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Foreword

The purpose of this thesis is to analyse the logarithmic Hochschild homology

for pre-log rings and to provide some tools to compute it in certain cases. The

logarithmic Hochschild homology was recently introduced in [Rognes, 2009]; al-

though a topological interpretation of this theory is also presented in Rognes’s

paper, we will only deal with its algebraic version.

In the framework of algebraic geometry, logarithmic structures on schemes

were first defined by Fontaine and Illusie and outlined in [Kato, 1989]. Following

Rognes’s approach, we will define a pre-log ring (A,M) as a commutative ring

A which we endow with a pre-log structure, i.e., with a commutative monoid

M and a homomorphism from M to the underlying commutative monoid of A.

Through an operation called “logification”, we can extend M so that it contains

an isomorphic copy of the units of A. From a certain point of view, a pre-log ring

as such places itself in an intermediate position between A and the localization

A
[
M−1

]
obtained by localizing the image of M through the pre-log structure

homomorphism.

In this thesis, building upon the construction of the Hochschild homology for

an algebra, we will reach the definition, as presented in [Rognes, 2009], of the

log Hochschild homology of a pre-log ring, portraying it as a generalization of

the Hochschild homology for algebras. The log Hochschild complex of (A,M),

the homology of which will be considered, will be constructed by means of the

Hochschild complex of A and a special simplicial commutative monoid built

from M , called the replete bar construction of M . We will in particular consider

pre-log rings where the commutative ring is a polynomial algebra in a finite

number of variables.

One of the main strategies that we will employ to describe the log Hochschild

homology will entail passing through the log Kähler differentials. The Kähler

differentials Ω1
A of a commutative ring A arise from the notion of derivations

of A, which are, roughly speaking, additive maps defined on A satisfying the

Leibniz derivation rule. The log Kähler differentials Ω1
(A,M) of a pre-log ring

(A,M) will have a broader set of generators, some of which – determined by

the log structure of (A,M) – will feature distinct properties.
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An additional technique that we can adopt to gather information about the

log Hochschild homology of some specific pre-log rings is to interlock it in a

long exact sequence, relating it to the ordinary Hochschild homology groups.

An example in which this method applies nicely is the case where the remaining

terms of the long exact sequence are the Hochschild homology of polynomial

algebras in a finite number of variables, for which we try to provide an exhaustive

description.

The thesis is structured as follows.

In Chapter 1 we will recollect some notions in commutative algebra, algebraic

topology and category theory, fixing the notation for the objects later used in

the rest of the thesis.

In Chapter 2 we will introduce the Hochschild homology HH∗(A) of a k-

algebra A as the homology of the Hochschild complex of A. Special attention

will be given to the A-module Ω1
A|k of Kähler differentials and how to relate

it, via an isomorphism, to the first Hochschild homology group. Using the lan-

guage of derivations, we will moreover establish an isomorphism between the

A-homomorphisms from the Kähler differentials to an A-module J and the

derivations of A with values in J .

In Chapter 3 we will present some definitions about pre-log and log struc-

tures, explore the log Hochschild homology HH∗(A,M) and the log Kähler dif-

ferentials Ω1
(A,M) of a pre-log ring (A,M) and present results analogous to the

ones shown in Chapter 2. The study of Ω1
(A,M) will give a meaning to the title

“logarithmic” for this theory. We will show how the inclusion of Ω1
A in Ω1

A[M−1]

factors through Ω1
(A,M). We will also provide a description of the log Kähler dif-

ferentials in terms of log derivations, ultimately to disclose that the log Kähler

differentials of a pre-log ring is invariant under logification. An important sec-

tion of this chapter will be devoted to the proof of the isomorphism between

HH1(A,M) and Ω1
(A,M).

In Chapter 4 we will analyse the Hochschild homology and the log Hochschild

homology in the particular situation where the considered ring is a polynomial

algebra in a finite number of variables. After defining the graded algebra Ω∗A
of the differential forms of an algebra A, we will proceed to prove that there

is a graded algebra isomorphism HH∗(A) ∼= Ω∗A if A is a polynomial algebra in

a finite number of variables. Other results in log Hochschild homology will be

used to give a description of HH∗(Z[x1, . . . , xr], 〈x1, . . . , xr〉).

Finally, in Chapter 5 we will show the existence of a long exact sequence

in homology that will allow us to refine our knowledge of the log Hochschild

homology in the case of a pre-log ring (A, 〈x〉) where A is a flat Z[x]-algebra.

8



Chapter 1

Basic notions

This chapter is a collection of the general notions in commutative algebra, al-

gebraic topology and in category theory that are going to be used in the rest of

the thesis.

1.1 Exact sequences and resolutions

Definitions and results from [Atiyah and Macdonald, 1969] and [Lang, 1993] are

used as reference for this section.

Let k be a commutative ring. A sequence

. . .→Mn+1
fn+1−−−→Mn

fn−→Mn−1 → . . .

of k-modules Mi and k-module homomorphisms fi : Mi → Mi−1 for i ∈ Z

is exact at Mi if im fi+1 = ker fi. The sequence is said to be exact if it is

everywhere exact.

A k-module M is free if either it is the trivial module, or there exists a

non-empty family of elements of M , called a basis for M , which is linearly

indipendent and generates M .

Let M , N and P be k-modules. P is said to be a projective module if

it has the (lifting) property that for any k-module homomorphism f : P → N

and any surjective homomorphism g : M → N there exists a homomorphism

h : P →M such that f = gh, i.e., such that the following diagram commutes:

P

h

~~

f

��

M
g
// N
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Many other properties are equivalent to this condition (see e.g. [Lang, 1993,

Chapter III, Section 4]); for instance, a k-module is projective if and only if it is

a direct summand of a free module. Hence, a free module is always projective.

Let N be a k-module. N is said to be a flat module if tensoring all the

terms in any exact sequence of k-modules {Mi, fi} by −⊗k N returns another

exact sequence {Mi ⊗k N, fi ⊗ idN}. One can show that any projective module

is flat.

A resolution of a k-module M is an exact sequence

. . .→ En → En−1 → . . .→ E0 →M → 0

A resolution is said to have a property (e.g. to be projective, to be free) if every

module in the resolution has it. Every module has a free resolution (see e.g.

[Lang, 1993, Chapter XX, Section 1]).

Let M , N be k-modules; let

. . .→ E1 → E0 →M → 0

be a free or projective resolution of M . We define the Tor functor as follows:

Torkn(M,N) is the n-th homology group of the complex

. . .→ E1 ⊗k N → E0 ⊗k N → 0

An important result states that different choices of the resolution of M yield

the same Torkn(M,N) up to isomorphism; moreover, it can be proved that

Torkn(M,N) ∼= Torkn(N,M) (see e.g. [Dummit and Foote, 2004]).

1.2 Homology

The notions described in this section can be found in [Hatcher, 2002, Chapter 2].

Let k be a commutative ring. A chain complex C• = (C•, b•) is a se-

quence of homomorphisms of k-modules Cn, n ∈ Z, together with k-module

homomorphisms bn : Cn → Cn−1 such that bn ◦ bn+1 = 0 for each n ∈ Z. The

homomorphisms bn are called boundary maps of the complex. We will only

consider chain complexes with Cn = 0 for n < 0 (so bn = 0 for n ≤ 0); a chain

complex as such is then denoted explicitly as:

C• : . . . −→ Cn
bn−→ Cn−1 −→ . . .

b1−→ C0
b0−→ 0

The condition bn ◦ bn+1 = 0 implies that, for each n, there is an inclusion

im bn+1 ⊂ ker bn. We define the n-th homology group of the chain complex
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as the quotient group ker bn/ im bn+1; it is generally denoted as Hn(C•) in de-

gree n. We shall denote with H∗(C•) the graded abelian group defined by the

sequence of the homology groups. Elements in Cn belonging to ker bn are called

n-cycles; elements in Cn belonging to im bn+1 are called n-boundaries (then,

boundaries are cycles). Elements [c] ∈ Hn(C•) are called homology classes.

Homology is a useful tool in algebraic geometry: it measures how “far” a

chain complex is from the situation in which all cycles are boundaries, i.e., from

being exact (see Section 1.1). Once agreed on how to associate a chain com-

plex with an object (e.g. to a topological space), homology represents a helpful

invariant to classify such objects; different choices of a complex and boundary

maps for the initial object will then produce different kinds of homology. In this

thesis we will deal with the homology of a specific chain complex associated to

a pre-log ring, called the log Hochschild complex, the boundary maps of which

will show some “cyclic” feature.

1.3 Basics in category theory

Although we will not be using ideas from category theory extensively in this

thesis, we will sometimes deal with a terminology that can be useful to remind

beforehand. The main reference for this section is [Mac Lane, 1998].

A category C consists of: a class of objects; a class of arrows (or mor-

phisms) between objects (we denote the set of arrows between objects c1 and

c2 with HomC(c1, c2)); an identity arrow idc : c→ c for every object c; a law of

composition HomC(c1, c2) × HomC(c2, c3) → HomC(c1, c3) for any objects c1,

c2 and c3 (we denote with g ◦ f : c1 → c3 the composition of f : c1 → c2 with

g : c2 → c3); which altogether satisfy the axioms of associativity and unit laws:

k ◦ (g ◦ f) = (k ◦ g) ◦ f

idb ◦f = f

g ◦ idb = g

for any objects a, b, c and d and for any arrows f : a→ b, g : b→ c and k : c→ d.

Example 1.1. Categories relevant to this thesis are, for example, the category

CMon of commutative monoids and monoid homomorphisms, and the category

CRing of commutative rings and ring homomorphisms.

Example 1.2. For any p ∈ N, let [p] = {0, 1, . . . , p}. We define the category ∆

to have, as objects, sets [p] for p ∈ N and, as arrows, weakly monotonic maps

µ : [q]→ [p].
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Given two categories C and D, a (covariant) functor T : C → D is a

fumctor assigning to each object c of C an object Tc of D, and to each arrow

f : c1 → c2 of C an arrow Tf : Tc1 → Tc2 of D, such that T idc = idTc and

T (g ◦ f) = Tg ◦ Tf for any object c and composable arrows f and g in C.

Example 1.3. The functor Z[ · ] : CMon → CRing assigns to each commutative

monoid M the commutative ring Z[M ], i.e., the monoid ring on M , which con-

sists of all the finite sums
∑
zimi with zi ∈ Z, mi ∈ M , under the product

induced by the product in M . The identity on M is sent to the identity on

Z[M ]; each diagram of commutative monoids (below, left diagram) is sent to

the diagram of commutative rings (right diagram) with preserved direction of

arrows.

M
f
//

g◦f
��

N

g

��

Z[M ]
f
//

g◦f ##

Z[N ]

g

��

P Z[P ]

Given a category C, its opposite category Cop is the category with the

objects of C as objects and arrows fop : c2 → c1 for each arrow f : c1 → c2 of C.

A contravariant functor between two categories C and D is a morphisms

S : C → D which assigns to each object c of C an object Sc of D, and to each

arrow f : c1 → c2 of C an arrow Sf : Sc2 → Sc1, such that S idc = idSc and

S(g ◦ f) = Sf ◦ Sg for any object c and composable arrows f and g in C. A

contravariant functor S : C → D is then a covariant functor S : Cop → D.

A functor that acts by forgetting some structure of an algebraic object is

said to be forgetful.

Example 1.4. The functor (−, · ) : CRing → CMon assigning to each commuta-

tive ring A its underlying commutative monoid (A, · ) is forgetful, since (A, · )
ignores the abelian group structure of A.

Given a pair of arrows f : a → b and g : a → c in a category C, a pushout

of f and g is a commutative square

a
f
//

g

��

b

g′

��

c
f ′
// d
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such that for each other commutative square as below (outer square)

a
f
//

g

��

b

g′

�� g′′

��

c
f ′
//

f ′′ //

d
h

��
e

there exists a unique h : d→ e with hf ′ = f ′′ and hg′ = g′′. The pushout is, by

construction, unique up to isomorphism.

Example 1.5. In the category CRing of commutative rings, the pushout is the

tensor product of rings: for f : R → A, g : R → B ring homomorphisms, the

pushout of f and g is A ⊗R B, where f(r)a ⊗ b = a ⊗ g(r)b for r ∈ R, a ∈ A,

b ∈ B. The maps completing the pushout diagram are A→ A⊗RB, a 7→ a⊗1B

and B → A⊗R B, b 7→ 1A ⊗ b.

Given a pair of arrows f : b → a and g : c → a in a category C, a pullback

of f and g is a commutative square

d
f ′
//

g′

��

c

g

��
b

f
// a

such that for each other commutative square as below (outer square)

e f ′′

��

g′′

##

h

��
d

f ′
//

g′

��

c

g

��
b

f
// a

there exists a unique h : e → d with f ′h = f ′′ and g′h = g′′. By construction,

the pullback is unique up to isomorphism.

Example 1.6. In the category CMon of commutative monoids, the pullback is

the fibered product of monoids: for f : N →M , g : P →M monoid homomor-

phisms, the pullback of f and g is N ×M P = {(n, p) ∈ N × P | f(n) = g(p)}.
The maps completing the pullback diagram are the projections sending (n, p) ∈
N ×M P to n ∈ N and p ∈ P respectively.
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A natural transformation between two functors S, T : C → D is a function

assigning to each object c of C an arrow Fc : Sc→ Tc such that for each arrow

h : c→ d of C the following square commutes:

Sc
Fc //

Sh
��

Tc

Th
��

Sd
Fd
// Td

Given two categories C and D, an adjunction between C and D is given by

two functors S : C → D and T : D → C and a function φ which assigns, to each

pair of objects c ∈ C, d ∈ D, a set bijection φc,d : HomD(Sc, d)
∼−→ HomC(c, Td)

which is natural in c and d. The functor S is called left adjoint, while T is

right adjoint. We also say that h : Sc → d is left adjoint to φc,dh : c → Td

(and φc,dh is right adjoint to h).

1.4 Simplicial objects

The content of [Mac Lane, 1963, Chapter VIII, Section 5] was used as reference

for the main definitions. The reference for the section about the Eilenberg-Zilber

theorem is [Mac Lane, 1963, Chapter VIII, Section 8]. For the Künneth formula,

the reference is [Mac Lane, 1963, Chapter V, Section 10].

We defined in Example 1.2 the category ∆ of sets [p] = {0, 1, . . . , p} and

weakly monotonic maps µ : [q]→ [p]. Let C be a category; a simplicial object

in the category C is a contravariant functor F : ∆→ C. We will encounter, in this

thesis, simplicial objects such as simplicial monoids and simplicial commutative

rings. Equivalently, we can describe a simplicial object S• = S in C as a family

{Sq}, indexed by a degree q ≥ 0, of objects in C together with two families of

morphisms (arrows) of C, namely face maps (or face operators) di, i = 0, . . . , q,

at each q > 0

di : Sq → Sq−1

and degeneracy maps (or degeneracy operators) si, i = 0, . . . , q, at each q ≥ 0

si : Sq → Sq+1

that satisfy, in every degree q where they are defined, the following identities:

didj = dj−1di if i < j (1.1a)

sisj = sj+1si if i ≤ j (1.1b)

disj =


sj−1di if i < j

idSq
if i = j, i = j + 1

sjdi−1 if i > j + 1

(1.1c)
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A simplicial map F : S → T between two simplicial objects S and T in the

same category C is a natural transformation between the contravariant functors

S, T : ∆→ C. Equivalently, it is a family of arrows Fq : Sq → Tq of C such that

the following two squares commute at each degree q and for every i, j where

they are defined:

Sq+1

Fq+1

��

Sq
sj
oo

di //

Fq

��

Sq−1

Fq−1

��

Tq+1 Tqsj
oo

di

// Tq−1

The simplicial objects in a category C are themselves the objects of a category

with the simplicial maps as arrows.

Let M• be a simplicial module over a commutative ring k, with face operators

di. Then M• determines a chain complex, called the Moore complex:

M• : . . . −→Mn
bn−→Mn−1 −→ . . .

b1−→M0
b0−→ 0 (1.2)

(also denoted with M•), setting

bn =

n∑
i=0

(−1)idi

In fact, for each n,

bn ◦ bn+1 =

(
n∑
i=0

(−1)idi

)n+1∑
j=0

(−1)jdj


that is, explicitly, the sum of the terms in the n× (n+ 1) table

+d0d0 −d0d1 . . . ±d0dn ∓d0dn+1

−d1d0 +d1d1 . . . ∓d1dn ±d1dn+1

...
...

. . .
...

...

±dnd0 ∓dnd1 . . . +dndn −dndn+1

in which the rows of the upper-right triangle correspond term by term, by (1.1a),

to the columns of the lower-left triangle with inverse sign. So bn ◦ bn+1 = 0 and

M• is a chain complex.

The Eilenberg-Zilber theorem

Let U = U• and V = V• be two simplicial modules over a commutative ring k.

Each of them defines a chain complex as in (1.2). Tensoring U• and V• degreewise

gives the cartesian product simplicial module (U � V )•, with (U � V )q =

15



Uq ⊗ Vq, and face and degeneracy maps given by the face and degeneracy maps

for U• and V•:

di(u⊗ v) = di(u)⊗ di(v)

sj(u⊗ v) = sj(u)⊗ sj(v)

This simplicial module, in turn, defines the chain complex (also) denoted as

(U � V )•, with boundary maps again given by ∂q =
∑q
i=0(−1)idi. Moreover,

the tensor product of chain complexes U• ⊗ V• = (U ⊗ V )• is defined as

(U ⊗ V )• : . . .
∂−→

⊕
p+q=2

Up ⊗ Vq
∂−→

⊕
p+q=1

Up ⊗ Vq
∂−→ U0 ⊗ V0

∂−→ 0

with boundary maps ∂p+q(u⊗ v) = ∂p(u)⊗ v + (−1)deg u u⊗ ∂q(v).

The Eilenberg-Zilber theorem states that there’s a chain equivalence

(U � V )•

f
//
(U ⊗ V )•g

oo

which will then give an isomorphism in homology. The chain map f : (U�V )• →
(U ⊗ V )• is the Alexander-Whitney map, which is given by

fn : Un ⊗ Vn →
⊕
p+q=n

Up ⊗ Vq

u⊗ v 7→
n∑
i=0

dn−i? (u)⊗ di0(v) (1.3)

where the dj ’s are the face maps of the complexes and, at each degree q, d? = dq.

Its chain homotopy inverse g : (U ⊗ V )• → (U � V )• is called the shuffle map,

defined in degree n for u ∈ Up and v ∈ Vn−p by

gn :
⊕
p+q=n

Up ⊗ Vq → Un ⊗ Vn

u⊗ v 7→
∑
(µ,ν)

sgn(µ, ν)(sνq · · · sν1(u)⊗ sµp
· · · sµ1

(v)) (1.4)

where the sj ’s are the degeneracy maps and the sum runs over all the (p, q)-

shuffles (µ, ν), that is, over all the permutations of p+ q objects sending the set

of indices (0, . . . p+ q − 1) in a set (µ1, . . . µp, ν1, . . . νq) such that µ1 < . . . <

µp and ν1 < . . . < νq. About the shuffle map, it is useful to specify that if

e : Up ⊗ Vq → Vq ⊗Up is the isomorphism u⊗ v 7→ v ⊗ u, the following diagram

Up ⊗ Vq
gp+q

//

e

��

Up+q ⊗ Vp+q

(−1)pq e

��

Vq ⊗ Up gp+q

// Vp+q ⊗ Up+q
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commutes. In other words,

g ◦ e(u⊗ v) = (−1)pq e ◦ g(u⊗ v) (1.5)

In fact, the (p, q)-shuffles are in bijective correspondence with the (q, p)-shuffles:

{(p, q)-shuffles} → {(q, p)-shuffles}

{µ1, . . . µp, ν1, . . . νq} 7→ {ν1, . . . νq, µ1, . . . µp} (1.6)

The permutation that sends a (p, q)-shuffle to the correspondent (q, p)-shuffle is

now evidently the product of p · q transpositions. In particular, for p + q = 1,

g ◦ e = e ◦ g.

One can, moreover, verify that the shuffle map is associative.

The Künneth formula

Given R• and S• simplicial modules over a commutative ring k, the tensor

product of chain complexes (R⊗ S)• has boundary map

∂(r ⊗ s) = ∂(r)⊗ s+ (−1)deg r r ⊗ ∂(s)

This boundary map sends the tensor product of two cycles to a cycle, and the

tensor product of a cycles and a boundary to a boundary. So, the homomorphism

p : Hm(R•)⊗Hn(S•)→ Hm+n(R• ⊗ S•)

r ⊗ s 7→ r ⊗ s (1.7)

is well-defined (see [Mac Lane, 1963, Chapter V, Section 10], “external homol-

ogy product”).

The Künneth formula states that if, at each degree n, the n-cycles and

the n-boundaries of R• are flat modules, then, for every n, there is a short exact

sequence

0 −→
⊕
p+q=n

Hp(R•)⊗k Hq(S•)
p−−→ Hn((R⊗ S)•)

−→
⊕

p+q=n−1

Tork1(Hp(R•),Hq(S•)) −→ 0

where p is the homology product in (1.7).

Another version of the Künneth formula applies under stronger conditions.

If the n-cycles and the n-th homology of R• are projective modules for each

degree n, then, for every n, the homology product (1.7) induces an isomorphism⊕
p+q=n

Hp(R•)⊗k Hq(S•) ∼= Hn((R⊗ S)•) (1.8)
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1.5 Spectral sequences

We will use an argument involving spectral sequences to prove, among other

facts, the key theorem in Section 3.4. We will present some of the essential

definitions; the reference for this section is [Mac Lane, 1963, Chapter XI, Sec-

tions 1, 3].

Let k be a commutative ring. A spectral sequence E = {Er, dr}, r ∈ N (we

will consider r ≥ 2), is a sequence of Z-bigraded k-modules Erp,q, with a family

of homomorphisms drp,q : Erp,q → Erp−r,q+r−1 for each r, called differentials,

such that d◦d = 0, and with isomorphisms Er+1 ∼= H(Er) (where the homology

refers to the boundary map given by the differential).

Since each term of the spectral sequence is the homology of the previous

one, we can express any term as a quotient of cycles and boundaries. Using the

isomorphism Er+1 ∼= H∗(E
r), we inductively define a tower of submodules

0 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ Br ⊂ Br+1 ⊂ . . . ⊂ Cr+1 ⊂ Cr ⊂ . . . ⊂ C2 ⊂ E2

such that Er ∼= Cr/Br. This can be obtained defining C2 and B2 respec-

tively as the bigraded modules of cycles and boundaries of E2, and setting

that dr : Cr/Br → Cr/Br has kernel Cr+1/Br and image Br+1/Br.

Let C∞ =
⋂
Cr and B∞ =

⋃
Br. Evidently B∞ ⊂ C∞; we define E∞ ={

E∞p,q
}

=
{
C∞p,q/B

∞
p,q

}
.

A first quadrant spectral sequence is a spectral sequence E such that

Erp,q = 0 whenever p < 0 or q < 0. In a first quadrant spectral sequence, for

fixed bidegree (p, q), the differentials drp,q and drp+r,q−r+1 are ultimately 0 (for

r > max(p, q + 1)); this implies that Erp,q = Er+1
p,q = E∞p,q for large enough values

of r.

A filtration of a k-module A is a family F = {FpA | p ∈ Z} of submodules

of A, with Fp−1 ⊂ Fp for each p. F determines an associated graded mod-

ule GFA =
{(
GFA

)
p

}
= {FpA/Fp−1A}. A filtration of a graded k-module

An is a family of sub-graded modules FpA satisfying the same conditions; this

determines at each n a filtration {FpAn}.

A spectral sequence {Er, dr} is said to converge to a graded k-module

A if there exists a filtration F of A and, at each p, isomorphisms of graded

modules E∞p,q
∼= FpAp+q/Fp−1Ap+q (graded by q); we denote with E2

p ⇒ A the

convergence of Er to A.
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Chapter 2

The Hochschild homology

2.1 The Hochschild complex

We will give a definition of the Hochschild complex and we will build from it

the Hochschild homology. The following definitions and results are based on the

exposition given in [Loday, 1998]. In this chapter, k will denote a commutative

ring.

Let A be a k-algebra and let M be a bimodule over A. Consider the modules

Cn(A;M) := M ⊗ A⊗n (all the tensor products are meant to be over k). We

can define, for each n ≥ 0, face and degeneracy operators as follows:

di(m, a1, . . . , an) =


(ma1, a2, . . . , an) for i = 0

(m, a1, . . . , aiai+1, . . . , an) for 1 ≤ i < n

(anm, a1, . . . , an−1) for i = n

(2.1a)

sj(m, a1, . . . , an) =


(m, 1, a1, a2, . . . , an) for j = 0

(m, a1, . . . , aj , 1, aj+1, . . . , an) for 1 ≤ j < n

(m, a1, . . . , an, 1) for j = n

(2.1b)

Here, as we will often do, we used the notation (x1, . . . , xn) for the tensor product

x1 ⊗ . . .⊗ xn.

One can easily compute that the face operators and the degeneracy opera-

tors as defined in (2.1) satisfy the conditions (1.1) for simplicial objects. This

makes C•(A;M) a simplicial module; we can then define a k-linear Hochschild

boundary map b : M ⊗A⊗n →M ⊗A⊗n−1 by setting

bn =

n∑
i=0

(−1)idi
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Having a boundary map, we get a chain complex, called the Hochschild

complex:

C•(A;M) : . . .
b−→M ⊗A⊗n b−→M ⊗A⊗n−1 b−→ . . .

b−→M ⊗A b−→M
b−→ 0

The n-th homology group HHn(A;M) of the Hochschild complex is called

the n-th Hochschild homology group. It is immediately seen that

HH0(A;M) = M/{am−ma | a ∈ A, m ∈M}

We denote moreover with HH∗(A;M) the graded abelian group defined by the

sequence HHn(A;M), for n ∈ N.

When treating Hochschild complexes and the Hochschild homology, we are

often interested in the case when M = A. We will then denote C•(A) = C•(A;A)

and HH∗(A) = HH∗(A;A).

Example 2.1. The Hochschild complex of Z is, under the isomorphism Z⊗n ∼= Z,

the following one:

. . . −→ Z id−−→ Z 0−−→ Z id−−→ Z 0−−→ Z 0−−→ 0

Then, easily,

HHn(Z) ∼=

Z if n = 0

0 if n > 0

Example 2.2. Let A = Z[x]/
(
x2
)
. To find the homology of C•(A), we can com-

pute the homology of the “normalized Hochschild complex” instead. Precisely,

we let A = A/Z ∼= 〈x〉/(x2). The normalized Hochschild complex C•(A) is

defined degreewise as Cn(A) = A ⊗ A⊗n, with boundary maps induced by the

boundary maps of the Hochschild complex. By [Loday, 1998, Proposition 1.1.15],

C•(A) and C•(A) give the same homology. We get:

. . . −→ A⊗A⊗3 b3−−→ A⊗A⊗2 b2−−→ A⊗A b1−−→ A
b0−−→ 0

where

bn(a+ bx⊗ x⊗ . . .⊗ x) =


0 for n = 0

0 for odd n

2ax⊗ x⊗ . . .⊗ x for even n, n ≥ 2

This gives

HHn(Z[x]/
(
x2
)
) ∼=


Z[x]/

(
x2
)

for n = 0

Z[x]/
(
2x, x2

)
for odd n

Z{x} for even n, n ≥ 2
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Remark 2.3. If A is a commutative k-algebra, one can check that HH∗(A;M)

is a graded A-module, under the multiplication on the first coordinate A, which

is compatible with the face and the boundary maps of C•(A;M).

2.2 Kähler differentials and derivations

For a commutative and unital k-algebra A, we define the A-module of Kähler

differentials Ω1
A|k (or just Ω1

A) as the freeA-module in the symbols {da | a ∈ A}
modulo the A-submodule generated by the relations d(λa + µb) = λda + µdb

and d(ab) = adb+ bda for a, b ∈ A, λ, µ ∈ k.

Example 2.4. The Z-module of Kähler differentials of Z is the trivial module.

In fact, by linearity, dn = nd1 for dn ∈ Ω1
Z|Z. But d1 = d(1 · 1) − d1 = 0.

The Z-module Ω1
Q|Z of Kähler differentials of Q is also the trivial module, being

dmn = 1
n · nd

m
n = 1

ndm = m
n d1 = 0 for m, n ∈ Z.

Theorem 2.5. For a commutative and unital k-algebra A, there is a canonical

isomorphism of A-modules:

HH1(A) ∼= Ω1
A|k

Proof. Computing directly, we have that the boundary maps in degree 1 and 2

are as such:

b1 : A⊗A→ A

a1 ⊗ a2 7→ a1a2 − a2a1 = 0

since A is commutative, making ker b1 = A⊗A;

b2 : A⊗A⊗A→ A⊗A

a1 ⊗ a2 ⊗ a3 7→ a1a2 ⊗ a3 − a1 ⊗ a2a3 + a3a1 ⊗ a2

Then, by definition,

HH1(A) =
ker b1
im b2

=
A⊗A

〈a1a2 ⊗ a3 − a1 ⊗ a2a3 + a3a1 ⊗ a2〉
(2.2)

Now, define

τ : HH1(A)→ Ω1
A|k

a1 ⊗ a2 7→ a1da2 (2.3)

We see that τ is a well-defined A-module homomorphism, since cycles in the

same homology class have the same image. In fact, using the commutativity of
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A, we have:

τ(a1a2 ⊗ a3 − a1 ⊗ a2a3 + a3a1 ⊗ a2) = a1a2d(a3)− a1d(a2a3) + a3a1d(a2)

= a1a2d(a3)− a1a2d(a3)− a1a3d(a2) + a3a1d(a2) = 0

Moreover, once we define

τ : Ω1
A|k → HH1(A)

a1da2 7→ [a1 ⊗ a2] (2.4)

we have that differentials in Ω1
A|k are sent to cycles, since A⊗A = ker b1. Also

τ is a well-defined A-module homomorphism, since

τ(d(a1a2)) = 1⊗ a1a2 = a1 ⊗ a2 + a2 ⊗ a1 = τ(a1da2 + a2da1)

where the middle equality comes from the relation defined by im b2 in (2.2),

choosing the first entry to be 1. Finally, we can easily see that ττ = idΩ1
A|k

and

ττ = idHH1(A). �

We will now formulate another definition of the Kähler differentials in terms

of an universal property on derivations.

For A again a commutative and unital k-algebra, and for J any A-module, a

derivation of A with values in J is a k-linear map D : A→ J such that D(ab) =

aD(b) + bD(a) for a, b ∈ A. We denote the A-module of all derivations of A

with values in J with Der(A, J), or just Der(A) when J = A. The multiplication

in the module is given by A × Der(A, J) → Der(A, J), c×D 7→ cD defined by

(cD)(a) = c ·D(a).

Alternatively, we can define the square-zero extension A⊕J as a commutative

ring over A with multiplication map

µ : (A⊕ J)× (A⊕ J)→ A⊕ J

(a1 ⊕ j1, a2 ⊕ j2) 7→ a1a2 ⊕ (a1j2 + a2j1)

In this way, Der(A, J) is isomorphic to the A-module of ring homomorphisms

D̄ : A → A ⊕ J over A. All of them have the form D̄(a) = a ⊕D(a), where D

yet again satisfies the “Leibniz rule” D(ab) = aD(b) + bD(a).

A derivation d : A→ J is universal if, given any other derivation δ : A→ I,

δ factors over d, meaning that there is a unique A-linear map φ : J → I that

makes the following diagram commute:

A
δ //

d
��

I

J

φ

??
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In the following result we will see that this universal property is fulfilled by

the Kähler differentials.

Proposition 2.6. The derivation d : A→ Ω1
A|k, a 7→ da is universal, i.e., given

a derivation δ : A → I, there is a unique A-linear map φ : Ω1
A|k → I such that

δ = φ ◦ d. In detail, φ(da) = δ(a).

Proof. We just need to check that the declared map φ is well-defined. Immedi-

ately, we have that φ(d(λa+µb)−λda−µdb) = δ(λa+µb)−λδ(a)−µδ(b) = 0

and φ(d(ab) − adb − bda) = δ(ab) − aδ(b) − bδ(a) = 0 since δ is a derivation.

Since φ fits in the commutative diagram, it is also unique. �

From this, we can get the following important result.

Corollary 2.7. There is an isomorphism:

HomA

(
Ω1
A|k, J

)
∼−→ Der(A, J)

f 7→ f ◦ d

φ← [ δ = (by universality) = φ ◦ d

In particular, taking J = HH1(A), this implies that having an A-module

homomorphism f : Ω1
A|k → HH1(A) is the same as having a derivation D of A

with values in HH1(A). We can use this to see that there effectively is such a

homomorphism f . Consider, in fact,

D : A→ HH1(A) = A⊗A/〈a0a1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1〉

a 7→ [1⊗ a] (2.5)

for ai ∈ A. The map D is a derivation, since

D(ab) = [1⊗ ab] = [a⊗ b] + [b⊗ a] = aD(b) +D(a)b

Hence we get a homomorphism f : Ω1
A|k → HH1(A), adx 7→ aDx; this is the

same map as the map τ described in Theorem 2.5.

From now on, we will refrain from denote homology classes with square

brackets, unless necessary.
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Chapter 3

The log Hochschild

homology

We start by introducing the objects of our study, extensively following the theory

described in [Rognes, 2009] for terminology, exposition and, often, notation.

Throughout this thesis, a commutative monoid will be understood to be a

set endowed with an associative and commutative multiplication and an identity

element. Equivalently, using the notions in Section 1.3, a commutative monoid

is a category with a single object, such that any two morphisms commute.

3.1 Log structures

Let A be a commutative ring. A pre-log structure on A is a pair (M,α) of

a commutative monoid M and a monoid homomorphism α : M → (A, · ) from

M to the underlying commutative monoid of A. A pre-log ring (A,M,α),

also denoted as (A,M) when the monoid homomorphism is clear, consists of a

commutative ring A together with a pre-log structure (M,α) on A.

A homomorphism of pre-log rings
(
f, f [

)
: (A,M,α) → (B,N, β) is

a ring homomorphism f : A → B together with a monoid homomorphism

f [ : M → N , such that the following diagram commutes:

M
α //

f[

��

(A, · )

(f, · )
��

N
β
// (B, · )

Let ι : GL1(A) ↪→ (A, · ) be the inclusion of the multiplicative group of units
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of A in A. Let α−1 GL1(A) ⊆M be defined by the pullback square

α−1 GL1(A)
α̃ //

ι̃

��

GL1(A)

ι

��

M
α

// (A, · )

If the restricted homomorphism α̃ in the diagram happens to be an iso-

morphism, then (M,α) is called a log structure on A, and (A,M,α), or just

(A,M), is a log ring.

We can obtain a log structure from a pre-log structure in the following way.

Let (A,M,α) be a pre-log ring. Its associated log ring (A,Ma, αa) is the log

ring given by A with the log structure (M,α)
a

= (Ma, αa), where Ma is defined

by the pushout square

α−1 GL1(A)
α̃ //

ι̃

��

GL1(A)

�� ι

��

M //

α
--

Ma

αa

%%

(A, · )

and αa : Ma → (A, · ) is the canonical homomorphism induced by α and ι.

This is indeed a log ring: every unit u ∈ GL1(A) has preimage 1 ⊕ u through

αa, making (αa)
−1

GL1(A) isomorphic to GL1(A). The transition from a pre-log

structure to its associated log structure will be referred to as the “logification”

of the pre-log ring.

Remark 3.1. Since we can always endow A with a trivial pre-log structure,

taking M = {1} and the unique α : {1} → (A, · ), then we can also give A a log

structure, taking the associated log structure to the trivial pre-log structure. In

that case, Ma = GL1(A) and αa = ι : GL1(A)→ (A, · ).

For a commutative monoid M , there is a canonical pre-log structure on

its monoid ring Z[M ], given by (M, ζ), where

ζ : M → Z[M ], m 7→ 1 ·m

This yields the canonical log structure on Z[M ], given by (M, ζ)
a
.
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3.2 Bar constructions and the log Hochschild

homology

In this thesis, when we are given a commutative monoid M , we will denote with

Mgp its group completion and with γ : M →Mgp the monoid homomorphism

with the universal property that any other monoid homomorphism φ : M →M ′,

with M ′ abelian group, factors uniquely through γ. For the explicit construction

of this (abelian) group, also called the Grothendieck group of M , see e.g.

[Rosenberg, 1994, Theorem 1.1.3].

Once again, the terminology and the constructions that are going to follow

are presented as described in [Rognes, 2009, Section 3].

Let ε : M → P be a monoid homomorphism. ε is said to be exact if

M
γ
//

ε

��

Mgp

εgp

��

P
γ
// P gp

is a pullback square.

If ε : M → P is a homomorphism of commutative monoids, ε is said to be

virtually surjective if εgp : Mgp → P gp is surjective.

Example 3.2. A first example of a non-surjective homomorphism of commu-

tative monoids which is virtually surjective is the following. Consider M =

({1, . . . ,m}, · ) and P = ({1, . . . , p}, · ) with p > m, where in both monoids

the operation is defined such that n1 · n2 = max{n1, n2}. Let ε : M → P be

the inclusion; it is obviously a homomorphism and it is not surjective. Now,

Mgp = {1}. In fact, for any n ∈ M , n · n = n, so γ(n) = γ(n · n) = γ(n)γ(n),

being γ : M →Mgp a monoid homomorphism. Since Mgp is a group, multiply-

ing both the left- and the right-hand side by γ(n)−1, we get γ(n) = 1. By the

universal property of the group completion, Mgp ∼= {1}. By the same argument,

also P gp ∼= {1}, so εgp : {1} → {1} is surjective, making ε virtually surjective.

Example 3.3. We shall provide another example of a homomorphism of com-

mutative monoids ε : M → P which is virtually surjective, but not surjec-

tive, where, this time, the respective group completions are not trivial. Let

M = 〈2, 3〉 ⊆ (N,+, 0) = P , with ε : M → P being the inclusion map (evidently

not surjective). Clearly P gp = Z. We claim that 〈2, 3〉gp
is isomorphic to Z. In
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fact, we can consider the inclusion ι : 〈2, 3〉 → Z. From the diagram

〈2, 3〉
γ
//

ι

��

〈2, 3〉gp

θ
zz

Z

we know that ι factors uniquely as ι = θγ where θ is a homomorphism of abelian

groups. Hence, θγ(2) = ι(2) = 2. We also have that γ(2)+2γ(2) = γ(2+2+2) =

γ(3+3) = 2γ(3), so γ(2) = −2γ(2)+2γ(3). We conclude that, in Z, 2 = θγ(2) =

θ(−2γ(2) + 2γ(3)) = 2θ(−γ(2) + γ(3)), giving θ(−2γ(2) + γ(3)) = 1. But then

easily θ has an inverse homomorphism, given by Z→ 〈2, 3〉gp
, 1 7→ −2γ(2)+γ(3),

so 〈2, 3〉gp ∼= Z. The group homomorphism εgp : Z→ Z is the identity map, thus

it is surjective. In conclusion, ε is virtually surjective, but not surjective.

A virtually surjective commutative monoid M over P , i.e. a commutative

monoid M with a virtually surjective homomorphism ε : M → P , is called re-

plete if the homomorphism ε is exact.

Given a virtually surjective ε : M → P , the repletion of M over P is the

pullback M rep = P ×P gp Mgp with the canonical map εrep : M rep → P . We then

get a commutative diagram:

M
ρ
//

ε

��

M rep //

εrep

��

Mgp

εgp

��

P
= // P

γ
// P gp

where the map ρ : M → M rep in the diagram is called the repletion map. It

is proven in [Rognes, 2009, Lemma 3.8] that M rep is replete over P .

Given a commutative monoid M , the bar construction of M is the sim-

plicial commutative monoid BM = B•M given by q copies of M in degree q.

Face operators di and degeneracy operators sj in degree q are given as follows,

for 0 ≤ i, j ≤ q:

di(m1, . . . ,mq) =


(m2, . . . ,mq) for i = 0

(m1, . . . ,mimi+1, . . . ,mq) for 1 ≤ i ≤ q − 1

(m1, . . . ,mq−1) for i = q

sj(m1, . . . ,mq) =


(1,m1, . . . ,mq) for j = 0

(m1, . . . ,mj , 1,mj+1, . . . ,mq) for 1 ≤ j ≤ q − 1

(m1, . . . ,mq, 1) for j = q

For a commutative monoid M , the cyclic bar construction of M is the

simplicial commutative monoid Bcy M = Bcy
• M which, in degree q, is given by
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q + 1 copies of M . With the usual notation, face and degeneracy operators for

this simplicial commutative monoid are the following:

di(m0, . . . ,mq) =

(m0, . . . ,mimi+1, . . . ,mq) for 0 ≤ i ≤ q − 1

(mqm0,m1, . . . ,mq−1) for i = q

sj(m0, . . . ,mq) =

(m0, . . . ,mj , 1,mj+1, . . . ,mq) for 0 ≤ j ≤ q − 1

(m0, . . . ,mq, 1) for j = q

A cyclic structure on Bcy M is given by the operator:

tq : Bcy
q M → Bcy

q M

(m0, . . . ,mq−1,mq) 7→ (mq,m0, . . . ,mq−1)

The cyclic bar construction can be seen as the tensor product S1
• ⊗M , where

S1
• is the simplicial circle. So, the base point inclusion ∗ → S1

• induces in each

degree the inclusion map

η : M → Bcy M , m 7→ (m, 1, . . . 1)

and the collapse map S1
• → ∗ induces in each degree the map

ε : Bcy M →M , (m0,m1, . . . ,mq) 7→ m0m1 · · ·mq

The replete bar construction BrepM = Brep
• M of a commutative monoid

M is the repletion (Bcy M)
rep

of the cyclic bar construction of M over M itself,

which is the simplicial commutative monoid given by the pullback (bottom-right

square) of simplicial commutative monoids:

M
= //

η

��

M
γ

//

ηrep

��

Mgp

ηgp

��

Bcy M
ρ
//

ε

��

BrepM //

εrep

��

Bcy Mgp

εgp

��

M
= // M

γ
// Mgp

(3.1)

Brep
q M has elements (m, g0, . . . gq), with m ∈M and gi ∈Mgp, such that

γ(m) = εgp(g0, . . . , gq) = g0 · · · gq (3.2)

Moreover, it has a natural cyclic structure, since both γ and εgp are cyclic maps

(ε is a cyclic morphism giving M the constant cyclic structure). Such a structure

is given by the operator

tq : Brep
q M → Brep

q M

(m, g0, . . . , gq−1, gq) 7→ (m, gq, g0, . . . , gq−1)
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A simplicial structure for BrepM is given by face and degeneracy operators

inherited from the face and degeneracy operators on the cyclic bar complex

Bcy Mgp, while being the identity on M :

di(m, g0 . . . , gq) =

(m, g0, . . . , gigi+1, . . . , gq) for 0 ≤ i ≤ q − 1

(m, gqg0, g1, . . . , gq−1) for i = q

sj(m, g0, . . . , gq) =

(m, g0, . . . , gj , 1, gj+1, . . . , gq) for 0 ≤ j ≤ q − 1

(m, g1, . . . , gq, 1) for j = q

The condition (3.2) gives an explicit formula for g0 = γ(m)(g1 · · · gq)−1; by

direct computation, one can show that the map

BrepM
∼−→M × BMgp

(m, γ(m)(g1 · · · gq)−1, g1, . . . , gq) 7−→ (m, g1, . . . , gq) (3.3)

commutes with the face and degeneracy operators of the respective simplicial

structures, providing thus an isomorphism of simplicial commutative monoids.

With this identification, the repletion map ρ is as follows:

ρ : Bcy M → BrepM ∼= M × (Mgp)
q

(m0, . . . ,mq) 7→ (m0 · · ·mq, γ(m1), . . . , γ(mq)) (3.4)

The simplicial structure is now given by the face and degeneracy operators

inherited from the face and degeneracy operators on the bar complex BMgp,

while still being the identity on M :

di(m, g1 . . . , gq) =


(m, g2, . . . , gq) for i = 0

(m, g1, . . . , gigi+1, . . . , gq) for 1 ≤ i ≤ q − 1

(m, g1, . . . , gq−1) for i = q

(3.5a)

sj(m, g1, . . . , gq) =


(m, 1, g1, . . . , gq) for j = 0

(m, g1, . . . , gj , 1, gj+1, . . . , gq) for 1 ≤ j ≤ q − 1

(m, g1, . . . , gq, 1) for j = q

(3.5b)

Let now (A,M,α) be a pre-log ring. With respect to the covariant functor

Z[ · ] : CMon → CRing , M 7→ Z[M ]

from commutative monoids to commutative rings (as described in Example 1.3),

the homomorphism α : M → (A, · ) has left adjoint α : Z[M ]→ A. In degree q,

Z
[
Bcy
q M

]
= Z

[
Mq+1

] ∼= Z[M ]
⊗q+1

and Cq(A) = A⊗q+1. Consider the simpli-

cial map S1
• ⊗ α : Z[Bcy M ]→ C(A) (in degree q, α⊗q+1 : Z[M ]

⊗q+1 → A⊗q+1).

Its right adjoint Bcy M → (C(A), · ) defines degreewise a pre-log structure on

the (simplicial) commutative ring C(A).
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Definition 3.4 ([Rognes, 2009]). Let (A,M,α) be a pre-log ring; we shall at

first work under the assumption that A is flat over Z[M ]. The log Hochschild

complex of (A,M) is the replete simplicial pre-log ring (C•(A,M),Brep
• M, ξ)

obtained by degreewise pushout of simplicial commutative rings:

Z[Bcy
• M ]

Z[ρ]
//

S1
•⊗α
��

Z[Brep
• M ]

ξ

��

C•(A)
ψ

// C•(A,M)

where ρ is the repletion map figuring in (3.1). The pre-log structure map

ξ : Brep
• M → (C•(A,M), · )

is then the right adjoint to the map ξ in the diagram.

In detail:

Z[Bcy
n M ] = Z

[
Mn+1

] ∼= Z[M ]
⊗n+1

Z[Brep
n M ] ∼= Z[M × (Mgp)

n
] ∼= Z[M ]⊗ Z[Mgp]

⊗n

and Cn(A) = A⊗n+1 as previously defined. Hence, in each degree n,

Cn(A,M) ∼= A⊗n+1 ⊗Z[M ]⊗n+1

(
Z[M ]⊗ Z[Mgp]

⊗n
)

The log Hochschild homology groups HH∗(A,M) are the homology

groups of the Hochschild complex with the induced boundary maps. The log

Hochschild boundary maps combines the boundary maps on the factors of the

tensor product over Z[Bcy
n M ]. On the Cn(A) side, the face operators are the

ones defined in (2.1a) for the Hochschild homology complex; on the Z[Brep
n M ]

side, they are induced by the simplicial structure of the replete bar construction

(shown in (3.5a)). Explicitly, we have:

C•(A,M) : . . .
b3−→ A⊗3 ⊗Z[M ]⊗3

(
Z[M ]⊗ Z[Mgp]

⊗2
)

b2−→ A⊗2 ⊗Z[M ]⊗2 (Z[M ]⊗ Z[Mgp])

b1−→ A⊗Z[M ] Z[M ] ∼= A
b0−→ 0 (3.6)

where, for ai ∈ A, m ∈ Z[M ] and gi ∈ Z[Mgp],

b1((a0 ⊗ a1)⊗ (m⊗ g1)) = (a0a1 ⊗m)− (a1a0 ⊗m) = 0

b2((a0 ⊗ a1 ⊗ a2)⊗ (m⊗ g1 ⊗ g2))

= (a0a1 ⊗ a2 ⊗m⊗ g2)− (a0 ⊗ a1a2 ⊗m⊗ g1g2) + (a2a0 ⊗ a1 ⊗m⊗ g1)
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and so on. We see that, for a pre-log ring (A,M) with A flat over Z[M ],

HH0(A,M) = A. Part of this thesis will be devoted to the investigation a more

meaningful expression for HH1(A,M).

Example 3.5. The Hochschild homology of a Z-algebra A is trivially isomorphic

to the log Hochschild homology of A endowed with the trivial pre-log structure.

In this sense, we can consider the log Hochschild homology to be a generalization

of the Hochschild homology.

Remark 3.6. We can provide a definition of the log Hochschild homology of

a pre-log ring (A,M,α) also for the case in which A is not flat over Z[M ].

Let X• be a simplicial resolution of A by flat Z[M ]-modules, i.e., a simplicial

commutative algebra X• = {Xi}, i ∈ N, such that Xi is flat over Z[M ] for every

i. For each i, let C•(Xi,M) be the log Hochschild complex of i. We define the

n-th log Hochschild homology of (A,M,α) to be HHn(A,M) = HHn(Xn,M).

However, for simplicity we shall generally assume that A is flat over Z[M ] when

discussing log Hochschild homology.

3.3 Log Kähler differentials and log derivations

For simplicity, from this section onwards we will use the ring of integers k = Z
as ground ring. For example, when A is a commutative ring, we will write Ω1

A

to denote Ω1
A|Z.

We shall now define the “log” version for Kähler differentials. The module

that we will obtain is going to be the pushout of two maps that we will now

define.

For a pre-log ring (A,M,α), define the A-module homomorphism:

ψ : A⊗Z[M ] Ω1
Z[M ] → A⊗Mgp

a⊗ dm 7→ aα(m)⊗ γ(m) (3.7)

To check that ψ is well-defined, we can consider the map δ : Z[M ] → A⊗Mgp

defined on M by m 7→ α(m) ⊗ γ(m) and extended linearly to Z[M ]. This is a

derivation of Z[M ] with values in A⊗Mgp, since

δ(mn) = α(mn)⊗ γ(mn) = α(m)α(n)⊗ γ(m)γ(n)

= α(m)α(n)⊗ γ(m) + α(m)α(n)⊗ γ(n) = α(n)δ(m) + α(m)δ(n)

By Corollary 2.7, this derivation corresponds to the Z[M ]-module homomor-

phism Ω1
Z[M ] → A⊗Mgp, which itself, by extensions of scalars, corresponds to

the A-module homomorphism ψ.
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Again, for a pre-log ring (A,M,α), we define another A-module homomor-

phism:

φ : A⊗Z[M ] Ω1
Z[M ] → Ω1

A

a⊗ dm 7→ ad(α(m)) (3.8)

Definition 3.7. For a pre-log ring (A,M,α), we define the A-module of log

Kähler differentials Ω1
(A,M) by the pushout of A-modules:

A⊗Z[M ] Ω1
Z[M ]

ψ
//

φ

��

A⊗Mgp

φ

��

Ω1
A

ψ

// Ω1
(A,M)

(3.9)

with A-module homomorphisms ψ and φ as defined respectively in (3.7) and

(3.8).

In this way,

Ω1
(A,M) =

(
Ω1
A ⊕ (A⊗Mgp)

)
/ ∼

where ∼ is A-linearly generated by the relation

dα(m)⊕ 0 ∼ 0⊕ (α(m)⊗ γ(m))

for m ∈M . In Ω1
(A,M), we will use the notation

da := ψ(da), d logm := φ(1⊗ γ(m))

for a ∈ A and m ∈ M . We then see that, for m, n ∈ M , d log(mn) = d logm+

d log n (since φ is a module homomorphism); moreover, dα(m) = α(m)d logm.

Example 3.8. If ({1}, α) is the trivial pre-log structure on a commutative ring

A, then the A-module homomorphisms ψ and ψ are isomorphisms. Hence,

Ω1
(A,{1})

∼= Ω1
A.

It is at this point convenient to delineate an isomorphism that will prove

itself useful from now on.

Lemma 3.9. For a commutative ring A and a commutative monoid M , there

is an isomorphism of A-modules:

A⊗Mgp ∼= (A⊗ Z[Mgp])/ ∼

where ∼ is A-linearly generated by the relation a ⊗ g1 + a ⊗ g2 ∼ a ⊗ g1g2 for

a ∈ A, g1, g2 ∈Mgp.
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Proof. We will proceed to find two inverse A-module homomorphisms. In one

direction, we define:

ϑ : A⊗Mgp → (A⊗ Z[Mgp])/ ∼

a⊗ g 7→ [a⊗ g]

We then define, for ni ∈ Z and gi ∈Mgp:

ϑ̃ : A⊗ Z[Mgp]→ A⊗Mgp

a⊗
∑
i

nigi 7→ a⊗
∏
i

gni
i

The submodule generated by ∼ lies in ker ϑ̃, since

ϑ̃(a⊗ g1g2 − a⊗ g1 − a⊗ g2) = a⊗ g1g2g
−1
1 g−1

2 = a⊗ 1

Then there exists a unique A-module homomorphism

ϑ : (A⊗ Z[Mgp])/ ∼→ A⊗Mgp

such that ϑ([a⊗
∑
i nigi]) = a⊗

∏
i g
ni
i . Now easily ϑ and ϑ are inverse isomor-

phisms. �

Example 3.10. Consider the pre-log ring (A,M,α) where A = Z[M ] and α is

the inclusion. The log Hochschild complex is defined with the pushout diagram

in Definition 3.4, where now α : Z[M ]→ A is the identity on A, so Cn(A,M) ∼=
A ⊗ Z[Mgp]

⊗n
. The boundary map in degree 1 is the zero-map, while b2(a ⊗

g1 ⊗ g2) = (a⊗ g2)− (a⊗ g1g2) + (a⊗ g1) for a ∈ A, g1, g2 ∈ Z[Mgp].

At this point, HH1(A,M) ∼= (A⊗ Z[Mgp])/ ∼ where a⊗ g1 + a⊗ g2 ∼ a⊗ g1g2

for a ∈ A, g1, g2 ∈Mgp. By Lemma 3.9, this is isomorphic to A⊗Mgp.

The A-module A⊗Z[M ]Ω
1
Z[M ] is clearly isomorphic to Ω1

A. This yields, computing

the log Kähler differentials of (A,M) from the definition, that the bottom map

in (3.9) is

ψ : Ω1
A → Ω1

(A,M)

dm 7→ md logm

and Ω1
(A,M)

∼= A⊗Mgp. We then see that, for this pre-log ring,

HH1(A,M) ∼= Ω1
(A,M)

We will prove in Theorem 3.22 that this isomorphism holds for any pre-log

ring (A,M), provided that A is flat over Z[M ], the condition required in the

definition of the log Hochschild complex.
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Example 3.11. Referring to Example 3.10, let (A,M,α) be a pre-log ring, where

A is the ring Z[x] of polynomials with integer coefficients, M is the free commu-

tative monoid 〈x〉 =
{

1, x, x2, . . .
}

and α : M → (A, · ) is the inclusion. In this

way, A ∼= Z[M ] and HH1(Z[x], 〈x〉) ∼= Ω1
(Z[x],〈x〉). Explicitly, HH1(Z[x], 〈x〉) ∼=

Z[x] ⊗ 〈x〉gp ∼= Z[x] ⊗ Z ∼= Z[x]. On the other hand, Ω1
Z[x]
∼= Z[x]{dx} and

Ω1
(A,M)

∼= A ⊗Mgp ∼= Z[x]{d log x}. The homomorphism ψ : Ω1
Z[x] → Ω1

(Z[x],〈x〉)
maps dx 7→ xd log x (thus it is not an isomorphism). More on this subject will

be discussed in Chapter 4.

We are going to illustrate the functorial behaviour of the log Kähler differ-

entials; in order to do so, we will need a lemma.

Lemma 3.12. Let M be a commutative monoid and K an abelian group.

There is a canonical bijective correspondence between the monoid homomor-

phisms M → K and the group homomorphisms Mgp → K.

Proof. Let f : M → K be a monoid homomorphism. Then f(1M ) = 1K . We

can define a group homomorphism fgp : Mgp → K such that the diagram

M
f
//

γ

��

K

Mgp

fgp
// K

(3.10)

commutes, i.e., setting fgp(γ(m)) = f(m) for m in M ; the definition extends

automatically to Mgp because fgp is a group homomorphism, which implies, for

any m in M ,

1K = f(1M ) = fgp(γ(1M )) = fgp
(
γ(m)γ(m)−1

)
= fgp(γ(m))fgp

(
γ(m)−1

)
returning fgp

(
γ(m)−1

)
= fgp(γ(m))

−1
for any m in M . Conversely, given

g : Mgp → K, one can define g̃ : M → K, m 7→ g(γ(m)). Clearly the corre-

spondence

Hom(M,K)←→ Hom(Mgp,K)

f 7−→ fgp

g̃ ←− [ g

is given by inverse isomorphisms. �

In such a setting, when needed, we will use the short notation f(m) implicitly

meaning fgp(γ(m)).
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Proposition 3.13. The function Ω1
(A,−) sending the pre-log ring (A,M) to

Ω1
(A,M) is a covariant functor on pre-log structures of A to A-modules.

Proof. Given a homomorphism of pre-log rings
(
id, f [

)
: (A,M,α)→ (A,N, β),

we need to find a A-module homomorphism f∗(M,N) : Ω1
(A,M) → Ω1

(A,N) that pre-

serves identities and directions of arrows. By Lemma 3.12, we know that we can

extend the monoid homomorphism f [ : M → N to the group homomorphism

f [
gp

: Mgp → Ngp between group completions, as in diagram (3.10):

N

γN

��

M

f[
;;

γN◦f[

//

γM

��

Ngp

Mgp

f[gp
// Ngp

(3.11)

After the identification

Ω1
(A,M) =

(
Ω1
A ⊕ (A⊗Mgp)

)
/ ∼M

where (dα(m) ⊕ 0) ∼M (0 ⊕ (α(m) ⊗ γM (m))) for m ∈ M , and similarly for

Ω1
(A,N), we can define

f∗(M,N) :
(
Ω1
A ⊕ (A⊗Mgp)

)
/ ∼M →

(
Ω1
A ⊕ (A⊗Ngp)

)
/ ∼N

da⊕ (1⊗m) 7→ da⊕ (1⊗ f [
gp

(m))

on a generator da ⊕ (1 ⊗ m), then extended A-linearly. This is a well-defined

A-module homomorphism. In fact, by the commutativity of (3.11) and by the

relation α(m) = βf [(m) for m ∈M , we have

f∗(M,N)(dα(m)⊕ 0) = (dα(m)⊕ 0)

= (dβf [(m)⊕ 0)

∼N (0⊕ (βf [(m)⊗ γNf [(m)))

= (0⊕ (α(m)⊗ f [
gp
γM (m)))

= f∗(M,N)(0⊕ (α(m)⊗ γM (m))))

If f [ is the identity on M , then f [
gp

is the identity on Mgp and f∗(M,M) is

the identity on Ω1
(A,M). Moreover, if

(
id, g[

)
: (A,N, β) → (A,P, υ) is another

pre-log ring homomorphism, then easily(
id, (g ◦ f)[

)
=
(

id, g[ ◦ f [
)

: (A,M,α)→ (A,P, υ)

is a pre-log ring homomorphism and g∗(N,P ) ◦ f∗(M,N) = (g ◦ f)∗(M,P ). Hence

Ω1
(A,−) is a covariant functor on pre-log structures of A to A-modules. �
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As for the case of Kähler differentials, we will give a description of the log

Kähler differentials by means of a universal property, regarding, in this case, log

derivations.

Let (A,M,α) be a pre-log ring and let J be an A-module. A log derivation(
D,D[

)
of (A,M) with values in J consists of a derivation D : A → J of A

with values in J and a monoid homomorphism D[ : M → (J,+) such that the

following diagram commutes:

M
α //

id×D[

��

(A, · )

(D, · )
��

M × (J,+)
α[

// (J, · )

where (J,+) is the underlying abelian group of J and the lower arrow α[ maps

(m,x) 7→ α(m)x; that is, D[ is such that α(m)D[(m) = D(α(m)). We note

that, by Lemma 3.12, D[ extends to D[gp
: Mgp → (J,+).

We denote the A-module of log derivations of (A,M) with values in J

with Der((A,M), J). Our aim is now to show that, similarly to the case of Kähler

differentials, there is a correspondence between the A-module homomorphisms

from the log Kähler differentials and the log derivations.

Theorem 3.14. There is an isomorphism of A-modules:

HomA

(
Ω1

(A,M), J
)
∼= Der((A,M), J)

Proof. We will make use of the universal property of the Kähler differentials

described in Corollary 2.7.

Given
(
D,D[

)
∈ Der((A,M), J), consider the diagram

A⊗Z[M ] Ω1
Z[M ]

ψ
//

φ

��

A⊗Mgp

φ

�� h

��

A
d //

D //

Ω1
A

ψ
//

g

--

Ω1
(A,M)

f

##
J

where the A-module homomorphisms of the square are as in (3.9). The map

g : Ω1
A → J is determined by the universal property of Kähler differentials, as

the only homomorphism such that D = g ◦ d, with d : A → Ω1
A the universal

derivation. So g(da) = D(a). The map h : A⊗Mgp → J is defined to be such that
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a⊗x 7→ aD[(x), using the extension of D[ to Mgp as described in Lemma 3.12.

In this way,

A⊗Z[M ] Ω1
(A,M)

φ
// Ω1
A

g
// J

a⊗ dm � // ad(α(m))
� // aD(α(m))

while

A⊗Z[M ] Ω1
(A,M)

ψ
// A⊗Mgp h // J

a⊗ dm � // aα(m)⊗ γ(m) � // aα(m)D[(m) = aD(α(m))

where the last equality comes from the definition of log derivation. We then de-

termined a commutative square; being Ω1
(A,M) defined as the pushout of the top

and left maps, there exists a unique A-module homomorphism f : Ω1
(A,M) → J

that makes the diagram commute, i.e., such that f(da) = D(a) and f(d logm) =

D[(m).

On the other hand, given f ∈ HomA

(
Ω1

(A,M), J
)

, consider g : Ω1
A → J , g = f◦ψ.

Let D : A→ J be defined as D = g ◦ d, where d : A→ Ω1
A is again the universal

derivation, so D(a) = g(da) = f(da). By the universal property of the Kähler

differentials, D is a derivation of A with values in J . Setting D[ : M → (J,+),

D[(m) = f(d logm), we get

D(α(m)) = g(d(α(m))) = fψ(d(α(m)))

= fψφ(1⊗ dm) = fφψ(1⊗ dm)

= fφ(α(m)⊗ γ(m)) = α(m)f(φ(1⊗ γ(m)))

= α(m)f(d logm) = α(m)D[(m)

Then
(
D,D[

)
is a log derivation of (A,M) with values in J . It is immediately

seen that the described two maps

Der((A,M), J)→ HomA

(
Ω1

(A,M), J
)

(
D,D[

)
7→ f | f(da) = D(a), f(d logm) = D[(m)

HomA

(
Ω1

(A,M), J
)
→ Der((A,M), J)

f 7→
(
D,D[

)
| D(a) = f(da), D[(m) = f(d logm) (3.12)

are inverse isomorphisms. �

In this sense, the log derivation
(
d, d[

)
of (A,M) with values in Ω1

(A,M) corre-

sponding to the identity in Ω1
(A,M) is a universal log derivation, detailed with

d(a) = da, d[(m) = d logm (thus d(α(m)) = α[(m, d logm) = α(m)d logm). In
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fact, the previous correspondence, along with the commutativity of the diagram

Ω1
(A,M)

f
//

id

��

J

Ω1
(A,M)

f

==

shows that any other log derivation
(
D,D[

)
with values in J factors uniquely

through
(
d, d[

)
.

We saw that, by construction, the differentials of the form d logm formally

behave as a−1da when a = α(m) (justifying the title “logarithmic” for these

differentials). We can use the correspondence described in (3.12) as a help to

prove the following theorem, the proof of which will perhaps allow us to get a

more insightful view on these differentials.

Theorem 3.15. Given a pre-log ring (A,M), its A-module of log Kähler dif-

ferentials is invariant under logification of (A,M), i.e.

Ω1
(A,M)

∼= Ω1
(A,Ma)

Proof. We recall that

Ma =
M ⊕GL1(A)

〈n⊕ 1− 1⊕ α(n)〉
for α(n) ∈ GL1(A). GL1(A) is a group, so

(Ma)gp =
Mgp ⊕GL1(A)

〈γ(n)⊕ 1− 1⊕ α(n)〉

for α(n) ∈ GL1(A), taking γ(m⊕u) ∈ (Ma)
gp

to be γ(m)⊕u, (which has inverse

γ(m)−1⊕u−1); this allows us to consider the inclusionMgp → (Ma)gp, g 7→ g⊕1.

We moreover recall that Ma is defined by pushout and αa : Ma → (A, · ) is such

that αa(m⊕ u) = αa(1⊕ u)αa(m⊕ 1) = ι(u)α(m) = uα(m).

An A-module homomorphism between Ω1
(A,M) and Ω1

(A,Ma) is then immediately

obtained. The pre-log ring homomorphism (idA, idM ⊕1) : (A,M) → (A,Ma)

gives, by Proposition 3.13, a homomorphism

θ : Ω1
(A,M) → Ω1

(A,Ma)

da 7→ da

d logm 7→ d log(m⊕ 1)

Conversely, to get an A-module homomorphism in the opposite direction, we

find a log derivation of (A,Ma) with values in Ω1
(A,M). In this case we use

D : A // Ω1
A

ψ
// Ω1

(A,M)

a � // da � // da
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which gives

D(αa(m⊕ u)) = D(uα(m)) = d(uα(m))

= α(m)du+ ud(α(m))

= α(m)du+ uα(m)d logm

= uα(m)(u−1du+ d logm)

This suggests us a choice of an appropriate monoid homomorphism. Define:

D[ : Ma γ
// (Ma)gp ∼ // (Mgp ⊕GL1(A))/ ∼ // Ω1

(A,M)

m⊕ u � // γ(m⊕ u) � // γ(m)⊕ u � // u−1du+ d logm

To verify that D[ is a well-defined homomorphism, we will use the universal

property of Ma. In fact,

ζ : GL1(A)→ Ω1
(A,M)

u 7→ u−1du

is a homomorphism, since ζ(uv) = (uv)−1d(uv) = u−1du+v−1dv = ζ(u)+ζ(v).

Moreover, the diagram

α−1 GL1(A)
α̃ //

ι̃

��

GL1(A)

ζ

��

M
d log

// Ω1
(A,M)

sending m 7→ α(m) 7→ α(m)−1dα(m) (upper and right-hand side arrows) and

m 7→ m 7→ d logm (left-hand side and lower arrows), commutes, by virtue of

the relation d logm = α(m)−1dα(m), for α(m) invertible. The homomorphisms

ζ and d log then factor through D[ : Ma → Ω1
(A,M) by the universal property of

the pushout. In this way,

αa(m⊕ u)D[(m⊕ u) = αa(m⊕ u)(u−1du+ d logm)

= uα(m)(u−1du+ d logm) = D(αa(m⊕ u))

so
(
D,D[

)
is a log derivation. We use the correspondence in (3.12) to find

θ : Ω1
(A,Ma) → Ω1

(A,M)

da 7→ da

d log(m⊕ u) 7→ u−1du+ d logm

We shall now verify that θ and θ are inverse isomorphisms. One direction is

given by

Ω1
(A,M)

θ // Ω1
(A,Ma)

θ // Ω1
(A,M)

da � // da � // da

d logm � // d log(m⊕ 1) � // 1d1 + d logm = d logm
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(recalling d1 = d(1 · 1)− d1 = d1− d1 = 0). The other one is

Ω1
(A,Ma)

θ // Ω1
(A,M)

θ // Ω1
(A,Ma)

da
� // da

� // da

d log(m⊕ u)
� // u−1du+ d logm

� // u−1du+ d log(m⊕ 1)

We use the fact that (A,Ma, αa) is a log ring to factor the inclusion GL1(A)→
(A, · ) as

GL1(A) // Ma αa
// (A, · )

u
� // 1⊕ u � // αa(1⊕ u)

so that

θθ(d log(m⊕ u)) = u−1du+ d log(m⊕ 1)

= (αa(1⊕ u))
−1
dαa(1⊕ u) + d log(m⊕ 1)

= d log(1⊕ u) + d log(m⊕ 1)

= d log(m⊕ u)

making θ and θ inverse isomorphisms. �

With the result we just showed, one may choose to only consider log Kähler

differentials of log rings, taking, for a pre-log ring, its logification. In the proof

of Theorem 3.15 we used the fact that we could invert some elements in Ma

(precisely, the invertible elements of A that came from M through α). The next

example will show the features of the log Kähler differentials of a log ring in a

case in which α(m) is always invertible.

Example 3.16. Given a pre-log ring (A,M), we define its trivial locus (as in

[Rognes, 2009]) as the pre-log ring
(
A
[
M−1

]
,Mgp

)
, where the ring is the local-

ization A
[
M−1

]
= A⊗Z[M ] Z[Mgp]. In this case, α(m) ∈ GL1

(
A
[
M−1

])
for any

m ∈Mgp, so (Mgp)a ∼= Mgp.

The log Kähler differentials of the trivial locus are generated by differentials

da for a ∈ A
[
M−1

]
and d logm for m ∈ M , such that dα(m) = α(m)d logm.

Since α(m) is always invertible, one can express d logm = α(m)−1dα(m), where

both α(m) and α(m)−1 belong to A
[
M−1

]
. This establishes an isomorphism

Ω1
A[M−1]

∼= Ω1
(A[M−1],Mgp). We then see that the log Kähler differentials Ω1

(A,M)

place themselves in an intermediate position between Ω1
A and Ω1

A[M−1]: in Ω1
(A,M)

we only allow differentials of the form da or d logm, the latter having the formal

properties of α(m)−1dα(m), while in Ω1
A[M−1] there are also differentials of the

form α(m)−1dα(n) for m 6= n.

In the following diagram we show the factorization Ω1
A → Ω1

(A,M) → Ω1
A[M−1];
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the unlabeled arrows are the obvious inclusions, the upper-left square is a

pushout and the outer square is commutative.

A⊗Z[M ] Ω1
Z[M ]

ψ
//

φ

��

A⊗Mgp

φ

��

// A
[
M−1

]
⊗Mgp

φ

��

Ω1
A

ψ

//

��

Ω1
(A,M)

((
Ω1
A[M−1]

ψ

// Ω1
(A[M−1],Mgp)

∼= Ω1
A[M−1]

We will also present an easy example for the case in which α(m) is, on the

contrary, not always invertible.

Example 3.17. In example 2.4 we saw that both the Kähler differentials of Z
and Q are trivial. We will now compute the log Kähler differentials of the pre-

log rings (Z, 〈p〉, ι) and (Q, 〈p〉, ι), with 〈p〉 =
{

1, p, p2, . . .
}

for p ∈ Z and ι the

inclusion.

In Ω1
(Q,〈p〉) there are differentials of the form dq for q ∈ Q, with dq = qd1 =

0, and d log r, for r ∈ ι〈p〉 invertible in Q, with d log r = r−1dr = 1d1 =

0, so, immediately, Ω1
(Q,〈p〉) is trivial. As for Ω1

(Z,〈p〉), there are instead non-

zero differentials of the form d log r, for r ∈ ι〈p〉 not invertible in Z. From

Definition 3.7, we can look at the diagram:

Z⊗Z[〈p〉] Ω1
Z[〈p〉]

ψ
//

φ

��

Z⊗ 〈p〉gp

φ

��

Ω1
Z

ψ

// Ω1
(Z,〈p〉)

We know from Example 2.4 that Ω1
Z = {1}; moreover, there are isomorphisms

Z⊗Z[〈p〉] Ω1
Z[〈p〉] → Z, n⊗ dp 7→ n

and

Z⊗ 〈p〉gp → Z, n⊗ pi 7→ n · i

such that the map ψ̃ : Z→ Z is actually the multiplication

1
∼7−→ 1⊗ dp ψ7−→ p⊗ p ∼7−→ p

This makes Ω1
(Z,〈p〉)

∼= ({1} ⊕ Z)/ ∼, where 1⊕ 0 ∼ 1⊕ p, so

Ω1
(Z,〈p〉)

∼= Z/pZ

in which the elements are {d log p, 2d log p, . . . , pd log p = dp = 0} (notice that

d log pm = md log p).
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To go further with the analogy with the Kähler differentials, we now want

to establish an isomorphism between the the log Kähler differentials and the

first log Hochschild homology group. We will start by introducing an A-module

homomorphism Ω1
(A,M) → HH1(A,M).

Proposition 3.18. There exists an A-module homomorphism

ω : Ω1
(A,M) → HH1(A,M)

Proof. We will use the correspondence described in (3.12). An A-module ho-

momorphism as such can be obtained once we find a log derivation
(
D,D[

)
of

(A,M) with values in HH1(A,M). We get a derivation D : A → HH1(A,M)

passing through the derivation A→ HH1(A), a 7→ 1⊗ a described in (2.5), and

composing with the homomorphism induced in homology from the map ψ in

Definition 3.4. So, define:

D : A→ HH1(A,M)

a 7→ (1⊗ a)⊗ (1⊗ 1)

A monoid homomorphism D[ : M → HH1(A,M) can be obtained by composing

the monoid homomorphism M → H1(Z[Brep
• M ]) ∼= Z[M ]⊗Mgp, m 7→ 1⊗γ(m)

with the homomorphism induced in homology by the map ξ in Definition 3.4.

We the get:

D[ : M → (HH1(A,M),+)

m 7→ (1⊗ 1)⊗ (1⊗ γ(m))

We see that

D(α(m)) = (1⊗ α(m))⊗ (1⊗ 1)

= (1⊗ 1)⊗ (m⊗ γ(m))

= (1⊗ 1)⊗ ((m⊗ 1) · (1⊗ γ(m)))

= (α(m)⊗ 1)⊗ (1⊗ γ(m))

= α(m) · (1⊗ 1)⊗ (1⊗ γ(m)) = α(m)D[(m)

so
(
D,D[

)
is a log derivation. By Theorem 3.14, we get a homomorphism of

A-modules:

ω : Ω1
(A,M) → HH1(A,M)

da 7→ D(a) = (1⊗ a)⊗ (1⊗ 1)

d logm 7→ D[(m) = (1⊗ 1)⊗ (1⊗ γ(m)) (3.13)

as we wanted to prove. �
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Though, as we will see, there actually is an isomorphism between Ω1
(A,M)

and HH1(A,M), the map ω does not seem to be easily invertible at this point.

In Section 3.4 we will prove that ω is indeed an isomorphism, under the assump-

tion that A is flat over Z[M ]. The map we found will anyway be useful when

dealing with the module of log differential n-forms and the graded commutative

structure of HH∗; the latter will be explained in Lemma 3.19.

3.4 The isomorphism HH1(A,M) ∼= Ω1
(A,M)

In Theorem 2.5 we showed that there is an isomorphism between the first

Hochschild homology group of a k-algebra and its module of Kähler differen-

tials, explicitly giving inverse module homomorphisms. We will use a different

argument to show that, for a pre-log ring (A,M), there is an isomorphism

HH1(A,M) ∼= Ω1
(A,M); this isomorphism will be conveyed, in one direction, by

the homomorphism ω described in (3.13).

In this section we will encounter the notion of strictly commutative graded

ring. A graded ring A∗ is a sequence of abelian groups An, n ≥ 0, with a

bilinear, associative multiplication · : A×A→ A and a unit 1 ∈ A0, such that

x · y ∈ Am+n if x ∈ Am and y ∈ An. A graded ring is graded commutative if

x·y = (−1)mny·x for x ∈ Am and y ∈ An. Such a ring is strictly commutative

if moreover x · x = 0 if x ∈ An, with n odd.

Lemma 3.19. If R• is a simplicial commutative ring, then H∗(R•) is a strictly

commutative graded ring.

Proof. We want to endow H∗(R•) with an associative and unital operation

sh( · ⊗ · ) : Hm(R•)⊗Hn(R•)→ Hm+n(R•)

such that, for r ∈ Hm(R•) and s ∈ Hn(R•),

sh(r ⊗ s) = (−1)mnsh(s⊗ r) (3.14a)

sh(r ⊗ r) = 0 for r in odd degree (3.14b)

We saw in Section 1.4 that, given R• and S• simplicial commutative rings, the

external homology product

p : Hm(R•)⊗Hn(S•)→ Hm+n(R• ⊗ S•)

r ⊗ s 7→ r ⊗ s (3.15)

is a well-defined homomorphism. The shuffle map described in (1.4) induces, by

the Eilenberg-Zilber theorem, an isomorphism in homology

g : Hm+n(R• ⊗ S•)
∼−→ Hm+n((R� S)•)
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Finally, for S• = R•, the multiplication map

m : Rq ×Rq → Rq

(r, s) 7→ rs

induces a homomorphism m : Hm+n((R�R)•)→ Hm+n(R•) in homology. The

composition sh = m ◦ g ◦ p is the map we were looking for; the associativity

of sh comes from the associativity of the shuffle map. The sign in (3.14a) is

determined by the shuffle map, as shown in (1.5).

We shall now explain why the condition (3.14b) is verified. For (µ, ν) a (p, p)-

shuffle, consider the map

h(µ,ν) : Rp ⊗Rp → R2p ⊗R2p

u⊗ v 7→ sgn(µ, ν)(sνq · · · sν1(u)⊗ sµp · · · sµ1(v))

Let (ν, µ) be the (p, p)-shuffle associated to (µ, ν) according to (1.6), where the

permutation sending (µ, ν) to (ν, µ) is the product of p · p transpositions. One

can easily see that, for r ⊗ r ∈ H2p((R⊗R)•),

m ◦ h(ν,µ)(r ⊗ r) = (−1)p
2

m ◦ h(µ,ν)(r ⊗ r)

In particular, for p odd, we have m ◦ h(ν,µ)(r ⊗ r) = −m ◦ h(µ,ν)(r ⊗ r). Since

the shuffle map

g : Rp ⊗Rp → R2p ⊗R2p

r ⊗ r 7→
∑
(µ,ν)

h(µ,ν)(r ⊗ r)

is obtained as the sum of all the h(µ,ν) for (µ, ν) a (p, p)-shuffle, and such maps

h(µ,ν) cancel out in pairs, we get m ◦ g(r ⊗ r) = 0, yielding, in homology,

m◦g(r⊗ r) = 0. Considering r⊗ r ∈ H2p(R•) as the external homology product

of r ∈ Hp(R•) and itself, we have that sh(r ⊗ r) = m ◦ g ◦ p(r ⊗ r) = 0 for r in

odd degree. �

From the definition of the log Hochschild complex as the degreewise pushout

of a diagram of simplicial commutative rings (Definition 3.4), by Lemma 3.19

we obtain in homology a diagram of strictly commutative graded rings:

H∗(Z[Bcy
• M ]) //

��

H∗(Z[Brep
• M ])

��

HH∗(A) // HH∗(A,M)

(3.16)

where, by definition, HH∗(A,M) is the homology of the log Hochschild complex.
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For R• a simplicial commutative ring and X•, Y• respectively right and

left simplicial R-modules, we will use the notation (X �R Y )• to indicate the

simplicial module (and its Moore complex) obtained by the degreewise pushout

of given module homomorphisms Rn → Xn, Rn → Yn. We can, then, write:

HH∗(A,M) = H∗
((

C(A) �Z[Bcy M ] Z[BrepM ]
)
•

)
(3.17)

We recall that, for R∗ a graded ring, and for X∗ and Y∗ respectively right

and left graded R-modules, the graded module X∗ ⊗R∗ Y∗ is defined in each

degree n as the coequalizer of the two parallel multiplication maps⊕
i+j+k=n

Xi ⊗Rj ⊗ Yk −−→−−→
⊕
i+j=n

Xi ⊗ Yj

x⊗ r ⊗ y 7−−→ xr ⊗ y

7−−→ x⊗ ry (3.18)

From the diagram in (3.16) we obtain a map

HH∗(A)⊗H∗(Z[Bcy
• M ]) H∗(Z[Brep

• M ]) −→ HH∗(A,M)

which, unfortunately, is not an isomorphism; to explicitly compute the homology

in (3.17) is, moreover, not easy, even in degree 1. Nevertheless, it will prove itself

useful to start by finding an expression for HH∗(A)⊗H∗(Z[Bcy
• M ]) H∗(Z[Brep

• M ])

in degree 1.

Lemma 3.20. Using the same notation,[
HH∗(A)⊗H∗(Z[Bcy

• M ]) H∗(Z[Brep
• M ])

]
1
∼= Ω1

(A,M)

Proof. The module on the left-hand side is defined as the coequalizer of the two

parallel multiplication maps, as in (3.18):⊕
i+j+k=1

HHi(A)⊗Hj(Z[Bcy
• M ])⊗Hk(Z[Brep

• M ]) −−→−−→⊕
i+j=1

HHi(A)⊗Hj(Z[Brep
• M ])

In order to compute it, we will first explicate in detail the objects involved with

their degrees. HH0(A) = A and HH1(A) ∼= Ω1
A, as explained in Theorem 2.5.

The homology of Z[Bcy
• M ] is actually the Hochschild homology of Z[M ], so

H0(Z[Bcy
• M ]) = Z[M ] and H1(Z[Bcy

• M ]) ∼= Ω1
Z[M ]. As for H∗(Z[Brep

• M ]), we

can easily compute from the complex

. . . −→ Z[M ]⊗ Z[Mgp]⊗ Z[Mgp]
b2−→ Z[M ]⊗ Z[Mgp]

b1−→ Z[M ] −→ 0
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with b1(m⊗ g1) = 0 and b2(m⊗ g1⊗ g2) = (m⊗ g2)− (m⊗ g1g2) + (m⊗ g1) for

m ∈ Z[M ] and gi ∈ Z[Mgp], that H0(Z[Brep
• M ]) = Z[M ] and H1(Z[Brep

• M ]) ∼=
Z[M ]⊗Mgp (using Lemma 3.9).

We start from the direct sum of these three tensor products:

Ω1
A ⊗ Z[M ]⊗ Z[M ] (3.19a)

A⊗ Ω1
Z[M ] ⊗ Z[M ] (3.19b)

A⊗ Z[M ]⊗ (Z[M ]⊗Mgp) (3.19c)

Multiplying the central factor on the left or on the right, we land on the direct

sum of these two tensor products:

Ω1
A ⊗ Z[M ] (3.20a)

A⊗ (Z[M ]⊗Mgp) (3.20b)

Precisely, (3.19a) is mapped to (3.20a) and (3.19c) is mapped to (3.20b) through

both the maps, while (3.19b) is mapped to (3.20a) or (3.20b) when multiplying

the central factor on the left or on the right respectively. In detail:

Ω1
A ⊗ Z[M ]⊗ Z[M ] ⇒ Ω1

A ⊗ Z[M ]

da⊗m⊗ n 7→ α(m)da⊗ n

7→ da⊗mn

has coequalizer
(
Ω1
A ⊗ Z[M ]

)
/ ∼, with α(m)da⊗ 1 ∼ da⊗m, thus isomorphic

to Ω1
A, while

A⊗ Z[M ]⊗ (Z[M ]⊗Mgp) ⇒ A⊗ (Z[M ]⊗Mgp)

a⊗m⊗ (n⊗ g) 7→ α(m)a⊗ (n⊗ g)

7→ a⊗ (mn⊗ g)

has coequalizer (A⊗ (Z[M ]⊗Mgp))/ ∼, with α(m)a⊗ 1⊗ g ∼ a⊗m⊗ g, thus

isomorphic to A⊗Mgp. Finally, by what we just computed, the coequalizer of

the two maps

A⊗ Ω1
Z[M ] ⊗ Z[M ] ⇒

(
Ω1
A ⊗ Z[M ]

)
⊕ (A⊗ (Z[M ]⊗Mgp))

can be identified with the coequalizer of

A⊗ Ω1
Z[M ] ⊗ Z[M ] ⇒ Ω1

A ⊕ (A⊗Mgp)

a⊗ dm⊗ n 7→ (aα(n)dα(m))⊕ 0

7→ 0⊕ (aα(n)α(m)⊗ γ(m))

which is then

Ω1
A ⊕ (A⊗Mgp)

〈adα(m)⊕ 0 = 0⊕ (aα(m)⊗ γ(m))〉
∼= Ω1

(A,M)
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Gathering together the summands in the direct sum, we obtain that[
HH∗(A)⊗H∗(Z[Bcy

• M ]) H∗(Z[Brep
• M ])

]
1
∼= Ω1

(A,M)

as we wanted to show. �

In order to show that the first log Hochschild homology of a pre-log ring is

isomorphic to the module of its log Kähler differentials, we will combine what we

just proved with some of the results presented in [Quillen, 1967, Chapter II.6]

(spectral sequence (b) in Theorem 6, p. 6.8; Corollary, p. 6.10), which we will

now summarize.

Theorem 3.21 ([Quillen, 1967]). Let R• be a simplicial ring and let X• and

Y• be respectively right and left simplicial R-modules. If TorRn
q (Xn, Yn) = 0 for

q > 0, then there is a canonical first quadrant spectral sequence

E2
p,q =

[
TorH∗(R•)

p (H∗(X•),H∗(Y•))
]
q
⇒ Hp+q((X �R Y )•)

We point out that in [Quillen, 1967] the notation used for the degreewise

tensor product of simplicial modules is X ⊗R Y instead of (X �R Y )•.

Theorem 3.22. For (A,M) pre-log ring, under the assumption that A is flat

over Z[M ], the map

ω : Ω1
(A,M)

∼−→ HH1(A,M)

described in (3.13) is an isomorphism of A-modules.

Proof. Referring to Theorem 3.21, for our purposes, we consider R• = Z[Bcy
• M ],

X• = C•(A) and Y• = Z[Brep
• M ]. We are interested in the case for p + q = 1.

The condition on TorRn
q (Xn, Yn) in Theorem 3.21 is satisfied since we assume

A flat over Z[M ]; so, A⊗n is flat over Z[M ]
⊗n

for every n (this result descends

from [Eisenbud, 1995, Theorem A6.6]). We will consider the terms E2
0,1 and E2

1,0

of the spectral sequence.

Regarding E2
0,1, we have immediately:

E2
0,1 =

[
Tor

H∗(Z[Bcy
• M ])

0 (HH∗(A),H∗(Z[Brep
• M ]))

]
1

∼=
[
HH∗(A)⊗H∗(Z[Bcy

• M ]) H∗(Z[Brep
• M ])

]
1

(3.21)

About E2
1,0, given a resolution by free H∗(Z[Bcy

• M ])-modules

. . . −→ F2 −→ F1 −→ F0 −→ H∗(Z[Brep
• M ]) (3.22)
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and tensoring it with ⊗H∗(Z[Bcy
• M ]) HH∗(A), we get a sequence

. . . −→ F2 ⊗H∗(Z[Bcy
• M ]) HH∗(A) −→

−→ F1 ⊗H∗(Z[Bcy
• M ]) HH∗(A) −→ F0 ⊗H∗(Z[Bcy

• M ]) HH∗(A) (3.23)

the homology of which is the torsion we want to get. There is a resolution

. . . −→ [F2]0 −→ [F1]0 −→ [F0]0 −→ H0(Z[Brep
• M ])

of free H0(Z[Bcy
• M ])-modules given by the terms in degree 0 of each module in

(3.22); so, taking (3.23) in degree 0, we get:

. . . −→
[
F2 ⊗H∗(Z[Bcy

• M ]) HH∗(A)
]
0
−→

−→
[
F1 ⊗H∗(Z[Bcy

• M ]) HH∗(A)
]
0
−→

[
F0 ⊗H∗(Z[Bcy

• M ]) HH∗(A)
]
0

Hence,

E2
1,0 =

[
Tor

H∗(Z[Bcy
• M ])

1 (HH∗(A),H∗(Z[Brep
• M ]))

]
0

∼= Tor
H0(Z[Bcy

• M ])
1 (HH0(A),H0(Z[Brep

• M ]))

∼= Tor
Z[M ]
1 (A,Z[M ]) ∼= 0 (3.24)

since Z[M ] is itself a free Z[M ]-module. For the same reason, E2
p,0 = 0 for p ≥ 2.

Theorem 3.21 asserts that there is a short exact sequence:

0→ E∞0,1 → H0+1((X �R Y )•)→ E∞1,0 → 0 (3.25)

In our case, E∞1,0 = E2
1,0 by definition, while

E∞0,1 = E3
0,1
∼= ker d2

0,1/ im d2
2,0
∼= E2

0,1/0
∼= E2

0,1

Hence, the short exact sequence (3.25) becomes

0→ E2
0,1 → H1((X �R Y )•)→ E2

1,0 → 0

which is isomorphic, by (3.21) and (3.24), to

0→
[
HH∗(A)⊗H∗(Z[Bcy

• M ]) H∗(Z[Brep
• M ])

]
1
→

→ H1

((
C(A) �Z[Bcy M ] Z[BrepM ]

)
•

)
→ 0→ 0 (3.26)

where the middle term is the first log Hochschild homology of (A,M), as de-

scribed in (3.17). Moreover, Lemma 3.20 showed that the left term is isomorphic

to Ω1
(A,M). Explicitly,[
HH∗(A)⊗H∗(Z[Bcy

• M ]) H∗(Z[Brep
• M ])

]
1
→ Ω1

(A,M)

(1⊗ a)⊗ 1 7→ da

1⊗ (1⊗ γ(m)) 7→ d logm (3.27)
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The composition of the map in (3.27) with

ω : Ω1
(A,M) → HH1(A,M)

da 7→ (1⊗ a)⊗ (1⊗ 1)

d logm 7→ (1⊗ 1)⊗ (1⊗ γ(m))

agrees with the natural inclusion E∞0,1 → HH1(A,M) in (3.26). Summarizing,

we get the short exact sequence

0→ Ω1
(A,M)

ω−→ HH1(A,M)→ 0→ 0

returning

Ω1
(A,M)

∼= HH1(A,M)

as we wanted to prove. �
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Chapter 4

Polynomial algebras

4.1 Definitions and results on Hochschild ho-

mology

In this thesis, for a module V over k and a commutative and unital k-algebra

A, we will denote by ΛnA V the n-th exterior power of V , i.e. V ⊗n/ ∼, where

the tensor product is over A and v1 ⊗ . . .⊗ vn ∼ 0 if vi = vj for some i 6= j (we

will also use the equivalent condition: vi = vi+1 for some i)1; we set moreover

Λ0
A V = A. When A = k, we will omit A from the notation and write Λn V

instead. The class of v1⊗ . . .⊗ vn in ΛnA V is denoted as v1 ∧ . . .∧ vn. If σ ∈ Sn,

v1 ∧ . . . ∧ vn = sgn(σ)vσ(1) ∧ . . . ∧ vσ(n).

The exterior algebra of V is Λ∗A V =
⊕

n∈N ΛnA V , where the multiplication

∧ is induced by the product in the tensor algebra V ⊗n ⊗ V ⊗m → V ⊗m+n (so,

by concatenation).

For a k-module V , the symmetric algebra over V is the algebra S(V ) =

S∗(V ), defined degreewise as S0(V ) = k and Sn(V ) = V ⊗n/ ∼ for n > 0, where

v1 ⊗ . . . ⊗ vn ∼ vσ(1) ⊗ . . . ⊗ vσ(n) if σ ∈ Sn; multiplication is again given by

concatenation. We will denote with v1 . . . vn the class of v1 ⊗ . . .⊗ vn. When V

is free of dimension n and generated by x1, . . . , xn, the symmetric algebra S(V )

is the polynomial algebra in the variables xi with coefficients in k.

The following notation and part of the results about the differential n-forms

are presented as in [Loday, 1998].

1By induction: assume v1∧. . .∧vn = 0 whenever vi = vi+k for some k < m. Let vi = vi+m.

Then 0 = v1 ∧ . . . ∧ (vi + vi+1) ∧ (vi + vi+1) ∧ . . . ∧ vi+m ∧ . . . ∧ vn; expand and apply the

inductive assumption.
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Definition 4.1. Let A be a commutative and unital k-algebra. The A-module

of differential n-forms is defined as the exterior product ΩnA = ΛnA Ω1
A. We

will write a0da1 . . . dan to denote a0da1 ∧ . . . ∧ dan ∈ ΩnA, for ai ∈ A. We will

use the notation Ω∗A for the graded algebra of the differential forms.

In Theorem 2.5 we showed that there is an A-module isomorphism Ω1
A
∼=

HH1(A). In general, the same result does not hold in higher degree; we will show

that, however, this holds in the case when A is a polynomial algebra in a finite

number of variables.

Proposition 4.2. There is a graded algebra homomorphism

τ∗ : Ω∗A → HH∗(A)

Proof. In the diagram

(
Ω1
A

)⊗n τ⊗n
//

∧
��

(HH1(A))
⊗n

sh

��

ΩnA
// HHn(A)

(4.1)

τ is the isomorphism showed in (2.4) and sh is the operation in HH∗(A) induced

by the shuffle map as described in Lemma 3.19, making it a strictly commutative

graded ring. Let In be the A-module generated by the elements da1⊗ . . .⊗ dan
of
(
Ω1
A

)⊗n
with ai = ai+1 for some i. Elements in In are sent to 0 by sh◦τ⊗n by

virtue of (3.14b). The exterior product ∧ quotients out those elements, so there

exists a (unique) A-module homomorphism τn : ΩnA → HHn(A) which makes

the diagram commute. Moreover,
(
Ω1
A

)⊗n
∗ and HH∗(A) are graded A-algebras

and I∗ =
∐
In is a graded ideal of

(
Ω1
A

)⊗n
∗ (since multiplication is given by

concatenation, it is clear that the product of an element in I∗ of degree n1 by

any element in Ω∗A of degree n2 lies in I∗ and has degree n1 + n2). So we get a

graded algebra homomorphism τ∗ : Ω∗A → HH∗(A). �

We will later make use of the following description of the algebra of the

differential forms of a polynomial algebra.

Proposition 4.3. Let V be a free module over k. There is a canonical isomor-

phism of S(V )-modules:

S(V )⊗ V → Ω1
S(V )

a⊗ v 7→ adv (4.2)
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Proof. The map

D : S(V )→ S(V )⊗ V

v1 . . . vn 7→
∑
i

(v1 . . . v̂i . . . vn ⊗ vi)

is a universal derivation of S(V ) with values in S(V )⊗V . In fact, let δ : S(V )→
N be another derivation; this is determined completely on the value of δ on

V . Now there exists a unique S(V )-linear map φ : S(V ) ⊗ V → N such that

δ = φ ◦ D, given by φ(1 ⊗ v) = δ(v). So D is universal; by Proposition 2.6,

S(V ) → Ω1
S(V ), v 7→ dv is also a universal derivation, so, by Corollary 2.7, the

map in (4.2) is an isomorphism. �

Corollary 4.4. There is an isomorphism of S(V )-algebras:

Ω∗S(V )
∼−→ S(V )⊗k Λ∗k V

adv1 . . . dvn 7→ a⊗ (v1 ∧ . . . ∧ vn)

Proof. From Proposition 4.3, in each degree n we have:

ΩnS(V ) = ΛnS(V ) Ω1
S(V )

∼= ΛnS(V )(S(V )⊗k V )

∼=
(
S(V )⊗k V ⊗S(V ) . . .⊗S(V ) S(V )⊗k V

)
/ ∼

∼= (S(V )⊗k V ⊗k . . .⊗k V )/ ∼
∼= S(V )⊗k Λnk V

The multiplication in S(V )⊗k Λ∗k V is given by usual product on S(V ) and by

concatenation on Λ∗k V , so that

(a⊗ (v1 ∧ . . . ∧ vn)) · (b⊗ (w1 ∧ . . . ∧ wm))

= (a · b⊗ (v1 ∧ . . . ∧ vn ∧ w1 ∧ . . . ∧ wm))

One can then easily see that the described degreewise isomorphism of S(V )-

modules respects the respective S(V )-algebra structures. �

Remark 4.5. We recall that, if V = k{v1, . . . , vr} has finite dimension r, then

Λn V = 0 for n > r, making ΩnS(V )
∼= 0 for n > r.

In order to show the isomorphism between the Hochschild homology and

the algebra of differential forms in case of a polynomial algebra, we will need

the following results. The first one, the proof of which we omit, appears in

[Loday, 1998, Theorem 1.1.13].
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Lemma 4.6. If a unital algebra A is flat as a module over k, then there is an

isomorphism

HHn(A;M) ∼= TorA⊗A
op

n (M,A)

where Aop is the opposite algebra of A, in which the product is given by

Aop ×Aop → Aop, (a, b) 7→ ba

We will use Lemma 4.6 in the next lemma, which examines the case of a

polynomial algebra in one variable only.

Lemma 4.7. There is a graded algebra isomorphism

τ∗ : Ω∗k[x]
∼−→ HH∗(k[x])

where τ∗ is the graded algebra homomorphism from Proposition 4.2.

Proof. We will start by computing the Hochschild homology of the polynomial

algebra k[x]. By Lemma 4.6, we need a projective resolution of k[x] in terms of

k[x]⊗ k[x] ∼= k[x1, x2]-modules. This is easy to find, after the identification

k[x]⊗ k{x} ∼−→ k[x]

f(x)⊗ λx 7→ λ · f(x)

for λ ∈ k. A free resolution of k[x] is given by:

0 −→ k[x1, x2]
· (x1−x2)−→ k[x1, x2]

s−→ k[x]

where s(x1) = x = s(x2). Tensoring the resolution by ⊗k[x1,x2]k[x], we get

0 −→ k[x1, x2]⊗k[x1,x2] k[x] −→ k[x1, x2]⊗k[x1,x2] k[x] −→ 0

Under isomorphism

k[x1, x2]⊗k[x1,x2] k[x]
∼−→ k[x]

f(x1, x2)⊗ g(x) 7→ f(x, x)g(x)

1⊗ g(x)← [ g(x)

the chain complex becomes

0 −→ k[x] −→ k[x] −→ 0

where the middle map sends

g(x)
∼7−→ 1⊗ g(x) 7→ (x1 − x2)⊗ g(x)

∼7−→ (x− x)⊗ g(x) = 0
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Hence, HH0(k[x]) ∼= k[x] as we knew; HH1(k[x]) ∼= k[x] as well; the homology is

0 in higher degree.

As for the differential n-forms, we have Ω0
k[x]
∼= k[x] and Ω1

k[x]
∼= k[x]{dx}. In

degree n ≥ 2, Ωnk[x]
∼= 0, since, by Corollary 4.4, Ωnk[x]

∼= k[x] ⊗k Λnk k{x} and

k{x} has dimension 1, making Λn k{x} = 0 in degree higher than 1.

As graded algebras, then,

Ω∗k[x]
∼= k[x]{1, dx} ∼= k[x]{1, dx}/

(
(dx)2

)
HH∗(k[x]) ∼= k[x]{1, dx} ∼= k[x]{1, dx}/

(
(dx)2

)
where dx is the generator in degree 1.

We will now check that the graded algebra isomorphism is given by τ∗. This is

trivial in degree 0 (because τ⊗0 is the identity on Ω0
k[x] = k[x]) and in degree

greater than 1 (because Ωnk[x]
∼= HHn(k[x]) ∼= 0 for n > 1). In degree 1, we see

that, via the described isomorphisms, the map τ

Ω1
k[x]

τ // HH1(k[x])
∼ // k[x]{dx} ⊗ k{x} ∼ // k[x]{dx}

dx � // 1⊗ x � // dx⊗ x � // dx

sends the generator dx of Ω1
k[x] to the generator dx of HH1(k[x]). �

Remark 4.8. We emphasize that, considering k = Z, the isomorphism Ω1
Z[x]

∼−→
Z[x]{dx}, dx 7→ 1dx corresponds by Corollary 2.7 to the usual polynomial

derivation D : Z[x]→ Z[x], D
(∑

i aix
i
)

=
∑
i ai · i · xi−1dx.

We are now ready to prove the central theorem of this section.

Theorem 4.9. Let V = k{x1, . . . , xr} be a free, finitely generated k-module.

There is a graded algebra isomorphism

τ∗ : Ω∗S(V )
∼−→ HH∗(S(V ))

Proof. Since the k-module V is finitely generated, we can decompose it as the

product V = k{x1} × . . .× k{xr}. We will use the general fact that there is an

isomorphism of simplicial commutative monoids

Bcy
• (M ×N) ∼= Bcy

• M × Bcy
• N

which is explicited in each degree by

Bcy
q (M ×N) ∼= (M ×N)q+1 ∼= Mq+1 ×Nq+1 ∼= Bcy

q M × Bcy
q N
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Hence, Bcy
• V

∼= Bcy
• k{x1}× . . .×Bcy

• k{xr}. The Hochschild complex of k[V ] is

the Moore complex of k[Bcy
• V ], so

C•(k[x1, . . . , xr]) ∼= k[Bcy
• k{x1, . . . , xr}]

∼= k[Bcy
• k{x1}] � . . .� k[Bcy

• k{xr}]
∼= C•(k[x1]) � . . .� C•(k[xr])

where the right-hand side is chain homotopic to C•(k[x1])⊗ . . .⊗ C•(k[xr]) by

the Eilenberg-Zilber theorem. Taking homology, we have

HH∗(k[x1, . . . , xr]) ∼= H∗(C•(k[x1])⊗ . . .⊗ C•(k[xr]))

In each degree, the cycles and the homology of C•(k[xi]) are free, hence projec-

tive, k-modules for each i, so we can apply the Künneth formula as in (1.8), to

get:

HH∗(k[x1, . . . , xr]) ∼= HH∗(k[x1])⊗ . . .⊗HH∗(k[xr])

By Lemma 4.7, τ∗ : Ω∗k[xi]
→ HH∗(k[xi]) is an isomorphism of graded algebras

for each i, giving:

HH∗(k[x1, . . . , xr]) ∼= Ω∗k[x1] ⊗ . . .⊗ Ω∗k[xr] (4.3)

The last step is to prove that

Ω∗k[x1] ⊗ . . .⊗ Ω∗k[xr]
∼= Ω∗k[x1,...,xr]

This can be done by induction. The base case is trivial; assume, as inductive

hypothesis, that Ω∗k[x1]⊗ . . .⊗Ω∗k[xs−1]
∼= Ω∗k[x1,...,xs−1] for a given s. Then, using

the graded algebra isomorphism in Corollary 4.4, we get:

Ω∗k[x1] ⊗ . . .⊗ Ω∗k[xs−1] ⊗ Ω∗k[xs]
∼= Ω∗k[x1,...,xs−1] ⊗ Ω∗k[xs]

∼= k[x1, . . . , xs−1]⊗ Λ∗k k{x1, . . . , xs−1} ⊗ k[xs]⊗ Λ∗k k{xs}
∼= k[x1, . . . , xs]⊗ Λ∗k(k{x1, . . . , xs−1} ⊕ k{xs})
∼= k[x1, . . . , xs]⊗ Λ∗k k{x1, . . . , xs}
∼= Ω∗k[x1,...,xs] (4.4)

In here we used the graded isomorphism

Λn(k{x1, . . . , xs} ⊕ k{xs}) ∼=
⊕
p+q=n

Λp k{x1, . . . , xs} ⊗ Λq k{xs}

Replacing in (4.3) according to (4.4), we obtain:

Ω∗k[x1,...,xs]
∼= HH∗(k[x1, . . . , xr])

where the isomorphism is conveyed by τ∗, as we wanted to prove. �
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Using Theorem 4.9, we can proceed to explicitly compute the Hochschild

homology of a polynomial k-algebra in a finite number of variables.

Example 4.10. Consider k{x, y} as a k-module, generating the polynomial al-

gebra k[x, y]. By Theorem 4.9, the Hochschild homology of k[x, y] is isomorphic

to the algebra of differential forms. We get:

HHn(k[x, y]) ∼=


k[x, y] if n = 0

k[x, y]{dx, dy} if n = 1

k[x, y]{dx ∧ dy} if n = 2

0 if n > 2

where in degree n the generators are the generators of Ωnk[x], i.e., the generators

in degree n of Ω∗k[x].

Example 4.11. In general, for the polynomial algebra A = k[x1, . . . , xr] in r

variables, Ω∗A has
(
r
n

)
generators in degree n, of the form dxi1 ∧ . . . ∧ dxin , for

1 ≤ i1 < . . . < in ≤ r. We than have that

HHn(A) ∼= A⊕(r
n)

In the next section we will reach an analogous result in log Hochschild homology.

4.2 The logarithmic case

We will now try to study the behaviour of the log Hochschild homology and

the log Kähler differentials, or the log differentials n-forms, for a polynomial

Z-algebra.

Definition 4.12. Let (A,M,α) be a pre-log ring. We define the A-module of

log differential n-forms as the exterior product Ωn(A,M) = ΛnA Ω1
(A,M). We will

use the notation Ω∗(A,M) for the graded algebra of the differential forms.

Just as in the previous section, we have the following result.

Proposition 4.13. There is a graded algebra homomorphism:

ω∗ : Ω∗(A,M) → HH∗(A,M)
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Proof. The proof is identical to the one already seen in Proposition 4.2, since

Lemma 3.19 holds for the log Hochschild homology too. In this case, the relevant

diagram is (
Ω1

(A,M)

)⊗n
ω⊗n
//

∧

��

(HH1(A,M))
⊗n

sh

��

Ωn(A,M)
// HHn(A,M)

(4.5)

where ω is the A-module homomorphism described in (3.13). Again, we set ωn

to be the map induced on Ωn(A,M) by ω⊗n. �

Except in degree 1, an isomorphism between the log differential n-forms and

the n-th log Hochschild homology of a pre-log ring can generally not be found

(as, generally, there is not an isomorphism between the Kähler differentials

and the Hochschild homology of a k-algebra). We will, however, focus on some

particular cases.

As our first example, we can consider the pre-log ring (A,M,α), with A =

Z[x], M = 〈x〉 and α the inclusion; in this case, A = Z[M ]. We will need the

following lemmas.

Lemma 4.14. Given the canonical pre-log structure (Z[M ],M) of a commuta-

tive monoid M , there is a graded algebra isomorphism

HH∗(Z[M ],M) ∼= Z[M ]⊗H∗(Z[B•M
gp])

Proof. Computing the log Hochschild complex of (Z[M ],M), we get, from the

definition,

Z[Bcy
• M ]

ρ
//

S1
•⊗α
��

Z[Brep
• M ]

ξ

��

C•(Z[M ])
ψ

// C•(Z[M ],M)

The map S1
• ⊗ α is now the identity; since the square is a pushout square, we

obtain an isomorphism

C•(Z[M ],M) ∼= Z[Brep
• M ] (4.6)

We will use the isomorphism BrepM ∼= M × BMgp described in (3.3) to get

HH∗(Z[M ],M) ∼= H∗(Z[Brep
• M ]) ∼= H∗(Z[M × B•M

gp])

∼= H∗(Z[M ]⊗ Z[B•M
gp])

∼= Z[M ]⊗H∗(Z[B•M
gp]) (4.7)

as we wanted to prove. �
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Lemma 4.15. Let P be a commutative monoid. Then there is an isomorphism

of graded algebras:

H∗(Z[B• P ]) ∼= TorZ[P ]
∗ (Z,Z)

Proof. Consider the sequence

. . . −→ F2
∂−→ F1

∂−→ F0
ε−→ Z

where, for each n, Fn = Z[P ]
⊗n+1

and ∂ is defined on the generators as

∂ : Fn → Fn−1

x0 ⊗ . . .⊗ xn 7→
n−1∑
i=0

(−1)ix0 ⊗ . . .⊗ xixi+1 ⊗ . . .⊗ xn

+ (−1)nε(xn)x0 ⊗ . . .⊗ xn−1

with augmentation ε : F0 → Z,
∑
i nixi 7→

∑
i ni, for xi ∈ P , ni ∈ Z.

F• is actually a free resolution of Z, called bar resolution, in terms of Z[P ]-

modules (the multiplication takes place on the first tensor factor); a proof for

this can be found in [Mac Lane, 1963, Chapter IV, Theorem 5.1]. In order to

compute TorZ[P ]
∗ (Z,Z), we apply Z⊗Z[P ] − to F•:

. . . // Z⊗Z[P ] Z[P ]
⊗3 ∂ //

∼=
��

Z⊗Z[P ] Z[P ]
⊗2 ∂ //

∼=
��

Z⊗Z[P ] Z[P ]

∼=
��

. . . // Z[P ]
⊗2

∂′
// Z[P ]

∂′
// Z

We see that, via isomorphism

Z[P ]
⊗n ∼−→ Z⊗Z[P ] Z[P ]

⊗n+1

x1 ⊗ . . .⊗ xn 7→ 1⊗ 1⊗ x1 ⊗ . . .⊗ xn
ε(x0)x1 ⊗ . . .⊗ xn ←[ 1⊗ x0 ⊗ x1 ⊗ . . .⊗ xn

the map ∂ induces the map ∂′:

∂′ : Z[P ]
⊗n → Z[P ]

⊗n−1

x1 ⊗ . . .⊗ xn 7→ ε(x1)x2 ⊗ . . .⊗ xn

+

n−1∑
i=1

x1 ⊗ . . .⊗ xixi+1 ⊗ . . .⊗ xn

+ (−1)nε(xn)x1 ⊗ . . .⊗ xn−1

making the lower line in the previous diagram indeed the Moore complex of

Z[B• P ]. Therefore, TorZ[P ]
∗ (Z,Z) ∼= H∗(Z[B• P ]). �
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We then get the following expression of the log Hochschild homology of

(Z[M ],M).

Proposition 4.16. Let M be a commutative monoid. There is a graded algebra

isomorphism:

HH∗(Z[M ],M) ∼= Z[M ]⊗ TorZ[Mgp]
∗ (Z,Z)

Proof. Immediate, from Lemma 4.14 and Lemma 4.15. �

With the aid of Proposition 4.16, we are now ready to compare the log

differential forms to the log Hochschild homology of the pre-log ring (Z[x], 〈x〉).

Proposition 4.17. There is an isomorphism of graded algebras

ω∗ : Ω∗(Z[x],〈x〉)
∼−→ HH∗(Z[x], 〈x〉)

where ω∗ is the graded algebra homomorphism from Proposition 4.13.

Proof. We will start from the log differential forms. From Example 3.11, we

have that Ω1
(Z[x],〈x〉)

∼= Z[x]{d log x}. Hence

Ωn(Z[x],〈x〉)
∼= ΛnZ[x] Ω1

(Z[x],〈x〉)
∼=


Z[x] if n = 0

Z[x]{d log x} ∼= Z[x] if n = 1

0 if n ≥ 2

(4.8)

where for the last case we used that, as a general fact, ΛnAA
∼= 0 for n ≥ 2.

Our aim is to find an isomorphism between the log differential forms and the

log Hochschild homology of (Z[x], 〈x〉). Applying Proposition 4.16 for M = 〈x〉,
we get a graded algebra isomorphism:

HH∗(Z[x], 〈x〉) ∼= Z[x]⊗ Tor
Z[x,x−1]
∗ (Z,Z)

We are then interested in finding an explicit expression for Tor
Z[x,x−1]
∗ (Z,Z). We

will find a free resolution of Z in easier terms than the bar resolution described

in Lemma 4.15. The sequence

0 −−→ Z
[
x, x−1

] f1−−→ Z
[
x, x−1

] f0−−→ Z (4.9)

with homomorphisms defined by f1(p(x)) = (x− 1)p(x) and f0(x) = 1, is a free

resolution of Z in terms of Z
[
x, x−1

]
-modules. In fact, f0 is certainly surjective

and Z ∼= Z
[
x, x−1

]
/(x− 1); as for f1, to assume 0 = f1(p(x)) = (x− 1)p(x) for

p(x) = anx
n + . . .+ aNx

N yields

−anxn − . . .− aNxN + anx
n+1 + . . .+ aNx

N+1 = 0
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so aN = 0 and, by induction, p(x) = 0, making f1 injective.

To get Tor
Z[x,x−1]
∗ (Z,Z), we apply Z⊗Z[x,x−1] − to (4.9), thus getting

0 −−→ Z⊗Z[x,x−1] Z
[
x, x−1

] id⊗f1−−−−→ Z⊗Z[x,x−1] Z
[
x, x−1

]
−−→ 0 (4.10)

Under isomorphism

Z⊗Z[x,x−1] Z
[
x, x−1

] ∼−→ Z

s⊗ f(x) 7→ s · f(1)

s⊗ 1← [ s

the sequence in (4.10) becomes

0 −−→ Z −−→ Z −−→ 0

where the middle map sends

1
∼7−→ 1⊗ 1 7→ 1⊗ (x− 1)

∼7−→ 1− 1 = 0

Hence, taking homology, we have

Tor
Z[x,x−1]
n (Z,Z) ∼=


Z if n = 0

Z if n = 1

0 if n ≥ 2

(4.11)

providing the sought expression for the log Hochschild homology of (Z[x], 〈x〉):

HHn(Z[x], 〈x〉) ∼= Z[x]⊗ Tor
Z[x,x−1]
n (Z,Z) ∼=


Z[x] if n = 0

Z[x] if n = 1

0 if n ≥ 2

(4.12)

Comparing the expressions in (4.12) with the differential forms in (4.8), we get

a degreewise isomorphism

Ω∗(Z[x],〈x〉)
∼= HH∗(Z[x], 〈x〉)

We will show that this isomorphism is induced by the homomorphism of graded

algebras ω∗ : Ω∗(Z[x],〈x〉) → HH∗(Z[x], 〈x〉) from Proposition 4.13. This is trivial

in degree 0 and in degree greater than 1, while in degree 1 we get:

Z[x]{d log x} ∼= Ω1
(Z[x],〈x〉)

ω−→ HH1(Z[x], 〈x〉)

d log x 7→ (1⊗ 1)⊗ (1⊗ x)

Via the isomorphism

HH1(Z[x], 〈x〉) ∼ // H1(Z[Brep
• 〈x〉])

∼ // Z[x]⊗H1(Z[B•〈x〉gp
])
∼ // Z[x]

(1⊗ 1)⊗ (1⊗ x) � // 1⊗ x � // 1⊗ [x] � // 1
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in which we underline that the class of x is the class of 1 in H1(Z[B•〈x〉gp
]) ∼= Z,

we have that ω maps the generator d log x of Ω1
(Z[x],〈x〉) to the generator 1 of

HH1(Z[x], 〈x〉). Since, moreover, ω∗ is a homomorphism of graded algebras, then

it is actually an isomorphism of graded algebras. �

We can extend the last result to polynomial algebras in more variables.

Theorem 4.18. Let M = 〈x1, . . . , xr〉 be the commutative monoid generated

by r elements. The log Hochschild homology of (Z[M ],M, α), where α : M →
(Z[M ], · ) is the inclusion, is computed as follows:

HHn(Z[M ],M) ∼= Z[M ]
⊕(r

n)

Proof. We will proceed inductively. The base case r = 1 is verified in (4.12).

Assume now that the statement is true for M ′ = 〈x1, . . . , xr−1〉; after isomor-

phisms

Z[xr]
⊗n ⊗Z[xr]⊗n Z[xr]⊗ Z[〈xr〉gp

]
⊗n−1 ∼= Z[xr]⊗ Z[〈xr〉gp

]
⊗n−1

Z[M ′]
⊗n ⊗Z[M ′]⊗n Z[M ′]⊗ Z

[
M ′

gp]⊗n−1 ∼= Z[M ′]⊗ Z
[
M ′

gp]⊗n−1

the log Hochschild complexes of (Z[xr], 〈xr〉) and (Z[M ′],M ′) are, respectively:

C•(Z[xr], 〈xr〉) : . . .→ Z[xr]⊗ Z[〈xr〉gp
]
⊗2 → Z[xr]⊗ Z[〈xr〉gp

]→ Z[xr]→ 0

C•(Z[M ′],M ′) : . . .→ Z[M ′]⊗ Z
[
M ′

gp]⊗2 → Z[M ′]⊗ Z
[
M ′

gp]→ Z[M ′]→ 0

The log Hochschild complex of (Z[M ],M) is the cartesian (degreewise) prod-

uct of chain complexes C•(Z[M ′],M ′) � C•(Z[xr], 〈xr〉). The Eilenberg-Zilber

theorem states that its homology is isomorphic to the homology of the tensor

product of chain complexes C•(Z[M ′],M ′)⊗C•(Z[xr], 〈xr〉). Since, in each de-

gree, the cycles and the homology of C•(Z[xr], 〈xr〉) are free (hence projective)

Z-modules, then we can apply the Künneth formula as in (1.8):⊕
p+q=n

HHp(Z[M ′],M ′)⊗Z HHq(Z[xr], 〈xr〉) ∼= HHn(Z[M ],M)

where the isomorphism is induced by the homology product p as described in

(3.15). Since HHq(Z[xr], 〈xr〉) is nontrivial only for q = 0, 1, we have:

HHn(Z[M ],M) ∼=
(
Z[M ′]

⊕(r−1
n−1) ⊗ Z[xr]

⊕(1
1)
)
⊕
(
Z[M ′]

⊕(r−1
n ) ⊗ Z[xr]

⊕(1
0)
)

∼= Z[M ]
⊕(r−1

n−1)+(r−1
n )

∼= Z[M ]
⊕(r

n) �
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Remark 4.19. In Theorem 4.18 we used a particular instance of the following

general fact. If M and N are arbitrary commutative monoids, there is an iso-

morphism

Brep
• (M ×N) ∼= Brep

• (M)× Brep
• (N)

of simplicial commutative monoids, and hence an isomorphism

Z[Brep
• (M ×N)] ∼= Z[Brep

• (M)] � Z[Brep
• (N)] (4.13)

of simplicial commutative rings.

It is now natural to ask whether the homomorphism of graded algebras ω∗

described in Proposition 4.13 is an isomorphism if the pre-log ring considered

is of the form (Z[M ],M), with M as in Theorem 4.18. This will be proved in

the following theorem, which also provides an alternative proof of Theorem 4.18

itself.

Theorem 4.20. Let M = 〈x1, . . . , xr〉 be the commutative monoid generated

by r elements. There is a graded algebra isomorphism

ω∗ : Ω∗(Z[M ],M)
∼−→ HH∗(Z[M ],M)

Proof. The proof follows the one of Theorem 4.9. We use (4.6) and (4.13) to get

C•(Z[x1, . . . , xr], 〈x1, . . . , xr〉) ∼= Z[Brep
• 〈x1, . . . , xr〉]

∼= Z[Brep
• 〈x1〉] � . . .� Z[Brep

• 〈xr〉]
∼= C•(Z[x1], 〈x1〉) � . . .� C•(Z[xr], 〈xr〉)

the latter being chain homotopic to the usual tensor product of chain complexes,

by the Eilenberg-Zilber theorem. Taking homology and applying the Künneth

formula, we get:

HH∗(Z[x1, . . . , xr], 〈x1, . . . , xr〉) ∼= HH∗(Z[x1], 〈x1〉)⊗ . . .⊗HH∗(Z[xr], 〈xr〉)

By Proposition 4.17, ω∗ : Ω∗(Z[xi],〈xi〉) → HH∗(Z[xi], 〈xi〉) is an isomorphism of

graded algebras for each i; we then have:

HH∗(Z[x1, . . . , xr], 〈x1, . . . , xr〉) ∼= Ω∗(Z[x1],〈x1〉) ⊗ . . .⊗ Ω∗(Z[xr],〈xr〉)

We now want to show that there is a graded algebra isomorphism

Ω∗(Z[x1],〈x1〉) ⊗ . . .⊗ Ω∗(Z[xr],〈xr〉)
∼= Ω∗(Z[x1,...,xr],〈x1,...,xr〉) (4.14)

In order to do so, we will first compute Ω1
(Z[x1,...,xr],〈x1,...,xr〉). From the pushout

diagram

Z[M ]⊗Z[M ] Ω1
Z[M ]

ψ
//

φ

��

Z[M ]⊗Mgp ∼= Z[M ]

φ

��

Z[M ]
ψ

// Ω1
(Z[M ],M)
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we obtain that Ω1
(Z[x1,...,xr],〈x1,...,xr〉) is the Z[x1, . . . , xr]-module generated by

elements dxi and d log xi, for 1 ≤ i ≤ r, subject to the relation dxi = xid log xi.

Hence

Ω1
(Z[x1,...,xr],〈x1,...,xr〉)

∼= Z[x1, . . . , xr]{d log x1, . . . , d log xr}
∼= Z[x1, . . . , xr]⊗ Z{d log x1, . . . , d log xr}

Using the same argument as in Corollary 4.4, we get the graded algebra isomor-

phism

Ω∗(Z[x1,...,xr],〈x1,...,xr〉)
∼= Z[x1, . . . , xr]⊗Z Λ∗Z Z{d log x1, . . . , d log xr}

and applying the same inductive argument as in (4.4), we obtain the graded

algebra isomorphism (4.14). Therefore,

Ω∗(Z[x1,...,xr],〈x1,...,xr〉)
∼= HH∗(Z[x1, . . . , xr], 〈x1, . . . , xr〉)

where the isomorphism of graded algebras is conveyed by ω∗. �
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Chapter 5

A long exact sequence in

log Hochschild homology

In Theorem 4.18 we found an explicit expression for the log Hochschild homol-

ogy of a log ring (A,M) = (Z[x1, . . . , xr], 〈x1, . . . , xr〉), i.e., for the case in which

A is the polynomial algebra in the variables given by the generators of M . Going

further in our analysis, we are now interested in computing the log Hochschild

homology when A is not the monoid ring of M . Specifically, let A be a commu-

tative ring and let a be an element of A such that the map Z[x] → A, x 7→ a,

makes A a flat Z[x]-algebra. We will show that the log Hochschild homology of

(A, 〈x〉) fits in the long exact sequence:

. . . −→ HHi(A) −→ HHi(A, 〈x〉) −→ HHi−1(A/(a)) −→ HHi−1(A) −→ . . .

. . . −→ HH1(A, 〈x〉) −→ HH0(A/(a)) −→ HH0(A) −→ HH0(A, 〈x〉) −→ 0

5.1 A long exact sequence

Consider the commutative monoid 〈x〉 =
{

1, x, x2, . . .
}

; its group completion

γ : 〈x〉 → 〈x〉gp
is the inclusion. We recall from (3.3) the isomorphism of simpli-

cial commutative monoids:

Brep
• 〈x〉

∼−→ 〈x〉 × B•〈x〉gp

(xi, xi(g1 · · · gq)−1, g1, . . . , gq) 7−→ (xi, g1, . . . , gq) (5.1)

Let now B̂rep
• 〈x〉 be the simplicial commutative monoid defined degreewise by

B̂rep
q 〈x〉 :=

{(
xi, g1, . . . , gq

)
∈ 〈x〉 × (〈x〉gp

)
q | i = 0⇒ (g1, . . . , gq) = (1, . . . , 1)

}
with face and degeneracy maps defined as those of the replete bar construction

in (3.5). We see that B̂rep
• 〈x〉 is a then a simplicial commutative submonoid
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of Brep
• 〈x〉. Since xi1 · · ·xiq = 1 for xij ∈ 〈x〉 implies ij = 0 for every j, and

γ(1) = 1, the repletion map ρ : Bcy
• 〈x〉 → Brep

• 〈x〉 described in (3.4) then factors

as:

Bcy
• 〈x〉

ρ̂−−→ B̂rep
• 〈x〉 ↪−−→ Brep

• 〈x〉 (5.2)

where ρ̂ is defined in the same way as ρ.

We will use the following result.

Lemma 5.1. The map ρ̂ : Bcy
• 〈x〉 → B̂rep

• 〈x〉 as defined in (5.2) induces an

isomorphism in homology:

H∗(Z[Bcy
• 〈x〉])

∼−→ H∗(Z[ B̂rep
• 〈x〉 ] ) (5.3)

Furthermore, the induced map of commutative simplicial rings

C•(A) ∼= C•(A) �Z[Bcy
• 〈x〉] Z[Bcy

• 〈x〉] −→ C•(A) �Z[Bcy
• 〈x〉] Z[ B̂rep

• 〈x〉 ] (5.4)

induces an isomorphism in homology.

Proof. The repletion maps ρ and ρ̂ are chain maps, thus they induce maps of

homology groups. We have H∗(Z[Bcy
• 〈x〉]) = HH∗(Z[x]); the isomorphism (5.1)

gives H∗(Z[Brep
• 〈x〉]) = H∗(Z[〈x〉 × B•〈x〉gp

]). As for B̂rep
• 〈x〉, we see that in

degrees higher than 0 its homology coincides with

H∗(Z[x · 〈x〉 × B•〈x〉gp
]) ∼= x · Z[x]⊗H∗(B•〈x〉gp

)

By Lemma 4.15, H∗(B•〈x〉gp
) ∼= Tor

Z[x,x−1]
∗ (Z,Z), which we computed in (4.11)

to be isomorphic to Z in degrees 0 and 1, while vanishing in higher degrees.

In degree 0 the map induced in homology by ρ̂ is clearly an isomorphism; in

degree 1 the generator x of HH1([x]) ∼= Z[x] is sent to x · d log x, the generator

of H∗(Z[ B̂rep
• 〈x〉 ] ) ∼= x · Z[x]{d log x}, giving, again, an isomorphism.

About the second statement, we will again use Theorem 3.21. We get, for the

left-hand side of (5.4), the spectral sequence

E2
p,q =

[
TorH∗(Z[Bcy

• 〈x〉])
p (HH∗(A),H∗(Z[Bcy

• 〈x〉]))
]
q

⇒ Hp+q

(
(C(A) �Z[Bcy〈x〉] Z[Bcy〈x〉])•

)
and, for the right-hand side of (5.4), the spectral sequence

E′
2
p,q =

[
TorH∗(Z[Bcy

• 〈x〉])
p

(
HH∗(A),H∗(Z[ B̂rep

• 〈x〉 ])
)]

q

⇒ Hp+q

(
(C(A) �Z[Bcy〈x〉] Z[ B̂rep〈x〉 ])•

)

66



By (5.3), the map ρ̂ induces an isomorphism ρ̂ 2 : E2 → E′
2
, so the two spectral

sequences agree in every term, yielding (see e.g. [Mac Lane, 1963, Chapter XI,

Theorem 3.4]) the isomorphism

H∗
(
(C(A) �Z[Bcy〈x〉] Z[Bcy〈x〉])•

) ∼= H∗( (C(A) �Z[Bcy〈x〉] Z[ B̂rep〈x〉 ])• )

as we wanted to prove. �

With the identification Brep
• 〈x〉 ∼= 〈x〉 × B•〈x〉gp

as in (5.1), we now let

B̂rep
• 〈x〉 act on B•〈x〉gp

by

(xi, g1, . . . , gq) · (h1, . . . , hq) =

(h1, . . . , hq) if i = 0

(1, . . . , 1) if i ≥ 1

and on Brep
• 〈x〉 by the usual componentwise multiplication. We then consider

the following map of simplicial sets defined degreewise as:

σ : Brep
q 〈x〉 → Bq〈x〉gp

(xi, g1, . . . , gq) 7→

(g1, . . . , gq) if i = 0

(1, . . . , 1) if i ≥ 1

We see that σ respects the action of B̂rep
• 〈x〉. Since all the elements in B̂rep

q 〈x〉 ⊆
Brep
q 〈x〉 are sent to (1, . . . , 1) ∈ Bq〈x〉gp

by σ, this induces a well-defined map σ̂

from the quotient of simplicial subsets Brep
• 〈x〉/B̂

rep
• 〈x〉 to B•〈x〉gp

:

σ̂ : Brep
q 〈x〉/B̂rep

q 〈x〉 → Bq〈x〉gp

[xi, g1, . . . , gq] 7→ σ(xi, g1, . . . , gq)

which is moreover an isomorphism of simplicial sets, with inverse

σ̂−1 : Bq〈x〉gp → Brep
q 〈x〉/B̂rep

q 〈x〉

(g1, . . . , gq) 7→ [1, g1, . . . , gq]

As a general fact, given a simplicial set X = X• and a simplicial subset A =

A• ⊆ X•, there is a short exact sequence of simplicial abelian groups

0 −→ Z[A] −→ Z[X] −→ Z̃[X/A] −→ 0

where Z̃[X/A] = Z[X/A]/Z{A/A} is the degreewise quotient of Z[X/A] by the

subgroup Z{A/A} ∼= Z (see e.g. [Hatcher, 2002]). In our case, using the isomor-

phism σ̂, we get a short exact sequence of simplicial Z[Bcy
• 〈x〉]-modules:

0 −→ Z[ B̂rep
• 〈x〉 ] −→ Z[Brep

• 〈x〉] −→ Z̃[B•〈x〉gp
] −→ 0 (5.5)
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Since A is a flat Z[x]-algebra, A⊗n is a flat Z[x]
⊗n

-algebra for every n (again,

we use [Eisenbud, 1995, Theorem A6.6]). So, we get from (5.5) a short exact

sequence of simplicial abelian groups

0 −→ C•(A) �Z[Bcy
• 〈x〉] Z[ B̂rep

• 〈x〉 ] −→ C•(A) �Z[Bcy
• 〈x〉] Z[Brep

• 〈x〉] −→

−→ C•(A) �Z[Bcy
• 〈x〉] Z̃[B•〈x〉gp

] −→ 0 (5.6)

We will compute the homology of the third term in (5.6) in the following

lemma.

Lemma 5.2. For every n, there is an isomorphism in homology:

Hn

(
C•(A) �Z[Bcy

• 〈x〉] Z̃[B•〈x〉gp
]
)
∼= HHn−1(A/(a))

Proof. We start by claiming that there is an isomorphism of simplicial abelian

groups

C•(A) �Z[Bcy
• 〈x〉] Z̃[B•〈x〉gp

] ∼= C•(A/(a)) � Z̃[B•〈x〉gp
] (5.7)

In fact, we recall the isomorphism

Z̃[Bq〈x〉gp
] ∼=

Z[(〈x〉 × (〈x〉gp
)p)/ ∼]

Z{(1, . . . , 1)}

where (xi, g1, . . . , gq) ∼ (1, . . . , 1) if i > 0. Let

(a0 ⊗ . . .⊗ an) ∈ Cn(A)

(xi0 ⊗ . . .⊗ xin) ∈ Z[Bcy
n 〈x〉]

(1⊗ g1 ⊗ . . .⊗ gn) ∈ Z̃[Bn〈x〉gp
]

and assume is > 0 for some s. Then, in Cn(A) �Z[Bcy
n 〈x〉] Z̃[Bn〈x〉gp

], we have

(a0a
i0 ⊗ . . .⊗ anain)⊗ (1⊗ g1 ⊗ . . .⊗ gn)

= (a0 ⊗ . . .⊗ an) · (ai0 ⊗ . . .⊗ ain)⊗ (1⊗ g1 ⊗ . . .⊗ gn)

= (a0 ⊗ . . .⊗ an)⊗ (xi0+...+in ⊗ xi1 ⊗ . . .⊗ xin) · (1⊗ g1 ⊗ . . .⊗ gn)

= (a0 ⊗ . . .⊗ an)⊗ (xi0+...+in ⊗ xi1g1 ⊗ . . .⊗ xingn)

= (a0 ⊗ . . .⊗ an)⊗ (1⊗ 1⊗ . . .⊗ 1)

= (a0 ⊗ . . .⊗ an)⊗ 0

So we can see that we can quotient out the elements in C•((a)) via Z[Bcy
n 〈x〉],

obtaining the isomorphism in (5.7).

So, the homology of C•(A) �Z[Bcy
• 〈x〉] Z̃[B•〈x〉gp

] is isomorphic to the homology

of C•(A/(a)) � Z̃[B•〈x〉gp
]. By the Eilenberg-Zilber theorem we can compute

the homology of C•(A/(a))⊗ Z̃[B•〈x〉gp
] instead. The homology of Z̃[B•〈x〉gp

] is
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computed as the reduced homology of Z[B•〈x〉gp
]; we then get H0(Z[B•〈x〉gp

]) ∼=
Z ⊕ H0( Z̃[B•〈x〉gp

] ). The homology of Z[B•〈x〉gp
] has already been computed

in (4.11) as Tor
Z[x,x−1]
∗ (Z,Z); we obtain:

Hq

(
Z̃[B•〈x〉gp

]
)
∼=


0 if n = 0

Z if n = 1

0 if n ≥ 2

(5.8)

We can apply the Künneth formula as in (1.8) to get:⊕
p+q=n

HHp(A/(a))⊗Hq( Z̃[B•〈x〉gp
] ) ∼= Hn

(
C•(A/(a))⊗ Z̃[B•〈x〉gp

]
)

where the left-hand side is nonzero only for (p, q) = (n− 1, 1), thus giving

Hn

(
C•(A) �Z[Bcy

• 〈x〉] Z̃[B•〈x〉gp
]
)
∼= Hn

(
C•(A/(a))⊗ Z̃[B•〈x〉gp

]
)

∼= HHn−1(A/(a))⊗ Z ∼= HHn−1(A/(a))

as we wanted to prove. �

We are now ready to prove the central theorem of this chapter.

Theorem 5.3. Let A be a commutative ring and let a be an element of A such

that the map Z[x] → A, x 7→ a, makes A a flat Z[x]-algebra. Then there is a

long exact sequence in homology:

. . . −→ HHi(A) −→ HHi(A, 〈x〉) −→ HHi−1(A/(a)) −→ HHi−1(A) −→ . . .

. . . −→ HH1(A, 〈x〉) −→ HH0(A/(a)) −→ HH0(A) −→ HH0(A, 〈x〉) −→ 0

Proof. From (5.6) we get a long exact sequence in homology. The homology of

C•(A)⊗Z[Bcy
• 〈x〉]Z[ B̂rep

• 〈x〉 ] is isomorphic to HH(A) by Lemma 5.1; the homology

of C•(A)�Z[Bcy
• 〈x〉]Z[Brep

• 〈x〉] is HH(A, 〈x〉) by definition. By Lemma 5.2, we have

an isomorphism of homology groups

Hn

(
C•(A) �Z[Bcy

• 〈x〉] Z̃[B•〈x〉gp
]
)
∼= HHn−1(A/(a))

So, the long exact sequence in homology is the sought one:

. . . // HHi+1(A, 〈x〉) // HHi(A/(a)) //

// HHi(A) // HHi(A, 〈x〉) // HHi−1(A/(a)) //

...
...

...

// HH1(A) // HH1(A, 〈x〉) // HH0(A/(a)) //

// HH0(A) // HH0(A, 〈x〉) // 0

(5.9)

�
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5.2 Some examples

In this section we will apply Theorem 5.3 to the following pre-log rings:

(Z[x], 〈x〉), (Z[x],
〈
x2
〉
), (Z[x, y], 〈x〉)

For the first case, all the terms in the long exact sequence (5.9) are already

known; for the other pre-log rings, the long exact sequence will help us to find

an expression for the log Hochschild homology in degree greater than 1.

Example 5.4. As a first example, we consider the pre-log ring (Z[x], 〈x〉) with

the pre-log structure map given by the inclusion. In this case, Z[x]/〈x〉 ∼= Z.

The long exact sequence in (5.9) gives:

. . . // HH2(Z[x], 〈x〉) s2 // HH1(Z)
b1 //

// HH1(Z[x])
r1 // HH1(Z[x], 〈x〉) s1 // HH0(Z)

b0 //

// HH0(Z[x])
r0 // HH0(Z[x], 〈x〉) s0 // 0

In Example 2.1 we found out that the Hochschild homology of Z is Z in degree 0

and vanishes in higher degree. From Lemma 4.7, we get that HH0(Z[x]) ∼= Z[x],

HH1(Z[x]) ∼= Z[x]{dx} and HHn(Z[x]) ∼= 0 for n ≥ 2. Moreover, there is an

isomorphism r0 : HH0(Z[x]) → HH0(Z[x], 〈x〉), so b0 is the zero map. Finally,

we showed in Example 3.11 that HH1(Z[x], 〈x〉) ∼= Z[x]{d log x} and that r1 is

the multiplication dx 7→ xd log x. The long exact sequence becomes:

. . . // 0 // 0 //

// Z[x]{dx} ·x // Z[x]{d log x} s1 // Z 0 //

// Z[x]
∼ // Z[x] // 0

where s1 sends d log x to 1 (and xd log x to 0).

Example 5.5. Consider now the pre-log ring (Z[x],
〈
x2
〉
) with the pre-log struc-

ture homomorphism given by the inclusion. The long exact sequence in (5.9)

is:

. . . // HH3(Z[x],
〈
x2
〉
)

s3 // HH2(Z[x]/(x2))
b2 //

// HH2(Z[x])
r2 // HH2(Z[x],

〈
x2
〉
)

s2 // HH1(Z[x]/(x2))
b1 //

// HH1(Z[x])
r1 // HH1(Z[x],

〈
x2
〉
)

s1 // HH0(Z[x]/(x2))
b0 //

// HH0(Z[x])
r0 // HH0(Z[x],

〈
x2
〉
)

s0 // 0

The isomorphism r0 : HH0(Z[x]) → HH0(Z[x],
〈
x2
〉
) makes b0 the zero map.

Again, HH0(Z[x]) ∼= Z[x] and HH1(Z[x]) ∼= Z[x]{dx}, while the Hochschild

70



homology of Z[x] is 0 in higher degrees. However, we saw in Example 2.2 that the

homology of Z[x]/(x2) never vanishes, so HHn+1(Z[x],
〈
x2
〉
) ∼= HHn(Z[x]/(x2))

for n ≥ 2. More in detail,

HHn(Z[x]/
(
x2
)
) ∼=


Z[x]/

(
x2
)

for n = 0

Z[x]/
(
2x, x2

)
for odd n

Z{x} for even n, n ≥ 2

We see that the homomorphism of Z[x]-modules

b1 : HH1(Z[x]/(x2)) ∼= Z[x]/
(
2x, x2

)
→ Z[x]{dx} ∼= HH1(Z[x])

must be the zero map. In fact, let b1(1) = f(x). Then

0 = b1(0) = b1(2x) = 2x · f(x)

Since Z[x]{dx} is an integral domain, we get f(x) = 0. This implies that

HH2(Z[x],
〈
x2
〉
) ∼= HH1(Z[x]/(x2)). The only missing term in the long exact

sequence is now HH1(Z[x],
〈
x2
〉
), which we can compute, using Theorem 3.22,

by means of Ω1
(Z[x],〈x2〉). From the pushout diagram

Z[x] ∼= Z[x]⊗Z[x2] Ω1
Z[x2]

ψ
//

φ

��

Z[x]⊗
〈
x2
〉gp ∼= Z[x]⊗ Z

φ

��

Z[x] ∼= Ω1
Z[x]

ψ

// Ω1
(Z[x],〈x2〉)

we get

HH1(Z[x],
〈
x2
〉
) ∼= Ω1

(Z[x],〈x2〉)
∼= (Z[x]{dx} ⊕ Z[x]

{
d log x2

}
)/ ∼

where ∼ is Z[x]-linearly generated by 2dx ⊕ 0 ∼ 0 ⊕ x2d log x2. In conclusion,

the long exact sequence becomes

. . . // Z{x} ∼ // Z{x} //

// 0 // Z[x]/(2x, x2)
∼ // Z[x]/(2x, x2)

0 //

// Z[x]{dx} r1 // Ω1
(Z[x],〈x2〉)

s1 // Z[x]/(x2)
0 //

// Z[x]
∼ // Z[x] // 0

with maps

r1 : Z[x]{dx} →
Z[x]{dx} ⊕ Z[x]

{
d log x2

}
∼

∼= HH1(Z[x],
〈
x2
〉
)

sending dx 7→ dx⊕ 0, and

s1 : HH1(Z[x],
〈
x2
〉
) ∼=

Z[x]{dx} ⊕ Z[x]
{
d log x2

}
∼

→ Z[x]/(x2)

sending dx 7→ 0 and d log x2 7→ 1. We note that x2d log x2 is sent to 0 by s1.
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Example 5.6. Consider the pre-log ring (Z[x, y], 〈x〉), with the pre-log structure

map given, again, by the inclusion. The long exact sequence in (5.9) is:

. . . // HH3(Z[x, y], 〈x〉) s3 // HH2(Z[y])
b2 //

// HH2(Z[x, y])
r2 // HH2(Z[x, y], 〈x〉) s2 // HH1(Z[y])

b1 //

// HH1(Z[x, y])
r1 // HH1(Z[x, y], 〈x〉) s1 // HH0(Z[y])

b0 //

// HH0(Z[x, y])
r0 // HH0(Z[x, y], 〈x〉) s0 // 0

As we know, HH0(Z[y]) ∼= Z[y], HH1(Z[y]) ∼= Z[y]{dy} and HHn(Z[y]) ∼= 0 for

n ≥ 2. From Example 4.10 we have:

HHn(Z[x, y]) ∼=


Z[x, y] if n = 0

Z[x, y]{dx, dy} if n = 1

Z[x, y]{dx ∧ dy} if n = 2

0 if n > 2

implying that also HHn(Z[x, y], 〈x〉) vanishes for n > 2. The map

r0 : HH0(Z[x, y])→ HH0(Z[x, y], 〈x〉)

is an isomorphism of Z[x, y]-modules, so b0 is the zero map. The long exact

sequence then becomes:

. . . // 0 // 0 //

// Z[x, y]{dx ∧ dy} r2 // HH2(Z[x, y], 〈x〉) s2 // Z[y]{dy} b1 //

// Z[x, y]{dx, dy} r1 // HH1(Z[x, y], 〈x〉) s1 // Z[y]
0 //

// Z[x, y]
∼ // Z[x, y] // 0

By Theorem 3.22, we can compute HH1(Z[x, y], 〈x〉) by means of Ω1
(Z[x,y],〈x〉).

From the pushout diagram

Z[x, y]⊗Z[x] Ω1
Z[x]

ψ
//

φ

��

Z[x, y]⊗ 〈x〉gp ∼= Z[x, y]⊗ Z

φ

��

Ω1
Z[x,y]

ψ

// Ω1
(Z[x,y],〈x〉)

we obtain that Ω1
(Z[x,y],〈x〉) is the Z[x, y]-module generated by dx, dy and d log x,

subject to the relation dx = xd log x. So HH1(Z[x, y], 〈x〉) ∼= Ω1
(Z[x,y],〈x〉)

∼=
Z[x, y]{d log x, dy}. We can now complete the long exact sequence with the map:

r1 : HH1(Z[x, y]) ∼= Z[x, y]{dx, dy} → Z[x, y]{d log x, dy} ∼= HH1(Z[x, y], 〈x〉)

dx 7→ xd log x

dy 7→ dy
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Since we know that ker s1 = im r1 and im s1 = Z[y], we also have:

s1 : HH1(Z[x, y], 〈x〉) ∼= Z[x, y]{d log x, dy} → Z[y] ∼= HH0(Z[y])

dy 7→ 0

d log x 7→ 1

We notice that xd log x is sent to 0 by s1. Moreover, since r1 is an injection, the

map b1 is the zero map. The map s2 is then surjective, while r2 is then injective.

We get a short exact sequence:

0 // Z[x, y]{dx ∧ dy} r2 // HH2(Z[x, y], 〈x〉) s2 // Z[y]{dy} // 0

Since Z[y]{dy} is a free as a group, the short exact sequence splits and, as

a group, HH2(Z[x, y], 〈x〉) ∼= Z[x, y]{dx ∧ dy} ⊕ Z[y]{dy}. Understanding what

HH2(Z[x, y], 〈x〉) is isomorphic to as a Z[x, y]-module will require some more

effort.

Consider the following diagram of Z[x, y]-modules:

0 // Ω2
Z[x,y]

w1 //

τ2
∼=
��

Ω2
(Z[x,y],〈x〉)

w2 //

ω2

��

Ω1
Z[y]

//

τ ∼=
��

0

0 // HH2(Z[x, y])
r2
// HH2(Z[x, y], 〈x〉)

s2
// HH1(Z[y]) // 0

(5.10)

where

Ω2
Z[x,y] = Λ2

Z[x,y] Ω1
Z[x,y]

∼= Λ2
Z[x,y](Z[x, y]{dx, dy}) ∼= Z[x, y]{dx ∧ dy}

Ω2
(Z[x,y],〈x〉) = Λ2

Z[x,y] Ω1
(Z[x,y],〈x〉)

∼= Λ2
Z[x,y](Z[x, y]{d log x, dy})

∼= Z[x, y]{d log x ∧ dy}

Ω1
Z[y]
∼= Z[y]{dy}

and the Z[x, y]-module homomorphisms in the upper row are defined on the

generators

w1(dx ∧ dy) = x · (d log x ∧ dy)

w2(d log x ∧ dy) = dy

In particular, w2(x · (d log x ∧ dy)) = 0. The two rows in (5.10) are then ex-

act. The maps τ2 : Ω2
Z[x,y] → HH2(Z[x, y]) and τ : Ω1

Z[y] → HH1(Z[y]) as in

Proposition 4.2 are isomorphisms by Theorem 4.9. The map ω2 : Ω2
(Z[x,y],〈x〉) →

HH2(Z[x, y], 〈x〉) is as described in Proposition 4.13. We will proceed to show

that the diagram (5.10) is commutative.

To find an explicit expression for the isomorphism τ2, we look at the commu-
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tative diagram in (4.1):

Ω1
Z[x,y] ⊗ Ω1

Z[x,y]
τ⊗2
//

∧
��

HH1(Z[x, y])⊗HH1(Z[x, y])

sh

��

Ω2
Z[x,y] τ2

// HH2(Z[x, y])

The generator dx∧ dy of Ω2
Z[x,y] is the image of dx⊗ dy ∈ Ω1

Z[x,y] ⊗Ω1
Z[x,y]. The

composition of the maps sh ◦ τ⊗2 = m ◦ g ◦ p ◦ τ⊗2 gives:

τ⊗2 : Ω1
Z[x,y] ⊗ Ω1

Z[x,y] → HH1(Z[x, y])⊗HH1(Z[x, y])

dx⊗ dy 7→ (1⊗ x)⊗ (1⊗ y)

p : HH1(Z[x, y])⊗HH1(Z[x, y])→ H2(C•(Z[x, y])⊗ C•(Z[x, y]))

. . . 7→ (1⊗ x)⊗ (1⊗ y)

g : H2(C•(Z[x, y])⊗ C•(Z[x, y]))→ H2(C•(Z[x, y]) � C•(Z[x, y]))

. . . 7→ (1⊗ 1⊗ x)⊗ (1⊗ y ⊗ 1)

− (1⊗ x⊗ 1)⊗ (1⊗ 1⊗ y)

m : H2(C•(Z[x, y]) � C•(Z[x, y]))→ HH2(Z[x, y])

. . . 7→ (1⊗ y ⊗ x)− (1⊗ x⊗ y)

Considering HH2(Z[x, y]) as the homology of C•(Z[x, y]) �Z[Bcy
• 〈x〉] Z[ B̂rep

• 〈x〉 ],
the class of (1⊗ y ⊗ x)− (1⊗ x⊗ y) corresponds to the class of

(1⊗ y ⊗ x)⊗ (1⊗ 1⊗ 1)− (1⊗ x⊗ y)⊗ (1⊗ 1⊗ 1) (5.11)

which is sent via r2 to the same class in

H2(C•(Z[x, y]) �Z[Bcy
• 〈x〉] Z[Brep

• 〈x〉]) ∼= HH2(Z[x, y], 〈x〉)

We will now find an explicit expression for the homomorphism ω2. From the

commutative diagram (4.5), we have:

Ω1
(Z[x,y],〈x〉) ⊗ Ω1

(Z[x,y],〈x〉)
ω⊗2
//

∧
��

HH1(Z[x, y], 〈x〉)⊗HH1(Z[x, y], 〈x〉)

sh

��

Ω2
(Z[x,y],〈x〉) ω2

// HH2(Z[x, y], 〈x〉)

We see that the generator d log x ∧ dy of Ω2
(Z[x,y],〈x〉) comes from d log x⊗ dy in

Ω1
(Z[x,y],〈x〉) ⊗ Ω1

(Z[x,y],〈x〉). Again, around the diagram, we get:

ω⊗2 : Ω1
(Z[x,y],〈x〉) ⊗ Ω1

(Z[x,y],〈x〉) → HH1(Z[x, y], 〈x〉)⊗HH1(Z[x, y], 〈x〉)

d log x⊗ dy 7→ (1⊗ 1⊗ 1⊗ x)⊗ (1⊗ y ⊗ 1⊗ 1)
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p : HH1(Z[x, y], 〈x〉)⊗HH1(Z[x, y], 〈x〉)→ H2(C•(Z[x, y], 〈x〉)⊗2)

. . . 7→ (1⊗ 1⊗ 1⊗ x)⊗ (1⊗ y ⊗ 1⊗ 1)

g : H2(C•(Z[x, y], 〈x〉)⊗2)→ H2(C•(Z[x, y], 〈x〉)�2)

. . . 7→ ((1⊗ 1⊗ 1)⊗ (1⊗ 1⊗ x))⊗ ((1⊗ y ⊗ 1)⊗ (1⊗ 1⊗ 1))

− ((1⊗ 1⊗ 1)⊗ (1⊗ x⊗ 1))⊗ ((1⊗ 1⊗ y)⊗ (1⊗ 1⊗ 1))

m : H2(C•(Z[x, y], 〈x〉)�2)→ HH2(Z[x, y], 〈x〉)

. . . 7→ (1⊗ y ⊗ 1)⊗ (1⊗ 1⊗ x)

− (1⊗ 1⊗ y)⊗ (1⊗ x⊗ 1)

We now see that the left square in (5.10) commutes, since

ω2 ◦ w1(dx ∧ dy) = ω2(x · (d log x ∧ dy))

= (x⊗ y ⊗ 1)⊗ (1⊗ 1⊗ x)− (x⊗ 1⊗ y)⊗ (1⊗ x⊗ 1)

= (1⊗ y ⊗ 1)⊗ (x⊗ 1⊗ x)− (1⊗ 1⊗ y)⊗ (x⊗ x⊗ 1)

= (1⊗ y ⊗ x)⊗ (1⊗ 1⊗ 1)− (1⊗ x⊗ y)⊗ (1⊗ 1⊗ 1)

which agrees with the expression in (5.11).

As for the right square in (5.10), we have

τ ◦ w2(d log x ∧ dy) = τ(dy) = (1⊗ y)

from the expression of τ in (2.4). On the other hand,

s2 ◦ ω2(d log x ∧ dy) =

= s2((1⊗ y ⊗ 1)⊗ (1⊗ 1⊗ x)− (1⊗ 1⊗ y)⊗ (1⊗ x⊗ 1))

= (1⊗ y ⊗ 1)⊗ (1⊗ 1⊗ x)− (1⊗ 1⊗ y)⊗ (1⊗ x⊗ 1) =: e1

in H2(C•(Z[x, y])�Z[Bcy
• 〈x〉] Z̃[B•〈x〉gp

]). This last homology has been computed

in Lemma 5.2 by means of the homology of C•(Z[y]) � Z̃[B•〈x〉gp
] from the

isomorphism (5.7); in the same lemma, the Eilenberg-Zilber theorem allowed us

to compute the homology of C•(Z[y]) ⊗ Z̃[B•〈x〉gp
] instead. So, we apply the

Alexander-Whitney map as in (1.3) to get, in homology:

f : H2(C•(Z[y]) � Z̃[B•〈x〉gp
])→

⊕
p+q=2

Hp(C•(Z[y]))⊗Hq(Z̃[B•〈x〉gp
])

e1 7→ y ⊗ (1⊗ 1⊗ x)− y ⊗ (1⊗ x⊗ 1)

+ (1⊗ y)⊗ (1⊗ x)− (1⊗ y)⊗ (x⊗ 1)

+ (1⊗ y ⊗ 1)⊗ x− (1⊗ 1⊗ y)⊗ x
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From Lemma 5.2 we also get that the homology is zero everywhere but for

(p, q) = (1, 1), so the only remaining terms are

(1⊗ y)⊗ (1⊗ x)− (1⊗ y)⊗ (x⊗ 1)

where (1⊗y)⊗(x⊗1) = 0 since (x⊗1) is quotiented out in Z̃[B•〈x〉gp
]. Moreover,

since the homology of Z̃[B•〈x〉gp
] is Z, the term (1⊗ y)⊗ (1⊗ x) corresponds,

in HH1(Z[y]), to the class of 1⊗ y.

Therefore, the right square in (5.10) commutes. By the five lemma (see e.g.

[Mac Lane, 1963, Chapter I, Lemma 3.3]), the map ω2 is an isomorphism of

Z[x, y]-modules, making

HH2(Z[x, y], 〈x〉) ∼= Z[x, y]{d log x ∧ dy}

Summarizing, the long exact sequence in homology is:

. . . // 0 // 0 //

// Z[x, y]{dx ∧ dy} r2 // Z[x, y]{d log x ∧ dy} s2 // Z[y]{dy} 0 //

// Z[x, y]{dx, dy} r1 // Z[x, y]{d log x, dy} s1 // Z[y]
0 //

// Z[x, y]
∼ // Z[x, y] // 0

with maps r1 and s1 previously described and maps r2 and s2 explicited by

r2 : Z[x, y]{dx ∧ dy} → Z[x, y]{d log x ∧ dy}

dx ∧ dy 7→ x · (d log x ∧ dy)

and

s2 : Z[x, y]{d log x ∧ dy} → Z[y]{dy}

d log x ∧ dy 7→ dy

sending x · (d log x ∧ dy) to 0.
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