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Abstract 

Systematic application of automated design methods in transition metal and 

organometallic chemistry is hampered by the limitations of computational tools 

traditionally developed according to organic chemistry formalisms. Such tools are 

often inadequate to deal with peculiar chemical entities such as organometallic 

catalysts. Therefore, the present study aims to develop methods for generating and 

handling special chemical entities in the context of automated molecular modeling 

and de novo design. We introduced a set of formalized and versatile rules to guide 

automated mining of molecular fragments to be used for construction of new and 

synthetically realistic chemical entities with punctual control over metal coordination 

environments. The preparation of initial three-dimensional (3D) molecular models 

was made independent from tedious force field parametrization by exploiting 

geometrical information taken from crystallographic structures or computed models 

and stored in 3D fragments. The method demonstrated superior performance in the 

preparation of 3D models for tree-like structures of peculiar compounds and also 

capability of handling chemical entities that are beyond the scope of regular tools. 

Design of multyciclic system from acyclic 3D building blocks was achieved by 

including methods for the identification of closable chains of fragments and ring-

closing conformational adaptation. The overall machinery, which was integrated into 

a previously developed evolutionary algorithm for de novo design, was coupled with 

the computationally inexpensive ligand field molecular mechanics (LFMM) method, 

which was implemented in Tinker as part of this work, and applied in the design of 

new Fe(II) spin crossover compounds with multidentate amine ligands. New potential 

spin crossover compounds with unexpected, yet realistic ligands were identified and 

proposed for further investigation. In conclusion, while refinement of the 

implementation is proposed to improve efficiency, the overall de novo molecular 

design method developed in this study contributes to empower the application of 

automated design strategies in transition metal and organometallic chemistry. 
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1. Introduction 

The growing quest for chemicals with specific properties is what molecular design is 

all about, and is also the underlying reason for developing automated molecular 

design methods: the central topic of this thesis. 

From the introduction of Dalton’s atomic model, the desire to understand and exploit 

the relations between chemical structure and functional properties has been the corner 

stone of molecular design.1 If we assume the existence of such structure-property 

relationship, then, in order to obtain a property of interest, we need to define a 

chemical system in terms of composition, structure, and stereochemistry, that 

intrinsically exhibits that property under certain conditions.2 Unfortunately, this is not 

as simple as it sounds. The underlying problems are that the exact structure-property 

relationship is usually not known a priori, and that the target compounds represent an 

infinitesimal fraction of the comprehensive ensemble of all possible compounds, 

which is often referred as to the chemical space,3,4 thus exhaustive screening is 

excluded. 

Building on the concept of structure-property relationship, there are two ways to 

tackle the design of molecules displaying a desired properties: the forward or direct 

strategy (i.e., from structure to property), and the inverse strategy (i.e., from property 

to structure).5 The first is an empirical approach, in the sense that it is based on 

gaining experience. Direct design involves evaluation of selected candidates, either in 

vitro or in silico, data analysis, and informed decisions that propose new candidates 

and start new iterations until satisfactory results are achieved. On the contrary, 

inverse design aims to deduce the identity of the target compounds from the very 

nature of the tailored property by inverting the mathematical formulation of structure-

to-property relationships.5 Although inverse problems are ubiquitous in science and 

engineering, and the pioneering applications to molecular design have shown 

promising results, they are also typically challenging to solve (ill-conditioned and 

with multiple and unrealistic solutions).6,7 Therefore, the direct strategy has so far 
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dominated the scene of molecular design, with an undisputed role in the field of drug 

design. The direct design strategy is assumed also throughout the present dissertation. 

With the increase of computational power and the development of efficient modeling 

tools, the contribution of computational chemistry has become widespread in 

molecular design. Unfortunately, calculated values simply cannot replace 

experimental data, and it is clear that neither experimental nor computational methods 

can possibly afford handling of the overwhelming vastness of the chemical space.8 

Nevertheless, computational prediction of molecular properties can provide useful 

insights to refine the understanding of the structure-property relationship2 and 

indicate which experiments should be performed in vitro, thus improving the 

efficiency of the design work.9  

Computational strategies deployed in direct design include virtual screening and de 

novo design.10,11 While the first relies on the existence of a library of compounds to 

be screened, which might also be virtually synthetized on purpose,12,13 the de novo 

approach includes generation of candidates from scratch during the course of the 

computational design experiment. In fact, most of the compounds evaluated in a de 

novo design experiments are not known when the experiment begins. By building 

candidates from scratch, the de novo approach has the capability of suggesting 

innovative chemical features and following the trend of well performing hypothesis 

in an automated fashion. De novo algorithms are based on an iterative adaptive 

process where each iteration uses memory from previous experience, i.e., previously 

evaluated molecules, to take informed decisions aimed at modifying the molecular 

structures of visited candidates and creating new ones, which are then evaluated 

starting a new iteration.1 In general, the three pillars characterizing this approach are 

(i) the generation of new candidates (problem of construction), (ii) the evaluation of 

each candidate (problem of scoring or fitness), and (iii) the navigation of the search 

space towards the optimal solution (problem of optimization).11,14 The combination of 

these three components leads to methods that explore the fitness landscape and, by 

automatically collecting information on the fly, attempt to converge towards the 

objective defined by a given fitness function. 
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Since the first applications reported in the literature, which date back to 1989,15,16 the 

development of automated de novo molecular design methods has mainly occurred 

within the context of organic drug design.17 Applications in other fields have been 

reported mainly for the design of novel enzymes,18,19 peptides,20 nucleic acid 

sequences,21,22 and organic templates for microporous materials.23–25 More recently, 

automated de novo design has been applied also for the design of metal-organic 

frameworks,26 porous organic polymers,27 and functional organic compounds for light 

emitting diodes,28 and solar cells.29  

These achievements were made possible by the legacy resulting from decades of 

development in the field of organic drug design, but the general application of de 

novo methods in transition metal and organometallic chemistry turned out 

challenging.30 First, the design of such compounds is often characterized by a 

different underlying philosophy. While the central issue in drug design is the 

complementarity of the candidate ligand with a given biological target, both in terms 

of shape and intermolecular interactions, reactivity end electronic properties have 

dominant roles in the design of functional transition metal compounds, in particular, 

in the field of catalysts. Therefore, while a number of reliable empirical methods can 

model molecular shape and intermolecular interaction for organic systems with 

sufficient accuracy and at a very low computational cost, the partially filled d-orbitals 

that characterize transition metals centers often require specific empirical solutions, 

such as dedicated molecular mechanics methods,31 or quantum mechanical models to 

model both molecular and electronic structure with sufficient accuracy. Moreover, the 

rich chemistry of transition metal compounds introduces peculiar bond types as well 

as molecular and electronic structures that are often beyond the capabilities of tools 

and formalisms traditionally made for organic, drug-like and natural product-like 

molecules.32,33 In addition, dealing with functional transition metal compounds can 
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imply handling of peculiar chemical entities,i such as reaction intermediates, that are 

not properly handled by standard tools.  

Overall, the intrinsic nature of transition metal species determines a methodological 

gap that challenges the application of existing automated de novo design methods in 

transition metal and organometallic chemistry. 

1.1 Aim of this work 

The present work aims to develop methods for de novo design of functional transition 

metal and organometallic species. In particular, this thesis focuses on improving the 

automated generation and handling of peculiar candidates thus overcoming the 

limitations that hamper broad-spectrum application of automated design tools. The 

following goals are set: 

• Provide the capability of handling peculiar chemical entities in an automated 

fashion. Transition metal compounds dominate the field of catalysis where 

active species, intermediates, or even transition state models have to be 

generated and properly managed.  

• Control the search space by projecting the chemists’ knowledge, intuition, and 

intent into the automated machinery. De novo molecular factories are known 

to generate molecule that suffer from synthetic accessibility issues and easily 

tend to produce unrealistic candidates. Therefore, means to exert chemical 

control on the automated machinery are required and shall support both 

organic and organometallic chemistry in addition to other, possibly non-

conventional, molecular assembling rules. 

• Generate accurate and educated initial guesses for three-dimensional molecular 

models. The peculiar geometrical features of transition metal compounds are 

                                            

i Chemical entities are physical entities of interest in chemistry including molecular entities, parts thereof, and chemical 
substances.34 
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often pivotal in determining the molecular properties and cannot be 

overlooked without loosing significant information (i.e., stereochemistry) and 

compromising the design process. 

• Integrate fast fitness. Promptly available, and possibly inexpensive, methods 

for modeling and evaluation of the chemical properties reduce the 

computational price of de novo design. 

1.2 What This Work is Not About 

One of the three pillars of de novo design methods is the optimization algorithm. 

Although there exist alternatives that should be tested and compared, optimization 

algorithms are not explored as part of this work. Nevertheless, the methods presented 

here have been integrated in an evolutionary algorithm that has been described in ref. 

30. The algorithm is introduced in Section 2.1, and has been applied in the design of 

iron complexes as discussed in Chapter 7. 

1.3 Outline 

After a preliminary description of the computational tools deployed in this thesis 

(Chapter 2), the method for the generation and modification of candidates is 

presented highlighting the innovations introduced in this work (Chapter 3). Focused 

discussion on the control strategy for the automated generation of candidates is given 

in Chapter 4. Next, the issue of the accurate preparation of three-dimensional models 

is addressed (Chapter 5). Finally, after the introduction of the fast molecular 

modeling tool based on the ligand field molecular mechanics (Chapter 6), the de novo 

design of Fe(II) spin crossover compounds is presented as an application of the 

combined de novo design machinery and particular emphasis is given to the 

management of rings (Chapter 7).  
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2. Computational Methods 

2.1 Evolutionary Algorithm 

Since the fitness landscape is characterized by a multitude of local minima and 

maxima, global optimization techniques are required to identify the fittest 

compounds.1 Evolutionary algorithms are among the most diffused global 

optimization method for molecular de novo design.35,36 These algorithms are 

metaheuristic optimization techniques: problem-independent and approximate (i.e., 

not exact nor deterministic) algorithms deployed to solve general classes of problems 

for which specific and deterministic solving algorithms are not available.37 The lack 

of a general and exact solution, which would be an inverse property-to-structure law, 

characterized molecular design problems, hence the usefulness of metaheuristic 

algorithms that do not use gradient nor Hessian matrix of the objective function. 

Moreover, these algorithms are problem-independent; the same algorithm can be 

applied to many different molecular design problems. To this end, an objective, or 

fitness, function is defined as the mean to translate properties of the candidate under 

evaluation into a numerical score. It should be noted that many molecular design 

problems have multi-objective nature, meaning that the overall value of a candidate 

depends on conflicting properties, such as efficacy, selectivity, synthetic accessibility, 

toxicity, solubility, and price, thus a multidimensional approach may be required.38–42 

Evolutionary algorithms are population-based optimization techniques that involve 

selection of high fitness candidates and genetic operators to alter (mutation operator) 

and exchange (crossover operator) the constitutional features among the population 

members. Different implementations of the general philosophy have lead to four main 

groups of algorithms: genetic algorithm, genetic programming, evolutionary 

programming and evolutionary strategies (for a review see ref. 35). Genetic 

algorithms are exploited in the present work (Chapter 7).  

A looping program that operates on an instantaneous population of molecules 

characterizes the workflow of genetic algorithms. Each iteration, which is often 
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referred as to a generation, involves (i) fitness-biased selection of high fitness 

individuals for producing offspring, (ii) generation of new candidates by means of 

mutation and crossover operators, (iii) evaluation of the new candidates, (iv) update 

of the population and beginning of a new iteration. This evolution loop is eventually 

terminated according to user-defined termination criteria. The evolutionary 

algorithms deployed in this work obeys this general workflow and has been described 

in detail in ref. 30. 

2.2 Computational Chemistry Methods 

The following sections introduce the computational methods used to model chemical 

entities and are mostly based on common textbooks on quantum chemistry and 

molecular modeling.43–47,31  

2.2.1 Quantum Mechanics 

Basic Principles 
The wave function Ψ(x1,...,xn, t)  characterizes the quantum mechanical description of 

the state of a system of n  particles as a function of the combined spatial and spin 

coordinates ( xi ) of each particle i  and the time ( t ). Although there is no clear 

interpretation of the wave function itself, its squared modulus Ψ(x1,...,xn, t)
2  is 

interpreted as a probability density and Ψ(x1,...,xn, t)
2 dx1... dxn  as the probability of 

finding simultaneously each particle i  in the corresponding infinitesimal of space dxi  

with given spin (i.e., Born’s statistical interpretation). Thus the integral over the 

whole space correspond to the unit, that is, Ψ(x1,...,xn, t)  is normalized. A crucial 

property of the wave function is that it implicitly contains all the information that can 

possibly be known on the system. 

Such precious function is obtained as solution of the Schrödinger equation, which, for 

a single particle with mass m  can be written in the non-relativistic form as 
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 i!∂Ψ(x, t)
∂t

= −
!2

2m
∇2Ψ(x, t)+V (x, t)Ψ(x, t)  , (1)  

where i  is the imaginary unit, !  is Planck’s constant divided by 2π , Ψ(x, t)  the 

single particle wave function, V (x, t)  is an external potential (i.e., the electrostatic 

potential due to the nuclei in a molecule), and ∇2  is the Laplacian operator that is 

 ∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
#

$
%

&

'
(  .  (2) 

Equation 1 is usually written using the Hamiltonian operator Ĥ , which includes both 

the kinetic energy operator T̂  and the potential energy operator V̂ , and thus 

represents the total energy of the system: 

 Ĥ = T̂ + V̂  , (3) 

 where T̂ = − !
2

2m
∇2  and V̂ =V (x, t)  . (4) 

This allows the time-dependent Schrödinger equation to be written as 

 i!∂Ψ(x, t)
∂t

= ĤΨ(x, t)  . (5)  

Notably, if the potential does not depend of the time t , that is V (x, t) ≡V (x) , the wave 

function can take the form of the product between two components: ψ(x)  only 

dependent of the spatial and spin coordinates, and τ (t)  only dependent on time: 

 Ψ(x, t) =ψ(x)τ (t)  . (6) 

As a consequence of this separation of variables, the time-independent, non-

relativistic Schrödinger equation is written as 

 Ĥψ(x) = Eψ(x)  ,  (7)  
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which is an eigenvalue equation where the eigenvalue E  is the total energy of the 

system for the state described by the stationary (i.e., Ψ(x, t) 2 ≡ ψ(x) 2 ) state Ψ(x, t) . 

For a typical quantum chemical problem, where n  electrons and m  nuclei are to be 

described, the corresponding time-independent, non-relativistic Schrödinger equation, 

in absence of an external potentials, rises from the contributions of kinetic energy of 

nuclei, T̂N , that of the electrons, T̂E , the electrostatic interaction between nuclei and 

electrons, V̂NE , and the repulsions between nuclei, V̂NN , and between electrons, V̂EE . 

 Ĥ = T̂N + T̂E + V̂NE + V̂NN + V̂EE  , or (8)  

 Ĥ = −
1
2

∇A
2

MAA=1

m

∑ −
1
2

∇i
2

i=1

n

∑ +
ZA

riAi=1

n

∑
A=1

m

∑ +
ZAZB

rABB>A

m

∑
A=1

m

∑ +
1
rijj>i

n

∑
i=1

n

∑  , (9)  

where MA  is the mass of nucleus A and ZA  its atomic number, rpq  stands for the 

distance between the pair p  and q , and all quantities are reported in atomic units to 

simplify the notation. 

Given that nuclei are far heavier than electrons, their motion usually takes place on a 

different time scale with respect to that of electrons, which move much faster. Thus 

the Born-Oppenheimer approximation decouples the motion of electrons and nuclei 

considering the motion of electrons in a system where the nuclei are static objects that 

have no kinetic energy ( T̂N = 0 ) and experience a constant nuclear repulsion. This 

approximation simplifies the definition of the Hamiltonian into 

 Ĥelec = −
1
2

∇i
2

i=1

n

∑ +
ZA

riAi=1

n

∑
A=1

m

∑ +
1
rijj>i

n

∑
i=1

n

∑  , (10)  

where the electronic Hamiltonian Ĥelec  considers the nuclear coordinates, r1,...,rm , as 

parameters rather than variables, and the same applies to the wave function, which for 

clarity can be written as 

 ψelec ≡ψ x1,...,xn, r1,...,rm{ }( )  . (11) 



 17 

This allows calculation of the electronic energy Eelec  as 

 Ĥelecψelec = Eelecψelec  . (12)  

from which the total energy is obtained by addition of the inter-nuclear repulsion: 

 E = Eelec +
ZAZB

rABB>A

m

∑
A=1

m

∑  . (13)  

Unfortunately, for molecular systems larger than H2
+, an exact solution of the 

Schrödinger equation cannot be found with current techniques. Therefore, for systems 

of practical interest, only approximated solution are accessible. Fortunately it can be 

demonstrated that the expectation value of Ĥelec  calculated from any ψelec
try , that is the 

electronic energy Eelec
try , is always larger than Eelec

0 , which is the expectation value of 

the ground state ψelec
0 , for all ψelec

try  but the actual ground state ψelec
0 . This is known as 

the variational principle. Finding ψelec
0  is therefore an optimization problem for which 

optimization techniques are applied to search the space of the acceptable solutions. 

Unfortunately, due to the immensity of such search space, systematic testing of all the 

solutions remains unachievable and further approximations are needed. 

Hartree-Fock Approximation 
One of the approximations introduced to facilitate the identification of ψelec  is that of 

representing the n -electrons wave function as a Slated determinant ΦSD : 

 ψelec ≈ ΦSD =
1
n!

χ1(x1) ! χn (x1)
! " !

χ1(xn ) ! χn (xn )
 , (14)  

 where χ (x) = φ(r)σ (s)  . (15)  

The spin orbitals χ (x)  are orthonormal one-electron wave functions resulting from 

the product of a spatial orbital φ(r)  and a spin component (σ (s)  is α(s)  or β(s) ). The 

determinant posses the antisymmetric property required for fermions (i.e., the wave 
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function change sing upon exchange of the spin orbital of two electrons), and 

includes all the n!  permutations of electrons, thus accounting for the fact that 

electrons are indistinguishable.  

Each spin orbital is then constructed as the linear combination of a set of l  basis 

functions η{ }l ,  

 χ i = cµiηµ
µ=1

l

∑ , (16)  

where cµi  are coefficients and each ηµ  is, in most of the cases, either a single or a 

combination of Slater type orbitals or Gaussian type orbitals. The firsts have the 

proper shape but require more computations than the seconds when it comes to 

calculate two electron integrals, and the seconds do not have the proper shape and 

thus more Gaussian functions are combined to form one basis function (i.e., 

contraction). 

Due to the variational principle (see above), the lowest energy, i.e., the expectation 

values of Ĥelec , for ΦSD  can be obtained optimizing the expansion coefficients ( cµi  in 

equation 16) of the linear combination of basis set functions defining each spin 

orbital χ i . In order to identify the best spin orbitals that still respect the orthonormal 

requirements, each χ i  is obtained as solution of one-electron Hartree-Fock equations 

 f̂iχ i = εiχ i  , (17)  

 where f̂i = −
1
2
∇i
2 −

ZA

riA
+VHF (i)

A

m

∑  . (18)  

The three terms in the Fock operator f̂i  take into account the kinetic energy of the 

electron, its potential energy due to the attraction with each of the nuclei, and the so 

called Hartree-Fock potential VHF (i)  that corresponds to the repulsive potential of an 

electron due to the remaining n−1  electrons. More precisely  
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 VHF (x1) = Ĵ j (x1)− K̂ j (x1)( )
j

n

∑  , (19)  

 where Ĵ j (x1) = χ j (x2 )
2 1
r12
d∫ x2   (20)  

is the Coulomb operator that represents the Coulomb repulsion between an electron in 

x1  and the average charge of an electron in the spin orbital χ j , and 

 K̂ j (x1)χ i (x1) = χ j
*(x2 )

1
r12
χ i (x2 )d∫ x2χ j (x1)   (21)  

is the exchange operator that results from the antisymmetry of the Slater determinant. 

There is no classical counterpart for this operator that considers only the contribution 

from electrons of like spin. 

Notably the action of both Ĵ  and K̂  depend on the spin orbitals χ  that are the 

solution of the Hartree-Fock equation. Therefore, the solution of the problem, i.e., 

ΦSD , is found by an iterative process where a first guess for the set of spin orbitals is 

provided as input and iteratively updated by solving the n  Hartree-Fock equations 

until convergence, i.e., the input set of χ  is sufficiently close to the solutions of the 

Hartree-Fock equations: scenario that is referred as to the self consistent field (SCF). 

Since spin orbitals are defined by linear combinations (equation 16), each of the 

Hartree-Fock equations can be rewritten as follows (expanding χ i , multiplying for an 

arbitrary ηv , and integrating over space): 

 cµi ηv
*(r) f̂i (r)∫ ηµ (r)dr

µ=1

l

∑ = εi cµi ηv
*(r)∫ ηµ (r)dr

µ=1

l

∑  for 1≤ v ≤ l  (22)  

The resulting system of l  equations is consistently written in a matrix form 

(Roothaan-Hall approach), 

 FC = SCe   (23)  
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 Fvµ = ηv
*(r) f̂i (r)∫ ηµ (r)dr   (24)  

 Svµ = ηv
*(r)∫ ηµ (r)dr  (25)  

where F  is the Fock matrix, S  is the overlap matrix, C  the matrix of the linear 

expansion coefficients, and e  the diagonal matrix of the orbital energies. This 

formulation allows translation of the non-linear optimization problem of finding the 

wave function, into a linear algebra problem that can efficiently be handled by 

computational programs. 

The approximation introduced in the Hartree-Fock approach has two main 

consequences. First, since the electron interaction is calculated against an average 

charge density, that is, instantaneous interaction is not accounted for, electrons tend 

to be too close to each other resulting in an augmented Coulomb repulsion (a.k.a. 

dynamic correlation). Second, the single Slater determinant approximation in the 

Hartree-Fock method is not suitable for nearly degenerate configurations where a 

better approximation would require the combination of multiple Slater determinants 

(a.k.a. static correlation).  

As a result the variational method can only lead to a best estimate of the energy, 

EbestHF , that is higher (less negative) of the exact ground state calculated with Born-

Oppenheimer approximation and neglecting relativistic effects Eexact .  

 Ecorr = Eexact −EbestHF  (26)  

The difference between these two is called correlation energy, Ecorr .  

Density Functional Theory 
The number of variables involved in the electronic wave function is four times the 

number of electrons (three spatial coordinates and one spin variable for each 

electron). Nevertheless, the electron density ( ρ(r) ) described by the wave function 

depends only on the three spatial variables (the vector r ) regardless to the number of 

nuclei and electrons in the system. ρ(r)  is defined as the probability density of 
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finding any electron in dr1  with an arbitrary spin while all other electrons have 

arbitrary spin and positions: 

 ρ(r1) = n … ψ x1,...,xn( )
2

∫∫ ds1dx2…dxn  (27)  

The ρ(r)  contains information such as the total number of electrons n , 

 n = ρ(r)∫ dr  , (28)  

the position of all the nuclei, i.e., at the cusps of ρ(r) , and the nuclear charge of each 

nucleus from the limit of the derivate of ρ(r)  at each cusp. In addition, while the 

wave function has no experimental counterpart, the electron density can be observed 

experimentally, e.g., X-ray diffraction. 

Building on Thomas and Fermi first attempts to use the electron density to describe 

the system (from 1927), Hohenberg and Kohn (1964) demonstrated that  

 ρ0 ⇒ n,RA,ZA{ }⇒ Ĥ ⇒ψ0 ⇒ E0  , (29)  

since the electron density of the ground state ρ0  fixes the number of electrons (n ), 

the position (RA ), and charge ( ZA ) of the nuclei, which determine the Hamiltonian 

and thus the ground state wave function ψ0  and the energy E0 , then the energy is a 

functional of the electron density (first Hohenberg-Kohn theorem):  

 E0 ρ0[ ] = T ρ0[ ]+Eee ρ0[ ]+ENe ρ0[ ]  , (30)  

where T ρ0[ ]  is the kinetic energy, Eee ρ0[ ]  the potential energy due to electron-

electron interaction, and ENe ρ0[ ]  the potential energy due to nuclei-electron 

interaction, which is the only term that actually depend on n , RA  and ZA , and also 

the only term currently known. In fact, although exact by derivation, the explicit 

forms of both T ρ0[ ]  and Eee ρ0[ ]  are not known. These functionals, which are 

usually represented as the Hohenberg-Kohn functional 
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 FHK ρ[ ] = T ρ[ ]+Eee ρ[ ]  , (31)  

are not dependent on the system, i.e., independent from n , RA  and ZA , and, if known, 

would be applied to any kind of system. Nevertheless, the lack of an explicit form of 

FHK ρ[ ]  introduces the need for approximation. Moreover, the electron density is not 

known a priori and has to be found iteratively since, as from the second Hohenberg-

Kohn theorem, only the electron density corresponding to the ground state, ρ0 , 

returns E0 , while any other approximated ρtrial  leads to Etrial > E0 , which is the DFT 

version of the variational principle. 

As a means to reduce the approximation introduced by the lack of an exact form of 

FHK ρ[ ] , the Kohn-Sham approach provided an orbital-based treatment resembling the 

Hartree-Fock method and that allows recovering most of the kinetic energy of T ρ0[ ] . 

In fact, a single Slater determinant (ΘS ) is used as the solution to the Schrödinger 

equation where the Hamiltonian is built with a fictitious potential (Vs (ri ) ) that 

represents an ideal system of n  non-interacting electrons (i.e., electrons behaving as 

fermions moving in the average charge field).  

 ΘS =
1
n!

ϑ1(x1) ! ϑ n (x1)
! " !

ϑ1(xn ) ! ϑ n (xn )
  (32)  

 ĤS = −
1
2

∇2

i=1

n

∑ + Vs (ri )
i=1

n

∑  (33)  

The requirement for such a reference system is for the electron density to be equal to 

that of the real, fully interacting ground state of the system at hand. The so-called 

Kohn-Sham orbitals ϑ i  are determines as solutions of the n  Kohn-Sham equations,  

 f̂ϑ i = εiϑ i  , (34)  

 where f̂ = − 1
2
∇2 +VS (r)  (35)  
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is the Kohn-Sham operator. The kinetic energy for this reference system 

 TS = −
1
2

ϑ i ∇
2 ϑ i

i=1

n

∑   (36)  

is used as a fair approximation of that of the real, fully interacting system, T ρ0[ ] , 

leaving apart only a smaller unknown correction to the kinetic energy, TC ρ0[ ] . 

Moreover, also the explicit form of the classical portion of the electron-electron 

Coulomb interaction J ρ[ ]  is known and is used to cover a portion of Eee ρ0[ ] , leaving 

apart the unknown non-classical portion of the electron-electron interaction Encee ρ[ ] . 

With this approach the Hohenberg-Kohn functional can be written as 

 FHK ρ[ ] = TS ρ[ ]+TC ρ[ ]+ J ρ[ ]+Encee ρ[ ]   (37)  

 or FHK ρ[ ] = TS ρ[ ]+ J ρ[ ]+EXC ρ[ ]  , (38)  

where EXC ρ[ ]  is called the exchange-correlation functional and collects all the terms 

for which an explicit form in not known (TC ρ0[ ]  and Encee ρ[ ] ). EXC ρ[ ]  thus 

represents the connection between the reference system and the real, fully interacting 

one. The related exchange-correlation potential is defined as the functional derivative  

 VXC ≡
∂EXC

∂ρ
 (39)  

which allows writing VS (r) , the fictitious potential of the Kohn-Sham operator (see 

equation 35), more explicitly,  

 VS (r1) =
ρ(r2 )
r12

d∫ r2 −
ZA

r1AA

m

∑ +VXC (r1)  (40)  

where all terms with unknown explicit forms are encapsulated into the exchange-

correlation potential VXC . As for the Hartree-Fock method, the potential VS (r)  

depends from the solutions of the equation, i.e., the electron density by the Kohn-

Sham orbitals ϑ i , therefore the solution of the one-electron Kohn-Sham equations 
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(34) is found iteratively optimizing the expansion coefficients of the linear 

combination of basis set functions used to construct each ϑ i , until the self 

consistency condition is satisfied. To this end an approximate (and to some extent 

empirical) form of the exchange-correlation functional EXC ρ[ ]  has to be provided 

and, since this is the key point of the DFT method, defining a single, combined 

functional or two, separate functional for the exchange and the correlation 

contribution is an active research field. 

The simplest approximation for the EXC ρ[ ]  is the so-called local density 

approximation (LDA), which calculates the exchange and correlation contributions 

based on a model characterized by a constant electron density called the “uniform 

electron gas”. In practice, the local value ρ(r)  is assumed to have zero gradient even 

though ρ(r)  changes per each r . Since the electron density in a molecular system is 

everything but constant, the LDA is a somewhat brutal approximation. Therefore, a 

more realistic generation of functionals considers, in addition to the local density in 

r , also its gradient and a set of constrains to retain physical correctness of the model. 

This family of gradient-corrected functionals is called gradient generalized 

approximation (GGA) and is also said to be ‘non-local’ due to the gradient delivering 

information about the surroundings of the local point r , and thus accounting for the 

non-homogeneity of the electron density. Extending this strategy even further has led 

to the introduction of the second derivative of the electron density and the so-called 

meta-GGA family of functionals. A different strategy, instead, has been that of 

introducing a certain amount of Hartree-Fock exact exchange into the functionals, 

which are then called hybrid functionals. The latter have somehow become standard 

for many common chemical systems, for instance, the B3LYP functional for 

modeling of organic molecules. 

Until recent years, the DFT method has been affected by a significant shortcoming: 

the lack of dispersion interactions. London forces, also known as dispersion forces, 

are the consequence of instantaneously induced dipoles resulting by the interaction of 

electron densities that otherwise are not directly interacting, i.e., between non bonded 
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molecules or not closely bonded portions of the same molecule. As dispersion derives 

from the electron density of two separate points in the space, functionals considering 

only the local value of ρ(r) , and even its derivatives, cannot account for any 

dispersion. Though these non-bonded interactions are weak, if compared to those 

between permanent charges and multipoles, neglecting dispersion may seriously 

hamper accuracy. Although strategies to introduce dispersion have been developed 

during the last decade, and are mainly based in the inclusion of dispersion in the 

parametrization of the functional48 and the use of empirical corrections (i.e., DFT-D 

by Grimme),49 all the DFT calculations performed in the work presented in this thesis 

did not include dispersion (see Chapter 5). This conscious approximation is simply 

motivated by the need of comparing, and partially reproducing, previous calculations 

reported in the literature (see Paper II). 

Semi-empirical Method 
Approximate quantum mechanical methods have been developed in response to the 

high computational cost of ab initio calculations. In fact, in order to solve the 

Hartree-Fock equations (17), or the analogous Kohn-Sham equations (34) in DFT, the 

Roothaan-Hall approach (equation 23) requires the calculation of the matrix elements 

Fvµ  which contain two-electrons integrals, for instance, resulting from the application 

of the Coulomb and exchange operators ( Ĵ  and K̂ ), that can involve up to four 

different basis functions.  

 φi
*(r1)φ j (r1)

1
r12
φk
*(r2 )φl (r2 )∫ dr1∫ dr2  (41)  

Since the calculation of these integrals is the more costly component of Hartree-Fock 

method, the semi-empirical approach aims to reduce the computational requirements 

by neglecting many of these integrals and providing empirical parameters to be used 

in lieu of other integrals. In addition, only valence electrons are treated explicitly 

while core electrons are included in the corresponding nucleus and their shielding 

taken into account in the definition of the valence electrons-nuclei interactions. 

Moreover, to further simplify the problem a minimal basis set where one Slater type 
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function per orbitals is used and off-diagonal elements of the overlap matrix (S  in 

equation 23) are often set to zero. Criteria for selecting the integrals to be neglected 

or approximated by empirical parameters are mainly based on the location of the 

basis functions, i.e., the atom on which φi , φ j , φk , and φl  are centred. For instance, 

the class of NDDO (neglect of diatomic differential overlap) methods, set  

 φi
*(r1)φ j (r1)dr1 = 0  (42)  

where φi  and φ j  belong to two different atoms, i.e., the diatomic differential overlap, 

but retains two-electrons, two-center integrals where the pairs φi , φ j , and φk , φl  are 

located on two different atoms, e.g., atoms A and B, but φi  and φ j  are on A, while 

φk  and φl  on B. Empirical parameters include the Slater orbital exponents, and 

parameters to be used in lieu of the core-integrals, which calculate the kinetic energy 

of an electron moving in the field of nuclei shielded by the core electrons plus the 

potential energy of attraction towards such shielded nuclei. Again, different 

parameters are used for the core-integrals based on the location of the basis function 

involved and also on the type of such functions (i.e., orbital type s, p, or d). 

A modern version still based on the NDDO approach include the parametric method 

number 6 (PM6), which was applied in Paper II (Chapter 5), that was extensively re-

parametrized aiming for wider scope both in terms of training set (about 9000 

species) and elements included (70 elements). The latest method (PM7) has also been 

provided with dispersion and H-bond terms that improve the treatment of 

intermolecular interactions. 

2.2.2 Molecular Mechanics 

Molecular mechanic (MM) methods are characterized by (i) approximate description 

of the molecular system based on atoms with implicit rather than explicit electrons, 

and (ii) mathematical models based on classical rather than quantum mechanics. The 

combination of these two characteristics makes MM methods orders of magnitude 

faster than any quantum mechanical and semi-empirical methods. 
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The lack of explicit electrons means that the fundamental particles in MM models are 

atoms, or even larger units (i.e., united-atoms and coarse grained approaches),50–52 

each of which can be considered as if holding electrons in a fixed configuration. This 

approach finds justification in the Born-Oppenheimer approximation (see above). 

Neglecting the explicit treatment of electrons allows MM methods to deal with lower 

number of particles with respect to the quantum methods, but the obvious downside is 

that electronic properties and fine electronic effects are often neglected. 

The energy of the system is calculated as a function of the atomic positions by means 

of empirical laws that describe the interatomic interactions following the principles of 

classical mechanics. As it is known that classical physics cannot accurately describe 

all phenomena occurring at atomic and molecular scale, the MM approach is based on 

the quantification of the energetic penalty, and the resulting force, associated with the 

deviation of the geometry from a reference condition that is defined a priori by means 

of empiric parameters. For this reason, the MM potential energy, which is not 

quantized, is more properly referred as to the “strain energy” and represents a relative 

quantity that is bound to the definition of the system at hand, i.e., number and type of 

atoms, bonds and geometrical features. A general definition of the strain energy is as 

follows: 

 Etot = Eij
str +

ij

bonds

∑ Eijk
bend +

ijk

angles

∑ Eijkl
tors +

ijkl

torsions

∑ Eij
nb +

i> j

n

∑ Eother∑  , (43)  

where bond stretching, Estr , angle bending, Ebend , bond torsion, Etor , non-bonded 

interactions among the n  atoms, Enb , are the four most common energy 

contributions, and Eother  underlines that many other contributions can possibly be 

included in the model for a more refined description of the potential energy surface. 

Overall each independent term gives a contribution of “strain”, but it is the 

minimization of Etot  by variation of the atoms coordinated that allows identifying the 

compromise between all terms. Therefore, for each contribution a functional form, 

which aim to return the potential energy from the set of atom coordinates, has to be 
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provided together with a set of empirical parameters, thus de facto defining the force 

field under which each atom moves. 

The stretching of bonds is usually approximated with a harmonic potential centred on 

a given equilibrium distance r0  and weighted by the force constant kb  

 Eij
str =

kb
2
(rij − r0 )

2  , (44)  

where rij  is the interatomic distance. Better accuracy, in particular with respect to 

anharmonicity, is obtained including higher order terms with the corresponding force 

constants ( kb
'  and kb

''  that may be related by a constant), 

 Eij
str = kb

' (rij − r0 )
2 + kb

'' (rij − r0 )
3  . (45)  

Although desirable, the more accurate Morse function is rarely used due to the need 

for three parameters, i.e., well depth (D ), curvature (α ), and reference distance ( r0 ), 

and the lower computational efficiency, 

 Eij
str = D 1− e−α (rij−r0 )"

#
$
%
2
 . (46)  

Also the angle bending term is most often represented by a harmonic potential, 

though a more general formulation includes, as for the bond stretching, higher order 

terms: 

 Eijk
bend = ka

' (θijk −θ0 )
2 + ka

'' (θijk −θ0 )
3 + ka

''' (θijk −θ0 )
4 +...  , (47)  

where θ0 is the reference value, and ka
' , ka

'' , and ka
'''  are the weighted force constants.  

The terms accounting for torsions about bonds need to reflect the periodicity of the 

motion, hence trigonometric functions are often used to define torsional potentials: 

 Eijkl
tor =

km
2
1+ cos(mϖ ijkl −γ )( )

m=0

M

∑  , (48)  
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where ϖ ijkl  is the torsion angle, γ  a phase factor, km  are the contribution to the 

rotational barrier of the bond, and m  is the multiplicity. While the use of torsion 

potentials is common practice, it should be noted that 1-4 interactions between the 

atoms i  and l  in the sequence i− j − k − l  might provide a discrete approximation of 

the energy profile. This approximation was exploited extensively in Papers II and IV 

(see sections 3.2.5 and 3.2.6). 

The terms describing non-bonded interactions involve two major contributions: 

electrostatics, and van der Waals. The first, is usually formulated as an ensemble of 

Coulomb interactions (equation 49), possibly implementing a distance-dependent 

dielectric ε0  (equation 50), that are calculated between partial and punctual changes 

(qi  and qj ) that may or may not be centred on atoms so to permit the description of 

multipoles. 

 Eij
chrg =

1
4πε0

qiqj
rij

  (49)  

 Eij
chrgDD =

1
4πε0

qiqj
rij
2  (50)  

Unfortunately, the definition of the partial charges is far from trivial due to the lack of 

explicit electrons in the model. Therefore, methods have been developed to assign 

fixed partial charges as empirical parameter, or calculate a balanced distribution of 

partial charges on the fly. Nevertheless, since partial charges are not experimentally 

observable, there is no unambiguous method to provide these values. Moreover, 

empirical assignation of partial charges may not be sufficiently general. Therefore, 

when modeling transition metal species, electrostatics is often absorbed in other 

functions rather than explicitly accounted for. For instance, parameters of other 

functions, such as bonding and van der Waals terms, are optimized as to reproduce 

experimental or ab initio results that do include electrostatic effects thus 

encapsulating part of the electrostatic contribution. Nevertheless, methods exist even 

to explicitly account for polarization.53,54  
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The van der Waals term collect both attractive and repulsive contributions. The firsts 

represent the ensemble of favourable interactions resulting from the instantaneous 

dipoles due to fluctuations of the electron clouds, and are referred as to the London 

forces. These attractive forces are usually modelled with a r−6  term. The second 

contributions account for the strong repulsion occurring when non-bonded atoms are 

too close and Pauli’s principle prohibits the overlap of their electron clouds. A 

common potential representing both these contributions is that known as the Lennard-

Jones potential, which is generally written as 

 Eij
vdw = kεvdw

σ
rij

!

"
##

$

%
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n

−
σ
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!

"
##

$

%
&&

m(

)

*
*

+

,
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-
 , (51)  

 where k = n
n−m

n
m
"

#
$

%

&
'
m/(n−m)

 (52)  

and εvdw  defined the well depth, σ  is the collision parameter, which defines the 

interatomic distance at which repulsion equals attraction, and the exponents are often 

n =12  and m = 6 . 

A number of other terms are often included in the definition of the force field. These 

include improper torsion or out-of-plane terms, which account for the out-of-planarity 

displacement of atom l  with respect to ijk  plane in the tripod i− j(−k)− l , cross-

terms, which account for the coupling between modes (i.e., stretching of two adjacent 

bonds, stretch-bend, bending of adjacent angles, bending-torsion), and H-bond. The 

actual list of terms constitute the fingerprint of a force field as it defines which kind 

of interatomic interactions and geometrical effects the force is capable of 

reproducing. 

The need for defining empirical parameters for all these terms introduces to another 

fundamental characteristic of most MM methods. That is, the use of atom types to 

specify, and de facto impose, the properties of every atom in the system. Atom types 

allow assignation of the ensemble of empiric parameters adopted, or calculated on the 

fly with empiric rules, for each MM term. This is based on the empirical 
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consideration that atoms of a given element, in a similar chemical environment are 

likely to behave similarly. Therefore, the functional forms and parameters capable of 

reproducing experimental and ab initio geometries for some molecules, can be used 

to model other, yet similar molecules. This property is known as transferability of the 

force field, and is crucial for making predictions for new molecules based on 

parameters obtained from proper parameterization process.  

As a consequence of the need for transferability, many force fields have developed a 

plethora of parameter sets for the most common elements found in organic and 

biological chemistry resulting in the use of different atom types for the same element 

depending on the chemical context surrounding an atom with given atomic number. 

Unfortunately, the picture is more complicated when transition metals are taken into 

account. In fact, these atoms display variability of oxidation and spin states, 

coordination numbers and geometries that make transition metal species particularly 

challenging for MM. Nevertheless, the prospect of modeling transition metal species 

with fast empirical MM approach has stimulated the development of method capable 

of accounting for the peculiarities of transition metals. Among others, the ligand field 

molecular mechanics (LFMM) method introduced the effect of the ligand field 

stabilization energy in standard, organic chemistry force fields. The LFMM method 

was integrated in a widely available MM tool as part of the work in this thesis, i.e., 

Paper III (Chapter 6), with the aim to increase the availability of the method and its 

use in de novo design. In fact, the resulting integrated tool was deployed extensively 

in Paper IV for the design of iron compounds (Chapter 7).  

Finally, as MM is an empirical approach there is no truly “correct” combination of 

functional forms and parameters. Instead, the MM methods conform to the need of 

reproducing results that are defined either experimentally or with more accurate 

computational modeling methods. This property of the empiric approach was 

exploited in Paper IV where a special force field was developed to obtain multiple 

molecular ring closures from acyclic chains of atoms (see Section 3.2.6). 
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3. Generating Chemical Entities from Scratch 

The automated generation of new candidates is the characteristic feature of de novo 

design methods that allows identification of candidates beyond traditional trends and 

expectation biases. In this chapter the background about automated generation and 

modification of molecules is introduced (Section 3.1) highlighting the limitations that 

led to the development of a new method, which is described in Section 3.2. The new 

method is suited not only for simple molecules but also for chemical entities with 

peculiar geometries and arrangements of atoms, reaction intermediates, and even 

transition state models. 

3.1 Introduction 

3.1.1 Building Strategies 

Building Blocks: Atoms vs Fragments 
Strategies for automated generation of molecular objects can be divided according to 

the type of building blocks used, which can be either atoms or molecular fragments.17 

Methods implementing atom-based building strategies combine atoms of various 

elements according to valence rules and average elemental composition. This strategy 

can potentially build every possible chemical object,13 and atom-based building 

strategies have been implemented in a number of de novo methods exploiting such 

extreme generality.55–61,38,62 However, the major drawback of atom-based builders is 

that most of the combinations of atoms do not represent stable molecules or are not 

synthetically accessible, thus strategies to control the assembling of atoms have to be 

included.63 The problem is even worse for transition metal compounds, due to the 

high coordination number and extended list of bond types.30,64 In general, automated 

molecular builders need to balance novelty and confined chemical space.65 This is a 

well-known issue in de novo drug design, and strategies to reduce the amount of 

unrealistic candidates generated from atom-based builders are mostly based on filters 

that reject unacceptable chemical features13,66 or evaluate the synthetic accessibility 

on the fly.67–71  
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Alternatively, molecules are built by assembling molecular fragment rather than 

single atoms.72–83 While the use of multi-atom building blocks implies a low 

resolution in the exploration of the chemical space,84 it also allows to control the type 

of functionalities generated and to avoid most of the unrealistic candidates. The 

combination of selected molecular fragment and connection rules efficiently confines 

the chemical space according to the specific needs and defines a subspace referred as 

to the fragment space.65,85 Connection rules are needed to avoid formation of 

undesired chemical features that would otherwise require the application of filters as 

for the atom-based approach.66 Fragments are typically generated by retrosynthetic 

fragmentation of existing molecules86 and reconnected according to synthetic 

principles thus introducing the chemical reasoning directly into the automated 

builder.72,75,87,88  

A radically different approach for automated builders is that of virtual synthesis.89–92 

This method generate molecules by performing virtual reactions between molecules 

that are taken from databases of commercially available reagents, thus mimicking the 

experimental workflow. However, automation of this approach requires robust and 

standardized classification of synthetic reactions and functional group reactivity,93–95 

none of which is currently available for transition metal chemistry.  

Builders for Transition Metal Compounds 
All methods so far reported in the literature for the automated generation of transition 

metal species implement fragment-based building strategies.30,96,97 The software 

developed by Hay and co-workers (named HostDesigner)98 is meant to build libraries 

of receptors (hosts) that show affinity for a given target (guest). The algorithm 

combines “complex fragments”, which encapsulate each host-guest bonding 

interaction, and linker fragments, which are meant to connect pairs of complex 

fragments. Such user-defined complex fragments specify the metal-coordinating 

moieties, thus preventing the formation of any undesired bond involving the metal 

atom, but all connections with the linkers are formed replacing hydrogen atoms 

without consideration of synthetic accessibility. HostDesigner has been applied to the 

design of receptors for organic molecules99,100 and also for multidentate ligands with 



 34 

high affinity for transition metal ions.96,101,102 Instead, Rothenberg and co-

workers97,103 deployed an automated building process to create combinatorial libraries 

of catalysts with bidentate ligands. The strategy was based on classifying fragments 

according to their role in the final transition metal complex (i.e., metal, ligand groups, 

bridges, and decorating groups). Contrarily to HostDesigner, metal−ligand bonds 

were generated by connection of specific classes of fragments (i.e., the ligand groups 

and the metal atom). A similar classification of the building blocks was applied by 

some of the authors involved in the present project with the aim to overcome the 

limits of the chemical representation deployed (see section 3.1.2).30 In particular, the 

transition metal complex was divided in three layers: a metal-containing core 

fragment, which encapsulated also some of the ligands, a specific class of metal-

ligating fragments (the “trial parts”), and a further class of fragments acting as 

decorations for both core and trial parts (the “free parts”). Again, the use of classes of 

fragment was exploited to impose the chemical surrounding of the metal atom, but no 

control on the rest of the connections was possible.  

Connection Rules 
A common feature in the three methods introduced in the previous section, is that 

fragments are organized in classes and the building process assembles compounds 

following a layered scheme that, as a blueprint, defines which fragment class to use in 

which position of the final molecule.30,97 These approaches are therefore based on a 

fragment class compatibility scheme. On the contrary, the retrosynthetic strategy 

diffused in organic drug design focuses on the chemical features of the attachment 

points on each connected fragment rather than on the fragment as a whole; that is, an 

attachment point compatibility scheme is applied.72,75,87,88 The approach based on 

fragment class compatibility is significantly more limited than that based on 

attachment points classes. In particular, since the class of the fragment is a property 

of the whole building block, the fragment class does not provide information on the 

single attachment points. Moreover, without a precise definition of the chemistry 

generated by the connection of two fragments of different class, the method is prone 

to faulty generation of unrealistic or unacceptable functionalities, unless all possible 
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connection are evaluated manually prior to deployment. Finally, the class of a 

fragment is an arbitrary, system dependent property resulting from manual work, 

rather than data mining, and limits the possibility of reusing libraries of fragments. 

3.1.2 Chemical Representations 

Implementation of an automated builder requires the use of a virtual representation 

that allows definition and modification of chemical entities and related information. 

The choice of the chemical representation for an automated builder can seriously 

affect the capabilities of the builder to handle peculiar species. 

The Panorama of Chemical Representations 
In all branches of computer-aided chemical research the use of machine-readable 

representations of chemical compounds is mostly established.104 Nevertheless, 

continuous developments demonstrate that as the cheminformatic tasks evolves so 

does the need for suitable representation of chemical entities, concepts, and 

information.105 In fact, the recent developments tend to integrate various types of 

information in a machine readable fashion as to facilitate the execution of automated 

tasks.106  

 The coordinate-less, string-like representations are often utilized as a general purpose 

chemical nomenclature that is readable both by humans and machines, and allows 

definition of the composition, connectivity, and stereochemical descriptors.107 

Typically, the simplified molecular-input line-entry system (SMILES)108,109 serves 

this purpose, but also the modular chemical descriptor language (MCDL)110,111 and 

the InChI112,113 molecular identifiers are used. Connection tables are alternative 

graph-based representations that have led to some of the most diffuse file formats for 

sharing chemical data,114 and may include bi- or three-dimensional (3D) spatial 

coordinates. String-like and graph-based representations are often simplified by the 

removal of non-chiral hydrogen. This simplification, which leads to a significant 

reduction of the number of atoms, is based on the assumption that the presence of 

such hydrogen atoms can be inferred from the hydrogen-depleted structure. Further 

simplification leads to the so-called reduced representations,51 where the smallest 
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building units are groups of atoms, or even groups of small molecules, thus providing 

a coarse-grained description of the system.50,51 Instead, an all-atom 3D representation 

that provides atomic coordinates, either in the form of Cartesian or internal 

coordinates,115 constitutes the current standard for input/output in the majority of 

molecular mechanics and quantum chemistry tools. Notably, while most of molecular 

mechanic methods depend on a definition of the connectivity, this information is 

usually superfluous for quantum mechanical modeling. 

Chemical Representations for De Novo Design 
The chemical representations deployed in de novo design methods need to identify 

the candidate and support structural modification. Thus, beside elemental 

composition, connectivity, and stereochemistry, a representation should allow quick 

identification and modification of the building components, i.e., atoms and bonds, 

fragments, or synthetic reaction steps. Further additional information may also be 

required, for example, geometrical information (i.e., coordinates, docking poses, 

multiple conformations) and molecular descriptors. Since the chemical 

representations needs to contain all necessary information to create a candidate 

chemical entity, and most de novo design methods apply evolutionary algorithms as 

optimization method (see Section 2.1), the chemical representation is commonly 

referred as to the chromosome.35,37  

Graphs efficiently represent the identity of a chemical structure,116 and have been 

used as chromosomes in de novo design methods.30,38,117 In fact, with graph vertices 

(or nodes) representing the building blocks and graphs edges the connection between 

them, the alteration of a building block or connection can easily be performed by 

modification of the corresponding vertex or edge. Accordingly, graph-based 

representations such as connection tables and SMILES have been widely exploited as 

chromosome.61,63,75,76,92 Alternatively, SMILES and 2D graphs have been used to 

represent only the molecular structure of the building blocks, i.e., the content of the 

vertices, while a dedicated data structure defined the surrounding graph-like 

chromosome.30,73,91,118,119 The analogous strategy with 3D representation has been 

used,58,66,74,88,120–122 but mostly in connection to fragment-based drug discovery,123 
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which should not be confused with the fragment-based building strategy introduced 

above, although the latter is usually implemented as part of the former.78 

With an alternative use of graphs, the construction and modification of molecules can 

be seen as a short walk on a graph that spans all possible fragments and connections. 

Changing the path corresponds to modify the type of fragments and their ordered 

sequence, thus changing the molecular structure.17,76,124 

Information Content and Conversion 
Different chemical representations contain different amounts and types of 

information, and conversion between representation may be accompanied by loss or 

creation of information.117 In particular, conversion from low information content 

chemical representations to highly informative ones (for example, from SMILES to 

3D), is often mandatory to proceed with further modeling. The conversion is usually 

performed under the assumption that most of the additional information required to 

define the output (in the example, the atomic coordinates) can be inferred from the 

low information content input by means of standardized set of empiric criteria 

implemented in a conversion tool (for example, list of possible atom types, bond 

angles and lengths). While such artificial augmentation of the chemical information is 

likely to produce a proper output for the most common types of chemical compounds, 

the same cannot be said for peculiar chemical species. Unfortunately, this is the case 

for many transition metal species, and, in particular, for active species and reaction 

intermediates that are likely to be the focus of catalysis design. In order to safely 

handle such peculiar chemical entities, low information chemical representations 

should either be proven to handle the systems at hand properly or avoided in favour 

of all-atoms (i.e., no implicit atoms), three-dimensional representation, possibly 

allowing for extension of the information content. Examples of faulty treatment of 

implicit hydrogen atoms, stereochemistry, and molecular geometries are discussed in 

Chapter 5.  
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3.2 The General Purpose Fragment-Based Design 
Machinery 

In light of the background presented in the previous section, a new method was 

introduced to enable automated generation and modification of chemical entities 

including peculiar ones that are not properly handled by other tools. The method 

exploits an internal graph-based representation (Section 3.2.1) designed to enable 

fragment-based construction and modification of any sort of chemical entity 

preferably from 3D building blocks, though lower dimensionality is also supported. 

The particularity of the method, and its strength, is that neither building blocks nor 

their connections are required to satisfy valence rules, geometrical constraints, or 

implicit atom formalism. To counterbalance the removal of such formalisms, all 

attachment points are labelled with codified chemical information (i.e., the class of 

the attachment point, see Section 3.2.2) that allows controlling the generation of new 

chemical entities (Section 3.2.3) by means of tuneable connection rules (Section 

3.2.4). Assembling of 3D building blocks enables the preparation of the initial 3D 

geometries of tree-like graphs reducing to the minimum the need for empirical 

parameters and force fields (Section 3.2.5). Handling of any type of multi-fragment 

ring introduces a challenging conformational problem in the generation of graphs and 

preparation of 3D models. Thus, an empirical ring-closing potential (Section 3.2.6) is 

introduced to generate the 3D geometry of entities represented by cyclic graphs.  

3.2.1 Graph Representation and Fragments 

A chemical entity is represented by a graph G(V,E) where V={v1, … , vn} is the set of 

vertices and E={e1, … , em} is the set of edges (Figure 1). Each vertex is a container 

for a single molecular fragment, and each edge a connection between two different 

vertices (no self loops, no multiple edges). The graph can contain cycles of vertices, 

but it is always represented in term of a spanning tree T(V, E’), where E’ ⊆ E and T 

contains no cycle of vertices, and a set of fundamental cycles Fc={C1, … , Ck}. A 

single, root vertex is unambiguously identified by the graph generation algorithm 

(Section 3.2.3) and corresponds to the root of the spanning tree (green vertex in 
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Figure 1 C). Moreover, every non-root vertex is reachable starting from the root by a 

direct path in T (black arrows in Figure 1 C). Finally, each fundamental cycle 

includes only one chord of T (red arrows in Figure 1 C), which is an edge belonging 

to E but not to E’ (for an overview on the nomenclature see ref. 125). 
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Figure 1: The graph representation of complex A built from the set of fragments B is 

displayed in C. The graph has two chords (red arrow in C) each connecting two ring-

closing vertices (red circles in C) that contain only a dummy atom (ring-closing 

attractor, RCA). The correspondence between graph components and molecular 

representation is shown in D. 

A molecular fragment contains atoms, dummy atoms, bonds and attachment points. 

The molecular structure of a fragment is represented by a graph where each vertex is 

an atom (or dummy atom) and each edge is a bond or a formal connection. All atoms 

are explicitly represented in the fragment. Both atoms and bonds are characterized by 

properties, which include element symbol, 3D coordinates, charge, and bond order. 

The CDK126,127 implementation of AtomContainer is used to represent the molecular 

structure of a fragment. In addition, fragments contain one or more attachment points 

(APs) that represent the possibility of binding other fragments. Each AP contains 
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information defining the atom (or dummy atom) prone to host the new connection, 

the class of the attachment point (AP class, see Section 3.2.2), and geometrical 

information defining the preferred spatial location of a hypothetically connected atom 

(AP vector). 

Fragments and APs are not required to respect valence rules or stick to prefixed 

geometries. Therefore, peculiar chemical systems can be represented within 

fragments or formed by their connection. The only requirement for the fragments is 

that all atoms have to be connected to the rest of the fragment, thus creating a single 

network that spans all the atoms of the fragment. These intra-fragment bonds, as well 

as inter-fragment bonds that result from definition of edges in the graph G, are 

connections that do not represent a precise bond type, though bond orders may be 

specified to facilitate atom typing and conversion to standard molecular 

representations. 

Overall, the representation consists in two layers of graphs: the outer layer (G), which 

handles information as to the collection of building blocks and the connections 

between them, and an inner layer of graphs, collecting all the graph representations of 

the fragments. Conversion of this data structure into a 3D molecular model is 

discussed in detail in Section 3.2.5. 

3.2.2 Generation of Fragments and Cutting Rules 

Molecular fragments (2D or 3D) are generated by automated fragmentation of 

existing molecules and computationally modelled structures. The process allows 

mining of chemical and geometrical knowledge on molecular building blocks from 

existing libraries, and projecting it into the generation of new candidates. To this end, 

molecules are fragmented according to user-defined cutting rules that identify 

specific target bonds. The cutting rules, which are codified by means of SMARTS107 

(see Figure 2), allow identification of chemical features surrounding the target bond 

and discriminate between the two sides of such bond. Removal of a matched bond 

generates two APs, each with one of the two complementary AP classes that derive 

from the unique identifier of the cutting rule. This way, information on the chemical 
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environments generating the AP is annotated into the AP class of each fragment. 

Moreover, if 3D structures are used as input, the geometrical relation between the two 

disconnected fragments (bond distance and angle, but not torsion) is also recorded in 

the APs in the form of two AP vectors, one per each AP generated (Figure 2). 

 

Figure 2: Examples of a cutting rule derivation of AP classes (met* = list of 

transition metal symbols). Reprinted with permission from ref. 128. Copyright 2014 

American Chemical Society. 

Notably, while standard retrosynthetic rules are often applied to fragmentation of 

organic features,129 the new method allows for definition of cutting rules matching 

multihapto binging sites. Moreover, the method distinguishes between multihapto and 

multidentate ligands, thus permitting independent handling of each metal-interacting 

group. In addition to standard fragmentation strategies, such as cutting all rotatable 

bonds or retrosynthetic approaches,85,86 the new method enables fragmentation of 

metal-organic connections based on principles of organometallic chemistry (for 

instance, the isolobal analogy).130 Nevertheless, only constitutionally diverse 

arrangements of atoms can be discriminated as no geometrical information is 

currently supported by the cutting rules. Moreover, though the fragmentation 

procedure can handle large libraries of existing molecules, the list of cutting rules 
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remains an empirical classification of a specific set of target bonds, and the design, 

refinement, and management of cutting rules is let up to the intuition of the chemist. 

3.2.3 Generation of Graphs 

The generation of graphs proceeds via four main steps: (i) selection of a fragment for 

the root vertex, (ii) growth of the graph by recursive appending of vertices, (iii) 

growth termination by saturation of AP with single-AP fragments (capping 

procedure), and (iv) definition of the fundamental cycles. It should be noted that a 

cyclic graph is constructed as a tree, i.e., the spanning tree. Only after growth 

termination the set of fundamental cycles is defined thus making the graph cyclic. 

The choice of the root fragment is performed among a given library of candidates. 

While any fragment can be used as root, the choice of a proper root ensures the 

presence of fundamental chemical features that may be required for the manifestation 

of the functional property.30 For instance, the central metal atom is typically chosen 

for the design of transition metal compounds. 

The growth of the graph is controlled by connection rules, which are further 

explained in Section 3.2.4, and parameters. The latter define (i) the probability of 

attaching a fragment at a certain level of the tree (i.e., the number of edges from the 

root vertex), (ii) the probability of projecting a branch of vertices from an AP to all 

the APs related by constitutional symmetry, which is defined according to AP class 

and connected environment, and (iii) threshold values for molecular weight, number 

of non-hydrogen atoms, and number of edges.  

A particular feature of the building algorithm is the need for a growth termination 

step, which is referred as to the capping procedure. Due to the freedom characterizing 

the chemical features of the building blocks and the decision to avoid implicit atom 

formalism, APs corresponding to open valences and vacant coordination sites need to 

be saturated. To this end, appropriate single-AP fragments, i.e., capping groups 

(typically −H and −CH3), are appended on free APs having specific AP classes. On 

the contrary, other unused APs may not be suitable for the capping procedure nor 
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should be let free. Graphs with such forbidden ends are therefore rejected according 

to user-defined settings. 

Handling of rings is divided in two cases that can coexist. If rings are entirely 

embedded within single fragments, then they are handled each as a single, not 

modifiable unit. In this case, although the inner graphs are indeed cyclic, the outer 

graph may be acyclic if there is no cycle of vertices. Alternatively, if one or more 

rings involve more than one fragment, then these rings define cycles of vertices in the 

outer graph. These cycles of vertices are defined by the set of fundamental cycles 

each of which includes only one chord of the spanning tree. Thus, to define the cycles 

of vertices chords must be identified. In this method, chords can connect only special 

purpose vertices, which are called ring-closing vertices (RCV, red nodes in Figure 1, 

page 39). An RCV is a regular vertex containing a special type of fragment that 

carries only one dummy atom, i.e., the ring-closing attractor (RCA in Figure 1), and 

two APs, one of which is reserved for graph growth and the other only available for 

chord formation. A chord can connect two RCVs only if these are compatible, and if 

the chord respects AP class connection rules (see below, Section 3.2.4) and satisfies 

ring size requirements (i.e., minimum and maximum number of atom members). In 

addition, when 3D building blocks are used, pairs of RCVs are connected only if the 

ring closability condition is satisfied; that is, the path connecting the RCVs in the 

spanning tree corresponds to a geometrically closable chain of atoms terminating 

with the RCAs. This condition is currently evaluated without alteration of the bond 

angles along the atom chain, though methods exist that allow inclusion of a tuneable 

amount of bond angle and bond length adaptation.131–135 An additional condition is 

bound to the possibility of having multiple fundamental cycles sharing one or more 

bonds. This scenario introduced the need to evaluate the simultaneous closability of 

interdependent chains. Nevertheless, preliminary attempts to evaluate this condition 

by searching for a common ring closing conformation for all interdependent chains 

have been found more computationally demanding than filtering candidates based on 

successful conversion to 3D (see Section 3.2.5 and Paper IV). 
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Last, after the definition of the set of fundamental cycles, the graph is finalized by 

replacing unused RCAs with proper fragments, according to the capping procedure. 

The graph is then fully defined and ready for further operations. 

3.2.4 Connection rules and Compatibility Matrix 

Connection rules define which pairs of AP classes are allowed to connect fragments. 

The connection rules are collected in a square, non-symmetric Boolean matrix called 

the compatibility matrix (see Figure 3), where a True entry represents compatible 

pairs of AP classes. 

 

Figure 3: Structure of the compatibility matrix and representation of the chemical 

features resulting by connection of fragments. Reprinted with permission from ref. 

128. Copyright 2014 American Chemical Society. 

The complete list of AP classes is used to index both rows and columns of the matrix, 

but while the row index refers to the class of the AP on the growing molecule, that of 
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columns refers to the class of the AP on the incoming fragment. As a consequence, 

the matrix is asymmetric and each entry of the compatibility matrix represents the 

chemical feature resulting from the connection of those represented by the row and 

column AP classes in the given order. The asymmetry of the compatibility matrix 

reflects the directionality of the edges belonging to the spanning tree. Instead, the 

evaluation of AP class compatibility in the formation of chords, which are undirected 

edges (see section 3.2.1), requires a symmetric compatibility rule. In fact, chords may 

involve any pair of compatible RCVs that belong to the same graph and the 

directionality of the growth is not relevant. Therefore, a second, symmetric 

compatibility matrix is dedicated only to the evaluation of AP class compatibility in 

the context of chord formation. Moreover, in such context the compatibility is 

evaluated between the APs that hold the RCVs rather than those of the RCVs. In fact, 

the RCVs are chemically empty (i.e., contain only a dummy atom) and the chemical 

feature created by chord formation is that defined by the combination of the AP 

classes of the APs holding the RCVs. 

3.2.5 From Graph to 3D Molecular Model 

The construction of a 3D molecular model for the entity defined by the graph 

involves two main steps: preparation of a tree-like 3D model corresponding to the 

spanning tree (i.e., chords are ignored), and folding of the tree branches to achieve the 

best conformation with closed rings. This two-step strategy reduces to the minimum 

the need of force field parameters while exploiting all the 3D information stored in 

the 3D fragments and avoiding the use of templates for cyclic systems. 

The preparation of a tree-like structure exploits the fact that each 3D fragment, in 

addition to the full spatial characterization of all its atoms, contains information as to 

where in space all the connected fragments should be placed: the AP vectors (Figure 

4). 
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Figure 4: Two 3D fragments with AP vectors (green arrows), and the geometry 

resulting from connection of the fragments. Reprinted with permission from ref. 136. 

Copyright 2014 American Chemical Society. 

These vectors allow the definition of the bond length and bond angles of all 

fragment−fragment connection, but do not provide information as to the torsion along 

such connections. Therefore, arbitrary conformations are used while assembling the 

tree-like 3D model starting from the root vertex and following the spanning tree. 

In the resulting 3D molecular structure, all the rings defined in the graph by the set of 

fundamental cycles are not rings at all, but open chains terminated by RCAs. In order 

to obtain the final geometry, all such RCA-terminated chains must be folded so that 

the chain ends assume a relative orientation consistent with the definition of a bond 

between the atoms holding the RCAs. For a general system with any number of 

closing chains, any substitution pattern on such chains, any surrounding environment, 

and any number of possibly interdependent chains the solution of this folding 

problem is searched with a global optimization technique based on conformational 

search. To this end, the current implementation assumes, in first approximation, that 

closure of the rings requires only negligible deformation of bond angles. Thus, the 

conformational adaptation is reduced to a problem of torsions around the rotatable 

bonds, which include all fragment−fragment bonds and all bonds matching a user-

defined list of rotatable bond types. The assumption that bond angles do not change 

significantly is justified by the use of 3D building blocks that, as the result of 

fragmentation of 3D structures, already have bond angles compatible with the ring 

conformation. Nevertheless, this assumption limits the creation of strained rings from 

3D fragments that are not meant for such rings, and reduces the overall accuracy of 
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3D models of molecules containing rings of fragments. Thus, although not yet 

implemented in this method, the inclusion of a tuneable amount of bond angle 

deformation has been reported in the literature for other contexts131–135 and is going to 

be integrated in future improvements.  

Within the approximation of fixed bond angles and lengths, the simultaneous closure 

of all rings with concomitant relaxation of all acyclic chains is achieved by coupling 

the potential smoothing and search algorithm for the torsional space (PSSROT 

procedure137–140 implemented in the Tinker package)141 with a specifically developed 

ring-closing potential (RCP), which is described in detail in Section 3.2.6. The 

outcome of this conformational search can be either a successfully folded geometry, 

where all rings have been closed, or a poorly folded conformation with incomplete 

ring closures. The latter case may be due to steric hindrance, impossibility of 

simultaneous ring closure of interdependent chains, or faulty solution of the global 

optimization problem. In all cases, this event is interpreted as a defective graph that, 

in de novo design context, is rejected. 

The same type of conformational search, i.e., the PSSROT procedure, is applied also 

to relax the conformation of 3D models that have no cycle of vertices (acyclic 

graphs). This time, though, the definition of the potential energy simply ignores the 

components associated with ring closure and, in the simplest case, corresponds to the 

van der Waals term of the universal force field.142 Such a simplified, yet generally 

applicable force field can be used on any sort of chemical specie as PSSROT 

calculations operates only on torsions. In fact, the bond angles and lengths in the final 

3D model are still those of the 3D building blocks or, for bond corresponding to 

fragment−fragment connections, the bond length calculated from the building blocks 

(Figure 4). 

3.2.6 Ring-Closing Potential 

The ring-closing potential (RCP) is an empirical force field that has been designed as 

part of this work to identify low-energy conformations in which the relative spatial 

arrangement of specific atom pairs is consistent with the definition of a new bond 



 48 

between the two atoms in each pair. When the atoms in one such pair are the 

disconnected ends of an open chain, the formation of the new bond defines a new ring 

and the conformation of the chain is said to be a ring-closing conformation (RCC). 

The proper bonding orientation for each end of an open chain is intrinsically defined 

by the geometry of the atom−RCA connections terminating the chain (e.g., the 

relative position of RCAA and SAA in Figure 5). In fact, the RCA at one end of the 

chain (e.g., RCAA in Figure 5) and the atom holding the corresponding RCA at the 

other end of the closing chain (e.g., SAB in Figure 5) represent two images of the 

same atom. Therefore, the closure of the ring is obtained by overlapping the two pairs 

of images each pertaining to one of the two atoms involved in the new bond (i.e., SAA 

and SAB). 
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Figure 5: Example of a closing chain. Ring-closing attractors (RCA) are depicted as 

magenta squares and green arrows represent the attractive interactions of the ring-

closing term. 

Application of this concept in the context of PSSROT conformational search has led 

to the definition of the RCP as a sum of two contributions: the non-bonding 

interactions term (EvdW (t) ), and the ring-closing term (Erct (t) ): 

 ERCP (t) = EvdW (t)+Erct (t) , (53) 
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where t is the potential surface smoothing parameter characterizing the PSSROT 

procedure. The first term corresponds to the van der Waals component of the 

universal force field (UFF),142 with the only difference that atom proximity reduction 

factors are applied as if the atoms holding the RCAs were connected (SAA and SAB in 

Figure 5). This practice reduces the interatomic repulsion between the two chain 

ends, which would otherwise repel each other. Instead, the ring-closing term defines a 

purely attractive interaction between the RCA on one end of the chain and the atom 

holding the RCA on the other end of the chain (green arrows in Figure 5). The 

functional form of this attractive interaction has been designed to be compatible with 

the PSSROT procedure, meaning that it is a solution of the semi-infinite, one-

dimensional diffusion equation and the time (t) represents the smoothing parameter 

for the potential smoothing protocol.139 The ring-closing term is then defined as 

follows (indexes as from Figure 5): 

 Erct (t) = frct (RCAA,C,SAB,C, t)+ frct (RCAB,C,SAA,C, t)( )
C∈Fc
∑ , (54) 
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 aij,k = akαij , (56) 

 bij,k =
bk
βij
2 , (57) 

where the parameters αij  and βij  depend on the type of the RCAs and constitute the 

force field parameters, ak  and bk  define the shape of each if the three Gaussian 

functions, D  is the diffusion constant and rij  the distance between RCAi and SAj. 

This implementation has been provided with a preliminary set of force field 

parameters developed to test the RCP in a real case scenario that is discussed in 

Chapter 7. 
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4. Design of Realistic Organometallic Compounds 

As a test case for the fragment-based machinery described in Chapter 3, we evaluated 

the automated generation of organometallic ruthenium compounds with general 

formula (L)2(X)2Ru=CR2, where R is H or aryl, L is a neutral ligand (i.e., two-

electron donor) and X an anionic ligands (i.e., one-electron donor). Compound 

matching this formula are used as pre-catalysts for olefin metathesis (the active specie 

is generated by loss of one L).143–146 The wide possibility of altering the ligands set 

represents a good testing ground for the automated generation of molecules that 

should span structural variability while retaining synthetically accessible and type of 

coordination environment. In a word, only realistic candidates should be generated. 

Two case studies were presented in Paper I. Case study I aimed at the automated 

generation of 2D compounds matching a predefined structural diversity scheme that 

imposed (i) high diversity for the dative ligands (L), (ii) use of selected and non-

modifiable anionic ligands (X) and (iii) restricted substituents on the carbene. Thus, 

this test case also shows how the machinery can be used to exert control on the 

molecular building process. Next, case study II was focussed on a subclass of 

compounds, still based on the (L)2(X)2Ru=CR2 general formula, that are known as the 

Hoveyda-Grubbs-type of catalysts.147,148 In this case, the machinery was used to build 

compounds using building blocks that were taken only from existing ligands. 

4.1 Results and Discussion 

For case study I, fragments were produced from more than 20000 molecules taken 

from Cambridge Structural Database149 and fragmented according to cutting rules 

designed in two different strategies depending on whether metal atoms were involved 

or not in the matched bond. For bonds not involving metals, retrosynthetic reasoning 

was applied expanding the RECAP86 set of rules to include chemical species of 

particular interest in transition metal chemistry. In particular, phosphines, N-

heterocyclic carbenes, and multihapto ligands were added. Metal-involving cutting 

rules were instead designed to discriminate different types of ligands (one- and two-
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electron donors) and hapticity. Moreover, to ensure high resolution of the 

fragmentation process, ligand types were further resolved, for instance, 

discriminating between M−amine, M−N-heteroaromatic, and M−phosphine bonds. 

For the fragments resulting by application of these cutting rules, two connection 

strategies were defined: first, a compatibility matrix reproducing a valence-only 

reconnection scheme (84.4% of True entries in the matrix, case A), and second, a 

compatibility matrix based on retrosynthetic approach for organic-only connections, 

and metal-ligand connections respecting the type of ligand and the designed diversity 

scheme (0.3% of True entries in the matrix, case B). The combination of the library 

of fragments and each of the two compatibility matrices defined two different 

organometallic fragment spaces from which molecules could be generated 

automatically. Examples of the generated molecules are given in Figure 6. 

 

Figure 6: Example of molecules generated from the valence-only AP-compatibility 

scheme (A) and the strictly controlled organometallic fragment space (B). 

The compounds produced by a strictly controlled definition of the compatibility 

matrix (B in Figure 6) demonstrate the capability of avoiding nonsensical connections 
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of fragments, such as many of those generated by valence-only AP-compatibility (A 

in Figure 6), while imposing the required metal-coordinating environment. Many of 

the ligands build with the sparse compatibility matrix (B) are, or resemble, 

commercially available or previously synthesized molecules, and span a wider 

structural diversity than that of the fragmented molecules. Moreover, while the 

precise selection of AP class compatibilities (B) has led exclusively to compounds 

with the required metal coordination environment, only a minority of the molecules 

generated from the valence-based connection rules (A) present the required 

coordination environment (Figure 7). Nevertheless, the results show that while the 

type of the coordinating ligand is always the same in B, different kinds of L and X 

ligands were used to build such metal-coordination environment (B in Figure 6). 

 

Figure 7: Formal classifications of metal-coordination environments generated by 

valence-only (A) or chemically controlled (B) connection rules. Each of the 

coordination environments depicted in A are meant to represent all possible 

stereoisomers with fixed Ru=CR2. Reprinted with permission from ref. 136. 

Copyright 2014 American Chemical Society. 

The evaluation of the actual feasibility of the complexes is not trivial. Systematic, 

automated, and empirical evaluation over a large dataset is not yet possible for the 

heterogeneous type of chemistry generated in these experiments. Visual inspection 

suggests that potential issues may derive from automatically generated ligands with 

too sterically hindered ligands, or displaying electronic effects hampering the 
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formation of dative ligands. Nevertheless, the design of the organometallic fragment 

space, i.e., filtration of fragments and management of cutting and connectivity rules, 

allows avoiding these issues according to the specific desires of the chemists. 

Notably, some automatically generated ligand present more than one metal-

coordinating moiety (B in Figure 6), which might introduce the issues of linkage 

isomerism, multidentate coordination, and metal-organic polymerization. While the 

deliberate formation of chelates is discussed in the dedicated chapter (see Chapter 7), 

potentially multidentate ligands can be formed accidentally from organic fragment 

that are obtained by fragmentation of purely organic molecules and hence do not bear 

any AP representing the possibility of coordinating metals. Design of a fragment 

space purged by potentially metal-coordinating groups is an easy workaround. 

Nevertheless, the reduced structural diversity resulting from such strategy may be too 

deleterious for some de novo design projects.  

The issue of the potential multidentate ligands can be extrapolated in a more general 

context and interpreted as a problem that is due to the limited control over the content 

of the fragments. In fact, while the compatibility matrix regulates the type of 

chemical features generated by connection of fragments, the content of the fragments 

is not taken into account. On one hand this allows to handle any sort of chemical 

system, which is a requirement for the present method, but on the other hand it allows 

for incompatible or inter-reacting functional groups to appear in the same molecule. 

A typical example is the simultaneous presence of acid and basic groups on the same 

compounds. Although methods have been developed for the prediction of the 

protonation state of organic molecules and proteins,150–153 the general issue of 

incompatible moieties can be addressed first by proper design of the fragment space 

(i.e., filtering of fragments), and then by post-processing of the candidates, such as 

recalculation of the protonation state and rejection of candidates with incompatible 

moieties. 

In case study II, the organometallic fragment space was designed as the combination 

of substituents harvested from crystallographic structures and commercially available 
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compounds. Therefore, in this case study the fragments are larger than in case study I; 

that is, fragments could be further fragmented. As stated in the introduction (Section 

3.1.1), large building blocks reduce the resolution of the building process and 

simplify the problem of avoiding unrealistic candidates. Consequently, the molecules 

generated in case study II display chemical features that are very common among 

existing catalysts and are expected to be more synthetically accessible than those 

generated in case study I. Despite the reduced structural diversity with respect to the 

ligands built in case study I, and the high similarity of designed ligands with existing 

ones, most of the organometallic species generated have so far not been synthetized 

nor evaluated for catalytic activity. 

4.2 Conclusion 

The de novo design machinery demonstrated the capability of controlling the 

chemical traits of automatically generated transition metal compounds, combining 

retrosynthetic control for the organic connection and regulating the exchange of 

ligands by type (i.e., one- or two-electron donors) thus retaining the oxidation state 

and formal electron count of the metal center. Chemical knowledge and intuition 

were projected into the automated generation of molecules by means of a 

compatibility matrix controlling all possible connection, both for organic and for 

organometallic features. Although limited control could be exerted with respect to the 

content of the fragments assembled, the generation of molecules could be focussed on 

realistic candidates according to the intention of the designer. 
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5. Building of Accurate 3D Molecular Models 

5.1 Introduction 

While the computational estimation of the molecular properties of transition metal 

compounds can, to some extent, be performed from low dimensionality chemical 

representations, such as 2D of even line notations,154–156 accessing high accuracy 

molecular modeling methods requires the creation of 3D models. Therefore, the 

preparation of initial guess geometries from low dimensionality chemical 

representations has been a mandatory step since the early stages of molecular 

modeling, and a number of tools have been developed in response to this need.157–168 

Unfortunately the peculiar geometrical features of many transition metal compounds 

have been shown to cause problems of accuracy and coverage.169,170 

The availability of robust methods for the generation of 3D models of transition metal 

compounds is crucial for de novo design methods that require (i) fully automated and 

efficient tools, (ii) capability of handing special chemical entities, and (iii) production 

of sufficiently accurate results. While lack of automation and capability of handling 

peculiar systems simply prevent the application of de novo design methods, low 

accuracy introduces more subtle effects. In particular, inconsistent treatment of some 

or all candidate compounds in a design project introduces biases in the evaluation of 

molecular properties. Moreover, inaccurate initial geometries increase the 

computational cost of further refinement steps and reduce the likeliness for automated 

molecular modeling to succeed and produce the intended system without 

encountering fatal errors or undesired rearrangement of the geometry. 

It has been suggested that a cascade of increasing accuracy molecular modeling step 

(molecular mechanic, semiempirical, and quantum mechanic modeling) can provide 

access to accurate geometries.171–174 Nevertheless, this approach assumes that the 

empirical components, i.e., robust force fields and semiempirical parametrization, are 

well trained for the specific chemistry at hand, which is seldom the case for peculiar 
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transition metal species,175 thus making re-parametrization a mandatory preliminary 

step. 

Instead, retrieving geometrical information from available 3D models, i.e., 

crystallographic structures, has been suggested in methods for automated conversion 

of SMILES and 2D representation into 3D models.169,170 Nevertheless, use of low 

dimensionality chemical representation is often accompanied with systematic 

mistreatment of peculiar chemical species that are not compatible with the 

assumptions intrinsic in the low dimensionality representation (i.e., protonation 

status, bond type, and geometry). Thus, the method developed in this work (see 

Section 3.2) was designed to make use of 3D building blocks, bypass the limitations 

of low dimensionality chemical representations, and reduce to the minimum the need 

for force field parameters. For this reason, the method is referred as to the full-3D 

approach. 

This chapter presents the application of the full-3D approach in the generation of 3D 

molecular models of challenging transition metal compounds with tree-like structure 

(i.e., all rings were entirely contained within fragments), and compares the 

performance with a series of approaches based on SMILES-to-3D conversion tools. 

Three case studies are discussed to highlight the capability of correctly handling 

unusual functionalities, geometries, and stereochemistry of reaction intermediates that 

are relevant in the design of transition metal and organometallic catalysts. In all 

cases, 3D models are also refined by molecular modeling methods (MM, 

semiempirical, and DFT) providing an evaluation of the effect that low accuracy 

initial geometries have on the production of refined models for property evaluation. 

5.2 Results and Discussion 

5.2.1 Case Study 1 

A dataset of 82 ruthenium-carbene active species (DS-1) relevant for the design of 

ruthenium catalysts for olefin metathesis was retrieved from the literature.176 The 

compounds have general formula (L)(Cl)2Ru=CH2, where L is one of various dative 
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ligands including phosphines, N- and P-heterocyclic carbenes, and aromatic 

heterocyclic compounds. A central issue associated with these compounds is the 

peculiar geometry of the metal center. In fact, although the metal has four ligands 

(coordination number = 4), the geometry is neither tetrahedral nor square planar. 

Instead, computational and experimental evidence show a geometry rather close to 

the disphenoidal case (OC-4 in Figure 8).176–179 Moreover, six stereoisomers can be 

drawn with the same coordination geometry and the given formula (Figure 9). 

However, in this work the aim was to generate only one such stereoisomers (A in 

Figure 9). 

T-4 OC-4Ru 14-el

180˚135—160˚

90—110˚109.5˚ 90˚

SP-4  

Figure 8: Comparison of the tetrahedral (T-4), disphenoidal (OC-4), and square 

planar (SP-4) coordination geometries for tetra-coordinate atoms, with the geometry 

of 14 electrons (L)(Cl)2Ru=CH2 centers in ref. 176 (Ru 14-el).  

 

Figure 9: The six stereoisomers of a disphenoidal center with general formula 

(L)(Cl)2Ru=CH2. Reprinted with permission from ref. 136. Copyright 2014 American 

Chemical Society. 

The performance of the full-3D method, which generated 3D models by assembling 

3D fragments mostly taken from the Cambridge Structural Database, was compared 
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with those of combinations of Open Babel,180 COSMOS,169,170 and Marvin181 tools, 

which were used to generate isomeric SMILES from 3D structures and then convert 

the SMILES back to 3D models (Table 1). In addition, since most of these SMILES-

based protocols generated hydrogen-depleted 3D models, a “protonation” step was 

performed to attempt recovering the proper set of hydrogen atoms. Unfortunately, it 

is not to be expected that the protonation step can handle all the chemical features of 

organometallic compounds. In fact, Table 1 shows that none of the approach 

requiring the protonation step was consistent in managing the constitutional 

information provided as input.  

Table 1: Definition of protocols used in Case Study 1 for generation of 3D models. 

Reprinted with permission from ref. 136. Copyright 2014 American Chemical 

Society. 

ID Generation of 3D from SMILES 3D models 
produced 

3D-to-SMILES 
 

SMILES-to-3D Protonation Wrong number 
of H 

1 Marvin Marvin nonea 0 82 
2 Marvin COSMOS Marvin 8 74 
3 Marvin COSMOS Open Babel 11 71 
4 Open Babel Marvin Marvin 2 80 
5 Open Babel Marvin Open Babel 15 67 
6 Open Babel COSMOS Marvin 10 70b 
7 Open Babel COSMOS Open Babel 13 67b 
8 Open Babelc Marvin Marvin 2 80 
9 Open Babelc Marvin Open Babel 15 67 

10 Open Babelc COSMOS Marvin 10 70b 
11 Open Babelc COSMOS Open Babel 13 67b 

 Generation of 3D from 3D fragments  

12 Full-3Dd 0 82 
a Protonation step not needed.  
b For two molecules COSMOS did not recognize the string generated by Open Babel 
as a correct SMILES string.  
c Canonical smiles.  
d This work; see Section 3.2.5 for details. 

Two geometrical descriptors of the geometry were deployed to evaluate the accuracy 

of the generated 3D structures with respect to the reference DFT structures reported 
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in the original paper:176 the shape similarity index (TS), and the mean angle difference 

for the metal center (MAD).169 While the first takes into account the overall molecular 

shape (the higher the TS, the better the quality of the overall geometry), the second 

focuses on the coordination geometry of the Ru atom and quantifies the differences of 

the set of angles formed by the ligands around the metal between the generated 3D 

models and the reference structures (the lower the MAD, the better the geometry of 

the metal).176  

Analysis of the distribution of shape similarity index for the twelve protocols 

indicates that in all cases, including the full-3D approach, conformations are 

significantly different from those of the reference structures. Nevertheless, the full-

3D approach, performs appreciably better than all other protocols.  

 

Figure 10: Boxplots (25th, 50th, 75th percentile, and whiskers up to 1.5 interquartile 

range) representing the distribution of molecular shape similarity index (TS) of the 3D 

models of dataset DS-1. The 3D-generating processes are defined in Table 1. 

Reprinted with permission from ref. 136. Copyright 2014 American Chemical 

Society. 
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Figure 11: Boxplots (25th, 50th, 75th percentile, and whiskers up to 1.5 interquartile 

range) representing the distribution of mean angle differences (MADs) of the 3D 

models of dataset DS-1. The 3D-generating processes are defined in Table 1. 

Reprinted with permission from ref. 136. Copyright 2014 American Chemical 

Society. 

The better performance of the full-3D method is partially explained by the improved 

geometry of the metal center. In fact, evaluation of the mean angle deviation (Figure 

11) reveals the outstanding accuracy of the metal coordination geometries generated 

by the full-3D in comparison of all other tools. This result is clearly due to the use of 

a proper 3D building block for the metal center also combined with machinery 

capable of preserving such geometrical information. On the contrary, the coordination 

geometries produced by protocols 1-11 always tend to be tetrahedral in accordance to 

the misleading coordination number. To appreciate the consequence of the improved 

accuracy produced by the full-3D approach, the 3D models generated by all protocols 

were used as input for geometry optimization using (i) molecular mechanic method 

with the universal force field (label “UFF”),142 (ii) semiempirical method with 

parameters set PM6 (label “PM6”),182 (iii) and density functional theory with the 

OLYP functional183,184 and double-ζ basis set (i.e., LANL2DZ)185,186 either with 

(label “OLYPA”) or without (label “OLYPB”) preliminary geometry optimization with 

minimum basis set. The analysis of the subset of compounds that was properly 
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modelled in all cases by all three refinement methods (35 compounds, DS-2 Figure 

12), reveals that the average shape similarity index of the initial 3D models produced 

by the full-3D approach is higher than that of both UFF and PM6 refined models 

from all protocols. 

 

Figure 12: Average shape similarity index (TS ) calculated for 3D models of DS-2 

before (none) and after refinement (UFF, PM6, OLYPA, OLYPB). Reprinted with 

permission from ref. 136. Copyright 2014 American Chemical Society. 

The same applied for the overall mean angle deviation (Figure 13). Thus, the full-3D 

approach is capable of producing initial geometries that have, on average, better 

shape and coordination geometry than those achieved by UFF and PM6 refinements. 

Instead, the more demanding DFT refinement manages to improve dramatically both 

shape and coordination geometry in all cases, though, the best performance is 

obtained from input structures generated by the full-3D approach. 
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Figure 13: Overall mean angle difference (MAD ) calculated for 3D models of DS-2 

before (none) and after refinement (UFF, PM6, OLYPA, and OLYPB). Reprinted with 

permission from ref. 136. Copyright 2014 American Chemical Society. 

Finally, the stereochemistry of the refined 3D models was also evaluated (Figure 14). 

While the full-3D approach generated models with the proper stereochemistry in the 

vast majority of cases, all other protocols returned significant amounts of structures 

with wrong stereochemistry. For protocols 1-11 the distorted geometry of the 

coordination sphere in the initial 3D models is the main cause of the wrong 

stereochemistry in the refined models. In fact, protocols 1-11 generated models with 

coordination geometries close to tetrahedral. Due to the presence of two equal ligands 

in (L)(Cl)2Ru=CH2, only one isomer can exist with tetrahedral geometry. Moreover, 

starting from such tetrahedral geometry any of the six stereoisomers can be reached 

by proper distortion of the angles. As highlighted by the different profiles obtained 

for UFF, PM6 and DFT refinements (Figure 14), accurate description of the potential 

allowed better recovery of the proper stereochemistry despite the distorted input.  
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Figure 14: Distribution of stereoisomers for UFF-, PM6- and OLYP-refined 3D 

models of dataset DS-1. Reprinted with permission from ref. 136. Copyright 2014 

American Chemical Society. 
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Nevertheless, only the combination of full-3D approach and OLYPB refinement 

protocol led to the complete set of proper stereoisomers. In fact, the pre-optimization 

with minimal basis set, though capable of improving significantly the geometry and 

facilitating the double-ζ calculation, which was otherwise unfeasible for protocols 1-

11, has the capability of introducing errors such as the change of connectivity 

occurred during the preliminary optimization of one model obtained from the full-3D 

and refined by OLYPA. Surprisingly, the same initial geometry refined by OLYPB 

produced the desired result (Figure 14), thus highlighting the mixed role of the pre-

optimization. 

5.2.2 Case Study 2 

To evaluate the generality of the capabilities demonstrated in the previous case study, 

a structurally diverse dataset (DS-3) was created collecting 58 reaction intermediates 

from organometallic catalysed reactions including different metals, ligand types, 

geometries, oxidation states, and peculiar hydrogen atoms (Figure 15). The 

performance of full-3D approach was evaluated against the only other protocol that 

demonstrated the capability of handling hydrogen atoms consistently (protocol 1 in 

Table 1, page 58).  
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Figure 15: Schematic representation of the compounds included in DS-3. L: 

phosphines, phosphites esters, or N-heterocyclic carbenes; R: –CF3, –Ph, or –tert-

butyl; R’: –CN or –Ph; R’’: –Me, –Ph, or –tert-butyl. Reprinted with permission from 

ref. 136. Copyright 2014 American Chemical Society. 
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The results confirmed the general conclusion from the previous case study; that is, 

both the overall shape (Figure 16) and the mean angle difference (Figure 17) of 

models generated by the full-3D approach are better than those from the SMILES-

based approach. Moreover, also the poor stereochemical control of protocol 1 was 

confirmed with only 26% of proper stereoisomers produced for DS-3. Instead, the 

full-3D approach returned the proper result for all but one compound. The exception 

being a single compound where, despite the good coordination geometry and an 

apparently harmless conformational difference, the DFT refinement led to the 

disconnection of a phosphite ligand from the metal center. This example highlighted 

how the combination of conformational issues and approximate description of 

bonding interactions (i.e., OLYP functional does not account for dispersion and 

underestimates the metal-phosphite binding energy)187 may lead to failure of the 

refinement process. 

 

Figure 16: Distribution of the molecular shape similarity index (TS) for 3D models of 

dataset DS-3 before (left) and after (right) DFT-based refinement of the geometry. 

Reprinted with permission from ref. 136. Copyright 2014 American Chemical 

Society. 
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Figure 17: Distribution of the mean angle differences (MADs) for 3D models of 

dataset DS-3 before (left) and after (right) DFT-based refinement of the geometry. 

Reprinted with permission from ref. 136. Copyright 2014 American Chemical 

Society. 

The wide scope of the properties of ligands represented in the dataset highlighted one 

of the limitations of the full-3D approach. That is, the full-3D approach exploits the 

possibility of using the same 3D building block for many analogous of a given 

compound. With ligand characterized by very different electronic and steric 

properties the geometry of the metal may respond by displaying substantial 

geometrical changes, as shown here for the tetracoordinated Rh intermediates (Figure 

15) that span from square planar to nearly dispheoidal geometry.188 While the DFT 

refinement has properly taken care of this issue, the possibility for this to become a 

problem should be considered carefully in a de novo design application. An ideal 

solution would be to use, for the same fragment, different 3D geometries that are 

chosen according to the properties of the neighbour fragments. The use of multiple 

geometries depending on the chemical context is already feasible the presented 

method, thanks to the classification of the attachment points (see Section 3.2.2), but 

this examples show that care must be taken in allowing AP classes cross 

compatibilities that involve dramatic changes of steric and electronic properties. 
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5.2.3 Case Study 3 

The last case study aimed to demonstrate the capability of the full-3D approach with 

respect to handling of chemical entities that cannot be properly represented in 

standard chemical representations. In particular, a dataset (DS-4) was made out of 22 

contact ion pairs representing candidate active species in titanium-catalysed olefin 

polymerization (Figure 18).189–193 The challenge introduced by these compounds is 

the proper handling of the relative position of the two ions. In this context, the 

combination of graph representation and 3D building blocks allowed to define the 

ionic interaction as a connection between two fragments and thus to treat the relative 

position of the two ions as any other couple of fragments. 

CH3

Cp'

Ti
OPh'
CH3

(C6F5)3B  

Figure 18: Schematic representation of the compounds included in DS-4. Reprinted 

with permission from ref. 136. Copyright 2014 American Chemical Society. 

Once again, the shape similarity index and the mean angle difference were evaluated 

throughout the dataset against the set of reference structures both before and after 

DFT refinement. Although all 3D models presented the proper stereochemistry, the 

distribution of TS and MAD (Figure 19), displayed values higher than expected. 

Deeper structural analysis identified in the conformational differences the rationale 

for the distribution of both TS and MAD. In particular, the mean angle difference is 

altered by different conformations along the metal−pentahapto bond, i.e., the single 

formal bond between the metal and the centroid of the multihapto ligand. Instead, 

propeller isomerism of the [B(C6F5)3CH3]- anion and flipping (i.e., rotation of nearly 

180°) of the aryloxy ligands contribute substantially to the value of TS. Therefore, 

also in this case study, although the full-3D approach has demonstrated the good 

performance, the conformational problem stems as the major source of deviation 

from the reference structures. 
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Figure 19: Distribution of molecular shape similarity index (TS) and mean angle 

differences (MADs) before (“pre-ref.”) and after (“post-ref.”) DFT-based refinement 

of the geometry obtained using the full-3D method on dataset DS-4. Reprinted with 

permission from ref. 136. Copyright 2014 American Chemical Society. 

5.3 Conclusion 

Three case studies evaluated the capabilities of the automated construction of 

molecular models from 3D building locks. The method has been proven able to 

bypass the emerged limitation of tools converting low dimensionality chemical 

representation, such as SMILES, into 3D. In particular, superior results were obtained 

with respect to the accuracy of the metal coordination geometry and control of the 

stereochemistry of the metal center. Moreover, general applicability was 

demonstrated for chemical entities far beyond the capabilities of commonly deployed 

automated methods. 
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6. Fast Fitness from Ligand Field Molecular 
Mechanics 

6.1 Introduction 

Application of de novo design depends on the availability of a method for the 

automated evaluation of the fitness of candidates generated from scratch. Although 

the nature of the fitness function dependends on the specific case study, the 

calculation is usually based on one or more numerical descriptors derived from 

evaluation of constitutional and topological information or 3D molecular 

models.175,194–198 In the latter case, molecular modeling is likely to be the most 

computationally demanding step in the path from the definition of a candidate 

compound to the knowledge of its fitness. While high accurate quantum mechanics, 

and in particular density functional theory, are widely accepted as the methods of 

choice for calculation of structures, electronic properties and energy profiles 

involving transition metal compounds, the computational cost is significantly high 

and, often, prohibitive for large scale design. Therefore, whenever possible fast 

fitness based on empirical or semiempirical molecular modeling tools is desirable. 

Molecular mechanics, if properly trained and validated, can represent a good or even 

better compromise between accuracy and efficiency than DFT.31,199–201 In particular, 

while relative energies may not be accurate,200,202 empirical force fields are 

particularly useful when conformational search is required.201,203 Nevertheless, the 

varied chemistry of transition metals involves a wider range of coordination numbers 

and geometries than organic chemistry. In addition, the partially filled d orbitals open 

for multiple oxidation and spin states and determines geometrical effects like Jahn-

Teller’s and trans-influence. Since molecular mechanics does not treat electrons 

explicitly, all electronic effects represent a challenge. Although standard force field 

formalisms (see Section 2.2.2) can be tuned and successfully applied to reproduce a 

particular target geometry of a given type of metal−ligand set, with specific oxidation 

and spin states,204–210 this approach requires dedicated parameter sets which are not 

general, i.e., not transferable to other systems. Other approached, instead, attempt to 
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develop additional potential energy terms specifically accounting for the peculiarities 

of the metal center, such as the description of the angles centred on the metal atom. 

Examples include the use of the “points on a sphere” model,31 and the 

implementations of valence bond theory in SHAPES211 and VALBOND.212–215 

Among method aiming to improve the empirical definition of the potential energy 

terms for transition metal compounds, this work focuses on the ligand field molecular 

mechanics (LFMM)216–218 method, which provides explicit definition of spin and 

oxidation states without assumption on coordination geometry and number of ligands, 

all with the same set of parameters.  

6.2 Ligand Field Molecular Mechanics (LFMM) 

The LFMM model combines standard force fields, for the organic portion of the 

system, and a metal-dedicated empirical term based on ligand field theory (eq. 

58).217,218 Therefore, the LFMM method can be described as a hybrid approach 

combining two empirical components. 

 Etot = Estr
not ML
∑ + Ebend

not LML
∑ + Etor +∑ Enb +∑ ELFMM

metals
∑  (58) 

The organic portion of the system is described by standard force fields, such as 

Amber,219 CHARMM,220,221 MMFF,222 which are possibly modified to improve the 

performance with respect to ligands of specific transition metal compounds.223 The 

LFMM term accounts for the ligand field stabilization energy (LFSE), replaces bond 

stretching and bending terms that involve the metal atom with dedicated metal−ligand 

stretching (EML ) and 1-3 ligand-ligand interaction term (ELL ), and accounts for an 

empirical estimation of the electron pairing energy ( Epair , eq. 59). 

 ELFMM = EML +ELL +Epair + LFSE  (59) 

The four LFMM terms consider only the metal and the first two layers of neighbour 

atoms (the second layer serves only to define the orientation of the ligands). In this 

metal-ligand core, the functional forms used to define the potential energy are 
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independent from those of the coupled organic force field. In particular, while 

metal−ligand stretching terms (EML ) and 1-3 ligand-ligand interaction terms (ELL ) are 

based on standard potential formulations, such as harmonic, Lennard-Jones, and 

Morse potentials (see Paper III), the LFSE is obtained from the angular overlap 

model (AOM).224 The AOM model considers the overall result of local M−L 

contributions, each dependent on the overlap of the d orbitals of the metal with the 

ligand orbitals with proper symmetry (σ, πx and πy) with a strength of the interaction 

modulated by means of parameters proper of the M−L pair.216 The electron pairing 

energy is estimated per each M−L pair according to the given spin state and empirical 

parameters. This local treatment of each M−L pair allows the model to handle any 

coordination environment without assumption on the coordination geometry, spin 

state, and the number and type of ligands. 

6.3 Integration of LFMM in Tinker 

The calculation of LFSE and electron pairing energy requires functionalities that are 

not implemented in molecular modeling tools. As a consequence, software supporting 

LFMM calculations is rare. The main implementation of the LFMM method, i.e., 

DommiMOE,225 is bound to the commercial software MOE (Molecular Operating 

Environment),226 but MOE’s vendor provides no support or documentation on the 

LFMM implementation and, while powerful graphical user interface and numerous 

functionalities are available, further development of LFMM is affected by closed-

source policy and bound to the programing language embedded in MOE. The 

original, pre-DommiMOE implementation of LFMM has been abandoned due to the 

lack of robust support for the organic force field,216 and other implementations either 

depend on DommiMOE,227 or have not yet been released.31,228–231 Therefore, to 

increase the accessibility to the LFMM method and support its systematic use in fast 

fitness, the LFMM method was integrated into the popular and easily accessible 

Tinker package.232 
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The modular structure of Tinker enabled to follow an integration strategy based on 

implementing (i) an interface to the original Fortran code calculating the LFSE 

contribution to energy and gradient for a single metal center, (ii) the routines for the 

calculation of electron pairing energy, metal−ligand stretching, and ligand−ligand 

interaction, and (iii) support routines for handling of LFMM parameters. In addition, 

to ensure backwards compatibility of the parameter sets and allow further 

improvement of the force fields, the capabilities of the functional forms originally 

implemented in Tinker have been expanded. In particular, polynomial functional 

form with independent coefficients was implemented for bond stretching and angle 

bending energy terms, and the MMFF-style222 torsional potential was implemented up 

to the 6-fold term. 

The new LFMM-capable Tinker implementation is going to be distributed in the 

coming release of Tinker. Nevertheless, the new Tinker-LFMM implementation has 

been exploited in the de novo design project described in the next chapter. 
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7. Multidentate Ligands for Fe(II) Spin-Crossover 
Compounds: a Test Case for Ring-Closing 
Design 

7.1 Introduction 

Spin crossover (SCO) is the change in spin state exhibited by some transition metal 

complex as a consequence of the application of an external perturbation, such as 

temperature, pressure, light, and magnetic field.233 This spin transition is 

accompanied by change of magnetic properties and colour, which makes SCO 

compounds attractive for technological application such as display, sensing, and 

memory devices.234–237 The spin state preference can be explained with the ligand 

field theory as resulting from the competition between ligand field stabilization 

energy and electron spin-pairing energy; that is, weak ligand field cannot balance the 

spin-pairing energy and implies high spin (HS) ground state, but strong ligand fields 

justify low spin (LS) ground states. In thermal SCO the greater electronic and 

vibrational entropy of the HS state overcomes the higher enthalpy of the LS as the 

temperature increases.238,239 Thus, SCO compounds have HS ground state at high 

temperature and LS ground state at low temperatures. Octahedral complexes of 3d 

elements with d5, d6, and d7 configuration display particularly strong tendency to 

undergo thermal spin transition. In fact, most known SCO compounds are complexes 

of Fe(II), Fe(III), and Co(II), but also Mn(II), Cr(II), and Co(III) have been 

reported.240 The most studied SCO compounds are combinations of Fe(II) with 

nitrogen-based ligands. The spin transition in these compounds is associated with the 

largest metal−ligand bond change that, in the solid state, can induce strong 

cooperatively between the metal centers and might lead to hysteresis, which is a 

tailored property for technological applications.241–243 Therefore, many Fe(II)-N6 

compounds have been synthetized and evaluated for SCO behaviour.244 

While understanding and rationalization of the overall properties of SCO materials 

for technological application requires handling of a challenging crystal-engineering 

problem,245 design of new compounds capable of displaying SCO behaviour focus on 
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the ligand set surrounding the metal atom.246 To this end, Deeth and co-workers have 

developed an empirical LFMM force field that enables access to both HS and LS 

states for the same compound with the same set of empiric parameters, thus providing 

computationally inexpensive evaluation of the spin state energy difference.223,247 

Although the force field covers only Fe(II)-amine compounds, the ligand field 

generated by six amine groups can, to some extent, be tuned by modification of the 

molecular frame supporting the metal-coordinating moieties. In general, the design of 

complexes with multidentate ligands should allow for variable denticity, different 

bridge types and lengths with mutable identity of the bridged atoms, and possibility 

of decorating both bridge and coordinating moieties. With the exception of the 

modification of decorating groups, all such structural alterations imply modification 

of both organic and metal-organic rings. Therefore, the design of novel Fe(II) SCO 

compounds represents a test field for the ring-closing machinery developed in the 

context of 3D fragment-based design (Chapter 3). This application takes advantage of 

the evolutionary algorithms for de novo optimization of transition metal compounds 

described in ref. 30 (see also Section 2.1).  

7.2 Brief Computational Details 

Artificial evolution experiments were performed to evolve new Fe(II) SCO 

compounds under the pressure of an empirical fitness function based on spin state 

energy differences calculated with the Tinker implementation of LFMM (see Chapter 

6).248 In addition to the energy gap associated with the relaxed LS→HS transition, 

which is calculated between the two global minima of the HS and LS state potential 

energy surfaces (i.e., relaxed transition),249 the fitness consider also the two vertical 

transitions LS→HS and HS→LS at the fixed, lowest energy geometry of the LS and 

HS state respectively. These vertical transitions served as a rough indication of 

possible high lying minimum energy crossing points. Overall, the fitness function 

was designed empirically to match the reasonable expectation that best candidates 

should have LS ground state at 0 K with a relaxed spin transition within 5-6 kcal/mol 
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(i.e., the fitness favours the LS with a bias of 3 kcal/mol on the relaxed spin transition 

energy) and small contributions from the vertical spin transition.250,251 

New candidate Fe(II) SCO compounds were generated by assembling 3D fragments 

collected from crystallographic structures and computed models. In particular, as the 

aim is to identify compounds with LS ground state, 3D fragments were generated 

from purposely-modelled low spin geometries in order to obtain proper metal−ligand 

bond lengths and attachment point vector lengths. Other fragments were generated 

specifically from metal-organic five and six member rings thus providing the proper 

bond angles for formation of rings in the new structures. 

7.3 Results and Discussion 

Two different types of evolutionary experiments were performed: in one case, new 

compounds were built starting from root fragments containing only a single Fe(II) 

atom (strategy A), while in the other case large root fragments were used that 

contained the Fe(II) atom and portions of pre-coordinated ligands (strategy B). On 

one hand A could explore structures that were not accessible by B, which, instead, 

could exploit previously known portions of multidentate ligands. On the other hand, 

the complexity of the combinatorial problem, i.e., the generation of valid graphs, and 

that of the conformational problem, which is due to the simultaneous closure of a 

larger number of rings, made strategy A more challenging and computationally 

demanding than B. In particular, to produce the same amount of valid structures, 

experiments performed with strategy A required the evaluation of about four times 

the number of graphs used by those run with strategy B. Regardless, the generation of 

valid graphs in both cases has shown inefficiencies mainly due to the random 

generation of graphs and the elementary implementation of the method with respect 

of detection of duplicates and evaluation of ring-closing conditions (see Section 

3.2.3). Artificial evolution experiments performed with the two strategies have 

evolved randomly generated populations of SCO candidates and identified new 

multidentate ligands with improved fitness (Figure 20 and Figure 21).  
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Figure 20: Maximum, mean, and minimum of the fitness in the instantaneous 

population through an experiment of type A. 
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Figure 21: Maximum, mean, and minimum of the fitness in the instantaneous 

population through an experiment of type B. 

The possibility of altering the molecular cyclicity resulted in a competition of 

different ligand denticity patterns. In particular, while four denticity patterns were 

permitted, namely three bidentate ligands (κ 2,κ 2,κ 2 ), two tridentate (κ 3,κ 3 ), one 

hexadentate ligand (κ 6 ), and combination of one tetradentate and one bidentate 

(κ 4,κ 2 ), experiments of both type A and type B, were dominated by pairs of 

tridentate ligand sets (Figure 22 and Figure 23). However, analysis of the occurrence 

of hexadentate ligands indicates that the competition between different denticities is 

biased by the ease of generating candidate with a given denticity set. The occurrence 
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of hexadentate ligands is low in experiments of type A (Figure 22), where 

construction of such compounds requires the simultaneous closure of six metal-

organic rings, while in the experiment of type B, where only three ring closures are 

required to generate an hexadentate ligand, these candidates represent more than 30% 

of the population during the whole artificial evolution (Figure 23). 
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Figure 22: Characterization of the ligand denticity of the population throughout the 

experiment of type A. Each κ n  represents a single n-dentate ligand. 
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Figure 23: Characterization of the ligand denticity of the population throughout the 

experiment of type B. Each κ n  represents a single n-dentate ligand. 
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The fittest SCO candidates (Figure 24) are characterized by ligands that are new to 

the field of Fe(II) SCO compounds, but are (or resemble) molecules that have been 

synthetized before (Figure 25). The empirical evaluation of the relaxed spin transition 

agrees with that at DFT level indicating values that are within the range for potential 

SCO behaviour (Table 2). Instead the vertical transitions, which are not considered in 

the parametrization of the force field,223 are characterized by larger deviations. 
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Figure 24: Sketches of representative molecules with high fitness discussed in the 

text (X = NH2). 
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Table 2: Energies of the relaxed (ΔErH−rL ) and vertical (ΔEvHL  and ΔEvLH ) spin 

transition energy (kcal/mol) for selected candidates and existing molecules. 

Mol. ID ΔErH−rL  ΔEvLH  ΔEvHL  
LFMM DFT(e) LFMM DFT(e) LFMM DFT(e) 

1(a) 0.42 3.05 29.06 32.68 20.15 18.60 

2(a) 0.84 3.36 29.38 33.51 20.86 30.35 

3(a) 1.30 4.51 30.07 34.30 21.62 20.47 

4(b) 4.93 5.47 33.29 32.13 19.35 18.78 

5(a) 0.94 4.55 31.46 33.21 24.38 20.74 

6(b) -1.96 2.31 27.93 30.72 26.06 19.32 

[Fe(tacn)2]2+ (c) 1.40 5.29 42.14 35.88 25.22 18.63 

[Fe(NH3)6]2+(d) -6.27 -7.36 31.99 22.82 28.56 27.45 
Mean Absolute 

Deviation  2.72  4.14  3.85 
a New candidate generated by an experiment of type A. 
b New candidate generated by an experiment of type B. 
c Previously existing compound; undergoes thermal SCO in solution.252,253 
d Previously existing compound; HS ground state, no SCO behavior.  

e OPBE/cc-pVTZ PCM(water). 

Overall, three frequently occurring tridentate skeletons characterize the populations 

of fittest molecules: ampda, tacn, and tacph (see Figure 25). The best SCO candidate 

identified by the artificial evolution experiments is a simple complex characterised by 

the tridentate ampda skeleton (1). Despite the fact that the ligand displayed in 1 is a 

commercial product that has been used to prepare complexes with other metals,254–256 

and is often exploited as building block to prepare hexadentate ligands for Fe(II) SCO 

candidates,257 complex 1 has so far not been synthetized. DFT evaluations of relaxed 

and vertical transitions are in good agreement with the LFMM calculation, thus 

confirming the promising value of this candidate. In experiments of both type A and 

type B, the ampda skeleton has a dominating role and appears in five of the six fittest 

molecules (Figure 24). Compounds 4 and 6 present the combination of ampda with 

another of the preferred skeletons, i.e., tacn, which is found in many molecules 

generated by experiment B, and characterized an existing compounds known to 

undergo spin crossover in solutions.252,253 Instead, both types of experiments have 
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identified tacph (see Figure 25) as one of the skeletons leading to the highest fitness 

values. In fact, the LFMM-based fitness indicated 2 as the second best candidate 

overall. However, the crown-like conformation required to coordinate the metal is 

12.9 kcal/mol (OPBE/cc-pVTZ PCM water, detail in Paper IV) higher than that of the 

crystallized N,N’-dimethylated analogous.258 The latter conformation does not allow 

tridentate N-coordination of the metal, thus, although the evolved populations of both 

A and B present several high fitness candidates with such skeleton differently 

decorated, this ligands lacks preorganization.259–261 Moreover, LFMM overestimates 

the fitness of 2 by significantly underestimating one of the vertical transitions (Table 

2). As a result, the actual value of the tacph skeleton seems not as promising as the 

LFMM evaluation would indicate.  

Candidate 4 presents a tetradentate bicyclic core, i.e., admz in Figure 25, that has 

been used before to prepare complexes of first-row transition metals.262 The presence 

of the two additional metal-coordinating primary amines imposes a more strained 

conformation that might compromise the stability of the hexadentate complex. 

Instead, compound 6 represents the monocyclic analogous that results from removal 

on a methylene bridge of 4. This structural modification heals the strain issues of 4, 

but the LFMM fitness of 6 is significantly lower than that of 4 due to the predicted 

HS ground state. On the contrary, the calculations at DFT level (Table 2) indicate LS 

ground state and, overall, suggest 6 as one of the most promising candidates. Further, 

investigation is thus required to clarify the actual value of this candidate. 

The highlighted strain and lack of preorganization in the generated ligands represent 

issues that could be addressed by (i) improving the evaluation of the atom path 

closability conditions (see Section 3.2.3), for instance by reducing the allowance 

deployed to consider a chain closable, (ii) including an evaluation of the 

preorganization of the ligand, for instance by comparison the energy of free and 

metal-coordinating conformations,260 and (iii) evaluating the overall stability of the 

complex.31,259 While ii and iii could be included in the fitness function or used to pre-

filter the candidates, the additional computational cost has to be considered. Instead, 

integrating more refined algorithms for identification of ring-closing conformations 
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(i.e., based on inverse kinematics),131–135 can significantly improve the efficiency of 

the method while allowing a more precise evaluation of the closability condition. 

7.4 Conclusion 

The design of multidentate ligands for Fe(II) SCO candidate compounds has involved 

the generation and modification of multicyclic systems thus serving as a challenging 

test case of the ring-closing machinery embedded in the 3D fragment-based design 

tool. The results demonstrate that new and unexpected multidentate ligands, which 

are or resemble existing molecules, are generated and evolved according to the 

definition of the fitness function. The best SCO candidates identified by the artificial 

evolution experiments are characterized by spin transition energies that are within the 

range suggested for possible SCO behaviour. Nevertheless, the stability of the 

designed metal complexes represents an issue that should be tackled both by 

evaluation of the preorganization of the ligands and by development of more refined 

algorithms for design of rings. The latter is also pointed out as a requirement for 

improving efficiency. 
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8. Concluding Remarks 

The work presented in this thesis enhanced the capabilities of de novo design 

methods for applications in transition metal and organometallic chemistry, and 

provided insights on the issues related with automated handling of such species.  

The need for generality was satisfied developing computational machinery capable of 

representing any sort of chemical entity without assumptions based on strict chemical 

formalisms. The resulting tool allowed proper handling of organometallic species 

(Paper I and II) and peculiar entities with bonding interactions not supported by other 

tools (Paper II), also combined with the capability of identifying novel cyclic systems 

potentially involving peculiar species (Paper IV). 

Punctual control of the automated molecular generation and modification was 

provided by definition of a protocol based on annotated molecular fragments and 

connection rules which are collected in a so-called compatibility matrix. 

Retrosynthetic and purpose-based assembly of molecules could be achieved thus 

focussing the automated generation of candidates on realistic compounds with 

various ligand sets still retaining the properties of the metal coordinating environment 

(Paper I). 

Preparation of accurate initial 3D molecular models by assembling of 3D building 

blocks was performed for peculiar tree-like chemical species demonstrating the 

superior performance of the approach that, contrarily to other methods, can precisely 

control the geometry of metal centers, their stereochemistry, and the spatial 

arrangement of chemical entities otherwise not supported by other automated tools 

(Paper II). 

To empower the development and applications of fast fitness calculations, the ligand 

field molecular mechanics (LFMM) method was integrated into a promptly available 

software package (i.e., Tinker) thus providing broad accessibility to a method that is 

specifically meant for transition metal complexes (Paper III). 
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The capability of handling multicyclic systems has been evaluated by de novo design 

of Fe(II) spin-crossover compounds with multidentate amine ligands. The artificial 

evolution successfully identified promising ligands with unexpected skeletons that 

are, or resemble, existing molecules and, so far, have not been considered for spin-

crossover compounds. 

Finally, in the work presented herein, full automation was achieved for tasks such as 

the generation and modification of peculiar chemical entities, including the 

introduction and alteration of new rings from acyclic 3D building blocks, and the 

preparation of proper 3D guess structures, for tree-like molecules, that allow accurate 

evaluation of molecular properties. These capabilities are believed to boost the 

application of de novo design techniques to a broader range of chemical problems 

and, in particular, to the design of organometallic catalysts and functional transition 

metal compounds in general.  
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9. Directions for Future Work 

The strength and drawback of de novo design approach is the vastness of the 

chemical space. In fact, while new molecules are easy to find, the numbers quickly 

become intractable. Paper I provided the means for restricting the exploration of the 

chemical space to a defined subspace, but the preparation of a representative sample 

of the chemical diversity enclosed in such a space is still a missing piece of the 

puzzle. Unfortunately the concept of chemical diversity is context-dependent,263,264 

thus the sampling method should be flexible and provide a different set of criteria, 

i.e., descriptors, that are to be chosen accordingly to the needs of the specific 

application domain. Nevertheless, future developments will have to consider the 

introduction of diversity-oriented sampling of the chemical space identified by the 

library of building blocks and the connection rules. 

It is worth mentioning an intended, yet still unexploited property of the double layer 

graph representation described in Section 3.2.1; that is, the outer graph can be used to 

represent multiple steps along a reaction path. In fact, while the root vertex indeed 

contains a fragment, the actual molecular representation of such fragment is hidden in 

the inner layer graph and perceived by the outer graph only in terms of its attachment 

points. The root fragment can be designed in such a way that all the bond formations 

and ruptures occurs within such vertex, meaning that all other vertices represent 

ancillary atoms altering the steric and electronic properties of the reacting system but 

not directly involved in the reaction. By providing alternative structural 

representations of the root fragment, making sure the attachment point are set 

consistently, then various reaction intermediate and transition states models can be 

obtained from a single graph. Multiple conversion of the graph into molecular 

representations, each time with a different root fragment, easily generates the initial 

guess structures for the desired set of reaction steps. 
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