 3 · 10−3 Pa · s σmin 0.06 mN/m

µw 1 · 10−3 Pa · s α 0.5

ρw 1020 kg/m3 smax 0.59

ρo 770 kg/m3 sres 0

pentry 1 MPa p(0, x) 5 MPa

A 1000 m2 L 100 m

s(0, x) 0.1 n 2

Table 5.2: Properties reservoir II
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Figure 5.20: Saturation profiles at
different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.21: Saturation profiles
at different times, for different in-
jected concentration of bacteria,

τ = 107 Pa · s.

Again the peaks show the water breakthrough, and the dual front is noticeable in the

case of high microbial concentration.
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Figure 5.22: Pressure profiles, for
different concentration of bacteria, no

dynamic capillarity.

Figure 5.23: Pressure profiles, for
different concentration of bacteria,

τ = 107 Pa · s.
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Figure 5.24: Concentration profiles
at different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.25: Concentration pro-
files at different times, for differ-
ent injected concentration of bacteria,

τ = 107 Pa · s.
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Figure 5.26: Production rate and to-
tal production as a function of time, for
different injected concentration of bac-

teria, τ = 0.

Figure 5.27: Production rate and to-
tal production as a function of time, for
different injected concentration of bac-

teria, τ = 107 Pa · s.
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5.5.3 Example reservoir III

Again, we modify properties to model effects of dynamic capillary pressure. This is done

by shortening the reservoir to a length of L = 70 m, introducing a dispersion-diffusion

coefficient of D = 9 m2/day for smoothing, together with a non-realistic value for the

dynamic capillary coefficient, τ = 1010 Pa · s. The other properties are as described

in Table 5.2.

We apply the same boundary- and initial conditions as in the previous example,

p(0, t) = 35, s(0, t) = smax, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

p(x, 0) = 5, s(x, 0) = 0.1.

Again we emphasize that this means that the pressure gradient is larger, due to the

reduced length, L. The results are here presented at times of 4, 8 and 12 days, using the

same system, with dynamic capillary pressure included on the plots on the right hand

side, in Figures 5.28 to 5.35.

Here we are able to see a significant difference between the results with and without the

inclusion of dynamic capillarity. What we observe is that after 4 days, the effects on

saturation are clearly visible for all concentrations, where the front is more progressed

in the case of dynamic capillarity. Also, notice that the second front in the case of

high concentration is significantly more spread out in the case of dynamic capillary

pressure inclusion. All these effects are explained by the fact that the dynamic capillarity

drives the flow, together with the pressure gradient, from left to right. As the reservoir

approaches equilibrium, the effects are not as visible, as seen in the case of medium and

no concentration after 8 and 12 days.

The same applies for the concentration of microbes in this case, where the second driv-

ing force, the dynamic capillarity, makes the bacteria spread out faster with the flow,

especially visible after 4 and 8 days, for both large and medium concentration.

The average pressure is increased in most of the reservoir after 4 days when dynamic

capillary pressure plays a role, while the increase is not as significant without the dynamic

capillarity. After 8 days we see a distinct difference between the pressures in the case of
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Figure 5.28: Saturation profiles at
different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.29: Saturation profiles
at different times, for different
injected concentration of bacte-

ria, τ = 1010 Pa · s.

high concentration and no dynamic capillarity due to the massive waterfront which has

built up.

Again we note that to produce a substantial amount of oil for a longer period of time,

we have to add a significant amount of microbes in the flood, where the total production
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Figure 5.30: Pressure profiles at dif-
ferent times, for different injected con-

centration of bacteria, τ = 0.

Figure 5.31: Pressure profiles at dif-
ferent times, for different injected con-
centration of bacteria, τ = 1010 Pa · s.
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Figure 5.32: Concentration profiles
at different times, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.33: Concentration profiles
at different times, for different in-
jected concentration of bacteria,τ =

1010 Pa · s.
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Figure 5.34: Production rate and to-
tal production, for different injected
concentration of bacteria, no dynamic

capillarity.

Figure 5.35: Production rate
and total production, for different
injected concentration of bacte-

ria, τ = 1010 Pa · s.

after 12 days is nearly the same in the case of no and medium concentration. Further,

the total production is approximately 17,5 %/24,5 % higher with/without dynamic cap-

illarity for the case of c(0, t)=12. Note that the oil production is significantly higher at

an earlier stage in the case with dynamic capillary pressure, especially in the case of

high production, where the first front progresses noticeably faster.

The second front in the case of high concentration is not as defined in the case included

dynamic capillarity, which explains that neither the production rate peak is as distinct.
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5.5.4 Magnitude of ∂s
∂t

- the driving force for dynamic capillary pressure

In order to understand why the dynamic capillary pressure is hard to spot in the first

two examples, whilst it is clearly present and influencing the results in the third example,

we explore the term that governs the size of the dynamic pressure. Together with the

obvious reason that the value for the coefficient is 3 orders of magnitude larger in the

last example, the rate of change is also larger, due to the extreme setup in example III.

All comparisons are done with the highest injected concentration, c(0, t) = 12, and the

derivative is plotted at times {T/6, T/3, T/2, 2T/3, 5T/6, T} in all cases, where T is the

endtime.

In the comparison, found in Figure 5.36, we find what we suspected; a very small value

for the derivative of saturation throughout for the example on our reference reservoir,

explaining the very small effects of dynamic capillary pressure. Again, for example II

the rate of change, together with the dynamic coefficient, is too small to see effects on

the macroscale. Further, in the extreme case, example III, due to both the maximum

rate of change and the dynamic coefficient being of together 4− 5 orders of magnitude

larger than in the previous two, the effect is clearly visible.

In all three figures, it is easy to spot the first and second wetting front, where the first

front yields the largest values for the rate of change in all three cases. After the fronts

have flushed the reservoir the rate of change is, as expected, significantly lower.
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Figure 5.36: The magnitude of ∂s
∂t for example reference reservoir (top),with τ =

107 Pa · s, example II (middle), with τ = 107 Pa · s and example III (bottom) with
τ = 1010 Pa · s and high concentration, c(0, t) =12 for all three.
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Figure 5.37: Interfacial tension as a function of c for different effect coefficients α.

5.5.5 Sensitivity of the effect coefficient α

Here we explore the sensitivity to the parameter describing the effect microbes have on

interfacial tension. This is done by variation of the effect coefficient α in Equation (5.7),

which governs the relations for relative permeabilities, as well as static capillary pressure,

based on microbial concentration. We do so by again modelling waterflooding in our

reference reservoir, with a substantial injection of microbes from the left boundary of

c(0, t) = 15. All other parameters and conditions are as described in Section 5.5.1.

There is no dynamic capillary pressure included in the model, and α is varied from 0.2

to 0.6 in the calculations, with increments of 0.1. Results are shown after 250, 500 and

750 days as before, Figures 5.38 to 5.40. As the effects on average pressure are small,

the pressure plots are omitted.

Obvious differences are portrayed on the equilibrium saturation, saturation and produc-

tion for different values of the effect coefficient, with a 59 % higher production in the case

of high effect, α=0.6, versus low effect, α=0.2. The different progression of the fronts

shows that the relative permeabilities and static capillary pressure play a significant role

in the flow.

This effect coefficient should be experimentally explored, and must describe the IFT-

reducing effects that the microbes have on the oil/water surface, as the results in the

end are obviously highly sensitive to the size of such effects.



Chapter 5. MEOR and Dynamic Capillarity 81

Figure 5.38: Saturation profiles at
reference reservoir, for different effect

coefficients α, c(0, t) = 15.

Figure 5.39: Concentration profiles
at reference reservoir, for different ef-

fect coefficients α, c(0, t) = 15.
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Figure 5.40: Production rate and total production at reference reservoir, for different
effect coefficients α, c(0, t) = 15.
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5.5.6 Sensitivity to change in the initial entry pressure, pe,0

Determining the pore entry pressure, the minimum capillary pressure required for a

pore to be invaded in the reservoir, is crucial and difficult when modelling oil reser-

voirs. In this section we seek to explore what effect the magnitude of the entry pres-

sure have on reservoir conditions and production. We continue our exploration based

on the reference reservoir, Section 5.1 and table 5.1, applying pore entry pressures of

pe,0 = {0.5 MPa, 1.5 MPa, 2.5 MPa, 3.5 MPa, 4.5 MPa}. The comparisons are done

based on the same initial- and boundary conditions as in Section 5.5.1, where

p(0, t) = 35, s(0, t) = smax, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

p(x, 0) = 5, s(x, 0) = 0.3.

The injected concentration of microbes is c(0, t) = 12, and we do not include dynamic

capillary pressure, hence τ = 0.

Figures 5.41 to 5.43 show the plotted results for saturation, concentration and production

after 250 days, 500 days and at an end time of 750 days. We discover that the main

consequence of higher initial entry pressure is that the water front is moving slightly

slower in the case of high entry pressure, compared to the lower entry pressure. This

is also visible in the production data, where the production rate is higher earlier in the

process in the case of low entry pressure.

At the end time, the system is close to full equilibrium in all three cases, and the total

production is equivalent in the end. All together there is small response to significantly

higher initial entry pressure, and it does not affect the flow and production remarkably

in the performed simulations.

We have also performed simulations with dynamic capillarity, τ = 107 Pa · s, but as the

results are identical, the plots have been omitted.

The fact that we did not observe much difference with regards to dynamic capillarity,

for our reference reservoir, motivated us to perform simulations on the extreme case, Ta-

ble 5.2 and section 5.5.3. The same procedure was followed, applying initial pore entry

pressures of pe,0 = {0.5 MPa, 1.5 MPa, 2.5 MPa, 3.5 MPa, 4.5 MPa}.
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Figure 5.41: Saturation profiles at
reference reservoir, for different entry

pressures pe,0, c(0, t) = 12.

Figure 5.42: Concentration profiles
at reference reservoir, for different en-

try pressures pe,0, c(0, t) = 12.
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Figure 5.43: Production rate and total production at reference reservoir, for different
entry pressures pe,0, c(0, t) = 12.

The BCs and ICs

p(0, t) = 35, s(0, t) = smax, p(L, t) = 5,
∂s

∂x
(L, t) = 0,

p(x, 0) = 5, s(x, 0) = 0.1,

were similar to Section 5.5.3, which reservoir length is L = 70 m. Simulations with

(τ = 1010 Pa · s), and without, dynamic effects were conducted, and the results are as

shown in Figures 5.44 to 5.49. Once again the results including dynamic effects are

placed on the right hand side.

As for the results from Section 5.5.3, and contrary to the results for the reference reser-

voir, the dynamic effects are clearly visible in this case. Two things are worth noticing.

Firstly, the dynamic effects are most noteworthy in the case of high initial entry pressure,

where the front progresses faster. This may be explained by the fact that the pressure

needs to build up before pores can be invaded, see the early peaks in saturation without
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Figure 5.44: Production rate and to-
tal production for example III, for dif-
ferent entry pressures pe,0, c(0, t) = 12,

without dynamic capillarity.

Figure 5.45: Production rate and to-
tal production for example III, for dif-
ferent entry pressures pe,0, c(0, t) = 12,

with dynamic capillarity.

dynamic capillarity. When dynamic effects are included water can penetrate into the

pores even if the pressure is not exceeding the entry pressure. That is, less of the water

gets trapped at the pore openings due to dynamic effects. Similar results are shown

in [9], see section 6.1, and in our case it leads to considerable differences in the case of

high initial entry pressure.

The size of the fronts in the case of no dynamic capillarity, and high initial entry pressure,

also explains the distinct peaks in the concentration. As the water flux is higher in these

situations, a substantial part of the microbes follows this front, especially visible in the

concentration after 4 days.

In terms of ultimate production there is not much difference, but because of what is

mentioned above, the production happens earlier when we include dynamic effects.
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Figure 5.46: Saturation profiles for
example III, for different entry pres-
sures pe,0, c(0, t) = 12, without dy-

namic capillarity

Figure 5.47: Saturation profiles for
example III, for different entry pres-
sures pe,0, c(0, t) = 12, with dynamic

capillarity.
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Figure 5.48: Concentration profiles
for example III, for different entry pres-
sures pe,0, c(0, t) = 12, without dy-

namic capillarity.

Figure 5.49: Concentration profiles
for example III, for different entry pres-
sures pe,0, c(0, t) = 12, with dynamic

capillarity.
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5.6 Convergence History for the Inner Loop

The numerical discretization in this thesis includes an inner loop to handle the temporal

derivative, induced by the dynamic capillary pressure-term. We have not seen this

approach been used before, and therefore we include convergence history of the inner

loop for the three main examples, Sections 5.5.1 to 5.5.3. The plots show the average

error in the solutions for saturation and pressure, versus the number of inner iterations.

The convergence plots have been produced for the most challenging situation, with

c(0, t) = 12, and included dynamic capillary pressure corresponding to Sections 5.5.1

to 5.5.3 (i.e., τ = 107 Pa · s for the first two examples and τ = 1010 Pa · s for the extreme

case). In our implementation we have applied a tolerance on the error of ε = 10−10, for

all simulations. The simulations are first performed with decreasing spatial mesh size,

but a constant resolution in time. Results are shown in Figures 5.50 and 5.51.

Observe that the number of iterations needed to forfill the criteria are significantly higher

for the reference reservoir, caused by the fact that we are modelling over a long time

span of 750 days, as well as a reservoir length of 300 m. Aside from that the convergence

of the scheme is clear and unequivocally good in all three cases, where the maximum

number of iterations needed are lower for the extreme case, even if the dynamic capillary

pressure term has the highest impact in this case. Notice that as the spatial mesh is

refined, while maintaining the same temporal gridding, the simulations still converges,

but significantly slower. This applies for all three cases.

The same has been performed with decreasing time steps, and fixed spatial resolution,

see results in Figures 5.52 and 5.53. Working on coarse temporal resolution, i.e., having

longer time steps, comes with the cost of having to iterate the inner loop several times.

Finally, we searched numerically for a refinement-strategy that yielded consistent conver-

gence. Figures 5.54 and 5.55 show consistency in the convergence rate when the spatial

resolution is refined with a factor 2, while the temporal mesh is refined by a factor 6. This

applies for the first two examples, but only partly for the extreme case, Section 5.5.3,

where the convergence rate is reduced for the finest spatial mesh.

Throughout, it is the computation of the pressure which seems to be the most challeng-

ing. The convergence rate may be improved through a stabilization technique, as will

be described in Section 6.1, but this has not been investigated in this thesis.
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Figure 5.50: The average L2 error
versus number of inner iterations for
average pressure, for different spatial

mesh size.

Figure 5.51: The average L2 error
versus number of inner iterations for
saturation, for different spatial mesh

size.



Chapter 5. MEOR and Dynamic Capillarity 91

Figure 5.52: The average L2 error
versus number of inner iterations for
average pressure, for different tempo-

ral mesh size.

Figure 5.53: The average L2 error
versus number of inner iterations for
saturation, for different temporal mesh

size.
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Figure 5.54: The average L2 error
versus number of inner iterations for
average pressure, for different tempo-

ral and spatial mesh size.

Figure 5.55: The average L2 error
versus number of inner iterations for
saturation, for different temporal and

spatial mesh size.



Chapter 6

Conclusion and Suggestions for

Further Work

In this thesis we have modelled a two-phase flow regime in porous media, by designing

and implementing a two-phase flow model consisting of oil and water, in addition to a

transport equation to describe the motion of microbes in the water phase.

The model is discretized by a new, fully implicit formulation of the flow model, using an

additional inner loop to ensure that the dynamic capillary pressure term is handled prop-

erly. Spatial discretization has been carried out with the TPFA method, which ensures

conservation of the mass. The aim has been to explore the effects dynamic capillarity

have on the two-phase flow, as well as the potential effects of MEOR on oil produc-

tion. We have done so by proposing parameterizations which includes microbial effects,

see Section 5.2.1. The parameterizations are inspired by existing theory and experiments

conducted by others [4–8], showing that such effects may lead to a reduced interfacial

tension. Further, we have performed simulations on three main examples in Section 5.5,

where we have compared results with different injected quantity of microbes, and with

or without dynamic effects.

Our findings suggest that dynamic capillary pressure plays a minor role in wide-stretched

homogeneous porous media, simulated over a long time span, whilst it is shown to play

a role in more extreme cases, with rapid changes in the saturation.

93
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We have also performed sensitivity analysis on chosen key parameters, where we have

found that the effect coefficient, α, has a huge impact on ultimate oil production. On the

other hand, small differences are portrayed for changes in the initial pore entry pressure,

pe,0, for the reference reservoir. For the extreme case, where dynamic capillarity plays

a significant role, the differences are again more apparent.

Further, we have numerically explored the convergence of the new scheme, with regards

to the increments, of the updated solutions for saturation and average pressure, satisfying

a tolerance limit. It is shown that the scheme converges, but that it is sensitive to the

ratio of spatial versus temporal mesh size.

With regards to microbial enhanced oil recovery we have shown that, given our param-

eterizations, relatively high concentrations of microbes do effect interfacial tension and

the pore entry pressure positively, in terms of oil production. Experimentally testing

and improving our parameterizations would have been of immense interest, and we hope

that they can be an inspiration and idea for others as a starting point. To progress

towards more application of MEOR as an enhanced oil recovery technique in the fu-

ture, interdisciplinary work including microbiologists, biochemists, mathematicians and

petroleum engineers must be performed.

6.1 Further Work

It would be a great pleasure if this work, and our scheme, inspires further work. One

necessity in the future is to theoretically delve into a convergence analysis of the scheme.

Computationally, two other aspects comes to our mind:

Stabilization of the linear scheme

To further enhance the performance of the scheme, and allow for higher spatial reso-

lution, one possibility is to include a stabilization term in the pressure equation. The

stabilization term may be on the form

L(pn+1,i+1 − pn+1,i), (6.1)
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where L is a real number, playing the role as a stabilization coefficient. In this case, the

pressure equation becomes

∂

∂x
(−k(λΣ

∂pn+1,i+1

∂x
+

1

2
λ∆

∂

∂x
(pn+1,i
c − τ dsn+1,i

dt
))) + L(pn+1,i+1 − pn+1,i) =

∑
α=w,n

Fα
ρα
,

(6.2)

resulting in an additional term on the diagonal of the system matrix in Equation (4.41).

Additionally, Lpn+1,i completes the vector b in the same system. The pressure- and

saturation equation can still be solved sequentially as before.

In our work we have not had time enough to do full simulations with this includement,

neither have we done a theoretical analysis on the performance of a stabilization of this

type. However, preliminary simulations on our code indicate that a stabilization coeffi-

cient L < 0.1 allows for higher spatial resolution, compared with the same resolution in

time. Theoretical background for such an approach can be found in [1–3].

Application on heterogeneous media

In the future it will also be of interest to apply the model to situations similar to the

approach in [9], where van Duijn, Cao and Pop have set up a one dimensional domain

consisting of two adjacent homogeneous blocks separated by an interface. The blocks

have constant, but unequal, absolute permeability, which may lead to entrapment of the

non-wetting phase, when flowing from the coarse block towards the fine material. The

interface is introduced as a thin porous layer, which length is passed to zero. The inter-

esting thing to explore is the effect of dynamic capillarity, and if such non-equilibrium

effects may lead to less of the non-wetting fluid being trapped at the interface. In [9]

simulations mimicking an oil blob displaced by water suggest that dynamic effects allow

for oil to penetrate the interface, thus occupying porespace in the fine grained block.

Figure 6.1: A heterogeneous case: two homogeneous blocks separated by an interface,
with an initial oil blob in the coarse block at time t=0 [9].
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