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Abstract. A recent palaeo-reconstruction of the strength of

the Iceland–Scotland overflow during the last 600 years sug-

gests that its low-frequency variability exhibits strong sim-

ilarity with palaeo-reconstructions of the Atlantic Multi-

decadal Oscillation (AMO). The underlying mechanism of

the similar variation remains unclear, however, based on

palaeo-reconstructions alone. In this study we use simula-

tions of the last millennium driven by external forcing re-

constructions with three coupled climate models in order to

investigate possible mechanisms underlying the similar vari-

ation of Iceland–Scotland overflow strength and AMO in-

dex. Similar variation of the two time series is also largely

found in the model simulations. Our analysis indicates that

the basin-wide AMO index in the externally forced simula-

tions is dominated by the low-latitude sea surface temper-

ature (SST) variability and is not predominantly driven by

variations in the strength of the Atlantic meridional overturn-

ing circulation (MOC). This result suggests that a large-scale

link through the strength of the MOC is not sufficient to ex-

plain the (simulated) similar variation of Iceland–Scotland

overflow strength and AMO index. Rather, a more local link

through the influence of the Nordic seas surface state and

density structure, which are positively correlated with the

AMO index, on the pressure gradient across the Iceland–

Scotland ridge is responsible for the (simulated) similar vari-

ation. In the model simulation showing a weaker correla-

tion between the Iceland–Scotland overflow strength and the

AMO index, the wind stress in the Nordic seas also influ-

ences the overflow strength. Our study demonstrates that

palaeo-climate simulations provide a useful tool to under-

stand mechanisms and large-scale connections associated

with the relatively sparse palaeo-observations.

1 Introduction

Marine sediment cores provide palaeo-climatic information

by allowing the reconstruction of marine quantities back in

time. Apart from temperature and salinity, which are de-

duced from the chemical properties of plankton shells, the

strength of the near-bottom flow can also be reconstructed

based on the mean sediment grain size (with larger grain size
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Figure 1. Reconstructed AMO index from Gray et al. (2004,

blue), Mann et al. (2009, cyan) and Svendsen et al. (2014, pur-

ple); Iceland–Scotland overflow strength from Mjell et al. (2015,

red). The AMO indices are shown as annual values with an 11-

year running mean filter applied. For the Iceland–Scotland over-

flow strength, the original time series has irregular dates and is

smoothed by applying a three-point running mean filter. All time se-

ries are normalised by the respective standard deviations. The map

shows the location of the sediment core on which the reconstructed

Iceland–Scotland overflow strength is based (topography is shown

for depths of 500, 1000, 1500, 2000 and 2500 m). Figure adapted

from Mjell et al. (2015).

corresponding to stronger near-bottom flow) if the sediment

cores are taken along sediment drifts, where there is lateral

transport and input of sediments. Due to this lateral sedi-

ment transport by deep-ocean currents, the pattern of oceanic

sediment drifts mirrors the path of the deep-ocean currents

(Wold, 1994). Recently, a reconstruction of the Iceland–

Scotland overflow strength for the last 600 years has become

available (Mjell et al., 2015) based on a sediment core lo-

cated downstream of the Iceland–Scotland ridge (ISR) within

the Gardar sediment drift at the eastern flank of the Reyk-

janes Ridge. The reconstructed overflow time series exhibits

pronounced variability on multidecadal to centennial time

scales, which agrees well with the variability suggested from

a previous study by Boessenkool et al. (2007) based on the

mean sediment grain size from a sediment core spanning the

last 250 years, located downstream of the core discussed in

Mjell et al. (2015).

Mjell et al. (2015) further reveal a strong similarity be-

tween the low-frequency variability of the Iceland–Scotland

overflow strength and reconstructions (e.g. Gray et al., 2004)

of the Atlantic Multidecadal Oscillation (AMO), with pe-

riods of strong flow associated with Atlantic-wide warmth

(Fig. 1). The AMO is the leading mode of sea surface temper-

ature (SST) variability in the North Atlantic on multidecadal

time scales (e.g. Schlesinger and Ramankutty, 1994, based

on temperature records; Delworth and Mann, 2000, based on

temperature records and coupled climate models). Palaeo-

reconstructions are, however, still very rare and do not al-

low a detailed investigation of mechanisms underlying the

(co)variability suggested from them.

A broader insight into the palaeo-climate can be provided

by coupled climate model simulations driven by external

forcing reconstructions, in particular variations in the solar

irradiance or major volcanic eruptions. AMO, North Atlantic

SST variability in general and some aspects of the oceanic

circulation, such as the North Atlantic gyre and especially

the Atlantic meridional overturning circulation (MOC), in

externally forced simulations have recently been discussed

in the literature (e.g. Goosse and Renssen, 2006; Stenchikov

et al., 2009; Otterå et al., 2010; Mignot et al., 2011; Swinge-

douw et al., 2011; Zhong et al., 2011; Ortega et al., 2012;

Park and Latif, 2012; Zanchettin et al., 2012; Lehner et al.,

2013; Swingedouw et al., 2013). They arrive, however, at

partly contradictory conclusions. Attempts to explain the dif-

ferences in the oceanic response to an external forcing point

towards a dependence on the simulated background state

(Zanchettin et al., 2012) as well as on the frequency and am-

plitude of major volcanic eruptions in the time period consid-

ered for the analysis (Mignot et al., 2011). Reconstructions of

external forcing components are also subject to some debate,

such as the amplitude of solar radiation variability. In con-

trast to North Atlantic SST and MOC, the overflow from the

Nordic seas through the Denmark Strait and across the ISR

has not been studied (much) in externally forced simulations.

Here we use simulations of the last millennium driven by

external forcing reconstructions with three coupled climate

models to investigate mechanisms underlying the similar

variation of Iceland–Scotland overflow strength and AMO

index suggested from palaeo-reconstructions (Mjell et al.,

2015). Two possible mechanisms linking the two time se-

ries are discussed. The first is (i) a large-scale link through

the strength of the MOC in the sense that a warm (cold)

phase of the AMO is associated with a strong (weak) MOC

that is influenced by strong (weak) Iceland–Scotland over-

flow. Indeed, there is evidence from previous studies based

on ocean reanalysis and control simulations with coupled

climate models of an influence of the Denmark Strait over-

flow variability on the variability of the MOC (e.g. Jung-

claus et al., 2005; Köhl and Stammer, 2008) as well as of

the association of multidecadal SST anomalies in the North

Atlantic, as reflected in the AMO index, with multidecadal

MOC variations (e.g. Delworth and Mann, 2000; Latif et al.,

2004; Knight et al., 2005). Mechanism (ii) consists of a more

local link through the influence of the Nordic seas surface
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state and density structure, which are positively correlated

with the basin-wide AMO index as discussed below, on the

pressure gradient across the ISR. Previous observational (e.g.

Hansen et al., 2001) and modelling (e.g. Jungclaus et al.,

2008) studies suggest that the overflow transport through the

Faroe–Shetland channel (FSC), which carries the majority of

the overflow between Iceland and Scotland, is controlled by

internal hydraulics and affected by the baroclinic pressure

gradient across the ISR in the core depth of the overflow.

Further observational (e.g. Hansen and Østerhus, 2007) and

modelling (e.g. Olsen et al., 2008; Sandø et al., 2012) studies

add the importance of the barotropic pressure gradient. Note

that mechanism (ii) may also involve the large-scale ocean

circulation through the transport of heat and salt from the

subtropics into the Nordic seas.

Our study is organised as follows: the models and the ex-

perimental set-up as well as the simulated Iceland–Scotland

overflow strength and AMO index are described in Sect. 2. In

Sect. 3, the two possible mechanisms underlying the similar

variation of Iceland–Scotland overflow strength and AMO

index introduced above are investigated. The results are dis-

cussed in Sect. 4 and the main conclusions are given in

Sect. 5.

2 Model description and simulated variability of

Iceland–Scotland overflow strength and AMO index

2.1 Model description and experimental set-up

Our study is based on simulations of the last millennium

driven by external forcing reconstructions conducted with

three global coupled climate models, namely the Max Planck

Institute for Meteorology Earth System Model (MPI-ESM),

the coupled climate model developed at the Institute Pierre-

Simon Laplace (IPSLCM4_v2, hereafter IPSLCM4) and the

Bergen climate model (BCM). These model simulations

were made available within the EU project THOR (Thermo-

Haline Overturning – at Risk?). We limit our study to model

simulations from the project partners as non-standard sim-

ulated quantities, such as the overflow transport across the

ISR, are needed.

In MPI-ESM, the atmosphere general circulation model

(GCM) ECHAM6 (Stevens et al., 2013) is coupled to the

ocean/sea ice GCM MPIOM (Marsland et al., 2003; Jung-

claus et al., 2013; Notz et al., 2013) using the OASIS3 cou-

pler (Valcke et al., 2003). The atmosphere GCM is run at a

horizontal resolution of T63 (spectral grid with truncation at

wave number 63, corresponding to about 1.875◦ on a Gaus-

sian grid) and 47 vertical levels, resolving the stratosphere up

to 0.01 hPa. The ocean GCM applies a conformal mapping

grid in the horizontal with the North Pole shifted to southern

Greenland (to circumvent grid singularities in the computa-

tional ocean domain), featuring a nominal resolution of 1.5◦.

The convergence of the mesh size towards the poles trans-

lates into a grid spacing of 15 to 100 km in the North Atlantic.

Vertically, 40 unevenly spaced z-levels are used with the first

20 levels covering the upper 700 m of the water column.

In IPSLCM4 (Marti et al., 2010), the atmosphere GCM

LMDz4 (Hourdin et al., 2006) is coupled to the ocean GCM

OPA8.2 (Madec et al., 1998) and the sea ice model LIM2

(Fichefet and Maqueda, 1997) using the OASIS2.4 coupler

(Valcke et al., 2000). The atmosphere GCM is run at a hor-

izontal resolution of 3.75◦ (in longitude)× 2.5◦ (in latitude)

and 19 vertical levels, resolving the stratosphere up to 3 hPa.

The ocean GCM uses the ORCA2 grid in the horizontal, i.e. a

conformal mapping, tripolar grid with two poles placed in the

Northern Hemisphere over land (American and Asian conti-

nents) to avoid grid singularities in the computational ocean

domain. The averaged horizontal resolution is 2◦ with the

meridional grid spacing refined to 0.5◦ around the Equator

(to better resolve the dynamics near the Equator). The con-

vergence of the mesh size towards the poles translates into

a grid spacing of about 100 to 200 km in the North Atlantic.

Vertically, 31 unevenly spaced z-levels are used with the first

20 levels covering the upper 600 m of the water column.

In BCM (Furevik et al., 2003; Otterå et al., 2009), the

atmosphere GCM ARPEGE (Deque et al., 1994) is cou-

pled to the ocean GCM MICOM (Bleck and Smith, 1990;

Bleck et al., 1992) and the sea ice model GELATO (Salas-

Melia, 2002) using the OASIS (version 2) coupler (Terray

and Thual, 1995). In the MICOM model used in BCM, sev-

eral important aspects deviate from the original model (e.g.

Otterå et al., 2009), most importantly the conservation of heat

and salt. The atmosphere GCM is run at a horizontal resolu-

tion of T63 (spectral grid with truncation at wave number 63;

corresponding to about 1.875◦ on a Gaussian grid) and 31

vertical levels, resolving the stratosphere up to 10 hPa. The

ocean GCM applies a conformal mapping grid in the hori-

zontal with the North Pole located over Siberia to avoid grid

singularities in the computational ocean domain, featuring

a nominal resolution of 2.4◦ with the meridional grid spac-

ing near the Equator being gradually decreased up to 0.8◦ at

the Equator (to better resolve the dynamics near the Equa-

tor). The grid spacing in the North Atlantic amounts to about

150 to 200 km. Vertically, 34 isopycnal layers with potential

densities ranging from σ2 = 30.119 to 37.800 kg m3 are used

with a non-isopycnic surface mixed layer on top.

With respect to the simulated decadal-to-centennial-scale

climate variability in the North Atlantic, recent multi-model

control simulation studies (including the three models used

here) discuss differences among the coupled climate mod-

els in both the representation of the low-frequency North At-

lantic climate variability as well as in the mechanisms and

feedbacks involved (e.g. Menary et al., 2012; Langehaug

et al., 2012b; Gastineau and Frankignoul, 2012; Ba et al.,

2014).

Regarding the external forcing reconstructions used to

force the model simulations, volcanic aerosols are based on

reconstructions by Crowley et al. (2008) in the MPI-ESM

simulation, Ammann et al. (2003) and Gao et al. (2008) in
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the IPSLCM4 simulation and Crowley et al. (2003) in the

BCM simulation. The differences between these reconstruc-

tions are, however, rather minor. The volcanic aerosols are

distributed over a couple of stratospheric levels and the ef-

fect on the radiative forcing is calculated online in all models.

For the solar forcing, a small amplitude of variations based

on total solar irradiance (TSI) reconstructions by Vieira and

Solanki (2010) and Vieira et al. (2011) is used in the MPI-

ESM and IPSLCM4 simulation, with an increase in TSI of

0.1 % from the 17th century Maunder Minimum to present

time. A weak scaling of solar forcing is indeed recom-

mended in the protocol of the third phase of the Paleoclimate

Modelling Intercomparison Project (PMIP3; Schmidt et al.,

2011). In the BCM simulation, a TSI reconstruction based

on Crowley et al. (2003) is used that exhibits a larger am-

plitude than the one used in the two other models. Changes

in orbital parameters are taken into account in the MPI-ESM

and IPSLCM4 simulation but are not included in the BCM

simulation.

With respect to anthropogenic forcing, the most important

well-mixed greenhouse gases are taken into account in the

MPI-ESM and IPSLCM4 simulation. In the MPI-ESM sim-

ulation, land cover changes (Pongratz et al., 2008) and an-

thropogenic aerosols are also considered. In the IPSLCM4

simulation, the vegetation is set to modern climatology from

Myneni et al. (1997). Anthropogenic aerosol forcing is not

included in the IPSLCM4 simulation, leading to a stronger

warming trend in the recent decades compared to the MPI-

ESM simulation and reconstructions. In the BCM simulation,

no anthropogenic forcing components are included. Given

these differences, the discussion of possible mechanisms un-

derlying a similar variation of Iceland–Scotland overflow

strength and AMO index is limited to the pre-industrial pe-

riod in the MPI-ESM and IPSLCM4 simulation, mainly ex-

cluding the effect of the anthropogenic forcing components.

For MPI-ESM, a 400-year adaptation run, starting from

the pre-industrial control simulation as described in Jung-

claus et al. (2013), is performed under orbital forcing con-

ditions representing the year AD 850. Afterwards, the exter-

nally forced simulation is performed for the period AD 850

to 2005. For a more detailed description of the simulation,

we refer the reader to Jungclaus et al. (2015). For IPSLCM4,

after a spin-up phase of 310 years the externally forced simu-

lation is performed for the period AD 850 to 2000. For a more

detailed description of the simulation we refer the reader to

Mignot et al. (2011) and references therein. Note that this

simulation was part of PMIP2 and differs from the one in-

cluded in the more recent PMIP3. For BCM, after a spin-up

phase of 500 years (Otterå et al., 2009) the externally forced

simulation is performed for the period AD 1400 to 2000. For

a more detailed description of the simulation we refer the

reader to Otterå et al. (2010) and references therein.

In this study we focus on the low-frequency variability of

the Iceland–Scotland overflow strength and the AMO index.

Therefore, all model data are annual values with a 21-year

running mean filter applied.

2.2 Iceland–Scotland overflow strength and AMO

index in the simulations

Here we define the Iceland–Scotland overflow strength and

the AMO index and investigate their variability in the three

last-millennium simulations presented above. The recon-

struction from Mjell et al. (2015) represents the strength of

the near-bottom current at the eastern flank of the Reyk-

janes Ridge along the flow path of the Iceland–Scotland over-

flow water. In the models, we have access to the full ve-

locity field and thus estimate the strength of the Iceland–

Scotland overflow directly. The latter is defined as the to-

tal transport out of the Nordic seas across the ISR with a

density threshold of σ > 27.8 kg m−3 in MPI-ESM and IP-

SLCM4 and as the net transport across the ISR with a den-

sity threshold of σ2> 36.946 kg m−3 (corresponding to about

σ > 27.83 kg m−3) in BCM. We note that the difference in

defining the overflow across the ISR as transport out of the

Nordic seas or as net transport is negligible because a trans-

port into the Nordic seas with the given density threshold

generally does not exist.

Mean overflow transports amount to 3.0 Sv (1 Sver-

drup= 106 m3 s−1) in MPI-ESM, 2.7 Sv in IPSLCM4 and

3.6 Sv in BCM, which is in reasonable agreement with obser-

vational estimates of about 3.5 Sv (e.g. Hansen et al., 2008).

In contrast to observations (e.g. Hansen et al., 2008) where

an overflow transport of about 1 Sv is found between Iceland

and the Faroe Islands, the overflow transport across the ISR

is restricted to the FSC in MPI-ESM and BCM. In IPSLCM4,

an overflow transport of 0.5 Sv is found between Iceland and

the Faroe Plateau. One major bias in the three model sim-

ulations used here concerns the flow path of the Iceland–

Scotland overflow water south of the ISR, which is not real-

istically simulated in the (relatively coarse-resolution) model

configurations (e.g. Langehaug et al., 2012a). In contrast to

observations, most of the Iceland–Scotland overflow water

spreads southward in the eastern North Atlantic basin rather

than flowing around the Reykjanes Ridge (through fracture

zones in the Mid-Atlantic Ridge) and joining the Denmark

Strait overflow water and the deep western boundary current.

Due to this model bias, the influence of the Iceland–Scotland

overflow strength on the MOC variability might be underes-

timated in the models.

We define the AMO index as the area average of basin-

wide North Atlantic SST encompassing the region 75◦ to

7.5◦W and 0◦ to 60◦ N, following Otterå et al. (2010).

This definition does not include the Nordic seas, which is

important for the variability of the Iceland–Scotland over-

flow strength as discussed below. However, AMO index and

Nordic seas SST in the model simulations are positively cor-

related, as discussed below, and the conclusions of our study

do not change if the AMO index is based on a larger re-
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Figure 2. Left panels: anomalous simulated AMO index (blue line)

in MPI-ESM (a), IPSLCM4 (c) and BCM (e) compared to the AMO

reconstruction (grey line) from Gray et al. (2004). Right panels:

anomalous simulated overflow transport across the ISR (red line) in

MPI-ESM (b), IPSLCM4 (d) and BCM (f) compared to the recon-

structed Iceland–Scotland overflow strength (grey line) from Mjell

et al. (2015). All time series are normalised by the respective stan-

dard deviations. Simulated time series are annual values with a 21-

year running mean filter applied. The vertical lines indicate years

with major volcanic eruptions (following Zanchettin et al., 2012).

gion encompassing the Nordic seas. We note also that in this

definition of the AMO index, the influence of (natural and

anthropogenic) external forcing is not removed, as opposed

to definitions by e.g. Knight et al. (2005) or Trenberth and

Shea (2006).

We compare the simulated Iceland–Scotland overflow

strength and AMO index with the reconstruction from Mjell

et al. (2015) and Gray et al. (2004) respectively (Fig. 2).

Other AMO reconstructions (Mann et al., 2009; Svendsen

et al., 2014) basically show similar low-frequency variability

as the AMO reconstruction from Gray et al. (2004), espe-

cially after about year AD 1750 (Fig. 1). In contrast to the

AMO reconstruction from Gray et al. (2004), the AMO re-

construction from Mann et al. (2009) does not show the warm

phase during the second half of the 17th century. The simu-

lated and reconstructed AMO indices (left panels in Fig. 2)

agree reasonably in the phasing of cold and warm periods.

The best agreement is found for the cold event following the

major volcanic eruption in year AD 1815, indicating that the

AMO index is influenced by the external forcing as stated in,

e.g., Otterå et al. (2010) and Zanchettin et al. (2013). Con-

cerning the Iceland–Scotland overflow strength (right panels

in Fig. 2), the simulated and reconstructed time series partly

agree in the phasing of periods with strong and weak over-

flow in BCM and especially in IPSLCM4, suggesting that the

Figure 3. Left panels: simulated anomalous AMO index (blue line;

in K) and overflow transport across the ISR (red line; in Sv) in MPI-

ESM (a), IPSLCM4 (c) and BCM (e). All time series are annual val-

ues with a 21-year running mean filter applied. Right panels: run-

ning correlation (junk length of 75 years) between the AMO index

and the overflow transport across the ISR from the left panels in

MPI-ESM (b), IPSLCM4 (d) and BCM (f). In all panels, the ver-

tical lines indicate years with major volcanic eruptions (following

Zanchettin et al., 2012). Correlation coefficients above the dashed

line in (b), (d) and (f) are statistically significant at the 95 % confi-

dence level (significance level: 0.73).

external forcing has some influence on the Iceland–Scotland

overflow strength.

Based on the palaeo-reconstructions we assess the rela-

tion between the low-frequency variability of the Iceland–

Scotland overflow strength and the AMO index in the three

models. Similar variation of the two time series is also largely

found in the model simulations (left panels in Fig. 3), with

zero-lag correlation coefficients for the pre-industrial period

(years AD 850 to 1849) of 0.67 in MPI-ESM and 0.74 in IP-

SLCM4. In BCM, the zero-lag correlation coefficient (0.39)

is just above the significance level. It is interesting to note

that in MPI-ESM and IPSLCM4, cold periods in the AMO

index coincide with very weak Iceland–Scotland overflow.

Most of these cold events coincide with major volcanic erup-

tions (around years AD 1258, 1456 and 1815 in MPI-ESM

and around years AD 1258 and 1815 in IPSLCM4) in agree-

ment with previous studies (Mignot et al., 2011; Zanchet-

tin et al., 2012). However, the cold event at the end of the

12th century in IPSLCM4 is not related to any major vol-

canic eruption. Cold events in the subpolar North Atlantic

have also been attributed to internal variability (e.g. Moreno-

Chamarro et al., 2015; using the same MPI-ESM simulation

as used in our study). The running correlation (junk length

of 75 years) between the Iceland–Scotland overflow strength

and the AMO index (right panels in Fig. 3) is high between

www.clim-past.net/11/203/2015/ Clim. Past, 11, 203–216, 2015
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the two time series during the cold events. However, in all

three models, high (low) correlation between the Iceland–

Scotland overflow strength and the AMO index is not always

related to periods with (without) major volcanic eruptions.

As indicated above, for the discussion of possible mech-

anisms underlying the (simulated) similar variation of

Iceland–Scotland overflow strength and AMO index, the

analysis is limited to the pre-industrial period (years AD 850

to 1849) in MPI-ESM and IPSLCM4 in order to avoid the

20th century warming signal due to the anthropogenic green-

house gas forcing. In IPSLCM4 a model drift is found during

the pre-industrial period (due to the relatively short spin-up

phase). All IPSLCM4 data are therefore detrended prior to

the analysis following Servonnat et al. (2010) and Mignot

et al. (2011). The BCM simulation does not include anthro-

pogenic forcing but shows a model drift during the first two

centuries (Fig. 3e). Therefore, the analysis is limited to the

period between years AD 1550 and 1999.

3 Investigation of possible mechanisms underlying the

similar variation of Iceland–Scotland overflow

strength and AMO index

In this section we will investigate the two mechanisms pro-

posed in the introduction as possible explanations for the

similar variation of Iceland–Scotland overflow strength and

AMO index, suggested from palaeo-reconstructions and also

largely found in the model simulations. These mechanisms

are (i) a large-scale link through the strength of the MOC and

(ii) a more local link through the influence of the Nordic seas

surface state and density structure on the Iceland–Scotland

overflow strength.

3.1 Mechanism (i): Iceland–Scotland overflow strength

and AMO index linked through the strength of the

MOC?

Mechanism (i) suggests a similar variation of Iceland–

Scotland overflow strength and AMO index due to a warm

(cold) phase of the AMO being related to a strong (weak)

MOC that is influenced by strong (weak) Iceland–Scotland

overflow. The maximum strength of the North Atlantic MOC

is located at about 30◦ N in MPI-ESM, 35◦ N in BCM and

45◦ N in IPSLCM4 at a depth of about 1000 m. We note that

our conclusions do not change if a fixed latitude of 30◦ N is

used for all models.

In the framework of the last millennium, the basin-wide

North Atlantic SST variability, as reflected in the AMO in-

dex, is dominated by the relatively large (sub)tropical North

Atlantic region (left panels in Fig. 4), as stated in Otterå et

al. (2010). The highest correlation coefficients between the

AMO index and the North Atlantic SST are, in all three mod-

els, found in the tropical and subtropical region with maxi-

mum correlation coefficients of the order of 0.8 to 0.9. This

Figure 4. Left panels: zero-lag correlation coefficients between the

AMO index and the North Atlantic SST in MPI-ESM (a), IPSLCM4

(c) and BCM (e). Right panels: correlation coefficients between the

maximum strength of the North Atlantic MOC and the North At-

lantic SST in MPI-ESM (b), IPSLCM4 (d) and BCM (f). The MOC

index is leading by 5 years. The correlation analysis is based on an-

nual values for the period AD 850 to 1849 (MPI-ESM, IPSLCM4)

and AD 1550 to 1999 (BCM) with a 21-year running mean filter ap-

plied. For IPSLCM4, the data have been linearly detrended prior to

the analysis to account for the model drift. Only correlation coeffi-

cients statistically significant at the 95 % confidence level are shown

(significance level: 0.27 in MPI-ESM and IPSLCM4, 0.4 in BCM).

differs from the correlation pattern arising from internal vari-

ability (e.g. Ba et al., 2014) and the one found over the 20th

century (Kavvada et al., 2013). The SST in the (sub)tropical

regions is indeed largely influenced by the relevant external

radiative forcing of the last millennium (solar and volcanic

forcing) as suggested in previous modelling studies (e.g. Ot-

terå et al., 2010; Mignot et al., 2011; Terray, 2012). For the

SST in the Nordic seas, which is important for the Iceland–

Scotland overflow strength as discussed below, correlation

coefficients are of comparable magnitude in MPI-ESM and

IPSLCM4, reaching maximum values of 0.7. In BCM, cor-

relation coefficients between the AMO index and the Nordic

seas SST are weaker than in the two other models. The low-

est correlation coefficients between the AMO index and the

North Atlantic SST are found in the subpolar region. This

finding is robust within the three models and is also seen in
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Zanchettin et al. (2013) using the reconstructed AMO index

from Gray et al. (2004) and simulations of the last millen-

nium with a coarser-resolution MPI-ESM configuration.

On the other hand, the largest influence of the low-

frequency MOC variability on the North Atlantic SST (right

panels in Fig. 4) is found in the subpolar region in MPI-

ESM and BCM, in agreement with studies based on con-

trol simulations (e.g. Latif et al., 2004; Zhang and Wang,

2013). In MPI-ESM, the significant influence of the MOC

on the North Atlantic SST is limited to this region, while in

BCM a significant influence is also found on the SST in the

Nordic seas. In IPSLCM4 almost no significant influence of

the MOC on the North Atlantic SST is found. We note that

in MPI-ESM and IPSLCM4 this differs from the behaviour

in the respective control simulation, where the correlation

between the maximum strength of the North Atlantic MOC

and the North Atlantic SST (not shown) also includes signifi-

cant correlation coefficients in the Nordic seas, the subtropics

and (in IPSLCM4) the subpolar region, consistent with, e.g.,

Zanchettin et al. (2014, MPI-ESM) and Msadek and Frank-

ingnoul (2009, IPSLCM4). These findings indicate that in

MPI-ESM, and even more so in IPSLCM4, the MOC signa-

ture on the North Atlantic SST is reduced in the externally

forced simulations due to the influence of the external radia-

tive forcing on the SST. Consistently (C. Marini, personal

communication, 2013), analysing the same IPSLCM4 simu-

lation as used in our study finds a higher correlation between

the AMO and the MOC if a mode representing the response

to volcanic forcing is removed from the AMO.

The region where the highest correlation coefficients be-

tween the North Atlantic SST and the maximum strength of

the North Atlantic MOC are found (right panels in Fig. 4)

coincides with the region where the correlation coefficients

between the AMO index and the North Atlantic SST are

lowest (left panels in Fig. 4). This suggests that in the exter-

nally forced simulations the basin-wide AMO index, which

is dominated by the low-latitude SST variability, is not pre-

dominantly driven by MOC changes.

In order to investigate more specific periods with strong

external forcing, composite analysis with respect to the two

cold events in the AMO index following the major volcanic

eruptions in years AD 1258 and 1815 (blue lines in Fig. 3) is

performed (Fig. 5). The North Atlantic SST anomaly pattern

during these cold events shows some similarity compared to

the North Atlantic SST pattern associated with the AMO in-

dex in general (left panels in Fig. 4; note that here corre-

lation coefficients are shown). Also, the cold SST anomalies

found in the subpolar North Atlantic and the Nordic seas dur-

ing the cold events in MPI-ESM and IPSLCM4 are not pre-

dominantly driven by MOC changes because the maximum

strength of the MOC does not weaken during the cold events

(not shown), which is in agreement with previous studies

(e.g. Mignot et al., 2011; Zanchettin et al., 2012).

Figure 5. Composite for North Atlantic SST (in K) with respect to

the cold events in the AMO index (blue lines in Fig. 3) following

the major volcanic eruptions in years AD 1258 and 1815 (BCM only

AD 1815) taking into account 15 years centred around the coldest

year in MPI-ESM (a), IPSLCM4 (b) and BCM (c). The composites

are based on annual anomalies (with respect to the period AD 850

to 1849 in MPI-ESM and IPSLCM4 and AD 1550 to 1999 in BCM)

with a 21-year running mean filter applied. For IPSLCM4, the data

have been linearly detrended prior to the analysis to account for the

model drift.

Based on the results discussed in this section, we conclude

that mechanism (i), a link through the strength of the MOC,

is not sufficient to explain the (simulated) similar variation of

Iceland–Scotland overflow strength and AMO index.
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Figure 6. Zero-lag correlation coefficients between the Iceland–Scotland overflow strength and (a) the SST, (b) the SSS, (c) the surface

density, (d) the sea surface height (linearly detrended prior to the analysis to account for the non-closed water budget between the atmosphere

and the ocean), (e) the depth of the isopycnal σ = 27.8 kg m−3 and (f) the meridional wind stress component in MPI-ESM. The correlation

analysis is based on annual values for the period AD 850 to 1849 with a 21-year running mean filter applied. Only correlation coefficients

statistically significant at the 95 % confidence level are shown (significance level: 0.27).

3.2 Mechanism (ii): Iceland–Scotland overflow

strength and AMO index linked through the

influence of the Nordic seas surface state on the

Iceland–Scotland overflow strength?

According to the literature (e.g. Hansen and Østerhus, 2007;

Jungclaus et al., 2008; Olsen et al., 2008; Sandø et al., 2012),

the Iceland–Scotland overflow strength is affected by the

pressure gradient across the ISR in the core depth of the

overflow. Mechanism (ii) thus implies a similar variation of

Iceland–Scotland overflow strength and AMO index due to

the influence of the Nordic seas surface state and density

structure on the pressure gradient across the ISR.

The correlation between the Iceland–Scotland overflow

strength and various oceanic quantities in the northeastern

North Atlantic in the three models is shown in Figs. 6 to 8.

We discuss only the case of strong Iceland–Scotland over-

flow, but the correlation pattern can be interpreted in an

analogous way for the case of weak overflow. We also use

zero-lag correlation coefficients. The correlation pattern rep-

resenting a lead/lag of a couple of years is rather similar to

the zero-lag correlation pattern, probably due to the fact that

a 21-year running mean filter is applied to the data prior to

the analysis.

Strong Iceland–Scotland overflow is associated with an

anomalously warm and salty surface state in the Nordic seas.

Maximum correlation coefficients for SST and sea surface

salinity (SSS) reach about 0.85 in MPI-ESM (Fig. 6a and b),

0.7 in IPSLCM4 (Fig. 7a and b) and 0.5 in BCM (Fig. 8a and

b). For SST, positive correlation coefficients are also found

south of the ISR along the path of the North Atlantic cur-

rent. For SSS, negative correlation coefficients are found in

the northwestern part of the Nordic seas in MPI-ESM and

IPSLCM4 and in the region close to the Norwegian coast

in MPI-ESM. The SSS anomalies in the northwestern part of

the Nordic seas are related to less sea ice extent under warmer

conditions (not shown), while the reason for the anomalies

close to the Norwegian coast remains unclear.

The correlation between the Iceland–Scotland overflow

strength and the surface heat/fresh-water flux as well as

between the Iceland–Scotland overflow strength and the

heat/salt transport across the ISR (not shown) suggests that

the anomalously warm Nordic seas surface state associated

with strong Iceland–Scotland overflow is to a large extent

caused by an increase in the oceanic heat transport across

the ISR. Local air–sea heat exchanges mainly have a damp-

ening effect on the Nordic seas SST anomalies. In con-

trast, a net surface fresh-water loss contributes to the anoma-

lously salty Nordic seas surface state associated with strong

Iceland–Scotland overflow, with the exception of the west-

ern part of the Nordic seas in BCM. Regarding the salt trans-

port across the ISR, correlation coefficients with the Iceland–

Scotland overflow strength are smaller than for the heat trans-
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Figure 7. Zero-lag correlation coefficients between the Iceland–Scotland overflow strength and (a) the SST, (b) the SSS, (c) the surface

density, (d) the sea surface height, (e) the depth of the isopycnal σ = 27.8 kg m−3 and (f) the meridional wind stress component in IPSLCM4.

The correlation analysis is based on annual values for the period AD 850 to 1849 with a 21-year running mean filter applied. The data have

been linearly detrended prior to the analysis to account for the model drift. Only correlation coefficients statistically significant at the 95 %

confidence level are shown (significance level: 0.27).

Figure 8. Zero-lag correlation coefficients between the Iceland–Scotland overflow strength and (a) the SST, (b) the SSS, (c) the surface

density, (d) the sea surface height (linearly detrended prior to the analysis), (e) the depth of the isopycnal σ2 = 36.946 kg m−3 and (f) the

meridional wind stress component in BCM. The correlation analysis is based on annual values for the period AD 1550 to 1999 with a 21-

year running mean filter applied. Only correlation coefficients statistically significant at the 95 % confidence level are shown (significance

level: 0.4).
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port across the ISR and are well above the significance level

only in IPSLCM4.

The Nordic seas surface state anomalies associated with

the anomalies in the Iceland–Scotland overflow strength

are generally of barotropic character. The correlation pat-

tern between the Iceland–Scotland overflow strength and the

heat/salt content integrated over the whole water column

(not shown) resembles the correlation pattern between the

Iceland–Scotland overflow strength and the SST/SSS. The

only exception is found for the heat content in the central

Nordic seas in IPSLCM4, where a reduction rather than an

increase in the heat content is associated with strong Iceland–

Scotland overflow.

The Nordic seas temperature and salinity anomalies as-

sociated with the anomalies in the Iceland–Scotland over-

flow strength generally have a counteracting effect on the

density. In MPI-ESM, the density anomalies in the eastern

part of the Nordic seas are dominated by the temperature

anomalies, resulting in anomalously light water associated

with strong Iceland–Scotland overflow both at the surface

(Fig. 6c) and integrated over the whole water column. Sim-

ilar results are found for the eastern part of the Nordic seas

in BCM (Fig. 8c) although correlation coefficients are much

smaller than in MPI-ESM. In contrast, in IPSLCM4 the sur-

face density anomalies in the central Nordic seas are dom-

inated by the salinity anomalies, resulting in anomalously

dense surface water associated with strong Iceland–Scotland

overflow (Fig. 7c). Integrated over the whole water column,

both anomalously low heat and high salt content in IPSLCM4

contribute to anomalously dense water in the central Nordic

seas associated with strong Iceland–Scotland overflow.

As a consequence of the anomalously light water in the

eastern part of the Nordic seas, anomalously high sea sur-

face height (SSH, Figs. 6d and 8d) and anomalously deep

isopycnals (Figs. 6e and 8e for the upper isopycnal defining

the simulated Iceland–Scotland overflow) in MPI-ESM and

BCM are associated with strong Iceland–Scotland overflow.

In IPSLCM4, on the other hand, the anomalously dense wa-

ter in the central Nordic seas associated with strong Iceland–

Scotland overflow leads to anomalously low SSH (Fig. 7d)

and anomalously shallow isopycnals (Fig. 7e).

Anomalous SSH and depth of the isopycnals in the Nordic

seas may modify the pressure gradient across the ISR. In

MPI-ESM, anomalously high SSH in the Nordic seas leads

to an increase in the (barotropic) pressure north of the ISR.

The importance of the barotropic pressure is in accordance

with Olsen et al. (2008). Significant correlation coefficients

between the Iceland–Scotland overflow strength and the SSH

are also found south of the ridge. However, sensitivity ex-

periments performed with a coarser-resolution version of

MPI-ESM and no external forcing (Lohmann et al., 2014)

suggest that the low-frequency variability of the Iceland–

Scotland overflow strength can be suppressed when climato-

logical hydrography (temperature and salinity) is prescribed

in the Nordic seas and along the ISR but full hydrographic

variability is used south of the ridge. This indicates that

the SSH anomalies north (and at) the ridge are sufficient

to determine the low-frequency variability of the Iceland–

Scotland overflow strength. Furthermore, Olsen et al. (2008),

analysing a simulation with the ocean component of MPI-

ESM (with the same grid configuration as used in our study)

forced with atmospheric reanalysis fields, link the variability

of the Iceland–Scotland overflow strength mainly to anoma-

lous SSH in the Nordic seas. Thus, we speculate that a strong

Iceland–Scotland overflow in MPI-ESM is mainly caused by

the anomalously high SSH north of the ISR.

Also in BCM, strong Iceland–Scotland overflow is mainly

caused by anomalously high SSH in the eastern part of the

Nordic seas in accordance with Sandø et al. (2012). The au-

thors analyse an ocean-only simulation with a regional ver-

sion of the ocean component of BCM forced with atmo-

spheric reanalysis fields and suggest that variations of the

overflow transport across the ISR are mainly of a barotropic

nature. In IPSLCM4, anomalously shallow isopycnals in the

central Nordic seas lead to an increase in the (baroclinic)

pressure north of the ISR, causing a strengthened Iceland–

Scotland overflow. The importance of the baroclinic pressure

has been suggested by, e.g., Jungclaus et al. (2008).

Regarding periods with strong external forcing, the com-

posite pattern (not shown) with respect to the very weak

Iceland–Scotland overflow following the major volcanic

eruptions in years AD 1258 and 1815 (red lines in Fig. 3)

in MPI-ESM and IPSLCM4 closely resembles the correla-

tion pattern shown in Figs. 6 and 7. This result indicates

that the above-discussed mechanism linking the Iceland–

Scotland overflow strength with the Nordic seas surface state

and density structure can also explain the very weak Iceland–

Scotland overflow, which goes along with the cold events

in the AMO index and particularly in the Nordic seas SST

(Fig. 5).

Based on the results discussed in this section, we con-

clude that mechanism (ii), an influence of the Nordic seas

surface state and density structure (positively correlated with

the AMO index) on the Iceland–Scotland overflow strength,

provides a possible explanation for the (simulated) similar

variation of Iceland–Scotland overflow strength and AMO

index.

4 Discussion

In this study we use simulations of the last millennium driven

by external forcing reconstructions with three coupled cli-

mate models, to investigate two mechanisms as possible ex-

planations for the similar variation of Iceland–Scotland over-

flow strength and AMO index. Similar variation of the two

time series has been suggested from palaeo-reconstructions

(Mjell et al., 2015) and is also largely found in the model sim-

ulations. Mechanism (i) is based on a large-scale link through

the strength of the MOC, while mechanism (ii) is based on
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a more local link through the influence of the Nordic seas

surface state and density structure on the Iceland–Scotland

overflow strength. Mechanism (ii) also involves the large-

scale ocean circulation through the northward transport of

heat and salt across the ISR, which affects the Nordic seas

surface state.

The (simulated) basin-wide AMO index is dominated by

the low-latitude SST variability that is strongly influenced

by the external forcing, in particular long-lasting effects of

major volcanic eruptions (e.g. Otterå et al., 2010; Mignot

et al., 2011; Zanchettin et al., 2012). Similar to the con-

clusions from these previous studies, our analysis indicates

that the (simulated) basin-wide AMO index is not predom-

inantly an expression of MOC variations. This result is dif-

ferent from studies based on control simulations where mul-

tidecadal North Atlantic SST anomalies, as reflected in the

AMO index, are associated with multidecadal MOC vari-

ations (e.g. Delworth and Mann, 2000; Latif et al., 2004;

Knight et al., 2005; Zanchettin et al., 2014). We conclude

that mechanism (i) is not sufficient to explain the (simulated)

similar variation of Iceland–Scotland overflow strength and

AMO index.

Rather, Iceland–Scotland overflow strength and AMO in-

dex are (in the simulations) linked through mechanism (ii).

The Nordic seas surface state and density structure, which are

positively correlated with the AMO index, affect via changes

in SSH and depths of the isopycnals the pressure gradient

across the ISR in the core depth of the overflow and conse-

quently the strength of the Iceland–Scotland overflow (e.g.

Hansen and Østerhus, 2007; Jungclaus et al., 2008; Olsen et

al., 2008; Sandø et al., 2012). Since the AMO index has no

direct influence on the Iceland–Scotland overflow strength,

mechanism (ii) crucially depends on the covarying of AMO

index and Nordic seas surface state, as for the simulations

shown in Fig. 4 (left panels).

The details of the discussed mechanisms vary between the

different models, and the models also exhibit biases such as

the unrealistic flow path of the Iceland–Scotland overflow

water south of the ISR. The model differences and biases

underline, on one hand, the importance of multi-model stud-

ies but, on the other hand, also impose some uncertainty on

the mechanism underlying the similar variation of Iceland–

Scotland overflow strength and AMO index in the real world.

One difference in the discussed mechanisms is the im-

portance of the barotropic pressure (MPI-ESM, anomalously

light water in the Nordic seas associated with strong Iceland–

Scotland overflow) or the baroclinic pressure (IPSLCM4,

anomalously dense water in the Nordic seas associated with

strong Iceland–Scotland overflow). The reason for this differ-

ence is not clear. Possible explanations are differences in the

background state or in the amplitude of the low-frequency

variability in the Nordic seas. IPSLCM4 exhibits a colder

and fresher mean surface state in the eastern part of the

Nordic seas compared to MPI-ESM (not shown). Differences

amount to 2–3 ◦C for SST and about 0.5 psu for SSS. This re-

sult is in agreement with IPSLCM4 exhibiting a cold mean

state in the North Atlantic in general (Marti et al., 2010,

based on control simulations). The two model simulations

also differ with respect to the amplitude of the low-frequency

surface state variability in the eastern part of the Nordic

seas, determined from the standard deviation (not shown).

For SST, the low-frequency variability is larger in MPI-ESM,

while for SSS, larger variability is found in IPSLCM4.

Although the pressure gradient control of the Iceland–

Scotland overflow strength is similar in BCM as in the two

other models, the correlation between the Iceland–Scotland

overflow strength and the AMO index is weaker in BCM.

One possible explanation is that in BCM the anomalously

high SSH in the eastern part of the Nordic seas associated

with strong Iceland–Scotland overflow is to a large extent

caused by increased northward wind stress (Fig. 8f) via in-

creased Ekman transport towards the Norwegian coast. Such

wind stress anomalies are not seen in the two other mod-

els (Figs. 6f and 7f). The wind stress anomalies over the

Nordic seas are not necessarily in phase with the low- and

mid-latitude SST variability (as reflected in the AMO index),

but affect the strength of the Iceland–Scotland overflow.

In addition, in BCM the strength of the MOC influences

the Nordic seas surface state to a much larger extent than

in the two other models (right panels in Fig. 4), which is in

agreement with Otterå et al. (2010). The authors also show a

significant out-of-phase relation between the strength of the

MOC and the AMO index in the externally forced BCM sim-

ulation. Consequently, in BCM a much weaker correlation

is found between the AMO index and the Nordic seas sur-

face state, which affects the strength of the Iceland–Scotland

overflow.

In MPI-ESM and IPSLCM4, on the other hand, there is

evidence of an influence of the external forcing (major vol-

canic eruptions) on the Nordic seas surface state (Mignot et

al., 2011; Zanchettin et al., 2012). In both models, the MOC

signature on the North Atlantic surface state in the externally

forced simulations is much weaker compared to the respec-

tive control simulation (not shown). The relatively strong in-

fluence of the external forcing on the North Atlantic SST in-

cluding the Nordic seas helps to phase the AMO index (dom-

inated by the low-latitude SST variability) and the Iceland–

Scotland overflow strength (influenced by the Nordic seas

surface state and density structure) in these two models, es-

pecially during periods of strong external forcing.

5 Conclusions

To summarise, the following main conclusions can be drawn

from our study:

– Similar low-frequency variations of Iceland–Scotland

overflow strength and AMO index, as suggested from

palaeo-reconstructions (Mjell et al., 2015), can largely
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be seen in coupled climate model simulations of the last

millennium, driven by external forcing reconstructions.

– The basin-wide AMO index in the externally forced

simulations is dominated by the low-latitude SST vari-

ability, which according to the literature is strongly in-

fluenced by the external forcing and is not predomi-

nantly driven by variations in the strength of the MOC.

– The simulated similar variation of Iceland–Scotland

overflow strength and AMO index is based on the influ-

ence of the Nordic seas surface state and density struc-

ture, which are positively correlated with the AMO in-

dex, on the pressure gradient across the ISR. According

to literature, the latter affects the Iceland–Scotland over-

flow strength.

– However, the importance of the barotropic or baroclinic

pressure gradient differs among models. In the model

showing a weaker correlation between the Iceland–

Scotland overflow strength and the AMO index, the

wind stress in the Nordic seas also influences the over-

flow strength.

– Our study demonstrates that palaeo-climate simula-

tions provide a useful tool to understand mechanisms

and large-scale connections associated with localised

and rather sparse palaeo-observations. With respect

to palaeo-climate simulations, the simulations of the

last millennium performed within the framework of

the CMIP5 and PMIP3 projects provide an excellent

database for future studies.
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