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‘The world around us is consistent and non-judgmental. 

It functions and leaves thinking to us.’ 

�  B. Stevens 
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Preface to the thesis 

This dissertation for the degree of philosophiae doctor (PhD) has been submitted to 

the Department of Earth Science at the University of Bergen. This project was 

initiated by the University of Bergen in cooperation with Norske Shell. Funding and 

access to data is provided by Norske Shell. Cooperation with the WOLLGAN project 

(a former co-operative research project involving Statoil, Saga, Amoco, the 

Norwegian Petroleum Directorate and the Geological Institute of the University of 

Copenhagen) was established in 2014 in order to expand access to field data from 

East Greenland.  

The candidate enrolled in the PhD programme at the Department of Earth Science at 

the University of Bergen while carrying out the research between May 2012 and May 

2015. The research was supervised by Professor Atle Rotevatn (University of Bergen) 

and co-supervised by Professor Robert Gawthorpe (University of Bergen), Professor 

William Helland-Hansen (University of Bergen) and Dr. Rodmar Ravnås (Norske 

Shell).   

This dissertation is divided in to three parts. An introduction to the various topics of 

this project is provided in the first part. Here the aims and objectives are outlined and 

a brief description of methods is given. Part two contains the results of this study, 

presented in four scientific papers that together make up the main body of the thesis. 

The findings of these studies are summarised in part three in an attempt to synthesise 

the results of the project. 

The scientific papers have been published in, or are being prepared for submission to, 

different relevant journals. The template of references to literature and figures 

therefore varies between the different papers. References cited in the introduction and 

synthesis are listed at the end of the dissertation. 
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Abstract  

The aim of this project is to improve the tectonostratigraphic understanding of the 

northern part of the Norwegian passive continental margin, the so-called Lofoten 

margin, and contribute to the wider understanding of normal fault evolution and 

depositional style in multiphase rift systems. Several key aspects of the evolution of 

the Lofoten margin have been documented and analysed using a dense database of 

new as well as re-processed 2-D and 3-D seismic reflection surveys: 

i) the nature of Palaeozoic extension in relation to post-orogenic exhumation;  

ii) the structural evolution of the Lofoten margin across the various rift episodes 

of the Mesozoic;  

iii) the evolving depositional environment and sedimentary systems of the North 

Træna Basin. 

In addition, sedimentological fieldwork was carried out on the conjugate margin in 

East Greenland, in order to provide an outcrop analogue for deep marine rift climax 

deposits. 

Large scale, extensional geometries are observed on seismic below the Base 

Mesozoic horizon in the North Træna Basin. In conjunction with earlier studies of 

exhumation in the Lofoten area, which point at a relative young age for the 

exhumation of deep crustal levels and describe the Lofoten Ridge as a Permian-age 

metamorphic core complex, these geometries are interpreted  to represent the break-

away zone of a Cordilleran-style metamorphic core complex. The mechanisms 

behind the protracted exhumation of the Lofoten basement are discussed. 

The hanging wall depocentres of the Vesterdjupet Fault Zone have been mapped in 

detail using seismic data. A reconstruction of the structural framework per rift 

episode is presented. It is described how faults that had formed during the Early 

Triassic rift episode became selectively reactivated and linked during Late Jurassic 

rifting, which allowed the establishment of a single, through-going fault zone during 

renewed rifting towards the middle Cretaceous. Different models that could explain 
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this fault zones characteristic zigzag plan-view geometry are discussed within the 

context of multiphase rifting. 

A seismic record of the sedimentary fill of the North Træna Basin, which forms the 

hanging wall to the Vesterdjupet Fault Zone, is investigated. It is demonstrated how 

the style of basin-fill tends to follow regional developments, but occasionally 

becomes strongly influenced by the progressive, stepwise establishment of the 

boundary fault zone over several rift episodes. These rift episodes are separated in 

time by long inter-rift periods, during which inactive faults become buried and the rift 

topography is replaced by a shelf break margin. Later rift episodes are dominated by 

instantaneous strain localisation, resulting in pronounced fault block rotation, which 

affects the routing of sedimentary systems and dictates abrupt changes in the relations 

among sediment supply, sea-level and subsidence. 

The results from the outcrop analogue study show that the majority of coarse clastic 

sediments of the syn-rift Wollaston Forland Group represent a continuum of deposits 

from a single type of gravity flow. Such gravity flows were sourced from the 

crystalline footwall and deposited in a wedge in the hanging wall. Several types of 

flow transformation that these gravity flows undergo during transport are identified 

and discussed. The observed fault-parallel facies variability is explained as a 

consequence of structural control on sediment routing from the footwall source area 

to the hanging wall.  

In the synthesis presented at the end of this thesis the results of the different papers 

are integrated and discussed, thus highlighting the specific aspects of a rift basin that 

is formed by multiple rift episodes separated by long (> 20 Myr) inter-rift periods. 
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Uittreksel 

Deze dissertatie is gericht op het bevorderen van het tektonostragrafische begrip in  

het meest noordelijke segment van de Noorse passieve continentale marge, de 

zogenaamde Lofoten marge, en draagt zodoende bij aan een beter begrip van de 

ontwikkeling van de afschuivingsbreuken en het afzettingsmilieu in meerfasige 

slenksystemen. Aan de hand van nieuwe en bewerkte 2D en 3D seismische reflectie 

datasets zijn de volgende hoofdaspecten van de ontwikkeling van de Lofoten marge 

aan een nadere analyse onderworpen: 

i) de aard van Paleozoïsche extensie in relatie tot post-orogene opheffing van de 

diepere korst; 

ii) de structurele ontwikkeling van de Lofoten marge gedurende de verschillende 

fases van slenkvorming in het Mesozoïcum;  

iii) het veranderende afzettingsmilieu van het Noord Træna Bekken. 

Aanvullend is veldwerk uitgevoerd op de conjugate marge in Oost Groenland, voor 

een vergelijking met de diep mariene, slenk-gerelateerde afzettingen in Lofoten. 

Grootschalige afschuivingsgeometrieën die zijn waargenomen op seismische data 

onder Mesozoïsche strata in het Noord Træna Bekken. In samenhang met eerdere 

studies naar de opheffing in Lofoten en omstreken, waarin de relatief late opheffing 

en het aan de oppervlakte komen van de diepere korst reeds is aangetoond , en waarin 

de Lofoten Rug is beschreven als een metamorfisch kern-complex uit het Perm, 

kunnen deze geometrieën worden verklaard  als de uitbreekzone van een Cordilerra-

achtig metamorf kern-complex. Tegen deze achtergrond worden de onderliggende 

mechanismes van de langdurige opheffing van het Lofoten sokkel  nader toegelicht.  

De ontwikkeling van de Vesterdjupet Breukzone gedurende het Mesozoïkum is 

bestudeerd door de verschillende sub-bekkens in de hangende wand van deze breuk 

in kaart te brengen. Beschreven wordt hoe breuken, eerst gevormd in het Vroeg-

Trias, selectief werden gereactiveerd en verbonden tijdens de slenkvormings-fase van 

het Laat-Jura, hetgeen op zijn beurt het ontstaan van een enkele, doorgaande 
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breukzone tijdens het Krijt mogelijk maakte. Verschillende modellen die het 

karaketeristieke zigzag-patroon van deze breukzone kunnen verklaren, worden 

bediscussieerd in verband met meerfasige slenkvorming. 

De sedimentaire invulling van de hangende wand van de Vesterdjupet Breukzone is  

bestudeerd aan de hand van seismische data. Er wordt aangetoond dat de 

bekkenvulling de neiging heeft algemene, regionale ontwikkelingen te volgen, maar 

daar af en toe van afwijkt als gevolg van de progressieve, stapsgewijze breuk-

gerelateerde vorming van het bekken tijdens de verschillende slenkvormings-fases. 

Deze fases werden afgewisseld met langdurige tussen-rift periodes, waarin de niet 

langer actieve breuken werden toegedekt en de horst- en slenk topografie plaats 

maakte voor een continentaal plat. De late slenkvormings-fases werden gekenmerkt 

door de directe focus van verplaatsing langs de hoofdbreuken, hetgeen tot uiting komt 

in de versterkte rotatie van de breukblokken. Deze breukblok-bewegingen zijn op hun 

beurt van invloed op de loop van sedimentaire systemen en onderlinge relaties tussen 

sedimenttoevoer, zeespiegel en bodemdaling. 

De resultaten van het veldwerk wijzen uit dat de overgrote meerderheid van de grove 

sedimenten van de Wollaston Forland Groep een continuüm aan afzettingen voorstelt, 

alle afkomstig van een enkel slag sediment-zwaartekrachtstroming. Zulke stromingen 

werden gevoed door erosie van de kristallijne voetwand en afgezet in de 

onderwaterstaande, aanliggende hangende wand. Verscheidene stroomtransformaties 

die deze stromingen ondergingen, zijn geïdentificeerd  en worden vervolgens 

bediscussieerd. Verder wordt de waargenomen breuk-parellele variabiliteit in faciës 

verklaard in verband met de constatering dat de aanvoer van sediment van de 

voetwand naar de hangende wand in grote mate werd bepaald door het breuksysteem.  

In de synthese aan het eind van deze dissertatie worden de resultaten van de vier 

artikelen met elkaar in verband gebracht  en bediscussieerd, daarbij wordt in het 

bijzonder ingegaan op de specifieke eigenschappen van een slenk die gevormd is in 

een proces waarbij verschillende rift-periodes worden afgewisseld door lange (> 20 

miljoen jaar) tussen-rift periodes. 
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Sammendrag 

Målet med dette prosjektet er å forbedre den tektonostratigrafiske forståelsen av den 

nordlige delen av den norske passive kontinentalmarginen, den såkalte 

Lofotenmarginen, og bidra til en bredere forståelse av utvikling av 

normalforkastninger og avsetningsmiljø i flerfase riftsystemer. Flere sentrale aspekter 

ved utviklingen av Lofotenmarginen er dokumentert og analysert ved hjelp av en tett 

database med ny så vel som reprosessert 2-D og 3-D seismikk: 

i) arten av palaeozoisk ekstensjon i forhold til post-orogonetisk heving av 

jordskorpen; 

ii) den strukturelle utviklingen av Lofotenmarginen på tvers av de ulike riftepisoder i 

mesozoikum; 

iii) utvikling avsetningsmiljø og sedimentære systemer av Nord Træna-bassenget. 

I tillegg ble sedimentologisk feltarbeid utført på Øst-Grønland, på Lofotens 

konjugatmargin, for å gi en analog for de dypmarine avsetningene under riftklimaks. 

Storskala ekstensjonsgeometrier er observert på seismikk under bunn-mesozoikum-

horisonten i Nord Træna-bassenget. I forbindelse med tidligere studier av landheving 

i Lofoten, som peker på en relativ ung alder for heving av nedre jordskorpe, og 

beskriver Lofotenryggen som et metamorfe kjernekompleks av permisk alder, er 

disse geometriene tolket til å representere break-away-sonen i et Cordilleran-type 

metamorft kjernekompleks. Mekanismene bak den langvarige heving av Lofotens 

grunnfjell blir diskutert. 

Bassengene i den hengblokken av Vesterdjupet Forkastningssone har blitt kartlagt i 

detalj ved hjelp av seismiske data. En rekonstruksjon av det strukturelle rammeverket 

per rift episode presenteres. Det beskrives hvordan forkastninger dannet under den 

tidlig-triasiske rift episoden ble selektivt reaktivert og knyttes sammen under rifting i 

sen jura, som tillot etablering av et enkelt, gjennomgående forkastningssone under 

fornyet rifting mot midten kritt. Ulike modeller som kan forklare denne 
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forkastningssonens karakteristiske sikksakk-geometri i kartplanet er diskutert 

innenfor rammen av flerfase rifting. 

En seismisk registrering av sedimentær innfylling av Nord Træna-bassenget, som 

danner hengblokken til Vesterdjupet Forkastningssone, er undersøkt. Det er 

demonstrert hvordan stilen til bassenginnfyllingen har en tendens til å følge den 

regionale utviklingen, men tidvis blir sterkt påvirket av den trinnvis etablering av en 

grenseforkastningssone over flere rift episoder. Disse riftepisodene er adskilt i tid 

med lange inter-rift perioder, hvor inaktive forkastninger blir begravd og rift-

topografi er erstattet av en margin med tydelig sokkel og eggakant. Senere rift 

episoder er dominert av momentan belastningslokalisering, noe som resulterer i 

rotasjon av forkstningsblokker, noe som påvirker ruting av sedimentære systemer og 

dikterer endringer i forholdene mellom sedimentforsyning, havnivå og innsynkning. 

Resultatene fra analogstudien viser at flertallet av grove klastiske sedimenter av syn-

rift Wollaston Forland Gruppen representerer et kontinuum av innskudd fra en enkelt 

type gravitasjonsstrøm. Slike gravitasjonsstrømmer hadde sin kilde i en krystallinsk 

liggblokk og avsatt i en kile på hengblokken. Flere typer flyttransformasjon disse 

gravitasjonsstrømmene gjennomgår under transport er identifisert og diskutert. Den 

observerte forkastningsparallele faciesvariabilitet er forklart som en konsekvens av 

strukturell kontroll av sedimentføring fra kildeområdet i liggbloken til den 

avsetningsområdet i hengblokken. 

I syntesen på slutten av denne avhandlingen blir resultatene av de ulike artiklene 

integrert og diskutert, og fremhever dermed bestemte aspekter av et riftbassenge som 

er dannet av flere riftepisoder atskilt med lange (> 20 million år) inter-rift perioder. 



14

Introduction 

Passive margins 

The process of continental rifting forms an integral part of the plate tectonic cycle and 

rifted margins form important targets for exploration of hydrocarbons (Fraser et al., 

2007). Accordingly, passive margin evolution has been studied extensively and a 

wide range of styles is recognized; their classification has traditionally been based on 

(i) geometry (rifted, sheared or transtensional; Fowler, 1990), (ii) the nature of the 

transitional attenuated crust (volcanic versus non-volcanic; White and McKenzie, 

1989) or (iii) sedimentation history (sediment-starved versus nourished; Milliman and 

Meade, 1983). Such classifications are descriptive and do not touch upon the 

underlying mechanism of continental rifting. 

It was shown that the uniform stretching model of McKenzie (1978) cannot account 

for all observed features of certain passive continental margins, such as the exposure 

of stretches of serpentinised continental mantle (Davis & Kusznir, 2002). Such 

margins are better understood as a result of depth-dependent stretching and two-stage 

breakup, which requires a certain degree of decoupling between crust and mantle 

lithosphere. In recent years, a new approach to the classification of passive margins 

has emerged that looks at the mechanical and thermal processes that lay at the base of 

continental breakup (Huismans & Beaumont, 2007). This classification states that 

various properties of rifted margins (e.g. magmatism, structural style and 

sedimentation history) can be predicted by knowing the rheological properties of the 

original, pre-rift lithosphere which dictates style of depth-dependent stretching 

(Huismans & Beaumont, 2011). 

Fault evolution in multiphase rift systems 

Results from the numerical models of Brune (2014) indicate that rifting prefers 

oblique reactivation of mechanically weak zones at an angle to far-field stresses. 

During initial rifting, en-echelon fault arrays develop over these weak zones. The 
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locus of extension may migrate laterally with time as rifting progresses (Brune, 2014; 

Naliboff & Buiter, 2015). 

Continental breakup typically involves multiple phases of lithospheric extension, i.e. 

multiphase rift systems. In this dissertation we distinguish between episodes, phases 

and events following the definition of Ravnås et al. (2000). In practice, the term 

‘multiphase rift’ is used for any rift basin formed by multiple extension events, 

regardless of timespan.   

Single rift episodes are typically characterised by rift initiation, followed by fault 

interaction and linkage and finally rift climax (Gupta et al., 1999; McLeod et al., 

2000). In multiphase rift systems which involve more than one rift episode, these 

subsequent stages are repeated, meaning that periods of rift climax are followed by 

renewed fault initiation, often separated by a period of tectonic quiescence (Ravnås et 

al., 2000; Bell et al., 2014). Subsequent rift episodes may utilise and reactivate pre-

rift structures (Clifton et al., 2000; Morley et al., 2004; Paton, 2006). In a multiphase 

rift system, normal faults that form during the early rift episode(s) influence the 

structural style of subsequent rift episodes as is shown by using physical analogue 

models (Keep & McClay, 1997; Henza et al., 2011). 

Traditionally the evolution of faults is described as the progressive incidental 

coalescence of initially isolated growing fault segments. This process has been 

documented in nature (e.g. Peacock and Sanderson, 1991; Cartwright et al., 1996; 

McLeod et al., 2000) and is recreated in modelling studies (e.g. Scholz et al., 1993; 

Crider and Pollard, 1998, Cowie et al., 2000). Heterogeneities in the (crystalline) 

bedrock or pre-existing structures are known to influence normal fault growth, by 

providing a kinematic relationship between fault segments since their inception 

(Morley et al., 1999). In such a case the fault initiation phase is not characterised by 

the distribution of displacement over numerous isolated faults (e.g. Cowie et al., 

2000) but represents the establishment of a single structure from the outset (the 

coherent fault model; Walsh et al., 2002, 2003). Reactivation of a normal fault in a 

multiphase rift system is documented in nature by Giba et al. (2012) and Jackson & 
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Rotevatn (2013) who demonstrated that the process of reactivation may follow the 

coherent fault model, starting with the inception of a series of kinematically linked 

faults along the length of the reactivated, buried fault (Walsh et al., 2002). It was 

pointed out by Bell et al. (2014) that existing generic evolution models address single 

episode rift systems (Cowie et al., 2000), and that such models do not yet exist for rift 

systems with multiple episodes, i.e. extensional basins formed by repeated cycles of 

rift initiation and climax. 

Sedimentary fill of rift basins 

Rift basins can accommodate a wide range of depositional environments, from sub-

aerial alluvial fans, rivers and deltas to deep water (hemi-) pelagics. Modern-day rift 

basins in a terrestrial setting are by default readily accessible for studying the more 

proximal end of this depositional spectrum (e.g. the Rio Grande rift; Brister and 

Gries, 1994; Leeder et al., 1996). The same holds for marginally marine 

environments in submerged rift basins (e.g. the fan deltas of the Gulf of Corinth: 

Collier and Dart, 1991; Rohais et al., 2007). Depositional processes in modern deep 

water rift basins have been studied in Lake Baikal (Colman et al., 2003), Gulf of 

Corinth (Lykousis et al., 2007) and the east Africa Rift (Lyons et al., 2011). Generic 

models for sedimentation in an active extensional basin have been put forward for a 

single cycle of rift initiation to rift climax (Gawthorpe & Leeder, 2000; Ravnås and 

Steel, 1998; Withjack et al., 2002; Gawthorpe and Leeder, 2000).  

Submerged rift basins are to a large degree hidden from direct observation; it requires 

significant uplift and erosion for them to be exposed, while they form typically when 

plate motions are divergent. This explains (partly) why outcrop examples of deep 

marine rift climax deposits are rare; they are known from Wollaston Forland (East 

Greenland; Surlyk, 1978), the Inner Morray Firth (UK; Wignall & Pickering, 1993) 

and the Gulf of Corinth (Greece; Gobo et al., 2014). These outcrops are dominated by 

subaqueous gravity flow deposits.  

Recent research in the field of subaquous gravity flows focussed on turbulence 

damping and variability of hydraulic regime within single events (Postma et al., 2009; 
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Talling et al., 2007). Gravity flows released into a narrow basin may be forced to 

decelerate over confining slopes (Mutti et al., 1999; Patacci et al 2014). Such 

turbulence damping likely also takes place in gravity flows released into deep water 

rift basins, which often exhibit a confined physiography, but is rarely documented. 

The Northern Norway-Greenland rift 

The Norwegian passive continental margin forms part of the eastern side of the 

greater Atlantic continental rift system which is associated with the break-up of the 

supercontinent Pangea. (Doré, 1992). It consists of three c. 400 km long segments; 

the Lofoten-Vesterælen margin forms the northernmost segment and is bordered by 

two crustal scale lineaments. The Bivrost fault zone in the southwest separates it from 

the greater Vøring Basin and Trondelag platform; to the northeast the margin segment 

is bordered by the Senja fault zone that forms an integral part of the western Barentsz 

Sea transform margin. The Norwegian passive continental margin resembles a 

volcanic rifted margin. However, compared to the Vøring margin to the south, the 

Lofoten-Vesterålen margin is characterised by reduced magmatism (both intrusive 

and extrusive; Berndt et al., 2001; Tsikalas et al., 2001) and underplating is less well-

developed (Mjelde et al., 1993). Moreover, the Lofoten-Vesterålen crust experienced 

relatively moderate extension during rifting (Tsikalas et al., 2012). Break-up style is 

consistent with depth-dependent stretching of the lithosphere during (early) sea floor 

spreading (Kusznir et al., 2004; Tsikalas et al., 2008). 

The Norwegian passive continental margin is a multiphase rift system characterized 

by major extensional episodes during the Permo-Triassic and Middle-Late Jurassic 

(Doré et al., 1999; Færseth, 2012). Along the Lofoten-Vesterålen segment at the 

northern end of the margin, extension continued into the Early and Late Cretaceous 

(Hansen et al., 1992; Løseth and Tveten, 1996; Tsikalas et al., 2001; Hansen et al., 

2012). This margin segment is characterized by more or less continuous subsidence 

throughout the Mesozoic (Faleide et al., 2008). Normal faults and their hanging wall 

depocentres formed during the successive rift episodes have, for the most part, been 

buried and preserved. The relatively under-explored Lofoten-Vesterålen margin 
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forms an ideal natural laboratory for studying multi-episodic rifting, because 

Cretaceous reactivation of both Permo-Triassic and Late Jurassic structural elements 

can be demonstrated.  

The link between fault patterns mapped both offshore and onshore has been 

investigated by different workers (Wilson et al., 2006; Bergh et al., 2007; Hansen et 

al., 2012). Along the Lofoten-Vesterålen margin, polarity and geometry of faults vary 

within and between sub basins; as a result, several distinct fault populations are 

recognized. The spatiotemporal development and interaction of these fault 

populations has been subject of debate in recent years. It has been argued that the 

different fault populations that are being recognized reflect distinct rift pulses 

following a rotation of the regional extensional stresses with time (Bergh et al., 

2007), whereas Wilson et al. (2006) suggest that they formed simultaneously as 

conjugate sets under a uniform stress field, locally perturbed as a result of an 

inherited Caledonian basement grain. 

While the structural evolution of the area of interest has received much attention in 

recent years, the basin-fill component has received considerably less attention 

(Smelror et al., 2001). Constraints on the structural framework based on sedimentary 

fill (and vice versa) are sometimes mentioned in literature (e.g. Bergh et al., 2007), 

but a dedicated study linking depositional trends to the tectonic evolution of the 

Lofoten-Vesterålen margin has not been carried out hitherto.  

Aims and objectives 

The overall aim of this dissertation is to contribute to the understanding of the 

evolution of normal faults and depositional style in multiphase rift systems, by

investigating the tectonostratigraphic evolution of the northern Norwegian-Greenland 

rift.  

The first objective is to reconstruct the earliest extensional history of the Lofoten 

margin following the collapse of the Caledonian orogeny. This is achieved by 
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studying seismic reflection data on which the pre-Mesozoic basin configuration of the 

Lofoten margin is imaged. The result of this work is presented in paper 1.

The second objective is a reconstruction of the evolution of the Vesterdjupet Fault 

Zone, one of the major normal fault zones that characterise the Lofoten margin. By 

mapping and characterizing various seismo-stratigraphic intervals in is hanging wall, 

it is demonstrated how this fault zone formed during three rift episodes by repeated 

reactivation and linkage of earlier faults. This case study for the evolution of a major 

segmented normal fault during multiphase rifting is presented and discussed in paper 

2. 

The third objective is to reconstruct depositional environments in time and space for 

the North Træna Basin, the hanging wall of the Vesterdjupet Fault Zone. The 

stratigraphic geometries observed on seismic data are interpreted and compared to 

regional depositional trends, as well as the evolution of the Vesterdjupet Fault Zone 

documented in paper 2. This case study of the evolution of sedimentary fill of a rift 

basin that is characterised by multiple extension episodes is presented in paper 3. 

The fourth objective is a sedimentological investigation of sediment deposited during 

the Late Jurassic to Early Cretaceous rift climax in East Greenland. In this study the 

different sedimentary systems that supplied clastic material to the basin are identified 

and the role of structural control on sediment routing is discussed. Furthermore, the 

deposits are described and analysed in order to determine the processes that formed 

them. The results of this outcrop study are presented in paper 4.  

The fifth objective is to synthesise the results of the different papers in order to 

extract and discuss the main learnings and contribution to the understanding of 

extensional basins formed by multiple rift episodes. 
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5. Synthesis  

5.1 Summary: multi-episodic rifting of the Lofoten margin 

Palaeozoic extension and exhumation 

In Lofoten, unroofing of Caledonian allochthonous sequences and the exhumation of 

lower crustal rocks occurred relatively slow in comparison to southern Norway, and 

lasted well into the Permian (Hames & Andresen 1996). In paper 1 we document and 

discuss Palaeozoic, probably Permian, extensional features seen on seismic data in 

the offshore domain and propose a mechanism behind this long-lived exhumation 

history. We demonstrate how crustal extension and exhumation in Palaeozoic times 

was facilitated by a Cordilleran-style metamorphic core complex in the Lofoten area. 

This large asymmetric structure is dominated by a metamorphic dome consisting of 

lower crustal rocks, which consist of the partly submerged Lofoten Ridge and likely 

extends underneath the southern Ribban Basin. To the west we recognise a supra-

detachment basin, or breakaway zone, of Palaeozoic age at the base of the North 

Træna Basin (paper 1). 

The Early Triassic rift episode 

During Late Permian - Early Triassic times, rifting focussed on the western edge of 

the Baltic shield, in the northern North Sea, Norwegian Sea and western Barents Sea 

(Doré, 1992; Brekke, 2000). In the Lofoten margin, this rift episode was characterised 

by the development of a series of parallel NNE-SSW-striking which formed primarily 

over the underlying Palaeozoic supra-detachment basin (papers 1 and 2). Where 

drilled, the Lower Triassic consists of fine- to very coarse-grained sediments derived 

from the local basement and deposited as alluvial fans under arid conditions (Hansen 

et al. 1992). The Triassic faults that form the precursors to the Vesterdjupet Fault 

Zone are interpreted to have formed as isolated features (paper 2). 

The Middle Triassic to Middle Jurassic inter-rift period 

A reduction in tectonic activity is placed at the transition from the Early to the Middle 

Triassic (Færseth, 2012) and extensional tectonics was not resumed before Late 
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Jurassic times (paper 2).  Much of the area was uplifted at the transition between the 

Triassic and Jurassic periods (Hansen et al., 2012). The uplifted terrain was 

subsequently peneplained and transgressed in Middle Jurassic times. The southern 

Ribban Basin had remained a platform throughout this period (papers 1, 2 and 3; 

Hansen et al., 1992). This inter-rift period lasted c. 85 Myr and is characterised by 

deposition of fine- to medium-grained coastal plain to shallow marine sediments in 

the North Træna Basin (Hansen et al., 1992). 

The Late Jurassic to earliest Cretaceous rift episode  

Renewed rifting on the Lofoten margin initiated in the Late Jurassic. Paper 2

demonstrates how Triassic faults were selectively reactivated and linked up to form 

zigzag-style fault zones. Open marine conditions prevailed across the down-faulted 

areas of the Lofoten margin. Depocentres that formed at some distance from 

(structural) highs remained sediment-starved, whereas those depocentres that were 

located adjacent to sediment source areas contain syn-tectonic, clastic wedges 

(papers 3 and 4). 

The Early Cretaceous inter-rift period 

The Base Cretaceous unconformity formed as tectonic activity decreased, and the 

overlying Valanginian to lower Albian interval represents another, c. 35 Myr long 

inter-rift period. During which the inherited Late Jurassic depocentres were 

effectively filled in (papers 2 and 3). The early part of this period is characterised by 

slow sedimentation in a distal setting whereas regressive clastic wedges developed 

during the Aptian and early Albian, similar to progradational pulses of shelfal sands 

elsewhere along the fringes of the northern North Atlantic rift (paper 3; Larsen et al., 

1999). 

The middle Cretaceous rift episode

The major fault zones of the Lofoten Margin were reactivated in the late Albian 

(paper 2). An up to two kilometre thick succession of fine-grained, marine sediments 

of late Albian age was deposited in the northern North Træna Basin and the Ribban 

Basin (papers 2 and 3). We describe clastic sedimentary systems in the immediate 
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hanging wall of the Vesterdjupet Fault Zone that were either axially sourced or 

derived from the exposed footwall; this depositional setting is compared to a similar 

setting seen in Lake Baikal and to the coarse grained gravity flows described in 

(papers 3 and 4). Middle Cretaceous faulting is also observed in the outer Vøring 

margin and the Faroe-Shetland Basin at this time (Brekke, 2000; Faleide et al., 2008; 

Larsen et al., 2010) whereas rifting had ceased in the North Sea and Møre-Trøndelag 

shelf. This indicates that the locus of extension had shifted closer to the central axis 

of the northern North Atlantic rift. 

The early Late Cretaceous inter-rift period 

The Cenomanian to Campanian represents a c. 20 Myr inter-rift period between Late 

Albian and Campanian rifting, and is characterised by uplift of the Utrøst Ridge, 

causing the NNE-SSW-trending basins of the Lofoten margin to become tilted to the 

south. Sedimentation rates peaked in the Vøring and Møre margin segments, whereas 

the Lofoten margin had become strongly divided by Albian fault block rotation, 

causing the outboard basins such as the North Træna Basin to be cut off from 

sediment sources in the east (paper 3).  

The Late Cretaceous – Palaeogene rift episode 

Normal faulting was resumed during the Campanian; reactivation of the Vesterdjupet 

Fault Zone was relatively mild (paper 2), while most strain was accommodated west 

of the Utrøst Ridge, close to the area of continental separation that took place towards 

the end of this rift episode (Tsikalas et al., 2001). Uplift of the Utrøst ridge and tilting 

of the North Træna and Ribban Basins reinvigorated, resulting in subaerial exposure 

and erosion of the northern parts of these basins whereas the southern parts were 

characterised by southward-directed turbidite systems that continued into the Træna 

Basin (paper 3; Vergara et al., 2001). This rift episode culminated in continental 

break-up in the Eocene (Mosar et al., 2002). 
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5.2 Tectonostratigraphic model for rift basins of the northern 

Norwegian-Greenland rift

A conceptual model for the evolution of rift basins that form during two distinct rift 

episodes, separated by an inter-rift period lasting several 10’s of millions of years, is 

shown in Figure 1. This model is based (partly) on the Middle Jurassic to middle 

Cretaceous tectonostratigraphic evolution of the Lofoten margin and Wollaston 

Forland. Key aspects of this model include: 

• The first rift episode contains an initiation phase (Fig. 1B), followed by a linkage 

phase during which individual faults begin to link up and form through-going 

fault systems. As displacement is facilitated by fewer faults, the depocentres that 

border these faults are subject to higher subsidence rates and may become under-

filled (Fig. 1C; paper 2). Variability in depositional style is largely a function of 

proximity to hinterland sediment source areas. In figure 1C, the half-graben on the 

right hand side resembles the Ribban Basin and the Wollaston Forland Basin 

(papers 3 and 4) that border the hinterland, whereas the half-graben to the left, 

being disconnected from the hinterland, resembles the North Træna Basin during 

the Late Cretaceous (papers 2 and 3).  

• When fault activity ceases, the inherited submerged rift terrain becomes filled up 

by a regression of inter-basinal, deltaic sedimentary systems (Fig. 1D). If 

sedimentation supply is sufficient, footwall highs are buried and a shelf break 

margin may develop (paper 3).  

• During the second rift episode, strain is accommodated instantaneous by 

reactivation of only a select few through-going fault zones resulting in rift climax 

without preceding rift initiation or linkage stages (Fig. 1E). Pronounced 

subsidence and fault block rotation produces deep basins and reversals of 

sedimentary systems (paper 3).  

•  Following the subdivision of the area into elongated, deep basins, sedimentary fill 

of the post-rift period and that of possible subsequent rift events, is likely to be 
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composed almost exclusively of axially-sourced turbidite systems (Fig. 1F; 

(papers 3 and 4), followed by the establishment of a shelf break margin.  

  

Figure 1. Conceptual model for specific features of relatively proximal and distal basins formed 
during two rift episodes, separated by an inter-rift period, somewhat based on the Middle Jurassic 
to Late Cretaceous evolution of the North Træna and Ribban Basins. Dark- and light grey 

represent syn-rift and inter-rift sedimentary fill, respectively. 
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5.3 Towards a generic model for the evolution of normal faults 
during multiple rift episodes 

Fault evolution during single rift episodes represents a more or less continuous 

process starting with an inception stage, followed by linkage and finally rift climax 

(Cowie et al., 2000). It has been pointed out by Bell et al. (2014) that in multi-

episodic rift basins, the process of inception, linkage and climax is repeated and that 

no generic models exist yet for describing repetitive rejuvenation of faults in multi-

episodic rifts. The evolution of long-lived normal faults that develop during multiple 

rift episodes (such as the Vesterdjupet Fault Zone) can be compared to normal faults 

that form in a single episode (e.g. the Middle-Late Jurassic rift episode in the northern 

North Sea; McLeod et al, 2000). Certain differences between single-episode and 

multi-episode segmented normal faults are listed below: 

• Through-going, linked normal faults are prone to form zigzag geometries, being 

composed of segments formed during different rift episodes. 

Our proposed reconstruction of the evolution of the Vesterdjupet Fault Zone 

(paper 2) shows that a (likely) change in extension direction between the 

Early Triassic and Late Jurassic rift episodes facilitated linkage of widely 

spaced Triassic faults, in coherence with the models of multiphase, non-

coaxial extension of Henza et al. (2011). It can be assumed that two rift 

episodes, being separated by a long period of relative tectonic quiescence, are 

more likely to have a different extension vector than two rift phases within a 

single episode. This is for instance the case for the Taranaki Basin (Giba et al., 

2012), the St. Lawrence rift system (Rocher et al., 2003) and the East African 

rift system (Bosworth, 1992). 

• A rift episode that selectively reactivates buried, through-going faults of foregoing 

rift episode(s) is characterised by early localisation of strain. High strain rates 

follow from the fact that displacement is accumulated on only a few structures. 

Inactive faults become buried during inter-rift periods. In the case of the 

Lofoten margin, the linked Triassic/Jurassic fault zone that formed the 
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precursor to the Vesterdjupet Fault Zone had become covered by c. 1-2 km of 

Lower Cretaceous strata before renewed extension took place in the middle 

Cretaceous. This rift episode was characterised by a minor initiation phase that 

was quickly succeeded by the climax phase. Selective reactivation of through-

going elements of the Triassic/Jurassic fault framework resulted in the early 

establishment of a long, single slip surface as predicted by the coherent fault 

model (paper 2).  

The Clavering-Dombjerg-Thomsenland Fault Zone that forms the main border 

fault to the Wollaston Forland Basin in East Greenland has a Palaeozoic origin 

(Surlyk, 1990). During the Late Jurassic to Early Cretaceous rift episode, strain 

was localised on this fault zone (and a few others) which became reactivated 

and behaved as a through-going, c. 100 km long normal fault (paper 4; Surlyk, 

1978).  

• Reactivation of previously linked, deeply buried zigzag fault zones produce gently 

curving faults traces at surface. 

Faults of the foregoing rift episode become buried during inter-rift periods. In 

the case of the North Træna Basin, this is particularly true for the early 

Cretaceous, when the Triassic/Jurassic fault framework is buried by more than 

a kilometre of inter-rift strata. When the Vesterdjupet Fault Zone becomes 

reactivated during late Albian extension it assumes a curved geometry, lacking 

the sharp corners that are observed between some of the Triassic and Jurassic 

fault segments (paper 2). A possible explanation for this phenomenon is given 

by Kettermann & Urai (2015), who used physical models of normal faulting to 

demonstrate how the presence of overburden influences structural style. These 

workers noticed a change in failure mode from tensile to shear in experiments 

with increasing overburden. Shear failure produced curved fault traces rather 

than sharp changes in strike. Figure 2 shows how this process could explain 

the difference in curvature of faults between the Early Triassic (Time I), Late 
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Jurassic (Time II) and middle Cretaceous (Time III) due to repeated burial and 

reactivation of faults. 

These differences are, for the most part, a consequence of long inter-rift periods 

during which faults become buried and changes may occur in the regional stress-

field. Subsequent rift episodes during which strain is accommodated by reactivating 

through-going faults from a foregoing episode are characterised by fast  

(re-)establishment of laterally extensive slip surfaces. Early accumulation of 

displacement on the major fault zones results in pronounced fault block rotation, 

documented in papers 3 and 4. Rotation of wide fault blocks has a more pronounced 

effect on basin physiography than if displacement was distributed over many small 

faults. Rotation may force drainage systems to redirect and thus exerts a major 

control on depositional style. The development of long spurs and deep hanging wall 

depocentres over strongly rotated fault blocks thus seems to be a feature of multi-

episodic rifts rather than single-episode rifts, and has profound consequences for rift 

fill. 

Figure 2. Conceptual model for the repetitive (oblique) reactivation and linkage of buried faults. 
The situation prior to reactivation is shown at Time I, this level is referred to as ‘basement’. 
During the first phase of oblique reactivation (Time II) the ramp is breached at depth and 
crescent-shaped faults develop at surface.  The original basement faults are reactivated as well, 
forming en-echelon arrays at surface. During a secondary phase of reactivation (Time III) a 

single, segmented fault zone develops at surface. At depth, the already breached ramp at 
basement level moves as a single feature while most of the isolated surface structures from Time 
II have linked up at the intermediate level. 
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5.3 Possible explanation for contrasting plan-view geometries 

of major rift faults 

In the Lofoten margin, faults that first formed as part of the Triassic rift episode strike 

NNE-SSW predominantly, whereas faults incepted in the Jurassic and Cretaceous rift 

episodes are striking NE-SW (paper 2). As a consequence, the Cretaceous 

Vesterdjupet Fault Zone which is strongly influenced by Triassic precursor faults, is 

made up predominantly of NNE-SSW-striking segments with one NE-SW-striking 

jog. We discussed how this geometry follows physical analogue models of non-

coaxial extension of Henza et al. (2011; paper 2). The West Lofoten Border Fault 

Zone exhibits a pattern of long (40 km) NE-SW trending segments alternating with 

relatively short (15 km) NNE-SSW trending steps (Fig. 3). In paper 1 we interpret 

the southern Ribban Basin as having formed over the central dome of a metamorphic 

core complex that was affected less by Triassic rifting. This suggests that no strong  

NNE-SSW-trending fault grain exists in the area where the West Lofoten Border 

Fault Zone formed. We speculate that the dominance of NE-SW-oriented structures 

of this fault zone may be a consequence of this supposedly weaker pre-existing NNE-

SSW: when the West Lofoten Border Fault Zone formed during Jurassic and mostly 

middle Cretaceous rifting, there were fewer, if at all, Triassic faults to reactivate, and 

most segments followed the Jurassic/Cretaceous NE-SW trend.

Unfortunately, the lack of wells and limited seismic dataset over the Ribban Basin is 

currently insufficient to confirm these speculations. Should new data become 

available that would indicate absence of a well-developed Triassic fault grain, then 

the evolution of the West Lofoten Border Fault Zone is in good agreement with the 

results of Henza et al. (2011), as it can be correlated to for instance model B (Henza 

et al., 2011) that is characterised by a weak 1st phase extension (correlated to the 

Triassic rift episode in our case) and a strong 2nd phase extension (correlated to the 

Jurassic/Cretaceous rift episodes in our case). Fault zones of model B show a definite 

dominance of segments incepted during second phase extension. Once more well- 

and seismic data becomes available, this hypothesis could be tested.  
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Figure 3. Fault polygons of the Base Cretaceous horizon, mapped using seismic reflection data over 
the North Træna- and Ribban Basins. The Cretaceous fault zones of the Lofoten margin exhibit a 

two-fold distribution in terms of their plan-view geometry. We observe a strong correlation between 
i) the presence of a well-developed Triassic fault grain and ii) Cretaceous faults consisting of 
predominantly NNE-SSW-striking segments. Where an ancestral early Triassic structural grain is 
speculated to be absent, on the other hand, Cretaceous composite faults are mostly composed of NE-

SW-striking segments. 
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