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Abstract

In this thesis it is showed how an O(n4−ε) algorithm for the cube
multiplication problem (that is defined in the thesis) would imply
a faster than naive O∗(2n(1− ε4 )) algorithm for the max-3sat problem;
this algorithm for max-3sat is a generalization of the algorithm
for the max-2sat problem which was proposed by Ryan Williams;
and cube multiplication, in turn, is defined as a generalization of
the matrix multiplication problem for three-dimensional arrays.
Approaches to find a faster than naive algorithm for cube multipli-
cation are considered. Though no such algorithm was found using
these approaches, it is showed how a variant of the Strassen algo-
rithm for matrix multiplication could be found using the same
approaches. Implementations of these approaches using computer
programming and results of computational experiments are discussed.

Keywords: max-2sat, max-3sat, matrix multiplication,
cube multiplication, algorithms
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Chapter 1

Introduction

1.1 Thesis overview
In this thesis we consider several algorithmic problems. We focus on trying
to find a better algorithm for a computational problem, namely cube mul-
tiplication, which is defined in the thesis. We show how an asymptotically
faster than naive algorithm for this problem will imply an asymptotically
faster than naive algorithm for the known max-3sat problem, for which no
faster than brute force algorithms are known to date.

An algorithm has been developed for the max-2sat problem in 2007 by
Williams, which is asymptotically faster than a naive algorithm that tries
all possible solutions. It is based on reducing max-2sat to the matrix
multiplication problem, whose complexity is a key in obtaining the
algorithm with better worst case running time. There exist faster then naive
algorithms for matrix multiplication, and that implies faster than naive
algorithms for max-2sat.

As max-2sat and max-3sat are inherently similar, it is possible to
build a similar algorithm for max-3sat to the Williams’ algorithm for
max-2sat. This analogous algorithm is based on reducing max-3sat to
cube multiplication, corresponding to matrix multiplication in the
algorithm for max-2sat, where cube multiplication is a generalization of
matrix multiplication. But the possibly helpful cube multiplication
problem has not been studied, and therefore no algorithms which are faster
then naive are known for it.

If an algorithm which is asymptotically faster than computation by
definition for cube multiplication exists, then, used as a subroutine,
it yields an algorithm that is faster than naive for max-3sat. Because
matrix multiplication and cube multiplication are similar as well,
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2 CHAPTER 1. INTRODUCTION

it may be possible to use the ideas from efficient matrix multiplication
algorithms to make an efficient algorithm for cube multiplication. The
simplest algorithm that improves matrix multiplication running time
is the classic Strassen’s algorithm. We will try to generalize the Strassen’s
algorithm to an algorithm for cube multiplication. This involves solving
a certain large, but finite, puzzle. This thesis accounts how a solution to this
puzzle leads to an efficient algorithm for cube multiplication, and also
for max-3sat. The main work of this thesis is to describe our attempts at
solving this puzzle. Although we were not able to solve it, we were able to
make interesting progress by formulating approaches that easily rediscover
the Strassen algorithm.

1.2 Problem description
For known computational problems one usually tries to find efficient algo-
rithms. There are problems which cannot be solved algorithmically; and
for solvable problems, it is useful to find better algorithms, both for prac-
tical applications and for theoretical implications. Better usually means
asymptotically faster. For concrete practical purposes that could mean
faster running time, if a new faster algorithm could be implemented. A
faster algorithm could be used in other algorithms as a subroutine, thus
implying other faster algorithms. The ideas used in the algorithm could be
reused elsewhere and improved or expanded, leading towards an even better
algorithm for the same problem.

There are polynomial time algorithms and exponential time algorithms,
and polynomial time algorithms are usually much faster in practice, especially
on large inputs. However, there are problems, called NP-complete, for which
we only can hope for exponential algorithms, because it is unlikely that
a polynomial algorithm exists for such problems. But there is still a big
difference between running times of different exponential time algorithms,
and usually one tries to find an exponential algorithm that is as fast as
possible.

One of the classical problems in informatics is the sat problem. Given
a boolean formula, it is needed to determine whether the formula could
be satisfied with some truth assignment to its variables. This problem
is NP-complete. While a naive algorithm for sat that tries all values of
variables has complexity O∗(2n), there are other better exact exponential
time algorithms and heuristic algorithms that could solve the sat problem
in acceptable time. Restricted versions of sat, the k-sat problems, in which
the boolean formula is in conjunctive normal form and clause size is limited
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by k literals are also NP-complete for k ≥ 3; for k = 2 such problem is
solvable in polynomial time.

max-ksat is a class of problems, in which the task is to determine
whether the given number of clauses could be satisfied by an assignment in
a CNF formula with clause size limited by k literals. These problems are
NP-complete. A naive algorithm for these problems has O∗(2n) complexity
(checking all possible solutions). Could it be done faster? For max-2sat
— yes: with an algorithm by Williams [2007], the max-2sat problem is
solvable in O∗(1.74n) time. For max-ksat where k ≥ 3 we don’t know, and
the core question of this thesis is whether we can find a better algorithm,
that is, an algorithm with a running time O∗((2 − ε)n). The trick in
the max-2sat algorithm by Williams is to split the original problem into
exponentially many subproblems and solve each one with a fast polynomial
algorithm. Particularly here, the fast polynomial algorithm is a matrix
multiplication algorithm which is faster than naive.

A naive matrix multiplication algorithm has complexity O(n3).
Many faster algorithms were discovered for matrix multiplication, start-
ing with the Strassen’s algorithm with running time O(nlog2 7) discovered by
Strassen [1969], and the most recent algorithm with running time O(n2.38)
is discovered by Gall [2014]. The most simple, Strassen’s algorithm employs
recursive block computation and linear combinations of products of block
sums, making possible to do 7 multiplications instead of 8 in each recursive
step.

Now consider the max-3sat problem. It is just like max-2sat, except for
the number of literals in each clause. Maybe it is possible to create a faster
algorithm for it in a similar fashion to the fast algorithm for max-2sat? We
could try to do it, and that involves making generalisations in several steps
of the fast max-2sat algorithm. One of these generalisations is the cube
multiplication, an operation which is defined like matrix multiplication, but
on three 3-dimensional arrays. It is a key subroutine in this new max-3sat
algorithm, in the sense that improving running time for a cube multipli-
cation algorithm from naive to something faster gives an improvement in
running time for the max-3sat algorithm. If we consider the fact that 2sat
is solvable polynomially and 3sat is proved to be NP-complete, it could be
possible that max-3sat is not improvable, unlike max-2sat.

So then, we arrive at another question, whether we can find a better
than a naive O(n4) algorithm for cube multiplication, that is an O(n4−ε)
algorithm. The cube multiplication problem has not been studied,
so initially we don’t know a faster algorithm for it and whether a faster
algorithm exists at all. cube multiplication is similar enough to matrix
multiplication to possibly have an algorithm which is based on the same
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ideas as Strassen’s algorithm, that is recursive block computation and linear
combinations of products of block sums. We can define a puzzle to determine
whether such algorithm exists. The solution space for this puzzle is very
large, much larger than in case of the Strassen’s algorithm.

We could try to cope with that puzzle by formulating it as an instance of
a problem and trying to develop an efficient algorithm to solve that problem,
as well as formulating the puzzle as input for various solvers, such as SAT
solvers. SAT solvers take one boolean formula as an input, and give a truth
assignment to the variables of the formula if this formula could be satisfied,
or say no otherwise. Various optimizations and heuristics could help us to
find an answer to the puzzle, or at least to help us find more information
about it.

In this thesis we have tried to formulate necessary problems and proved
the correctness of the proposed algorithms. We explain the programming
techniques that were used in our attempt to solve the puzzle of finding
Strassen-like cube multiplication algorithm. Although no solution was
found during computational experiments, we explain our attempts and their
results, our observations and ideas for improvement.

1.3 Note on working on the thesis
The version of the Willams’ algorithm for max-2sat presented in the thesis
was taken from the book “Exact exponential algorithms” by Fomin and
Kratsch [2010]. The formulations for the max-3sat and the set span
problems and the Check-Span-Fast algorithm were informally explained to
me by my advisor, and I had formalized them. The SAT formulations for the
matrix-strassen and cube-strassen puzzles, and all the programming
work were done by me.

1.4 Thesis structure
In Chapter 2 we present a theoretical foundation that includes important
definitions (such as cube and cube multiplication definitions), notation and
lemmas, which are used in the main parts.

In Chapter 3 we describe a version of the Williams’ algorithm for max-
2sat and describe its generalization for max-3sat. We show that an
O(n4−ε) algorithm for cube multiplication would imply an algorithm for
max-3sat with running time O∗(2n(1− ε4 )). We also show that this approach
works even if there exists an O(n4−ε) algorithm for cube multiplication
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over GF(2), because it implies a randomized algorithm for max-3sat with
O∗(2n(1− ε4 )) running time.

In Chapter 4 we describe our approach in finding a faster than naive
algorithm for cube multiplication, yielding the set span problem and
SAT-formulations. We also describe how to discover the Strassen algorithm
for matrix multiplication using the same approach.

In Chapter 5 we describe the programs and the methods that we have
developed and used in order to solve two instances of the set span problem
that arise from trying to discover the Strassen’s algorithm and the faster
cube multiplication algorithm. We also describe our attempts to use
SAT-solvers on the SAT-formulations we have described in Chapter 4.

In Chapter 6 we present our conclusions.



Chapter 2

Theoretical foundation

In this chapter we present relevant theory, terminology and notation. Ex-
planations are simplified and cover only necessary concepts that will be
used in successive chapters, with references for further reading. Most of
the notation and definitions are common in informatics literature. However,
some of the definitions are particular to the thesis, namely cube and cube
product in section 2.6 on page 17 and k-uniform hypersquare in section 2.8.2
on page 21.

2.1 Note on indexing
In this thesis we use sometimes a lot of indices, so we will draw attention
to the most important properties of indexing that will be used further. If
several indices are separated by comma, like xi,j,k, they are equivalent to
a tuple, as in x(i,j,k). Sometimes several indices are aliased by one (or one
index is aliased with several), with encoding rules (explained where used),
for example xh could mean the same as x(i,j,k) when h = λ(i, j, k), where
λ(i, j, k) is a bijection between the domains of (i, j, k) and h. In some cases,
the order of indices does not matter, then we index over a set or a multiset
(a set that can have several equal elements), like x{i,j,k}. If two index aliases
mean the same, we denote it by putting the symbol ∼ between these index
aliases: h ∼ (i, j, k). Then xh means the same as xi,j,k.

2.2 Algorithms and their complexity
An algorithm could be informally defined as a set of instructions for solving
any instance of a particular problem, where solving means yielding a correct

6



2.2. ALGORITHMS AND THEIR COMPLEXITY 7

answer for a corresponding instance. A common example of an algorithm
is the greatest common divisor algorithm. Given two integer numbers,
the greatest common divisor algorithm yields a number which has to be
the greatest divisor of both given numbers. So we call these two given
numbers input, and the resulting number output, or an answer. Usually we
consider imperative algorithms, that could be represented as step-by-step
operations. For a problem there could be several known algorithms with
different properties, and some problems could even be unsolvable from an
algorithmic point of view. Among the most important properties of an
algorithm are its running time and memory requirements. We describe in
this section some of necessary properties of algorithms and different kinds
of algorithms, together with a common notation.

Most of the problems we consider in this thesis are decision problems.
That means that output for such problems can be either yes or no. For
example, consider the parity problem: an integer number is given and the
task is to output if the number is odd. Unless stated we assume that a
considered problem in this thesis is a decision problem. There are also other,
non-decision computational problems. A task of such a problem could be to
find the best solution among all possible solutions, to compute a result of
a function, or some other task with different possible results than yes or
no. As an example, consider the factorisation problem: an integer number
is given and the task is to output all factors of this number.

Usually we consider deterministic algorithms that do the same operations
for the same input, and thus yielding the same correct answer.

More in-depth introduction to algorithms could be found in the textbook
“Algorithms” by Dasgupta et al. [2006].

2.2.1 Running time and big O notation
Running time, an important algorithm characteristic, is usually measured
as a function of a problem’s input size. For a problem and an algorithm
that solves this problem, for every fixed value of n we look at all instances
of the problem of size n and count how many operations the algorithm uses
in worst case. Such function can be complicated, hard to compute exactly it
and work with. For convenience, we will use notation that will allow us to
ignore constant factors and low order terms, that is called big O notation. It
gives an understanding of how fast the running time grows when input size
is going towards infinity, called asymptotic complexity. For two functions
f, g : N → N we say that f(n) = O(g(n)) if there exists some constant
c > 0 and a number n0 such that f(n) < cg(n) for all n > n0. We say that
an algorithm runs in O(f(n)) time if there exists a function t(n) = O(f(n))
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such that for every input of size n, the algorithm use at most t(n) steps on
that input. Asymptotic complexity is one of the main measures of algorithm
effectiveness. It shows computation time for a worst case of an algorithm as
a function of input size. Asymptotically faster algorithms are usually more
practical. Finding a better algorithm for a problem or proving that there is
no asymptotically faster algorithm is useful for not only practical reasons,
but helps to establish bounds for other algorithms and theoretical problems
in informatics.

Usually, when writing running time for an algorithm, we omit lower
order terms and constant factors, making notation concise while preserving
asymptotic complexity. For example, if an algorithm runs in time 3n2 +
5n+ 2001 in worst case for an input of size n, we write that it runs in time
O(n2).

A polynomial is a function like poly(n) = c1n
k1 + . . .+ cmn

km , that is a
sum of degrees of n multiplied by constants. We will also use O∗-notation,
which is written f(n) = O∗(g(n)) and means that f(n) = O(g(n)poly(n)).
For example, 2nn5 = O∗(2n). This notation will be used for comparison of
exponential time algorithms.

We will use further in the text the words “faster” and “better” meaning
“asymptotically faster”. And words “runtime”, “time” and “complexity”
meaning “asymptotic complexity of a worst case”.

More information on Complexity of algorithms could be found in the
“Introduction to the Theory of Computation” by Sipser [2012].

2.2.2 Polynomial and exponential time algorithms
Polynomial time algorithms are algorithms that have runtime O(poly(n)).
Algorithms with running time O(2poly(n)) are asymptotically slower and
are called exponential time algorithms. Although it is usually better to
use polynomial time algorithms for any particular problem, because of
their practical running time on large inputs, sometimes there are no known
polynomial algorithms for such problem. Then it is natural to find as fast
exponential time algorithm as possible. However, for particular polynomial
and exponential time algorithms, on some input sizes (small enough) the
exponential algorithm could be faster to run in practice. For hard problems
without a known polynomial time algorithm it could be useful to find efficient
exponential algorithms to make bigger instance solvable in practice. Another
reason to find better exponential time algorithms for a problem is to improve
known time bounds for theoretical implications. Such research can help to
understand the problem better and used algorithmic techniques could be
improved further and used in other algorithms for other problems as well.
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The problems that we will consider in this thesis do usually have a finite
number of possible solutions. A naive algorithm for such problems usually
checks every possible solution from the space of possible solutions and thus
its running time is proportional to the size of the possible solution space.
Therefore it is a question for such problems whether it is necessary to go
through all the possible solutions or we can avoid it by somehow discarding
sets of wrong possible solutions.

One can find more information regarding exponential time algorithms in
the book by Fomin and Kratsch [2010].

Problems are also classified by their computational complexity. The
classes we are interested in are P and NP . P is a class of problems that
have a polynomial time algorithm, and NP is a class of problems for which
solution can be verified using a polynomial time algorithm. P ⊆ NP , but it
is not known if P = NP or P ⊂ NP .

Some problems in NP class are called NP-complete. That means that
they are the hardest in this class. Any other problem in NP can be reduced
to an NP-complete problem. Problems that are NP -Complete are considered
hard to solve, because it is unlikely that a polynomial time algorithm for
solving such a problem exists. However, exponential time algorithms still
can be used to solve such problem. And among these exponential time
algorithms some can be substantially faster than others.

2.2.3 Randomized algorithms
If we allow an algorithm to make random decisions during its run we call such
algorithm a randomized algorithm. Consider such algorithm as having access
to an an oracle that can give a uniformly random number for any requested
range. A randomized algorithm, unlike a deterministic algorithm, may
behave differently on the same input. It could always yield a correct answer,
or it could yield a correct answer with some probability. A running time of
a randomized algorithm may also vary for the same input. Such algorithms
can be useful for many reasons, and one can find a better introduction in
the “Algorithm design” book by Kleinberg and Tardos [2006].

In this thesis we consider randomized algorithms whose running time
will always be upper bounded by a function of an input size regardless of
random choices made by such algorithm. We also consider only randomized
algorithms for decision problems. However these algorithms can yield an
incorrect answer with some probability. We only consider in this thesis such
randomized algorithms that always yield no answer for a no instance and
will yield a correct yes answer with a probability (or incorrect no with a
probability) in case of yes instance. That is the only possible case for a
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randomized algorithm to yield an incorrect answer is to yield a no answer
for a yes instance.

Consider a randomized algorithm A that yields a correct answer with
a probability at least p if the answer is yes and which is always correct
when the answer is no. If we run this algorithm A k times, then with
probability (1− p)k at most it will yield no after all k runs if the answer
is yes, otherwise outputting a correct answer at least once. Then, we can
construct another algorithm as follows:

Algorithm B. Run A k times. If at least once the output of A is yes,
output yes. Otherwise, output no.

Then the algorithm B yields a correct answer with a probability at least
(1− (1− p)k) and its running time is k times greater than the running time
of A. For any probability p, 0 < p < 1 there exists an integer number k such
that (1− (1− p)k) is arbitrarily close to one. That means, if there exists a
randomized algorithm that yields a correct yes answer with a probability
p for a problem, 0 < p < 1, then there exists an algorithm that solves this
problem with arbitrarily high probability at the cost of increased running
time.

Consider a small example of a randomized algorithm. We are given an
array of n integer numbers and the task is to find out if at least one of the
numbers is odd. A simple randomized algorithm would be:

Algorithm C. Pick a number randomly from the array. If it is odd, output
yes, otherwise output no.

The algorithm C always yields a right answer if an instance has no odd
numbers, and a right answer with probability at least 1/n if there is at least
one odd number in the array. Thus, with at least 1/n probability we get
a correct answer. By running the algorithm C n times we can achieve a
probability (1− (1− 1/n)n) > (1− 1/ε) > 0.63 for any n. If we run it 10n
times we can achieve a probability (1−(1−1/n)10n) > (1−(1/ε)10) > 0.99995
for any n.

If an algorithm D yields a right answer with a probability p = 1/(2n), to
achieve a probability (1− 1/ε) > 0.63 by running it several times, we need
to run it 2n times.

So there is a tradeoff between the resulting probability and the running
time. We will work with algorithms whose probability of a correct answer
will always be a constant.
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2.3 Boolean formulas and satisfiability
problems

2.3.1 Boolean formulas
Boolean formulas are formulas that contain boolean variables, that is variables
that could have one of two values: true and false (or “1” and “0”, or yes
and no). A boolean variable is a formula itself and its value is the same as
value of the variable. Larger boolean formulas are constructed using logical
operators in a similar fashion to arithmetic operators.

Consider a boolean formula φ. The operator ¬ is called negation, and
a boolean formula ¬φ has value true if the value of φ is false and vice
versa. Consider boolean formulas φ and ψ. The binary operator ∨ is called
disjunction, and a boolean formula φ ∨ ψ has value false if values of both
φ and ψ are false, and true otherwise. The binary operator ∧ is called
conjunction, and a boolean formula φ ∧ ψ has value true if values of both
φ and ψ are true, and false otherwise. The binary operator ⊕ is called
exclusive disjunction, and a boolean formula φ⊕ ψ has value true if values
of both φ and ψ are different, and false otherwise. Operators are applied
in the same way as in arithmetic, where ¬ has the biggest priority, ∧ has a
medium priority, and ∨ and ⊕ have the lowest priority. Parentheses can also
be used to alter the priority of operators, in the same way as in arithmetic.
An example of a boolean formula is:

φ1 = (¬x1 ∨ (x2 ∨ x3) ∧ x4)⊕ x5. (2.1)

A variable x or its negation ¬x is called a literal. A disjunction of several
literals (x1 ∨ . . . ∨ xk) is called a clause. A clause has value true if at
least one of xi literals has true value, and false otherwise. A boolean
formula that is a conjunction of several clauses is called a boolean formula
in conjunctive normal form or CNF formula. An example is:

φ2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2) ∧ (x3 ∨ x4). (2.2)

A truth assignment α to variables is an assignment of 1 (true) or 0 (false)
value to these variables. The number of possible truth assignments to n
variables is 2n. For the variables in φ2 in the example above, one of the 16
possible truth assignments could be α = (x1 := 1, x2 := 0, x3 := 0, x4 := 1).
This truth assignment evaluates the formula φ2 to true.

A formula φ is called satisfiable if there exists a truth assignment that
evaluates this formula to true. Otherwise the formula is called unsatisfiable.
If 1 (true) or 0 (false) value is assigned only to some of the variables
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in a formula we call this a partial truth assignment. A clause is satisfied
by a truth assignment or a partial truth assignment if all variables in that
clause has value assigned to them and the assignment evaluates this clause
to true. So the formula φ2 from the example above is satisfiable.

A special case of a CNF formula is a k-CNF formula, a formula in which
each clause contain at most k literals. Formula (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2) ∧
(x3 ∨ x4) is a 3-CNF formula, but not a 2-CNF formula.

More about boolean formulas could be read in a book by Whitesitt
[1995].

2.3.2 Satisfiability problems
A classic algorithmic problem is the Satisfiability problem (sat).

Problem 1 (sat).
Input: A boolean formula φ having n variables and m clauses.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies all the clauses in φ.

The sat problem has proven to be NP-complete by Cook [1971] and by
Levin [1973].

If we add a restriction for the number of literals in clauses, we get the
following class of problems.

Problem 2 (k-sat).
Input: A k-CNF formula φ having n variables and m clauses.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies all clauses in φ.

With k = 2, namely 2sat, there exists a polynomial time algorithm for
it, for example an algorithm proposed by Krom [1967]. With k = 3, namely
3sat, the problem was proven to be NP-complete by Karp [1972]. Since for
k > 3 k-sat problems are not easier than 3sat and not harder than sat,
they are also NP-complete.

A generalization of sat is the maximum satisfiability problem (max-
sat).

Problem 3 (max-sat).
Input: A CNF formula φ having n variables and m clauses, and integer
number k̃.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies at least k̃ clauses.
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Since a solution to max-sat leads to a solution to sat, it is also an
NP-complete problem.

With restriction for the number of literals in clauses, we get the following
class of problems.

Problem 4 (max-ksat).
Input: A k-CNF formula φ having n variables and m clauses, and integer
number k̃.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies at least k̃ clauses.

Garey et al. [1976] have proved that max-2sat is NP-complete. Since
max-2sat can be reduced to max-ksat, max-ksat is NP-complete for all
k > 2.

For sat and max-sat no algorithms better than O(2n) are known to date.
Paturi et al. [2005] have discovered exponential time algorithms for k-sat
with better than naive running time for all k ≥ 3, particularly O(20.446n) for
3sat.

For a long time it was an open problem if there exists a better than
O(2n) algorithm, until Williams [2007] has found a faster algorithm with
running time O(2(ω/3)n), where ω is the exponent for matrix multiplication.
For max-ksat with k ≥ 3 it is still an open problem if there exists a more
efficient algorithm than than a naive O(2n) algorithm.

2.4 Rings and the GF(2) field
An algebraic ring is a set of elements with special operations defined for
its elements — addition and multiplication —, and two special elements,
zero and one. Addition and multiplication in a ring are generalisations of
the corresponding arithmetic operations, and zero and one elements are
generalisations of the corresponding elements in arithmetic.

GF(2) is a ring with two elements, 0 and 1. Addition and multiplication
in GF(2) are defined as arithmetical addition and multiplication modulo 2.
That means 1 + 1 = 0 in GF(2).

GF(2) is in fact a field (another algebraic object), but we will not use
this fact in this thesis.

One can find more about rings and fields in a book by Jacobson [2012].
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2.5 Matrices and matrix multiplication
An m × n matrix over a ring E is a two-dimensional array with m rows
and n columns, such that each element of the array is an element of E. A
matrix with the same number of rows and columns is called square matrix.
We can call an m× 1 matrix an m-dimensional vector. Here are examples
of a 3× 4 matrix over real numbers and a square 3× 3 matrix over GF(2):5.25 5 0.44 12

0 1 5 555
33.3 1 654 0

 ,
0 0 0

0 1 0
1 1 0

 (2.3)

We denote the element in the i-th row and j-th column of a matrix A by
Ai,j. For example, a 3× 3 matrix A:

A =

A1,1 A1,2 A1,2
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 (2.4)

Several operations are defined for matrices. The sum A+B of two m× n
matrices A and B is calculated element-wise:

(A+B)i,j = Ai,j +Bi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.5)

The subtraction of two matrices is defined in the same way. The multiplica-
tion cA of an m×n matrix A by a number c is also calculated element-wise:

(cA)i,j = c · Ai,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.6)

Another operation defined for matrices is matrix multiplication. The matrix
multiplication of an m× n matrix A and an n× k matrix B is defined as
an m× k matrix (AB) with elements calculated as follows:

(AB)i,j =
n∑
l=1

Ai,l ·Bl,j, 1 ≤ i ≤ m, 1 ≤ j ≤ k (2.7)

Note that matrix multiplication is only defined for two matrices when
the number of columns of the first matrix is the same as the number of
rows of the second matrix. And in general AB 6= BA, so the order of
matrices matters. Matrix multiplication has the following properties (called
distributive properties):

((AB)C) = (AC) + (BC) (2.8)
(A(BC)) = (AB) + (AC) (2.9)
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We denote by a block matrix a matrix which is interpreted as having
been partitioned into sections called blocks. Each block is a matrix itself and
is denoted by Ai,j. For n = mk, an n× n matrix A over E can be thought
of as an m×m matrix where each element is an k × k matrix over E. For
example:

A =


A1,1 · · · A1,m

... . . . ...
Am,1 · · · Am,m

 , (2.10)

where each block Ap,q is a k × k matrix:

Ap,q =


Ap,q1,1 · · · Ap,q1,k
... . . . ...

Ap,qk,1 · · · Ap,qk,k

 . (2.11)

We use both superscript and subscript indices to denote an element of a
block matrix, where superscript is used to index blocks, and subscript is
used to index elements inside blocks, like Ap,qs,t . Thus, Ai,j and Ap,qs,t denote
the same element of the matrix A from the example above, if

i = (p− 1)k + s, 1 ≤ p ≤ m, 1 ≤ s ≤ k,

j = (q − 1)k + t, 1 ≤ q ≤ m, 1 ≤ t ≤ k
. (2.12)

We denote by matrix multiplication the computational problem
where we are given two n× n matrices A and B as input, and the task is to
compute (AB).

Directly applying the definition of matrix multiplication yields an algo-
rithm for matrix multiplication with an O(n3) running time. However,
there exist asymptotically faster than O(n3) algorithms for it, in particular,
the exponent here can be less than 3. Any algorithm for matrix multiplica-
tions should calculate n2 elements of the resulting matrix, so that exponent
cannot be smaller than 2. We denote by ω such exponent. It is an open
problem, what is the fastest algorithm for matrix multiplication. The
first of fast matrix multiplication algorithms was discovered by Strassen
[1969]. The matrix multiplication is calculated recursively, by multiplying
blocks of 2× 2 block matrices as elements of 2× 2 matrix at each recursive
step. The trick is to use 7 multiplications in each step instead of 8. Let’s
see this algorithm in more details.

So we want to find matrix multiplication (AB) of n×n matrices A and B.
Matrix multiplication can be computed using block partitioning. Without
loss of generality we assume that n = mk (otherwise we enlarge matrices,
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filling new values with zeros; the instance size will be increased by constant
factor only). We partition A and B into m×m blocks. It is easy to prove
(and we will prove the same trait later for cube multiplication in lemma 8
on page 40), that if we compute matrix multiplication of A and B treating
each block as element and element multiplication as matrix multiplication,
we’ll get a block matrix AB which is equal to a matrix multiplication of A
and B:


(AB)1,1 · · · (AB)1,m

... . . . ...
(AB)m,1 · · · (AB)m,m

=


A1,1 · · · A1,m

... . . . ...
Am,1 · · · Am,m



B1,1 · · · B1,m

... . . . ...
Bm,1 · · · Bm,m

=

=


∑n
l=1 A

1,lBl,1 · · · ∑n
l=1 A

1,lBl,m

... . . . ...∑n
l=1 A

m,lBl,1 · · · ∑n
l=1 A

m,lBl,m

 (2.13)

This gives us a recursive algorithm for matrix multiplication where in
order to compute the multiplication of two n× n matrices we compute m3

matrix multiplications of two n
m
× n

m
matrices. Its running time is upper

bounded by the following recurrence relation:

T (1) = O(1), (2.14)
T (n) = m3T (n/m) +mO(n2), (2.15)

wherem3 recursive calls to matrix multiplication of blocks are accounted
in the first term of the right side in formula (2.15), and summation of them
element-wise in the second term. Consideringm as a constant, an application
of the master theorem (refer to the book by Dasgupta et al. [2006] for the
explanation and proof of the master theorem) shows that this recurrence
gives us an O(nlog(m3)

m ) = O(n3) algorithm, which is the same complexity as
of a naive algorithm. If we let m = 2, we need to make 8 recursive matrix
multiplications in that algorithm each time. Strassen has found how to
make 7 multiplications instead of 8, thus changing log2 8 exponent to log2 7,
yielding an algorithm with complexity O(nlog2 7). He have used the following
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formulas for the 7 multiplications:
M1 = (A1,1 + A2,2)(B1,1 +B2,2), (2.16)
M2 = (A2,1 + A2,2)B1,1, (2.17)
M3 = A1,1(B1,2 −B2,2), (2.18)
M4 = A2,2(−B1,1 +B2,1), (2.19)
M5 = (A1,1 + A1,2)B2,2, (2.20)
M6 = (−A1,1 + A2,1)(B1,1 +B1,2), (2.21)
M7 = (A1,2 − A2,2)(B2,1 +B2,2), (2.22)

and the following formulas to compute the blocks of AB:
(AB)1,1 = M1 +M4 −M5 +M7, (2.23)
(AB)2,1 = M2 +M4, (2.24)
(AB)1,2 = M3 +M5, (2.25)
(AB)2,2 = M1 +M3 −M2 +M6. (2.26)

Since then, many improvements have been made, and to date, the
asymptotically fastest algorithm for matrix multiplication has complexity
O(n2.38), discovered by Gall [2014].

2.6 Cubes and cube multiplication
We denote by an n× n× n cube or n-cube over a ring E a 3-dimensional
array with n rows, columns and planes, such that each element of the array
is an element of E. One can see an n-cube as a generalisation of an n× n
square matrix. Given such an n-cube A, the element of A in row i, column
j and plane k is denoted by Ai,j,k:

A =



A1,1,1 · · · A1,n,1

... . . . ...
An,1,1 · · · An,n,1

 , · · · ,

A1,1,n · · · A1,n,n

... . . . ...
An,1,n · · · An,n,n


 (2.27)

Several operations are defined for cubes. The sum A+B of two n-cubes
A and B is calculated element-wise:

(A+B)i,j,k = Ai,j,k +Bi,j,k, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n. (2.28)
The subtraction of two cubes is defined in the same way. The multiplication
cA of a n-cube A by a number c is also calculated element-wise:

(cA)i,j,k = c · Ai,j,k, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n. (2.29)
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Definition 1 (Cube multiplication). Let A, B and C be n-cubes. By the
cube multiplication of n-cubes A, B and C (in that order) we define an
n-cube (ABC) such that:

(ABC)i,j,k =
n∑
l=1

Al,j,kBi,l,kCi,j,l, i, j, k = 1 . . . n. (2.30)

The cube multiplication is a generalization of the matrix multiplication
for square matrices. Note that the cube multiplication is defined for three
cubes, so it is a ternary operation, and that the order of operands matters.

We will denote by cube multiplication the computational problem
where we are given three n-cubes A, B, C as input, and the task is to
compute (ABC). Directly applying the definition of cube multiplication
yields an algorithm for cube multiplication with running time O(n4).

To our knowledge, the cube multiplication problem has not been
studied.

Now we prove a distributive property for cube multiplication.

Lemma 1 (Distributivity over cube addition). Let A, B, C and D be
n-cubes. Then the following statements are correct:

((A+B)CD) = (ACD) + (BCD) (2.31)
(A(B + C)D) = (ABD) + (ACD) (2.32)
(AB(C +D)) = (ABC) + (ABD) (2.33)

Proof. Let’s prove the first equality:

((A+B)CD)i,j,k =
n∑
l=1

(Al,j,k +Bl,j,k)Ci,l,kDi,j,l =

=
n∑
l=1

(Al,j,kCi,l,kDi,j,l +Bl,j,k)Ci,l,kDi,j,l) =

= (ACD)i,j,k + (BCD)i,j,k,
i, j, k = 1, . . . , n

(2.34)

The second and third equality can be proved in the same manner.

Corollary 1. If A1, . . . , Ak, B1, . . . , Bl, C1, . . . , Cm are cubes, then

((A1+. . .+Ak)(B1+. . .+Bl)(C1+. . .+Cm)) =
k∑
p=1

l∑
q=1

m∑
r=1

(ApBqCr) (2.35)
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We denote by a block cube a cube which is interpreted as having been
partitioned into sections called blocks. Each block is a cube itself and is
denoted by Ai,j,k. For n = mo, an n-cube A over E can be thought of as an
m-cube where each element is an o-cube over E. For example:

A =



A1,1,1 · · · A1,m,1

... . . . ...
Am,1,1 · · · Am,m,1

 , · · · ,

A1,1,m · · · A1,m,m

... . . . ...
Am,1,m · · · Am,m,m


 , (2.36)

and each block Ap,q,r is an o-cube:

Ap,q,r =



Ap,q,r1,1,1 · · · Ap,q,r1,o,1

... . . . ...
Ap,q,ro,1,1 · · · Ap,q,ro,o,1

 , · · · ,

Ap,q,r1,1,o · · · Ap,q,r1,o,o
... . . . ...

Ap,q,ro,1,o · · · Ap,q,ro,o,o


 . (2.37)

We use both superscript and subscript indices to denote an element of a
block cube, where superscript is used to index blocks, and subscript is used
to index elements inside blocks, like Ap,q,rs,t,u . Thus, Ai,j,k and Ap,q,rs,t,u denote
the same element of the cube A from the example above, if

i = (p− 1)o+ s, 1 ≤ p ≤ m, 1 ≤ s ≤ o,

j = (q − 1)o+ t, 1 ≤ q ≤ m, 1 ≤ t ≤ o,

k = (r − 1)o+ u, 1 ≤ r ≤ m, 1 ≤ u ≤ o.

(2.38)

2.7 Basic Linear Algebra
A vector space is a set of objects called vectors, which may be added together
and multiplied by numbers, called scalars in this context.

We will be working with the vector space Fn
2 , namely the set of tuples of

length n where each element of tuple is an element of GF(2). We will call
such vectors n-dimensional GF(2) vectors. By vi we define the i-th element
of a vector v.

The vector [0, . . . , 0] is called zero vector.
Let u and v be elements of Fn

2 :

u = [u1, . . . , un], (2.39)
v = [v1, . . . , vn]. (2.40)

Addition of elements of Fn
2 and multiplication by scalar from GF(2) are

element-wise:

v + u = [v1 + u1, . . . , vn + un], (2.41)
αv = [αv1, . . . , αvn] (2.42)
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A sum of several vectors multiplied by scalars each, α1v1 + . . .+ αkvk, is
called a linear combination.

The set of vectors T = {v1, . . . , vk} is called linearly independent if the
equation

α1v1 + . . .+ αkvk = 0, (2.43)

where 0 is the zero vector, can only be satisfied by αi = 0 for i = 0, . . . , k.
Otherwise the set T is called linearly dependent.

A subspace of a vector space V is a subset U of V , such that any vector
that can be expressed as a linear combination of elements from U is also an
element of U .

For a set T of vectors, let span(T ) be the set of all vectors that can be
expressed as a linear combination of vectors from T . We call it the span of
T . A span(T ) is a subspace of Fn

2 .
A set B of linearly independent vectors is called a basis of a vector space

F if every vector in F can be expressed as a linear combination of vectors
from B. A vector space can have different bases. A number of vectors in a
basis of F is called rank of F. Every vector in F can be uniquely expressed
as a linear combination of basis vectors.

For a vector space F of rank k any set of k linearly independent vectors
is a basis of F.

The following lemma will be used later in our algorithm for the set
span problem. It is a basic fact from linear algebra, we include a proof for
completeness. For more information regarding linear algebra one can see a
book by Lay [2012].

Lemma 2. If a set M = {m1, . . . ,mk} is a set of k linearly independent
vectors, and all vectors in a set of linear independent vectors R = {r1, . . . , rl}
are in span(M), then there exists a subset P ⊆ M , such that P ∪ R is a
basis of span(M).

Proof. We prove it by induction. A base case is when R = M . Then P = ∅
and R is the basis.

Assume that the statement of the lemma holds for any R of size l + 1.
Let’s prove that it holds for R = {r1, . . . , rl} of size l.

Because span(R) ⊂ span(M) there exists a vector m in M that is not in
the span of R (otherwise M would be a subset of span(R)). If we add this
vector m to R, we get a set R′ = R∪m of l+ 1 linearly independent vectors.
By our assumption for R′ there exists a set P ′ ⊆M such that P ′∪R′ is a basis
of span(M). Then, if we let P = P ′∪m, then P ∪R = P ′∪m∪R = P ′∪R′
is a basis of span(M).
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2.8 Graphs and hypergraphs

2.8.1 Graphs
A graph is an ordered pair G = (V,E), where V is a set of nodes and E is a
set of edges which are 2-element subsets of V .

For example, G1 = ({a, b, c, d, e}, {{a, b}, {a, c}, {b, d}, {b, c}, {a, d}}) is
a graph with five nodes and five edges.

We call a graph I = (VI , EI) a subgraph of a graph G = (V,E) if VI ⊆ V
and EI ⊆ E. We call a subgraph T of a graph G a triangle if T is of the
form ({a, b, c}, {{a, b}, {b, c}, {c, a}}), that is if it is a 3-node subgraph that
has all possible edges. We also denote such triangle by abc for short. In the
example graph G1, abc is a triangle.

If every edge e ∈ E in a graph G = (V,E) has a number assigned to it,
that we call weight, we call the graph G a weighted graph. Each edge could
have several different independent weights. We name such weights with a
preceding Greek letter, like this: π-weight, ρ-weight, etc. And we denote
weights of an edge {a, b} like this: π({a, b}), ρ({a, b}), etc.

If there is a triangle abc in a weighted graph G, then by weight of the
triangle abc we denote the sum of weights of all its edges. For example, if
edges in G have π-weight, then the triangle abc also has π-weight:

π(abc) = π({a, b}) + π({b, c}) + π({c, a}). (2.44)

2.8.2 Hypergraphs
A hypergraph is an ordered pair H = (V,E) where V is a set of nodes and
E is a set of hyperedges, which are non-empty subsets of V . A k-uniform
hypergraph is a hypergraph such that all its hyperedges have size k. So
a 2-uniform hypergraph is a graph, and hypergraphs can be seen as a
generalization of graphs.

For example, H1 = ({a, b, c, d, e}, {{a, b}, {a, b, c}, {b, d}, {e}}) is a hy-
pergraph with five nodes and four hyperedges. And H2 = ({a, b, c, d, e, f},
{{a, b, c}, {b, c, d}, {c, d, a}, {d, a, b}, {c, e, f}, {e, f, b}}) is a 3-uniform hy-
pergraph with six nodes and six hyperedges.

We call a hypergraph I = (VI , EI) a subhypergraph of a hypergraph H =
(V,E) if VI ⊆ V and EI ⊆ E. We call a subhypergraph S of a 3-uniform hy-
pergraphH a hypersquare if S is of the form ({a, b, c, d}, {{a, b, c}, {b, c, d}, {c, d, a},
{d, a, b}}), that is if it is a 4-node 3-uniform subhypergraph that has all
possible hyperedges. We also denote such hypersquare by abcd for short. In
the example 3-uniform hypergraph H2, abcd is a hypersquare.
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If every hyperedge e ∈ E in a hypergraph H = (V,E) has a number
assigned to it, that we call weight, we call the hypergraph H a weighted
hypergraph. Each hyperedge could have several different independent weights.
We name such weights with a preceding Greek letter, like this: π-weight,
ρ-weight, etc. And we denote weights of a hyperedge {a, b, c} like this:
π({a, b, c}), ρ({a, b, c}), etc.

If there is a hypersquare abcd in a weighted hypergraph H, then by weight
of the hyperquare abcd we denote the sum of weights of all its hyperedges.
For example, if hyperedges in H have π-weight, then the hypersquare abcd
also has π-weight:

π(abcd) = π({a, b, c}) + π({b, c, d}) + π({c, d, a}) + π({d, a, b}). (2.45)

2.9 The Isolation lemma
The isolation lemma, proposed and proved by Mulmuley et al. [1987] will be
useful for us to reduce a problem for which several possible solutions could
exist to another problem that has at most one solution with high probability.
When we speak about several possible solutions for a decision problem,
we mean the following. Consider a max-ksat problem. An instance of
that problem could have several different truth assignments that satisfy at
least k̃ clauses. Then, the reduction succeeds with high probability p in
the following sense. If there is a yes-instance of max-ksat then there will
be a yes-instance of a reduced problem, and if there is a no-instance of
max-ksat then there will be a no-instance of a reduced problem. Among
all truth assignments that satisfy at least k clauses, with the probability p
there will be a unique truth assignment with the minimum weight.

Lemma 3. Let n and N be positive integers, and let F be an arbitrary family
of subsets of the set S = {1, . . . , n}. Suppose each element x ∈ {1, . . . , n}
in S receives an integer weight ρ(x), each of which is chosen independently
and uniformly at random from {1, . . . , N}. The weight of a set S in F is
defined as

ρ(S) =
∑
x∈S

ρ(x).

Then, with probability at least 1− n
N
, there is a unique set in F that has the

minimum ρ-weight among all sets of F .

Proof. Suppose we have fixed the weights of all elements except an element
x. Then x has a threshold weight α, such that if the weight ρ(x) of x is
greater than α, then it is not contained in any minimum-weight subset, and
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if ρ(x) ≤ α, then it is contained in some sets of minimum weight. Further,
observe that if ρ(x) < α, then every minimum-weight subset must contain
x (since, when we decrease ρ(x) from α, sets that do not contain x do not
decrease in weight, while those that contain x do). Thus, ambiguity about
whether a minimum-weight subset contains x or not can happen only when
its weight is exactly equal to its threshold; in this case we will call x singular.
Now, as the threshold of x was defined only in terms of the weights of the
other elements, it is independent of ρ(x), and therefore, as ρ(x) is chosen
uniformly from {1, . . . , N},

P [x is singular] = P [ρ(x) = α] ≤ 1/N (2.46)

and the probability that some x is singular is at most n/N . As there
is a unique minimum-weight subset if no element is singular, the lemma
follows.



Chapter 3

MAX-kSAT algorithms

We know that max-ksat problems are NP-complete. For all of them there
exists a naive algorithm with running time O∗(2n), that checks all possible
truth assignments. Currently, we don’t know any faster algorithms for these
problems except for the faster max-2sat algorithm discovered by Williams
[2007].

The algorithm of Williams reduces max-2sat to matrix multiplica-
tion in such a way that an O(n3−ε) algorithm for matrix multiplication
implies an O∗(2n(1− ε3 )) algorithm for max-2sat. Thus, a naive O(n3) algo-
rithm for matrix multiplication gives an alternative O∗(2n) algorithm
for max-2sat. Anything faster for matrix multiplication gives a better
than O∗(2n) algorithm for max-2sat. Applying the best known algorithm
for matrix multiplication by Gall [2014] (O(n2.38)) gives an O∗(20.80n)
algorithm for max-2sat. Applying the Strassen’s O(n2.81) algorithm for
matrix multiplication gives an O∗(20.94n) algorithm for max-2sat.

We aim to make a better max-3sat algorithm in a similar manner. We
will give a reduction from max-3sat to cube multiplication based on
the same ideas that were used in the max-2sat algorithm by Williams,
such that a naive algorithm for cube multiplication gives us an alterna-
tive O∗(2n) algorithm for max-3sat, and any better algorithm for cube
multiplication gives us a better algorithm for max-3sat. The algorithm
does not, at this point, beat O∗(2n) for max-3sat but it shows that an
algorithm for cube multiplication with running time O(n4−ε) would
imply an algorithm for max-3sat with running time O∗(2n(1− ε4 )).

We discuss only the Williams’ algorithm for max-2sat and its general-
ization for max-3sat in this chapter. It is possible to use the same idea to
make generalizations for max-ksat for any k, which involves a definition of
k-dimensional arrays and their multiplication, but we won’t discuss these

24
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generalizations in this thesis.

3.1 The fast MAX-2SAT algorithm
Recall the max-2sat problem:

Problem 5 (max-2sat).
Input: A 2-CNF formula φ having n variables and m clauses, and integer
number k̃.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies at least k̃ clauses.

The max-2sat problem is NP-complete. A naive algorithm for the
max-2sat problem would try all truth assignments to the variables of φ and
for each assignment count the number of satisfied clauses. Thus such naive
algorithm has time complexity O∗(2n). Now we will describe the fast exact
exponential time algorithm for max-2sat that was proposed by Williams.

Algorithm 1 (Fast max-2sat algorithm). Assume without loss of generality
that every clause in φ has exactly two literals. Otherwise we duplicate literals
in clauses that contain just one literal. This does not change the solution,
and could increase the size of the formula only by a constant factor.

Assume without loss of generality that the number of variables is divis-
ible by 3. Otherwise, we could add one or two dummy variables without
modifying φ, and the solution won’t change.

We split the set of all the variables in 3 equal parts of size n
3 , and denote

these parts by P i, i = 0, . . . , 2. This division also splits all the clauses of φ
into classes C{i,j}, where a clause c containing variables u and v is in class
C{i,j} if u ∈ P i and v ∈ P j, i, j ∈ {0, 1, 2}.

There are 6 such classes, and we denote by C the family of all these
classes:

C = {C{0,0}, C{0,1},
C{1,1}, C{1,2},

C{2,2}, C{2,0}}.
(3.1)

C could be partitioned into three subfamilies:

C = C{0,1} ∪ C{1,2} ∪ C{2,0}, (3.2)



26 CHAPTER 3. MAX-kSAT ALGORITHMS

where

C{0,1} = {C{0,0}, C{0,1}},
C{1,2} = {C{1,1}, C{1,2}},
C{2,0} = {C{2,2}, C{2,0}}.

(3.3)

By ψ(α,C) we define the number of clauses in a class C that are satisfied by
a truth assignment (or a partial truth assignment) α to the variables in φ.

We build an auxiliary weighted graph G = (V,E) in the following way.
For each truth assignment to the variables in P i the graph G has a node.
We denote by V i the set of all nodes that correspond to truth assignments
to the variables in P i. Then the number of nodes in G is equal to 3 · 2n

3 .
For each of three V i parts of A(G,Σ) we enumerate all nodes of this

part from 1 to d = 2n
3 , so that we can denote a node by vil (the node number

l in V i, 1 ≤ l ≤ d).
Edges of G are all possible 2-element sets {x, y} where x ∈ V i, and

y ∈ V i+1 (mod 3). So G has 3 · 2 2n
3 edges.

We note that each node of G corresponds to a partial truth assignment
to the variables in φ. And any set of nodes, with no two nodes from the
same set V i, — such as an edge, or three nodes of a triangle — corresponds
to a truth assignment (or a partial truth assignment) to the variables in φ.
We denote by αB a truth assignment that corresponds to a set of nodes B
in G.

For any edge {x, y}, x ∈ V i, y ∈ V j, we define its σ-weight:

σ({x, y}) =
∑

C∈C{i,j}

ψ(α{x,y}, C). (3.4)

From the construction of G follows that there is a bijection between
triangles in G and truth assignments to the variables of φ. A triangle in
G has three nodes xi such that xi ∈ V i, i = 0 . . . 2, and the set {x0, x1, x2}
corresponds to a truth assignment to the variables in φ. Any truth assignment
to the variables in φ corresponds to a set of three nodes in G, and these
nodes also form a triangle in G by construction.

Lemma 4. The σ-weight of a triangle x0x1x2 in G is equal to the number
of clauses satisfied by α{x0,x1,x2}.

Proof. Consider a triangle x0x1x2 whose σ-weight is equal to t. Without
loss of generality we number its nodes in such a way that x0 ∈ V0, x1 ∈ V1,
and x2 ∈ V2. Let’s calculate the number of clauses in φ that are satisfied by
the corresponding truth assignment α{x0,x1,x2}.
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Each clause c can be in exactly one of the 6 classes in C. The total
number of satisfied clauses in φ by α{x0,x1,x2} is equal to∑

C∈C
ψ(α{x0,x1,x2}, C) =

2∑
i=0

∑
C∈C{i,i+1 (mod 3)}

ψ(α{x0,x1,x2}, C) =

2∑
i=0

∑
C∈C{i,i+1 (mod 3)}

ψ(α{xi,xi+1 (mod 3)}, C) =

2∑
i=0

σ({xi, xi+1 (mod 3)}),

(3.5)

which is the σ-weight of the triangle, which is equal to t.

For all values of t, k̃ ≤ t ≤ m we can try all possible partitions Σ =
(σ01, σ12, σ20) of t into 3 terms (that is t = σ01 + σ12 + σ20). For each such
partition we build a subgraph A(G,Σ) with the following property. An edge
{vpi , v

q
j} from G remains in A(G,Σ) only if σ({vpi , v

q
j}) = σpq, p, q = 0, . . . , 2,

q = p+ 1 (mod 3), i, j = 1, . . . , d. For every value of t the number of such
partitions is at most t3.The subgraph A(G,Σ) can be constructed in time
O∗(2 2n

3 ) by going through all edges of G. From this construction follows
that there exists a triangle in A(G,Σ) if and only if there exists a triangle
of σ-weight t in G. It follows that there exists a truth assignment to the
variables of φ that satisfies exactly t clauses if and only if there exists a
partition Σ of t such that there exists a triangle in A(G,Σ).

Now we explain how to determine whether A(G,Σ) contains a triangle
by using matrix multiplication. We build three d × d matrices, A12, A10,
A02, such that an element Apqij is equal to 1 if there is an edge {vpi , v

q
j} in

A(G,Σ), and is equal to 0 otherwise, for (p, q) ∈ {(1, 2), (1, 0), (0, 2)} and
i, j = 1, . . . , d.

Lemma 5. The value of A12
ij · (A10A02)ij is equal to the number of triangles

in A(G,W ) that contain nodes v1
i and v2

j , 1 ≤ i ≤ d, 1 ≤ j ≤ d.

Proof. Consider a multiplication

A12
ij A

10
ikA

02
kj (3.6)

for some fixed i, j, k, 1 ≤ k ≤ d, 1 ≤ i ≤ d, 1 ≤ j ≤ d. It is equal to 1 if
all the multipliers are equal to 1, which means that all three edges {v1

i , v
2
j},

{v1
i , v

0
k}, and {v0

k, v
2
j} are in A(G,W ). So the multiplication (3.6) is equal
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to 1 if A(G,W ) contains a triangle v0
kv

1
i v

2
j , and 0 otherwise. By definition

of matrix multiplication each element of the matrix (A10A02) is the sum of
multiplications:

(A10A02)ij =
d∑

k=1
A10
ikA

02
kj. (3.7)

If we multiply (3.7) by A12
ij we get

A12
ij · (A10A02)ij = A12

ij

d∑
k=1

A10
ikA

02
kj =

=
d∑

k=1
A12
ij A

10
ikA

02
kj,

(3.8)

which is the sum of the multiplications (3.6) for all k, 1 ≤ k ≤ d. Different
values of k correspond to different nodes in V0, and thus the summation
(3.8) counts all triangles in A(G,W ) that contain the nodes v1

i , and v2
j .

The multiplication of two d× d matrices can be computed in O(dω) time.
Therefore every A(G,Σ) can be tested for having at least one triangle in
time O∗(2ωn

3 ).
Finally, we have the following algorithm. We construct the auxiliary

graph G for the formula φ. Then, for every t, k̃ ≤ t ≤ m, we try all possible
partitions Σ. For each such partition we construct the graph A(G,Σ).
Then A(G,Σ) is tested for triangles using matrix multiplication as shown
in lemma 5. If there exists a triangle in A(G,Σ), then there exists a truth
assignment which satisfies t clauses, following from lemma 4.

The total running time of the algorithm is O∗(m · m3(2ωn
3 + 2 2n

3 )) =
O∗(2ωn

3 ). If ω = 3 then the running time of the algorithm is O∗(2n). If we
use a faster algorithm for matrix multiplication, with ω = 3− ε, then
the running time of this algorithm is O∗(2n(1− ε3 )), where ε > 0.

3.2 MAX-3SAT: a promising algorithm
Recall the max-3sat problem:

Problem 6 (max-3sat).
Input: A 3-CNF formula φ having n variables and m clauses, and integer
number k̃.
Task: Determine whether there exists a truth assignment to the variables
of φ that satisfies at least k̃ clauses.
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The max-3sat problem is NP-complete, and a naive algorithm for it
has time complexity O∗(2n), the same as for max-2sat. There are no
known faster algorithms to date. The approach that was described before for
max-2sat could possibly be applied to the max-3sat problem in a similar
way. In the rest of this section we will show how to do such generalization.

As we noted before, at this point such generalization gives an alternative
O∗(2n) algorithm for max-3sat and could lead to an O∗(2n(1− ε4 )) algorithm,
provided that there exists an O(n4−ε) algorithm for cube multiplication.

The algorithm for max-3sat will follow the ideas from algorithm 1 for
max-2sat. In that algorithm variables were divided in 3 sets, but now
we will divide them into 4 sets. Every edge of the graph in algorithm 1
was representing clauses from classes in a subfamily with a partial truth
assignment to the variables. Since clauses now contain 3 literals, instead
of the auxiliary graph we build an auxiliary 3-uniform hypergraph, and
then every edge is a set of 3 nodes. Instead of triangles we search for
hypersquares, that correspond to truth assignments. And to find the number
of hypersquares we use cube multiplication instead of matrix multiplication.

3.2.1 The algorithm description
Algorithm 2 (Split and list max-3sat algorithm). Assume without loss
of generality that every clause in φ has exactly three literals. Otherwise we
duplicate literals in clauses that contain one or two literals. This does not
change the solution, and could increase the size of the formula only by a
constant factor.

Assume without loss of generality that the number of variables is divisible
by 4. Otherwise, we could add one, two or three dummy variables without
modifying φ, and the solution won’t change.

We split the set of all the variables in 4 equal parts of size n
4 , and denote

these parts by P i, i = 0, . . . , 3. This division also splits all the clauses of φ
into classes C{i,j,k}, where a clause c containing variables u, v, and w is in
class C{i,j,k} if u ∈ P i, v ∈ P j and w ∈ P k, i, j, k ∈ {0, 1, 2, 3}. There are
20 such classes, and we denote by C the family of all these classes:

C = {C{0,0,0}, C{0,0,1}, C{0,1,1}, C{0,0,2}, C{0,1,2},
C{1,1,1}, C{1,1,2}, C{1,2,2}, C{1,1,3}, C{1,2,3},

C{2,2,2}, C{2,2,3}, C{2,3,3}, C{2,2,0}, C{2,3,0},

C{3,3,3}, C{3,3,0}, C{3,0,0}, C{3,3,1}, C{3,0,1}}.

(3.9)

C could be partitioned into four subfamilies:
C = C{0,1,2} ∪ C{1,2,3} ∪ C{2,3,0} ∪ C{3,0,1}, (3.10)
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where
C{0,1,2} = {C{0,0,0}, C{0,0,1}, C{0,1,1}, C{0,0,2}, C{0,1,2}},
C{1,2,3} = {C{1,1,1}, C{1,1,2}, C{1,2,2}, C{1,1,3}, C{1,2,3}},
C{2,3,0} = {C{2,2,2}, C{2,2,3}, C{2,3,3}, C{2,2,0}, C{2,3,0}},
C{3,0,1} = {C{3,3,3}, C{3,3,0}, C{3,0,0}, C{3,3,1}, C{3,0,1}}.

(3.11)

By ψ(α,C) we define the number of clauses in a class C that are satisfied by
a truth assignment (or a partial truth assignment) α to the variables in φ.

We build an auxiliary weighted 3-uniform hypergraph H = (V,E) in
the following way. For each truth assignment to the variables in P i the
hypergraph H has a node. We denote by V i the set of all nodes that
correspond to truth assignments to the variables in P i. Then the number of
nodes in H is equal to 4 · 2n

4 .
For each of four V i parts of A(H,Σ) we enumerate all nodes of this part

from 1 to d = 2n
4 , so that we can denote a node by vil (the node number l in

V i, 1 ≤ l ≤ d).
Hyperedges of H are all possible triples of the form {x, y, z}, where

x ∈ V i, y ∈ V i+1 (mod 4), and z ∈ V i+2 (mod 4). So H has 4 · 2 3n
4 hyperedges.

We note that each node of H corresponds to a partial truth assignment
to the variables in φ. And any set of nodes, with no two nodes from the
same set V i, — such as a hyperedge, or four nodes of a hypersquare —
corresponds to a truth assignment (or a partial truth assignment) to the
variables in φ. We denote by αB a truth assignment that corresponds to a
set of nodes B in H.

For any hyperedge {x, y, z}, x ∈ V i, y ∈ V j, z ∈ V k, we define its
σ-weight:

σ({x, y, z}) =
∑

C∈C{i,j,k}

ψ(α{x,y,z}, C). (3.12)

From the construction of H follows that there is a bijection between
hypersquares inH and truth assignments to the variables of φ. A hypersquare
in H has four nodes xi such that xi ∈ V i, i = 0 . . . 3, and a set {x0, x1, x2, x3}
corresponds to a truth assignment to the variables in φ. Any truth assignment
to the variables in φ corresponds to a set of four nodes in H, and these
nodes also form a hypersquare in H by construction.

Lemma 6. The σ-weight of a hypersquare x0x1x2x3 in H is equal to the
number of clauses satisfied by α{x0,x1,x2,x3}.

Proof. Consider a hypersquare x0x1x2x3 whose σ-weight is equal to t. With-
out loss of generality we number its nodes in such a way that x0 ∈ V0,
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x1 ∈ V1, x2 ∈ V2, and x3 ∈ V3. Let’s calculate the number of clauses in φ
that are satisfied by the corresponding truth assignment α{x0,x1,x2,x3}.

Each clause c can be in exactly one of the 20 classes in C. The total
number of satisfied clauses in φ by α{x0,x1,x2,x3} is equal to∑

C∈C
ψ(α{x0,x1,x2,x3}, C) =

3∑
i=0

∑
C∈C{i,i+1 (mod 4),i+2 (mod 4)}

ψ(α{x0,x1,x2,x3}, C) =

3∑
i=0

∑
C∈C{i,i+1 (mod 4),i+2 (mod 4)}

ψ(α{xi,xi+1 (mod 4),xi+2 (mod 4)}, C) =

3∑
i=0

σ({xi, xi+1 (mod 4), xi+2 (mod 4)}),

(3.13)

which is the σ-weight of the hypersquare, which is equal to t.

For all values of t, k̃ ≤ t ≤ m we can try all possible partitions Σ =
(σ012, σ123, σ230, σ301) of t into 4 terms (that is t = σ012+σ123+σ230+σ301). For
each such partition we build a subhypergraph A(H,Σ) with the following
property. A hyperedge {vpi , v

q
j , v

r
k} from H remains in A(H,Σ) only if

σ({vpi , v
q
j , v

r
k}) = σpqr, p, q, r = 0, . . . , 3, r = q + 1 (mod 4) = p+ 2 (mod 4),

i, j, k = 1, . . . , d. For every value of t the number of such partitions is at
most t4.The subhypergraph A(H,Σ) can be constructed in time O∗(2 3n

4 ) by
going through all hyperedges of H. From this construction follows that there
exists a hypersquare in A(H,Σ) if and only if there exists a hypersquare
of σ-weight t in H. It follows that there exists a truth assignment to the
variables of φ that satisfies exactly t clauses if and only if there exists a
partition Σ of t such that there exists a hypersquare in A(H,Σ).

Now we explain how to determine whether A(H,Σ) contains a hy-
persquare by using cube multiplication. We build 4 d-cubes, A123, A023,
A103, A120, such that an element Apqrijk is equal to 1 if there is a hyper-
edge {vpi , v

q
j , v

r
k} in A(H,Σ), and is equal to 0 otherwise, for (p, q, r) ∈

{(1, 2, 3), (0, 2, 3), (1, 0, 3), (1, 2, 0)} and i, j, k = 1, . . . , d.

Lemma 7. The value of A123
ijk · (A023A103A120)ijk is equal to the number

of hypersquares in A(H,W ) that contain nodes v1
i , v2

j and v3
k, 1 ≤ i ≤ d,

1 ≤ j ≤ d, 1 ≤ k ≤ d.

Proof. Consider a multiplication

A123
ijkA

023
ljkA

103
ilk A

120
ijl (3.14)
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for some fixed l, i, j, k, 1 ≤ l ≤ d, 1 ≤ i ≤ d, 1 ≤ j ≤ d, 1 ≤ k ≤ d. It
is equal to 1 if all the multipliers are equal to 1, which means that all
four hyperedges {v1

i , v
2
j , v

3
k}, {v0

l , v
2
j , v

3
k}, {v1

i , v
0
l , v

3
k} and {v1

i , v
2
j , v

0
l } are in

A(H,W ). So the multiplication (3.14) is equal to 1 if A(H,W ) contains a
hypersquare v0

l v
1
i v

2
j v

3
k, and 0 otherwise. By definition of cube multiplication

each element of the cube (A023A103A120) is the sum of multiplications:

(A023A103A120)ijk =
d∑
l=1

A023
ljkA

103
ilk A

120
ijl . (3.15)

If we multiply (3.15) by A123
ijk we get

A123
ijk · (A023A103A120)ijk = A123

ijk

d∑
l=1

A023
ljkA

103
ilk A

120
ijl =

=
d∑
l=1

A123
ijkA

023
ljkA

103
ilk A

120
ijl ,

(3.16)

which is the sum of the multiplications (3.14) for all l, 1 ≤ l ≤ d. Different
values of l correspond to different nodes in V0, and thus the summation
(3.16) counts all hypersquares in A(H,W ) that contain the nodes v1

i , v2
j and

v3
k.

Assuming the multiplication of three d-cubes can be computed in O(dξ)
time, every A(H,Σ) can be tested for having at least one hypersquare in
time O∗(2 ξn

4 ).
Finally, we have the following algorithm. We construct the auxiliary

hypergraph H for the formula φ. Then, for every t, k̃ ≤ t ≤ m, we
try all possible partitions Σ. For each such partition we construct the
subhypergraph A(H,Σ). Then A(H,Σ) is tested for hypersquares using
cube multiplication as shown in lemma 7. If there exists a hypersquare
in A(H,Σ), then there exists a truth assignment which satisfies t clauses,
following from lemma 6.

The total running time of the algorithm is O∗(m · m4(2 ξn
4 + 2 3n

4 )) =
O∗(2 ξn

4 ). If ξ = 4 then the running time of the algorithm is O∗(2n). If there
exists a faster algorithm for cube multiplication, with ξ = 4− ε, then
the running time of this algorithm is O∗(2n(1− ε4 )).

3.2.2 A change to GF(2)
In algorithm 1 we could directly apply any of better than naive algorithms
for matrix multiplication that are known already, to get an algorithm for
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max-2sat with improved running time. In algorithm 2 we could apply only
a naive algorithm for cube multiplication, because there is no known
better algorithm for cube multiplication. One of the main purposes of
this thesis is to try to find a better algorithm for cube multiplication.

For the reasons that will become apparent later it is easier to search for
a faster algorithm for cube multiplication over GF(2) than for cube
multiplication with integer elements. But then we need to ensure that
if we find a better algorithm for cube multiplication over GF(2) that
would still help us to find a better algorithm for max-3sat.

Suppose we do cube multiplication only over GF(2) in algorithm 2. The
cubes A123, A023, A103, A120, that we have defined in the algorithm, have
elements equal only to 0 or 1 initially, so we can consider them as cubes over
GF(2). If we compute a cube multiplication of these cubes, lemma 7 would
imply that we are able to count the number of hypersquares containing
nodes v1

i , v2
j and v3

k, 1 ≤ i ≤ d, 1 ≤ j ≤ d, 1 ≤ k ≤ d, modulo 2. Thus,
if the number of such hypersquares is even, which means there are two
truth assignments to the variables of φ that are different only for 1/4 of
the variables and satisfy at least k̃ clauses, the algorithm 2 could end up
yielding incorrect no solution for a yes instance of max-3sat, because it
may happen that other truth assignments do not satisfy at least k̃ clauses.

To resolve this problem we will reduce max-3sat to a problem that has
a unique optimal solution. Notice that if there is a unique optimal solution
for the problem instance, we can use cube multiplication over GF(2) to
get a correct answer with the algorithm 2. To reduce max-3sat to the
problem that has a unique optimal solution we will apply lemma 3 (the
Isolation lemma). The reduction comes at the cost of making the algorithm
randomized. This randomized algorithm yields a correct solution with a
probability at least p, 0 < p < 1, where p can be chosen at the cost of
polynomial factor increase in running time.

3.2.3 A randomized algorithm
Algorithm 3 (Randomized max-3sat algorithm). Assume without loss of
generality that every clause in φ has exactly three literals. Otherwise we
duplicate literals in clauses that contain one or two literals. This does not
change the solution, and could increase the size of the formula only by a
constant factor.

Assume without a loss of generality that the number of variables is
divisible by 4. Otherwise, we could add one, two or three dummy variables
without modifying φ, and the solution won’t change.
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We define integer ρ-weight for each variable in φ independently and
uniformly at random from {1, . . . , N}, where N is some number greater
than n that we can choose (for example N = 10n). For any assignment
or partial assignment to the variables of φ we define its ρ-weight as the
sum of ρ-weights of variables set to true. Let f be the maximum number
of clauses that could be satisfied in formula φ. Let F be a set of truth
assignments that satisfy exactly f clauses. By the Isolation lemma (lemma
3), with probability at least 1− n

N
, there is a unique solution that satisfies

the maximum number of clauses with the minimal ρ-weight.
We build the auxiliary hypergraph H in the same way as in algorithm

2, but additionally we define for each edge {x, y, z} its ρ-weight ρ({x, y, z})
which is equal to the sum of ρ-weights of partial assignments αx, αy and
αz. Note that a ρ-weight of a hypersquare is equal to the ρ-weight of a
corresponding truth assignment multiplied by 3, because weight of each
node is contributed trice, by each of three edges that include that node.

The next step is just as in algorithm 2, but we try combinations of both
ρ-weights and σ-weights. We try every t, k̃ ≤ t ≤ m, every partition Σ =
(σ012, σ123, σ230, σ301) of t, every s = 3s′, 0 ≤ s′ ≤ nN , every partition P =
(ρ012, ρ123, ρ230, ρ301) of s into 4 terms (so that s = ρ012+ρ123+ρ230+ρ301). For
each such partition combination (Σ,P ) we build a subhypergraph A(H,Σ, P )
with the following property. A hyperedge {vpi , v

q
j , v

r
k} from H remains in

A(H,Σ, P ) only if both σ({vpi , v
q
j , v

r
k}) = σpqr and ρ({vpi , v

q
j , v

r
k}) = ρpqr,

p, q, r = 0, . . . , 3, r = q + 1 (mod 4) = p+ 2 (mod 4), i, j, k = 1, . . . , d. For
every value of t the number of its partitions is at most t4, and for every value
of s the number of its partitions is at most s4. The subhypergraph A(H,Σ, P )
can be constructed in time O∗(2 3n

4 ) by going through all hyperedges of H.
From this construction follows that there exists a hypersquare in A(H,Σ, P )
if and only if there exists a hypersquare of σ-weight t and ρ-weight s in H.
It follows that there exists a truth assignment to the variables of φ that
satisfies exactly t clauses and has ρ-weight s if and only if there exist a
partition Σ of t and a partition P of s such that there exists a hypersquare
in A(H,Σ, P ).

In the same way as in algorithm 2 we determine whether A(H,Σ, P )
contains an odd number of hypersquares with nodes v1

i , v2
j and v3

k, 1 ≤ i ≤ d,
1 ≤ j ≤ d, 1 ≤ k ≤ d, by using cube multiplication over GF(2) of d-cubes,
A123, A023, A103, A120, which are defined in the same way as in algorithm 2.

Finally, we have the following algorithm. We construct the auxiliary
hypergraph H for the formula φ. Then, for every t, k̃ ≤ t ≤ m, we try all
possible partitions Σ, and for every s, s = 3s′, 0 ≤ s′ ≤ nN , we try all
possible partitions P . For each such partition combination we construct
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the subhypergraph A(H,Σ, P ). Then A(H,Σ, P ) is tested for odd number
of hypersquares using GF(2) cube multiplication. If there exists an odd
number of hypersquares, then there exists an assignment which satisfies t
clauses, following from lemma 6.

With probability at least 1− n
N

there is exactly one optimal solution with
the minimum ρ-weight, thus easily discovered by checking for odd number
of hypersquares. Therefore with at least the same probability the algorithm
yields a correct solution.

The total running time of the algorithm is O∗(m ·m4 · nN · (nN)4(2 ξn
4 +

2 3n
4 )) = O∗(2 ξn

4 ). If ξ = 4 then the running time of the algorithm is O∗(2n).
If there exists a faster algorithm even for cube multiplication over GF(2),
with ξ = 4− ε, then the running time of this algorithm is O∗(2n(1− ε4 )).

Note that a choice of N affects both the probability of a correct solution
and the running time of the algorithm. For example, if we choose N = 10n,
we get an algorithm that yields a correct solution with a probability at least
0.9.



Chapter 4

A Cube Multiplication
study

Recall the cube multiplication problem:

Problem 7 (cube multiplication).
Input: Three n-cubes A, B and C.
Task: Compute the cube multiplication (ABC).

If we directly apply the definition of cube multiplication we get a naive
algorithm for cube multiplication with a running time O(n4). We are
motivated to find a better algorithm because anything faster, like O(n4−ε),
will improve the upper bound for max-3sat.

To the best of our knowledge the cube multiplication problem has
not previously been studied, but we can use its similarity to the matrix
multiplication problem to find a faster algorithm.

The simplest faster than naive algorithm for matrix multiplication
is the Strassen’s algorithm, discovered by Strassen [1969], was explained in
section 2.5 on page 15. We try to define a variant of Strassen’s algorithm
for cube multiplication, assuming that such algorithm exists. This
also yields a puzzle of discovering whether such algorithm exists. But at
first we explain the same approach to find fast recursive algorithm for
matrix multiplication, that is, to discover the Strassen’s algorithm,
assuming we don’t know its coefficients. This makes explanations for the
cube multiplication algorithm easier to follow. In both cases we arrive
to instances of the same problem, namely set span, which we define in
section 4.1 on page 39.

36



4.1. DISCOVERING STRASSEN ALGORITHM OVER GF(2) 37

4.1 Discovering Strassen algorithm over
GF(2)

Suppose we want to compute the matrix multiplication (AB) of two n× n
matrices A and B over GF(2) using the recursive algorithm. In each step
we partition A and B into 2× 2 block matrices and compute their matrix
multiplication treating each block as an element:[

(AB)1,1 (AB)1,2

(AB)2,1 (AB)2,2

]
=
[
A1,1 A1,2

A2,1 A2,2

][
B1,1 B1,2

B2,1 B2,2

]
=

=
[
A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

]
(4.1)

We want to determine whether it is possible to make only 7 recursive calls
to matrix multiplication instead of 8.

We need to compute four blocks:

(AB)1,1 = A1,1B1,1 + A1,2B2,1,

(AB)1,2 = A1,1B1,2 + A1,2B2,2,

(AB)2,1 = A2,1B1,1 + A2,2B2,1,

(AB)2,2 = A2,1B1,2 + A2,2B2,2.

(4.2)

They are expressed as sums of terms, and all of the terms are of the form
Ai,jBk,l, i, j, k, l ∈ {1, 2}. Therefore we restrict ourselves to multiplications
of the form

(a1,1A
1,1+a1,2A

1,2+a2,1A
2,1+a2,2A

2,2)(b1,1B
1,1+b1,2B

1,2+b2,1B
2,1+b2,2B

2,2),
(4.3)

where both multipliers are linear combinations of blocks with GF(2) coef-
ficients ai,j and bk,l, i, j, k, l = 1, 2. Notice that working over GF(2) limits
the possibilities we have for choosing multiplications, because there are only
2 possible choices for each coefficient, and thus (22)2 = 256 choices for such
a multiplication.

Suppose we perform 7 such multiplications:

Mx = (
2∑

i=1,j=1
axi,jA

i,j)(
2∑

k=1,l=1
bxk,lB

k,l) =

=
2∑

i=1,j=1

2∑
k=1,l=1

axi,jb
x
k,lA

i,jBk,l, x = 1, . . . , 7.
(4.4)
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We are now interested whether it is possible to write each of the 4 blocks
(4.2) as linear combinations of these 7 multiplications Mx that we have:

(AB)i,j =
7∑

x=1
qxi,jM

x, i, j = 1, 2, (4.5)

where qxi,j are GF(2) coefficients.
Both Mx and (AB)i,j, x = 1, . . . , 7, i, j = 1, 2, are linear combinations

of terms Ai,jBk,l, i, j, k, l ∈ {1, 2}, where there are 16 possible such terms.
We can uniquely identify such a linear combination by a 16-dimensional
GF(2) vector in the following way.

Consider the lexicographic ordering (̃AB) of these 16 terms:

(A1,1B1,1, A1,1B1,2, A1,1B2,1, A1,1B2,2, A1,2B1,1, A1,2B1,2, A1,2B2,1, A1,2B2,2,

A2,1B1,1, A2,1B1,2, A2,1B2,1, A2,1B2,2, A2,2B1,1, A2,2B1,2, A2,2B2,1, A2,2B2,2)

In that ordering a term Ai,jBk,l has index 8(i− 1) + 4(j − 1) + 2(k − 1) + l.
We call a 16-dimensional GF(2) vector }L a characteristic vector of a linear
combination L if

L =
16∑
i=1

}Li · (̃AB)i. (4.6)

That is, each element of }L is a coefficient for the corresponding term of the
ordering (̃AB) in the linear combination L.

Then, each of the blocks (4.2) could be identified by its characteristic
vector:

}(AB)1,1 = [1000001000000000],
}(AB)1,2 = [0100000100000000],
}(AB)2,1 = [0000000010000010],
}(AB)2,2 = [0000000001000001].

(4.7)

And similarly each multiplicationMx could be identified by its characteristic
vector }Mx , where the element of the vector }Mx corresponding to a term
Ai,jBk,l is equal to ai,jbk,l:

}Mx

8(i−1)+4(j−1)+2(k−1)+l = axi,jb
x
k,l,

x = 1, . . . , 7, i, j, k, l = 1, 2.
(4.8)
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Note that for any two linear combinations L1 and L2 of terms from (̃AB)
the following holds:

}L1+L2 = }L1 + }L2 . (4.9)

Therefore we can rewrite equation (4.5) in characteristic vector form:

}(AB)i,j =
7∑

x=1
qxi,j}M

x

, i, j = 1, 2, (4.10)

From the equations (4.7), (4.8) and (4.10) follows a SAT-formulation for
the puzzle of finding a Strassen’s algorithm for matrix multiplication.
Every coefficient and vector element in these equations will have a corre-
sponding boolean variable. We need to rewrite sum and product in terms of
boolean operators and connect all the equations in one formula by boolean
operators. Such construction is explained in details for the puzzle that
corresponds to a faster cube multiplication algorithm in section 4.2.3
on page 46. The construction for the puzzle we consider here is simpler and
uses the same approach.

Note that equations (4.10) have a solution if and only if

(AB)i,j ∈ span({M1, . . . ,M7}), i, j = 1, 2. (4.11)

We can calculate characteristic vectors of all 256 possible multiplications
of the form (4.3), and then what we need is to choose 7 of them, such that
(4.11) holds. Thus our puzzle could be viewed as an instance of the following
problem which we call set span.

Problem 8 (set span).
Input: Set M̄ and set R of k-dimensional GF(2) vectors and number f .
Task: Determine whether there exists a subsetM of size at most f ,M ⊂ M̄ ,
such that

r ∈ span(M), ∀r ∈ R, (4.12)

that is, determine whether there exists a subset M that spans a vector space
which contains all vectors from R.

Thus, to find the Strassen’s algorithm, we need to solve an instance of
set span with R = {}(AB)1,1

, }(AB)1,2
, }(AB)2,1

, }(AB)2,2} and M̄ equal to the
set of characteristic vectors of all 256 possible multiplications of the form
(4.3), and f = 7.

We denote the puzzle of finding a variant of Straseen algorithm for
matrix multiplication that was discussed above by matrix-strassen.
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4.2 A generalization for cube multiplication
Let’s define now a version of the Strassen’s algorithm, generalized for cube
multiplication. For that we need to prove at first that block cube multipli-
cation works in the same way it works for block matrix multiplication. Then
we define a Strassen-like algorithm for cube multiplication, assuming it
exists, which in turn defines a puzzle of determining whether such algorithm
exists. We do it in a similar way as in section 4.1. We do it for 2× 2× 2
block partitioning, however it is possible to define such algorithm for any
m×m×m partitioning, but a size of the corresponding puzzle increases with
increase of m. For the same reason we consider GF(2) cubes and coefficients.
If the coefficients are integers, the number of possible combinations becomes
infinite and it becomes even more difficult to determine whether one can
choose proper coefficients.

4.2.1 A recursive algorithm
Lemma 8 (Block cube multiplication). Let A, B, C and D are n-cubes
such that D = (ABC), and n = mo. We partition A, B and C cubes into
m×m×m block cubes:

A =



A1,1,1 · · · A1,m,1

... . . . ...
Am,1,1 · · · Am,m,1

 , · · · ,

A1,1,m · · · A1,m,m

... . . . ...
Am,1,m · · · Am,m,m


 (4.13)

B =



B1,1,1 · · · B1,m,1

... . . . ...
Bm,1,1 · · · Bm,m,1

 , · · · ,

B1,1,m · · · B1,m,m

... . . . ...
Bm,1,m · · · Bm,m,m


 (4.14)

C =



C1,1,1 · · · C1,m,1

... . . . ...
Cm,1,1 · · · Cm,m,1

 , · · · ,

C1,1,m · · · C1,m,m

... . . . ...
Cm,1,m · · · Cm,m,m


 (4.15)

If we think of them as of m-cubes, we can calculate block cube E,

E =



E1,1,1 · · · E1,m,1

... . . . ...
Em,1,1 · · · Em,m,1

 , · · · ,

E1,1,m · · · E1,m,m

... . . . ...
Em,1,m · · · Em,m,m


 (4.16)

as cube multiplication of A, B and C, where we treat each block as element
in cube multiplication , that is

Ep,q,r = (ABC)p,q,r =
m∑
h=1

Ah,q,rBp,h,rCp,q,h, p, q, r = 1 . . .m. (4.17)
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Then elements of E will be the same as the corresponding elements of D,
that is the block-wise cube multiplication yields the same result as the direct
cube multiplication.

Proof. Let’s show that for any choice of i, j and k an element Di,j,k is equal
to the corresponding element of E, i, j, k = 1, . . . , n. For each choice of i, j
and k, i, j, k = 1, . . . , n, there exist values p, q, r, s, t, u such that

i = (p− 1)o+ s, 1 ≤ p ≤ m, 1 ≤ s ≤ o,

j = (q − 1)o+ t, 1 ≤ q ≤ m, 1 ≤ t ≤ o,

k = (r − 1)o+ u, 1 ≤ r ≤ m, 1 ≤ u ≤ o.

(4.18)

Then an element Mi,j,k of a cube M (where M can be any of the considered
n-cubes) could be also referred by Mp,q,r

s,t,u in the corresponding m×m×m
block cube. We need to show that Ep,q,r

s,t,u = Di,j,k.

Ep,q,r
s,t,u = (ABC)p,q,rs,t,u

(a)=
(a)= (

m∑
h=1

Ah,q,rBp,h,rCp,q,h)s,t,u =

=
m∑
h=1

(Ah,q,rBp,h,rCp,q,h)s,t,u
(b)=

(b)=
m∑
h=1

o∑
g=1

Ah,q,rg,t,uB
p,h,r
s,g,uC

p,q,h
s,t,g

(c)=

(c)=
m∑
h=1

o∑
g=1

A(h−1)o+g,j,kBi,(h−1)o+g,kCi,j,(h−1)o+g
(d)=

(d)=
n∑
l=1

Al,j,kBi,l,kCi,j,l = (ABC)i,j,k

= Di,j,k

(4.19)

In transition (a) we rewrite (ABC) using cube multiplication definition, in
this case for blocks. In transition (b) we rewrite each cube multiplication
of blocks using cube multiplication definition. In transition (c) we change
indexing of elements of cubes A, B and C from block cube notation to cube
notation. In transition (d) we change the indices h and g to l, l = (h−1)o+g,
in the same way as in formulas (4.18).

This gives us a recursive algorithm for cube multiplication where in
order to compute the multiplication of three n× n cubes we compute m3

cube multiplications of three n
m
-cubes. Assume without loss of generality
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that n = md for some d. Otherwise, we could add at most (m− 1)n rows,
(m− 1)n columns and (m− 1)n planes filled with zeros to make n a power
of m. If m is a constant that will increase the input size only by a constant
factor.

Algorithm 4 (Recursive cube multiplication). If n > 1, then partition cubes
A, B and C into equally-sized block cubes, each cube into m×m×m blocks.
Calculate (ABC) block-wise recursively. If n = 1, return A1,1,1B1,1,1C1,1,1.

Its running time is upper bounded by the following recurrence relation:

T (1) = O(1), (4.20)
T (n) = m4T (n/m) +mO(n3), (4.21)

where m4 recursive calls to cube multiplication of blocks are accounted
in the first term of the right side in the formula (4.21), and summation of
them element-wise in the second term of the formula. Considering m as
a constant, application of the master theorem shows that this recurrence
give us an O(nlog(m4)

m ) = O(n4) algorithm, whose complexity is the same as
of a naive algorithm. If we let m = 2, we need to make 16 recursive cube
multiplications in that algorithm each time. Can we make 15 recursive cube
multiplications, just like in Strassen’s algorithm we do 7 recursive matrix
multiplications instead of 8? In that case, the complexity of such algorithm
would be O(nlog(15)

2 ) = O(n3.91).

4.2.2 Discovering algorithm over GF(2)
If m = 2, we need to make 16 recursive calls in algorithm 4. We want to
determine whether it is possible to make only 15 recursive calls.

We need to compute eight blocks:

(ABC)i,j,k = A1,j,kBi,1,kCi,j,1 + A2,j,kBi,2,kCi,j,2,

i, j, k = 0, 1.
(4.22)

They are expressed as sums of terms, and all of the terms are of the form
Ai,j,kBp,q,rCs,t,u, i, j, k, p, q, r, s, t, u ∈ {1, 2}. Therefore we restrict ourselves
to multiplications of the form

(
2∑

i,j,k=1
ai,j,kA

i,j,k)(
2∑

p,q,r=1
bp,q,rB

p,q,r)(
2∑

s,t,u=1
cs,t,uC

s,t,u), (4.23)

where all three factors are linear combinations of blocks with GF(2) coeffi-
cients. Notice that working over GF(2) limits the possibilities we have for
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choosing multiplications, because there are only 2 possible choices for each
coefficient, and thus 224 = 16777216 choices for such a multiplication.

Suppose we perform 15 such multiplications:

Mx = (
2∑

i,j,k=1
axi,j,kA

i,j,k)(
2∑

i,j,k=1
bxi,j,kB

i,j,k)(
2∑

i,j,k=1
cxi,j,kC

i,j,k) =

=
2∑

i,j,k=1

2∑
p,q,r=1

2∑
s,t,u=1

axi,j,kb
x
p,q,rc

x
s,t,uA

i,j,kBp,q,rCs,t,u,

x = 1, . . . , 15.

(4.24)

We are now interested whether it is possible to write each of the 8 blocks
(4.22) as linear combinations of these 15 multiplications Mx that we have:

(ABC)i,j,k =
15∑
x=1

qxi,j,kM
x, i, j, k = 1, 2, (4.25)

where qxi,j,k are GF(2) coefficients.
Both Mx and (ABC)i,j,k, x = 1, . . . , 15, i, j, k = 1, 2, are linear combi-

nations of terms Ai,j,kBp,q,rCs,t,u, i, j, k, p, q, r, s, t, u ∈ {1, 2}, where there
are (23)3 = 512 possible such terms. We can uniquely identify such a linear
combination by a 512-dimensional GF(2) vector in the following way.

Consider the lexicographic ordering ˜(ABC) of these 512 terms:

(A1,1,1B1,1,1C1,1,1,

A1,1,1B1,1,1C1,1,2,

A1,1,1B1,1,1C1,2,1,

A1,1,1B1,1,1C1,2,2,

A1,1,1B1,1,1C2,1,1,

· · ·
A2,2,2B2,2,2C1,2,2,

A2,2,2B2,2,2C2,1,1,

A2,2,2B2,2,2C2,1,2,

A2,2,2B2,2,2C2,2,1,

A2,2,2B2,2,2C2,2,2)

In that ordering a term Ai,j,kBp,q,rCs,t,u has index

256(i− 1) + 128(j − 1) + 64(k − 1) + 32(p− 1) +
+ 16(q − 1) + 8(r − 1) + 4(s− 1) + 2(t− 1) + u.

(4.26)
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We call a 512-dimensional GF(2) vector }L a characteristic vector of a linear
combination L if

L =
512∑
i=1

}Li · ˜(ABC)i. (4.27)

That is, each element of }L is a coefficient for the corresponding term of the
ordering ˜(ABC) in the linear combination L.

To make notation more concise we introduce the following alias for indices
that are related to cube blocks:

(i, j, k) ∼ h,

h = (i− 1) ∗ 4 + (j − 1) ∗ 2 + k,

i, j, k = 1, 2.
(4.28)

We also introduce the following aliases for the indices (4.26) of the ordering
˜(ABC):

(i, j, k, p, q, r, s, t, u) ∼ g,

g = 256(i− 1) + 128(j − 1) + 64(k − 1) + 32(p− 1) +
+ 16(q − 1) + 8(r − 1) + 4(s− 1) + 2(t− 1) + u,

i, j, k, p, q, r, s, t, u = 1, 2.

(4.29)

and

(i, j, k) ∼ l,

l = 64(i− 1) + 8(j − 1) + k,

i, j, k = 1, 8.
(4.30)

Thus, an element ˜(ABC)i,j,k,p,q,r,s,t,u is a term Ai,j,kBp,q,rCs,t,u.
Then, each of the blocks (4.22) could be identified by its characteristic

vector }(ABC)v,w,y :

}(ABC)v,w,y
i,j,k,p,q,r,s,t,u =

1, if v = p = s, w = j = t, y = k = r, i = q = u,

0, otherwise,
v, w, y, i, j, k, p, q, r, s, t, u = 0, 1,

(4.31)

that has exactly two elements which are equal to 1, and all other elements
are equal to 0. Equation (4.31) follows directly from equation (4.22) and the
alias definition (4.29), and guarantee that only two terms (A1,w,yBv,1,yCv,w,1
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and A2,w,yBv,2,yCv,w,2, from definition of cube multiplication) indexed like
Ai,j,kBp,q,rCs,t,u have nonzero coefficient for each block (ABC)v,w,y.

And similarly each multiplication Mx could be identified by its charac-
teristic vector }Mx :

}Mx

i,j,k,p,q,r,s,t,u = axi,j,kb
x
p,q,rc

x
s,t,u,

x = 1, . . . , 15, i, j, k, p, q, r, s, t, u = 1, 2.
(4.32)

Note that for any two linear combinations L1 and L2 of terms from
˜(ABC) the following holds:

}L1+L2 = }L1 + }L2 . (4.33)
Therefore we can rewrite equation (4.25) in characteristic vector form:

}(ABC)i,j,k =
15∑
x=1

qxi,j,k}M
x

, i, j, k = 1, 2, (4.34)

From the equations (4.31), (4.32) and (4.34) follows a SAT-formulation
for the puzzle of finding a variant of Strassen’s algorithm for cube multi-
plication. This construction is explained in details in section 4.2.3 on the
following page.

Note that equations (4.34) have a solution if and only if
(AB)i,j,k ∈ span({M1, . . . ,M15}), i, j, k = 1, 2. (4.35)

Our puzzle could be viewed as an instance of the set span problem (problem
8), as follows: R = ⋃2

i,j,k=1 }(ABC)i,j,k and M̄ is equal to the set of character-
istic vectors of all 16777216 possible multiplications of the form (4.23), and
f = 15.

We denote the puzzle of finding a variant of the Straseen’s algorithm for
cube multiplication that was discussed above by cube-strassen.

Assuming there exists a solution to equations (4.25) and (4.24) and we
know it, we get the following Strassen-like algorithm for cube multiplica-
tion over GF(2).

Algorithm 5 (Fast cube product). If n = 1, return A1,1,1B1,1,1C1,1,1. If
n > 1, then partition cubes A, B and C into equally-sized 2× 2× 2 block
cubes

A =
[[
A1,1,1 A1,2,1

A2,1,1 A2,2,1

]
,

[
A1,1,2 A1,2,2

A2,1,2 A2,2,2

]]
(4.36)

B =
[[
B1,1,1 B1,2,1

B2,1,1 B2,2,1

]
,

[
B1,1,2 B1,2,2

B2,1,2 B2,2,2

]]
(4.37)

C =
[[
C1,1,1 C1,2,1

C2,1,1 C2,2,1

]
,

[
C1,1,2 C1,2,2

C2,1,2 C2,2,2

]]
(4.38)
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Calculate D = (ABC) in the following way. We compute 15 n-cubes
Mx, x = 1, . . . , 15:

Mx = (
2∑

i,j,k=1
axi,j,kA

i,j,k)(
2∑

i,j,k=1
bxi,j,kB

i,j,k)(
2∑

i,j,k=1
cxi,j,kC

i,j,k), (4.39)

where axi,j,k, bxi,j,k, and cxi,j,k are GF(2) coefficients that we have assumed to
know. The cube multiplications of blocks are computed recursively. And
then we compute each block of the resulting cube as a linear combination of
Mx:

Di,j,k =
15∑
x=1

qxi,j,kMx, i, j, k = 1, . . . , 2, (4.40)

where qxi,j,k are GF(2) some coefficients that that we have assumed to know.

4.2.3 Satisfiability formulations
From the equations (4.31), (4.32) and (4.34) we could construct a boolean
formula that is satisfiable if and only if there exists a solution that satisfy
these equations. Such formula can be used as input for SAT solvers, which
are computer programs that solve the satisfiability problem. Most of the
solvers accept only CNF formulas as input, some may accept more general
formulas. We explain here how to construct such a formula, both general
and its CNF variant.

To do that, we rewrite every vector equation (4.34) into 512 equations
written in terms of vector elements:

}(ABC)i,j,k
l =

15∑
x=1

qxi,j,k}M
x

l , (4.41)

l = 1, . . . , 512, i, j, k = 1, 2. (4.42)

Each vector element and each coefficient are GF(2) elements and could
be treated as boolean variables. We then replace every multiplication
with conjunction, and every addition with exclusive disjunction in all the
equations:

}(ABC)i,j,k
l =

15⊕
x=1

qxi,j,k ∧ }Mx

l , (4.43)

l = 1, . . . , 512, i, j, k = 1, 2. (4.44)
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The equations (4.32) can be rewritten then as

}Mx

i,j,k,p,q,r,s,t,u = axi,j,k ∧ bxp,q,r ∧ cxs,t,u,
x = 1, . . . , 15, i, j, k, p, q, r, s, t, u = 1, 2.

(4.45)

By substituting in formulas (4.34) elements of characteristic vectors with
the corresponding right-hand boolean formulas in equations (4.32), and then
by connecting all these formulas into one boolean formula by conjunction,
considering (4.31), we get the following boolean formula:

ϕ =
8∧

i,j,k,l=1
ψi,j,k,l,

ψi,j,k,l =


⊕15
x=1 q

x
l ∧ axi ∧ bxj ∧ cxk, if }(ABC)l

i,j,k = 1,
¬(⊕15

x=1 q
x
l ∧ axi ∧ bxj ∧ cxk), otherwise

i, j, k, l = 1, . . . , 8.

(4.46)

In case we have restrictions for SAT-solver input, we may need to
construct a formula in CNF form, or in CNF form with possible exclusive
disjunction clauses.

To do this, we can use properties of boolean operators to transform the
formula (4.46) into a CNF with the same number of variables. However,
such formula could be very huge and inconvenient to construct.

Instead of substituting elements of characteristic vectors by formulas
we may leave them as boolean variables, and change the equations to CNF
formulas, possibly with introducing additional variables (see a paper by
Tseitin [1983]). Let’s consider an example. Each of formulas (4.45) is of the
form d = a ∧ b ∧ c. We may change it by the following CNF formula:

(d ∨ ¬a ∨ ¬b ∨ ¬c) ∧ (¬d ∨ a) ∧ (¬d ∨ b) ∧ (¬d ∨ c). (4.47)

Any truth assignment to the variables a, b, c, and d evaluates both formulas
to the same value.

In a similar way we can transform any of the formulas (4.43). They are
of the form c = (q1 ∧ m1) ⊕ (q2 ∧ m2) ⊕ . . . ⊕ (q15 ∧ m15). We note that
a = b1 ⊕ b2 ⊕ b3 ⊕ b4 = b1 ⊕ (b2 ⊕ (b3 ⊕ b4)). We can introduce additional
variables for the parts in parentheses. Every formula of the form c = a⊕ b
could be replaced by a formula

(¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ ¬c). (4.48)

And every formula of the form c = a ∧ b could be replaced by a formula

(c ∨ ¬a ∨ ¬b) ∧ (¬c ∨ a) ∧ (¬c ∨ b). (4.49)
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Using these two transformations we can replace formulas (4.43) by CNF
formulas. Note that we can introduce variables for bigger formulas, like
d = (q1 ∧ m1) ⊕ (q2 ∧ m2), thus introducing fewer variables, but their
corresponding CNF formulas may be bigger, having possibly more clauses
and clauses of bigger size. There is a tradeoff between number of variables,
number of clauses, and size of clauses.

For variables that correspond to values of }(ABC)i,j,k we get a clause
with one literal that is positive if the value of a variable is 1, and negative
otherwise.

By connecting with conjunction all CNF clauses we get from the trans-
formations we get a CNF formula that can be used as input for almost any
SAT solver.

In the way boolean formula was constructed from the equations (4.31),
(4.32) and (4.34) for cube-strassen, it could be constructed from the
equations (4.7), (4.8) and (4.10) for matrix-strassen. It involves fewer
transformations, because it is simpler and smaller than the formula for
cube-strassen.

4.2.4 An algorithm for the set span problem
We have showed that we can determine whether a Strassen-like algorithm
for cube multiplication exists by solving an instance of the set span
problem.

We build our instances of set span from trying to improve matrix mul-
tiplication and cube multiplication when doing recursive partitioning
in blocks of size n

2 . One could try improving them by using partitioning
of size n

m
. However the size of the puzzle we are trying to solve becomes

significantly bigger with increase of m.
For the set span problem we denote by n the number of vectors in

M̄ , and by s the number of vectors in R. We note that to witness that
r ∈ span(M) it is sufficient to find |M | coefficients qxr such that

|M |∑
x=1

qxrm
x = r. (4.50)

This is a a system of linear equations. Thus, a fast way to check if a k-
dimensional GF(2) vector is in the span of l vectors is to use the Gaussian
elimination (see a book by Lay [2012]). The complexity of the Gaussian
elimination is O(l2k).

In a naive algorithm that solves the set span problem we can try all
possible subsets M of size less or equal than f of the set M̄ and check if the
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vectors from R are in the span of M by trying all possible coefficients in
equation (4.50). Number of ways to choose g vectors from a set of n vectors
is
(
n
g

)
= n!

g!(n−g!) . To find if vectors from R are in span of M we can try all
possible combinations of values of qxr coefficients and test equation (4.50).
For every vector r ∈ R it takes O∗(2ggk) time. The total running time of the
naive algorithm is O∗(∑f

i=s(
(
n
i

)
· s2iik)) = O∗(

(
n
f

)
2fsfk). Having guessed

M , the coefficients qxr could be computed using Gaussian elimination in time
O(f 2k), thus improving the naive algorithm runtime to O∗(

(
n
f

)
f 2ks).

The number of possible subsets checked in the naive algorithm is quite
huge for cube-strassen, it is close to 2.35 · 10108.

Now we prove that there exists a faster algorithm that solves the set
span problem. Instead of trying all subsets of size f it tries sets of smaller
size (thus decreasing number of possible subsets checked) and does slightly
more work for each such set. Overall it has a better running time.

Assume that there exists a solution set M . Without loss of generality
we assume that M is a set of linearly independent vectors. If not, we can
remove linearly dependent vectors from it and the resulting set will still be
a solution of a smaller size. Because we choose a solution from subsets of
size up to f , linear independent solutions of smaller size will be rediscovered
anyway. Without loss of generality we assume that R is a set of linearly
independent vectors (note that this is the case for the matrix-strassen
and cube-strassen instances). If R is not a set of linearly independent
vectors, we could substitute it by a basis of R. That does not change the
solution. By lemma 2 on page 20 there exists a set P , P ⊆ M , such that
P ∪ R is a basis of span(M). Instead of trying to find a set M , we can
try to find a set P . A simple way would be to try all possible subsets P .
For every such P we know the span of P ∪ R. We need to find a basis
for that span, consisting of vectors from M̄ . We could find a set M̂ of all
vectors from M̄ that are in span(P ∪R). We know that M ⊆ M̂ , and thus
span(M) = span(P ∪R) = span(M̂). Therefore any basis of span(M̂) that
consists of vectors from M̂ is also a basis for P ∪R, and thus is a solution
of set span.

We can improve the last step by searching for a basis of M̂ directly,
without building M̂ . Each time we discover a vector from M̂ , we add it to
a set M̌ (initially empty) if this does not make M̌ linearly dependent.

So we have the following algorithm.

Algorithm 6 (Check-Span-Fast). For all subsets P of size t, 0 ≤ s ≤ (f−s)
we do the following procedure. If P ∪R is linearly dependent, we continue to
the next set. Otherwise, we create an empty set of solution vectors M̌ , and
for all vectors in M̄ do the following. If a vector v, v ∈ M̄ , is in the span of
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P ∪R, then it may be one of solution vectors. We add it to M̌ if it does not
make M̌ linearly dependent, that is if v is not in the span of M̌ . Span check
can be done using Gaussian elimination. If at some point the size of M̌ is
equal to f , then we have found a solution. Otherwise, there is no solution
that contains P . Indeed, if we have a set M̌ of less than f vectors from M̄
and any other vector from M̄ that lies in the span of P ∪R can be expressed
as a linear combination of vectors from M̌ , then there is no basis of P ∪R
consisting of vectors from M̄ . If we assume such basis does exist, then we
can express each of it’s vectors as a linear combination of vectors in M̌ ,
which is a contradiction to our assumption that it’s a basis. This algorithm
has worst case complexity O(∑f−s

i=0

(
n
i

)
· n(f 2k + f 2k)) = O(

(
n
f−s

)
nf 2k).

Thus, we can conclude from discussion above the following theorem.

Theorem 1. There exists an algorithm for set span with running time
O(
(

n
f−s

)
nf 2k).

In fact, it is possible to improve the running time a bit more, getting an
O(
(

n
f−s

)
nfk) algorithm. We explain how that was done in section 5.2.3 on

page 58.
Instances of the set span problem that correspond to fast cube multi-

plication or matrix multiplication algorithms have numbers f , r and
k much smaller than n. Indeed, r = md, f < m ·md, k = md2 , n = 2dmd in
case of cube multiplication or matrix multiplication, where d is a
number of array dimensions (2 for matrix, 3 for cube), m is a size of block
partitioning. In case of cube multiplication these numbers are:

r = 8, (4.51)
f = 15, (4.52)
k = 512, (4.53)
n = 16777216. (4.54)

The Check-Span-Fast algorithm therefore is substantially faster compared
to the naive algorithm. Still, the number of checked subsets is close to
3.75 · 1050, which is a very big number, so it is not realistic to try all possible
subsets, and we should rely on future improvements or heuristics.



Chapter 5

Computational
experiments

Now, when we have formulated the problem of finding fast block multiplica-
tion algorithms for matrix multiplication and cube multiplication,
the next step is to try to use computers to solve them. For this, we need
to prepare input for SAT solvers, or to make a computer program that can
solve the instances of set span that correspond to finding fast matrix
multiplication and cube multiplication algorithms.

5.1 Using SAT solvers to solve the puzzles

5.1.1 Conducted experiments
The SAT formulations that we discussed in section 4.2.3 could be used as
input in SAT-solvers which are computer programs that solve sat instances.
There are many of SAT solvers, and most common input format for SAT
solvers is dimacs text format that encodes a CNF formula. Some solvers
can handle exclusive disjunction clauses in the input formula.

Encoding of a problem into an instance of sat and then into a CNF
formula is itself a problem, because running time of a SAT solver depends
on this encoding and for different formulas and sat solvers an efficient
encoding could be different for every particular problem and not straight-
forward, corresponding to the article by Björk [2009] about sat encoding.
In our thesis we have made three simple and straightforward encodings for
cube-strassen and one for matrix-strassen, using techniques we have
described in section 4.2.3 on page 46, in hope that one of them may lead to

51
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a reasonably fast discovery of a solution by a SAT solver.
The encoding for matrix-strassen has 1028 variables, 3280 clauses,

and 8592 literals.
For cube-strassen we have made one encoding that contains exclusive

disjunction clauses and two CNF encodings. In one of the CNF encodings,
ϕ1, we have introduced many additional variables, so that every clause has
most three literals. ϕ2 has 127904 variables, 443712 clauses, and 1182784
literals. In another CNF encoding we have introduced fewer variables at
the cost of having bigger clauses and bigger formula size. It has 65504
variables, 391168 clauses, and 1281024 literals. A formula with exclusive
disjunction clauses, ϕ3, has 66016 variables, 311296 clauses, and 860160
literals. However, we haven’t managed to get a solution for cube-strassen
in acceptable time with any of the solvers we have used, so we cannot say
which of the encodings is better.

To encode the problems and write it in dimacs text format we have
developed a computer program in Python programming language. It is
quite straightforward and builds formulas step by step, by creating variables
and making clauses that reflect equations, as described in section 4.2.3 on
page 46. We have developed an additional program in Python to test our
boolean formula transformations for correctness.

We have used several open source sat-solvers:

• lingeling and its parallel versions plingeling and treengeling (see a paper
by Biere [2014]), which won in several categories in SAT Competition
2014 and 2013.

• cryptominisat, a parallel sat-solver that can handle exclusive disjunc-
tion clauses (see a paper by Soos [2014]), which are the case for
cube-strassen.

All of these SAT solvers have managed to solve the matrix-strassen
instance in a matter of seconds on a modern computer.

We have tried to run lingeling, plingeling, treengeling, and cryptominisat
on encodings ϕ1 and ϕ2, and cryptominisat on encoding ϕ3 on a modern
computer for at least 24 hours of CPU time, but without getting any result,
positive or negative. We also have tried to run plingeling, treengeling, and
cryptominisat on ϕ1 and ϕ2 encodings, and cryptominisat on ϕ3 encoding
on a parallel supercomputer with 80 cores and 130 gb of RAM, each for over
24 CPU hours, but also with no result.
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5.1.2 Ideas for possible improvements
We have got several ideas that could help to find a solution using SAT
solvers, but we didn’t have time to implement them.

One direction is to make a more efficient encoding for cube-strassen.
A good overview of encoding techniques could be found in the article by
Björk [2009] A possible improvements we see are:

• Add additional clauses that encode redundant constraints. This could
speed up a solver, as well as slow it down. For example, we could
encode a constraint that ∏15

x=1 q
x
i,j,k 6= 0, since any result block is non

zero.

• In our formulation we didn’t take account of ordering, that is several
solutions could be permutations of variable indices. One could add
additional constraints that restrict solution to be ordered, so we only
search for one solution from a set of equivalent solutions.

• One could research whether it is possible to take into account symmetry
of cubes.

In general, any additional properties of the instance could be taken into
account and possibly encoded as additional constraints. From the other side,
an encoding can be seen from perspective of a solver. Thus, by knowing
better how a particular solver works, one could modify encoding or add
constraints that will help the solver to find a solution in more efficient way.
Or one may even change a way the problem is encoded in general.

Another direction is to learn more about SAT solvers and tune parameters
of a solver according to the algorithms that the solver uses and a used
encoding.

5.2 A solver and heuristics for set span
instances

5.2.1 The basic algorithm
We have developed a program that implements the Check-Span-Fast al-
gorithm (algorithm 6) with some optimizations for two instances of set
span, matrix-strassen and cube-strassen, using C++ programming
language. We will denote this program by Set-Span-Checker. Our choice of
programming language is connected to the possibility to use templates in
C++ and its fast speed.
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The Check-Span-Fast algorithm consists of two parts: selection part and
checking part. In the selection part we select a set P of at most (f − s)
vectors, and in the checking part we check if P leads to a correct solution. By
solution space we further mean a set of all such sets P , and by a candidate
solution we mean such a set P .

From now on we assume that we consider only sets P of size exactly
(f − s), that is we search for a solution set M̌ of size 15 for cube-strassen
or size 7 for matrix-strassen. Indeed if there is a solution with smaller
number of vectors, we can add a linearly independent vector from M̄ to it
and it will still be a solution.

The implementation of Check-Span-Fast was done in the following way.
In the beginning we calculate all vectors in the set M̄ , that is 224 vectors
for cube-strassen (or 28 vectors for matrix-strassen), that correspond
to an instance we are working with, and a set of result vectors R. In the
selection part we select all possible sets of (f − s) vectors, and for each such
set we run the checking part. The checking part in general is implemented as
explained in algorithm 6 on page 49. Several optimizations improve running
time of this part, and they are explained in section 5.2.3 on page 57.

We have tested this algorithm on matrix-strassen, and on a modern
computer it manages to find a solution (and thus a variant of the Strassen’s
algorithm), in under one minute, by going through all the solution space.

5.2.2 Heuristics and parallelization
In case of cube-strassen, the solution space is very big and it is not
possible to check it fully in a reasonable time. Thus, we have developed
several heuristics for selecting candidate solutions. Unlike in the exact
algorithm Check-Span-Fast, we only try some of all possible candidates, in
hope to find a solution.

We also have parallelized our program to use the advantage of multi-core
computers. We have done it in a trivial way by using OpenMP application
programming interface. Several processes run the same heuristic and share
a memory, so that the set M̄ is computed only once and is used by all the
processes. When we say further that we run tests on a parallel computer we
mean that we use the parallel implementation for that.

At first, we have started with the simplest possible heuristic that selects
a random candidate each time. We have tested it on matrix-strassen,
and it finds a solution after 2500 candidate checks on average (from 1000
runs of the heuristic), spending less than a second of CPU time.

However, it didn’t work that well with cube-strassen. Even after
searching for several days and trying several hundred thousands of candidates
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it didn’t find a solution. An average time to check one candidate was
approximately one second by one process.

We have decided to give each candidate a score, which is equal to the
number of vectors in M̌ in the end of checking part of Check-Span-Fast,
that is the rank of M̂ , a set of vectors from M̄ which are in the span of
P ∪R. So the lowest possible score for cube-strassen is 7, and the highest
possible score is 15. In case of matrix-strassen the lowest possible score
is 3 and the highest possible score is 7. So we want to find a candidate that
has a highest possible score.

We have defined a neighbourhood relation for candidates as follows. Two
candidates P1 and P2 are neighbours if and only if:

1. P1 = P2 \ }1 ∪ }2, that is candidate P1 has vector }1 and candidate P2
has vector }2, and the rest is the same for both;

2. corresponding block coefficients for }1 and }2 are the same except for
one.

The second statement means (in case of cube-strassen) that if }1 corre-
sponds to a linear combination

(
2∑

i,j,k=1
ai,j,kA

i,j,k)(
2∑

p,q,r=1
bp,q,rB

p,q,r)(
2∑

s,t,u=1
cs,t,uC

s,t,u),

then changing any of the 24 coefficients ai,j,k, bp,q,r or cs,t,u in this linear
combination will make a linear combination with a such characteristic
vector }2. A neighbourhood of a candidate is a set of candidates that are
neighbours of that candidate. Therefore, each candidate can have at most
7 · 24 = 168 neighbours in this neighbourhood. By changing candidates to
their neighbours we can move from any candidate to any other candidate
in the solution space. For matrix-strassen there are at most 3 · 8 = 24
neighbours for each candidate.

Using our scoring function and neighbourhood relation, we have imple-
mented a hill climbing metaheuristic, that is a heuristic that selects a random
candidate solution and then moves to the neighbour of that candidate which
has the highest score among all neighbours of that candidate (or to random
highest scoring neighbour from the set of such highest scoring neighbours,
if there are several highest scoring neighbours), and then repeat it again
and again, moving in solution space. By iteration we mean a change from a
current candidate to its neighbour.

So we have the following hill climbing algorithm:
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Algorithm 7 (Hill climbing).

Step 1 Select a random candidate P and compute its score.

Step 2 Make a set N [P ] of all its neighbours.

Step 3 Compute scores for every candidate in N [P ].

Step 4 Assign to P one of the best scoring neighbours in N [P ] and go to
Step 2.

If a solution is found during Step 1 or Step 3, than stop and return it.

Because we can stuck in a local optimum (in terms of score) and/or
on a plateau (when score is not improving), we do restart after each γ
consecutive iterations without improving current score, by selecting a new
random starting candidate.

In case of matrix-strassen, the hill climbing heuristic with a relatively
large γ yields a solution after doing approximately 0.005 restarts. These
restarts are probably due to local optimum, because the number of restarts
didn’t change significantly for the values of γ equal to 10000, 100000, and
1000000. After trying different values of γ we have found that γ = 9 yields
a solution by checking the smallest number of candidates on average. In
that case on average 444 candidates are checked, 1 restart is done and
21 iterations are done. This is five times faster than the random search
heuristic.

In case of cube-strassen, the hill climbing heuristic doesn’t work that
well either. After running it for several days with a γ equal to 100, 10 and 2,
no solution were found, and even the best found score was 7, the minimum
possible score.

We have decided to combine the random search heuristic and the hill
climbing heuristic in the following way. We ran the random search heuristic
on a parallel computer with 80 cores for a week, and have collected all
candidates that had a better score than 7. We have found 92 different
candidates with a score equal to 8. Then, we have tried to use these 92
candidates as possible starting candidates in the hill climbing heuristic
instead of selecting a random candidate. We ran the hill climbing heuristic
with γ = 5 and number of restarts limited by 5 for each core on a 80-core
computer (thus, 400 restarts in total, each of 5 iterations). Unfortunately,
this approach also didn’t help to find any candidate with a better score than
8, the solver was moving between candidates with score 8, finding hundreds
of thousands of such candidates.
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We have gathered some properties of the solution space for matrix-
strassen. From 1873200 candidates in the solution space 7998 candidates
lead to linearly dependent sets P ∪ R. For the other candidates score is
distributed as follows:

1. 689640 candidates have score 3

2. 800190 candidates have score 4

3. 336492 candidates have score 5

4. 38160 candidates have score 6

5. 720 candidates have score 7

5.2.3 Optimizations

The most time-consuming task in Set-Span-Checker is a checking part, which
we denote by Check-Vectors. It is executed repeatedly for different candidate
sets. So our objective is to optimize Check-Vectors as much as possible.

The Check-Vectors subroutine uses a subroutine to check if a vector is in
the span of a set of vectors. In the basic algorithm we have used a Gaussian
elimination algorithm to check if a vector is in the span of a set of vectors.
To speed up the calculations we have used several optimizations, that are
discussed further.

Also we check if a set P ∪R is linearly independent in the beginning of
Check-Vectors. This is combined with a precomputing step that is described
further.

Equation (4.50) that witnesses that vector r is in the span of M can be
seen as a system of linear equations written in matrix form, Ax = b, where
A = [m1, . . . ,m|M |], x = [q1

r , . . . , q
|M |
r ], and b = r. In Gaussian elimination

we use row operations on the augmented matrix A|b, that is adding one
row to another, or swapping rows, to transform A into a row echelon form
(while treating b as an additional column of A). In row echelon form the
lower left part of A contains only zeros, and all of the zero rows are below
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the non-zero rows:

A1,1 A1,2 . . . A1,|M |−1 A1,|M |
0 A2,2 . . . A1,|M |−1 A1,|M |
... ... . . . ... ...
0 0 . . . A|M |−1,|M |−1 A|M |−1,|M |
0 0 . . . 0 A|M |,|M |
0 0 . . . 0 0
... ... . . . ... ...
0 0 . . . 0 0


(5.1)

To check whether b is in span of M we need to check if elements of b
that lie in all-zero rows of A (rows from |M |+ 1 to k) are equal to zero.

Preprocessing

Because Gaussian elimination is executed a lot of times for each candidate
set, we have tried to make it as fast as possible. We need to check if a vector
is in the span of a set of vectors in two places in Check-Vectors. The first
place is when we check each vector v from M̄ for being in the span of P ∪R.
The second place is when we check a vector v ∈ span(P ∪R) for being in
the span of M̌ . In both cases a lot of different vectors can be checked for
being in the span of the same set of vectors. Thus, we can try to find which
work we can do once for a fixed set of vectors, and thus a fixed matrix A
(when we consider an equation Ax = b for different b).

At first, we have decided to precompute the steps of Gaussian elimination,
that is to remember each row operation properties, such as row indices, in
a data structure. Since row operations do not depend on a vector b it is
possible to do it once for a matrix A and then apply the recorded operations
on each of different vectors b. That gave us a substantial speedup.

Then, we have tried another algorithm to determine whether a vector r is
in the span of M . If we consider the corresponding matrix equation Ax = b,
we note that column operations (that is adding one column to another,
or swapping them) change the corresponding set of vectors, but such set
will be a basis of the span(M) (otherwise the original set would be linearly
dependent, which is a contradiction). So we can use column operations to
transform A into A′ in a way that make |M | rows in A′ having all elements
equal to 0 except for one, such that every column has a corresponding row
with 1 at this column’s index. That is

∀j = 1, . . . , |M |,∃ij, 1 ≤ ij ≤ k :
A′ij ,j = 1, A′ij ,l = 0, l = 1, . . . , |M |, l 6= j.

(5.2)
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Thus, for a vector b we can calculate a vector b′:

b′ =
|M |∑
j=1

A′j · bij , (5.3)

where ij is taken from the equation (5.2), and A′j is a column j of the matrix
A′. If b = b′ than b is in the span of columns of A′, and thus in the span of
columns af A, which we wanted to check.

For that algorithm we also can remember each column operation prop-
erties — column’s row indices ij — in a data structure. Since column
operations do not depend on a vector b it is possible to do it once for a
matrix A and then use the recorded indices with each of different vectors
b, using only O(k|M |) operations. Also, when a new vector is added to M ,
it takes only O(k|M |) operations to transform the matrix A′ into A′′ that
satisfies (5.2), thus also updating the structure. Therefore, the complexity of
this implementation of Check-Vectors is O(f 2k+n(fk+fk+fk)) = O(nfk),
because f << n. In the complexity formula the first term fk corresponds
to checking if a vector v is in P ∪ R, the second term fk corresponds to
checking if v is in M̌ , and the third term fk corresponds to updating of M̌
matrix structure. That means, we have improved the worst case complexity
of the Check-Span-Fast algorithm a little, making it equal to O(

(
n
f−s

)
nfk)

The second approach of precomputing was faster in practice.

Bit checks

Before calculation of b′ and comparing it to b we do one additional check
to discard vectors that are not in span of M . In precomputing step we
compute negation of logical or of all vectors from M :

MNOR = ¬
⋃
v∈M

v. (5.4)

Then, for an arbitrary vector v, if MNOR ∧ v has at least one bit equal to 1
then v does not lie in span of M . Indeed, such one at some index i means
that all of vectors from M has zeros at this index and v has one at this
index. Any vector in the span of M has therefore zero at index i and thus v
is not in the span of M .

This check speeds up computations by nearly 50 percent.

Caching of Check-Vectors results

We have added a cache that stores results of Check-Vectors, so if does not
compute everything again for the same candidate. It was implemented using
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a map C++ structure, and gave a slight improvement in rare cases when the
same candidate was checked again.

Optimizations that didn’t work

We have tried also to check first for number of 1’s in vectors b′ and b before
comparing them (since we can precompute that function for all vectors in M̄
during initialization of the program), but that did not give any significant
speed up.

We also have tried to use memoization by storing already calculated sums
b′ for different tuples (bl1 , . . . , bl|M|), but this also didn’t give any significant
speed up.

We have tried also to store a number of additional bits in all vectors,
such that each bit is a linear combination of other bits of the same vector,
and such combination is the same for all k-dimensional vectors we work
with. We used these vectors just like the original ones, except that during
comparison of b′ and b we first checked these additional bits, and if they
were the same, only then we checked original bits. If original vectors are not
the same, than there is some probability that additional parts are not the
same, but if original vectors are equal than additional part is always equal.
However, this technique also didn’t improve the computation speed.

5.2.4 Ideas for possible improvements
For the Check-Span-Fast algorithm, its implementation Set-Span-Checker
and heuristics discussed above, one could try to improve them as follows:

• Try another score function. Maybe a function with a greater range of
values, so there is less chance to stuck in a plateau.

• Try another neighbourhood type. For example, changing two coeffi-
cients instead of one. That will lead to a bigger neighbourhood for a
candidate (at most 168·168 = 28224 neighbours, long time to check but
more chance to find a better score). Or, change one coefficient at most
for each of the factor cubes, so then we have at most 7 · (93−1) = 3584
neighbours.

• Try other metaheuristics, such as simulated annealing, tabu search,
genetic algorithms, etc.

• Try to research whether it is possible to take into account symmetry
of cubes.
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• Heuristically limit solution space for cube-strassen, by seeking
similarities with more studied solution space of matrix-strassen.

5.3 Notes on programs correctness
The source codes of the programs described above can be found on the
following webpages:

https://github.com/nasedil/checkspanfast: the repository of the Set-
Span-Checker and the heuristics.

https://github.com/nasedil/strassen-sat-cube: the repository of the
SAT formulation generators.

Although we cannot be certain about the correctness of the Set-Span-
Checker program and the heuristics, we believe that there is a low probability
of serious mistakes or bugs in them. In case of matrix-strassen we have
done some testing to see if results were actually a variants of the Strassen’s
algorithm, like checking manually several results, and automated testing
using several different algorithms for checking if a vector is in a span of a set
of vectors, an comparing their results. For cube-strassen we have tried to
triple check that all generalizations in code are a proper generalisations of the
matrix-strassen case. Still, there could be some bugs related to memory
management, since C++ does not have automatic memory management. A
parallel code is quite trivial, so it is unlikely to be a trouble in that part of
program. In SAT formula generator we have tested all our boolean formula
transformations for correctness, and manually checked several results of
SAT-solver output for matrix-strassen that it was actually a variant of
Strassen’s algorithm. And again, we triple checked the cube-strassen
code for correctness.

https://github.com/nasedil/checkspanfast
https://github.com/nasedil/strassen-sat-cube


Chapter 6

Conclusions

In this thesis we studied max-2sat and max-3sat problems and non-trivial
algorithms for them, defining the auxiliary cube multiplication problem.
We have showed how an O(n4−ε) algorithm for cube multiplication
would imply a faster than naive O∗(2n(1− ε4 )) algorithm for max-3sat. For
this we have defined a new problem, cube multiplication.

In our attempt to find a faster than naive algorithm for cube multipli-
cation we have done the following:

• defined the set span problem;

• explained SAT solver formulations for two instance of the problem
of finding a better recursive matrix multiplication and cube
multiplication algorithms;

• implemented and explained the programs in Python for generating
SAT solver formulations;

• explained the fast algorithm for set span

• implemented and explained the fast algorithm for set span in C++;

• implemented in C++ and explained several heuristics for matrix-
strassen and cube-strassen;

• conducted and explained several computational experiments.

Although we didn’t manage to find an O(n4−ε) Strassen-like algorithm for
cube multiplication, our algorithms and code may possibly be improved
and reused to further attack the problem. We also showed how it is possible
to discover variants of Strassen’s algorithm using the proposed approaches
and their implementation.

62
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6.1 Future research
One could possibly generalize the approach we have used for max-3sat
algorithm to max-ksat with larger values of k. It could involve a similar
operation to matrix multiplication and cube multiplication, but on
k k-dimensional arrays.

One can experiment with SAT encodings and SAT solvers, as proposed
in section 5.1.2 on page 53.

One can further improve the solver we have developed for set span, as
proposed in section 5.2.4 on page 60.

One can also try to make an Integer Linear Programming (ILP) formu-
lation for cube-strassen and try to solve it available ILP solvers.

Another approach would be to analyse cube multiplication operation
from mathematical point of view. For that a good starting point would
be to read articles about matrix multiplication and algorithms for matrix
multiplication.
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